#### EDWARD J. CUHACI AND ASSOCIATES ARCHITECTS INC.

# COLLÈGE CATHOLIQUE MER BLEUE - ADDITION 6401 RENAUD ROAD, OTTAWA, ON SERVICING AND STORMWATER MANAGEMENT REPORT

APRIL 26, 2023







# COLLÈGE CATHOLIQUE MER BLEUE -ADDITION 6401 RENAUD ROAD, OTTAWA, ON SERVICING AND STORMWATER MANAGEMENT REPORT

EDWARD J. CUHACI AND ASSOCIATES ARCHITECTS INC.

SITE PLAN APPLICATION

PROJECT NO.: 221-09207-00 DATE: APRIL 2023

WSP CANADA INC. 2611 QUEESVIEW DRIVE, SUITE 300 OTTAWA, ON, CANADA, K2B 8K2

TEL.: +1 613-829-2800

WSP.COM

## SIGNATURES



Ding Bang (Winston) Yang, P.Eng Senior Civil Engineer

This report was prepared by WSP Canada Inc. for the account of EDWARD J. CUHACI AND ASSOCIATES ARCHITECTS INC, in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP Canada Inc.'s best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.



# TABLE OF CONTENTS

| 1                                                                     | GENERAL1                                                                          |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1.1                                                                   | Executive summary1                                                                |
| 1.2                                                                   | Date and Revision Number2                                                         |
| 1.3                                                                   | Location Map and Plan2                                                            |
| 1.4                                                                   | Adherence to zoning and related requirements3                                     |
| 1.5                                                                   | Pre-Consultation meetings3                                                        |
| 1.6                                                                   | Higher level studies3                                                             |
| 1.7                                                                   | Statement of objectives and servicing criteria3                                   |
| 1.8                                                                   | Available existing and proposed infrastructure3                                   |
| 1.9                                                                   | Environmentally significant areas, watercourses and municipal drains4             |
| 1.10                                                                  | Concept level master grading plan4                                                |
| 1.11                                                                  | Geotechnical study 4                                                              |
| 1.12                                                                  | Drawing requirement4                                                              |
|                                                                       |                                                                                   |
| 2                                                                     | WATER DISTRIBUTION5                                                               |
| 2<br>2.1                                                              | WATER DISTRIBUTION                                                                |
|                                                                       | Consistency with master servicing study and availability                          |
| 2.1                                                                   | Consistency with master servicing study and availability of public infrastructure |
| 2.1                                                                   | Consistency with master servicing study and availability of public infrastructure |
| 2.1<br>2.2<br>2.3                                                     | Consistency with master servicing study and availability of public infrastructure |
| 2.1<br>2.2<br>2.3<br>2.4                                              | Consistency with master servicing study and availability of public infrastructure |
| <ul><li>2.1</li><li>2.2</li><li>2.3</li><li>2.4</li><li>2.5</li></ul> | Consistency with master servicing study and availability of public infrastructure |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6                                | Consistency with master servicing study and availability of public infrastructure |



| 3             | WASTEWATER DISPOSAL                                        | 8   |
|---------------|------------------------------------------------------------|-----|
| 3.1           | Design Criteria                                            | . 8 |
| 3.2           | Consistency with master servicing study                    | . 8 |
| 3.3           | Description of existing sanitary sewer                     | . 8 |
| 3.4           | Verification of available capacity in downstream sewer     | 9   |
| 4             | SITE STORM SERVICING                                       | 0   |
| 4.1           | Existing condition                                         | 10  |
| 4.2           | Analysis of availabLe capacity in public infrastructure    | 10  |
| 4.3           | Drainage drawing                                           | 10  |
| 4.4           | Water quantity control objective                           | 10  |
| 4.5           | Water quality control objective                            | 10  |
| 4.6           | Design criteria                                            | .11 |
| 4.7           | Proposed minor system                                      | .11 |
| 4.8           | Stormwater management                                      | .11 |
| 4.9           | Inlet Controls                                             | 12  |
| 4.10          | On-site detention                                          | 12  |
| 4.11          | Watercourses                                               | 12  |
| 4.12          | Pre and Post development peak flow rates                   | 12  |
| 4.13          | Diversion of drainage catchment areas                      | 13  |
| 4.14          | Downstream capacity where quanTity control is not proposed | 13  |
| 4.15          | Impacts to receiving watercourses                          | 13  |
| 4.16          | Municipal drains and related approvals                     | 13  |
| 4.17          | Means of conveyance and storage capacity                   | 13  |
| 4.18          | Hydraulic analysis                                         | 13  |
| <i>(</i> , 10 | Identification of floodulains                              | 17  |



| 4.20 | Fill constraints                       | 13   |
|------|----------------------------------------|------|
| 5    | SEDIMENT AND EROSION CONTROL           | 1/1  |
| 5.1  | General                                |      |
|      |                                        |      |
| 6    | APPROVAL AND PERMIT REQUIREMENTS       |      |
| 6.1  | General                                | 15   |
| 7    | CONCLUSION CHECKLIST                   | . 16 |
| 7.1  | Conclusions and recommendations        | 16   |
| 7.2  | Comments received from review agencies | 16   |



| TABL                | ES                                                                                                        |
|---------------------|-----------------------------------------------------------------------------------------------------------|
|                     | E 2-1: BOUNDARY CONDITIONS5<br>E 2-2: SUMMARY OF MINIMUM WATER PRESSURE<br>FOR THE DEVELOPMENT UNDER PEAK |
| TABLE               | HOUR SCENARIO6  E 2-3: SUMMARY OF THE RESIDUAL PRESSURE FOR THE DEVELOPMENT UNDER MAX DAY +               |
| TABLE               | FIRE SCENARIO6                                                                                            |
| .,                  |                                                                                                           |
| FIGU                | RES                                                                                                       |
| FIGUR               | E 1-1 SITE LOCATION2                                                                                      |
| APPE                | ENDICES                                                                                                   |
| Α                   |                                                                                                           |
| •                   | PRE-CONSULTATION MEETING NOTES                                                                            |
| •<br>MANA<br>LTD, 2 | DEVELOPMENT SERVICING AND STORMWATER AGEMENT REPORT, NOVATECH ENGINEERING CONSULTANTS 014                 |
| В                   |                                                                                                           |
| •<br>FOR B          | FIRE UNDERWRITERS SURVEY - FIRE FLOW CALCULATION UILDING AND ADDITION                                     |
| •                   | WATER DEMAND CALCULATION                                                                                  |
| •                   | UPDATED BOUNDARY CONDITION                                                                                |
| •                   | FUS CLASSIFICATION DECLARATION                                                                            |
| С                   |                                                                                                           |
|                     |                                                                                                           |
| •                   | STORM DRAINAGE AREA PLAN CO6                                                                              |
| •                   | STORM DRAINAGE AREA PLAN CO6 ROOF PLAN                                                                    |

STORMWATER MANAGEMENT CALCULATIONS



- DWG C03 GRADING PLAN
- DWG C04 SERVICING PLAN

D

• EROSION AND SEDIMENTATION CONTROL PLAN CO5

Ε

SUBMISSION CHECK LIST

#### 1 GENERAL

#### 1.1 EXECUTIVE SUMMARY

WSP was retained by Edward J. Cuhaci and Associates Architects to provide servicing, grading and stormwater management design services for the proposed addition to Collège Catholique Mer Bleue on a 5.05 ha site located at the northwest corner of Renaud Road and Fern Casey Street within the Orleans community in Ottawa, Ontario. All services for the addition will be available from the existing school. This report outlines findings and calculations pertaining to the servicing of the proposed building with a gross building area of 1059 square metres. This report is supported by the Development Servicing Study and Stormwater Management Report prepared in 2014 by Novatech Engineering Consultants Ltd for the original construction of the school. This report has been included in Appendix A for reference.

The proposed school addition is a two-storey building with a gross floor area of 1059 square metres and a maximum building height of 11.8m, located on the north-west side of the existing school north of the Renaud Road and Fern Casey Street intersection. Bike racks are proposed north of the addition. Further, to the east of the addition, the existing portables will remain on site. The fire route access to the school and the portables will remain the same; fire trucks will access the parking lot from Fern Casey Street and will access the school from the south entrance located on Renaud Street.

Currently the land proposed for the buildings is within the 6401 Renaud Street site. The reserved land for the proposed addition is grassed. The total study area is considered to be 0.1059 hectares in size. The legal description of the property is designated as Part of Lots 2 & 3, Concession 3, Geographic Township of Gloucester in the City of Ottawa. Based on the topographic survey, the site is relatively flat. The current drainage design on the site consists of a piped storm drainage system which outlets on the west side of the site to a municipal storm sewer on Fern Casey Street, on route to off-site stormwater quantity and quality control facilities designed for the use of the school site and the surrounding community.

As per Section 3 of the Development Servicing Study and Stormwater Management Report by Novatech Engineering Consultants Ltd (refer to Appendix A), the following criteria apply: runoff from all storm events up to and including the 1:100 year event must be restricted to a rate of 860 l/s. Flows exceeding 860 l/s up to the 100-year event must be temporarily stored on site and released at a rate not exceeding 860 l/s. It should be noted that the design of the school resulted in a further reduced rate to 599.8 l/s. Stormwater quality control is not required for this site. Design of a drainage and stormwater management system in this development must be prepared in accordance with the following documents:

- Sewer Design Guidelines, City of Ottawa, October 2012;
- Stormwater Management Planning and Design Manual, Ministry of the Environment, March 2003; and
- Stormwater Management Facility Design Guidelines, City of Ottawa, April 2012

This report was prepared utilizing servicing design criteria obtained from the City of Ottawa and outlines the design for water, sanitary wastewater, and stormwater facilities, including stormwater management.

The format of this report matches that of the servicing study checklist found in Section 4 of the City of Ottawa's Servicing Study Guidelines for Development Applications, November 2009.

The following municipal services are available at the south property line as recorded from GeoOttawa. Renaud Street:

- 200mm diameter sanitary sewer, 1500mm storm sewer and 305mm watermain.

#### Fern Casey Street:

- 375mm storm sewer and 406mm watermain.

#### It is proposed that:

- On-site stormwater management systems, employing surface storage and roof storage will be provided to attenuate flow rates leaving the school site. Existing drainage patterns, previously established controlled flow rates and storm sewers will be maintained.

#### 1.2 DATE AND REVISION NUMBER

This version of the report is the second issue, dated April 20, 2023.

#### 1.3 LOCATION MAP AND PLAN

The proposed institutional development is located at 6401 Renaud Road, Ottawa, Ontario at the location shown in Figure 1-1 below.

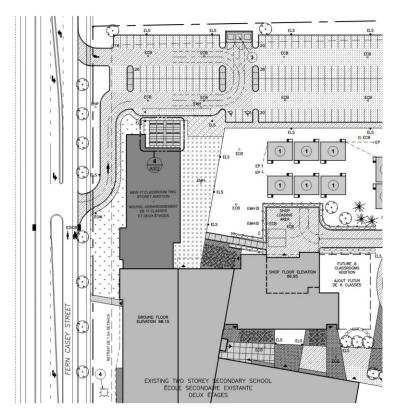



Figure 1-1 Site Location

#### 1.4 ADHERENCE TO ZONING AND RELATED REQUIREMENTS

The proposed property use will be in conformance with zoning and related requirements prior to approval and construction and is understood to be in conformance with current zoning.

#### 1.5 PRE-CONSULTATION MEETINGS

A pre-consultation meeting was held with the City of Ottawa on August 22, 2022. Notes from this meeting are provided in Appendix A.

#### 1.6 HIGHER LEVEL STUDIES

The review for servicing has been undertaken in conformance with, and utilizing information from, the following documents:

- Ottawa Sewer Design Guidelines, Second Edition, Document SDG002, October 2012, City of Ottawa including:
  - Technical Bulletin ISDTB-2012-4 (20 June 2012)
  - Technical Bulletin ISDTB-2014-01 (05 February 2014)
  - Technical Bulletin PIEDTB-2016-01 (September 6, 2018)
  - Technical Bulletin ISDTB-2018-01 (21 March 2018)
  - Technical Bulletin ISDTB-2018-04 (27 June 2018)
- Ottawa Design Guidelines Water Distribution, July 2010 (WDG001), including:
  - Technical Bulletin ISDTB-2014-02 (May 27, 2014)
  - Technical Bulletin ISTB-2018-02 (21 March 2018)
- Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment and Climate Change, March 2003 (SMPDM).
- Servicing and Stormwater Management Report, WSP, Project 17M-02044-00, revised July 2018. (Includes water, sanitary and storm servicing)
- Design Guidelines for Drinking-Water Systems, Ontario Ministry of the Environment and Climate Change, 2008 (GDWS).
- Fire Underwriters Survey, Water Supply for Public Fire Protection (FUS), 2020.

#### 1.7 STATEMENT OF OBJECTIVES AND SERVICING CRITERIA

The objective of the site servicing is to meet the requirements for the proposed modification of the site while adhering to the stipulations of the applicable higher-level studies and City of Ottawa servicing design guidelines. The site plan includes a new addition to the main school and no change to the existing school or portables.

#### 1.8 AVAILABLE EXISTING AND PROPOSED INFRASTRUCTURE

The existing services for the present school will not be altered. Sanitary and water services are provided at the south entrance of the main school building and connect to municipal mains on Renaud Road and Fern Casey Street respectively.

The existing storm sewer network for the site currently outlets to Fern Casey Street. The storm infrastructure currently occupying the footprint of the addition will be removed. Sanitary and water services for the addition will be provided internally from the existing school.

An off-site facility has been provided by the developer for stormwater quality control. Stormwater quantity control is required on site and roof storage will be provided on the addition.

# 1.9 ENVIRONMENTALLY SIGNIFICANT AREAS, WATERCOURSES AND MUNICIPAL DRAINS

There are no watercourses, municipal drains or environmentally significant areas on the site.

#### 1.10 CONCEPT LEVEL MASTER GRADING PLAN

As the design is being submitted for site plan approval, the grading plan has been developed to the final design level. The existing and proposed grading are shown on Drawing C03 - Grading Plan. Existing grading information is based on a topographic survey of the site completed in 2017 and is noted in the background of the Drawing C03. No changes in grading are proposed beyond the site boundaries. The proposed grading plan confirms the feasibility of the proposed stormwater management system, drainage, soil removal and fills. The geotechnical investigation was completed in 2013 by LRL Associates Ltd. for the entirety of the school site.

#### 1.11 GEOTECHNICAL STUDY

A geotechnical investigation report was prepared by LRL Associates Ltd. for the original school construction in November 2013. No additional geotechnical information was required for the design of the modified site services, including paving. This geotechnical report will be included with the contract documents to be issued for construction, and the recommendations of the reports will be referenced in the construction specifications.

#### 1.12 DRAWING REQUIREMENT

The engineering plans submitted for site plan approval will be in compliance with City requirements.

#### 2 WATER DISTRIBUTION

# 2.1 CONSISTENCY WITH MASTER SERVICING STUDY AND AVAILABILITY OF PUBLIC INFRASTRUCTURE

There is an existing 406mm diameter municipal watermain along Fern Casey Street providing water to the property. The new addition will be protected with a supervised automatic fire protection sprinkler system and will be serviced from within the existing school. The fire department connection is located at the front entrance of the existing school building fronting. There is a private hydrant located 18m away from the Siamese connection of the building and three municipal hydrants within 150m on Renaud Road. No changes are required to the existing City water distribution system to allow servicing for this property. The existing school building has a 152mm diameter water service, with a water entry room in the southwest corner.

#### 2.2 SYSTEM CONSTRAINTS AND BOUNDARY CONDITIONS

A boundary service request was submitted to the City of Ottawa and boundary conditions are summarized below. A fire flow of 9,000 l/min (183 l/s) was estimated for the existing building with the addition.

Table 2-1: Boundary Conditions

| Boundary Conditions   |                          |
|-----------------------|--------------------------|
| SCENARIO              | Hydraulic Pressure (kPa) |
| Basic Day (MAX HGL)   | 425.4                    |
| Peak Hour (MIN HGL)   | 386.1                    |
| Max Day + Fire Flow 1 | 386.1                    |
| Max Day + Fire Flow 2 | 371.6                    |

#### 2.3 CONFIRMATION OF ADEQUATE DOMESTIC SUPPLY AND PRESSURE

Water demands are based on Table 4.2 of the Ottawa Design Guidelines – Water Distribution. As previously noted, the development is considered as an institutional development, consisting of sixteen classrooms. A water demand calculation sheet is included in Appendix B, and the total water demands are summarized as follows:

|             | WSP      |
|-------------|----------|
| Average Day | 3.26 l/s |
| Maximum Day | 4.89 l/s |
| Peak Hour   | 8.79 l/s |
|             |          |

The 2010 City of Ottawa Water Distribution Guidelines stated that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in the guidelines are as follows:

Minimum Pressure Minimum system pressure under peak hour demand conditions shall not be less than 276 kPa (40

psi)

Fire Flow During the period of maximum day demand, the system pressure shall not be less than 140 kPa (20

psi) during a fire flow event.

Maximum Pressure Maximum pressure at any point the distribution system shall not exceed 689 kPa (100 psi). In

accordance with the Ontario Building/Plumbing Code, the maximum pressure should not exceed 552 kPa (80 psi). Pressure reduction controls may be required for buildings where it is not

possible/feasible to maintain the system pressure below 552 kPa.

The minimum water pressure inside the building at the connection is determined with the minimum HGL condition, resulting in a pressure of 378.2 kPa at the addition which exceeds the minimum requirement of 276 kPa per the above guideline. Table 2-2: Summary of minimum water pressure for the development under peak hour scenario

| Peak Hour @ 126.7m         |                          |
|----------------------------|--------------------------|
| Connection location        | Hydraulic Pressure (kPa) |
| At connection elev = 84.9m | 410.0                    |
| At addition FFE = 88.15m   | 378.2                    |

#### 2.4 CONFIRMATION OF ADEQUATE FIRE FLOW PROTECTION

The fire flow rate has been calculated using the 2020 Fire Underwriters Survey (FUS) method. The method takes into account the type of building construction, the building occupancy, the use of sprinklers and the exposures to adjacent structures.

For the addition, assuming non-combustible construction and a fully supervised sprinkler system, a fire flow demand of 9,000 l/min (150 l/s) for the existing school and the addition has been calculated. A copy of the FUS calculations is included in Appendix B.

The demand of 9,000 l/min for the existing school with the addition can be delivered through four existing municipal fire hydrants. The building is serviced by the 305mm municipal watermain on Renaud Road and an existing Siamese connection is located on the south side of the building. There is an existing hydrant located 18m from the FDC and is rated at 5800 l/min. There are also three other hydrants located at 50m, 110m and 145m from the FDC which are rated at 5800 l/min, 3800 l/min and 3800 l/min respectively. The four hydrants have a combined total of 19,200 l/min and exceed the FUS minimum number of hydrants required.

The minimum residual pressure is determined as 363.5 kPa at the addition finished floor level which exceeds the minimum residual pressure of 140 kPa. The fire flow requirement is achieved.

Table 2-3: Summary of the residual pressure for the development under max day + fire scenario

| Max day + Fire @ 125.2m    |                          |  |
|----------------------------|--------------------------|--|
| Connection location        | Hydraulic Pressure (kPa) |  |
| At connection elev = 84.9m | 395.3                    |  |
| At addition FFE = 88.15m   | 363.5                    |  |

#### 2.5 CHECK OF HIGH PRESSURE

Using the maximum HGL condition, the maximum pressure inside the building is determined as 448.3 kPa which is within the maximum pressure requirement of 552 kPa.

Table 2-4: Summary of water pressure for the development under max HGL

| Max HGL @ 130.6m           |                          |  |
|----------------------------|--------------------------|--|
| Connection location        | Hydraulic Pressure (kPa) |  |
| At connection elev = 84.9m | 448.3                    |  |
| At addition FFE = 88.15m   | 416.4                    |  |

#### 2.6 RELIABILITY REQUIREMENTS

A shut off valve is provided for the private watermain at the study boundary from Fern Casey Street. Water can be supplied from Fern Casey Street, north and south, and can be isolated.

#### 2.7 CAPABILITY OF MAJOR INFRASTRUCTURE TO SUPPLY SUFFICIENT WATER

The current infrastructure is capable of meeting the domestic and fire demand based on City requirements and FUS requirements respectively.

#### 2.8 DESCRIPTION OF PROPOSED WATER DISTRIBUTION NETWORK

The addition will be connected to the existing school's internal water supply system. The private hydrant currently within the site will be protected and maintained.

#### 2.9 MODEL SCHEMATIC

No modification of the existing system is required and thus a model has not been developed.

#### **3 WASTEWATER DISPOSAL**

#### 3.1 DESIGN CRITERIA

In accordance with the City of Ottawa's Sewer Design Guidelines, the following design criteria have been utilized in order to predict wastewater flows generated by the subject site and complete the sewer design;

| • | Minimum Velocity                      | 0.6 m/s |
|---|---------------------------------------|---------|
| • | Maximum Velocity                      | 3.0 m/s |
| • | Manning Roughness Coefficient         | 0.013   |
| • | Total est. hectares institutional use | 2.89    |

Average sanitary flow for institutional use
 28,000 L/Ha/day

• Commercial/Institutional Peaking Factor 1.5

• Infiltration Allowance (Total) 0.33 L/Ha/s

Minimum Sewer Slopes – 200 mm diameter 0.32%

The area of 5.05 ha represents the lot area of the school. An area of 1059m<sup>2</sup> represents the area of the addition. This is the sanitary collection area that is being considered to contribute to the existing 200mm sanitary service connection to the municipal sanitary sewer.

#### 3.2 CONSISTENCY WITH MASTER SERVICING STUDY

The outlet for the sanitary service from the existing building is the 200 mm diameter municipal sewer on Renaud Road. The Ottawa Sewer Design Guidelines provide estimates of sewage flows based on institutional development.

The criteria to determine anticipated actual peak flow based on site used as described in Ottawa Sewer Design Guidelines Appendix 4-A are as follows.

For the school and the addition:

- Institutional 28000 L/Ha/day = 0.324 L/Ha/s
- Peak flow = (0.324 L/Ha/s x 5.05 ha x 1.5 peaking factor) + 0.33 l/Ha/s x 5.05 ha = 4.12 L/s

The on-site sanitary sewer network servicing the school has been confirmed to have adequate capacity for the 4.12 L/s as described above. Further, it should be noted that based on the Development Servicing Study and Stormwater Management Report prepared by Novatech Engineering Consultants Ltd., the sanitary sewer network was sized for the future expansions of the school at the time of its construction.

#### 3.3 DESCRIPTION OF EXISTING SANITARY SEWER

The outlet sanitary sewer for the addition will be through the existing school. The sewer connects to the existing sanitary maintenance hole located at the south-west corner of the site. From there, a 200mm diameter sanitary sewer ultimately conveys sewage into the 600mm diameter trunk sewer located on Renaud Road and discharges to the pumping station located at 5965 Renaud Road.

#### 3.4 VERIFICATION OF AVAILABLE CAPACITY IN DOWNSTREAM SEWER

The capacity of the existing sanitary sewers within the site is provided in Appendix C. The existing sanitary service from the site is a 200 mm diameter sewer at a slope of 1%. This size and slope of sewer provides a capacity of 32.8 L/s. The sanitary service from the addition will be added to this existing outlet. No new connections are proposed to the 200mm diameter municipal sanitary sewer.

#### 4 SITE STORM SERVICING

#### 4.1 EXISTING CONDITION

The subject property is located within the Bradley Estates Community Development area at the intersection of Renaud Road and Fern Casey Street. Most of the runoff from the institutional land is directed towards an existing 525mm diameter storm sewer on the west boundary of the site. The sewer discharges to a stormwater management pond offsite.

The allowable release rate from the site was set to 860 l/s and was further reduced during the design of the original school and thus releases at a rate of 599.8 l/s. Within the existing catchment areas A23 and A24 (renamed as catchment area B01 for the purposes of this analysis), flow was controlled and released at a rate of 7.5 l/s in the 100-year condition.

#### 4.2 ANALYSIS OF AVAILABLE CAPACITY IN PUBLIC INFRASTRUCTURE

As the allowable release rate from the site will be reduced and was determined in conjunction with the design of the public infrastructure, there are no concerns related to the adequacy and available capacity of the downstream network. Capacity in the minor system is not a concern.

#### 4.3 DRAINAGE DRAWING

Drawing C04 shows the detailed site sewer network. Drawings C03 provides proposed grading and drainage and includes existing grading information. Drawing C05 provides a post-construction drainage sub-area plan, including both site and roof information. Site sub-area information is also provided on the storm sewer design sheet attached in Appendix C. An overall grading plan and Servicing plan have also been attached to Appendix C for reference.

#### 4.4 WATER QUANTITY CONTROL OBJECTIVE

The water quantity objective for the site is to limit the flow release to 860 l/s. Excess flows above this limit for the school site up to those generated by the 100-year storm event are temporarily stored on site. The release rate was further reduced during the design of the original school and thus releases at a rate of 599.8 l/s. Within the existing catchment areas A23 and A24, which now encompasses the proposed addition, flow was controlled and released at a rate of 7.5 l/s in the 100-year condition.

No provision is required on the school's site to accommodate any flow from the adjacent lands. All flows exceeding the defined minor system capacity and on-site storage capability will enter the major system, with overflow to the City right of way, on the north and east boundaries of the site.

Stormwater storage calculations are shown in Section 4.10 of this report. Detention stormwater storage is presently provided on the school roof and is not being changed in this present site plan amendment. Additional roof storage is proposed on the addition. Ground surface storage areas provided in the original design have not been modified (refer to Appendix A).

#### 4.5 WATER QUALITY CONTROL OBJECTIVE

The site is not required to achieve water quality objectives. Water quality objectives are achieved through downstream works as noted by the MVCA.

#### 4.6 DESIGN CRITERIA

The stormwater system was designed following the principles of dual drainage, making accommodation for both major and minor flow.

Some of the key criteria include the following:

| • | Design Storm | (minor system) | 1:2 y | year return ( | Ottawa) | 1 |
|---|--------------|----------------|-------|---------------|---------|---|
|---|--------------|----------------|-------|---------------|---------|---|

• Rational Method Sewer Sizing

Initial Time of Concentration
 10 minutes

• Runoff Coefficients

Landscaped AreasC = 0.25Playground Mulch AreasC = 0.40Gravel AreasC = 0.75Asphalt/ConcreteC = 0.90Traditional RoofC = 0.90

Pipe Velocities
 Minimum Pipe Size
 250 mm diameter

(200 mm CB Leads and service pipes)

#### 4.7 PROPOSED MINOR SYSTEM

The detailed design for this site will maintain the existing storm sewer network to the existing stormwater management facility located west of the site. The drainage system consists of a series of manholes, catchbasins and storm sewers leading to the outlet manhole STMMH 106 at the west of the site. All drainage areas on the site are collected in the site piped drainage system.

It is also customary for larger buildings to be provided with piped storm services for roof drainage. The roof drains for the building addition are connected to the storm sewer that flows into the sewer in an uncontrolled capacity, ensuring an unobstructed flow for these areas.

Using the above noted criteria, the existing on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated post development storm sewer drainage area plan are included in Appendix C.

#### 4.8 STORMWATER MANAGEMENT

The subject site is currently limited to a release rate of 860 l/s, which is achieved through the existing inlet control devices installed throughout the site during the construction of the original school. The release rate for catchment area B01 was previously set to 7.5 l/s and was achieved using an inlet flow device in CBMH 24. With the addition, flow from the roof is controlled and released at a rate of 5.7 l/s, thus resulting in a reduction in release rate of 1.8 l/s from the area. Please refer to the SWM Calculations in Appendix C

Flows generated that are in excess of the site's allowable release rate will be stored on site by the use of roof top storage and gradually released into the minor system so as not to exceed the site's allocation.

There will be no change to surface ponding areas or overland flow routes elsewhere on the school property.

#### 4.9 INLET CONTROLS

The addition (catchment area B01) will have rooftop storage and be controlled to a release rate of 5.7 l/s.

The roof drains were sized according to manufacturer's design charts. The restrictions will cause the roof drains to surcharge, generating roof ponding in the rooftop areas. Ponding tables are summarized on the storm drainage plan C04 and included in Appendix C.

#### 4.10 ON-SITE DETENTION

Any excess storm water up to the 100-year event is to be stored on-site in order to not surcharge the downstream municipal storm sewer system. Detention will be provided using rooftop storage on top of the addition which will release at a rate of 5.7 l/s at a maximum ponding depth of 150mm. The following Table summarizes the on-site storage requirements during the 1:100-year events.

The storage that is currently designed on the roof of the existing school will not be modified, refer to the Servicing and Stormwater Management Report included in Appendix A.

Table 4-1: Roof Storage - School Addition

| Roof Segment | Roof Area (m²) | Ponding Area (m²) | Ponding Depth (m) | Theoretical Storage<br>Volume (m³) |
|--------------|----------------|-------------------|-------------------|------------------------------------|
| R1           | 305.1          | 244.1             | 0.150             | 12.2                               |
| R2           | 347.3          | 277.9             | 0.150             | 13.9                               |
| R3           | 405.6          | 324.5             | 0.150             | 16.2                               |
| TOTAL        | 1058.0         | 846.4             |                   | 42.3                               |

As demonstrated above, the proposed addition uses new roof drains to restrict the 100 year storm event to the criteria approved by the City of Ottawa. Restricted stormwater will be contained onsite by utilizing rooftop storage. In the storm event up to 100-year, there will be no over land flow off-site from restricted areas.

The sum of design flow rates for the proposed areas is 5.7 l/s in 2-year peak flow taking the restricted flow rate from the rooftop area into account which is a reduction of 1.8 l/s from the previous controlled release rate for this area. Refer to Appendix C for storm sewer design sheet.

#### 4.11 WATERCOURSES

There will be no modification to watercourses as a result of this proposed site plan.

#### 4.12 PRE AND POST DEVELOPMENT PEAK FLOW RATES

The existing site has an allowable release rate of 860 l/s for up to the 100-year storm event. The design of the entire school site reduced the release rate to 599.8 l/s. The release rate will be further reduced by 1.8 l/s with the addition.

#### 4.13 DIVERSION OF DRAINAGE CATCHMENT AREAS

There will be no diversion of existing drainage catchment areas arising from the proposed work described in this report.

#### 4.14 DOWNSTREAM CAPACITY WHERE QUANTITY CONTROL IS NOT PROPOSED

This checklist item is not applicable to this development as quantity control is provided.

#### 4.15 IMPACTS TO RECEIVING WATERCOURSES

No significant negative impact is anticipated to downstream receiving watercourses due to proposed quantity and quality control measures

#### 4.16 MUNICIPAL DRAINS AND RELATED APPROVALS

There are no municipal drains on the site or associated with the drainage from the site.

#### 4.17 MEANS OF CONVEYANCE AND STORAGE CAPACITY

The means of flow conveyance and storage capacity are described in Sections 4.7, 4.8, 4.9 and 4.10 above.

#### 4.18 HYDRAULIC ANALYSIS

Hydraulic calculations for the site storm sewers are provided in the storm sewer design sheet.

#### 4.19 IDENTIFICATION OF FLOODPLAINS

There are no designated floodplains on the site of this development.

#### 4.20 FILL CONSTRAINTS

There are no known fill constraints applicable to this site related to any floodplain. The site is generally being raised higher relative to existing conditions. Fill on the site to not exceed 1m per geotechnical report.

#### 5 SEDIMENT AND EROSION CONTROL

#### 5.1 GENERAL

During construction, existing storm sewer system can be exposed to sediment loadings. A number of construction techniques designed to reduce unnecessary construction sediment loadings will be used including;

- Filter cloths will remain on open surface structures such as manholes and catchbasins until these structures are commissioned and put into use;
- Installation of silt fence, where applicable, around the perimeter of the proposed work area.
- The installation of straw bales within existing drainage features surround the site;
- Bulkhead barriers will be installed in the outlet pipes;

During construction of the services, any trench dewatering using pumps will be fitted with a "filter sock." Thus, any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filter sock as needed including sediment removal and disposal.

All catchbasins, and to a lesser degree, manholes, convey surface water to sewers. Consequently, until the surrounding surface has been completed, these structures will be covered to prevent sediment from entering the minor storm sewer system. These measures will stay in place and be maintained during construction and build-out until it is appropriate to remove them.

During construction of any development both imported and native soils are placed in stockpiles. Mitigative measures and proper management to prevent these materials entering the sewer system are needed.

During construction of the deeper watermains and sewers, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally placed before any catchbasins are installed.

Refer to the Erosion and Sedimentation Control Plan C05 provided in Appendix D.

## **6 APPROVAL AND PERMIT REQUIREMENTS**

#### 6.1 GENERAL

The proposed development is subject to site plan approval and building permit approval.

No approvals related to municipal drains are required.

No permits or approvals are anticipated to be required from the Ontario Ministry of Transportation, National Capital Commission, Parks Canada, Public Works and Government Services Canada, or any other provincial or federal regulatory agency.

### 7 CONCLUSION CHECKLIST

#### 7.1 CONCLUSIONS AND RECOMMENDATIONS

It is concluded that the proposed development can meet all provided servicing constraints and associated requirements. It is recommended that this report be submitted to the City of Ottawa in support of the application for site plan approval.

#### 7.2 COMMENTS RECEIVED FROM REVIEW AGENCIES

Comments received from the City of Ottawa are provided in Appendix A.

# **APPENDIX**



- PRE-CONSULTATION MEETING NOTES
- DEVELOPMENT SERVICING AND STORMWATER MANAGEMENT REPORT, NOVATECH ENGINEERING CONSULTANTS LTD, 2014

Good afternoon, Jacques, Tim,

Follow up notes to the Pre-Application Consultation meeting held on 22 August 2022 are found below. The required submission materials, for site plan control at 6401 Renaud Road, as well as related fees, are provided below.

To summarize City staff's understanding, your development proposal is in a form of an institutional development that will consist of eighteen (18) classroom two storey addition on the northern-easterly part of the lot.

-Current land use: two storey secondary school and 16 portable classrooms

-Development: 18 classrooms 2-storey addition

As part of Planning staff's review, we will evaluate the proposed development against the Ottawa Official Plan, Zoning By-law 2008-250, and other relevant guidelines. This proposal will be treated through a Site Plan Control requiring an Agreement.

From COVID-19 State of Emergency onward, City staff have essentially gone completely digital with submissions. Therefore, the number of paper copies has been reduced simply for the corporate file record and City staff's internal use.

Therefore, the following plans/reports submission list is provided, for you to review and make the application to the City. A few additional requirements/suggestions are included as well.

<u>Planning comment</u> - **Evode Rwagasore** – <u>Evode.Rwagasore@ottawa.ca</u>

I find the proposed site layout acceptable, and reasonable for the pre-consultation initial comments.

Engineering comment - Rubina Rasool — Rubina.Rasool@ottawa.ca

List of Plans and Studies:

- Servicing and SWM Brief (recommended to provide existing servicing report)
- Servicing Plan (plans may be combined)
- Grading Plan (plans may be combined)

The servicing brief should include the following:

- Updated water boundary conditions
- Water boundary condition requests must include the location of the service(s) and the expected loads required by the proposed developments. Please provide all the following information:
  - Location of service(s)
  - Type of development and the amount of fire flow required (as per FUS, 1999)
  - Average daily demand: \_\_\_\_ L/s
  - Maximum daily demand: L/s
  - Maximum hourly daily demand: \_\_\_\_ L/s
  - Fire protection (Fire demand, Hydrant Locations)
- Stormwater runoff must be maintained

#### <u>Transportation comment</u> - Patrick McMahon - <u>Patrick.McMahon@ottawa.ca</u>

- Follow Traffic Impact Assessment Guidelines
  - Start the TIA as soon as possible.
  - Applicant advised that their application will not be deemed complete until the submission of the draft step 1-4, including the functional draft RMA package (if applicable) and/or monitoring report (if applicable). Collaboration and communication between development proponents and City staff are required at the end of every step of the TIA process.
- On site plan:
  - Show all details of the roads abutting the site up to and including the opposite curb; include such items as pavement markings, accesses and/or sidewalks.
  - Turning templates will be required for all accesses showing the largest vehicle to access
    the site; required for internal movements and at all access (entering and exiting and
    going in both directions).
  - Show all curb radii measurements; ensure that all curb radii are reduced as much as possible
  - Show lane/aisle widths.
  - Sidewalk is to be continuous across access as per City Specification 7.1.
- Renaud and Fern Casey is to be signalized in the future and is on the City's DC By-Law Intersection List.
- Show the protected right of way of 24m on Renaud.

#### SITE PLAN CONTROL APPLICATION SUBMISSIONS:

#### **Application Type and Fees:**

The proposed development qualifies for a Site Plan Control - New Complex type

Please refer to this link:

https://app06.ottawa.ca/online services/forms/ds/site plan control en.pdf

**Fee for appraisal services -** any development application to which cash-in-lieu of parkland is applicable and for which an appraisal is required, will be subject to a fee for appraisal services.

#### **Requirements:**

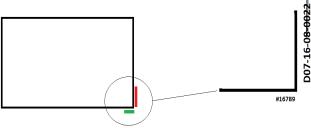
The following is the list of requirements for a complete submission (digital and a copy each) of the proposal. I have also included a few points of clarification where necessary:

- Site Plan
- Landscape Plan/Tree Conservation Report
- Planning Rationale, including Design Statement

- Site Survey Plan
- Concept Site Plan Showing Proposed Land Uses and Landscaping (Coloured)
- Grading Plan (plans may be combined)
- Site Servicing Plan (plans may be combined)
- Servicing and Stormwater Management Brief
- Phase 1 ESA
- USB stick (all submitted plans and reports in .pdf format)

And, the following items are also required, but not for the purposes of a complete resubmission. If these items are not submitted with the submission package, I would like to receive them not too long afterwards.

· Coloured Elevations – new building


#### Other issues to note:

- 1. Contact the Conservation Authority (RVCA) Office for their requirements
- 2. As a suggestion, if you have not already done so, please contact and brief the Ward Councillor on your proposed application.
- 3. Minimum drawing and file requirements All plans

Plans are to be submitted on standard **A1 size** (594mm x 841mm) sheets, utilizing an appropriate Metric scale (1:200, 1:250, 1:300, 1:400, or 1:500).

4. Please use the standard border (below)

A0.1 Place on all plans; DWG # and D07 # as per sample



#### Use **Bold Black text**:

Your Numbers are as per the colours listed here.

DWG XXXXX (place number on the bottom right)

D07 Number **D07-12-22-**

| 5. For information/question related to Development Charge, please contact AJ Mohmmand,              |
|-----------------------------------------------------------------------------------------------------|
| Development Information Officer, Suburban East at <u>DIOCentrum@ottawa.ca</u> or 613-580-2424, ext. |
| 29674                                                                                               |

If you have any questions or require clarification with the above information, please contact me.

Sincerely,

Evode Rwagasore

### ÉCOLE SECONDAIRE CATHOLIQUE – SECTEUR ORLÉANS 6401 RENAUD ROAD

# DEVELOPMENT SERVICING STUDY AND STORMWATER MANAGEMENT REPORT

#### Prepared by:

#### **NOVATECH ENGINEERING CONSULTANTS LTD.**

Suite 200, 240 Michael Cowpland Drive Kanata, Ontario K2M 1P6

> December 2, 2013 Revised May 23, 2014 Revised July 4, 2014

Ref: R-2013-198 Novatech File No. 113196



July 4, 2014

Conseil des écoles catholiques de centre-est (CECCE) 4004 rue Labelle Ottawa, ON K1J 1A1

Attention: Ms. Josée Dubois, C.E.T.

Dear Ms. Dubois:

Re: Development Servicing Study and Stormwater Management Report

École Secondaire Catholique – Secteur Orléans

6401 Renaud Road

Ottawa, ON

Our File No.: 113196

Enclosed herein is a copy of the revised 'Development Servicing Study and Stormwater Management Report' for the proposed Orleans High School. The catholic high school is located at 6401 Renaud Road, east of the Belcourt Boulevard extension, in the City of Ottawa. This report addresses the approach to site servicing and stormwater management for the subject property and is submitted in support of the site plan application.

Please contact the undersigned, should you have any questions or require additional information.

Yours truly,

**NOVATECH ENGINEERING CONSULTANTS LTD.** 

François Thauvette, P. Eng.

Project Engineer

FT/ft

cc: John Sevigny (City of Ottawa)

Zofia Jurewicz (Cuhaci) Marc Carrière (GWAL)

## **TABLE OF CONTENTS**

| 1.0 I                   | NTRO                       | DUCTION                                                                                                                                                                           | 1   |
|-------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.1                     | Purp                       | oose                                                                                                                                                                              | . 1 |
| 1.2                     | Loca                       | ation and Site Description                                                                                                                                                        | . 1 |
| 1.3                     | Con                        | sultation and Reference Material                                                                                                                                                  | . 2 |
| 1.3                     | .1                         | Reference Items                                                                                                                                                                   | . 2 |
| 2.0 F                   | PROP                       | OSED DEVELOPMENT                                                                                                                                                                  | 2   |
| 3.0                     | SITE S                     | SERVICING                                                                                                                                                                         | 2   |
| 3.1                     | Sani                       | itary                                                                                                                                                                             | . 3 |
| 3.2                     | Wat                        | er                                                                                                                                                                                | . 4 |
| 3.2                     | .1                         | Domestic Water Demand                                                                                                                                                             | . 4 |
| 3.2                     | .2                         | Water Supply for Fire-Fighting                                                                                                                                                    |     |
| 3.3                     | Stor                       | m and Stormwater Management                                                                                                                                                       | 5   |
| 3.3                     | .1                         | Stormwater Management Criteria and Objectives                                                                                                                                     | 5   |
| 3.3                     | .2                         | Allowable Release Rate                                                                                                                                                            | 5   |
| 3.3                     | .3                         | Post-Development Conditions                                                                                                                                                       | 5   |
| 4.0                     | SITE G                     | BRADING                                                                                                                                                                           | 14  |
| 4.1                     | Majo                       | or System Overflow Route                                                                                                                                                          | 15  |
| 4.2                     | Eros                       | sion and Sediment Control                                                                                                                                                         | 15  |
| 5.0 F                   | PHASI                      | NG                                                                                                                                                                                | 15  |
| 6.0                     | GEOT                       | ECHNICAL INVESTIGATIONS                                                                                                                                                           | 15  |
| 7.0                     | CONC                       | LUSION                                                                                                                                                                            | 15  |
| LIST OF                 | FIGU                       | IRES                                                                                                                                                                              |     |
|                         |                            | erial Plan                                                                                                                                                                        |     |
| Appei<br>Appei<br>Appei | ndix A<br>ndix B<br>ndix C | ENDICIES  : Correspondence : Development Servicing Study Checklist : Rational Method Calculations, IDF Curves : SWM Summary Sheet, Storage Calculations, Storm Sewer Design Sheet |     |

## LIST OF DRAWINGS

General Plan of Services (C001)

Appendix E: Sample Calculations

Appendix F: IPEX Inlet Control Device Information Appendix G: Control Flow Roof Drain Information

Grading Plan (C002)

Stormwater Management Plan (C003)

## 1.0 INTRODUCTION

The 'Conseil des écoles catholiques du Centre-Est' (CECCE) is proposing to construct a new high-school in Orleans and Novatech Engineering Consultants Ltd. (Novatech) has been retained to complete the site servicing and grading design for this project.

## 1.1 Purpose

This report outlines the servicing aspects of the proposed development with respect to water, sanitary and storm drainage and addresses the approach to stormwater management. This report is being submitted in support of the site plan application for the subject property.

## 1.2 Location and Site Description

The proposed catholic high-school will be located at 6401 Renaud Road, on the east side of the future Belcourt Boulevard intersection, in the City of Ottawa. The subject property is bordered by Renaud Road to the south, the Belcourt Boulevard extension to the west and future residential developments to the north and east.

Figure 1 – Aerial Plan provides an aerial view of the site.



The legal description of the property is designated as Part of Lots 2 & 3, Concession 3 (Ottawa Front) Geographic Township of Gloucester, in the City of Ottawa.

## 1.3 Consultation and Reference Material

A pre-consultation meeting was held with the City of Ottawa on October 11, 2013, at which time the client was advised of the general submission requirements. Refer to **Appendix A** for a summary of the correspondence from the pre-consultation meeting held with the City of Ottawa.

A pre-consultation meeting was neither held with the Ministry of the Environment (MOE) nor with the Rideau Valley Conservation Authority (RVCA) regarding the proposed development. These agencies were however consulted as part of the Master Servicing Study for the Trails Edge and Orleans Business Park. We do anticipate requiring a permit from the RVCA in order to fill the existing drainage ditch located within the northern portion of the site.

#### 1.3.1 Reference Items

- <sup>1</sup> The "Servicing Report for Trails Edge and Orleans Business Park" (Ref. No. 10-459) was prepared by DSEL, Revision 6, dated March 2014. (Still under review by City of Ottawa)
- <sup>2</sup> The "Geotechnical Investigation Report" (LRL Ref. No. 130707) was prepared by LRL Associates Ltd. in November 2013.
- <sup>3</sup> The "Phase I Environmental Site Assessment" (LRL Ref. No. 130707) was prepared by LRL Associates Ltd. on October 8, 2013.

#### 2.0 PROPOSED DEVELOPMENT

The proposed development will consist of a 2-storey high-school and associated parking lot, bus drop-off, school yard and sports field. As per the City of Ottawa's request, the school will be located as close as possible to the northeast corner of Renaud Road and the Belcourt Boulevard intersection. The proposed school site will encompass the entire property and will be accessible from both Renaud Road and Belcourt Boulevard. The undeveloped site is approximately 5.06 hectares in size.

## 3.0 SITE SERVICING

The objective of the site servicing design is to conform to the requirements of the City of Ottawa; to provide a suitable domestic water supply, proper sewage outlets and to ensure that appropriate fire protection is provided.

The servicing criteria, expected sewage flows and water demands for the site have been established using the City of Ottawa municipal design guidelines for sewer and water distribution, which is consistent with the the 'Servicing Report for the Trails Edge and Orleans Business Park' Report<sup>1</sup>.

The proposed school will be serviced by extending services to the future municipal watermain and storm sewer in the Belcourt Boulevard. A new sanitary service will be extended to the future municipal sanitary sewer in Renaud Road. Refer to the enclosed General Plan of Services and to the subsequent sections of the report for further details.

The City of Ottawa Servicing Study Guidelines for Development Applications requires a Development Servicing Study Checklist to confirm that each applicable item is deemed

complete and ready for review by City of Ottawa Infrastructure Approvals. A completed checklist is enclosed in **Appendix B** at the back of the report.

## 3.1 Sanitary

The proposed high-school will be serviced by a 200mm dia. sanitary service connected to the future sanitary sewer in Renaud Road. The City of Ottawa design criteria were used to calculate the theoretical sanitary flows for the proposed school, which includes the anticipated future expansions. The following design criteria were taken from Section 4 – 'Sanitary Sewer Systems' and Appendix 4-A - 'Daily Sewage Flow For Various Types of Establishments' of the City of Ottawa Sewer Design Guidelines:

- Average Daily Sewage Flows:
  - Institutional Average Flow: 50,000 L/gross ha/day
  - School with cafeteria, gym and showers: 90 L/person/day
- Institutional Peaking Factor = 1.5
- Infiltration Allowance: 0.28 L/s/ha x 5.06 ha site = 1.42 L/s

For comparison purposes the theoretical sanitary flows were calculated using two methods. **Table 3.1A** identifies the theoretical sanitary flows based on typical institutional flows relative to the site area, while **Table 3.1B** identifies the theoretical sanitary flows for the school based on a design population, using the above design criteria.

Table 3.1A Theoretical Sanitary Flows based on the Site Area

| Site<br>Area | Average<br>Flow<br>(L/s) | Peaking<br>Factor | Peak<br>Flow<br>(L/s) | Infiltration<br>Allowance<br>(L/s) | Total<br>Flow (L/s) |
|--------------|--------------------------|-------------------|-----------------------|------------------------------------|---------------------|
| 5.06         | 2.93                     | 1.5               | 4.39                  | 1.42                               | 5.81                |

Table 3.1B Theoretical Sanitary Flows based on the Design Population

| Type of Use | Design<br>Parameter | Average<br>Flow (L/s) | Peaking<br>Factor | Peak Flow<br>(L/s) | Total<br>Flow (L/s) |
|-------------|---------------------|-----------------------|-------------------|--------------------|---------------------|
| School      | 1200 students *     | 1.25                  | 1.5               | 1.88               | 1.88                |
| School      | 140 staff *         | 0.15                  | 1.5               | 0.22               | 0.22                |
| Total       | -                   | 1.40                  | -                 | 2.10               | 3.52 **             |

<sup>\*</sup> Includes the possible future expansion of the school

The proposed 200mm dia. sanitary service will be a gravity pipe at a minimum slope of 1.0% with a full flow conveyance capacity of 34.2 L/s and will have sufficient capacity to convey the theoretical sanitary flows calculated in **Tables 3.1A** and **3.1B**. The sanitary service was sized to accommodate the larger, more conservative flows calculated by the Mechanical Engineer using Fixture Units.

<sup>\*\*</sup>Includes an Infiltration allowance of 1.42 L/s

The proposed school site has been accounted for in the 'Master Servicing Study for the Trails Edge and Orleans Business Park' prepared by DSEL.

#### 3.2 Water

The proposed building will be serviced by a 150mm dia. water service connected to the future 400mm dia. watermain in Belcourt Boulevard. The proposed 150mm diameter service will be sized to provide both the required domestic water demand and fire flow for the proposed school. A shut-off valve will be provided at the property line. The water meter will be located in the mechanical room inside the building; while the remote meter will be located on the exterior face of the building. A new on-site hydrant will be connected to the proposed water service and will be located near the main building entrance, within 45m of the building siamese connection.

## 3.2.1 Domestic Water Demand

The City of Ottawa design criteria were used to calculate the theoretical water demand for the proposed school. The following design criteria were taken from Section 4 – 'Water Distribution Systems' of the Ottawa Design Guidelines – Water Distribution:

- Maximum Day Demand = 2.5 x Average Day Demand
- Maximum Hour Demand = 2.2 x Maximum Day Demand

**Table 3.2.1** identifies the theoretical domestic water demands for the proposed school based on the above design criteria.

Table 3.2.1 Theoretical Water Demand

| Type of Use | Average Day   | Maximum Day  | Maximum Hour |
|-------------|---------------|--------------|--------------|
|             | Demand (L/s)  | Demand (L/s) | Demand (L/s) |
| School      | School 1.40 * |              | 7.7          |

<sup>\*</sup>Taken from **Table 3.1B** above

## 3.2.2 Water Supply for Fire-Fighting

The proposed school will be sprinklered and supplied with a fire department siamese connection. A new on-site hydrant will be located near the main building entrance, within 45m of the siamese connection. Based on information provided by the Mechanical Engineer, the fire flow requirements for the building are expected to be in the order of 375 USGPM (or 23.6 L/s). The fire flow requirements include both sprinkler system and hose allowances in accordance with the OBC and NFPA 13. The sprinkler system will be designed by the fire protection (sprinkler) consultant as this process involves detailed hydraulic calculations based on building layout, pipe runs, head losses, fire pump requirements, etc. Booster pumps are not expected to be required.

The above information is being provided to the City of Ottawa for use in the hydraulic analysis of the municipal watermain network. It is anticipated that the current City of Ottawa boundary conditions will not be applicable as they will be affected by the significant future developments in the area (including the future 400mm dia. watermain in Belcourt Boulevard).

The proposed school site has been accounted for in the 'Master Servicing Study for the Trails Edge and Orleans Business Park' prepared by DSEL.

## 3.3 Storm and Stormwater Management

The stormwater management design for the proposed development will include on-site quantity control prior to releasing flows from the site. A detailed description of the sub-catchment areas and post-development flows are discussed in the subsequent sections of the report.

## 3.3.1 Stormwater Management Criteria and Objectives

The criteria and objectives for the proposed stormwater management design are as follows:

- Provide a dual drainage system (i.e. minor and major system flows);
- Maximize the use of available storage on site;
- Control the post-development flows from the site to the maximum allowable release rate of 860 L/s for storms up to and including the 1:100 year design event (per DSEL Report<sup>1</sup>).
- Create a defined major system overflow route to convey stormwater runoff exceeding the available on-site storage (greater than the 1:100 year event); and
- Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion and Sediment Control.

#### 3.3.2 Allowable Release Rate

As indicated in the 'Servicing Report for Trails Edge and Orleans Business Park' Report<sup>1</sup>, the maximum allowable release rate for the site was calculated to be 860 L/s.

## 3.3.3 Post-Development Conditions

Under post-development conditions, the imperviousness of the site will increase significantly. In order to mitigate the stormwater related impacts due to the proposed development, flow from the site will be controlled by the use of multiple inlet control devices (ICD) and control flow roof drains prior to being directed into the municipal storm sewer system. Refer to the enclosed plans and to the subsequent sections of the report for further details.

## 3.3.3.1 Sub-catchment Areas A-1 to A-9

The post-development flow from sub-catchment areas A-1 to A-9 will be attenuated by the use of an inlet control device installed in the outlet pipe of CBMH 9. Stormwater runoff from these drainage areas will be temporarily stored on the surface of the paved bus drop-off and landscaped areas prior to being discharged into the on-site storm sewer system.

**Table 3.3.3.1** summarizes the post-development design flows from these sub-catchment areas as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

Table 3.3.3.1: Design Flow and Inlet Control Device Table

|            | Drainage Areas A-1 to A-9   |                      |                          |                         |                             |  |  |
|------------|-----------------------------|----------------------|--------------------------|-------------------------|-----------------------------|--|--|
| Design     | Post-Development Conditions |                      |                          |                         |                             |  |  |
| Event      | Orifice Plug<br>Type ICD    | Design<br>Flow (L/s) | Ponding<br>Elevation (m) | Volume<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |
| 1:5 Year   | 202 mm dia.                 | 121.8L/s             | 87.44                    | 36.1 m³                 | 124 0 m3                    |  |  |
| 1:100 Year | 202 mm dia.                 | 128.0 L/s            | 87.64 m                  | 133.8 m³                | 134.0 m <sup>3</sup>        |  |  |

Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix E** for sample orifice calculations.

## 3.3.3.2 Sub-catchment Area A-10

The post-development flow from sub-catchment area A-10 will be attenuated by the use of an inlet control device installed in the outlet pipe of CB 10. Stormwater runoff from this drainage area will be temporarily stored on the surface prior to being discharged into the on-site storm sewer system.

**Table 3.3.3.2** summarizes the post-development design flows from this sub-catchment area as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

Table 3.3.3.2: Design Flow and Inlet Control Device Table

|            | Drainage Area A-10          |                      |                          |                         |                             |  |  |
|------------|-----------------------------|----------------------|--------------------------|-------------------------|-----------------------------|--|--|
| Design     | Post-Development Conditions |                      |                          |                         |                             |  |  |
| Event      | Orifice Plug<br>Type ICD    | Design<br>Flow (L/s) | Ponding<br>Elevation (m) | Volume<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |
| 1:5 Year   | 78 mm dia.                  | 13.6 L/s             | -                        | -                       | 8.7 m³                      |  |  |
| 1:100 Year | 78 mm dia.                  | 14.3 L/s             | 87.41 m                  | 8.1 m³                  | 0.7 1119                    |  |  |

Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix F** for IPEX inlet control device information.

#### 3.3.3.3 Sub-catchment Areas A-11 to A-13

The post-development flow from sub-catchment areas A-11 to A-13 will be attenuated by the use of an inlet control device installed in the outlet pipe of CBMH 13. Stormwater runoff from these drainage areas will be temporarily stored on the surface, adjacent to the sports field, prior to being discharged into the on-site storm sewer system.

**Table 3.3.3.3** summarizes the post-development design flows from these sub-catchment areas as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

**Table 3.3.3.3: Design Flow and Inlet Control Device Table** 

|            | Drainage Areas A-11 to A-13 |                      |                          |                         |                             |  |  |
|------------|-----------------------------|----------------------|--------------------------|-------------------------|-----------------------------|--|--|
| Design     | Post-Development Conditions |                      |                          |                         |                             |  |  |
| Event      | Orifice Plug<br>Type ICD    | Design<br>Flow (L/s) | Ponding<br>Elevation (m) | Volume<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |
| 1:5 Year   | 140 mm dia.                 | 58.7 L/s             | 87.50 m                  | 70.4 m³                 | 000 5 223                   |  |  |
| 1:100 Year | 140 mm dia.                 | 60.0 L/s             | 87.59 m                  | 216.9 m <sup>3</sup>    | - 232.5 m³                  |  |  |

Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix E** for sample orifice calculations.

## 3.3.3.4 Sub-catchment Areas A-14 to A-15

The post-development flow from sub-catchment areas A-14 to A-15 will be attenuated by the use of an inlet control device installed in the outlet pipe of CBMH 15. Stormwater runoff from these drainage areas will be temporarily stored on the surface (future parking lot expansion area) prior to being discharged into the on-site storm sewer system.

**Table 3.3.3.4** summarizes the post-development design flows from these sub-catchment areas as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

Table 3.3.3.4: Design Flow and Inlet Control Device Table

|            | Drainage Areas A-14 to A-15 |                      |                          |                         |                             |  |  |
|------------|-----------------------------|----------------------|--------------------------|-------------------------|-----------------------------|--|--|
| Design     | Post-Development Conditions |                      |                          |                         |                             |  |  |
| Event      | Orifice Plug<br>Type ICD    | Design<br>Flow (L/s) | Ponding<br>Elevation (m) | Volume<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |
| 1:5 Year   | 105 mm dia.                 | 31.6 L/s             | 87.30                    | 2.4 m³                  | 25.0 m3                     |  |  |
| 1:100 Year | 105 mm dia.                 | 33.0 L/s             | 87.46 m                  | 21.7 m³                 | - 25.0 m³                   |  |  |

Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix E** for sample orifice calculations.

## 3.3.3.5 Sub-catchment Areas A-16 to A-17

The post-development flow from sub-catchment areas A-16 to A-17 will be attenuated by the use of an inlet control device installed in the outlet pipe of CBMH 17. Stormwater runoff from these drainage areas will be temporarily stored on the surface of the paved parking lot prior to being discharged into the on-site storm sewer system.

**Table 3.3.3.5** summarizes the post-development design flows from these sub-catchment areas as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

**Table 3.3.3.5: Design Flow and Inlet Control Device Table** 

|                 | Drainage Areas A-16 to A-17 |                      |                          |                         |                             |  |  |
|-----------------|-----------------------------|----------------------|--------------------------|-------------------------|-----------------------------|--|--|
| Design<br>Event | Post-Development Conditions |                      |                          |                         |                             |  |  |
|                 | Orifice Plug<br>Type ICD    | Design<br>Flow (L/s) | Ponding<br>Elevation (m) | Volume<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |
| 1:5 Year        | 103 mm dia.                 | 29.1 L/s             | 87.30 m                  | 2.4 m³                  | 24.8 m³                     |  |  |
| 1:100 Year      | 103 mm dia.                 | 30.3 L/s             | 87.44 m                  | 19.8 m³                 | 24.0 111                    |  |  |

Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix E** for sample orifice calculations.

#### 3.3.3.6 Sub-catchment Areas A-18 to A-19

The post-development flow from sub-catchment areas A-18 to A-19 will be attenuated by the use of an inlet control device installed in the outlet pipe of CBMH 19. Stormwater runoff from these drainage areas will be temporarily stored on the surface of the paved parking lot prior to being discharged into the on-site storm sewer system.

**Table 3.3.3.6** summarizes the post-development design flows from these sub-catchment areas as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

Table 3.3.3.6: Design Flow and Inlet Control Device Table

|            | Drainage Areas A-18 to A-19 |                      |                          |                         |                             |  |  |
|------------|-----------------------------|----------------------|--------------------------|-------------------------|-----------------------------|--|--|
| Design     | Post-Development Conditions |                      |                          |                         |                             |  |  |
| Event      | Orifice Plug<br>Type ICD    | Design<br>Flow (L/s) | Ponding<br>Elevation (m) | Volume<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |
| 1:5 Year   | 107 mm dia.                 | 31.7 L/s             | 87.30 m                  | 2.4 m³                  | 23.4 m³                     |  |  |
| 1:100 Year | 107 mm dia.                 | 33.0 L/s             | 87.44 m                  | 21.3 m³                 | 23.4 1119                   |  |  |

Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix E** for sample orifice calculations.

#### 3.3.3.7 Sub-catchment Area A-20

The post-development flows from sub-catchment area A-20 will be attenuated by the use of twenty six (26) adjustable control flow roof drains. Stormwater runoff from this drainage area will be temporarily controlled on the roof, prior to being discharged into the on-site storm sewer

system, via the building service. Each roof drain will control the flow to a maximum release rate of 3.8 L/s (or 60 USGPM) per drain at a maximum ponding depth of 0.15m above each drain.

**Table 3.3.3.7** summarizes the post-development design flows from this sub-catchment area as well as the type of roof drains, the maximum ponding depths, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

Table 3.3.3.7: Design Flow and Roof Drain Table

|            | Drainage Area A-20             |                         |                      |                               |                             |  |  |
|------------|--------------------------------|-------------------------|----------------------|-------------------------------|-----------------------------|--|--|
| Design     | Post-Development Conditions    |                         |                      |                               |                             |  |  |
| Event      | Control<br>Flow Roof<br>Drains | Design<br>Flow (L/s)    | Ponding<br>Depth (m) | Surface Vol.<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |
| 1:5 Year   | Zurn<br>Z-105 (US)             | 26 x 3.8L/s<br>98.8 L/s | Variable             | 26.0 m³                       | 156.0 m³                    |  |  |
| 1:100 Year | Zurn<br>Z-105 (US)             | 26 x 3.8L/s<br>98.8 L/s | 0.15 m               | 155.6 m³                      | 100.0 111                   |  |  |

As indicated in the table above, the building roof will provide sufficient storage for both the 1:5 year and 1:100 year design events. Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix G** for roof drain information.

#### 3.3.3.8 Sub-catchment Area A-21

The uncontrolled post-development flow from sub-catchment area A-21 was calculated using the Rational Method to be 16.7 L/s for the 1:5 year design event and 31.8 L/s for the 1:100 year design event. Refer to **Appendix C** for Rational Method calculations.

#### 3.3.3.9 Sub-catchment Area A-22

The post-development flow from sub-catchment area A-22 will be attenuated by the use of an inlet control device installed in the outlet pipe of CB 22. Stormwater runoff from this drainage area will be temporarily stored on the surface prior to being discharged into the on-site storm sewer system.

**Table 3.3.3.9** summarizes the post-development design flows from this sub-catchment area as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

Table 3.3.3.9: Design Flow and Inlet Control Device Table

|            | Drainage Area A-22          |                      |                          |                         |                             |  |  |
|------------|-----------------------------|----------------------|--------------------------|-------------------------|-----------------------------|--|--|
| Design     | Post-Development Conditions |                      |                          |                         |                             |  |  |
| Event      | Orifice Plug<br>Type ICD    | Design<br>Flow (L/s) | Ponding<br>Elevation (m) | Volume<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |
| 1:5 Year   | 115 mm dia.                 | 30.1 L/s             | 87.40 m                  | -                       | 45 5 m3                     |  |  |
| 1:100 Year | 115 mm dia.                 | 33.90 L/s            | 87.62 m                  | 14.7 m³                 | - 15.5 m³                   |  |  |

Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix E** for sample orifice calculations.

#### 3.3.3.10 Sub-catchment Areas A-23 to A-24

The post-development flow from sub-catchment areas A-23 to A-24 will be attenuated by the use of an inlet control device installed in the outlet pipe of CBMH 24. Stormwater runoff from these drainage areas will be temporarily stored on the surface prior to being discharged into the on-site storm sewer system.

**Table 3.3.3.10** summarizes the post-development design flows from these sub-catchment areas as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

Table 3.3.3.10: Design Flow and Inlet Control Device Table

|            | Drainage Areas A-23 to A-24 |                      |                          |                         |                             |  |  |  |
|------------|-----------------------------|----------------------|--------------------------|-------------------------|-----------------------------|--|--|--|
| Design     |                             | Pos                  | st-Development (         | Conditions              |                             |  |  |  |
| Event      | IPEX LMF<br>Type ICD        | Design<br>Flow (L/s) | Ponding<br>Elevation (m) | Volume<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |  |
| 1:5 Year   | 'Tempest'<br>Vortex         | 7.3 L/s              | 87.65 m                  | -                       | 5.0 m³                      |  |  |  |
| 1:100 Year | 'Tempest'<br>Vortex         | 7.5 L/s              | 87.76 m                  | 4.8 m³                  | 5.0 1119                    |  |  |  |

Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix F** for IPEX inlet control device information.

#### 3.3.3.11 Sub-catchment Area A-25

The post-development flow from sub-catchment area A-25 will be attenuated by the use of an inlet control device installed in the outlet pipe of CB 25. Stormwater runoff from this drainage area will be temporarily stored on the surface prior to being discharged into the on-site storm sewer system.

**Table 3.3.3.11** summarizes the post-development design flows from this sub-catchment area as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

Table 3.3.3.11: Design Flow and Inlet Control Device Table

|            | Drainage Area A-25       |                             |                          |                         |                             |  |  |  |  |  |  |
|------------|--------------------------|-----------------------------|--------------------------|-------------------------|-----------------------------|--|--|--|--|--|--|
| Design     |                          | Post-Development Conditions |                          |                         |                             |  |  |  |  |  |  |
| Event      | Orifice Plug<br>Type ICD | Design<br>Flow (L/s)        | Ponding<br>Elevation (m) | Volume<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |  |  |  |  |
| 1:5 Year   | 81 mm dia.               | 14.9 L/s                    | 87.40 m                  | -                       | 8.4 m³                      |  |  |  |  |  |  |
| 1:100 Year | 81 mm dia.               | 16.2 L/s                    | 87.60 m                  | 7.5 m³                  | 0.4 1119                    |  |  |  |  |  |  |

Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix F** for IPEX inlet control device information.

#### 3.3.3.12 Sub-catchment Areas A-26 to A-27

The post-development flow from sub-catchment areas A-26 to A-27 will be attenuated by the use of an inlet control device installed in the outlet pipe of CBMH 27. Stormwater runoff from these drainage areas will be temporarily stored on the surface of the paved parking lot prior to being discharged into the on-site storm sewer system.

**Table 3.3.3.12** summarizes the post-development design flows from these sub-catchment areas as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

Table 3.3.3.12: Design Flow and Inlet Control Device Table

|            | Drainage Areas A-26 to A-27 |                      |                          |                         |                             |  |  |  |  |
|------------|-----------------------------|----------------------|--------------------------|-------------------------|-----------------------------|--|--|--|--|
| Design     |                             | Pos                  | st-Development (         | Conditions              |                             |  |  |  |  |
| Event      | Orifice<br>Plug Type<br>ICD | Design<br>Flow (L/s) | Ponding<br>Elevation (m) | Volume<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |  |  |
| 1:5 Year   | 90 mm dia.                  | 22.1 L/s             | 87.30 m                  | 2.2 m³                  | 40.4                        |  |  |  |  |
| 1:100 Year | 90 mm dia.                  | 23.0 L/s             | 87.44 m                  | 15.7 m³                 | 18.1 m³                     |  |  |  |  |

Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix F** for IPEX inlet control device information.

#### 3.3.3.13 Sub-catchment Areas A-28 to A-29

The post-development flow from sub-catchment areas A-28 to A-29 will be attenuated by the use of an inlet control device installed in the outlet pipe of CBMH 29. Stormwater runoff from these drainage areas will be temporarily stored on the surface of the paved parking lot prior to being discharged into the on-site storm sewer system.

**Table 3.3.3.13** summarizes the post-development design flows from these sub-catchment areas as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

 Table 3.3.3.13: Design Flow and Inlet Control Device Table

|            | Drainage Areas A-28 to A-29 |                      |                          |                         |                             |  |  |  |  |
|------------|-----------------------------|----------------------|--------------------------|-------------------------|-----------------------------|--|--|--|--|
| Design     | Post-Development Conditions |                      |                          |                         |                             |  |  |  |  |
| Event      | Orifice Plug<br>Type ICD    | Design<br>Flow (L/s) | Ponding<br>Elevation (m) | Volume<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |  |  |
| 1:5 Year   | 99 mm dia.                  | 26.8 L/s             | 87.30 m                  | 2.6 m³                  | 23.5m³                      |  |  |  |  |
| 1:100 Year | 99 mm dia.                  | 28.0 L/s             | 87.45 m                  | 19.2 m³                 | 23.31119                    |  |  |  |  |

Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix E** for sample orifice calculations.

## 3.3.3.14 Sub-catchment Area A-30

The uncontrolled post-development surface runoff from sub-catchment area A-30 was calculated using the Rational Method to be 17.7 L/s for the 1:5 year design event and 35.5 L/s for the 1:100 year design event. Refer to **Appendix C** for Rational Method calculations.

#### 3.3.3.15 Sub-catchment Area A-31

The post-development flow from sub-catchment area A-25 will be attenuated by the use of an inlet control device installed in the outlet pipe of CB 30. Stormwater runoff from this drainage area will be temporarily stored on the surface prior to being discharged into the on-site storm sewer system.

**Table 3.3.3.15** summarizes the post-development design flows from this sub-catchment area as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 1:5 year and the 1:100 year design events.

Table 3.3.3.15: Design Flow and Inlet Control Device Table

|            | Drainage Area A-31       |                             |                          |                         |                             |  |  |  |  |  |  |
|------------|--------------------------|-----------------------------|--------------------------|-------------------------|-----------------------------|--|--|--|--|--|--|
| Design     |                          | Post-Development Conditions |                          |                         |                             |  |  |  |  |  |  |
| Event      | Orifice Plug<br>Type ICD | Design<br>Flow (L/s)        | Ponding<br>Elevation (m) | Volume<br>Required (m³) | Max Volume<br>Provided (m³) |  |  |  |  |  |  |
| 1:5 Year   | 105 mm dia.              | 24.8 L/s                    | 87.25 m                  | -                       | 14.3 m³                     |  |  |  |  |  |  |
| 1:100 Year | 105 mm dia.              | 27.4 L/s                    | 87.49 m                  | 12.8 m³                 | 14.3 1119                   |  |  |  |  |  |  |

Refer to **Appendix C** for Rational Method calculations, **Appendix D** for SWM summary and storage calculations and to **Appendix F** for IPEX inlet control device information.

## 3.3.3.16 Summary of Flows

**Table 3.3.3.16** summarizes the post-development flows for both the 1:5 year and 1:100 year design events.

Table 3.3.3.16: Summary of Post-Development flows from site

| C 4           |               |      |                 |                 |                 | Post            | -Dev | velo | pme  | nt Flo          | w (L/: | s)              |                 |      |      |       |
|---------------|---------------|------|-----------------|-----------------|-----------------|-----------------|------|------|------|-----------------|--------|-----------------|-----------------|------|------|-------|
| Design        | A-1 to<br>A-9 | A-10 | A-11 to<br>A-13 | A-14 to<br>A-15 | A-16 to<br>A-17 | A-18 to<br>A-19 | A-20 | A-21 | A-22 | A-23 to<br>A-24 | A-25   | A-26 to<br>A-27 | A-28 to<br>A-29 | A-30 | A-31 | Total |
| 1:5<br>year   | 121.8         | 13.6 | 58.7            | 31.6            | 29.1            | 31.7            | 98.8 | 16.7 | 30.1 | 7.3             | 14.9   | 22.1            | 26.8            | 17.7 | 24.8 | 545.7 |
| 1:100<br>year | 128.0         | 14.3 | 60.0            | 33.0            | 30.3            | 33.0            | 98.8 | 31.8 | 33.0 | 7.5             | 16.2   | 23.0            | 28.0            | 35.5 | 27.4 | 599.8 |

3.8

As indicated in the table above, the post-development flows from the site are <u>well below</u> the allowable release rate of 860 L/s. During the 1:5 year and 1:100 year design events, the flows are approximately 314 L/s and 260 L/s below the allowable release rate, respectively.

Furthermore, the on-site storm sewer system has been designed to convey the 1:100 year peak controlled flows, as opposed to the typical 1:5 year flows, as indicated on the Storm Sewer Design Sheet in **Appendix D** of the report.

## 3.3.3.17 Future School Site Expansion Considerations

The post-development flows from all drainage areas, with the exception of runoff from drainage area A-21 (construction shop loading area) and area A-30, will be controlled. Should the school site be expanded in the future, the post-development flows from the building addition and

expanded paved areas will also be controlled. This will be achieved by the use of additional controlled flow roof drains, new ICDs within new structures and/or by replacing existing ICDs.

Should the bus loop be expanded in the future, the tributary flows from sub-catchment areas A-10 and A-31 would be increased slightly, however the increased bus loop area flows would be stored on the surface and controlled by ICDs. Should the building be expanded, the tributary flows from sub-catchment areas A-8, A-21 and A-22 would be reduced due to the proposed building expansion. Furthermore, the controlled flows from sub-catchment areas A-23 and A-24 would be replaced with controlled building roof flows. It should be noted that the future parking lot expansion has already been accounted for in the weighted runoff coefficient calculations for sub-catchment areas A-14 and A-15. Similarly, the future portable roofs have already been accounted for in the weighted runoff coefficient calculations for sub-catchment areas A-10, A-19, A-22, A-25 and A-31.

Detailed stormwater management calculations for all sub-catchment areas have not been included in this report, as the exact limits of the building additions and bus loop expansion are only schematic. Detailed calculations will need to be completed in the future to confirm the flows should the school and paved areas be expanded. Furthermore, the site has been designed with a dual drainage system (i.e. able to accommodate both minor and major system flows). Should the post-development flows increase slightly due to the future building additions and expansion of the paved areas, they will never exceed the allowable release rate for the site. As a result, it is reasonable to confirm that the proposed stormwater management system has been designed to accommodate the possible future expansion of the site.

## 3.3.3.18 Water Quality Control

On-site water quality control is not required or provided as it will be provided by the downstream stormwater management facility (SWMF) as described in the 'Servicing Report for Trails Edge and Orleans Business Park' Report<sup>1</sup>.

## 4.0 SITE GRADING

The existing site is generally flat and approximately 1.0m below the current elevation of Renaud Road. An existing drainage ditch is located within the northern portion of the property and drains in a westerly direction towards Mud Creek, which is tributary to the East Urban Community (EUC) stormwater management facility (SWMF). The existing drainage ditch will be realigned (by others) on the north side of the school site as indicated on the enclosed plans and filled to accommodate the proposed development. The realignment of the drainage ditch, along with all appropriate applications for regulatory permits and approvals will be completed by others.

The proposed site will have to be raised to match into the Renaud Road elevations and future Belcourt Boulevard elevations. The ground floor of the proposed school will be set at an elevation of 88.15m, slightly higher than the elevation of Renaud Road. The existing grades adjacent to the perimeter of the property will be raised to match into the future residential developments on the north and east side of the property. The proposed grading design includes considerations for the possible future school expansion. Refer to the enclosed plans for details.

## 4.1 Major System Overflow Route

In the case of a major rainfall event exceeding the design storms provided for, the stormwater located within landscaped areas adjacent to the school will pond to a maximum depth of 0.30m prior to overflowing to a lower sub-catchment drainage area. Similarly, the stormwater located within the paved bus drop-off area will pond to a maximum depth of 0.25m before overflowing towards the paved parking area on the north side of the property. Stormwater located within the drainage swales adjacent to the sports field and running track will pond to a maximum depth of 0.30m before overflowing towards the paved parking lot. Stormwater located within the main parking lot area will pond to a maximum depth of 0.25m before overflowing into Belcourt Boulevard and ultimately into the realigned Mud Creek to the west. The major system overflow route is shown on the enclosed plan.

## 4.2 Erosion and Sediment Control

To mitigate erosion and to prevent sediment from entering the storm sewer system, temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Filter bags will be placed under the grates of nearby catchbasins, manholes and drains and will remain in place until vegetation has been established and construction is completed.
- Silt fencing will be placed as per OPSS 577 and OPSD 219.110 along the surrounding construction limits;
- Street sweeping and cleaning will be performed as required to suppress dust and to provide safe and clean roadways adjacent to the construction site.

The proposed erosion and sediment control measures will be implemented prior to construction and will remain in place during all phases of construction. Regular inspection and maintenance of the erosion control measures will be undertaken regularly.

## 5.0 PHASING

The proposed development will proceed as a single phase project. The enclosed plans do however indicate the possible future school expansion limits as well as the possible future parking lot and bus loop expansions.

#### **6.0 GEOTECHNICAL INVESTIGATIONS**

A Geotechnical Investigation Report has been prepared by LRL Associates Ltd. for the proposed project. Refer to the Geotechnical Report<sup>2</sup> for subsurface conditions, construction recommendations and geotechnical inspection requirements.

#### 7.0 CONCLUSION

This report has been prepared in support of the site plan application for the proposed Orleans High School located at the intersection of Renaud Road and the future Belcourt Boulevard extension, in the City of Ottawa.

#### The conclusions are as follows:

- The proposed development will consist of a 2-storey high-school complete with associated parking lot, bus drop-off, school yard and sports field.
- The proposed building will be serviced by extending services to the future municipal watermain and storm sewer in Belcourt Boulevard and to the future municipal sanitary sewer in Renaud Road.
- The building will be sprinklered and supplied with a fire department siamese connection. The siamese connection will be located within 45m of an on-site fire hydrant.
- Under post-development conditions, stormwater runoff from the site will consist of a combination of uncontrolled direct runoff and controlled flow. The controlled flow will be provided by the use of inlet control devices and control flow roof drains.
- The total post-development flow from the site will be controlled to a combined maximum rate of 545.7 L/s for the 1:5 year design event and to a combined maximum rate of 599.8 L/s for the 1:100 year design event, well below the allowable release rate of 860 L/s for the site.
- The stormwater management system has been designed to accommodate the possible future expansion of the school site.
- Temporary on-site storage will be provided on the surface (parking lots and grass swales) as well as on the building roof.
- Regular inspection and maintenance of the storm sewer system is recommended to ensure that the storm drainage system is clean and operational.
- Temporary erosion and sediment control measures will be implemented during all phases of construction.

It is recommended that the proposed site servicing and stormwater management design be approved for implementation.

#### NOVATECH ENGINEERING CONSULTANTS LTD.

Prepared by:



François Thauvette, P. Eng. Project Manager

## **APPENDIX A**

Correspondence

#### François Thauvette

From:

Zofia Jurewicz [Zofiaj@cuhaci.com]

Sent:

Monday, October 21, 2013 2:32 PM

To:

Francois Thauvette; James B Lennox

Cc:

Simon Rioux; Jerzy Jurewicz

Subject:

FW: Pre-application consultation for CECCE (Renaud & Belcourt)

Importance: Hig

... .

Attachments: Applicant's Study and Plan Identification List.pdf

Good afternoon François and Jim, please find enclosed a copy of the comments /directions from the City of Ottawa regarding the pre-application meeting on October11.

Regards Zofia Jurewicz

Zofia Jurewicz OAA. AIA.

President

≥ AIdimana000 Ina@0107EED & 10EE0000

171 Slater Street, Suite 100, Ottawa, Ontario, Canada, K1P 5H7

Tel: (613) 236-7135 Fax: (613) 236-1944 email:zofiaj@cuhaci.com

www.cuhaci.com

Please consider your environmental responsibility before printing this e-mail

From: Gervais, Melanie [mailto:Melanie.Gervais@ottawa.ca]

**Sent:** Friday, October 18, 2013 2:07 PM **To:** paquetteplanning@sympatico.ca

Cc: Luc Poulin; Karolyn Bois; Josée Dubois; Zofia Jurewicz; Sevigny, John; Warnock, Charles; Yousfani,

Asad

Subject: Pre-application consultation for CECCE (Renaud & Belcourt)

Good afternoon Dan,

Below is a follow-up to our pre-consultation meeting on Friday October 11, 2013. As discussed in the pre-consultation meeting the CECCE is looking to purchase land from Richcraft and will be submitting a severance application followed by a re-zoning and site plan application with the City to develop the land for a new high school. These applications can be submitted at the same time but the severance will have to be granted prior to going to Planning Committee with the rezoning and the rezoning will have to be in force prior to approving the Site Plan. We will require the following report/studies as part of their applications.

#### **SEVERANCE**

The site currently does not have any sanitary or storm sewer outlets. We will not require any
reports for the severance however there will be a condition of severance that the owner enter into
a Development Agreement to extend public services to the property.

#### **RE-ZONING**

Site Servicing Brief:

Assessing the adequacy of public services to support the development. This does not have to be
a very comprehensive study. Just a brief discussing the existing public services and whether
their proposed development will have any negative impacts on them.

Concept Plan showing ultimate use of land

## SITE PLAN

See the attached list of required plans and studies.

The following consists of further information related to the attached list.

Site Plan and Landscape Plan:

The link below outlines the requirements for the plans <a href="http://ottawa.ca/en/development-application-review-process-0/quide-preparing-studies-and-plans">http://ottawa.ca/en/development-application-review-process-0/quide-preparing-studies-and-plans</a>

## Site Servicing Study:

- The report is to follow the City's Servicing Study guidelines which can be found at the following link: <a href="http://ottawa.ca/en/development-application-review-process-0/servicing-study-guidelines-development-applications">http://ottawa.ca/en/development-application-review-process-0/servicing-study-guidelines-development-applications</a>
- Prior to submitting the servicing report the consultant should contact me and request boundary conditions for the
  watermain design. The consultant will need to provide the type of development, fire flow required, average day
  demand, maximum day demand and maximum hour demand.
- As discussed in the meeting the City and Richcraft are still in discussions regarding the storm water management design. The two possible scenarios are for the post development flows to be controlled to 85 l/s/ha or to the 1:5 year level of service. All flows volumes above the allowable flow rate are to be controlled/stored on site. Once the stormwater management design has been confirmed we will let you know.

#### Geotechnical Study:

 Containing detailed information on geotechnical matters and recommendations (i.e. pavement, foundation, bedding construction etc.). The report is to follow the City's Geotechnical Reporting Guidelines which can be found at http://www.ottawa.ca/cs/groups/content/@webottawa/documents/pdf/mdaw/mtm4/~edisp/cap137602.pdf

#### Exterior Site Lighting Letter:

The letter is to be certified by a qualified engineer confirming the site lighting design a) meets the criteria for Full Cutoff (Sharp cut-off) Classification, as recognized by the Illuminating Engineering Society of North America (IESNA or
IES) AND b) the site lighting spillage will be minimal (i.e. 0.5 foot-candle is normally the maximum allowable spillage).
 Engineering Drawings:

The link below outlines the requirements for the plans

http://ottawa.ca/en/city\_hall/planningprojectsreports/planning/dev\_review\_process/guide/servicing\_grading/index.html

- o Site Servicing Plan
- o Grading and Drainage Plan
- o Erosion and Sediment Control Plan (can be combined with the grading plan)

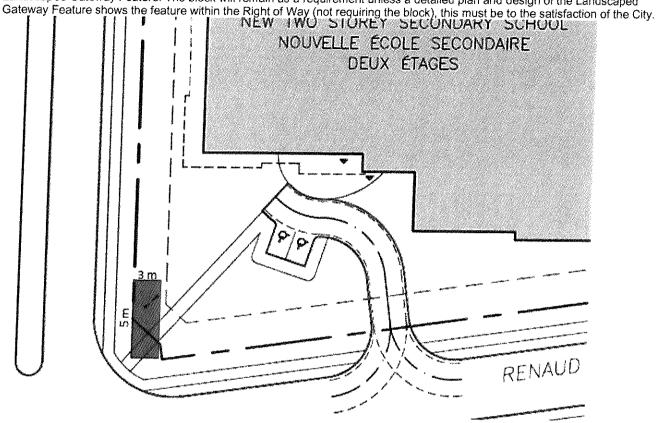
#### Transportation Impact Brief and Noise Brief:

The consultants can contact Asad Yousfani at 613-580-2424 x16571 or <u>Asad.Yousfani@ottawa.ca</u> in obtain specific requirements

#### Tree Conservation Report:

 Further details and requirements of the TRC can be found in section 4.7.2 of the Official Plan and Schedule "A" of the Urban Tree Conservation Bylaw <a href="http://ottawa.ca/en/residents/laws-licenses-and-permits/laws/urban-tree-conservation-law-0">http://ottawa.ca/en/residents/laws-licenses-and-permits/laws/urban-tree-conservation-law-0</a>

## Phase 1 ESA


- Must be complete in accordance with the Ontario Regulation 153/04 (as amended) as per the City's Official Plan Rideau Valley Conservation Authority:
  - As discussed at the meeting, ultimately the plan is to close Mud Creek (to the west of) the Belcourt Extension.
  - An Authorization for works to close the watercourse and provide compensation at Brewer's Pond has been issued
    to the Richcraft Group of companies by the Department of Fisheries and Oceans (file #10-HCAA-CA4-00350) valid
    until March 15, 2015. The compensation work is now scheduled to be undertaken summer 2014. Provided this
    work is executed as scheduled, is does address the fisheries aspect of the proposal to alter/close the watercourse
    segment on this site.
  - However, a permit is also required to make any alteration to the watercourse under the RVCA O.Reg 174/06 'Watercourse Alterations' policies. You will need to apply for that permit and receive approval in advance of any works that affect the existing watercourse and its banks. As no development application has been submitted on the lands to the north and east of this site, the development of this property will still need to address maintaining existing flows through this corridor in the interim until the headwater catchment area is serviced and surface water is managed through future infrastructure. Further, there may still be in water work timeframe restrictions and detailed design /phasing considerations. Please contact with Hal Stimson, RVCA Regulations Officer on what is required to apply for this permission (hal.stimson@rvca.ca).
  - The RVCA recommended that you contact the engineering consultants who are managing the downstream watercourse works, David Schaeffer Engineering Limited.
  - The RVCA will review the stormwater management plan for this property, and their involvement will depend on whether the site is captured within an existing valid MSS and what the receiver will be.

As discussed in the meeting, there will <u>not</u> be a possibility for a break in the median on Belcourt as this is not possible within a left turn lane.

Concerning the Round About, it was discussed internally and it was decided that we shall not require a Round About at the intersection of Renaud and Belcourt.

The Fire Access is to be moved on Renaud Rd as previously indicated.

Concerning the Gateway Feature, the East Urban Community CDP Phase 1 requires a Landscaped Gateway Feature at this intersection. It is not possible to have the feature on the west side of Belcourt as the Draft Plan of Subdivision identifies a residential lot fronting on Renaud Rd. In order to ensure that there is enough space for a proper gateway feature at this location, a requirement for a 3m x 5m block on the east side of Renaud Rd has been required as a potential Draft Condition for the Trails Edge Subdivision. Be advised that this block may not be required if there is enough space in the Right of Way to build the Landscaped Gateway Feature. The block will remain as a requirement unless a detailed plan and design of the Landscaped Gateway Feature shows the feature within the Right of Way (not requiring the block). This must be to the satisfaction of the City.



As discussed in the meeting there are important things to consider for this site.

- Frontage Charges of \$190/meter of total lot frontage on Renaud Rd. will be required at time of severance.
- After the meeting I looked into the area specific development charge for stormwater management and the School Board is exempt.
- The parcel currently contains a municipal drain called the James Blais Municipal Drain. This drain will need to be abandoned prior to site plan approval.
- As per OPA 118, prior to the severance the Owner will need to provide evidence from a Trustee that the owner is
  party to the cost sharing agreement between all benefiting land owners and that they have paid their share of the
  costs.
- As indicated in the preconsultation meeting the City is currently in negotiations with the current land owners
  regarding the allowable stormwater management release rate. Once we have a confirmed commitment we will
  inform the school board of the decision.
- During the meeting there was discussion as to whether the City would consider a building permit prior to site plan
  approval. This is not the City's current practice and would also require approval from Building Services. From an
  infrastructure perspective, we would not support a building permit without servicing. At this point there are no
  sanitary are storm services fronting the property and we understand that there may not be any services until late next
  summer. The school board should keep this in mind when planning their construction schedule.

We also recommend that you contact the local Ministry of Environment to determine what approvals, if any, will be required for the site. The Contact information is below.

Charles Goulet, District Engineer & Provincial Officer

Phone: (613) 521-3450 ext. 246

Fax: (613) 521-5437

email: Charles.Goulet@ene.gov.on.ca

An email has been sent to the Sign Officer in order to determine the sign requirements and therefore determine if a sign variance is required. Further information will be sent shortly. If a sign variance is required, this is a process separate from the Committee of

Adjustment (these variances are dealt within the Building Services department). The Addressing & Signs can be reached at 613-580-2424 x41162.

Regards,

Mélanie Gervais

Planner / Urbaniste
Development Review /
Examen des demandes d'aménagement
Planning and Growth Management Dept. /
Urbanisme et Gestion de la croisssance
City of / Ville d'Ottawa
110, avenue Laurier Avenue West / Ouest,
4th Floor / 4ième étage
Ottawa, ON KIP 1J1
Tel.: 613-580-2424 ext. 24025

Fax / Télécopieur : 613-580-2576 E-mail / Courriel : <u>Melanie.Gervais@ottawa.ca</u>

Mail Code: 01-14

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Si vous avez reçu le message par erreur, veuillez m'en aviser par téléphone (au numéro précité) ou par courriel, puis supprimer sans délai la version originale de la communication ainsi que toutes ses copies. Je vous remercie de votre collaboration.

## APPLICANT'S STUDY AND PLAN IDENTIFICATION LIST



Legend:

The letter **S** indicates that the study or plan is required with application submission.

The letter **A** indicates that the study or plan may be required to satisfy a condition of approval/draft approval.

For information on preparing required studies and plans refer to:

http://ottawa.ca/en/city-hall/planning-and-development/guide-preparing-studies-and-plans

| S/A | Number of copies |                                       | ENGINEERING                                   | S/A | Number of copies |
|-----|------------------|---------------------------------------|-----------------------------------------------|-----|------------------|
| Ş   | 55               | Site Servicing Plan                   | Site Servicing Study                          | s   | 6                |
| S   | 55               | Grade Control and Drainage Plan       | Geotechnical Study                            | s   | 4                |
|     | 2                | 5. Composite Utility Plan             | Groundwater Impact Study                      |     | 6                |
|     | 5                | 7. Servicing Options Report           | Wellhead Protection Study                     |     | 6                |
| s   | 9                | Transportation Impact Brief           | 10. Erosion and Sediment Control Plan / Brief | S   | 6                |
|     | 6                | Storm water Management Report / Brief | 12. Hydro geological and Terrain Analysis     |     | 8                |
|     | 3                | 13. Hydraulic Water main Analysis     | 14. Noise Brief                               | S   | 3                |
|     | 35/50/55         | 15. Roadway Modification Design Plan  | 16. Exterior Site Lighting letter             | s   | 3                |

| S/A | Number of copies | DI ANNINO I DEPLOY COLDUCTA                                    |                                                                                                         |   | Number of copies |
|-----|------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---|------------------|
|     | 50               | 17. Draft Plan of Subdivision                                  | 18. Plan Showing Layout of Parking Garage                                                               |   | 2                |
|     | 30               | 19. Draft Plan of Condominium                                  | Planning Rationale (Design Statement and Integrated Environmental Review Statement**)                   | S | 4                |
| S   | 55               | 21. Site Plan                                                  | 22. Minimum Distance Separation (MDS)                                                                   |   | 3                |
|     | 20               | 23. Concept Plan Showing Proposed<br>Land Uses and Landscaping | 24. Agrology and Soil Capability Study                                                                  |   | 5                |
|     | 3                | 25. Concept Plan Showing Ultimate Use of Land                  | 26. Cultural Heritage Impact Statement                                                                  |   | 3                |
| s   | 55               | 27. Landscape Plan                                             | 28. Archaeological Resource Assessment Requirements: <b>S</b> (site plan) <b>A</b> (subdivision, condo) |   | 3                |
| 8   | 2                | 29. Survey Plan                                                | 30. Sun Shadow Study                                                                                    |   | 3                |
| s   | 3                | Architectural Building Elevation     Drawings (dimensioned)    | 32. Design Review Panel Submission Package                                                              |   | Available online |

| S/A | Number of<br>copies |                                                                               | S/A                                                                          | Number of copies |    |
|-----|---------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------|----|
| S   | 4                   | 33. Phase 1 Environmental Site<br>Assessment (Ontario Reg. 153/04)            | 34. Impact Assessment of Adjacent Waste<br>Disposal/Former Landfill Site     |                  | 6  |
|     | 5                   | 35. Phase 2 Environmental Site Assessment (depends on the outcome of Phase 1) | 36. Assessment of Landform Features                                          |                  | 7  |
|     | 4                   | 37. Record of Site Condition                                                  | 38. Mineral Resource Impact Assessment                                       |                  | 4  |
| s   | 10                  | 39. Tree Conservation Report                                                  | Environmental Impact Statement / Impact     Assessment of Endangered Species |                  | 11 |
|     | 4                   | 41. Mine Hazard Study / Abandoned Pit<br>or Quarry Study                      | 42. Watercourse Alteration Permit (RVCA)                                     | A                |    |

| S/A | Number of<br>copies |     | ADDITIONAL REQUIREMENTS |  | Number of copies |
|-----|---------------------|-----|-------------------------|--|------------------|
|     |                     | 43. | 44.                     |  | copies           |

| Meeting Date: October 11, 2013          | Application Type: Site Plan Control    |
|-----------------------------------------|----------------------------------------|
| File Lead: Melanie Gervais              | Engineer/Project Manager: John Sevigny |
| Site Address: CECCE (Renaud & Belcourt) | *Preliminary Assessment: 1 2 3 4 5 5   |
|                                         |                                        |

\*One (1) indicates that considerable revisions are required before a planning application is submitted, while five (5) suggests that proposal appears to meet the City's key land use policies and guidelines. This assessment is purely advisory and does not consider technical aspects of the proposal, or in any way guarantee application approval.

\*\*Two (2) indicates if the application falls within a design priority area and is subject to review by the Urban Design Review Panel, the planning rationale does not need to include a design statement or urban design analysis.

It is important to note that the need for additional studies and plans may result during application review. If following the submission of your application, it is determined that material that is not identified in this checklist is required to achieve complete application status, in accordance with the Planning Act and Official Plan requirements, City Planning will notify you of outstanding material required within the required 30 day period. Mandatory pre-application consultation will not shorten the City's standard processing timelines, or guarantee that an application will be approved. It is intended to help educate and inform the applicant about submission requirements as well as municipal processes, policies, and key issues in advance of submitting a formal development application. This list is valid for one year following the meeting date. If the application is not submitted within this timeframe the applicant must again pre-consult with the City.

| Development Servicing Study and Stormwater Management Report | Orleans H.S Renaud Rd. & Belcourt Blvd. |
|--------------------------------------------------------------|-----------------------------------------|
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
| ADDENDIV D                                                   |                                         |
| APPENDIX B                                                   |                                         |
| Development Servicing Study Check                            | list                                    |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |

# 4. Development Servicing Study Checklist

The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff.

The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary.

## 4.1 General Content NA 🗍 Executive Summary (for larger reports only). V Date and revision number of the report. Location map and plan showing municipal address, boundary, and layout of proposed development. V Plan showing the site and location of all existing services. REFER TO DSEL'S Development statistics, land use, density, adherence to zoning and official plan, and MASTER SERVICING reference to applicable subwatershed and watershed plans that provide context to YAUTZ which individual developments must adhere. V Summary of Pre-consultation Meetings with City and other approval agencies. V Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria. V Statement of objectives and servicing criteria. Identification of existing and proposed infrastructure available in the immediate area. V Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).

377776A101\_WB062009009OTT 4-

|    |           | Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths. |
|----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NA |           | Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.                                                                                                                                                                                                |
|    |           | Proposed phasing of the development, if applicable.                                                                                                                                                                                                                                                                                                                                         |
|    |           | Reference to geotechnical studies and recommendations concerning servicing.                                                                                                                                                                                                                                                                                                                 |
|    | $\square$ | All preliminary and formal site plan submissions should have the following information:                                                                                                                                                                                                                                                                                                     |
|    |           | Metric scale                                                                                                                                                                                                                                                                                                                                                                                |
|    |           | North arrow (including construction North)                                                                                                                                                                                                                                                                                                                                                  |
|    |           | Key plan                                                                                                                                                                                                                                                                                                                                                                                    |
|    |           | Name and contact information of applicant and property owner                                                                                                                                                                                                                                                                                                                                |
|    |           | Property limits including bearings and dimensions                                                                                                                                                                                                                                                                                                                                           |
|    |           | Existing and proposed structures and parking areas                                                                                                                                                                                                                                                                                                                                          |
|    |           | Easements, road widening and rights-of-way                                                                                                                                                                                                                                                                                                                                                  |
|    |           | Adjacent street names                                                                                                                                                                                                                                                                                                                                                                       |

## **Development Servicing Report: Water** 4.2

|                        |          | 3 60.0.                                                                                                                                                                                                           |
|------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | <b>I</b> | Confirm consistency with Master Servicing Study, if available                                                                                                                                                     |
| ***                    |          | Availability of public infrastructure to service proposed development                                                                                                                                             |
| STUDY                  |          | Identification of system constraints                                                                                                                                                                              |
|                        |          | Identify boundary conditions                                                                                                                                                                                      |
| 377                    |          | Confirmation of adequate domestic supply and pressure                                                                                                                                                             |
| DSELS MASTER SERVICING |          | Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development. |
| SELS M                 |          | Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.                                                             |
| <u>•</u>               |          | Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design                                                        |
|                        |          | Address reliability requirements such as appropriate location of shut-off valves                                                                                                                                  |
| l•                     |          | Check on the necessity of a pressure zone boundary modification.                                                                                                                                                  |

| REFER TO DSEL'S  MASTER SERVICING REPORT |              | Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range  Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.  Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.  Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.  Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference. |
|------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | <b>4.3</b> ✓ | Development Servicing Report: Wastewater  Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                          | V            | Confirm consistency with Master Servicing Study and/or justifications for deviations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NA                                       |              | Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NA<br>F                                  |              | Description of existing sanitary sewer available for discharge of wastewater from proposed development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MASTER SERVING REPORT                    | ′ 🗆          | Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ER SER                                   |              | Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ESAN (                                   |              | Description of proposed sewer network including sewers, pumping stations, and forcemains.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

377776A101\_WB102008001OTT 4-3

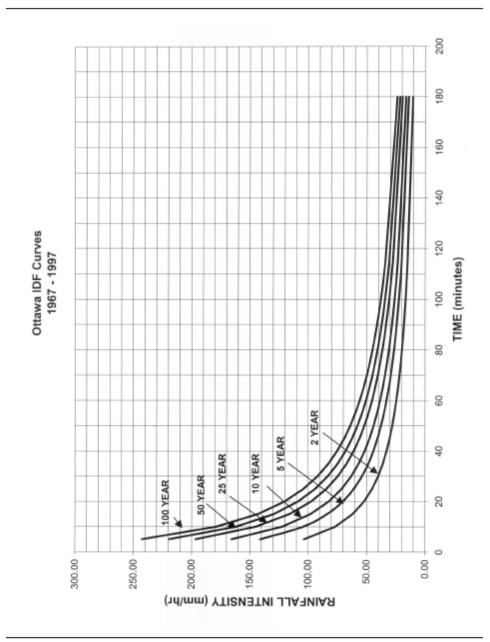
| N                                      | <b>\</b>   | Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).                                                                                                                   |
|----------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N                                      | <b>a</b> 🗆 | Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.                                                                                                                                                                                                                                                                                           |
| N                                      | <b>1</b> □ | Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.                                                                                                                                                                                                                                                                                                                                         |
| N                                      | <b>\</b>   | Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.                                                                                                                                                                                                                                                                 |
| NA                                     |            | Special considerations such as contamination, corrosive environment etc.                                                                                                                                                                                                                                                                                                                                                                 |
| F Sept                                 | 4.4        | Development Servicing Report: Stormwater Checklist                                                                                                                                                                                                                                                                                                                                                                                       |
| REFER TO DIEL'S HSTER SERVICING REPORT |            | Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)                                                                                                                                                                                                                                                                          |
| Ser de                                 |            | Analysis of available capacity in existing public infrastructure.                                                                                                                                                                                                                                                                                                                                                                        |
| REFE<br>Myster                         |            | A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.                                                                                                                                                                                                                                                                                             |
| <b>4%</b>                              | Ø          | Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects. |
| NA                                     |            | Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.                                                                                                                                                                                                                                                                        |
|                                        | I          | Description of the stormwater management concept with facility locations and descriptions with references and supporting information.                                                                                                                                                                                                                                                                                                    |
| NA                                     |            | Set-back from private sewage disposal systems.                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        |            | Watercourse and hazard lands setbacks.                                                                                                                                                                                                                                                                                                                                                                                                   |
| NA                                     |            | Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.                                                                                                                                                                                                                                                                                      |
|                                        | $\square$  | Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.                                                                                                                                                                                                                                                                                                                                           |

|                               |                  | ✓         | Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).                                                                                                                                                                              |
|-------------------------------|------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                  | <b>7</b>  | Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.                                                                                                                                                       |
|                               |                  | Ø         | Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.                                                                                                                                            |
| REFER                         | To               |           | Any proposed diversion of drainage catchment areas from one outlet to another.                                                                                                                                                                                                                                                                |
| Refer<br>Dsel's i<br>Ervicide | aaster<br>Beboot |           | Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.                                                                                                                                                                                                              |
| 0-8-a                         | NA               |           | If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.                                                                                                                                                    |
| Reper<br>Dsel's<br>Ernicing   | naster)          |           | Identification of potential impacts to receiving watercourses                                                                                                                                                                                                                                                                                 |
| EBN KING                      | nema             |           | Identification of municipal drains and related approval requirements.                                                                                                                                                                                                                                                                         |
|                               |                  | V         | Descriptions of how the conveyance and storage capacity will be achieved for the development.                                                                                                                                                                                                                                                 |
|                               |                  | Y         | 100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.                                                                                                                                                                            |
|                               | NA               |           | Inclusion of hydraulic analysis including hydraulic grade line elevations.                                                                                                                                                                                                                                                                    |
|                               |                  | $\square$ | Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.                                                                                                                                                                                                |
|                               | NA               |           | Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions. |
|                               | į                |           | Identification of fill constraints related to floodplain and geotechnical investigation.                                                                                                                                                                                                                                                      |

## 4.5 Approval and Permit Requirements: Checklist

The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:

377776A101\_WB102008001OTT 4-5


|           | Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act. |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | Changes to Municipal Drains.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.6       | Conclusion Checklist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| V         | Clearly stated conclusions and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.                                                                                                                                                                                                                                                                                                                                                        |
| $\square$ | All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario                                                                                                                                                                                                                                                                                                                                                                                                                             |

| elopment Servicing Study and Stormwater Management Report | APPENDIX C onal Method Calculations, IDF Curves |  |  |
|-----------------------------------------------------------|-------------------------------------------------|--|--|
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
| APPENDIX C                                                |                                                 |  |  |
| Rational Method Calculations,                             | IDF Curves                                      |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |
|                                                           |                                                 |  |  |

Ottawa Sewer Design Guidelines

APPENDIX 5-A

OTTAWA INTENSITY DURATION FREQUENCY (IDF) CURVE



City of Ottawa Appendix 5-A.1 November 2004

#### RATIONAL METHOD

The Rational Method was used to determine the allowable release rate, pre-development and post-development runoff for the site. The equation is as follows:

Q=2.78 CIA

Where:

Q is the runoff in L/s C is the weighted runoff coefficient\* I is the rainfall intensity in mm/hr\*\* A is the area in hectares

\*The weighted runoff coefficient is determined for each of the catchment areas as follows:

$$C = \underbrace{(A_{perv} \ x \ C_{perv}) + (A_{imp} \ x \ C_{imp})}_{A_{tot}}$$

Where:

A<sub>perv</sub> is the pervious area in hectares

C<sub>perv</sub> is the pervious area runoff coefficient (C<sub>perv</sub>=0.20)

A<sub>imp</sub> is the impervious area in hectares

C<sub>imp</sub> is the impervious area runoff coefficient (C<sub>imp</sub>=0.90)

Atot is the catchment area (Aperv + Aimp) in hectares

Note: Increase the C values above by 25% for the 1:100 year event (max. C<sub>imp</sub>=1.0).

\*\* The rainfall intensities used were taken from the City of Ottawa IDF curves. A time of concentration ( $t_c$ ) of 10 minutes was used for the post-development conditions, resulting in rainfall intensities of 104.2 mm/hr for the 1:5 year event and 178.6 mm/hr for the 1:100 year event.

## SAMPLE POST-DEVELOPMENT FLOW CALCULATIONS

#### AREA A-21: SHOP CLASS LOADING AREA

Drainage Area (A) = 0.052 ha Impervious Area = 0.052 ha Pervious Area = NA Runoff Coefficient ( $C_{5yr}$ ) = 0.90 Runoff Coefficient ( $C_{w100yr}$ ) = 1.0 Intensity ( $I_5$ ) = 104.2 mm/hr Intensity ( $I_{100}$ ) = 178.6 mm/hr

$$C_{5yr} = \frac{(0.052 \times 0.90) + (0 \times 0.2)}{0.052} = 0.90$$

 $Q_5 = 2.78 \text{ CIA}$ 

 $Q_5 = 2.78 \times 0.90 \times 104.2 \times 0.052$ 

 $Q_5 = 13.6 \text{ L/s}$ 

$$C_{100\,yr} = \frac{\left(0.052 \times 1.0\right) + \left(0 \times 0.25\right)}{0.052} = 1.00$$

Q<sub>100</sub>= 2.78 CIA

Q<sub>100</sub>= 2.78 x 1.0 x 178.6 x 0.052

 $Q_{100}$ = 25.8 L/s

Refer to the SWM Summary Spreadsheets in **Appendix D** for post-development flow for all subcatchment drainage areas.

| Development Servicing Study and Stormwater Management Report | Orleans H.S Renaud Rd. & Belcourt Blvd. |
|--------------------------------------------------------------|-----------------------------------------|
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
| APPENDIX D                                                   |                                         |
| SWM Summary Sheet, Storage Calculations, Stor                | m Sewer Design Sheet                    |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
|                                                              |                                         |
| Neverteels Engineering Consultants Ltd                       |                                         |

Project: Orleans High School (113196) Location: 6401 Renaud Rd Client: CECCE

DATE: December 2013 Rev: May 2014 Rev: July 2014



| Head               | lpex Tempest on | ICD Model   pex               |          | -     |          |         | N/A<br>N/A |          |          |       |          | N/A N/A   |           | N/A N/A   |           | 100       | V/N   | V//V    |               | NIA       |               | N/A N/A   | N/A N/A   | N/A N/A   | Vortex 75 2 29 |           | N/A N/A | N/A N/A   |                  | N/A N/A   |       |
|--------------------|-----------------|-------------------------------|----------|-------|----------|---------|------------|----------|----------|-------|----------|-----------|-----------|-----------|-----------|-----------|-------|---------|---------------|-----------|---------------|-----------|-----------|-----------|----------------|-----------|---------|-----------|------------------|-----------|-------|
| No contract        |                 | of Orifice<br>(mm)            |          |       |          |         | 202        |          |          |       |          | 78        |           | 140       |           | 405       | COL   | 103     | 2             | 107       | 2             | N/A       | N/A       | 115       | 48             | <u> </u>  | 81      | - 6       | 3                | 66        | 1     |
| Head on            | Orifice         | (if plug)<br>(m)              |          |       |          |         | 2.10       |          |          |       |          | 1.21      |           | 2.04      |           | 4 03      | 3     | 1 76    | 2             | 1 76      | 2             | N/A       | N/A       | 1.32      | 2.19           | <b>i</b>  | 1.30    | 1.77      |                  | 1.78      |       |
|                    | Pipe dia        | (if plug type)<br>(mm)        |          |       |          |         | 457        |          |          |       |          | 203       |           | 381       |           | COC       | 502   | 203     | 203           | 203       | 202           | N/A       | N/A       | 203       | 203            |           | 203     | 203       | 204              | 203       |       |
| 10 to 10 column    |                 | Pan Elev.<br>(m)              |          |       |          |         | 85.31      |          |          |       |          | 86.10     |           | 85.36     |           | CV 30     | 05.43 | 85.58   | 200.00        | 05.50     | 9             | N/A       | N/A       | 86.20     | 85.47          |           | 86.20   | 85.57     | 3                | 85.57     |       |
| Required           | 100 year        | volume<br>(cu,m)              |          |       |          |         | 133.8      |          |          |       |          | 8.1       |           | 216.9     |           | 24.7      | 7.17  | 10.8    | 5             | 24.3      |               | 155.6     | N/A       | 14.7      | 4.8            |           | 7.5     | 15.7      | 3                | 19.2      |       |
| Required Available | 100 year        | volume (cu.m)                 |          |       |          |         | 134.0      |          |          |       |          | 8.7       |           | 232.5     |           | 0.70      | 0.03  | 8 76    | 0.17          | 73 A      | t,            | 156.0     | N/A       | 15.5      | 5.0            | ,         | 8.4     | 181       | -<br>-<br>-<br>- | 23.5      |       |
| Rednired           | 5 year          | volume<br>(cu.m)              |          |       |          |         | 36.1       |          |          |       |          | N/A       |           | 70.4      |           | 7 (       | 4.4   | 116     | 1.7           | V C       | 1             | N/A       | N/A       | N/A       | W/A            |           | N/A     | 2.2       | 77               | 2.6       |       |
| Available          | 5 year          | volume<br>(cu.m)              |          |       |          |         | 39.0       |          |          |       |          | N/A       |           | 76.2      |           | 7.6       | 61    | 96      | .i            | 3 6       | 2.3           | N/A       | N/A       | W/A       | W/A            |           | N/A     | 90        | 2.7              | 2.6       |       |
|                    | _               | Depth<br>(m)                  |          |       |          |         | 0.19       |          |          |       |          | 0.11      |           | 0.24      |           | 0.46      |       | 0.14    | <u>t</u><br>5 | 0.14      | <u>t</u><br>; | N/A       | N/A       | 0.22      | 0.11           |           | 0.20    | 0.14      | <u> </u>         | 0.15      |       |
| Effective          | 7554            | Grate<br>(m)                  |          |       |          | ******* | 87.45      |          |          |       |          | 87.30     |           | 87.35     |           | 07.20     | 00.10 | 05 20   | 5             | 97.30     | 3             | N/A       | N/A       | 87.40     | 87.65          | }         | 87.40   | 87.30     | 3                | 87.30     |       |
| 100 year           | Controlled      | Release (Us)                  |          |       |          |         | 128.0      |          |          |       |          | 14.3      |           | 0.09      |           | 000       | 0.00  | 303     | 5             | 33.0      | 2             | 98.8      | 31.8      | 33.0      | 7.5            |           | 16.2    | 23.0      | 2.5              | 28.0      |       |
| The second second  | Outlet          | Location                      |          |       |          |         | CBMH 9     |          |          |       |          | CB 10     |           | CBMH 13   |           | SE LIMOS  | -     | CBMH 17 | -             | CBMH 10   |               | ROOF      | FREE FLOW | CB 22     | CBMH 24        |           | CB 25   | CRMH 27   | 2000             | CBMH 29   |       |
| 100 year           | Combined        | Composite<br>C                |          |       |          |         | 0.74       |          |          |       |          | 0.37      |           | 0.40      |           | 200       | 0.00  | 0.89    | 20.0          | 0.85      | 3             | 1.00      | 1.00      | 0.87      | 0.28           |           | 0.84    | 0 04      | 5                | 0.77      |       |
| 5 year             | Combined        | Composite Composite Composite |          |       |          |         | 0.65       |          |          |       |          | 0.31      |           | 0.34      |           | 0.50      | 0.00  | 08.0    | 20.0          | 92.0      | 2             | 06'0      | 06.0      | 0.77      | 0.22           |           | 0.75    | 0.80      | 70.0             | 69'0      | 100   |
|                    | Individual      | Composite<br>C                | 0.57     | 0.83  | 0.28     | 0.29    | 0.48       | 0.75     | 0.81     | 0.52  | 0.77     | 0.31      | 0.34      | 0.31      | 0.38      | 0.53      | 0.64  | 0.72    | 0.89          | 92'0      | 0.78          | 06.0      | 06.0      | 22.0      | 0.25           | 0.20      | 0.75    | 0.75      | 0.88             | 0.70      | 0.00  |
| Area               | = 5             | 6.0                           | 0.062    | 0.027 | 0.004    | 0.007   | 0.015      | 0.176    | 0.212    | 0.068 | 0.052    | 0.024     | 0.182     | 0.078     | 0.095     | 0.061     | 0.054 | 0.056   | 990.0         | 0.056     | -             | 0.685     | 0.064     | 0.110     | 0.004          | 0.000     | 0.054   | 0.042     | 0.054            | 0.049     | 0.000 |
| Ā                  | =<br>)          | 0.2                           | 0.056    | 0.003 | 0.033    | 0.051   | 0.022      |          | ⊢        | ⊢     | <u> </u> | 0.128     | <u> </u>  | 0.400     | ⊢         |           |       |         | 0.001         |           | -             |           | 0.000     | 0.024     |                | 0.062     | -       | -         | 0.001            | 0.020     | +     |
|                    | qns qns         | Area Area<br>I.D. (ha)        | A1 0.118 | 0.030 | A3 0.037 | 0.058   | A5 0.037   | A6 0.222 | A7 0.243 | -     | -        | A10 0.152 | A11 0.919 | A12 0.478 | A13 0.365 | A14 0.128 |       |         | A17 0.067     | A18 0.073 | A19 0.089     | A20 0.685 | A21 0.064 | A22 0.134 | 1              | A24 0.062 |         | A26 0.053 | A27 0.055        | A28 0.069 | 4     |

| II AAAtlani 6 Af                                                                                    | 14 D ! D                                                                                     | nool                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                   |                                                                                                                                                      |                                                                                                             |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                                                                                     | 1 Renaud R                                                                                   | d                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                   | OVAT                                                                                                                                                 |                                                                                                             |
| Client: CECC                                                                                        | <b>E</b>                                                                                     |                                                                                                                                                                      | DATE: December 2                                                                                                                                                                 | 2013                                                                                              |                                                                                                                                                      | EUFI                                                                                                        |
|                                                                                                     |                                                                                              |                                                                                                                                                                      | Rev: May 2014                                                                                                                                                                    |                                                                                                   |                                                                                                                                                      | D I N C                                                                                                     |
|                                                                                                     |                                                                                              |                                                                                                                                                                      | Rev: July 2014                                                                                                                                                                   | E N<br>C O N                                                                                      | GINEE                                                                                                                                                | KING<br>TSLTD.                                                                                              |
| Ctavana Danvis                                                                                      |                                                                                              | . A4 A0 (CDML                                                                                                                                                        | I (1)                                                                                                                                                                            | C U I                                                                                             | SULIAN                                                                                                                                               | 1 3 L 1 D.                                                                                                  |
| Storage Require                                                                                     | ements for Area                                                                              | a A I-A9 (CDIVIE                                                                                                                                                     | 19)                                                                                                                                                                              |                                                                                                   |                                                                                                                                                      |                                                                                                             |
| Area                                                                                                |                                                                                              | 0.959                                                                                                                                                                | hectares                                                                                                                                                                         |                                                                                                   |                                                                                                                                                      |                                                                                                             |
| 5 Year Runoff C                                                                                     | oefficient =                                                                                 | 0.65                                                                                                                                                                 | post development                                                                                                                                                                 |                                                                                                   |                                                                                                                                                      | ***************************************                                                                     |
| 100 Year Runof                                                                                      |                                                                                              | 0.74                                                                                                                                                                 | post development                                                                                                                                                                 |                                                                                                   |                                                                                                                                                      |                                                                                                             |
|                                                                                                     |                                                                                              |                                                                                                                                                                      |                                                                                                                                                                                  |                                                                                                   |                                                                                                                                                      |                                                                                                             |
| Return                                                                                              | Time                                                                                         | Intensity                                                                                                                                                            | Flow                                                                                                                                                                             | Controlled                                                                                        | Net Runoff To                                                                                                                                        | Storage Req'd                                                                                               |
| Period                                                                                              | (min)                                                                                        | (mm/hr)                                                                                                                                                              | Q (L/s)                                                                                                                                                                          | Release                                                                                           | Be Stored (L/s)                                                                                                                                      | m3                                                                                                          |
| · · · · · · · · · · · · · · · · · · ·                                                               | 10                                                                                           | 104.19                                                                                                                                                               | 181.92                                                                                                                                                                           | 121.8                                                                                             | 60.1                                                                                                                                                 | 36.1                                                                                                        |
| 5 Year                                                                                              | 20                                                                                           | 70.25                                                                                                                                                                | 122.66                                                                                                                                                                           | 121.8                                                                                             | 0.9                                                                                                                                                  | 1.0                                                                                                         |
|                                                                                                     | 30                                                                                           | 53.93                                                                                                                                                                | 94.15                                                                                                                                                                            | 121.8                                                                                             | -27.6                                                                                                                                                | -49.8                                                                                                       |
|                                                                                                     | 40                                                                                           | 44.18                                                                                                                                                                | 77.14                                                                                                                                                                            | 121.8                                                                                             | -44.7                                                                                                                                                | -107.2                                                                                                      |
|                                                                                                     | 50                                                                                           | 37.65                                                                                                                                                                | 65.74                                                                                                                                                                            | 121.8                                                                                             | -56.1                                                                                                                                                | -168.2                                                                                                      |
|                                                                                                     | 10                                                                                           | 178.56                                                                                                                                                               | 351.03                                                                                                                                                                           | 128.0                                                                                             | 223.0                                                                                                                                                | 133.8                                                                                                       |
|                                                                                                     | 20                                                                                           | 119.95                                                                                                                                                               | 235.81                                                                                                                                                                           | 128.0                                                                                             | 107.8                                                                                                                                                | 129.4                                                                                                       |
| 100 Year                                                                                            | 30                                                                                           | 91.87                                                                                                                                                                | 180.60                                                                                                                                                                           | 128.0                                                                                             | 52.6                                                                                                                                                 | 94.7                                                                                                        |
|                                                                                                     | 40                                                                                           | 75.15                                                                                                                                                                | 147.73                                                                                                                                                                           | 128.0                                                                                             | 19.7                                                                                                                                                 | 47.3                                                                                                        |
|                                                                                                     | 50                                                                                           | 63.95                                                                                                                                                                | 125.73                                                                                                                                                                           | 128.0                                                                                             | -2.3                                                                                                                                                 | -6.8                                                                                                        |
|                                                                                                     |                                                                                              |                                                                                                                                                                      |                                                                                                                                                                                  |                                                                                                   |                                                                                                                                                      |                                                                                                             |
| Storage Require                                                                                     | ements for Area                                                                              | a A10 (CB 10)                                                                                                                                                        |                                                                                                                                                                                  |                                                                                                   |                                                                                                                                                      |                                                                                                             |
|                                                                                                     | ·                                                                                            | 0.4=0                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                   | 3                                                                                                                                                    |                                                                                                             |
| Area<br>5 Year Runoff C                                                                             |                                                                                              | 0.152<br>0.31                                                                                                                                                        | hectares                                                                                                                                                                         |                                                                                                   |                                                                                                                                                      |                                                                                                             |
| ว rear หนกงก C<br>100 Year Runofl                                                                   |                                                                                              | 0.37                                                                                                                                                                 | post development post development                                                                                                                                                |                                                                                                   |                                                                                                                                                      |                                                                                                             |
| 100 Teal Rulloll                                                                                    | Coemoient-                                                                                   | 0.07                                                                                                                                                                 | post development                                                                                                                                                                 |                                                                                                   |                                                                                                                                                      |                                                                                                             |
|                                                                                                     |                                                                                              |                                                                                                                                                                      | Flow                                                                                                                                                                             |                                                                                                   |                                                                                                                                                      | 0/ D 11                                                                                                     |
| Return                                                                                              | Time                                                                                         | Intensity                                                                                                                                                            | Flow                                                                                                                                                                             | Controlled                                                                                        | Net Runoff To                                                                                                                                        | Storage Req'd                                                                                               |
| Return<br>Period                                                                                    | Time<br>(min)                                                                                | Intensity<br>(mm/hr)                                                                                                                                                 |                                                                                                                                                                                  | Controlled<br>Release                                                                             | Net Runoff To<br>Be Stored (L/s)                                                                                                                     | m3                                                                                                          |
|                                                                                                     |                                                                                              |                                                                                                                                                                      | Q (L/s)<br>13.67                                                                                                                                                                 |                                                                                                   |                                                                                                                                                      |                                                                                                             |
| Period                                                                                              | (min)                                                                                        | (mm/hr)                                                                                                                                                              | Q (L/s)                                                                                                                                                                          | Release                                                                                           | Be Stored (L/s)                                                                                                                                      | m3                                                                                                          |
| Period                                                                                              | (min)<br>10                                                                                  | (mm/hr)<br>104.19                                                                                                                                                    | Q (L/s)<br>13.67                                                                                                                                                                 | Release<br>13.6                                                                                   | Be Stored (L/s)<br>0.1                                                                                                                               | m3<br>0.0                                                                                                   |
| Period                                                                                              | (min)<br>10<br>20                                                                            | (mm/hr)<br>104.19<br>70.25                                                                                                                                           | Q (L/s)<br>13.67<br>9.22                                                                                                                                                         | Release<br>13.6<br>13.6                                                                           | Be Stored (L/s)<br>0.1<br>-4.4                                                                                                                       | m3<br>0.0<br>-5.3                                                                                           |
| Period                                                                                              | (min)<br>10<br>20<br>30                                                                      | (mm/hr)<br>104.19<br>70.25<br>53.93                                                                                                                                  | Q (L/s)<br>13.67<br>9.22<br>7.08                                                                                                                                                 | Release<br>13.6<br>13.6<br>13.6                                                                   | Be Stored (L/s) 0.1 -4.4 -6.5                                                                                                                        | m3<br>0.0<br>-5.3<br>-11.7                                                                                  |
| Period                                                                                              | (min)<br>10<br>20<br>30<br>40                                                                | (mm/hr)<br>104.19<br>70.25<br>53.93<br>44.18                                                                                                                         | Q (L/s)<br>13.67<br>9.22<br>7.08<br>5.80                                                                                                                                         | Release<br>13.6<br>13.6<br>13.6<br>13.6                                                           | Be Stored (L/s) 0.1 -4.4 -6.5 -7.8                                                                                                                   | m3<br>0.0<br>-5.3<br>-11.7<br>-18.7                                                                         |
| Period<br>5 Year                                                                                    | (min)<br>10<br>20<br>30<br>40<br>50                                                          | (mm/hr)<br>104.19<br>70.25<br>53.93<br>44.18<br>37.65<br>178.56                                                                                                      | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80                                                                                                                                          | Release 13.6 13.6 13.6 13.6 13.6 14.3                                                             | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5                                                                                                   | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1                                                                           |
| Period                                                                                              | (min)<br>10<br>20<br>30<br>40<br>50<br>10                                                    | (mm/hr)<br>104.19<br>70.25<br>53.93<br>44.18<br>37.65<br>178.56<br>119.95                                                                                            | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67                                                                                                                                    | Release 13.6 13.6 13.6 13.6 13.6 14.3                                                             | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4                                                                                              | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2                                                                       |
| Period<br>5 Year                                                                                    | (min)<br>10<br>20<br>30<br>40<br>50<br>10<br>20<br>30                                        | (mm/hr)<br>104.19<br>70.25<br>53.93<br>44.18<br>37.65<br>178.56<br>119.95<br>91.87                                                                                   | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30                                                                                                                              | Release 13.6 13.6 13.6 13.6 13.6 14.3 14.3                                                        | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0                                                                                         | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0                                                                   |
| Period<br>5 Year                                                                                    | (min) 10 20 30 40 50 10 20 30 40                                                             | (mm/hr)<br>104.19<br>70.25<br>53.93<br>44.18<br>37.65<br>178.56<br>119.95<br>91.87<br>75.15                                                                          | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70                                                                                                                        | Release 13.6 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3                                              | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6                                                                                   | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2                                                              |
| Period<br>5 Year                                                                                    | (min)<br>10<br>20<br>30<br>40<br>50<br>10<br>20<br>30                                        | (mm/hr)<br>104.19<br>70.25<br>53.93<br>44.18<br>37.65<br>178.56<br>119.95<br>91.87                                                                                   | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30                                                                                                                              | Release 13.6 13.6 13.6 13.6 13.6 14.3 14.3                                                        | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0                                                                                         | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0                                                                   |
| Period<br>5 Year                                                                                    | (min) 10 20 30 40 50 10 20 30 40 50 50                                                       | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95                                                                                               | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96                                                                                                                   | Release 13.6 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3                                              | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6                                                                                   | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2                                                              |
| Period<br>5 Year<br>100 Year                                                                        | (min) 10 20 30 40 50 10 20 30 40 50 50                                                       | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95                                                                                               | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96                                                                                                                   | Release 13.6 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3                                              | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6                                                                                   | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2                                                              |
| Period 5 Year  100 Year  Storage Require                                                            | (min) 10 20 30 40 50 10 20 30 40 50 ements for Area                                          | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95 a A11-A13 (CB                                                                                 | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96 MH 13) hectares                                                                                                   | Release 13.6 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3                                              | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6                                                                                   | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2                                                              |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C                                       | (min) 10 20 30 40 50 10 20 30 40 50 ements for Area                                          | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95 a A11-A13 (CB                                                                                 | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96  MH 13) hectares post development                                                                                 | Release 13.6 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3                                              | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6                                                                                   | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2                                                              |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C                                       | (min) 10 20 30 40 50 10 20 30 40 50 ements for Area                                          | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95 a A11-A13 (CB                                                                                 | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96 MH 13) hectares                                                                                                   | Release 13.6 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3                                              | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6                                                                                   | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2                                                              |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C 100 Year Runoff                       | (min) 10 20 30 40 50 10 20 30 40 50 cements for Area  Coefficient =                          | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95  a A11-A13 (CB 1.762 0.34 0.40                                                                | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96  MH 13) hectares post development post development                                                                | Release 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3 14.3                                              | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6  -4.3                                                                             | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2 -13.0                                                        |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C 100 Year Runoff                       | (min) 10 20 30 40 50 10 20 30 40 50 ements for Area  coefficient =  Coefficient=             | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95  a A11-A13 (CB 1.762 0.34 0.40 Intensity                                                      | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96  MH 13) hectares post development post development                                                                | Release 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3 14.3 Controlled                                   | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6  -4.3                                                                             | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2 -13.0  Storage Req'd                                         |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C 100 Year Runoff                       | (min) 10 20 30 40 50 10 20 30 40 50 ements for Area  coefficient = Time (min)                | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95  a A11-A13 (CB 1.762 0.34 0.40 Intensity (mm/hr)                                              | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96  MH 13) hectares post development post development Flow Q (L/s)                                                   | Release  13.6  13.6  13.6  13.6  13.6  14.3  14.3  14.3  14.3  Controlled Release                 | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6  -4.3   Net Runoff To Be Stored (L/s)                                             | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2 -13.0  Storage Req'd m3                                      |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C 100 Year Runoff                       | (min) 10 20 30 40 50 10 20 30 40 50 ements for Area  coefficient = Time (min) 10             | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95  a A11-A13 (CB 1.762 0.34 0.40  Intensity (mm/hr) 104.19                                      | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96 MH 13) hectares post development post development Flow Q (L/s) 174.05                                             | Release 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3 14.3 Controlled Release 58.7                      | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6  -4.3   Net Runoff To Be Stored (L/s)  115.4                                      | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2 -13.0  Storage Req'd m3 69.2                                 |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C 100 Year Runoff Return Period         | (min) 10 20 30 40 50 10 20 30 40 50 ements for Area  cefficient = Time (min) 10 20           | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95  a A11-A13 (CB 1.762 0.34 0.40  Intensity (mm/hr) 104.19 70.25                                | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96  MH 13) hectares post development post development Flow Q (L/s) 174.05 117.35                                     | Release 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3 14.3 Controlled Release 58.7 58.7                 | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6  -4.3   Net Runoff To Be Stored (L/s)  115.4  58.7                                | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2 -13.0  Storage Req'd m3 69.2 70.4                            |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C 100 Year Runoff                       | (min) 10 20 30 40 50 10 20 30 40 50 ements for Area  cefficient = Time (min) 10 20 30        | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95  a A11-A13 (CB 1.762 0.34 0.40  Intensity (mm/hr) 104.19 70.25 53.93                          | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96  MH 13) hectares post development post development post development 174.05 117.35 90.09                           | Release 13.6 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3 14.3 14.3 58.7 58.7                          | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6  -4.3   Net Runoff To Be Stored (L/s)  115.4  58.7  31.4                          | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2 -13.0  Storage Req'd m3 69.2 70.4 56.5                       |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C 100 Year Runoff Return Period         | (min) 10 20 30 40 50 10 20 30 40 50 ements for Area  coefficient = Time (min) 10 20 30 40    | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95  a A11-A13 (CB 1.762 0.34 0.40  Intensity (mm/hr) 104.19 70.25 53.93 44.18                    | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96  MH 13) hectares post development post development post development 174.05 117.35 90.09 73.81                     | Release 13.6 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3 14.3 14.3 58.7 58.7 58.7                     | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6  -4.3   Net Runoff To Be Stored (L/s)  115.4  58.7  31.4  15.1                    | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2 -13.0  Storage Req'd m3 69.2 70.4 56.5 36.3                  |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C 100 Year Runoff Return Period         | (min) 10 20 30 40 50 10 20 30 40 50 ements for Area  coefficient = Time (min) 10 20 30 40 50 | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95  1.762 0.34 0.40  Intensity (mm/hr) 104.19 70.25 53.93 44.18 37.65                            | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96  MH 13) hectares post development post development post development 174.05 117.35 90.09 73.81 62.90               | Release 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3 14.3 14.3 58.7 58.7 58.7 58.7                     | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6  -4.3   Net Runoff To Be Stored (L/s)  115.4  58.7  31.4  15.1  4.2               | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2 -13.0  Storage Req'd m3 69.2 70.4 56.5 36.3 12.6             |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C 100 Year Runoff Return Period         | (min) 10 20 30 40 50 10 20 30 40 50 6 40 50 6 6 6 6 7 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8          | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95  1.762 0.34 0.40  Intensity (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56                     | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96  MH 13) hectares post development post development post development 174.05 117.35 90.09 73.81 62.90 350.83        | Release 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3 14.3 14.3 58.7 58.7 58.7 58.7 60.0                | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6  -4.3   Net Runoff To Be Stored (L/s)  115.4  58.7  31.4  15.1  4.2  290.8        | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2 -13.0  Storage Req'd m3 69.2 70.4 56.5 36.3 12.6 174.5       |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C 100 Year Runoff Return Period         | (min) 10 20 30 40 50 10 20 30 40 50 ements for Area  coefficient = Time (min) 10 20 30 40 50 | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95  1.762 0.34 0.40  Intensity (mm/hr) 104.19 70.25 53.93 44.18 37.65                            | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96  MH 13) hectares post development post development post development 174.05 117.35 90.09 73.81 62.90               | Release 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3 14.3 14.3 58.7 58.7 58.7 58.7                     | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6  -4.3   Net Runoff To Be Stored (L/s)  115.4  58.7  31.4  15.1  4.2               | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2 -13.0  Storage Req'd m3 69.2 70.4 56.5 36.3 12.6             |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C 100 Year Runoff Return Period         | (min) 10 20 30 40 50 10 20 30 40 50 6 40 50 6 6 6 6 7 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8          | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95  1.762 0.34 0.40  Intensity (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56                     | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96  MH 13) hectares post development post development post development 174.05 117.35 90.09 73.81 62.90 350.83        | Release 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3 14.3 14.3 58.7 58.7 58.7 58.7 60.0                | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6  -4.3   Net Runoff To Be Stored (L/s)  115.4  58.7  31.4  15.1  4.2  290.8        | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2 -13.0  Storage Req'd m3 69.2 70.4 56.5 36.3 12.6 174.5       |
| Period 5 Year  100 Year  Storage Require Area 5 Year Runoff C 100 Year Runoff Return Period  5 Year | (min) 10 20 30 40 50 10 20 30 40 50 6 10 20 30 40 50 6 6 6 6 7 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 | (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 91.87 75.15 63.95  a A11-A13 (CB 1.762 0.34 0.40 Intensity (mm/hr) 104.19 70.25 53.93 44.18 37.65 178.56 119.95 | Q (L/s) 13.67 9.22 7.08 5.80 4.94 27.80 18.67 14.30 11.70 9.96  MH 13) hectares post development post development post development 174.05 117.35 90.09 73.81 62.90 350.83 235.67 | Release 13.6 13.6 13.6 13.6 13.6 14.3 14.3 14.3 14.3 14.3 15.6 15.7 58.7 58.7 58.7 58.7 60.0 60.0 | Be Stored (L/s)  0.1  -4.4  -6.5  -7.8  -8.7  13.5  4.4  0.0  -2.6  -4.3   Net Runoff To Be Stored (L/s)  115.4  58.7  31.4  15.1  4.2  290.8  175.7 | m3 0.0 -5.3 -11.7 -18.7 -26.0 8.1 5.2 0.0 -6.2 -13.0  Storage Req'd m3 69.2 70.4 56.5 36.3 12.6 174.5 210.8 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vende         |                              |            | !                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------|------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storage Require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ments for Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A14-A15 (CB   | MH 15)                       |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Area<br>5 Year Runoff Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.213<br>0.58 | hectares<br>post development |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100 Year Runoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coemicient=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.65          | post development             |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intensity     | Flow                         | Controlled | Net Runoff To                           | Storage Req'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mm/hr)       | Q (L/s)                      | Release    | Be Stored (L/s)                         | m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.19        | 35.66                        | 31.6       | 4.1                                     | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70.25         | 24.04                        | 31.6       | -7.6                                    | -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.93         | 18.45                        | 31.6       | -13.1                                   | -23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.18         | 15.12                        | 31.6       | -16.5                                   | -39.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.65         | 12.89                        | 31.6       | -18.7                                   | -56.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178.56        | 69.25                        | 33.0       | 36.2                                    | 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.95        | 46.52                        | 33.0       | 13.5                                    | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.87         | 35.63                        | 33.0       | 2.6                                     | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.15         | 29.14                        | 33.0       | -3.9                                    | -9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63.95         | 24.80                        | 33.0       | -8.2                                    | -24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Storage Require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ments for Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A16-A17 (CBI  | MH 17)                       |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.143         | hectares                     |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 Year Runoff Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pefficient =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.80          | post development             |            | *************************************** | **, ***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 100 Year Runoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.89          | post development             |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | F                            |            |                                         | The second secon |
| Return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intensity     | Flow                         | Controlled | Net Runoff To                           | Storage Req'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mm/hr)       | Q (L/s)                      | Release    | Be Stored (L/s)                         | m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.19        | 33.08                        | 29.1       | 4.0                                     | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70.25         | 22.30                        | 29.1       | -6.8                                    | -8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ACCORDANCE ON 1 ST 1 ACCORDANCE ON 1 ACCORDANCE | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.93         | 17.12                        | 29.1       | -12.0                                   | -21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.18         | 14.03                        | 29.1       | -15.1                                   | -36.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.65         | 11.96                        | 29.1       | -17.1                                   | -51.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178.56        | 63.28                        | 30.3       | 33.0                                    | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.95        | 42.51                        | 30.3       | 12.2                                    | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.87         | 32.56                        | 30.3       | 2.3                                     | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.15         | 26.63                        | 30.3       | -3.7                                    | -8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A 1 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63.95         | 22.66                        | 30.3       | -7.6                                    | -22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Storage Require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ments for Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A18-A19 (CB   | MH 19)                       |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.162         | hectares                     |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 Year Runoff Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pefficient =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.76          | post development             |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100 Year Runoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ballian in James Armanarian Armanarian in the comment of the comme | 0.85          | post development             |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                              |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intensity     | Flow                         | Controlled | Net Runoff To                           | Storage Req'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mm/hr)       | Q (L/s)                      | Release    | Be Stored (L/s)                         | m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.19        | 35.74                        | 31.7       | 4.0                                     | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70.25         | 24.10                        | 31.7       | -7.6                                    | -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.93         | 18.50                        | 31.7       | -13.2                                   | -23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.18         | 15.16                        | 31.7       | -16.5                                   | -39.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.65         | 12.92                        | 31.7       | -18.8                                   | -56.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178.56        | 68.50                        | 33.0       | 35.5                                    | 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.95        | 46.02                        | 33.0       | 13.0                                    | 15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.87         | 35.24                        | 33.0       | 2.2                                     | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.15         | 28.83                        | 33.0       | -4.2                                    | -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63.95         | 24.54                        | 33.0       | -8.5                                    | -25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Te .             |              |                 |                |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|--------------|-----------------|----------------|
| Storage Requi           | rements for Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A20 (ROOF)     |                  |              |                 |                |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |              |                 |                |
| Area                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.685          | hectares         |              |                 |                |
| 5 Year Runoff           | Coefficient =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.90           | post development |              |                 |                |
| 100 Year Runo           | ff Coefficient=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00           | post development |              |                 |                |
| Return                  | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intensity      | Flow             | Controlled   | Net Runoff To   | Storage Req'd  |
| Period                  | (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mm/hr)        | Q (L/s)          | Release      | Be Stored (L/s) | m3             |
|                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.19         | 178.63           | 98.8         | 79.8            | 47.9           |
|                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70.25          | 120,44           | 98.8         | 21.6            | 26.0           |
| 5 Year                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.93          | 92.45            | 98.8         | -6.3            | -11.4          |
|                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.18          | 75.75            | 98.8         | -23.1           | -55.3          |
|                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.65          | 64.55            | 98.8         | -34.2           | -102.7         |
|                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178.56         | 340.13           | 98.8         | 241.3           | 144.8          |
|                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.95         | 228.49           | 98.8         | 129.7           | 155.6          |
| 100 Year                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.87          | 175.00           | 98.8         | 76.2            | 137.2          |
|                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.15          | 143.14           | 98.8         | 44.3            | 106.4          |
|                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63.95          | 121.82           | 98.8         | 23.0            | 69.1           |
| Storage Requi           | rements for Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A21 (CBMH 2    | 1 FREE FLOW)     |              |                 |                |
| Area                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.064          | hectares         |              |                 |                |
| Area<br>5 Year Runoff ( | Coofficient =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.90           | post development |              |                 |                |
| 100 Year Runo           | ALEXANDER OF THE PROPERTY OF T | 1.00           | post development |              |                 |                |
| 100 Teal Kullo          | II Coemcient-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.00          | post development | 1            |                 |                |
| Return                  | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intensity      | Flow             | Free Flow    | Net Runoff To   | Storage Req'd  |
| Period                  | (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mm/hr)        | Q (L/s)          | Release      | Be Stored (L/s) | m3             |
|                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.19         | 16.68            | 16.7         | 0.0             | 0.0            |
|                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70.25          | 11.25            | 16.7         | -5.5            | -6.5           |
| 5 Year                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.93          | 8.64             | 16.7         | -8.1            | -14.5          |
|                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.18          | 7.08             | 16.7         | -9.6            | -23.1          |
|                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.65          | 6.03             | 16.7         | -10.7           | -32.0          |
|                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178.56         | 31.77            | 31.8         | 0.0             | 0.0            |
| 400.1/                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.95         | 21.34            | 31.8         | -10.5           | -12.6          |
| 100 Year                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.87          | 16.35            | 31.8         | -15.5           | -27.8          |
|                         | 40<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75.15<br>63.95 | 13.37<br>11.38   | 31.8<br>31.8 | -18.4<br>-20.4  | -44.2<br>-61.3 |
| Storago Poquis          | ements for Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |              |                 |                |
| Storage Nequi           | ements for Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AZZ (CD ZZ)    |                  |              |                 |                |
| Area                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.134          | hectares         |              |                 |                |
| 5 Year Runoff (         | Coefficient =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.77           | post development |              |                 |                |
| 100 Year Runo           | ff Coefficient=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.87           | post development |              |                 |                |
| Return                  | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intensity      | Flow             | Controlled   | Net Runoff To   | Storage Reg'd  |
| Period                  | (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mm/hr)        | Q (L/s)          | Release      | Be Stored (L/s) | m3             |
|                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.19         | 30.07            | 30.1         | 0.0             | 0.0            |
|                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70.25          | 20.27            | 30.1         | -9.8            | -11.8          |
| 5 Year                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.93          | 15.56            | 30.1         | -14.5           | -26.2          |
| этеаг                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.18          | 12.75            | 30.1         | -14.5<br>-17.3  | -26.2<br>-41.6 |
|                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.65          | 10.87            | 30.1         | -17.3           | -41.6<br>-57.7 |
|                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 178.56         |                  |              |                 |                |
|                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>    | 57.58            | 33.0         | 24.6            | 14.7           |
|                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.95         | 38.68            | 33.0         | 5.7             | 6.8            |
| 100 Year                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.87          | 29.63            | 33.0         | -3.4            | -6.1           |
|                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.15          | 24.23            | 33.0         | -8.8            | -21.0          |
|                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63.95          | 20.62            | 33.0         | -12.4           | -37.1          |

|                                     |                                         |                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------|-----------------------------------------|----------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storage Require                     | ments for Area                          | a A23-A24 (CB        | MH 24)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Area<br>5 Year Runoff C             | oefficient =                            | 0.113<br>0.22        | hectares post development         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100 Year Runoff                     | Coefficient=                            | 0.28                 | post development                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Return                              | Time                                    | Intensity            | Flow                              | Controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Net Runoff To                    | Storage Req'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Period                              | (min)                                   | (mm/hr)              | Q (L/s)                           | Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Be Stored (L/s)                  | m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     | 10                                      | 104.19               | 7.36                              | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                     | 20                                      | 70.25                | 4.96                              | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.3                             | -2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5 Year                              | 30                                      | 53.93                | 3.81                              | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.5                             | -6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     | 40                                      | 44.18                | 3.12                              | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.2                             | -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | 50                                      | 37.65                | 2.66                              | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.6                             | -13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | 10                                      | 178.56               | 15.51                             | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.0                              | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                     | 20                                      | 119.95               | 10.42                             | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.9                              | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                     | 30                                      | 91.87                | 7.98                              | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100 Year                            | 40                                      | 75.15                | 6.53                              | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.0                             | -2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     | 50                                      | 63.95                | 5.56                              | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.9                             | -5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Storage Require                     | ments for Area                          | A25 (CB 25)          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                     |                                         |                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Area                                |                                         | 0.069                | hectares                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5 Year Runoff Co<br>100 Year Runoff |                                         | 0.75<br>0.84         | post development post development |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100 Teal Kulloli                    | Coemcient-                              | 0.04                 | post development                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Return<br>Period                    | Time<br>(min)                           | Intensity<br>(mm/hr) | Flow<br>Q (L/s)                   | Controlled<br>Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Net Runoff To<br>Be Stored (L/s) | Storage Req'd<br>m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5 Year                              | 10                                      | 104.19               | 14.95                             | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| o rear                              | 20                                      | 70.25                | 10.08                             | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.8                             | -5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     |                                         |                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                     | 30<br>40                                | 53.93<br>44.18       | 7.74<br>6.34                      | 14.9<br>14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -7.2<br>-8.6                     | -12.9<br>-20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     | 50                                      | 37.65                | 5.40                              | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0<br>-9.5                     | -20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | 10                                      | 178.56               | 28.67                             | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -9.5<br><b>12.5</b>              | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                     | 20                                      | 119.95               | 19.26                             | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.1                              | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100 Year                            | 30                                      | 91.87                | 14.75                             | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.5                             | -2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 100 Year                            |                                         | 75.15                |                                   | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                     | 40<br>50                                | 63.95                | 12.06<br>10.27                    | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.1<br>-5.9                     | -9.9<br>-17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                     | 50                                      | 03.93                | 10.27                             | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.9                             | -17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Storage Require                     | ments for Area                          | A26-A27 (CE          | BMH 27)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Area                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.108                | hectares                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5 Year Runoff C                     | oefficient =                            | 0.82                 | post development                  | antiant on telephone to the court and telephone from temperature to desirable to de |                                  | THE COMMERCE OF STREET OF THE PROPERTY OF THE |
| 100 Year Runoff                     | Coefficient=                            | 0.91                 | post development                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Return                              | Time                                    | Intensity            | Flow                              | Controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Net Runoff To                    | Storage Reg'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Period                              | (min)                                   | (mm/hr)              | Q (L/s)                           | Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Be Stored (L/s)                  | m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - 2                                 | 10                                      | 104.19               | 25.74                             | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.6                              | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5 Year                              | 20                                      | 70.25                | 17.35                             | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.7                             | -5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     | 30                                      | 53.93                | 13.32                             | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -8.8                             | -15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | 40                                      | 44.18                | 10.91                             | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -11.2                            | -26.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | 50                                      | 37.65                | 9.30                              | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -12.8                            | -38.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | 10                                      | 178.56               | 49.18                             | 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.2                             | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     | 20                                      | 119.95               | 33.04                             | 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.0                             | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     |                                         |                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0                             | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     |                                         |                      |                                   | 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.3                              | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100 Year                            | 30<br>40                                | 91.87<br>75.15       | 25.30<br>20.70                    | 23.0<br>23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3<br>-2.3                      | 4.1<br>-5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------|----------------|
| Storage Require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ements for Area                         | A A28-A29 (CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MH 29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                       |                |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *************************************** | 0.156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hectares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                       |                |
| 5 Year Runoff C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oefficient =                            | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | post development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                       |                |
| 100 Year Runoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coefficient=                            | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | post development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                       |                |
| Return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time                                    | Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Controlled    | Net Runoff To                         | Storage Req'd  |
| Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (min)                                   | (mm/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Release       | Be Stored (L/s)                       | m3             |
| 5 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                      | 104.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.8          | 4.3                                   | 2.6            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                      | 70.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.8          | -5.8                                  | -7.0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                      | 53.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.8          | -10.7                                 | -19.2          |
| Table Classical Programmer Constitution Cons | 40                                      | 44.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.8          | -13.6                                 | -32.6          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                      | 37.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.8          | -15.5                                 | -46.6          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                      | 178.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.0          | 31.9                                  | 19.2           |
| 100 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                      | 119.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.0          | 12.3                                  | 14.7           |
| 100 rear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t             |                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                      | 91.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.0          | 2.8                                   | 5.1            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40<br>50                                | 75.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.0          | -2.8<br>-6.5                          | -6.7<br>-19.6  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                      | 63.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.0          | -6.5                                  | -19.6          |
| Storage Require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ements for Area                         | A30 (FREE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LOW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                       |                |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 0.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hectares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | · · · · · · · · · · · · · · · · · · · |                |
| 5 Year Runoff C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oefficient =                            | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | post development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                       |                |
| 100 Year Runoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | post development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | THE THE PARTY NAMED IN COLUMN TO THE PARTY NA | CONTINUED CONTIN |               | ····                                  |                |
| Return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time                                    | Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Free Flow     | Net Runoff To                         | Storage Req'd  |
| Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (min)                                   | (mm/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Direct Runoff | Be Stored (L/s)                       | m3             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                      | 104.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.7          | 0.0                                   | 0.0            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                      | 70.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.7          | -5.7                                  | -6.9           |
| 5 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                      | 53.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.7          | -8.5                                  | -15.3          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                      | 44.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.7          | -10.2                                 | -24.4          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                      | 37.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.7          | -11.3                                 | -33.9          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                      | 178.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.5          | 0.0                                   | 0.0            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>30                                | 119.95<br>91.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.84<br>18.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35.5<br>35.5  | -11.7<br>-17.2                        | -14.0<br>-31.0 |
| 100 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                                      | 75.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.5          | -20.6                                 | -49.4          |
| 100 Tear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                      | 63.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.5          | -20.8                                 | -68.4          |
| Storage Require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ments for Area                          | A31 (CB 30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ~~~                                   |                |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 0.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hectares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -             |                                       |                |
| 5 Year Runoff C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | post development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                       |                |
| 100 Year Runoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coefficient=                            | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | post development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                       |                |
| Return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time                                    | Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Controlled    | Net Runoff To                         | Storage Req'd  |
| Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (min)                                   | (mm/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Release       | Be Stored (L/s)                       | m3             |
| 1 6110u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                      | 104.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.8          | 0.1                                   | 0.0            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                      | 70.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.8          | -8.0                                  | -9.6           |
| 5 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                      | 53.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.8          | -0.0<br>-11.9                         | -21.5          |
| Jieai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                                      | 44.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.8          | -14.2                                 | -21.5          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                      | 37.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.8          | -14.2<br>-15.8                        | -34.2<br>-47.4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | υU                                      | 37.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | -15.8<br><b>21.4</b>                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                      | 470 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                      | 178.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.4          |                                       | 12.8           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                      | 119.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.4          | 5.4                                   | 6.4            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>30                                | 119.95<br>91.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.76<br>25.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.4<br>27.4  | 5.4<br>-2.3                           | 6.4<br>-4.2    |
| 100 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                      | 119.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.4          | 5.4                                   | 6.4            |

|                                                                                                                                       |                                                | 1 1                                                                                                  |                                                                               |                                                                                                                     |                                                                                                                                  |                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                       |                                                |                                                                                                      |                                                                               |                                                                                                                     |                                                                                                                                  |                                                                                                                                 |
|                                                                                                                                       |                                                |                                                                                                      |                                                                               |                                                                                                                     |                                                                                                                                  |                                                                                                                                 |
|                                                                                                                                       |                                                |                                                                                                      |                                                                               |                                                                                                                     |                                                                                                                                  |                                                                                                                                 |
|                                                                                                                                       |                                                |                                                                                                      |                                                                               |                                                                                                                     |                                                                                                                                  | <u> </u>                                                                                                                        |
| Stormwater Sto                                                                                                                        | orage Volumes fo                               | or Areas A1 to A                                                                                     | 49                                                                            |                                                                                                                     |                                                                                                                                  | ·                                                                                                                               |
|                                                                                                                                       |                                                |                                                                                                      |                                                                               |                                                                                                                     |                                                                                                                                  |                                                                                                                                 |
| Description                                                                                                                           |                                                | Pipe                                                                                                 | Pipe                                                                          | Depth to                                                                                                            | Storage                                                                                                                          | Cumulative                                                                                                                      |
| Description                                                                                                                           |                                                | Diameter<br>(mm)                                                                                     | Length (m)                                                                    | Invert (m)                                                                                                          | Volume (m³)                                                                                                                      | Volume (m³)*                                                                                                                    |
|                                                                                                                                       |                                                | 203.0                                                                                                | 82.7                                                                          | N/A                                                                                                                 | 2.68                                                                                                                             | 2.68                                                                                                                            |
|                                                                                                                                       |                                                | 254.0                                                                                                | 69.7                                                                          | N/A                                                                                                                 | 3.53                                                                                                                             | 6.21                                                                                                                            |
| Pipe Storage                                                                                                                          |                                                | 304.8                                                                                                | 100.4                                                                         | N/A                                                                                                                 | 7.32                                                                                                                             | 13.53                                                                                                                           |
|                                                                                                                                       |                                                | 381.0                                                                                                | 66.4                                                                          | N/A                                                                                                                 | 7.57                                                                                                                             | 21.09                                                                                                                           |
|                                                                                                                                       | CB 1                                           | N/A                                                                                                  | N/A                                                                           | 1.20                                                                                                                | 0.43                                                                                                                             | 21.53                                                                                                                           |
| Catchbasin                                                                                                                            | CB 6A                                          | N/A                                                                                                  | N/A                                                                           | 1.20                                                                                                                | 0.43                                                                                                                             | 21.96                                                                                                                           |
| Storage                                                                                                                               | CB 7A                                          | N/A                                                                                                  | N/A                                                                           | 1.20                                                                                                                | 0.43                                                                                                                             | 22.39                                                                                                                           |
|                                                                                                                                       | CB 8                                           | N/A                                                                                                  | N/A                                                                           | 1.20                                                                                                                | 0.43                                                                                                                             | 22.82                                                                                                                           |
|                                                                                                                                       | CBMH 2                                         | N/A                                                                                                  | N/A                                                                           | 1.44                                                                                                                | 1.63                                                                                                                             | 24.45                                                                                                                           |
|                                                                                                                                       | CBMH 3                                         | N/A                                                                                                  | N/A                                                                           | 1.57                                                                                                                | 1.77                                                                                                                             | 26.22                                                                                                                           |
| Catchbasin                                                                                                                            | CBMH 4                                         | N/A                                                                                                  | N/A                                                                           | 1.69                                                                                                                | 1.91                                                                                                                             | 28.13                                                                                                                           |
| Manhole                                                                                                                               | CBMH 5                                         | N/A                                                                                                  | N/A                                                                           | 1.84                                                                                                                | 2.08                                                                                                                             | 30.21                                                                                                                           |
| Storage                                                                                                                               | CBMH 6                                         | N/A                                                                                                  | N/A                                                                           | 2.02                                                                                                                | 2.28                                                                                                                             | 32.50                                                                                                                           |
| Storage                                                                                                                               | CBMH 7                                         | N/A                                                                                                  | N/A                                                                           | 2.00                                                                                                                | 2.26                                                                                                                             | 34.76                                                                                                                           |
|                                                                                                                                       | CBMH 7B                                        | N/A                                                                                                  | N/A                                                                           | 1.53                                                                                                                | 1.73                                                                                                                             | 36.49                                                                                                                           |
|                                                                                                                                       | CBMH 9                                         | N/A                                                                                                  | N/A                                                                           | 2.18                                                                                                                | 2.46                                                                                                                             | 38.95                                                                                                                           |
|                                                                                                                                       | ume = Sum of all<br>prage Volumes fo           |                                                                                                      |                                                                               |                                                                                                                     | ructure storage =<br>+(CBMH Area x 0                                                                                             | 38.95<br>CBMH Depth)                                                                                                            |
| Stormwater Sto                                                                                                                        |                                                |                                                                                                      | A13<br>Pipe                                                                   | Area x CB Depth)                                                                                                    | + (CBMH Area x 0                                                                                                                 | CBMH Depth)  Cumulative                                                                                                         |
|                                                                                                                                       |                                                | or Areas A11 to                                                                                      | A13                                                                           | Area x CB Depth)                                                                                                    | + (CBMH Area x 0                                                                                                                 | CBMH Depth)                                                                                                                     |
| Stormwater Sto                                                                                                                        |                                                | Pipe Diameter (mm) 254.0                                                                             | Pipe<br>Length (m)<br>353.5                                                   | Depth to Invert (m)                                                                                                 | + (CBMH Area x 0  Storage  Volume (m³)  17.90                                                                                    | Cumulative Volume (m³)*                                                                                                         |
| Stormwater Sto  Description  Pipe Storage                                                                                             | orage Volumes fo                               | Pipe Diameter (mm) 254.0 381.0                                                                       | Pipe<br>Length (m)<br>353.5<br>75.0                                           | Depth to Invert (m)  N/A N/A                                                                                        | + (CBMH Area x (  Storage  Volume (m³)  17.90  8.55                                                                              | Cumulative Volume (m³)* 17.90 26.45                                                                                             |
| Stormwater Sto                                                                                                                        | crage Volumes fo                               | Pipe Diameter (mm) 254.0 381.0 N/A                                                                   | Pipe<br>Length (m)<br>353.5<br>75.0<br>N/A                                    | Depth to Invert (m)  N/A N/A 0                                                                                      | + (CBMH Area x 0  Storage Volume (m³)  17.90  8.55  0.00                                                                         | Cumulative<br>Volume (m³)*<br>17.90<br>26.45<br>29.18                                                                           |
| Stormwater Sto<br>Description<br>Pipe Storage<br>Catchbasin                                                                           | CB 8<br>CBMH 11E                               | Pipe Diameter (mm) 254.0 381.0 N/A N/A                                                               | Pipe<br>Length (m)<br>353.5<br>75.0<br>N/A<br>N/A                             | Depth to Invert (m)  N/A N/A 0 1.15                                                                                 | + (CBMH Area x 0  Storage Volume (m³)  17.90  8.55  0.00  1.30                                                                   | Cumulative<br>Volume (m³)*<br>17.90<br>26.45<br>29.18<br>30.48                                                                  |
| Stormwater Stormwater Stormwater Stormwater Storage Catchbasin Catchbasin                                                             | CB 8 CBMH 11E CBMH 11                          | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A                                                           | Pipe<br>Length (m)<br>353.5<br>75.0<br>N/A<br>N/A<br>N/A                      | Depth to Invert (m)  N/A N/A 0 1.15                                                                                 | + (CBMH Area x 0  Storage Volume (m³)  17.90  8.55  0.00  1.30  1.66                                                             | Cumulative<br>Volume (m³)*<br>17.90<br>26.45<br>29.18<br>30.48<br>32.15                                                         |
| Description  Pipe Storage Catchbasin  Catchbasin Manhole                                                                              | CB 8 CBMH 11E CBMH 11 CBMH 12                  | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A                                                       | Pipe<br>Length (m)<br>353.5<br>75.0<br>N/A<br>N/A<br>N/A<br>N/A               | Depth to Invert (m)  N/A N/A 0 1.15 1.47 1.85                                                                       | + (CBMH Area x 0  Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09                                                            | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24                                                                    |
| Description Pipe Storage Catchbasin Catchbasin                                                                                        | CB 8 CBMH 11E CBMH 11 CBMH 12 CBMH 13C         | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A                                               | Pipe<br>Length (m)<br>353.5<br>75.0<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | Depth to Invert (m)  N/A  N/A  0  1.15  1.47  1.85  1.45                                                            | + (CBMH Area x 0  Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64                                                       | Cumulative<br>Volume (m³)*<br>17.90<br>26.45<br>29.18<br>30.48<br>32.15<br>34.24<br>35.88                                       |
| Description  Pipe Storage Catchbasin  Catchbasin Manhole                                                                              | CB 8 CBMH 11E CBMH 11 CBMH 12                  | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A                                                       | Pipe<br>Length (m)<br>353.5<br>75.0<br>N/A<br>N/A<br>N/A<br>N/A               | Depth to Invert (m)  N/A  N/A  0  1.15  1.47  1.85  1.45  2.01                                                      | + (CBMH Area x 0  Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27                                                  | Cumulative<br>Volume (m³)*<br>17.90<br>26.45<br>29.18<br>30.48<br>32.15<br>34.24<br>35.88<br>38.15                              |
| Description  Pipe Storage Catchbasin  Catchbasin Manhole Storage                                                                      | CB 8 CBMH 11E CBMH 11 CBMH 12 CBMH 13C CBMH 13 | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A                                   | Pipe<br>Length (m)<br>353.5<br>75.0<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Depth to Invert (m)  N/A  N/A  0  1.15  1.47  1.85  1.45  2.01  Pipe and St                                         | Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27 ructure storage =                                                  | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24 35.88 38.15 38.15                                                  |
| Description  Pipe Storage Catchbasin  Catchbasin Manhole Storage                                                                      | CB 8 CBMH 11E CBMH 11 CBMH 12 CBMH 13C CBMH 13 | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A                                   | Pipe<br>Length (m)<br>353.5<br>75.0<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Depth to Invert (m)  N/A  N/A  0  1.15  1.47  1.85  1.45  2.01  Pipe and St                                         | + (CBMH Area x 0  Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27                                                  | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24 35.88 38.15 38.15                                                  |
| Description  Pipe Storage Catchbasin Catchbasin Manhole Storage                                                                       | CB 8 CBMH 11E CBMH 11 CBMH 12 CBMH 13C CBMH 13 | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A (Pipe Area x Pip                  | Pipe Length (m)  353.5  75.0  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/           | Depth to Invert (m)  N/A  N/A  0  1.15  1.47  1.85  1.45  2.01  Pipe and St                                         | Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27 ructure storage =                                                  | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24 35.88 38.15 38.15                                                  |
| Description  Pipe Storage Catchbasin Catchbasin Manhole Storage                                                                       | CB 8 CBMH 11E CBMH 11 CBMH 12 CBMH 13C CBMH 13 | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A (Pipe Area x Pip                  | Pipe Length (m)  353.5  75.0  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/           | Depth to Invert (m)  N/A  N/A  0  1.15  1.47  1.85  1.45  2.01  Pipe and St                                         | Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27 ructure storage =                                                  | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24 35.88 38.15 38.15                                                  |
| Description  Pipe Storage Catchbasin Catchbasin Manhole Storage                                                                       | CB 8 CBMH 11E CBMH 11 CBMH 12 CBMH 13C CBMH 13 | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A (Pipe Area x Pip                  | Pipe Length (m)  353.5  75.0  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/           | Depth to Invert (m)  N/A N/A 0 1.15 1.47 1.85 1.45 2.01 Pipe and Str                                                | Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27 ructure storage =                                                  | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24 35.88 38.15 38.15 CBMH Depth)                                      |
| Description  Pipe Storage Catchbasin Catchbasin Manhole Storage                                                                       | CB 8 CBMH 11E CBMH 11 CBMH 12 CBMH 13C CBMH 13 | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A N/A O/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N | Pipe Length (m)  353.5  75.0  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/           | Depth to Invert (m)  N/A N/A 0 1.15 1.47 1.85 1.45 2.01 Pipe and Str                                                | Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27 ructure storage = + (CBMH Area x 0                                 | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24 35.88 38.15 38.15 CBMH Depth)  Cumulative                          |
| Description  Pipe Storage Catchbasin Catchbasin Manhole Storage  *Cumulative Volume Stormwater Store                                  | CB 8 CBMH 11E CBMH 11 CBMH 12 CBMH 13C CBMH 13 | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A N/A O/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N | Pipe Length (m)  353.5  75.0  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/           | Depth to Invert (m)  N/A N/A 0 1.15 1.47 1.85 1.45 2.01 Pipe and Str                                                | Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27 ructure storage =                                                  | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24 35.88 38.15 38.15 CBMH Depth)                                      |
| Description  Pipe Storage Catchbasin Catchbasin Manhole Storage  *Cumulative Volume  Stormwater Storage  Description                  | CB 8 CBMH 11E CBMH 11 CBMH 12 CBMH 13C CBMH 13 | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A O/A N/A N/A Pipe Areas A14 to Pipe Diameter   | Pipe Length (m)  353.5  75.0  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/           | Depth to Invert (m)  N/A N/A 0 1.15 1.47 1.85 1.45 2.01 Pipe and Str                                                | Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27 ructure storage = + (CBMH Area x 0                                 | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24 35.88 38.15 38.15 CBMH Depth)  Cumulative                          |
| Description Pipe Storage Catchbasin Manhole Storage  *Cumulative Vol Stormwater Sto Description Pipe Storage                          | CB 8 CBMH 11E CBMH 11 CBMH 13 CBMH 13          | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A O/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N     | Pipe Length (m)  353.5  75.0  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/           | Depth to Invert (m)  N/A N/A 0 1.15 1.47 1.85 1.45 2.01 Pipe and Strate x CB Depth)  Depth to Invert (m)  N/A       | Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27 ructure storage = + (CBMH Area x 0)  Storage Volume (m³) 0.55      | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24 35.88 38.15 38.15 CBMH Depth)  Cumulative Volume (m³)*             |
| Description Pipe Storage Catchbasin Manhole Storage  *Cumulative Vol Stormwater Sto  Description  Pipe Storage  Catchbasin            | CB 8 CBMH 11E CBMH 11 CBMH 12 CBMH 13C CBMH 13 | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A O/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N     | Pipe Length (m)  353.5  75.0  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/           | Depth to Invert (m)  N/A N/A 0 1.15 1.47 1.85 1.45 2.01 Pipe and Strate x CB Depth)  Depth to Invert (m)            | Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27 ructure storage =  + (CBMH Area x 0)  Storage Volume (m³)          | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24 35.88 38.15 38.15 CBMH Depth)  Cumulative Volume (m³)*             |
| Description Pipe Storage Catchbasin Manhole Storage *Cumulative Volume Stormwater Storage Description Pipe Storage Catchbasin Storage | CB 8 CBMH 11E CBMH 11 CBMH 13 CBMH 13C CBMH 13 | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A O/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N     | Pipe Length (m)  353.5  75.0  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/           | Depth to Invert (m)  N/A N/A 0 1.15 1.47 1.85 1.45 2.01 Pipe and Strate x CB Depth)  Depth to Invert (m)  N/A  1.20 | Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27 ructure storage =  + (CBMH Area x 0  Storage Volume (m³) 0.55 0.43 | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24 35.88 38.15 38.15 CBMH Depth)  Cumulative Volume (m³)*  0.55  0.98 |
| Description Pipe Storage Catchbasin Manhole Storage Cumulative Vol Stormwater Sto Description Pipe Storage Catchbasin                 | CB 8 CBMH 11E CBMH 11 CBMH 13 CBMH 13          | Pipe Diameter (mm) 254.0 381.0 N/A N/A N/A N/A N/A N/A O/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N     | Pipe Length (m)  353.5  75.0  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/           | Depth to Invert (m)  N/A N/A 0 1.15 1.47 1.85 1.45 2.01 Pipe and Strate x CB Depth)  Depth to Invert (m)  N/A       | Storage Volume (m³)  17.90 8.55 0.00 1.30 1.66 2.09 1.64 2.27 ructure storage = + (CBMH Area x 0)  Storage Volume (m³) 0.55      | Cumulative Volume (m³)*  17.90 26.45 29.18 30.48 32.15 34.24 35.88 38.15 38.15 CBMH Depth)  Cumulative Volume (m³)*             |

\*Cumulative Volume = Sum of all (Pipe Area x Pipe Length) + (CB Area x CB Depth) + (CBMH Area x CBMH Depth)

Pipe and Structure storage =

2.72

Manhole Storage

|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or Areas A to to                                                                                | ATI                                                                                         |                                                                                                   |                                                                                                                |                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Otomiwater Oto                                                                                                                                                                             | rage Volumes f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |                                                                                             |                                                                                                   |                                                                                                                |                                                                                       |
| Description                                                                                                                                                                                | The second secon | Pipe<br>Diameter<br>(mm)                                                                        | Pipe<br>Length (m)                                                                          | Depth to<br>Invert (m)                                                                            | Storage<br>Volume (m³)                                                                                         | Cumulative<br>Volume (m³)*                                                            |
| Pipe Storage                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 203.0                                                                                           | 17.0                                                                                        | N/A                                                                                               | 0.55                                                                                                           | 0.55                                                                                  |
| Catchbasin                                                                                                                                                                                 | CB 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                             | N/A                                                                                         | 1.20                                                                                              | 0.43                                                                                                           | 0.98                                                                                  |
| Storage<br>Catchbasin                                                                                                                                                                      | CBMH 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                             | N/A                                                                                         | 1.42                                                                                              | 1.61                                                                                                           | 2.59                                                                                  |
| Manhole<br>Storage                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                                                             |                                                                                                   |                                                                                                                |                                                                                       |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                                                             | Pipe and St                                                                                       | ructure storage =                                                                                              | 2.59                                                                                  |
|                                                                                                                                                                                            | ume = Sum of all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                             | Area x CB Depth)                                                                                  | + (CBMH Area x 0                                                                                               | CBMH Depth)                                                                           |
| **************************************                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.                                                                                              |                                                                                             |                                                                                                   |                                                                                                                |                                                                                       |
| Description                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pipe<br>Diameter<br>(mm)                                                                        | Pipe<br>Length (m)                                                                          | Depth to<br>Invert (m)                                                                            | Storage<br>Volume (m³)                                                                                         | Cumulative<br>Volume (m³)*                                                            |
| Pipe Storage                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 203.0                                                                                           | 17.0                                                                                        | N/A                                                                                               | 0.55                                                                                                           | 0.55                                                                                  |
| Catchbasin                                                                                                                                                                                 | CB 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                             | N/A                                                                                         | 1.20                                                                                              | 0.43                                                                                                           | 0.98                                                                                  |
| Storage                                                                                                                                                                                    | ODMII 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N//A                                                                                            | N1/A                                                                                        | 4.40                                                                                              | 1.01                                                                                                           | 2.50                                                                                  |
| Catchbasin<br>Manhole                                                                                                                                                                      | CBMH 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                             | N/A                                                                                         | 1.42                                                                                              | 1.61                                                                                                           | 2.59                                                                                  |
| Storage                                                                                                                                                                                    | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |                                                                                             |                                                                                                   |                                                                                                                |                                                                                       |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                                                             |                                                                                                   | ructure storage =<br>+ (CBMH Area x 0                                                                          | 2.59<br>CBMH Depth)                                                                   |
| *Cumulative Volu                                                                                                                                                                           | ume = Sum of all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or Areas A26 to<br>Pipe<br>Diameter                                                             |                                                                                             |                                                                                                   |                                                                                                                |                                                                                       |
| *Cumulative Volu                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or Areas A26 to                                                                                 | A27<br>Pipe                                                                                 | rea x CB Depth)  Depth to                                                                         | + (CBMH Area x t                                                                                               | CBMH Depth)  Cumulative                                                               |
| *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pipe Diameter (mm)                                                                              | A27<br>Pipe<br>Length (m)                                                                   | Depth to                                                                                          | + (CBMH Area x of Storage Volume (m³)                                                                          | CBMH Depth)  Cumulative  Volume (m³)*                                                 |
| *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin Storage                                                                                                             | rage Volumes fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pipe<br>Diameter<br>(mm)<br>203.0                                                               | Pipe<br>Length (m)<br>17.7<br>N/A                                                           | Depth to Invert (m)  N/A  1.20                                                                    | Storage Volume (m³)  0.57                                                                                      | Cumulative Volume (m <sup>3</sup> )* 0.57                                             |
| *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin Storage  Catchbasin Manhole                                                                                         | rage Volumes fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pipe Diameter (mm) 203.0                                                                        | Pipe<br>Length (m)                                                                          | Depth to Invert (m)                                                                               | + (CBMH Area x 0  Storage Volume (m³)  0.57                                                                    | CBMH Depth)  Cumulative  Volume (m³)*  0.57                                           |
| *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin Storage  Catchbasin                                                                                                 | rage Volumes fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pipe<br>Diameter<br>(mm)<br>203.0                                                               | Pipe<br>Length (m)<br>17.7<br>N/A                                                           | Depth to Invert (m)  N/A  1.20  1.43                                                              | Storage Volume (m³)  0.57                                                                                      | Cumulative Volume (m³)* 0.57                                                          |
| *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin Storage  Catchbasin Manhole Storage                                                                                 | CB 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pipe Diameter (mm) 203.0  N/A                                                                   | Pipe<br>Length (m)<br>17.7<br>N/A                                                           | Depth to Invert (m)  N/A  1.20  1.43  Pipe and St                                                 | Storage Volume (m³) 0.57 0.43                                                                                  | Cumulative Volume (m³)*  0.57  1.00  2.62                                             |
| *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin Storage  Catchbasin Manhole Storage                                                                                 | CB 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pipe Diameter (mm) 203.0  N/A  N/A  (Pipe Area x Pip                                            | Pipe Length (m) 17.7 N/A N/A ee Length) + (CB A                                             | Depth to Invert (m)  N/A  1.20  1.43  Pipe and St                                                 | Storage Volume (m³) 0.57 0.43 1.62 ructure storage =                                                           | Cumulative Volume (m³)*  0.57  1.00  2.62                                             |
| *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin Storage  Catchbasin Manhole Storage                                                                                 | CB 26 CBMH 27 ume = Sum of all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pipe Diameter (mm) 203.0  N/A  N/A  (Pipe Area x Pipe Dr Areas A28 to  Pipe Diameter (mm)       | Pipe Length (m)  17.7  N/A  N/A  N/A  Pe Length) + (CB A  A29  Pipe Length (m)              | Depth to Invert (m)  N/A  1.20  1.43  Pipe and Starea x CB Depth)  Depth to Invert (m)            | Storage Volume (m³)  0.57  0.43  1.62  ructure storage =  + (CBMH Area x 0)  Storage Volume (m³)               | Cumulative Volume (m³)*  0.57  1.00  2.62  CBMH Depth)  Cumulative Volume (m³)*       |
| *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin Storage  Catchbasin Manhole Storage  *Cumulative Volu Stormwater Sto                                                | CB 26 CBMH 27 ume = Sum of all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pipe Diameter (mm) 203.0  N/A  N/A  (Pipe Area x Pipe or Areas A28 to  Pipe Diameter            | Pipe Length (m)  17.7  N/A  N/A  N/A  Pipe Length) + (CB A                                  | Depth to Invert (m) N/A 1.20 1.43 Pipe and Strucea x CB Depth)                                    | Storage Volume (m³)  0.57  0.43  1.62  ructure storage =  + (CBMH Area x 0)  Storage                           | Cumulative Volume (m³)*  0.57  1.00  2.62  2.62  CBMH Depth)  Cumulative              |
| *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin Storage  Catchbasin Manhole Storage  *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin         | CB 26 CBMH 27 ume = Sum of all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pipe Diameter (mm) 203.0  N/A  N/A  (Pipe Area x Pipe Dr Areas A28 to  Pipe Diameter (mm)       | Pipe Length (m)  17.7  N/A  N/A  N/A  Pe Length) + (CB A  A29  Pipe Length (m)              | Depth to Invert (m)  N/A  1.20  1.43  Pipe and Starea x CB Depth)  Depth to Invert (m)            | Storage Volume (m³)  0.57  0.43  1.62  ructure storage =  + (CBMH Area x 0)  Storage Volume (m³)               | Cumulative Volume (m³)*  0.57  1.00  2.62  CBMH Depth)  Cumulative Volume (m³)*       |
| *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin Storage  Catchbasin Manhole Storage  *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin Storage | CB 26 CBMH 27  ume = Sum of all  rage Volumes for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pipe Diameter (mm) 203.0  N/A  N/A  (Pipe Area x Pipe or Areas A28 to  Pipe Diameter (mm) 203.0 | Pipe Length (m)  17.7  N/A  N/A  N/A  Pipe Length) + (CB A  A29  Pipe Length (m)  17.5  N/A | Depth to Invert (m)  N/A  1.20  1.43  Pipe and Strate x CB Depth)  Depth to Invert (m)  N/A  1.20 | Storage Volume (m³)  0.57  0.43  1.62  ructure storage =  1 + (CBMH Area x 0)  Storage Volume (m³)  0.57  0.43 | Cumulative Volume (m³)*  0.57  1.00  2.62  CBMH Depth)  Cumulative Volume (m³)*  0.57 |
| *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin Storage  Catchbasin Manhole Storage  *Cumulative Volu Stormwater Sto  Description  Pipe Storage  Catchbasin         | CB 26 CBMH 27 ume = Sum of all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pipe Diameter (mm) 203.0  N/A  N/A  (Pipe Area x Pipe or Areas A28 to  Pipe Diameter (mm) 203.0 | Pipe Length (m)  17.7  N/A  N/A  N/A  Pe Length) + (CB A  A29  Pipe Length (m)  17.5        | Depth to Invert (m)  N/A  1.20  1.43  Pipe and Starea x CB Depth)  Depth to Invert (m)  N/A       | Storage Volume (m³)  0.57  0.43  1.62  ructure storage =  1 + (CBMH Area x 0)  Storage Volume (m³)  0.57       | Cumulative Volume (m³)*  0.57  1.00  2.62  CBMH Depth)  Cumulative Volume (m³)*       |

Project: Orleans High School (113196) Location: 6401 Renaud Rd. Client: CECCE

Table 2. Storm Sewer Design Sheet

DATE: December 2013 Rev: May 2014 Rev: July 2014



#### Q/Qfull 0.57 0.63 0.54 0.50 0.72 0.99 0.66 0.46 0.08 0.47 0.44 0.42 96.0 0.46 96.0 0.56 0.93 0.79 0.58 0.80 EXCESS CAPACITY (I/s) 28.19 43.32 17.96 14.73 15.40 31.08 27.42 23.88 30.63 0.75 19.86 18.40 31.80 18.58 1.16 13.29 45.65 62.82 14.38 76.71 92.9 2.36 8.84 6.57 TIME OF FLOW (min.) 0.63 0.62 0.60 0.60 0.18 0.11 0.34 0.27 0.32 0.27 0.03 0.26 0.24 0.28 1.19 0.04 0.60 1.41 0.34 0.71 PROPOSED SEWER FULL FLOW CAPACITY VELOCITY (I/s) (m/s) 1.05 0.82 0.82 0.95 1.10 .29 1.45 1.05 1.56 1.05 0.91 1.19 1.08 8.8 2 | 52 1.05 1.05 1.16 1.59 .05 135.79 135.79 175.51 59.74 59.74 108.32 125.52 339.29 34.16 148.87 34.16 34.16 34.16 41.66 59.74 122.82 34.16 34.16 62.10 34.16 41.84 47.09 34.16 34.16 50.67 34.16 LENGTH (m) 15.3 17.9 17.7 30.9 38.9 30.6 34.0 32.4 51.0 24.0 36.4 32.5 22.9 20.0 98.4 64.9 2.9 17.0 17.0 17.3 2.8 37.8 2.0 6.7 PIPE SLOPE (%) 1.50 1.00 1.00 0.45 0.35 0.35 1.00 0.55 1.00 1.00 0.28 1.00 1.00 1.90 2.20 0.25 0.45 6. 6. 8. 8. 1.00 1.00 203.0 203.0 203.0 254.0 304.8 304.8 304.8 381.0 381.0 381.0 203.0 254.0 203.0 203.0 203.0 203.0 203.0 457.2 203.0 203.0 9.609 375.0 203.0 PIPE SIZE (mm) 381.0 90.14 128.99 60.00 16.20 27.40 142.30 33,00 326.00 PEAK FLOW Q (I/s) 19.43 26.26 28.66 32.32 35.87 77.69 22.48 19.78 33.00 15.76 30.30 33.00 14,30 15.58 98.80 31.80 3.77 RAINFALL INTENSITY 104.19 104.19 100.56 98.95 104.19 104.19 104.19 104.19 104.19 104.19 102.72 100.92 97.92 94.42 91.86 89.54 104.19 104.19 102.79 104.19 104.19 104.19 83.65 87.73 TIME OF CONC. 10.00 10.28 10.64 11.27 10.00 10.00 10.00 10.00 12.06 12.69 13.28 10.00 13.78 10.00 10.00 10.00 10.27 14.97 10.00 10.00 10.00 10.00 ACCUM 2.78 AR 0.19 0.26 0.33 0.38 1.39 0.13 1.88 0.87 1.28 1.67 0.19 0.15 0.15 0.34 4.79 0.16 0.29 0.04 0.14 0.22 0.24 INDIV 2.78 AR 0.03 0.13 0.14 0.42 0.19 0.15 0.15 0.19 0.00 0.16 0.29 0.04 0.14 0.19 0.55 0.22 0.24 0.07 0.05 1.71 0.110 0.056 0.000 0.004 0.054 0.062 0.027 0.004 0.007 0.015 0.024 0.052 0.078 0.068 0.182 0.061 0.056 0.073 0.685 0.064 R= 0.9 AREA (Ha 0.033 0.051 0.022 0.046 0.031 0.012 0.017 0.000 0.024 0.047 0.015 0.056 0.082 0.128 0.737 0.400 0.270 0.067 0.020 0.101 0.000 0.000 R= 0.2 TOTAL 0.134 0.069 0.118 0.037 0.037 0.058 0.037 0.222 0.243 0.150 0.152 0.064 0.919 0.478 0.365 0.128 0.076 0.174 0.073 0.089 0.000 0.685 0.051 0.064 CBMH 12 CBMH 13 STMMH 100 CBMH 15 STMMH 100 CBMH 24 STMMH 104 STMMH 100 STMMH 102 STMMH 104 STMMH 104 CBMH 4 CBMH 5 CBMH 6 CBMH 7 CBMH 7 CBMH 17 MAIN CBMH 19 CBMH 9 MAIN MAIN MAIN MAIN MAIN 5 LOCATION STMMH 100 CB 14 CBMH 15 CB 23 CBMH 24 CBMH 12 CBMH 13 CB 1 CBMH 2 CBMH 3 CBMH 4 CBMH 5 CBMH 6 CBMH 6 CB 16 CBMH 17 CBMH 9 CBMH 21\* CBMH 11 CBMH 19 FROM CB 10 CB 30 CB 18 BLDG CB 22 CB 25 CB 8

| _              | _         |                                     |         | Т                   |         |           | <br>_     | _       | _ | _                             | _         | _ |
|----------------|-----------|-------------------------------------|---------|---------------------|---------|-----------|-----------|---------|---|-------------------------------|-----------|---|
|                |           | Q/Qfull                             |         | 0.99                | 0.34    | 0.67      | 0.41      | 0.82    |   | 0.89                          | 0.36      |   |
|                | EXCESS    | CAPACITY                            | (s/J)   | 1.00                | 22.58   | 11.16     | 20.23     | 6.16    |   | 72.47                         | 997.62    |   |
|                | TIME OF   | FLOW                                | (min.)  | 0.44                | 0.28    | 0.04      | 0.28      | 0.04    |   | 0.50                          | 0.20      |   |
| ) SEWER        | FULL FLOW | VELOCITY                            | (s/m)   | 1.15                | 1.05    | 1.05      | 1.05      | 1.05    |   | 1.39                          | 1.75      |   |
| PROPOSED SEWER |           | SLOPE  LENGTH   CAPACITY   VELOCITY | (I/s)   | 188.30              | 34.16   | 34.16     | 34.16     | 34.16   |   | 636.77                        | 1561.92   |   |
|                |           | LENGTH                              | (m)     | 30.0                | 17.7    | 2.7       | 17.5      | 2.5     |   | 41.6                          | 21.3      |   |
|                | PIPE      | SLOPE                               | (%)     | 0.40                | 1.00    | 1.00      | 1.00      | 1.00    |   | 0.30                          | 0:30      |   |
|                | PIPE      | SIZE                                | (mm)    | 457.2               | 203.0   | 203.0     | 203.0     | 203.0   |   | 762.0                         | 1066.8    |   |
|                | PEAK      | FLOW                                | Q (I/s) | 187.30              | 11.59   | 23.00     | 13.93     | 28.00   |   | 564.30                        | 564,30    |   |
|                | RAINFALL  | INTENSITY                           | -       | 101.04              | 104.19  | 102.74    | 104.19    | 102.75  |   | 79.34                         | 77.94     |   |
| FLOW           | TIME      | Р                                   | CONC.   | 10.62               | 10.00   | 10.28     | <br>10.00 | 10.28   |   | 16.38                         | 16.88     |   |
|                |           | ACCUM                               | 2.78 AR | 2.38                | 0.11    | 0.25      | 0.13      | 0:30    |   | 7.71                          | 7.71      |   |
|                |           | NDIN                                | 2.78 AR | 0.00                | 0.11    | 0.14      | 0.13      | 0.17    |   | 00'0                          | 00.00     |   |
|                |           | <u>"</u>                            | 0.9     | 0.000               | 0.042   | 0.054     | 0.049     | 0.060   |   | 0.000                         | 0.000     |   |
| AREA (Ha)      |           | R=                                  | 0.2     | 0.000               | 0.011   | 0.001     | 0.020     | 0.027   |   | 0.000                         | 0.000     |   |
| *              | TOTAL     | AREA                                |         | 0.000               | 0.053   | 0.055     | 0.069     | 0.087   |   | 0.000                         | 0.000     |   |
| TION           |           | 2                                   |         | STMMH 104 STMMH 102 | CBMH 27 | STMMH 102 | CBMH 29   | MAIN    |   | STMMH 102   STMMH 106   0.000 | BELCOURT  |   |
| LOCATION       |           | FROM                                |         | STMMH 104           | CB 26   | CBMH 27   | CB 28     | CBMH 29 |   | STMMH 102                     | STMMH 106 |   |

Definitions
Q = 2.78 AIR
Q = Peak Flow, in Litres per second (L/s)
A = Area in hectares (ha)
I = Rainfall Intensity (mm/h)
R = Runoff Coefficient

|                                                                                                                |                             | s          | URFACE STO | ORAGE |           |                |
|----------------------------------------------------------------------------------------------------------------|-----------------------------|------------|------------|-------|-----------|----------------|
|                                                                                                                |                             | 5 YEAR     |            |       | 100 YEAR  |                |
| LOCATION                                                                                                       | AREA                        | DEPTH      | VOLUME     | AREA  | DEPTH     | VOLUME         |
| CB 1                                                                                                           | N/A                         | N/A        | N/A        | 28.7  | 0.04      | 0.38           |
| CBMH 2                                                                                                         | - N/A                       | N/A        | N/A        | 0     | 0.00      | 0.00           |
| CBMH 3                                                                                                         | N/A                         | N/A        | N/A        | 8.7   | 0.04      | 0.12           |
| CBMH 4                                                                                                         | N/A                         | N/A        | N/A        | 17.4  | 0.04      | 0.23           |
| CBMH 5                                                                                                         | N/A                         | N/A        | N/A        | 14.2  | 0.04      | 0.19           |
| CBMH 6                                                                                                         | N/A                         | N/A        | N/A        | 302.9 | 0.19      | 19.18          |
| CB 6A                                                                                                          | N/A                         | N/A        | N/A        | 0.0   | 0.00      | 0.00           |
| CBMH 7                                                                                                         | N/A                         | N/A        | N/A        | 467.6 | 0.19      | 29.61          |
| CB 8                                                                                                           | N/A                         | N/A        | N/A        | 403.4 | 0.19      | 25.55          |
| CBMH 9                                                                                                         | N/A                         | N/A        | N/A        | 311.7 | 0.19      | 19.74          |
|                                                                                                                |                             | Sub Total  | 0.00       |       | Sub Total | 95.01          |
|                                                                                                                |                             |            |            |       |           |                |
| CB 10                                                                                                          | N/A                         | N/A        | N/A        | 236.3 | 0.11      | 8.66           |
|                                                                                                                |                             |            |            |       |           |                |
| LD 11A                                                                                                         | 19.5                        | 0.10       | 0.65       | 79.5  | 0.19      | 5.04           |
| LD 11B                                                                                                         | 52.3                        | 0.10       | 1.74       | 159.5 | 0.19      | 10.10          |
| LD 11 C                                                                                                        | 45.3                        | 0.10       | 1.51       | 193.9 | 0.19      | 12.28          |
| LD 11 D                                                                                                        | 28.7                        | 0.10       | 0.96       | 125.2 | 0.19      | 7.93           |
| CBMH 11 E                                                                                                      | 233.5                       | 0.15       | 11.68      | 666.8 | 0.13      | 53.34          |
| CBMH 11                                                                                                        | 50.7                        | 0.10       | 1,69       | 143.5 | 0.19      | 9.09           |
| LD 12 A                                                                                                        | 20.1                        | 0.10       | 0.67       | 79.8  | 0.19      | 5.05           |
| LD 12 B                                                                                                        | 53.4                        | 0.10       | 1.78       | 165.9 | 0.10      | 10.51          |
| CBMH 12                                                                                                        | 56.0                        | 0.10       | 1.87       | 156.8 | 0.19      | 9.93           |
| LD 13 A                                                                                                        | 61.5                        | 0.10       | 2.05       | 264.0 | 0.19      | 16.72          |
| LD 13 B                                                                                                        | 19.5                        | 0.10       | 0.65       | 97.4  | 0.19      | 6.17           |
| CBMH 13 C                                                                                                      | 256.1                       | 0.15       | 12.81      | 603.0 | 0.13      | 48.24          |
| CDIVIT 13 C                                                                                                    | 230.1                       | Sub Total  | 38.05      | 000.0 | Sub Total | 194.40         |
|                                                                                                                |                             | Sub Total  | 30.03      |       | Jub Total | 134,40         |
| CB 14                                                                                                          | NI/A                        | N/A        | N/A        | 213.4 | 0.16      | 11.38          |
| CBMH 15                                                                                                        | N/A<br>N/A                  | N/A<br>N/A | N/A        | 205.2 | 0.16      | 10.94          |
| CDIVITI 13                                                                                                     | - AWI                       | Sub Total  | 0.00       | 200.2 | Sub Total | 22.33          |
|                                                                                                                |                             | Sub Total  | 0.00       |       | Sub Total | 22.33          |
| OD 40                                                                                                          | NI/A                        | L NI/A     | NI/A T     | 000.4 | - 0.44 T  | 10.00          |
| CB 16                                                                                                          | N/A                         | N/A        | N/A        | 220.4 | 0.14      | 10.29<br>11.93 |
| CBMH 17                                                                                                        | N/A                         | N/A        | N/A        | 255.7 | 0.14      |                |
| nium talah kecampangan pangan pan |                             | Sub Total  | 0.00       |       | Sub Total | 22.22          |
|                                                                                                                |                             |            |            |       |           |                |
| CB 18                                                                                                          | N/A                         | N/A        | N/A        | 215.3 | 0.14      | 10.05          |
| CBMH 19                                                                                                        | N/A                         | N/A        | N/A        | 231.2 | 0.14      | 10.79          |
|                                                                                                                |                             | Sub Total  | 0.00       |       | Sub Total | 20.84          |
|                                                                                                                |                             |            |            |       |           |                |
| CB 22                                                                                                          | N/A                         | N/A        | N/A        | 210.9 | 0.22      | 15.47          |
|                                                                                                                |                             |            | 100        |       |           |                |
| CB 23                                                                                                          | N/A                         | N/A        | N/A        | 57.7  | 0.11      | 2.12           |
| CBMH 24                                                                                                        | N/A                         | N/A        | N/A        | 79.0  | 0.11      | 2.90           |
|                                                                                                                |                             |            |            |       | Sub Total | 5.01           |
|                                                                                                                |                             |            |            |       |           |                |
| CB 25                                                                                                          | N/A                         | N/A        | N/A        | 125.8 | 0.20      | 8.39           |
|                                                                                                                |                             |            |            |       |           |                |
| CB 26                                                                                                          | N/A                         | N/A        | N/A        | 181.7 | 0.14      | 8.48           |
| CBMH 27                                                                                                        | N/A                         | N/A        | N/A        | 150.7 | 0.14      | 7.03           |
|                                                                                                                | Mile Company                | Sub Total  | 0.00       |       | Sub Total | 15.51          |
|                                                                                                                |                             |            |            |       |           |                |
| CB 28                                                                                                          | N/A                         | N/A        | N/A        | 240.0 | 0.15      | 12.00          |
| CBMH 29                                                                                                        | N/A                         | N/A        | N/A        | 178.1 | 0.15      | 8.91           |
| ODMITZO                                                                                                        | o-regiser (Triple) 147 (Esk | Sub Total  | 0.00       | .,    | Sub Total | 20.91          |
|                                                                                                                |                             | Jub I Oldi | 0.00       |       | Oub Total | 20.01          |
| CB 30                                                                                                          | N/A                         | N/A        | N/A        | 179.0 | 0.24      | 14.32          |
| CD 30                                                                                                          | IWA                         |            |            | 178.0 | 1         |                |
| i                                                                                                              |                             | Sub Total  | 0.00       |       | Sub Total | 14.32          |

| Development Servicing Study and Stormwater Management Report | Dev | elonment | Servicina | Study a | and Stor | mwater Ma | anagement | Report |
|--------------------------------------------------------------|-----|----------|-----------|---------|----------|-----------|-----------|--------|
|--------------------------------------------------------------|-----|----------|-----------|---------|----------|-----------|-----------|--------|

#### **APPENDIX E**

**Sample Calculations** 

#### SAMPLE ORIFICE CALCULATION

#### AREAS A-1 to A-9: ICD WITHIN OUTLET PIPE OF CBMH 9

In order to reduce the flow from these catchment areas an ICD will be installed in the outlet pipe of CBMH 9. Iterative calculations will be required to determine the orifice size, approximate design flow and head. The controlled flow through the orifice is assumed to be in the order of 128 L/s for the 1:100 year design event. The head is calculated from the water elevation to the centerline of the orifice and will be approximately 2.11m (87.65m – (85.31m + 0.23m)).

Q =  $0.62 \times A \times (2gh)^{1/2}$   $0.128 = 0.62 \times A \times (2 \times 9.81 \times 2.11)^{1/2}$ A = 0.032087A =  $3.14 \times d^2/4$ d = 0.202124, therefore use a 202mm dia. orifice

Iterative calculations were done to determine the release rate for the 1:5 year design event. The same orifice, with a design head of 1.91m (87.45m – (85.31m + 0.23m), will release the 1:5 year design event at the rate of:

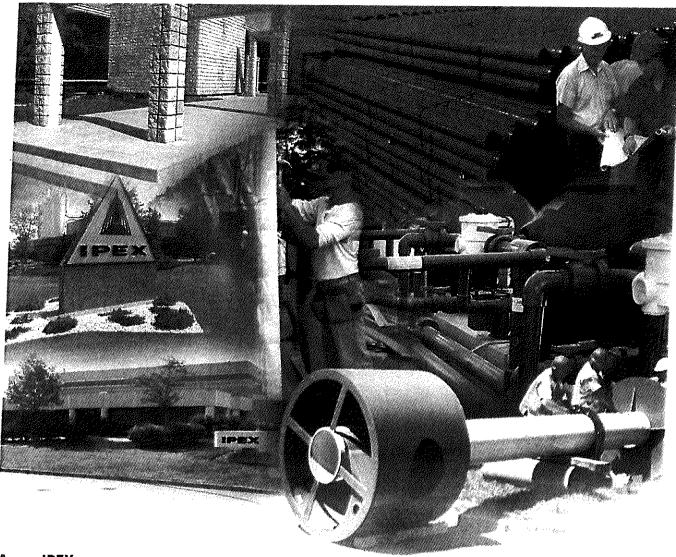
 $Q_5 = 0.62 \text{ x A x } (2gh)^{1/2}$   $Q_5 = 0.62 \text{ x } 0.032047 \text{ x } (2 \text{ x } 9.81 \text{ x } 1.91)^{1/2}$  $Q_5 = 0.12178 \text{ or } 121.8 \text{ L/s}$ 

Refer to the SWM Summary spreadsheets in **Appendix D** for the proposed orifice sizes.

| Development Servicino | Study and Stormwater I | Management Report |
|-----------------------|------------------------|-------------------|
|                       |                        |                   |

#### **APPENDIX F**

**IPEX Inlet Control Device Information** 


# IPEX Tempest™ Inlet Control Devices

**Municipal Technical Manual Series** 

Vol. I, 2nd Edition

© 2012 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 2441 Royal Windsor Drive, Mississauga, Ontario, Canada, L5J 4C7.

The information contained here within is based on current information and product design at the time of publication and is subject to change without notification. IPEX does not guarantee or warranty the accuracy, suitability for particular applications, or results to be obtained therefrom.



#### **ABOUT IPEX**

At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations throughout North America. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items.

More importantly, we are committed to meeting our customers' needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page.

For specific details about any IPEX product, contact our customer service department.



4 4

#### **CONTENTS**

#### TEMPEST INLET CONTROL DEVICES Technical Manual

About IPEX

| Section One  | Product Information: TEMPEST Low, Medium Flow (LMF) ICD                           |  |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|
|              | Purpose                                                                           |  |  |  |  |  |  |
|              | Product Description 4                                                             |  |  |  |  |  |  |
|              | Product Function                                                                  |  |  |  |  |  |  |
|              | Product Construction                                                              |  |  |  |  |  |  |
|              | Product Applications                                                              |  |  |  |  |  |  |
|              | Chart 2: LMF Flow Vo. ICD Attemptings                                             |  |  |  |  |  |  |
|              | Chart 2: LMF Flow Vs. ICD Alternatives                                            |  |  |  |  |  |  |
|              | Product Installation                                                              |  |  |  |  |  |  |
|              | Instructions to assemble a TEMPEST LMF ICD into a square catch basin: 6           |  |  |  |  |  |  |
|              | Instructions to assemble a TEMPEST LMF ICD into a round catch basin:              |  |  |  |  |  |  |
|              | Product Technical Specification                                                   |  |  |  |  |  |  |
|              | General                                                                           |  |  |  |  |  |  |
|              | Materials                                                                         |  |  |  |  |  |  |
|              | Dimensioning                                                                      |  |  |  |  |  |  |
|              | Installation                                                                      |  |  |  |  |  |  |
| Section Two: | Product Information: TEMPEST High Flow (HF) & Medium, High Flow (MHF) ICD         |  |  |  |  |  |  |
|              | Product Description8                                                              |  |  |  |  |  |  |
|              | Product Function                                                                  |  |  |  |  |  |  |
|              | Product Construction                                                              |  |  |  |  |  |  |
|              | Product Applications                                                              |  |  |  |  |  |  |
|              | Chart 3: HF & MHF Preset Flow Curves                                              |  |  |  |  |  |  |
|              | Product Installation                                                              |  |  |  |  |  |  |
|              | Instructions to assemble a TEMPEST HF or MHF ICD into a square catch basin: 10    |  |  |  |  |  |  |
|              | Instructions to assemble a TEMPEST HF or MHF ICD into a round catch basin: 10     |  |  |  |  |  |  |
|              | Instructions to assemble a TEMPEST HF Sump into a square or round catch basin: 11 |  |  |  |  |  |  |
|              | Product Technical Specification                                                   |  |  |  |  |  |  |
|              | General                                                                           |  |  |  |  |  |  |
|              | Materials                                                                         |  |  |  |  |  |  |
|              | Dimensioning                                                                      |  |  |  |  |  |  |
|              | Installation                                                                      |  |  |  |  |  |  |
|              |                                                                                   |  |  |  |  |  |  |



#### PRODUCT INFORMATION: TEMPEST LOW, MEDIUM FLOW (LMF) ICD

#### Purpose

To control the amount of storm water runoff entering a sewer system by allowing a specified flow volume out of a catch basin or manhole at a specified head. This approach conserves pipe capacity so that catch basins downstream do not become uncontrollably surcharged, which can lead to basement floods, flash floods and combined sewer overflows.

#### **Product Description**

Our LMF ICD is designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter and larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device to accommodate virtually any storm sewer size.

Available in 14 preset flow curves, the LMF ICD has the ability to provide flow rates: 2lps - 17lps (31gpm - 270gpm)

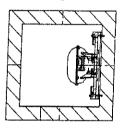
#### **Product Function**

The LMF ICD vortex flow action allows the LMF ICD to provide a narrower flow curve using a larger orifice than a conventional orifice plate ICD, making it less likely to clog. When comparing flows at the same head level, the LMF ICD has the ability to restrict more flow than a conventional ICD during a rain event, preserving greater sewer capacity.

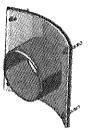
#### **Product Construction**

Constructed from durable PVC, the LMF ICD is light weight 8.9 Kg (19.7 lbs).

#### **Product Applications**

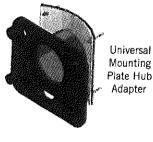

Will accommodate both square and round applications:




**Square Application** 



Universal Mounting Plate




**Round Application** 





Spigot CB Wall Plate



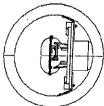



Chart 1: LMF 14 Preset Flow Curves

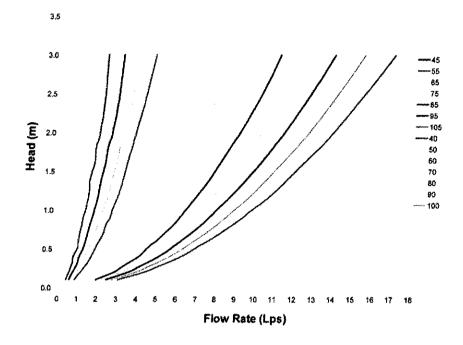
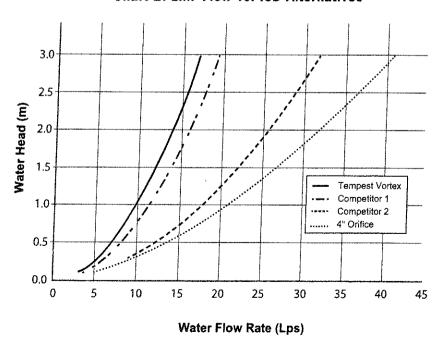




Chart 2: LMF Flow vs. ICD Alternatives



#### PRODUCT INSTALLATION

## Instructions to assemble a TEMPEST LMF ICD into a Square Catch Basin:

#### STEPS:

- 1. Materials and tooling verification:
  - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
  - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers,
     (4) nuts, universal mounting plate, ICD device.
- Use the mounting wall plate to locate and mark the hole
   pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2".
   Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the universal mounting plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From the ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the universal mounting plate and has created a seal.

#### **WARNING**

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- Call your IPEX representative for more information or if you have any questions about our products.

### Instructions to assemble a TEMPEST LMF ICD into a Round Catch Basin:

#### STEPS:

- 1. Materials and tooling verification.
  - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level and marker.
  - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers and (4) nuts, spigot CB wall plate, universal mounting plate hub adapter, ICD device.
- 2. Use the spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a depth between 1-1/2" to 2-1/2".
   Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate, hub adapter and the spigot of the CB wall plate, then slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the mounting plate and has created a seal.

#### WARNING

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut back the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.

#### PRODUCT TECHNICAL SPECIFICATION

#### General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's shall have no moving parts.

#### Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

#### Dimensioning

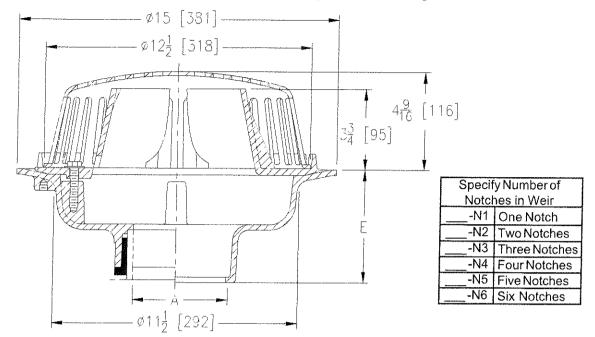
The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

#### Installation

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

| Development Servicino | Study and Stormwater I | Management Report |
|-----------------------|------------------------|-------------------|
|                       |                        |                   |

#### **APPENDIX G**


**Control Flow Roof Drain Information** 



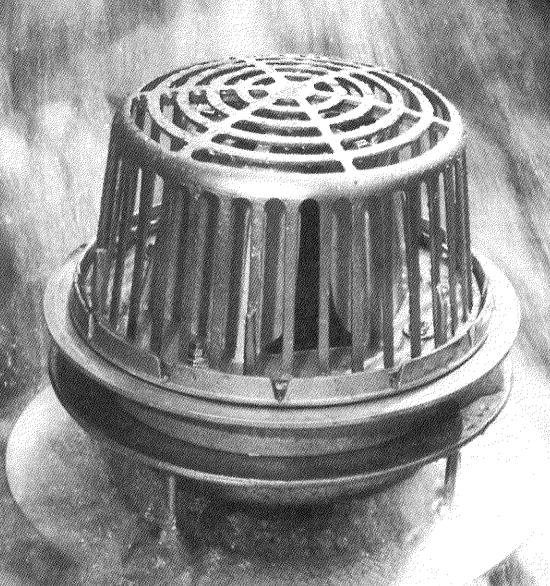
#### Z105 CONTROL-FLO ROOF DRAIN W/ PARABOLIC WEIR

| SPECIFICATIO | N SHEET |
|--------------|---------|
| TAG          |         |

Dimensional Data (inches and [ mm ]) are Subject to Manufacturing Tolerances and Change Without Notice



| A- Pipe Size In.  | Approx.<br>Wt. Lbs.<br>[kg] | Dome Open Area<br>Sq. In. [cm²] |
|-------------------|-----------------------------|---------------------------------|
| 2-3-4 [51-76-102] | 34 [15]                     | 103 [665]                       |


#### **ENGINEERING SPECIFICATION: ZURN Z105**

15[381] Diameter Control-Flo Roof Drain for Dead-Level roof construction, Dura-Coated cast iron body, Control-Flo weir shall be linear functioning with integral membrane flashing clamp/gravel guard and Poly-Dome. All data shall be verified proportional to flow rates.

**OPTIONS** (Check/specify appropriate options)

| <b>PIPE SIZE</b> 2, 3, 4 [51, 76, 102] 2, 3, 4 [51, 76, 102] 2, 3, 4 [51, 76, 102] 2, 3, 4 [51, 76, 102]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IC IP | type) <b>OUTLET</b><br>Inside Caulk<br>Threaded<br>No-Hub<br>Neo-Loc | <b>E BODY HT. DIM.</b> 5-1/4 [133] 3-3/4 [95] 5-1/4 [133] 4-9/16 [116]                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PREFIXES  Z D.C.C.I. Body with Poly-Dome*  D.C.C.I. Body with Aluminum Dome  C D.C.C.I. Body with Cast Iron Dome  ZRB D.C.C.I. Body with Plain Bronze Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                                                      |                                                                                                                                                                                                                                              |
| SUFFIXES C Underdeck ClampDE Deck ExtensionDP Top-Set® Deck Plate (Replaces bothDR Top-Set® Drain RiserDX Dex-o-Tex FlangeE Static Extension 1 [25] thru 4 [102] at the control of the con | ·     | -TC -VP -XJ -10 -90                                                  | Neo-Loc Test Cap Gasket (2-4 [51-102] NL Bottom Outlet Only) Vandal Proof Secured Top Vertical Expansion Joint (See Z190) 6 [152] High Parabolic Weir for Sloped Roof (Z or ZA) 90° Threaded Side Outlet Body  ATE: 08/17/12 C.N. NO. 124666 |
| *REGULARLYFURNISHEDUNLESS OTHERWISE SPECIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )     | DWG. NO. 58816                                                       | PRODUCT NO. Z105                                                                                                                                                                                                                             |

# ZURN CONTROL-FLO ROOF DRAINAGE SYSTEM



21RN a step ahead of tomorrow



## **ZURN** Control-Flo... Today's Successful Answer to More

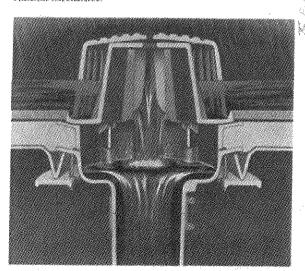
#### THE ZURN "CONTROL-FLO CONCEPT"

Originally, Zurn introduced the scientifically-advanced "Control-Flo" drainage principle for dead-level roofs. Today, after thousands of successful applications in modern, large dead-level roof areas, Zurn engineers have adapted the comprehensive "Control-Flo" data to sloped roof areas.

#### WHAT IS "CONTROL-FLO"?

it is an advanced method of removing rain water off dead-level or sloped roofs. As contrasted with conventional drainage practices, which attempt to drain off storm water as quickly as it falls on the roof's surface, "Control-Flo" drains the roof at a controlled rate. Excess water accumulates on the roof under controlled conditions . . . then drains off at a lower rate after a storm abates.

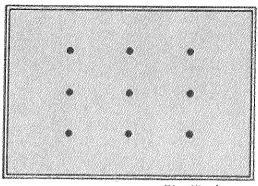
#### CUTS DRAINAGE COSTS


Fewer roof drains, smaller diameter piping, smaller sewer sizes, and lower installation costs are possible with a "Control-Flo" drainage system because roof areas are utilized as temporary storage reservoirs.

#### REDUCES PROBABILITY OF STORM DAMAGE

Lightens load on combination sewers by reducing rate of water drain from roof tops during severe storms thereby reducing probability of flooded sewers, and consequent backflow into basements and other low areas.

#### THANKS TO EXCLUSIVE ZURN "AQUA-WEIR" ACTION


Key to successful "Control-Flo" drainage is a unique, scientifically-designed weir containing accurately callbrated notches with sides formed by parabolic curves which provide flow rates directly proportional to the head. Shape and size of notches are based on predetermined flow rates, and all factors involved in roof drainage to assure permanent regulation of drainage flow rates for specific geographic locations and rainfall intensities.



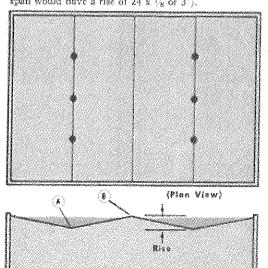
#### DEFINITION

#### DEAD LEVEL ROOFS

A dead-level roof for purposes of applying the Zurn. "Control-Flo" drainage principle is one which has been designed for zero slope across its entire surface.



(Plan Visw)




(Section View)

#### SLOPED ROOFS

A sloped roof is one designed commonly with a shallow slope. The Zurn "Control-Flo" desirage system can be applied to any slope which results in a total rise up to 6"... and data can be calculated for rises exceeding 6".

The total rise of a roof as calculated for "Control-Flo" application is defined as the vertical increase in height in inches, from the low point or valley of a sloping roof (A) to the top of the stoping section (B). (Example: a roof that slopes \(\frac{1}{6}\)" per foot having a 24-foot span would have a rise of 24 x \(\frac{1}{6}\) or 3").



(Section View)

## Economical Roof Drainage Installations

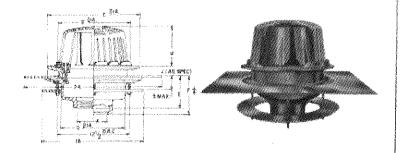
#### SPECIFICATION DATA

#### **HOOF DESIGN RECOMMENDATIONS**

Basic roofing design should incorporate protection that will prevent roof overloading by installing adequate overflow scuppers in parapet walls.

# DISTRICT OF STATE OF

#### i Caulk And No-Hub


| A                   | App.        | 1    |       |      | VSION | SIND |      | Difference and the second |      | Open               |
|---------------------|-------------|------|-------|------|-------|------|------|---------------------------|------|--------------------|
| Pipe<br>Size<br>In. | Ŵí.<br>Lbs. | В    | C D E |      | E     |      | Min. | J<br>Max.                 | U    | Area<br>Sq.<br>In. |
| 2                   | 85          | 1234 | 15    | 11%  | 3%    | 5 Vá | 1    | 4                         | 434  | 112                |
| 3                   | 87          | 12%  | 15    | 11%  | 3%    | 514  | Í    | d.                        | 41/2 | 112                |
| 4                   | 88          | 12%  | 15    | 11/2 | 3%    | 51%  | ď    | 4                         | 4%   | 112                |

ENGINEERING SPECIFICATION: ZURN Z-105ERC "Control-Flo" roof drain, for Dead-Level roof construction, Dura-Coated cast fron hody with extension, roof sump receiver and underdeck clamp, "Control-Flo" weir shall be linear functioning with integral membrane flashing clamp/gravel guard and Poly-Dome. All data shall be verified proportional to flow rates.

#### GENERAL RECOMMENDATIONS

On dead-level roofs, our general recommendations are to design for a 3° depth for the 10-year storm. In this case, even the 100-year storm will not result in a maximum depth of  $6^{\circ}$ . A  $6^{\circ}$  depth represents a roof load of 31.2 pounds per square foot which approximates the 30 pound per square foot factor commonly used in roof design.

NOTE: A more conservative practice used by a few engineers in the past, depending upon other design considerations, has been to design for the 3" depth with the 25, 50, or even 190-year storm... and to also lower scuppers to 5" or 4" above roof level. In either case, the final determination rests with the engineering personnel responsible for this phase of the design.



#### ‡Caulk And No-Hub

| A                   | App.        |      | DIMENSIONS IN INCHES |     |     |     |      |           |     |                    |  |  |  |  |
|---------------------|-------------|------|----------------------|-----|-----|-----|------|-----------|-----|--------------------|--|--|--|--|
| Pipe<br>Size<br>In. | Wi.<br>Lbs. | 8    | C                    | D   | F   | F‡  | Min. | J<br>Max. | U   | Area<br>Sq.<br>In. |  |  |  |  |
| 2                   | 90          | 12%  | 15                   | 11½ | 3%  | 54  | 1    | 4         | 634 | 148                |  |  |  |  |
| 3                   | 92          | 13%  | 15                   | 115 | 31% | 514 | 1    | 4         | 6%  | 148                |  |  |  |  |
| 4                   | 93          | 1234 | 15                   | 11% | 3%  | 514 | I    | 4         | 6%  | 148                |  |  |  |  |

ENGINEERING SPECIFICATION: ZURN Z-105-10ERC "Control-Flo" roof drain, for Sloped roof construction, Dura-Coated east iron body with extension, roof sump receiver and underdeck clamp. "Control-Flo" weir shall be linear functioning with integral membrane flashing clamp/gravel guard and aluminum dome. All data shall be verified proportional to flow rates.

#### GENERAL RECOMMENDATIONS

On sloping roofs, we again recommend a 3" design depth for the 10-year storm, but by 3" we refer to an equivalent depth of 3". An equivalent depth is the depth of water attained at the drains that results in the same roof stresses as those realized on a dead-level roof. In all cases this equivalent depth is almost equal to that attained by using the same notch area rating for the different rises to 6". With the same depth of water at the drain the roof stresses will decrease with increasing total rise. Therefore, it would be possible to have a depth in excess of  $6^{\circ}$  at the drain on a sloping roof without exceeding stresses normally encountered in a 6" depth on a dead-level roof. However, it is recommended that scuppers be placed to limit the maximum water depth on any roof to 6" to prevent the over flow of the weirs on the drains and consequent overloading of drain piping.

NOTE: An equivalent depth is that depth of water attained at the drains at the lowest line or valley of the roof with all other conditions such as notch area and rainfall intensity being equal. For Galveston, Texas a notch area of 1800 square feet results in a 3° depth on a dead-lavet roof for a 10-year storm. For the same notch area and a 10-year storm, equivalent depths for a 2°, 4°, and 6° rise respectively on a sloped roof would be 3.4°, 3.8°, and 4.6°. Roof stresses will be approximately equal in all cases.



## **ZURN** Control-Flo Drain Selection is Quick and Easy.

The exclusive Zuro "Selecto-Drain" Chart (pages 6, 7, 8, 9) tabulates recommended selection data for several hundred localities in the United States. It constitutes your best assurance of sure, safe, economical application of Zurn "Control-Flo" systems for your specific geographical area. If the "Selecta-Drain"

Chart does not suit your specific design criteria. write directly to Zurn Industries, Inc., Field Service Engineering, Hydromechanics Div., Erie, Pa. for additional data for your locality. Listed below is additional information pertinent to proper engineering of the "Control Flo" System.

#### ROOF USED AS TEMPORARY RETENTION

The key to economical "Control-Flo" drainage is the utilization of large roof areas to temporarily store the maximum amount of water without overloading average roofs or creating excessive draindown time during periods of heavy rainfall. The data shown in the "Selecta-Drain" Chart, which takes all these factors into consideration, represents only one point on a series of curves prepared for each locality and was determined after careful study and research as imparting optimum economy in design.

#### ROOF LOADING AND RUN-OFF RATES

The values for notch areas selected from the design curves were based on a 3" head on a dead-level roof for the 10-year storm. In low rainfall localities the area per notch was limited to 25,000 square feet to keep the draindown time within reasonable limits. The same area for each respective locality was used for the various roof rises for sloping roofs. Extensive studies show that stresses due to water load on a sloping roof for any fixed set of conditions are very nearly the same as those on a dead-level roof. A sloping roof tends to concentrate more water in the valleys and increase the water depth at this point. The greater

depth around the drain leads to a faster run-off rate. particularly a faster early run-off rate. As a result, the total volume of water stored on the roof is less, and the total load on the sloping roof is less. By using the same ares on the sloping roof as on the dead-level soof the increase in roof stresses dur to increased water depth in the valleys is offset by the decrease in the total load due to less water stored. The net result is the maximum roof stresses are approximately the same for any single span, rise and fixed set of conditions. A fixed set of conditions would be the same notch area, the same frequency storm, and the same locality.

#### NOTCH FLOW AND WATER DEPTH

The flow through each notch of the "Control Flo" weir is 10 GPM per inch of head. To compute the depth of water in inches at the drain, obtain the total flow for any fixed set of conditions and locale from the "Selecta-Drain" Chart and divide by 10. For example, for Anniston, Alabama the discharge rates are 30, 35, 39 and 43 GPM for the 10, 25, 50 and 100-year storms respectively on a dead-level roof. Since

the possibility of exceeding 4.3" of water exists only once every 100 years, the drains can be sized to carry 43 GPM per notch and scuppers can be set at a height of 4.3" above the roof to prevent overloading the drains if a worse than 100-year storm occurs. On a similar basis, drain pipe sizez and scupper heights can be selected for various roof slopes and storm frequencies.

#### ADDITIONAL NOTCH RATINGS

The "Selecta-Drain" Chart along with Tables I and II enables the engineer to select "Control-Flo" Drains and drain pipe sizes for most applications. The "Selecta-Drain" Chart and Tables I and II are computed for a proportional flow weir that is sized to give a flow of 10 GPM per inch of head. However, this data can be

applied to other sizes of proportional flow weirs by simple multiplication or division. For example, if a similar weir that is sized to give a flow of 5 GPM per inch is substituted for the 10 GPM per inch weir, the notch area and discharge in GPM would be divided by two, and this opening would be given a 1/2 notch area rating.

#### PROPER DRAIN LOCATION

The following good design practice is recommended for selecting the proper number of "Control-Fio" drains for a given area. On dead-level roofs, drains should be located no further than 50 feet from each edge of the roof to assure good run-off regardless of wind direction. Weir should be flush with roof

surface, not recessed. On sloping roofs, drains should be located in the valleys at a distance no greater than 50 feet from each end of the valleys. Weir should be flush with the valley roof surface, not recessed. On large roof areas, drains should not be spaced at a distance greater than 200 feet.

## Saves Specification Time, Assures Proper Application

#### QUICK EASY SELECTION

Using the "Selecta-Drain" Chart (pages 6, 7, 8, 9) in combination with the steps and examples appearing below, should save you countless hours in engineering specification time. This vast compilation of data is related to the proper selection of drains for over 200 cities. If a specific city does not appear in this tabulation, choose the city nearest your area and select the proper drain using these factors.

#### 3 EASY STEPS

## AND 3 TYPICAL EXAMPLES FOR APPLICATION OF SURE, SCIENTIFIC CONTROL OF DRAINAGE FROM DEAD-LEVEL AND SLOPING ROOFS WITH THE ZURN CONCEPT.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | annen marenet | WASHINGTON, D. C.                                                                                                                                                                                                                                                                                                                                                                                                                                              | DEAD-LEVEL ROOF                                                                                                                                                                                                                                                                                                                                                                                                                | 4 INCH RISE                                                                                                                                                                                                                                             | 6 INCH RISE                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Determine total roof area or<br>individual areas when roof is<br>divided by expansion joints or<br>peaks in the case of sloping roof.                                                                                                                                                                                                                                                                                                                          | Roof Area:<br>192 ft. x 500 ft. = 96,000 sq. ft.                                                                                                                                                                                                                                                                                                                                                                               | 3 Individual Roof Areas:<br>6* ft. x 506 ft. = 32,000 sq. ft.<br>Valleys 500 ft. long<br>3 x 32,000 = 96,000 sq. ft.                                                                                                                                    | 2 Individual Roof Areas: 98 ft. x 500 ft. = 48,000 sq. ft. Valleys 500 ft. long 2 x 48,000 = 96,000 sq. ft.                                                                                                                                                                                                                                                                                                                                                          |
| The special material sector of the section of the s | 2             | Divide roof area or individual areas by Zurn Notch Area Rating to obtain the total number of notches required.                                                                                                                                                                                                                                                                                                                                                 | Zurn Notch Area Rating for Washington, D. C. = 13,390 from "Selecta-Drain" Chart Total Notches Required = 96,000 sq. ft. notch area = 1.2 notches — USE 8 PER AREA                                                                                                                                                                                                                                                             | Zurn Notch Area Rating for Washington, D. C. = 13,300 from "Sciecta-Drain" Chart Total Notches Required = 32,000 sq. ft. 13,300 sq. ft. notch area = 2.4 notches—USE 3 PER AREA                                                                         | Zurn Notch Area Rating for Washington, D. C. = 13,300 from "Selecta-Drain" Chart Total Notches Required = 48,000 sq. ft. 13,300 sq. ft. notch area = 3.6 notches—USE 4 PER AREA                                                                                                                                                                                                                                                                                      |
| THE PROPERTY OF THE PROPERTY O |               | Determine total number of drains required by not exceeding maximum spacing dimensions in the preceding instructions.  Divide total number of notches required to determine the number of notches per drain.  Note flow rate for the 100-year storm and divide by 10 to determine maximum water depth at drain and use this dimension to determine scupper height. Maximum scupper height to be used is 5°. Use this flow rate to size leaders and drain lines. | 6 drains required. 3 along each side within 50 ft. of the side with a spacing of 50 ft.—200 ft.—200 ft.—200 ft.—50 ft. Two drains must have two notches for a total of eight notches. Locate at diagonally opposite corners.  Flow rate for the 160-year storm is 44 GPM. Maximum water depth and scupper height equals 4.4° Size leaders from single notch drains for 44 GPM and leaders from double notch drains for 88 GPM. | 3 drains per area required located in the valleys 50 ft. from each end with one in the middle. All drains will have one notch. Flow rate for the 100-year storm is 59 GPM maximum. Water depth and scupper height equals 5.9°. Size leaders for 59 GPM. | I drains per area required located in the valleys 50 ft. from each cod with one in the middle. 4 notches are required therefore one drain must have two notches. Locate this one in the middle. Flow rate for the 100-year storm is 64 GPM. Locate scuppers at 6" and use 60 GPM as maximum flow rate and 6" for maximum flow rate and 6" for maximum flowing out scuppers is now less than once every 50 years instead of every 100 years. Size leaders for 60 GPM. |

#### SPECIAL CONSIDERATIONS

The 3" design water level for the 10-year storm represents a roof load of approximately 15 lbs. per sq. ft. This is only half the usual minimum design roof load rating of 30 lbs. per sq. ft. and 30 presents no problem from that aspect. However, since it is desirable to contain the design depth of water on the roof and 10 prevent spillage over the roof in high wind conditions, it is recommended that any roof construction, parapets, flashing and curbs should be high enough to prevent flooding over them.

Another special case applies to water cooled roofs and here the "Control-Flo" principle can still be used. An adjustable collar on the drain body will retain a pool of water 0 to 3" deep on the roof and a 3" high "Control-Flo" Weir on top of the adjustable collar will control storm water falling on this pool. This restricts the maximum depth on the roof to 6" and scuppers should be located at this height. Since the weirs are only 3" high on this drain, they should be selected for a 3" head based on the 100-year frequency storm.

## Select The Proper Vertical Drain Leaders

#### ROOF DRAINAGE DATA

While the flow rate for any design condition can be easily computed from the data contained on the preceding pages, the tabulations shown below (and on the opposite page) can be used to simplify selection of drain line sizes.

TABLE 1—Suggested Relation of Drain Outlet and Vertical Leader Size to Zurn Control-Flo Roof Drains (Based on National Flumbing Code ASA-Aso,8 Data on Vertical Leaders).

| A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M                                                                | ax. Flow p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er Notch in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| No. of<br>Notches<br>In Drain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pipe Size                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| In Drain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Viverant Community) and Viverant Community (Viverant Community) | The second of th |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second secon |  |  |  |  |  |  |  |
| And the second s | 30                                                               | 60 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Applied to the state of the sta | ing and the second seco |  |  |  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                               | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | £0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | American systems and the second secon |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PASSAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Provide                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| <b>5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GGASHIN                                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |

<sup>\*</sup>Maximum flow obtainable from I notch.

Table I illustrates gallons per minute from each notch of the six Z-105-10 drains that can be carried off by various leader sizes. Once the drains are selected for a given roof per this manual, simply read the GPM flow per notch from the chart, refer to Table I and select the smallest drain line that will accommodate that flow. Drain pipes should be sized for the 100-year storm unless scuppers are located at a height that will not permit a depth of water to accumulate on the roof that is predicted for the 100-year storm. For example, if your installation is in Anniston, Alabama, on a dead-level roof the data for the 100-year storm shows a discharge of 43 GPM per notch. For this application scuppers would be located at a 4.3" height. Using Table I a 3" drain pipe or vertical leader would be used for a drain with 1- or 2-notches. A 4" leader would be used with a 3- or 4-notch drain and a 5" leader with a 5- or 6-notch drain. For Anniston, Alabama, and a roof with a 2" rise, the 100-year storm shows a flow rate of 50 GPM. In this case scuppers should be located at a height of 5.0". A 3" leader would be used with a single notch drain, a 48 leader with a 2and 3-notch drain, and a 5" leader with a 4-, 5- or 6notch drain. The same type of selection would be made for a roof with a 4" rise. For Anniston, Alabams, the flow rate for the 100-year storm would be located at a height of 5.9".

For the roof with a 6" rise, the data for Anniston, Alabams, as well as several other localities, for the 100-year storm, shows a flow rate greater than 60 GPM. In these cases the scuppers will be located at the maximum recommended height of 6" and the vertical leaders will be sized for a maximum flow rate of 60 GPM per notch.

In the few cases where the data shows a flow rate in excess of 60 GPM for the 100-year storm, and if all drains and drain lines are sized according to recommendations, the only consequence will be a brief flow through the scuppers more often than once every 100 years.

#### EXAMPLE

|                |                          | DEAD.             | LEVEL      | nc-vorden-monegapy | S. CO-SCI PARTING AND STATES | 2 INC    | M RISE   |                 |                       | 4 1100   | RESE     | CONTRACTOR OF THE PARTY OF THE |                   | # INC              | 4 W15E   | A COLUMN TO A STATE OF THE PARTY OF THE PART |
|----------------|--------------------------|-------------------|------------|--------------------|------------------------------|----------|----------|-----------------|-----------------------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION       | Notch<br>Arns<br>Flassog | Discharge G.P.M.  | sindown Ti | ma Hrs.            | Discharg                     |          | insows l | SECTION SECTION | Discharg              | History. | indown T |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dischurg          | G.F.M.             | indown I | lete Mrs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                          | 10 Yrs. 28 Yrs.   | 50 Yrs.    | 100 Yes.           | 10 Yes.                      | 25 Yrs.  | 50 Yrs.  | 100 Yrs.        | TO Yes.               | 25 Yrs.  | 50 Yrs.  | 100 Yrs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 Yrs.           | 25 Yrs.            | \$0 ¥14, | 100 Yre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 25,000                   | 28 82 31<br>82 85 | 35<br>6#   | 39<br>31           | 35<br>98                     | 40       | 43<br>45 | 46              | Trimmercustry (1)     | 48       | 52       | 56 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                | 5b                 | 59       | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 25,009                   | 29 36<br>43       | 40 52      | 14<br>59           | 37<br>40                     | 43       | 47       | 50<br>50        | 46<br>88              | 51       | 55       | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                | 50<br>50           | 62<br>36 | 65<br>05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 25,000                   | 26 40 30 44       | 35<br>48   | 19<br>51           | 34<br>38                     | 38       | 42<br>45 | 4.5             | - Comment of the Land | 45       | 49       | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49<br>10          | 34                 | 57       | 6() (48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cheyenne, Wyo. | 25,000                   | 17 19 19          | 21 35      | 13 (i)<br>(i) 7    | 24 (                         | 27<br>31 | 30<br>24 | 35              | 32<br>20              | 36       | 3H<br>34 | 4);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ni edina eminutal | NEFE COMMAN DOMEST | 10       | 50<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## Select Proper Horizontal Storm Drain Piping

Table II is similar to Table I but is used in determining the size of the building storm drain. Use the same flow rate established for sizing the vertical leaders to size the storm drain. Count the total number of notches feeding any one drain or branch to

the drain. Enter the Table at the total number of notches and under the proper storm drain slope select the column that gives a flow rate equal to or larger than the established notch flow rate. Read the storm drain size required at the top of this column.

TABLE II... Suggested Relation of Hurisontal Storm Dram Size to Zuns Control-Fio Roof Dramage (Based on Nationa) Plumbing Code ASA-A46.8 Data on Horizontal Storm Drains w/ 's", 's", and 'g" per foct slope;

| Tetal No.<br>of Noiches | A M           | X. I        | FLO'      | W P      | ĒŔ                       | NO        | TCH           | M            | opm         | M                                     | <b>\</b> X. ∣   | FLOW                          | FEI      | i No    | TCH                  | ŧ Mi            | GPM                | W                                         | AX.                                     | FLOY      | v pen                | NC                                      | TCH                  | M            | G.P        |
|-------------------------|---------------|-------------|-----------|----------|--------------------------|-----------|---------------|--------------|-------------|---------------------------------------|-----------------|-------------------------------|----------|---------|----------------------|-----------------|--------------------|-------------------------------------------|-----------------------------------------|-----------|----------------------|-----------------------------------------|----------------------|--------------|------------|
| Discharging to Storm    | <b>51</b> 1   | DK jiya     | Dra       | ln S     | izo                      | Nº 4      | <b>50 6 8</b> | fi. si       | cpe         | 51                                    | OF PR           | Drair                         | i Size   | • ¼ *   | per                  | M. el           | 8 p.o              | 5                                         | latm                                    | Drai      | n Sire               | W."                                     | per                  | fi. s        | lap        |
| Drain                   | 3             | 4           | 5         |          | Ġ.                       | Ø         | 10            | 12           | 15          | 3                                     | A               | 5                             | 6        | 8       | 10                   | 12              | 15                 | 3                                         | d.                                      | 5         | ø                    | #                                       | 10                   | 12           | ĭ          |
| 1                       | 34            | 60          | *         |          | innerine<br>Northead and | 0mm=      | ******        |              | *****       | 48                                    | 50              | \$                            | ******   |         |                      | Western Western | MANUTAL CONTRACTOR | man kanananananananananananananananananan | De min                                  | i Volenn  |                      | milioner,<br>generalization designation | - Chemical estimates | or COMPANIAN | -pressure; |
| 2                       | 17            | 39          | 60        | )*       | Oppos                    | ASSESS.   | 1004/14       | -            |             | 24                                    | 55              | * 60'                         | £        | Halanin | Mildrer;             | Maria.          | ****               | 3                                         |                                         | ı*        | Managem 8 dyr.       | endors.                                 |                      | -            |            |
| 3                       | 11            | 26          | 40        | 5 6      | i0*                      | Arrestr   | ******        | *****        |             | 16                                    | 37              | 601                           | F ASSELL | Section | systems.             | ****            | M-Veters           | 2:                                        |                                         |           | ₿ <sub>JNIAS</sub> . | -16044                                  | *                    |              |            |
| 4                       | 8             | 19          | 34        | 4 8      | 15                       | 60*       |               |              |             | 12                                    | 28              | 49                            | б0*      | k       | A-1007A              |                 | -                  | 1                                         |                                         |           |                      |                                         |                      |              |            |
| 5                       | *******       | 15          | 21        | 3 4      | 4                        | 60*       |               |              | *******     | W100                                  | 22              | 39                            | 60*      |         |                      | secon           |                    | 13                                        |                                         |           |                      |                                         |                      | ******       | -          |
| 6                       | •             | 13          | 23        | 1 3      | 7                        | 604       |               | 4822444      | YOMOO!      | (m)                                   | 18              | 33                            | 200      | 60*     |                      | -               | CD-AV4-            | 1                                         |                                         |           |                      |                                         | *********            | Denaso       |            |
| 7                       | ****          | 11          | 20        | 3        | 2                        | 60*       | ***           | SeePakt      | · Property  | 1                                     | 16              | 28                            | 45       | 50*     | mosn-                | contra-         | and the same       | 1                                         | - 22                                    |           | 60*                  |                                         | 205587               | Water        |            |
| 8                       | -remins)      | F20734      | 17        | 2        | 3                        | 60°       |               | ******       | _           |                                       | 14              | 25                            | 39       | 60*     | . Andy and the light | *1449           | molecus.           |                                           |                                         |           | 55*                  | 509                                     | ,transport           | ******       |            |
| 9 j                     | etwoye.       | retain, o   | 15        | , 2      | 5                        | 53        | 60*           |              |             | 2                                     | 12              | 22                            | 35       | 50*     | www.                 |                 |                    |                                           |                                         |           | 49                   | 500                                     |                      | _            | _          |
| 10                      | cheeve        | *******     | 14        | 2        | 2                        | 48        | 60*           | *******      | describe.   | -Vp-012                               | 4770            | 20                            | 31       | 60*     | -                    | 3***            |                    | ***************************************   | 15                                      | 27        | 44                   | 60°                                     |                      | and and      |            |
| 11                      |               |             | 12        | 2        | 0                        | 43        | 50*           | iad/oro-     | Assetspe    |                                       | antern)         | 18                            | 29       | 60°     | ****                 | Mg-375-         | pays.              | 1                                         | - 14                                    |           | 40                   | 60*                                     |                      | \$435m/c     | -5.1       |
| 12                      |               | voge.       | Species   | 1        | ß                        | 40        | 60*           | ********     | AMMONIA.    | -                                     |                 | 16                            | 26       | 56      | 60*                  |                 |                    | -                                         | 1.3                                     | ,         | 37                   | 60*                                     |                      | Manage       |            |
| 13                      | 400,000       | present.    | ^*>->-    | <b>1</b> | 7                        | 37        | 60*           |              | managa      | \$ 1000                               | эмж             | 15                            | 24       | 52°     | 60*                  |                 |                    | -                                         | - 12                                    | 21        | 34                   | 60*                                     |                      | Vethin       |            |
| 14                      | methylps.     | ALLTON.     | ******    | . 1      | 6                        | 34        | б0*           | 350.00       | (Academ     | 1541500                               | n               | 14                            | 22       | 48      | 60*                  |                 | *****              | **************************************    | , man                                   |           | 31                   | 60*                                     |                      | - Contract   |            |
| 15                      |               | -           | /400      | . 1      | 5                        | 32        | 57            | 60*          | Egglowisign | · · · · · · · · · · · · · · · · · · · | POLITICAL PARTY | 13                            | 21       | 45      | 60*                  | 314 9130        | 4.600012           | A Anna                                    | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 18        | 20                   | 60*                                     |                      | 244/500      | ~          |
| 16                      | *******       | jeneges.    | 1443(140) | 1        | 4                        | 30        | 54            | 50%          | Armen       |                                       |                 |                               | 20       | 42      | 60*                  | navies.         |                    | and the second                            |                                         | 17        | 27                   | 60*                                     | YHMMI                | name.        | -24        |
| 17                      | 55864         | apovel.     | popular   | 1        | 3                        | 28        | 51            | 60*          | ******      |                                       | ****            | queste                        | 18       | 40      | 60*                  | -               | ******             |                                           |                                         | 16        | 26                   | 56                                      | 60*                  | (*Obviores.  | -          |
| 18                      | Water-        | deam's      | FAAM.yo   | 1        | 2                        | 26        | 48            | 60*          | ****        |                                       | neman;          | NAME OF THE PERSONS ASSESSED. | 17       | 37      | 60*                  |                 |                    | STATE OF THE PERSON NAMED IN COLUMN 1     | · · · · · · · · · · · · · · · · · · ·   | 15        | 24                   | 53                                      | 60*                  |              | .00        |
| 19                      | ACCOUNTS.     |             | *****     |          |                          | 25        | 2,            | 60*          | n septem    | 'alizali                              | Security        |                               | 孙        | 35      | 60*                  |                 | WARNETT -          | and the same                              | No vais                                 | 14        | 23                   | 50                                      | 50*                  | ****         | -          |
| 20                      | -destroyer by | ****        |           | 944      |                          | 24        | 43            | $50^{+}$     | MADE        |                                       | *******         | and to b                      | 16       | 34      | 60*                  | 1700007         | -angleter          | Mewon:                                    | witness                                 | 13        | 22                   | 47                                      | 60*                  | sympo.       | سوم        |
| 23                      |               | <b>u</b> ., | union.    | ved A t  | · ·                      | 20        | 37            | $60^{\circ}$ | er mile:    |                                       | ~~~             | -                             | 14       | 29      | 53*                  | 60*             | degips.            | -                                         | -                                       | 12        | 19                   | 41                                      | 60°                  | 20150        | ,40A       |
| 25                      | pen po        | AND STATES  | _ranna_   | Q#92     | vo .                     | 19        | 34            | 55*          | 60*         |                                       | -               |                               | 13       | 27      | 49                   | 60*             | et/e-ve            | -x                                        |                                         | Mary Av   | 17                   | 38                                      | 60*                  | maiorios.    |            |
| 30                      | <i></i>       |             |           |          | - 1                      | 16        | 28            | 46           | 600         | conspe                                | 990451          | Sanghari)                     | *******  | 22      | 40                   | 60*             | vegas.             |                                           | TOWN                                    | (20074)   | 14                   | 31                                      | 57                   | 60*          |            |
| 35                      | ruman         |             | 3000      |          | - j                      | 13        | 24            | 39           | 60*         | Philosopea                            | and the same of | Tender                        |          | 19      | 35                   | 56              | 60*                |                                           | venanto                                 | ~         | 12                   | 27                                      | 49                   | 60*          |            |
| 40                      | Attento       | ******      | saysayı   | 4960     | ~ ]                      | 12        | 21            | 34           | ნ0*         | withward to                           |                 | ALIEN-                        | A)=:A+   | 1. 7    | 30                   | 49              | 60*                |                                           |                                         | ********* |                      |                                         | 43                   | 60°          |            |
| 45                      | W-144         | -vul-       | dwhisir   |          |                          | er krate  | 19            | 31           | 55*         |                                       | municar.        | ,                             | Average  | 15      | 27                   | 44              | 60*                |                                           | ~~                                      |           | W.C.                 | 21                                      | 38                   | 60*          |            |
| 50                      |               |             |           | w/m      | ~ ~                      |           | 17            | 27           | 49*         | 115.00 ct                             | 950,000         | -viana                        | vacuus.  | 13      | 24                   | 39              | 60*                |                                           | -93.00                                  | ~2000     | Species              | 19                                      | 34                   | 55           | 6          |
| 55                      | . Oranica     | · was       |           |          |                          |           | 15            | 25           | 45*         | DMDM.                                 | entropt,        | 0(******)                     | Modern   | ******  |                      | 35              | 60*                |                                           |                                         | Seedires. | MINERNA              |                                         | 31                   | so           | 51         |
| 60                      | ********      |             |           |          |                          | director. | 14            | 23           | 41*         | -median/s.                            | -               | *****                         |          |         |                      | 32              | 58*                | January.                                  | 99.6%                                   | reads.    |                      | 15                                      |                      | 46           | 61         |
| 65                      |               | Amáz        | -110197*  | 8964     |                          | WOI/      | 13            | 21           | 38*         | *****                                 | 470004          | hermon                        |          |         |                      | 30              | 54*                |                                           |                                         | ********  |                      | 14                                      |                      | 42           | 60         |
| 70                      | Whiten        | Augus       | envisors. | ******   |                          | Melle:    | 12            | 20           | 35*         | -Miggress wa                          | 140.4881        | I-eviet                       | -9111-9  |         |                      | 28              | 50*                |                                           |                                         |           |                      | 13                                      |                      | 39           | 60         |

<sup>\*</sup>Maximum flow obtainable from I notch.

## SPECIAL CONSIDERATIONS FOR STRUCTURAL SAFETY RIGID ROOF DESIGN

Normal Practice of Roof Design is Based on 30-lbs. Fer Sq. Ft. . . , therefore this factor should definitely be kept in mind as a prime requirement for assuring a structurally sound roof. Otherwise, roof deflection may minimize the advantages of a well-designed roof drainage system. Failure to recognize the adverse effects of roof deflection, even with conventional roof drainage, may lead to mof failure. With the new concept of "Control-Flo" Roof Drainage, the design condition of deflection is equally important. If severe deflection is permitted, rain water will simply seek low areas, thus intensifying the degree of deflection. Thus it is extremely important that flat roofs are designed in accordance with normal load factors so that deflection will be slight enough in any bay to prevent progressive deflection which could cause water depths to load the roof beyond its design limits.

#### SCUPPERS AND OVERFLOW DRAINS

Roofing members and understructures, weakened by seepage and rot resulting from improper drainage and roof construction can give away under the weight of rapidly accumulated water during flash storms. Thus, it is recommended, and often required by building codes, to install scuppers and overflow drains in parapet-type roofs. Properly selected and sized scuppers and overflow drains are vital to a well-engineered drainage system to prevent excessive loading, erosion, seepage and rotting.

# **APPENDIX**

# B

- FIRE UNDERWRITERS SURVEY FIRE FLOW
   CALCULATION FOR BUILDING AND ADDITION
- WATER DEMAND CALCULATION
- UPDATED BOUNDARY CONDITION
- FUS CLASSIFICATION DECLARATION

Fire Flow Design Sheet (FUS) 6401 Renaud Road City of Ottawa WSP Project No. 221-09207-00

4/20/2023 Date:



#### **Existing School and Addition** Fire Flow Requirements Based on Fire Underwriters Survey (FUS) 2020

F = 220 C \ A **1.** An estimate of the Fire Flow required for a given fire area may be estimated by:

F = required fire flow in litres per minute

C = coefficient related to the type of construction

1.5 for Type V Wood Frame Construction

0.8 for Type IV-A Mass Timber Construction

0.9 for Type IV-B Mass Timber Construction

1.0 for Type IV-C Mass Timber Construction

1.5 for Type IV-D Mass Timber Construction

1.0 for Type III Ordinary Construction

0.8 for Type II Noncombustible Construction

0.6 for Type I Fire resistive Construction

A =2-b) The single largest Floor Area plus 25% of each of the two immediately adjoining floors

9910 m<sup>2</sup> C = 0.8 17520.6 L/min

rounded off to 18,000 L/min (min value of 2000 L/min)

2. The value obtained in 1. may be reduced by as much as 25% for occupancies having a low contents fire hazard.

Non-combustible -25% Limited Combustible -15% Combustible 0% Free Burning 15% Rapid Burning 25%

-15% x 18,000 = 15,300 L/min Reduction due to low occupancy hazard

3. The value obtained in 2. may be reduced by as much as 50% for buildings equipped with automatic sprinkler protection.

Adequate Sprinkler confirms to NFPA13 -30% Water supply common for sprinklers & fire hoses -10% Fully supervised system -10% 0% No Automatic Sprinkler System

Reduction due to Sprinkler System  $-40\% \times 15{,}300 =$ -6,120 L/min

4. The value obtained in 2. is increased for structures exposed within 45 metres by the fire area under consideration.

| <u>Separation</u> | Charge |
|-------------------|--------|
| 0 to 3 m          | 25%    |
| 3.1 to 10 m       | 20%    |
| 10.1 to 20 m      | 15%    |
| 20.1 to 30 m      | 10%    |
| 30.1 to 45 m      | 0%     |

0% north side Side 1 Side 2 0% east side 35 Side 3 40 0% south side Side 4 45 0% west side (Total shall not exceed 75%)

0%

Increase due to separation  $0\% \times 15{,}300 =$ 0 L/min

5. The flow requirement is the value obtained in 2., minus the reduction in 3., plus the addition in 4.

The fire flow requirement is 9,000 L/min (Rounded to nearest 1000 L/min) 150 L/sec or

2,378 gpm (us) or or 1,980 gpm (uk) Fire Flow Design Sheet (FUS) 6401 Renaud Road City of Ottawa WSP Project No. 221-09207-00

Date: 4/20/2023



## Existing School Fire Flow Requirements Based on Fire Underwriters Survey (FUS) 2020

**1.** An estimate of the Fire Flow required for a given fire area may be estimated by:  $F = 220 \text{ C}_{1}$ 

F = required fire flow in litres per minute

C = coefficient related to the type of construction

1.5 for Type V Wood Frame Construction

0.8 for Type IV-A Mass Timber Construction

0.9 for Type IV-B Mass Timber Construction

1.0 for Type IV-C Mass Timber Construction

1.5 for **Type IV-D** Mass Timber Construction

1.0 for **Type III** Ordinary Construction

0.8 for Type II Noncombustible Construction

0.6 for **Type I** Fire resistive Construction

A =2-b) The single largest Floor Area plus 25% of each of the two immediately adjoining floors

 $A = 8586 \text{ m}^2$  C = 0.8 F = 16308.5 L/min

rounded off to 16,000 L/min (min value of 2000 L/min)

2. The value obtained in 1. may be reduced by as much as 25% for occupancies having a low contents fire hazard.

Non-combustible -25%
Limited Combustible -15%
Combustible 0%
Free Burning 15%
Rapid Burning 25%

Reduction due to low occupancy hazard -15% x 16,000 = 13,600 L/min

3. The value obtained in 2. may be reduced by as much as 50% for buildings equipped with automatic sprinkler protection.

Adequate Sprinkler confirms to NFPA13 -30%
Water supply common for sprinklers & fire hoses -10%
Fully supervised system -10%
No Automatic Sprinkler System 0%

Reduction due to Sprinkler System  $-40\% \times 13,600 = \frac{-5,440}{\text{L/min}}$ 

4. The value obtained in 2. is increased for structures exposed within 45 metres by the fire area under consideration.

| <u>Separation</u> | <u>Charge</u> |
|-------------------|---------------|
| 0 to 3 m          | 25%           |
| 3.1 to 10 m       | 20%           |
| 10.1 to 20 m      | 15%           |
| 20.1 to 30 m      | 10%           |
| 30.1 to 45 m      | 0%            |

 Side 1
 110
 0% north side

 Side 2
 160
 0% east side

 Side 3
 68
 0% south side

 Side 4
 83
 0% west side

0% (Total shall not exceed 75%)

Increase due to separation  $0\% \times 13,600 = 0$  L/min

5. The flow requirement is the value obtained in 2., minus the reduction in 3., plus the addition in 4.

The fire flow requirement is 8,000 L/min (Rounded to nearest 1000 L/min) or 133 L/sec or 2,113 gpm (us)

or 1,760 gpm (uk)

**Water Demand Calculation Sheet** 

Project: 6401 Renaud Road

Location: City of Ottawa
WSP Project No. 221-09207-00

Date: 20/04/2023 Design: VT

Design: VT Page: 1 of 1



|                                       |    | Residential |    | School      |            | Non-Residentia | al         | Av   | erage Daily  |       | ſ    | Maximum Dail | У            | M    | aximum Hou   | rly          | Fire           |
|---------------------------------------|----|-------------|----|-------------|------------|----------------|------------|------|--------------|-------|------|--------------|--------------|------|--------------|--------------|----------------|
| Proposed Buildings                    |    | Units       |    | per Student | Industrial | Institutional  | Commercial | De   | emand (I/s)  |       |      | Demand (I/s) |              |      | Demand (I/s) |              | Demand         |
|                                       | SF | APT         | ST | per student | (ha)       | (ha)           | (ha)       | Res. | Non-Res.     | Total | Res. | Non-Res.     | Total        | Res. | Non-Res.     | Total        | (I/min)        |
| Existing School Existing and Addition |    |             |    | 1340        |            |                |            |      | 0.00<br>3.26 | 0.00  |      | 0.00<br>4.89 | 0.00<br>4.89 |      | 0.00<br>8.79 | 0.00<br>8.79 | 8,000<br>9,000 |
|                                       |    |             |    |             |            |                |            |      |              |       |      |              |              |      |              |              |                |

| Population Densities |                 |
|----------------------|-----------------|
| Single Family        | 3.4 person/unit |
| Semi-Detached        | 2.7 person/unit |
| Duplex               | 2.3 person/unit |
| Townhome (Row)       | 2.7 person/unit |
| Bachelor Apartment   | 1.4 person/unit |
| 1 Bedroom Apartment  | 1.4 person/unit |
| 2 Bedroom Apartment  | 2.1 person/unit |
| 3 Bedroom Apartment  | 3.1 person/unit |
| 4 Bedroom Apartment  | 4.1 person/unit |
| Avg. Apartment       | 1.8 person/unit |

| Residential     | 280 l/cap/day    |
|-----------------|------------------|
| ndustrial       | 35000 l/ha/day   |
| Institutional   | 28000 I/ha/day   |
| Commercial      | 28000 I/ha/day   |
| School          | 70 I/day/student |
| Assume: 8 hours | of operating day |

| Maximum Daily Dema | and            | Maximum Hourly Demand |                |  |  |
|--------------------|----------------|-----------------------|----------------|--|--|
| Residential        | 2.5 x avg. day | Residential           | 2.2 x max. day |  |  |
| Industrial         | 1.5 x avg. day | Industrial            | 1.8 x max. day |  |  |
| Institutional      | 1.5 x avg. day | Institutional         | 1.8 x max. day |  |  |
| Commercial         | 1.5 x avg. day | Commercial            | 1.8 x max. day |  |  |

#### Boundary Conditions 6401 Renaud Road

#### **Provided Information**

| Samaria              | Demand |        |  |  |  |
|----------------------|--------|--------|--|--|--|
| Scenario             | L/min  | L/s    |  |  |  |
| Average Daily Demand | 196    | 3.26   |  |  |  |
| Maximum Daily Demand | 293    | 4.89   |  |  |  |
| Peak Hour            | 527    | 8.79   |  |  |  |
| Fire Flow Demand #1  | 11,000 | 183.33 |  |  |  |
| Fire Flow Demand #2  | 15,000 | 250.00 |  |  |  |

#### Location



#### Results

#### Connection 1 – Fern Casey St.

| Demand Scenario     | Head (m) | Pressure <sup>1</sup> (psi) |
|---------------------|----------|-----------------------------|
| Maximum HGL         | 130.6    | 61.7                        |
| Peak Hour           | 126.7    | 56.0                        |
| Max Day plus Fire 1 | 126.7    | 56.0                        |
| Max Day plus Fire 2 | 125.2    | 53.9                        |

Ground Elevation = 87.3 m

#### Notes

1. A second connection to the watermain, separated by an isolation valve, is required to decrease vulnerability of the water system in case of breaks.

#### **Disclaimer**

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.



#### **FUS CLASSIFICATION DECLARATION**

| Project Name and Civi               | c Address: 6401 Renaud Rd., Ottawa, ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of Floors:                                                                                                                                                                                | 2                |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Development Review F                | PM:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | City File No                                                                                                                                                                                     |                  |
| The building's FUS c<br>following). | alculation has been determined using the follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | owing criteria: (check                                                                                                                                                                           | one of the       |
| C = 1.5                             | Type V Wood Frame Construction  A building is considered to be of Wood Frame structural elements, walls, arches, floors, and repartially of wood or other material.  Note: Includes buildings with exterior wall assemany materials that do not have a fire resistance recriteria of CAN/ULC-S114. May include exterior masonry materials where they do not meet the attributed to the control of the contro | nblies that are constructed en<br>ating that meets the access surface brick, stone, on<br>acceptance criteria.                                                                                   | ted with         |
| C = 0.8                             | Type IV Mass Timber  Mass timber construction, including Encapsulate and other forms of Mass Timber are considere types relating to the fire resistance ratings of ass  Type IV-A Mass Timber Construction (Er Type IV-B Mass Timber Construction (Ra Type IV-C Mass Timber Construction (Or Type IV-D Mass Timber Construction (Ur *Refer to Water Supply for Public Fire Protection, Timber Construction definitions and how to calculate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d as one of the following temblies as follows:  acapsulated Mass Timber (acapsulated Mass Timber) acted Mass Timber (acapsulated Mass Timber) a-Rated Mass Timber)  latest revision, for further | er)              |
| C = 1.0                             | Type III Ordinary Construction  A building is considered to be of Ordinary construction (or other approach) are of masonry construction (or other approach) thour fire resistance rating, but where other elearches, floors and/or roof do not have a minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oved material) with a m<br>ments such as interior w                                                                                                                                              | inimum<br>walls, |



|           | Total Effective Area (A) = 100% of all Floor Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C = 0.8 X | Type II Noncombustible Construction  A building is considered to be of Noncombustible construction (Type II) when all structural elements, walls, arches, floors, and roofs are constructed with a minimum 1-hour fire resistance rating and are constructed with noncombustible materials.  Total Effective Area (A) =  if any vertical openings in the building (ex. interconnected floor spaces,                                                                                                                                     |
|           | atria, elevators, escalators, etc.) are unprotected**, consider the two largest adjoining floor areas plus 50% of all floors immediately above them up to a maximum of eight; or  ☐ if all vertical openings and exterior vertical communications are properly protected* in accordance with the National Building Code, consider only the single largest Floor Area plus 25% of each of the two immediately adjoining floors.                                                                                                          |
|           | Type I Fire Resistive Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | A building is considered to be of Fire-resistive construction (Type I) when all structural elements, walls, arches, floors, and roofs are constructed with a minimum 2-hour fire resistance rating, and all materials used in the construction of the structural elements, walls, arches, floors, and roofs are constructed with noncombustible materials.                                                                                                                                                                              |
| C = 0.6   | Total Effective Area (A) =  □ if any vertical openings in the building (ex. interconnected floor spaces, atria, elevators, escalators, etc.) are unprotected**, consider the two largest adjoining floor areas plus 50% of all floors immediately above them up to a maximum of eight; or  □ if all vertical openings and exterior vertical communications are properly protected* in accordance with the National Building Code, consider only the single largest Floor Area plus 25% of each of the two immediately adjoining floors. |

Note: If a building cannot be defined within a single Construction Coefficient, the Construction Coefficient is determined by the predominate Construction Coefficient that makes up more than 66% of the Total Floor Area.

\*Protected openings:

a) Enclosures shall have walls of masonry or other limited or non-combustible construction with a



- fire resistance rating of not less than one hour.
- b) Openings including doors shall be provided with automatic closing devices
- c) Elevator doors shall be of metal or metal-covered construction, so arranged that the doors must normally be closed for operation of the elevator.

#### \*\*Unprotected openings:

a) Any opening through horizonal separations that are unprotected or otherwise have closures that do not meet the minimum requirements for protected openings, above.

Mail code: 01-14



The building's FUS calculation has been determined using the following criteria: (check all that apply)

| 30% ⊠ | ⊠ | Automatic sprinkler protection designed and installed in accordance with NFPA 13  The initial credit for Automatic Sprinkler Protection is a maximum of 30% based on the system being designed and installed in accordance with the applicable criteria of NFPA 13, Standard for Installation of Sprinkler Systems, NFPA 13R, Standard for the Installation of Sprinkler Systems in Low-Rise Residential Occupancies, or NFPA 13D, Standard for the Installation of Sprinkler Systems in One- and Two-Family Dwellings and Manufactured Homes and being maintained in accordance with the applicable criteria of NFPA 25, Standard for the Inspections, Testing and Maintenance of Water-Based Fire (see Recognition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10%   |   | <ul> <li>Water supply is standard for both the system and Fire Department hose lines</li> <li>a) Sprinkler system is supplied by a pressurized water supply system (public or private) that is designed and built with no major non-conformance issues (i.e. water supply system is designed in accordance with Part 1 of the Water Supply for Public Fire Protection to qualify for fire insurance grading recognition).</li> <li>b) Calculated demand for maximum sprinkler design area operation in addition to hose stream requirements are below the available water supply curve (at the corresponding flow rate and pressure). An appropriate safety margin is used to take into account the difference between the available water supply curve at the time of hydrant flow testing as compared to the available water supply curve during Maximum Day Demand.</li> <li>c) Volume of water available is adequate for the total flow rate including the maximum sprinkler design area operation plus required hose streams plus Maximum Day Demand for the full duration of the design fire event.</li> <li>d) Residual pressure at all points in the water supply system can be maintained at not less than 150 kPa during the flowing of the sprinkler and required hose streams (plus Maximum Day Demand).</li> </ul> |
| 10% ⊠ | ⊠ | a) a distinctive supervisory signal to indicate conditions that could impair the satisfactory operation of the sprinkler system (a fault alarm), that is to sound and be displayed, either at a location within the building that is constantly attended by qualified personnel (such as a security room), or at an approved remotely located receiving facility (such as a monitoring facility of the sprinkler system manufacturer); and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



Visit us: Ottawa.ca/planning

Visitez-nous: Ottawa.ca/urbanisme

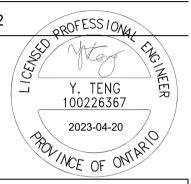
| <ul> <li>a water flow alarm to indicate that the sprinkler system has been activated,<br/>which is to be transmitted to an approved, proprietary alarm-receiving facility,<br/>a remote station, a central station, or the fire department.</li> </ul> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                        |

Note: Where only part of a building is protected by Automatic Sprinkler Protection, credit should be interpolated by determining the percentage of the Total Floor Area being protected by the automatic sprinkler system.

☐ Fully Supervised sprinkler system (per above description)



#### PROFESSIONAL SEAL APPLIED BY:


Yue Teng (Victoria) Civil Consultant:

WSP Canada Consultancy:

Phone Number: 613-829-2800

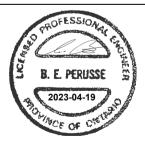
Address: 2611 Queensview Drive #300, Ottawa, ON, K2B 8K2

Engineer's Seal



(initial)

The FUS design parameters will be carried into the building's design


#### PROFESSIONAL SEAL APPLIED BY:

Architect or Building Engineer: Eric Pérusse, P.Eng., ing.

Consultancy: Mechanical

Phone Number: 613-727-5111

Address: 1688 Woodward Dr, Ottawa, ON, K2C 3R8



Architect's or Building Engineer's Seal

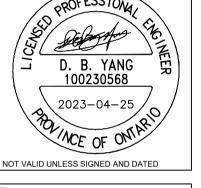
(initial)

The FUS design parameters will be carried into the building's design

Visit us: Ottawa.ca/planning Visitez-nous: Ottawa.ca/urbanisme

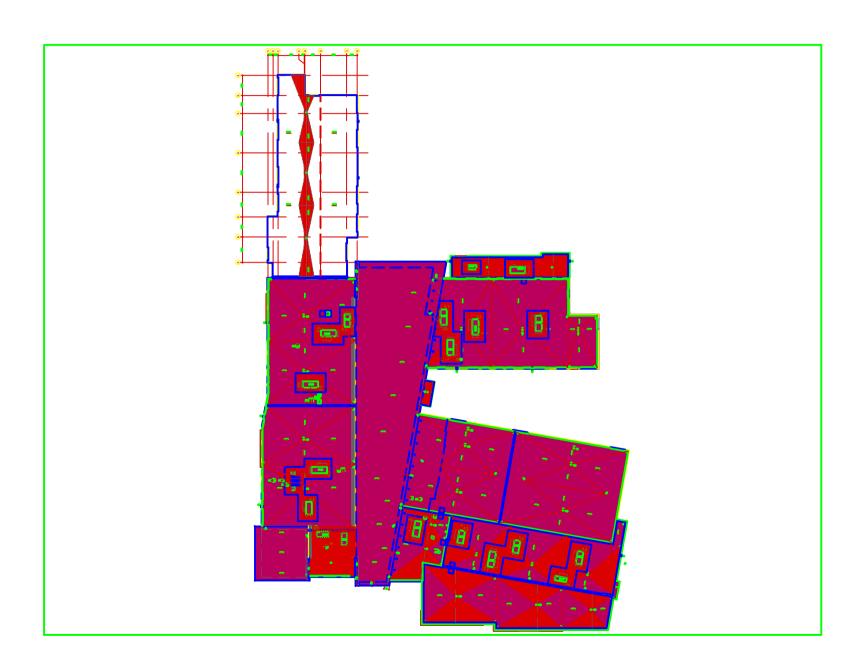
### **APPENDIX**

## C


- STORM DRAINAGE AREA PLAN CO6
- ROOF PLAN
- FLOW CONTROL ROOF DRAINAGE DECLARATION
- STORMWATER MANAGEMENT CALCULATIONS
- DWG C03 GRADING PLAN
- DWG C04 SERVICING PLAN








| 3           | 23/04/25         | RESUBMISSION FOR SPA |
|-------------|------------------|----------------------|
| 2           | 23/03/17         | ISSUED FOR TENDER    |
| 1           | 22/11/11         | ISSUED FOR SPA       |
| ISSU<br>NO. | DATE<br>YY/MM/DD | ISSUE                |





| SCALE                     |           | PROJ. No       | ISSUE No | REV. No |
|---------------------------|-----------|----------------|----------|---------|
| ECHELLE                   | 1:500     | 221-09207-00   | 3        | 0       |
| DRAWN BY<br>DESSINE PAR   | V.T./J.T. | DRAWING/DESSIN |          |         |
| CHECKED BY<br>VERIFIE PAR | W.Y.      | C              | 0        | 6       |



#### FLOW CONTROL ROOF DRAINAGE DECLARATION

THIS FORM TO BE COMPLETED BY THE MECHANICAL AND STRUCTURAL ENGINEERS RESPONSIBLE FOR DESIGN

|                    |              |                                                                       |                                                                                                                                            | Permit Application No. |
|--------------------|--------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Project Na         | ame:         |                                                                       |                                                                                                                                            |                        |
|                    |              | LIQUE MER BLEUE ADDITION                                              |                                                                                                                                            |                        |
| Building L         |              |                                                                       | Municipality:                                                                                                                              | OTTAWA ON              |
| 6401               | I RENAUD RO  | OAD                                                                   |                                                                                                                                            | OTTAWA, ON             |
| The roof following |              | stem has been designed in accorda                                     | ance with the following criteria: (please check                                                                                            | one of the             |
| M1.                |              | Conventionally drained roof (no                                       | o flow control roof drains used).                                                                                                          |                        |
| M2.                |              | Flow control roof drains meetin design:                               | g the following conditions have been incorpor                                                                                              | rated in this          |
|                    |              | (b) one or more scuppers cannot exceed 150mm                          | more than 15m from the edge of roof and not<br>nd                                                                                          |                        |
| М3.                |              | A flow control drainage system th<br>M2 has been incorporated in this | -ROFESSION                                                                                                                                 | ria described in       |
| PROFESS            | SIONAL SEA   | L APPLIED BY:                                                         | B. E. PERUSSE                                                                                                                              |                        |
| Practitione        | er's Name: E | ric Pérusse, P.Eng., ing.                                             | B. E. PERUSSE                                                                                                                              |                        |
| Firm: Go           | odkey, Wee   | dmark & Associates Ltd                                                | 2023-04-19                                                                                                                                 |                        |
| Phone#:            | 613-727-51   | 11                                                                    | - WOE OF CHAR                                                                                                                              |                        |
| City: Otta         | awa          | Province: Ontario                                                     | Mechanical Engineer's Seal                                                                                                                 |                        |
| <b>S</b> 1.        | X            | information provided by the Me                                        | prated into the overall structural design are conchanical Engineer in M2. Loads due to rain a s due to snow as per Sentence 4.1.7.3 (3) OF | re not considered      |
| S2.                |              | acting simultaneously with the                                        | ed incorporating the additional structural load<br>snow load. The design parameters are consis<br>esigned by the mechanical engineer.      | stent with the         |
| PROFESS            | SIONAL SEA   | L APPLIED BY:                                                         |                                                                                                                                            | SUPROFESSION ALTER     |
| Practitione        | er's Name:   | Terence Cain, P.Eng                                                   | _                                                                                                                                          | T. CAIN 100183891      |
| Firm:              | Cleland Jar  | dine Engineering Ltd                                                  | _                                                                                                                                          | 2023-04-25             |
| Phone#:            | 613-591-     | -1533                                                                 |                                                                                                                                            | TON MICE OF ONTARIO    |
| City: K            | (anata       | Province: Ontario                                                     | <br>Structural Engineer's Seal                                                                                                             |                        |

#### **College Catholique Mer Bleue Addition** 6401 Renaud Road

Project: 221-09207-00 Date: October 2022

#### **TABLE 3 - Proposed Roof Drains**

#### **Allowable Release Rate**

Total Roof Area = 0.106 На Total Roof Ponding Area = 846.384 m² Ponding Depth = 0.150

The flow rate through each Roof Drain will be = 30.000 gpm 1.893 L/s

Number of Roof Drains = 3 Total flow rate = 5.67 L/s

TABLE 1. Adjustable Accutrol Flow Rate Settings

| TABLE 1. Adjustable According flow Rate definings |                                |    |       |      |       |    |  |
|---------------------------------------------------|--------------------------------|----|-------|------|-------|----|--|
| Wai- Oi                                           | 1"                             | 2" | 3"    | 4"   | 5"    | 6" |  |
| Weir Opening<br>Exposed                           | Flow Rate (gallons per minute) |    |       |      |       |    |  |
| Fully Exposed                                     | 5                              | 10 | 15    | 20   | 25    | 30 |  |
| 3/4                                               | 5                              | 10 | 13.75 | 17.5 | 21.25 | 25 |  |
| 1/2                                               | 5                              | 10 | 12.5  | 15   | 17.5  | 20 |  |
| 1/4                                               | 5                              | 10 | 11.25 | 12.5 | 13.75 | 15 |  |
| Closed                                            | 5                              | 5  | 5     | 5    | 5     | 5  |  |

#### Post Dev run-off Coefficient "C"

|       |         |       | 2 & 5 | Year Event | 100 Year Event |                      |
|-------|---------|-------|-------|------------|----------------|----------------------|
| Area  | Surface | Ha    | "C"   | $C_{avg}$  | "C" x 1.25     | C <sub>100 avg</sub> |
| Total | Asphalt |       | 0.90  | 0.90       | 0.99           | 0.99                 |
| 0.106 | Roof    | 0.106 | 0.90  |            | 0.99           |                      |
|       | Grass   |       | 0.25  |            | 0.31           |                      |

<sup>\*</sup>Areas are approximate based on Architectural site plan

#### **Runoff Coefficient Equation**

 $C = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{tot}$  $*C = (A_{hard} \times 1.0 + A_{soft} \times 0.25)/A_{tot}$ 

\*Runoff coefficients increased by 25% up to a maximum value of 0.99 for the 100-Year event

#### **QUANTITY STORAGE REQUIREMENTS - 5 Year**

0.106 = Area(ha)

0.90 = C

| Return<br>Period | Time<br>(min) | Intensity<br>(mm/hr) | Flow<br>Q (L/s) | Allowable<br>Runoff (L/s) | Net Runoff To<br>Be Stored (L/s) | Storage<br>Req'd (m <sup>3</sup> ) | Storage<br>Available* (m³) |
|------------------|---------------|----------------------|-----------------|---------------------------|----------------------------------|------------------------------------|----------------------------|
|                  |               |                      |                 |                           |                                  |                                    |                            |
|                  | 10            | 104.19               | 27.58           | 5.67                      | 21.91                            | 13.15                              | 42.32                      |
|                  | 20            | 70.25                | 18.60           | 5.67                      | 12.93                            | 15.51                              | 42.32                      |
| 5 YEAR           | 30            | 53.93                | 14.28           | 5.67                      | 8.61                             | 15.49                              | 42.32                      |
|                  | 40            | 44.18                | 11.70           | 5.67                      | 6.03                             | 14.46                              | 42.32                      |
|                  | 50            | 37.65                | 9.97            | 5.67                      | 4.30                             | 12.89                              | 42.32                      |
|                  |               |                      |                 |                           |                                  |                                    |                            |

#### **QUANTITY STORAGE REQUIREMENTS - 100 Year**

0.106 = Area(ha)0.99 = \*C

| Return   | Time  | Intensity | Flow    | Allowable    | Net Runoff To   | Storage                 | Storage                     |
|----------|-------|-----------|---------|--------------|-----------------|-------------------------|-----------------------------|
| Period   | (min) | (mm/hr)   | Q (L/s) | Runoff (L/s) | Be Stored (L/s) | Req'd (m <sup>3</sup> ) | Available (m <sup>3</sup> ) |
|          |       |           |         |              |                 |                         |                             |
|          | 10    | 178.56    | 51.99   | 5.67         | 46.32           | 27.79                   | 42.32                       |
|          | 20    | 119.95    | 34.93   | 5.67         | 29.26           | 35.11                   | 42.32                       |
| 100 YEAR | 30    | 91.87     | 26.75   | 5.67         | 21.08           | 37.94                   | 42.32                       |
|          | 40    | 75.15     | 21.88   | 5.67         | 16.21           | 38.91                   | 42.32                       |
|          | 50    | 63.95     | 18.62   | 5.67         | 12.95           | 38.86                   | 42.32                       |
|          | 60    | 55.89     | 16.28   | 5.67         | 10.61           | 38.18                   | 42.32                       |
|          | 70    | 49.79     | 14.50   | 5.67         | 8.83            | 37.08                   | 42.32                       |
|          |       |           |         |              |                 |                         |                             |

<sup>\*</sup>Storage available is calculated using roof ponding area mulitplied by the maximum ponding depth, and divided by 3 for a conical pond.

#### **Equations:**

Flow Equation

 $Q = 2.78 \times C \times I \times A$ 

Where:

C is the runoff coefficient

I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

<sup>\*\*</sup>Refer to roof drains area and storage volume table on DWG C13 for details

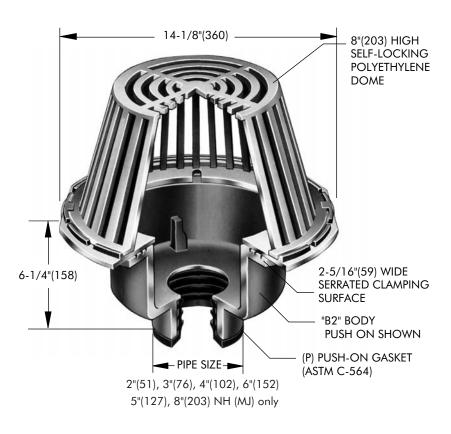


#### **RD-100**

Tag:

#### **Large Capacity Roof Drain**

#### **Components:**










SPECIFICATION: Watts Drainage Products RD-100 epoxy coated cast iron roof drain with deep sump, wide serrated flashing flange, flashing clamp device with integral gravel stop and self-locking polyethylene (standard) dome strainer.



Free Area Sq. In. 137

**Deck opening 10" (254)** with sump receiver 13-1/4" (337)

\*\* Side Outlet (-SO) option only available in 2"(51), 3"(76), 4"(102) pipe sizes. Underdeck Clamp (-BED and -D options) are not available when -SO is selected.

| Ex. RD | )-102P-K             |     |
|--------|----------------------|-----|
| Pi     | ipe Sizing (Select O | ne) |
| Suffix | Description          |     |
| 2      | 2"(51) Pipe Size     |     |
| 3      | 3"(76) Pipe Size     |     |
| 4      | 4"(102) Pipe Size    |     |
| 5      | 5"(127) Pipe Size    |     |
| 6      | 6"(152) Pipe Size    |     |
| 8      | 8"(203) Pipe Size    |     |
|        |                      |     |

Order Code: RD-10

| Outlet Type (Select One) |                 |   |  |  |  |
|--------------------------|-----------------|---|--|--|--|
| Suffix                   | Description     |   |  |  |  |
| NH                       | No Hub (MJ)     |   |  |  |  |
| Р                        | Push On         |   |  |  |  |
| Т                        | Threaded Outlet |   |  |  |  |
| Χ                        | Inside Caulk    | П |  |  |  |

**Options (Select One or More)** 

| Suffix | Description                         |                   |
|--------|-------------------------------------|-------------------|
| -A     | Accutrol weir (specify # 1-6 slots) |                   |
| -B     | Sump Receiver Flange                |                   |
| -BED   | Sump Receiver, Adj Ext.,            |                   |
|        | Deck Clamp                          | _                 |
| -C     | Secondary Membrane Clamp            | Ш                 |
| -D     | Underdeck Clamp                     |                   |
| -E     | Adjustable Extension                |                   |
| -GSS   | Stainless Steel Ballast Guard       |                   |
| -H     | Adj. to 6" IRMA Ballast Guard       |                   |
| -K     | Ductile Iron Dome                   |                   |
| -K80   | Aluminum Dome                       |                   |
| -L     | Vandal Proof Dome                   |                   |
| -R     | 2" High External Water Dam          |                   |
| -SO    | Side Outlet**                       |                   |
| -V     | Fixed Extension (1-1/2",2",3",4")   |                   |
| -W     | Adj. Water Level Regulator          |                   |
| -W-1   | Waterproofing Flange                |                   |
| -Z     | Extended Integral Wide Flange       | $\overline{\Box}$ |

| Optio  | nai boay material (INFL) | niy |
|--------|--------------------------|-----|
| Suffix | Description              |     |
| -60    | PVC Body w/Socket Outlet |     |
| -61    | ABS Body w/Socket Outlet |     |

Sediment Bucket

Galvanized Dome

Mesh Covered Dome -113M Special Epoxy from 3M Range

All Galvanized

-12

-13

-83

| Job Name     | Contractor            |
|--------------|-----------------------|
| Job Location | Contractor's P.O. No. |
| Engineer     | Representative        |

WATTS Drainage reserves the right to modify or change product design or construction without prior notice and without incurring any obligation to make similar changes and modifications to products previously or subsequently sold. See your WATTS Drainage representative for any clarification. Dimensions are subject to manufacturing tolerances. CANADA

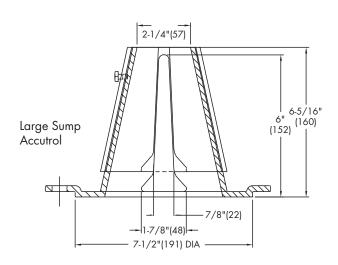


CANADA: 5435 North Service Road, Burlington, ON, L7L 5H7 TEL: 905-332-6718 TOLL-FREE: 1-888-208-8927 Website: www.wattsdrainage.ca



### Adjustable Accutrol Weir

### Adjustable Flow Control for Roof Drains


#### ADJUSTABLE ACCUTROL (for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

#### **EXAMPLE:**

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2"of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: [5 gpm (per inch of head)  $\times$  2 inches of head] + 2-1/2 gpm (for the third inch of head) = 12-1/2 gpm.



Upper Cone

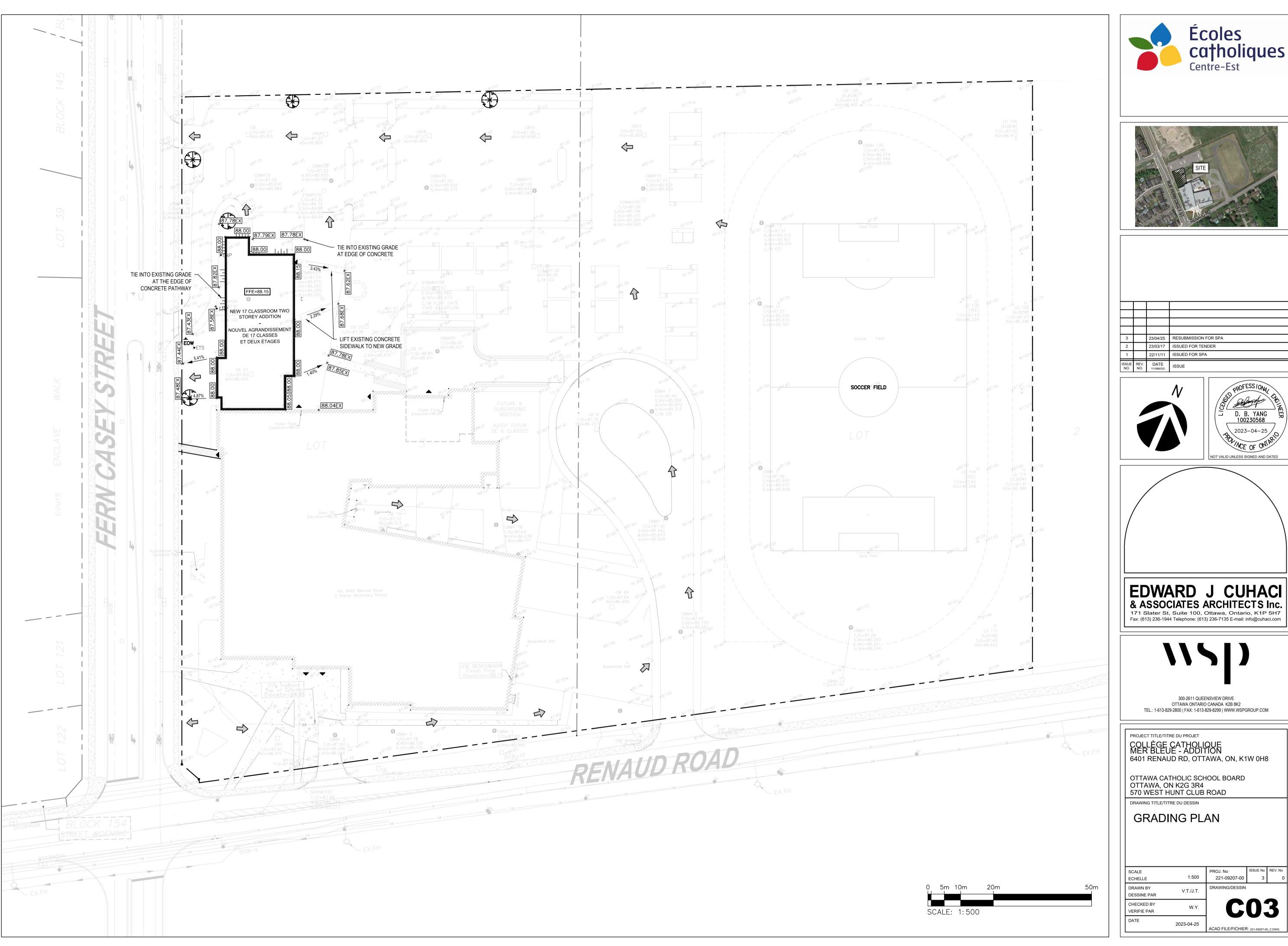
Fixed Weir

Adjustable

1/2 Weir Opening Exposed Shown Above

TABLE 1. Adjustable Accutrol Flow Rate Settings

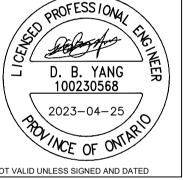
| Weir Onenin -           | 1"                             | 2" | 3"    | 4"   | 5"    | 6" |  |
|-------------------------|--------------------------------|----|-------|------|-------|----|--|
| Weir Opening<br>Exposed | Flow Rate (gallons per minute) |    |       |      |       |    |  |
| Fully Exposed           | 5                              | 10 | 15    | 20   | 25    | 30 |  |
| 3/4                     | 5                              | 10 | 13.75 | 17.5 | 21.25 | 25 |  |
| 1/2                     | 5                              | 10 | 12.5  | 15   | 17.5  | 20 |  |
| 1/4                     | 5                              | 10 | 11.25 | 12.5 | 13.75 | 15 |  |
| Closed                  | 5                              | 5  | 5     | 5    | 5     | 5  |  |

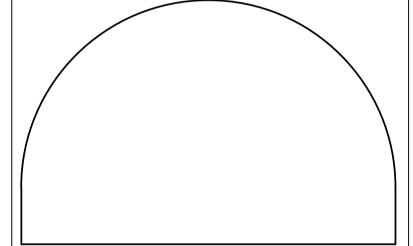

| Job Name     | Contractor            |
|--------------|-----------------------|
| Job Location | Contractor's P.O. No. |
|              |                       |
| Engineer     | Representative        |

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.



**USA:** Tel: (800) 338-2581 • Fax: (828) 248-3929 • Watts.com **Canada:** Tel: (905) 332-4090 • Fax: (905) 332-7068 • Watts.ca

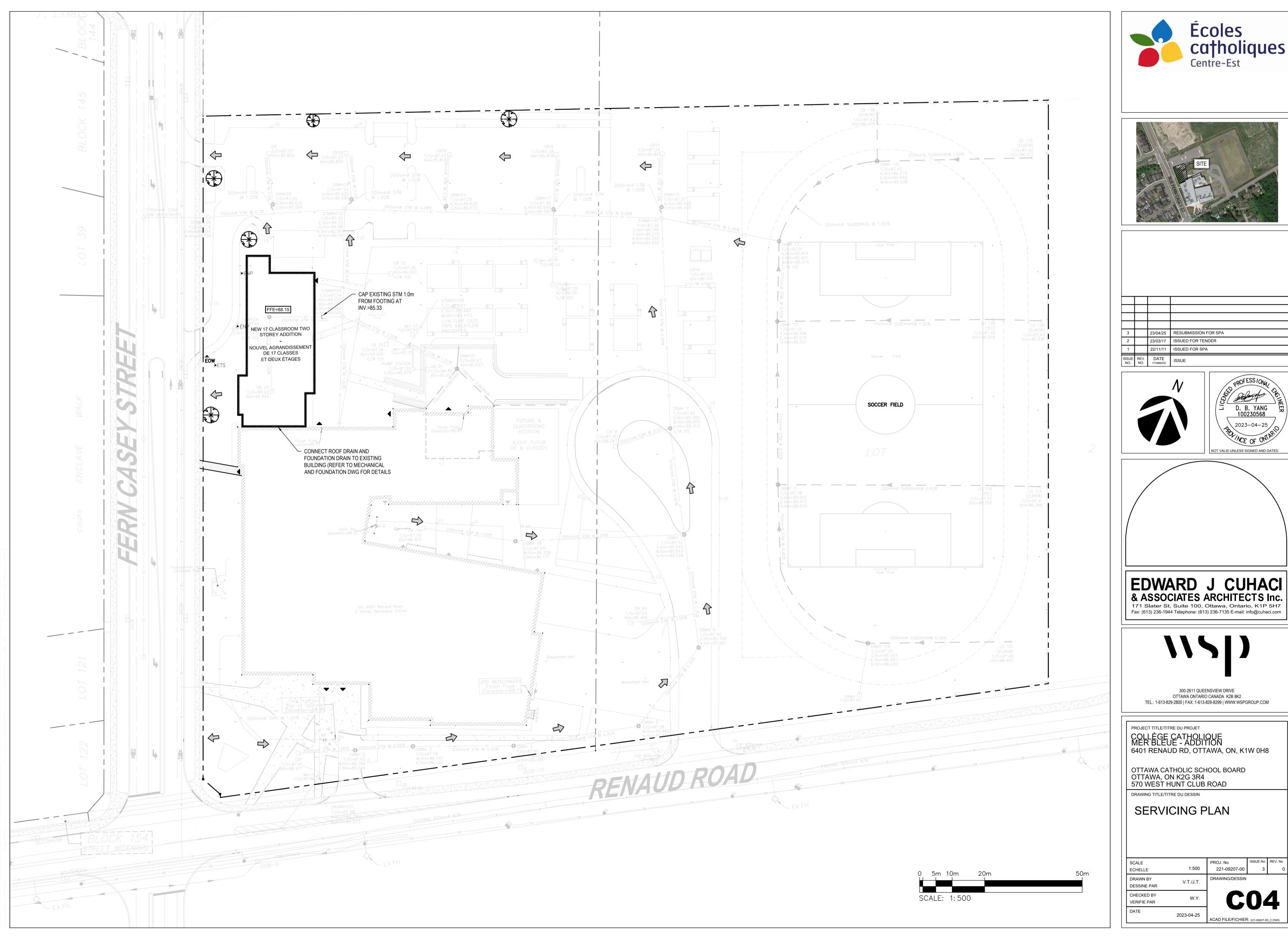

Latin America: Tel: (52) 81-1001-8600 • Fax: (52) 81-8000-7091 • Watts.com







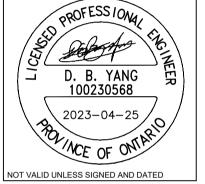

| 3            |             | 23/04/25         | RESUBMISSION FOR SPA |
|--------------|-------------|------------------|----------------------|
| 2            |             | 23/03/17         | ISSUED FOR TENDER    |
| 1            |             | 22/11/11         | ISSUED FOR SPA       |
| ISSUE<br>NO. | REV.<br>NO. | DATE<br>YY/MM/DD | ISSUE                |

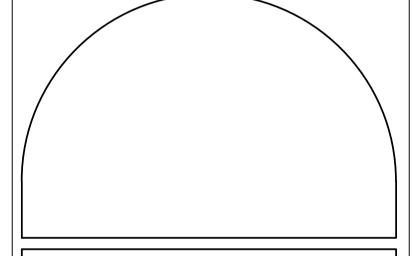







| SCALE<br>ECHELLE        | 1:500     | PROJ. No<br>221-09207-00 | ISSUE No | REV. No  |
|-------------------------|-----------|--------------------------|----------|----------|
| DRAWN BY<br>DESSINE PAR | V.T./J.T. | DRAWING/DESSIN           |          |          |
| CHECKED BY              |           |                          | <b>1</b> | <b>7</b> |


CU3

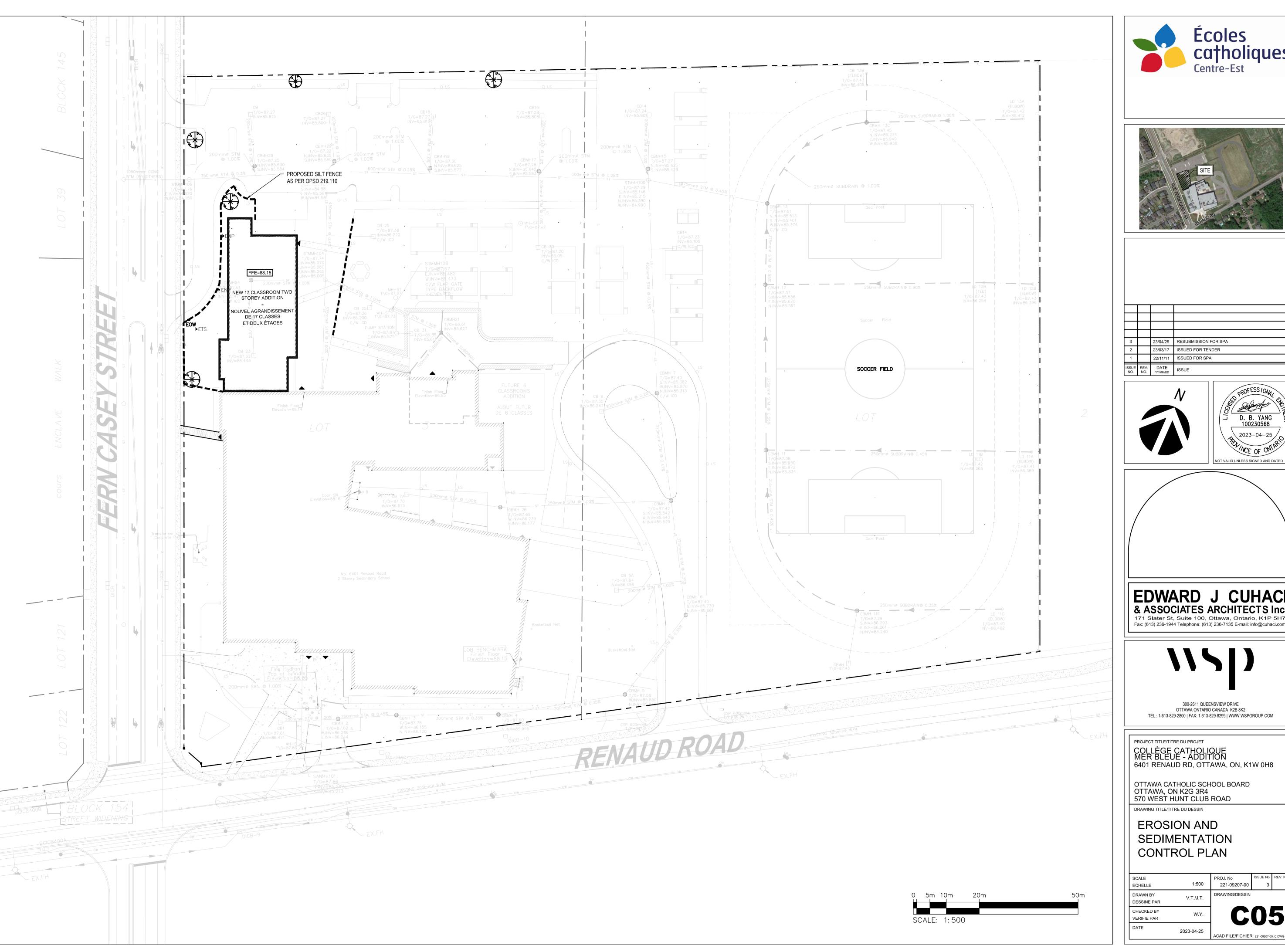







| 3            |             | 23/04/25         | RESUBMISSION FOR SPA |
|--------------|-------------|------------------|----------------------|
| 2            |             | 23/03/17         | ISSUED FOR TENDER    |
| 1            |             | 22/11/11         | ISSUED FOR SPA       |
| ISSUE<br>NO. | REV.<br>NO. | DATE<br>YY/MM/DD | ISSUE                |

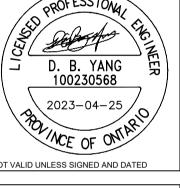


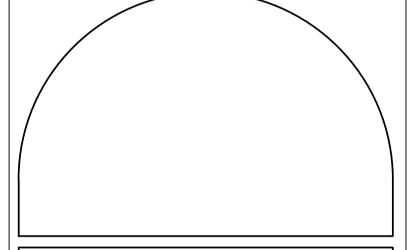



| SCALE       |           | PROJ. No       | ISSUE No          | REV. No |
|-------------|-----------|----------------|-------------------|---------|
| ECHELLE     | 1:500     | 221-09207-00   | 3                 | (       |
| DRAWN BY    | V.T./J.T. | DRAWING/DESSIN |                   |         |
| DESSINE PAR | V.1./J.1. |                |                   |         |
| CHECKED BY  | W.Y.      |                | $\mathbf{\Omega}$ | A       |
| VERIFIE PAR | VV. T.    |                | U/                |         |

### **APPENDIX**

## D


 EROSION AND SEDIMENTATION CONTROL PLAN C05








| 3            |             | 23/04/25         | RESUBMISSION FOR SPA |  |  |  |  |
|--------------|-------------|------------------|----------------------|--|--|--|--|
| 2            |             | 23/03/17         | ISSUED FOR TENDER    |  |  |  |  |
| 1            |             | 22/11/11         | ISSUED FOR SPA       |  |  |  |  |
| ISSUE<br>NO. | REV.<br>NO. | DATE<br>YY/MM/DD | ISSUE                |  |  |  |  |





EDWARD J CUHACI & ASSOCIATES ARCHITECTS Inc. 171 Slater St, Suite 100, Ottawa, Ontario, K1P 5H7 Fax: (613) 236-1944 Telephone: (613) 236-7135 E-mail: info@cuhaci.com



COLLÈGE CATHOLIQUE MER BLEUE - ADDITION 6401 RENAUD RD, OTTAWA, ON, K1W 0H8

OTTAWA CATHOLIC SCHOOL BOARD OTTAWA, ON K2G 3R4 570 WEST HUNT CLUB ROAD

SEDIMENTATION

| SCALE                   |           | PROJ. No       | ISSUE No | REV. No |
|-------------------------|-----------|----------------|----------|---------|
| ECHELLE                 | 1:500     | 221-09207-00   | 3        | 0       |
| DRAWN BY<br>DESSINE PAR | V.T./J.T. | DRAWING/DESSIN |          |         |
| CHECKED BY              | W.Y.      |                | N        | 5       |

## **APPENDIX**

# Ε

SUBMISSION CHECK LIST