3850 Cambrian Road Transportation Impact Assessment

Step 1 Screening Report
Step 2 Scoping Report
Step 3 Forecasting Report
Step 4 Strategy Report

Prepared for:

Choice Properties Limited Partnership 700-22 St Clair Ave E Toronto ON, M4T 2S5

Prepared by:

6 Plaza Court Ottawa, ON K2H 7W1

March 2023

PN: 2022-066

Table of Contents

L		Screer	ning	1
2			ng and Planned Conditions	
	2.1		posed Development	
	2.2	•	ring Conditions	
	2.2		Area Road Network	
	2.2	2.2	Existing Intersections	
	2.2	2.3	Existing Driveways	
	2.2	2.4	Cycling and Pedestrian Facilities	
	2.2	2.5	Existing Transit	
	2.2	2.6	Existing Area Traffic Management Measures	
	2.2	2.7	Existing Peak Hour Travel Demand	
	2.2	2.8	Collision Analysis	
	2.3	Plan	ned Conditions	
	2.3	3.1	Changes to the Area Transportation Network	9
	2.3	3.2	Other Study Area Developments	
3		Study	Area and Time Periods	
	3.1	•	y Area	
	3.2	Time	Periods	11
	3.3	Hori	zon Years	11
1		Exemp	otion Review	11
5		Develo	opment-Generated Travel Demand	12
	5.1	Mod	le Shares	12
	5.2	Trip	Generation	12
	5.3	Trip	Distribution	14
	5.4	Trip	Assignment	14
ŝ		Backg	round Network Travel Demands	16
	6.1	Tran	sportation Network Plans	16
	6.2	Back	ground Growth	16
	6.3	Othe	er Developments	17
7		Dema	nd Rationalization	18
	7.1	2024	4 Future Background Operations	. 18
	7.2	2029	9 Future Background Operations	. 19
	7.3	2024	4 Future Total Operations	. 21
	7.4	2029	9 Future Total Operations	22
	7.5	Mod	lal Share Sensitivity and Demand Rationalization Conclusions	. 24
	7.5	5.1	Network Rationalization	. 24
	7.5	5.2	Development Rationalization	. 24
3		Develo	opment Design	. 24
	8.1	Desi	gn for Sustainable Modes	. 24
	8.2	Circu	ulation and Access	. 24
9			g	
	9.1	Park	ing Supply	. 25

11.1 Location and Design of Access	10	Boundary Street Design	26
11.2 Intersection Control	11	Access Intersections Design	26
11.3 Access Intersection Design	11.1	Location and Design of Access	26
11.3.1 Future Access Intersection Operations	11.2		
11.3.2 Access Intersection MMLOS 11.3.3 Recommended Design Elements 21.2 Transportation Demand Management 22.1.1 Context for TDM 21.2 Need and Opportunity	11.3	Access Intersection Design	26
11.3.3 Recommended Design Elements	11	·	
12 Transportation Demand Management	11		
12.1 Context for TDM		-	
12.2 Need and Opportunity	12	· · · · · · · · · · · · · · · · · · ·	
12.3 TDM Program	12.1		
13.1 Transit	12.2	• • • • • • • • • • • • • • • • • • • •	
13.1 Route Capacity		TDM Program	27
13.2 Transit Priority	13		
14.1 Network Intersection Design	13.1		
14.1 Network Intersection Control			
14.2 Network Intersection Design		<u> </u>	
14.2.1 2024 & 2029 Future Total Network Intersection Operations	14.1		
14.2.2 Network Intersection MMLOS	14.2	•	
14.2.3 Recommended Design Elements	14		
List of Figures Figure 1: Area Context Plan	14		
List of Figures Figure 1: Area Context Plan		-	
List of Figures Figure 1: Area Context Plan	15	·	
Figure 1: Area Context Plan	16	Conclusion	32
Figure 1: Area Context Plan			
Figure 2: Concept Plan	List o	f Figures	
Figure 3: Study Area Pedestrian Facilities	Figure 1	1: Area Context Plan	1
Figure 4: Study Area Cycling Facilities	Figure 2	2: Concept Plan	2
Figure 5: Existing Pedestrian Volumes Figure 6: Existing Cyclist Volumes Figure 7: Existing Study Area Transit Service	Figure 3	3: Study Area Pedestrian Facilities	4
Figure 6: Existing Cyclist Volumes	Figure 4	4: Study Area Cycling Facilities	4
Figure 7: Existing Study Area Transit Service	Figure 5	5: Existing Pedestrian Volumes	5
Figure 8: Existing Study Area Transit Stops - Within 400 metres Figure 9: Existing Traffic Counts Figure 10: Representation of Study Area Collision Records Figure 11: New Site Generation Auto Volumes Figure 12: Pass-by Volumes Figure 13: New Site Generation Auto Volumes — Beyond 2031 (informational only) Figure 14: 2024 Total Background Development Volumes Figure 15: 2029 Total Background Development Volumes 1 Figure 16: 2024 Future Background Volumes 1 Figure 17: 2029 Future Background Volumes	Figure (6: Existing Cyclist Volumes	5
Figure 9: Existing Traffic Counts	Figure 7	7: Existing Study Area Transit Service	6
Figure 9: Existing Traffic Counts	Figure 8	8: Existing Study Area Transit Stops - Within 400 metres	6
Figure 11: New Site Generation Auto Volumes			
Figure 12: Pass-by Volumes	Figure :	10: Representation of Study Area Collision Records	8
Figure 12: Pass-by Volumes	Figure 1	11: New Site Generation Auto Volumes	15
Figure 14: 2024 Total Background Development Volumes			
Figure 14: 2024 Total Background Development Volumes	_	·	
Figure 15: 2029 Total Background Development Volumes	•	, , , , , , , , , , , , , , , , , , , ,	
Figure 16: 2024 Future Background Volumes	_		
Figure 17: 2029 Future Background Volumes2	-	·	
	_	——————————————————————————————————————	
	-	_	

Figure 19: 2029 Future Total Volumes	23
Table of Tables	
Table 1: Intersection Count Date	-
Table 2: Existing Intersection Operations	
Table 3: Study Area Collision Summary, 2016-2020	
Table 4: Summary of Collision Locations, 2016-2020	
Table 5: Exemption Review	
Table 6: TRANS Trip Generation Manual Recommended Mode Shares – South Nepean	
Table 7: Trip Generation Person Trip Rates by Peak Hour	
Table 8: Total Person Trip Generation by Peak Hour	
Table 9: Trip Generation by Mode	
Table 10: OD Survey Distribution – South Nepean	
Table 11: Trip Assignment	
Table 12: 2024 Future Background Intersection Operations	
Table 13: 2029 Future Background Intersection Operations	
Table 14: 2024 Future Total Intersection Operations	
Table 15: 2029 Future Total Intersection Operations	
Table 16: Boundary Street MMLOS Analysis	
Table 17: Trip Generation by Transit Mode	
Table 18: Study Area Intersection MMLOS Analysis	
	20

List of Appendices

Appendix A – TIA Screening Form and Certification Form

Appendix B – Turning Movement Count Data

Appendix C – Synchro Intersection Worksheets – Existing Conditions

Appendix D – Collision Data

Appendix E – Greenbank Road and South West Transitway Extension Preliminary Design

Appendix F – Background Development Volumes

Appendix G – Synchro Intersection Worksheets – 2024 Future Background Conditions

Appendix H – Signal Warrant Calculation Sheet

Appendix I – Synchro Intersection Worksheets – 2029 Future Background Conditions

Appendix J – Synchro Intersection Worksheets – 2024 Future Total Conditions

Appendix K – Synchro Intersection Worksheets – 2029 Future Total Conditions

Appendix L – Turning Templates

Appendix M – MMLOS Worksheets

Appendix N – TDM Checklist

Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for the TIA Study PM. As shown in the Screening Form, a TIA is required including the Design Review component and the Network Impact Component. This study has been prepared to support a site plan application.

Existing and Planned Conditions

Proposed Development

The existing site, located at 3850 Cambrian Road, is zoned as General Mixed Use Zone (GM[1628]). The proposed development consists of a 16,960 sq.ft of pharmacy and 20,960 sq.ft of retail buildings totaling 37,920 sq. ft. A total of 122 surface vehicle parking spaces and 18 surface bicycle parking spaces are proposed. The concept plan includes one new full-movement access on Cambrian Road in the interim condition. In the ultimate condition, two right-in/right-out accesses are proposed on Re-Aligned Greenbank Road corridor, and the access on Cambrian Road will be two right-in/right-out access. The ultimate condition is beyond the study horizon year, and would not be included in this report. The anticipated full build-out and occupancy horizon is 2024 with construction occurring in a single phase. The site is located within the Barrhaven South CDP area and Barrhaven South Community Core design priority area. Figure 1 illustrates the study area context. Figure 2 illustrates the proposed concept plan.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: July 28, 2022

Figure 2: Concept Plan

2.2 Existing Conditions

2.2.1 Area Road Network

Cambrian Road: Cambrian Road is a City of Ottawa arterial road. West of Seeley's Bay Street, it is two-lane rural cross-section with gravel shoulders present on both sides of the road East of Seeley's Bay Street, it is two-lane urban cross-section with sidewalks on both sides of the road. The posted speed limit is 50 km/h within the study area, and the City-protected right-of-way is 37.5 metres.

River Mist Road: River Mist Road is a City of Ottawa collector road with a two-lane urban cross-section. Sidewalks are presented on both sides of the road. The unposted speed limit is assumed to be 50 km/hr, and the measured right-of-way is approximately 24.0 metres.

Apolune Street: Apolune Street is a City of Ottawa collector road with a two-lane urban cross-section including on-street parking and sidewalks on both sides of the road. The unposted speed limit is assumed to be 50 km/h and the measured right-of-way is 24.0 metres.

2.2.2 Existing Intersections

The key existing intersections within one kilometre of the site have been summarized below:

Cambrian Road at River Mist Road The intersection of Cambrian Road at River Mist Road is an all-way

stop-controlled intersection. Each approach consists of a shared all-

movement lane. No turn restrictions were noted.

Cambrian Road at Apolune Street The intersection of Cambrian Road at Apolune Street is a T

intersection with stop-control on Apolune Street. The southbound approach consists of a shared left-turn/right-turn lane. The eastbound approach consists of a shared left-turn/through lane and the westbound approach consists of a shared through/right-turn lane.

No turn restrictions are noted.

2.2.3 Existing Driveways

Construction accesses are located within 200 metres of the future site access intersections. As these are temporary or minor in nature and are not expected to provide access to significant traffic generators, they are not anticipated to have an impact on this TIA.

2.2.4 Cycling and Pedestrian Facilities

Figure 3 illustrates the pedestrian facilities in the study area and Figure 4 illustrates the cycling facilities.

Sidewalks are provided on both sides of Cambrian Road east of Seeley's Bay Street, River Mist Road, and Apolune Street. An approximate 760-metre sidewalk is provided on the north side of Cambrian Road west of Seeley's Bay Street. Paved shoulders are provided on both sides along Cambrian Road between Borrisokane Road and Cambrian Road at Apolune Street/Elevation Road. In the ultimate cycling network, the Re-Aligned Greenbank Road will be a spine cycling route, and Cambrian Road, Apolune Street, and River Mist Road are local routes. South of Cambrian Road, Apolune Street will continue as Elevation Road, is a local route, and is anticipated to include multi-use pathways. The Transportation Master Plan Part 1 identifies Re-Aligned Greenbank Road for designation as a cross-town bikeway.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: July 28, 2022

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: July 28, 2022

Pedestrian and cyclist volumes included in study area intersection counts, presented in Section 2.2.7, have been compiled and are illustrated in Figure 5 and Figure 6, respectively.

Cambrian

Cambri

Figure 5: Existing Pedestrian Volumes

2.2.5 Existing Transit

Figure 7 illustrates the transit system map in the study area and Figure 8 illustrates nearby transit stops. All transit information is from June 7, 2022 and is included for general information purposes and context to the surrounding area.

Within the study area, route #75 travels along Cambrian Road and River Mist Road. The frequency of these routes within proximity of the proposed site based on June 7, 2022 service levels are:

 Route # 75 – 10-minute service in the peak period/direction and 15-minute service all-day, 30-minute service after 8 PM

Source: http://www.octranspo.com/ Accessed: June 7, 2022

Not in use
400 metres

white Add and the second of the sec

Figure 8: Existing Study Area Transit Stops - Within 400 metres

Source: http://www.octranspo.com/ Accessed: June 7, 2022

2.2.6 Existing Area Traffic Management Measures

There are no existing area traffic management measures within the study area.

2.2.7 Existing Peak Hour Travel Demand

Existing turning movement count at Cambrian Road at River Mist Road was acquired from the City of Ottawa, and existing turning movement count at Cambrian Road at Grand Canal Street was acquired from the Traffic Specialist. The turning movements at the Cambrian Road at Apolune Street intersection were derived from the first phases of the Half Moon Bay West CTS (Stantec, 2016). Table 1 summarizes the intersection count dates.

Table 1: Intersection Count Date

Intersection	Count Date	Source				
Cambrian Road at River Mist Road	Wednesday, October 23, 2019	City of Ottawa				
Cambrian Road at River Wilst Road	Saturday, October 15, 2022	The Traffic Specialist				
Cambrian Dood at Analysis Street	-	Half Moon Bay West CTS (Stantec, 2016)				
Cambrian Road at Apolune Street	Saturday, October 15, 2022	The Traffic Specialist				

Figure 9 illustrates the existing traffic counts and Table 2 summarizes the existing intersection operations. Synchro 11 has been used to model the unsignalized intersections and HCM 2010 methodology was used for unsignalized intersection operation. Detailed turning movement count data is included in Appendix B and the Synchro worksheets are provided in Appendix C.

Figure 9: Existing Traffic Counts

Table 2: Existing Intersection Operations

			AM Pe	ak Hour		PM Peak Hour				SAT Peak Hour				
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
Cambrian	EB	С	0.71	23.1	43.5	С	0.76	25.0	53.3	В	0.49	13.0	20.3	
Road at	WB	С	0.68	21.9	38.3	D	0.82	30.3	66.0	С	0.66	17.4	37.5	
River Mist	NB	С	0.56	17.5	25.5	В	0.38	13.6	13.5	В	0.23	10.6	6.8	
Road	SB	В	0.23	12.5	6.8	В	0.13	11.4	3.0	В	0.12	10.1	3.0	
Unsignalized	Overall	С	-	20.3	-	С	-	24.7	-	В	-	14.5	-	
Cambrian	EB	EB	0.01	8.3	0.0	Α	0.03	8.4	0.8	Α	0.03	8.0	0.8	
Road at	WB	-	-	-	-	-	-	-	-	-	-	-	-	
Apolune	SB	SB	0.25	15.9	6.8	С	0.21	19.1	6.0	В	0.19	13.1	5.3	
Street Unsignalized	Overall	Α	-	2.2	-	Α	-	1.6	-	Α	-	2.5	-	

Notes: Saturation flow rate of 1800 veh/h/lane

Peak Hour Factor = 0.90 V/C = volume-to-capacity ratio Queue is measured in metres Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During peak hours in the existing conditions, the study area intersections operate well. No capacity issues are noted.

2.2.8 Collision Analysis

Collision data have been acquired from the City of Ottawa open data website (data.ottawa.ca) for five years prior to the commencement of this TIA for the surrounding study area road network. Table 3 summarizes the collision types and conditions in the study area, Figure 10 illustrates the intersections and segments analyzed, and Table 4 summarizes the total collisions for each of these locations. Collision data are included in Appendix D.

Table 3: Study Area Collision Summary, 2016-2020 Number % **Total Collisions** 2 100% **Fatality** 0 0% Classification Non-Fatal Injury 1 50% **Property Damage Only** 1 50% 50% Angle 1 **Initial Impact Type SMV Other** 1 50% Dry 1 50% **Road Surface Condition Loose Snow** 1 50% **Pedestrian Involved** 0 0%

0 **Cyclists Involved** 0%

Study Area 1 - 3 4 - 8 9 - 14

Figure 10: Representation of Study Area Collision Records

Table 4: Summary of Collision Locations, 2016-2020

	Number	%
Intersections / Segments	2	100%
Apolune St @ Cambrian Rd	1	50%
Cambrian Rd btwn Borrisokane Rd & Grand Canal St	1	50%

Within the study area, there are a total of two collisions during the 2016-2020 time period, with one involving property damage only and the remaining one having non-fatal injuries. No further collision review is required as part of this study.

presentation of 2015-2019

15 - 22 23+

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network

The subject development is within the Barrhaven South Community Design Plan (CDP) Area. As such, it is subject to the planning polices outlined in the CDP. The CDP provides target population and employment densities in the four Sub-Planning Areas along with the plans for infrastructure to support the community growth. As part of this plan, the right-of-way along the following roads has been protected to accommodate an expansion to a four-lane arterial:

- Re-Aligned Greenbank Road rapid transit corridor north and south of Cambrian Road with a protected right-of-way of 41.5 metres
- Cambrian Road between Borrisokane Road and Longfields Road with a protected right-of-way of 37.5 metres

Realigned Greenbank Road will be located on the west side of the proposed development. The Re-Aligned Greenbank Road includes the design of a new 4-lane arterial roadway with 2-lane segregated median Bus Rapid Transit and facilities for pedestrians and cyclists between Marketplace Avenue/Chapman Mills Drive in the north and Barnsdale Road in the south. The preliminary design is included in Appendix E. The Re-Aligned Greenbank Road construction has not been scheduled and is assumed beyond 2031. Therefore, the Re-Aligned Greenbank Road is assumed to be after the study horizons and will not be modeled within the subject analyses.

Within the study horizons, a temporary road will be constructed on the south leg of the Cambrian Road at future Re-Aligned Greenbank Road intersection to serve as interim access for the future grocery site on the southeast quadrant of the intersection.

The westbound and southbound auxiliary left-turn lanes at the intersection of Cambrian Road at Apolune Street/Elevation Road have recently been painted. It is expected that an auxiliary left-turn lane will be on the northbound movement and the intersection is expected to be signalized within future horizons and will be included in the future horizons.

2.3.2 Other Study Area Developments

Mattamy's Half Moon Bay West Phase 3

The proposed subdivision is situated within the Mattamy Development of Half Moon Bay West, this phase of which is anticipated to be built-out during 2025. The development will include 38 detached single-family homes, 190 townhomes, and a 0.43-hectare commercial block. (CGH Transportation, 2021)

3555 Borrisokane Road

The proposed development includes a site plan application consisting of a car wash. It is anticipated to be built by 2023. This development forms a portion of the commercial block assessed within the Half Moon Bay West Phase 3 area. (D. J. Halpenny & Associates Ltd, 2022)

Glenview Homes (3387 Borrisokane Road)

The proposed development includes a plan of subdivision application consisting of 179 single family homes and 109 townhomes. It is anticipated to be built by 2023. (Stantec 2017)

OCSB Elementary School (135 Halyard Lane)

The proposed development application includes a site plan to have a single-storey elementary school with approximately 800 students and a 2,970 sq. ft of childcare centre. It is anticipated to be built by 2023. (Dillon Consulting, 2022)

Mattamy's Half Moon Bay West Phase 4

The proposed site is situated within the Mattamy Development of Half Moon Bay West, this phase of which is anticipated to be built-out during 2026. This phase of the development will include 59 detached single-family homes.

Minto's Kennedy (3432 Greenbank Road)

The proposed development includes a plan of subdivision application consisting of 523 units, including 103 single family homes, 274 executive townhomes, and 146 avenue townhomes, and is anticipated to be built by 2024. (CGH Transportation, 2022)

Loblaws Companies Ltd. (3845 Cambrian Road)

The proposed development includes a site plan application consisting of an approximately 39,696 sq. ft retail development across two separate pads. It is anticipated to be built by 2025. The file has been initiated and no TIA is available at this time.

Metro Ontario Inc. (3831 Cambrian Road)

The proposed development includes a site plan application consisting of a 4,024 sq. m supermarket, an attached 929 square metre retail store, an 830 square metre retail building, and a 1,060 sq. m mixed-use building. It is anticipated to be built by 2023. (CGH Transportation, 2021)

Meadow's Phase 7-8 (3640 Greenbank Road)

The proposed development, which was named Phase 5 in the TIA, includes a plan of subdivision application. The concept plan considers a total of 221 townhouses and 125 single family units. The full build-out and occupancy of Phase 7 is now assumed to be 2023 and Phase 8 by 2025. (IBI, 2018)

Mattamy's Half Moon Bay South Phase 5 (3718 Greenbank Road)

The proposed development application includes a plan of subdivision application consisting of 67 single detached home units and 97 townhouse units. This development is under construction and is assumed to be completed by the end of 2022. (CGH Transportation, 2019)

Mattamy's Half Moon Bay South Phase 7/8 (3718 Greenbank Road)

The proposed development, located on the west of the Re-Aligned Greenbank Road corridor and includes a mixture of 228 stacked townhouse units, and is anticipated to be built by 2024. (CGH Transportation, 2022)

Caivan's Ridge Phases 1-2 (3809 Borrisokane Road)

This development will include 279 townhouse units and 311 detached home units. This development is expected to be built-out during 2025. (CGH Transportation, 2019)

Caivan's The Ridge Phase 3-4 (3713 Borrisokane Road)

This development will include 589 townhouse units, 61 detached housing units. This development is expected to be built-out during 2024. (CGH Transportation, 2021)

Caivan's Conservancy East Stage (3285, 3288, 3305 Borrisokane Road)

This development will include 600 single family homes and 600 townhouses and 100 mid-rise dwelling units. This development is expected to be built-out during 2029. (CGH Transportation, 2021).

Minto's Quinn's Pointe Stages 4 (3882 Barnsdale Road and 3960 Greenbank Road)

The proposed development application includes a plan of subdivision application consists of 536 single-family dwelling units, 493 townhomes, 100 apartment units, and two elementary schools. Phases 2 and 3 have been completed, and Phase 4 is expected to be completed by 2025. (Stantec, 2018)

AIBC Manufacturing Site (3713 Borrisokane Road)

The site includes approximately 3,250 square metres of general office space and 9,385 sq. m of industrial buildings. This development began operations in 2022, and the office component will be completed by 2023. (CGH Transportation, 2020)

3 Study Area and Time Periods

3.1 Study Area

The study area will include the intersections of:

- Cambrian Road at:
 - o River Mist Road
 - Apolune Street
 - Site Access #1

Future volumes at the ultimate access locations will be shown for the Re-Aligned Greenbank Road accesses and as they are outside the study horizons, will not be assessed from an operational perspective. The right-in/right-out configurations would be expected to operate acceptably and are being coordinated with the Re-Aligned Greenbank design team.

The boundary road will be Cambrian Road and the preliminary design drawings will be used to assess the future Re-Aligned Greenbank Road. No screenlines are present within proximity to the site.

3.2 Time Periods

The weekday AM, PM and Saturday peak hours will be examined.

3.3 Horizon Years

The anticipated build-out year is 2024. As a result, the full build-out plus five years horizon year is 2029.

4 Exemption Review

Table 5 summarizes the exemptions for this TIA.

Table 5: Exemption Review

Module	Element	Explanation	Exempt/Required									
Design Review Component												
4.1 Development	4.1.2 Circulation and Access	Only required for site plans	Required									
Design	4.1.3 New Street Networks	Only required for plans of subdivision	Exempt									
	4.2.1 Parking Supply	Only required for site plans	Required									
4.2 Parking	4.2.2 Spillover Parking	, , , , , , , , , , , , , , , , , , , ,										
Network Impact Comp	onent											
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	Required									
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and	Exempt									

Module	Element	Explanation	Exempt/Required
		total volumes exceed ATM capacity thresholds	
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of equivalent volume permitted by established zoning	Exempt

5 Development-Generated Travel Demand

5.1 Mode Shares

Examining the mode shares recommended in the TRANS Trip Generation Manual (2020) for the subject district, derived from the most recent National Capital Region Origin-Destination survey (OD Survey), the existing average district mode shares by land use for South Nepean have been summarized in Table 6. The PM peak hour mode shares were used for the Saturday peak hour. Given the daytime peak for Saturday and sidewalks connecting to adjacent residential developments, the closest residents to may tend use non-auto trips to the grocery store during the Saturday peak hour. A 2% of auto driver mode has been shifted to each of the cycling and walking modes for the Saturday peak hour.

Table 6: TRANS Trip Generation Manual Recommended Mode Shares – South Nepean

Travel Mode	Commercial Generator							
Travel Wode	AM	PM	SAT					
Auto Driver	74%	61%	57%					
Auto Passenger	14%	27%	27%					
Transit	1%	1%	1%					
Cycling	0%	0%	2%					
Walking	11%	11%	12%					
Total	100%	100%	100%					

5.2 Trip Generation

This TIA has been prepared using the vehicle trip rates and derived person trip rates for commercial component from the ITE Trip Generation Manual 11th Edition using the City-prescribed conversion factor of 1.28. Table 7 summarizes the person trip rates for the non-residential land uses by peak hour.

Table 7: Trip Generation Person Trip Rates by Peak Hour

Land Use	Land Use Code	Peak Hour	Vehicle Trip Rate	Person Trip Rates
Pharmacy/Drugstore	000	AM	2.94	3.76
without Drive-	880 (ITE)	PM	8.51	10.89
Through Window	(ITE)	SAT	10.68	13.67
	022	AM	2.36	3.02
Retail (<40k)	822	PM	6.59	8.44
	(ITE)	SAT	6.57	8.41

Using the above person trip rates, the total person trip generation has been estimated. Table 8 summarizes the total person trip generation for the non-residential land uses.

Table 8: Total Person Trip Generation by Peak Hour

Land Use	CEA	AM Peak Hour			PI	M Peak F	lour	SAT Peak Hour		
Land Use	GFA	In	Out	Total	In	Out	Total	In	Out	Total
Pharmacy/Drugstore without Drive- Through Window	16,960 sq.ft	42	22	64	91	94	185	114	118	232
Retail (<40k)	20,960 sq.ft	38	25	63	89	89	178	90	86	176

It is noted that Internal capture rates from the ITE Trip Generation Handbook 3rd Edition only include development's retail component for mixed-use developments. Therefore, the internal capture rates for Retail (<40k) to/from Supermarket were assumed to be 5% for the AM peak hour and 15% for the PM peak hour.

Pass-by reductions of 53% and 40%, have been applied to AM and PM peak hours for the land use of Pharmacy/Drugstore without Drive-Through Window and retail (<40k), respectively, and pass-by reductions of 31% and 45% have been assumed for Saturday peak hour for the land use of Pharmacy/Drugstore without Drive-Through Window and retail (<40k).

Using the above mode share targets for the internal capture and pass-by rates, and the person trip rates, the person trips by mode have been projected. Table 9 summarizes the residential trip generation and the non-residential trip generation by mode and peak hour.

Table 9: Trip Generation by Mode

	-	AM Pea	ak Hou	r	PM Peak Hour				SAT Peak Hour				
Travel Mode		Mode Share	ln	Out	Total	Mode Share	In	Out	Total	Mode Share	In	Out	Total
e gh	Auto Driver	74%	9	4	13	61%	8	7	15	57%	14	14	28
Pharmacy/Drugstore without Drive-Through Window	Auto Passenger	14%	6	3	9	27%	25	25	50	27%	31	32	63
acy/Drug t Drive-Tl Window	Transit	1%	0	0	0	1%	1	1	2	1%	1	1	2
Cy/ Vin	Cycling	0%	0	0	0	0%	0	0	0	2%	2	2	4
E # >	Walking	11%	5	2	7	11%	10	10	20	12%	14	14	28
har tho	Pass-by	53%	-22	-12	-34	53%	-48	-50	-98	45%	-51	-53	-104
₽ .≥	Total	100%	20	9	29	100%	44	43	87	100%	62	63	125
	Auto Driver	74%	12	8	20	61%	13	13	26	57%	18	16	34
	Auto Passenger	14%	5	3	8	27%	22	22	44	27%	22	21	43
8	Transit	1%	0	0	0	1%	1	1	2	1%	1	1	2
Retail (<40k)	Cycling	0%	0	0	0	0%	0	0	0	2%	2	2	4
ai	Walking	11%	4	3	7	11%	9	9	18	12%	10	9	19
Ret	Pass-by	40%	-15	-10	-25	40%	-36	-36	-72	31%	-28	-27	-55
_	Internal Capture	5%	-1	-1	-2	15%	-8	-8	-16	15%	-9	-9	-18
	Total	100%	21	14	35	100%	45	45	90	100%	53	49	102
	Auto Driver	74%	21	12	33	61%	21	20	41	57%	32	31	63
	Auto Passenger	14%	11	6	17	27%	47	47	94	27%	53	53	106
Total	Transit	1%	0	0	0	1%	2	2	4	1%	2	2	4
-	Cycling	0%	0	0	0	0%	0	0	0	2%	4	4	8
	Walking	11%	9	5	14	11%	19	19	38	12%	24	23	47
	Total	100%	41	23	64	100%	89	88	177	100%	115	113	228

As shown above, a total of 33 AM, 41 PM, and 63 Saturday new peak hour two-way vehicle trips are projected as a result of the proposed development.

5.3 Trip Distribution

Typically, the City's TRANS O-D distribution would be used to approximate the distribution of development traffic for employment and residential developments. As the proposed site is located here to serve the local community, it was felt that a site-specific distribution would be required to factor in the adjacent residential developments. As such, the local Barrhaven South distribution is summarized in Table 10.

Table 10: OD Survey Distribution – South Nepean

To/From	% of Trips
North	10%
South	30%
East	50%
West	10%
Total	100%

5.4 Trip Assignment

Using the distribution outlined above, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the study area road network. Re-Aligned Greenbank Road will extend south of Cambrian Road to Barnsdale Road beyond 2031 and not within the horizons of this study.

To assist in the City's future planning, an assignment has been developed for this condition and has been supplied for informational purposes only. Any assessment of Re-Aligned Greenbank Road is a regional issue and unrelated to the planned right-in/right-out access arrangement.

Table 11 summarizes the proportional assignment to the study area roadways in the interim and ultimate conditions. Figure 11 and Figure 12 illustrate the new site generated volumes and pass-by volumes within the study horizons.

As noted above, Figure 13 illustrates the new site generated volumes once Re-Aligned Greenbank Road extends to the south, which will be beyond 2031. Since the ultimate condition is beyond the study horizon year, it will not be analysed in this TIA.

Table 11: Trip Assignment

To /Fuero	Interim	Beyond 2031 (informational only)
To/From	Via	Via
North	8% River Mist (N)	5% River Mist (N)
NOTEN	2% Apolune (N)	5% Re-Aligned Greenbank (N)
South	25% Elevation (S) 5% River Mist (S)	20% Re-Aligned Greenbank (S) 5% River Mist (S) 5% Elevation (S)
East	30% Cambrian (E) 20% River Mist (S)	30% Cambrian Rd (E) 20% River Mist (S)
West	3% Cambrian (W) 7% Apolune (N)	3% Cambrian (W) 7% Apolune (N)
Total	100%	100%

Figure 11: New Site Generation Auto Volumes

Figure 12: Pass-by Volumes

Figure 13: New Site Generation Auto Volumes – Beyond 2031 (informational only)

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3. The signalized intersection of Cambrian Road at Apolune Street/Elevation Road, including the planned auxiliary lanes will be analyzed at all future horizons. Within the study horizons, a temporary road will be constructed on the south leg of the Cambrian Road at future Re-Aligned Greenbank Road intersection to serve as interim access for the future grocery site on the southeast quadrant of the intersection.

The Re-Aligned Greenbank Road was noted to be planned for implementation after the study horizons. The improvement is anticipated to reduce strain on the study area roadways, however this improvement will not be modeled within the subject analyses.

6.2 Background Growth

All background developments within Barrhaven South have been included in this TIA. All growth is assumed to be captured within the background development; therefore, no annual growth rate will be applied. Regional growth would be present on the north-south arterial network outside the study area intersections, such as Borrisokane Road, Greenbank Road and Longfields Drive.

6.3 Other Developments

The background developments explicitly considered in the background conditions (Section 6.2) include:

- Mattamy Half Moon Bay West Phases 3, 4
- 3555 Borrisokane Road
- Glenview Homes (3387 Borrisokane Road)
- OCSB Elementary School (135 Halyard Lane)
- Minto's Kennedy (3432 Greenbank Road) (2024 new site generated auto volumes)
- Loblaws (3845 Cambrian Road)
- Metro Ontario Inc. (3831 Cambrian Road)
- Meadow's Phase 7-8 (3640 Greenbank Road)
- Mattamy's Half Moon Bay South Phase 5 (3718 Greenbank Road)
- Mattamy's Half Moon Bay South Phase 7/8 (3718 Greenbank Road)
- Caivan's Ridge Phases 1-2 (3809 Borrisokane Road)
- Caivan's The Ridge Phase 3-4 (3713 Borrisokane Road)
- AIBC Manufacturing Site (3713 Borrisokane Road)
- Minto's Quinn's Pointe Stages 4 (3882 Barnsdale Road and 3960 Greenbank Road)
- Caivan's Conservancy East Stage (3285, 3288, 3305 Borrisokane Road)

Figure 14 and Figure 15 illustrate the 2024 and 2029 total background development volumes. The background development volumes within the study area have been provided in Appendix F.

20(12)[11] 65(55)[39] 6(12)[10] 44(38)[34] 88(108)[98] 31(56)[55] 0(0)[0] Cambrian 00 9(14)[12] 21(51)[42] 116(85)[68] 66(41)[40] 00 00 189(136)[116] 90(177)[154] 33(43)[43] Elevation (##) PM Volume [##] SAT Volume

Figure 14: 2024 Total Background Development Volumes

Figure 15: 2029 Total Background Development Volumes

7 Demand Rationalization

7.1 2024 Future Background Operations

The signalized intersection of Cambrian Road at Apolune Street/Elevation Road includes auxiliary left-turn lanes on all approaches. Figure 16 illustrates the 2024 background volumes and Table 12 summarizes the 2024 background intersection operations. Synchro 11 has been used to model the unsignalized intersections and HCM 2010 methodology was used for unsignalized intersection operation. The synchro worksheets for the 2024 future background horizon are provided in Appendix G.

Signal warrant analysis was performed for the intersection of Cambrian Road at River Mist Road and continues to not meet signal warrant. As the City does not have a planned improvement at this location, it is assumed to remain as an all-way stop-controlled intersection. Signal warrant calculation sheets are provided in Appendix H.

Figure 16: 2024 Future Background Volumes

Table 12: 2024 Future Background Intersection Operations

			AM Pe	ak Hour			PM Pe	ak Hour		SAT Peak Hour				
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
Cambrian	EB	F	1.02	76.4	114.8	F	0.99	59.1	106.5	С	0.66	18.6	36.0	
Road at	WB	E	0.89	44.1	71.3	F	1.01	66.8	115.5	D	0.80	26.8	60.0	
River Mist	NB	D	0.70	26.5	39.0	С	0.47	16.7	18.0	В	0.31	12.4	9.8	
Road	SB	С	0.32	15.6	9.8	В	0.18	13.0	4.5	В	0.15	11.2	3.8	
Unsignalized	Overall	E	-	49.3	-	F	-	53.3	-	С	-	20.8	-	
	EBL	Α	0.02	8.3	2.7	Α	0.06	5.2	5.4	Α	0.06	5.0	6.0	
	EBT/R	Α	0.37	9.1	43.6	Α	0.49	7.7	86.5	Α	0.32	5.4	44.7	
Cambrian	WBL	Α	0.05	8.2	6.1	Α	0.11	5.6	8.7	Α	0.14	5.6	10.4	
Road at	WBT/R	Α	0.58	13.0	83.9	Α	0.45	7.4	70.6	Α	0.31	5.7	41.6	
Apolune	NBL	В	0.63	32.9	35.0	В	0.70	67.0	48.8	В	0.70	67.4	46.7	
Street	NBT/R	Α	0.08	0.2	0.0	Α	0.07	0.2	0.0	Α	0.25	13.0	11.7	
Signalized	SBL	Α	0.54	30.0	27.1	Α	0.52	56.8	33.9	Α	0.46	55.0	28.7	
	SBT/R	Α	0.05	0.2	0.0	Α	0.03	0.1	0.0	Α	0.19	14.4	10.4	
	Overall	Α	0.59	15.6	-	Α	0.52	15.4	-	Α	0.38	16.0	-	
Cambrian	EB	-	-	-	-	-	-	-	-	-	-	-	-	
Road at	WB	Α	0.01	8.3	0.0	Α	0.01	8.6	0.0	Α	0.01	7.4	0.0	
Temporary	NB	С	0.07	17.0	1.5	С	0.18	21.6	4.5	Α	0.06	9.6	1.5	
Driveway Unsignalized	Overall	Α	-	0.4	-	Α	-	0.9	-	Α	-	2.3	-	

Notes:

Saturation flow rate of 1800 veh/h/lane

Peak Hour Factor = 1.00 V/C = volume-to-capacity ratio Queue is measured in metres Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

The intersections of Cambrian Road at River Mist Road on the eastbound during AM and PM peak hours and westbound movement during the PM peak hour may experience high delays and extended queues due to the background development. The capacity issues are due to the background developments and are considered the responsibility of the City to address through DC funding.

7.2 2029 Future Background Operations

Figure 17 illustrates the 2029 background volumes and Table 13 summarizes the 2029 background intersection operations. Synchro 11 has been used to model the unsignalized intersections and HCM 2010 methodology was used for unsignalized intersection operation. The synchro worksheets for the 2029 future background horizon are provided in Appendix I.

Signal warrant analysis was performed for the intersection of Cambrian Road at River Mist Road and continues to not meet signal warrant. As the City does not have a planned improvement at this location, it is assumed to remain as an all-way stop-controlled intersection. Signal warrant calculation sheets are provided in Appendix H.

47(29)[30] 16(12)[13] 71(38)[40] 51(76)[82] 95(135)[117] 391(487)[469] 51(128)[74] 464(428)[286] 613(654)[205] 9(6)[7] 57(114)[128] 616(679)[533] 547(674)[477] 524(633)[154] 14(42)[46] 24(36)[21] 22(57)[66] - 109(106)[82] - 50(15)[10] - 194(130)[103] 256(460)[263] 129(255)[232] 507(494)[410] 270(193)[181] 117(88)[109] 6(9)[10] 15(38)[44] 93(162)[108] ↴ Temporary Driveway

Figure 17: 2029 Future Background Volumes

Table 13: 2029 Future Background Intersection Operations

			AM Pe	ak Hour			PM Pe	ak Hour		SAT Peak Hour				
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
Cambrian	EB	F	1.28	164.9	193.5	F	1.23	126.5	177.0	Ε	0.90	38.7	78.0	
Road at	WB	F	1.09	77.3	102.8	F	1.25	133.4	182.3	F	1.03	74.3	129.0	
River Mist	NB	D	0.82	34.1	48.0	С	0.56	19.1	21.0	В	0.40	15.0	13.5	
Road	SB	С	0.36	17.6	10.5	В	0.20	14.2	5.3	В	0.18	12.7	4.5	
Unsignalized	Overall	F	-	96.9	-	F	-	108.4	-	E	-	49.4	-	
	EBL	Α	0.04	9.5	3.6	Α	0.09	7.5	8.2	Α	0.08	7.2	8.5	
	EBT/R	Α	0.45	11.1	50.3	Α	0.60	11.9	133.0	Α	0.42	8.1	70.3	
Cambrian	WBL	Α	0.12	9.9	9.8	Α	0.29	10.2	22.8	Α	0.30	9.9	24.9	
Road at	WBT/R	В	0.67	17.2	#107.4	Α	0.52	10.8	98.9	Α	0.38	8.3	59.6	
Apolune	NBL	С	0.77	38.0	52.0	С	0.78	65.9	63.7	С	0.76	65.5	60.4	
Street	NBT/R	Α	0.14	0.4	0.0	Α	0.14	0.5	0.0	Α	0.32	9.5	13.9	
Signalized	SBL	Α	0.59	29.6	34.3	Α	0.60	54.9	43.5	Α	0.55	53.6	37.4	
	SBT/R	Α	0.07	0.2	0.0	Α	0.04	0.1	0.0	Α	0.18	11.5	10.2	
	Overall	В	0.70	18.6	-	Α	0.64	19.1	-	Α	0.48	18.4	-	
Cambrian	EB	-	-	-	-	-	-	-	-	-	-	-	-	
Road at	WB	Α	0.01	8.6	0.0	Α	0.01	9.0	0.0	Α	0.01	7.7	0.0	
Temporary	NB	С	0.08	20.3	2.3	D	0.25	29.7	6.8	В	0.09	11.2	2.3	
Driveway Unsignalized	Overall	Α	-	0.4	-	A	-	1.0	-	Α	-	1.4	-	

Notes: Saturation flow rate of 1800 veh/h/lane

Peak Hour Factor = 1.00

V/C = volume-to-capacity ratio

Queue is measured in metres

Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

Capacity issues will remain at the intersection of Cambrian Road at River Mist Road, and on the westbound movement at the Cambrian Road at River Mist Road intersection may start to experience high delays and extended queues during the AM and Saturday peak hours due to the background developments. The capacity issues are due to the background developments and are considered the responsibility of the City to address through DC funding.

The westbound shared through/right-turn movement at the intersection of Cambrian Road at Apolune Street during the AM peak may be subject to extended queues at this horizon due to the background developments.

7.3 2024 Future Total Operations

Figure 18 illustrates the 2024 future total volumes and Table 14 summarizes the 2024 future total intersection operations. Synchro 11 has been used to model the unsignalized intersections and HCM 2010 methodology was used for unsignalized intersection operation. The synchro worksheets for the 2024 future total horizon are provided in Appendix J.

Signal warrant analysis was performed for the intersection of Cambrian Road at River Mist Road and continues to not meet signal warrant. As the City does not have a planned improvement at this location, it is assumed to remain as an all-way stop-controlled intersection. Signal warrant calculation sheets are provided in Appendix H.

Figure 18: 2024 Future Total Volumes

			AM Pe	ak Hour			PM Pe	ak Hour		SAT Peak Hour				
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
Cambrian	EB	F	1.05	86.4	123.8	F	1.01	60.5	108.0	В	0.33	13.0	10.5	
Road at	WB	E	0.92	48.7	75.8	F	1.03	74.1	124.5	С	0.70	21.1	43.5	
River Mist	NB	D	0.73	28.2	42.0	С	0.48	16.9	18.0	D	0.83	31.7	69.8	
Road	SB	С	0.33	16.1	10.5	В	0.18	13.1	4.5	В	0.16	11.5	4.5	
Unsignalized	Overall	F	-	54.9	-	F	-	56.7	-	С	-	23.9	-	
	EBL	Α	0.02	8.3	2.7	Α	0.06	5.2	5.4	Α	0.06	5.0	6.0	
	EBT/R	Α	0.37	9.1	43.9	Α	0.49	7.7	86.8	Α	0.33	5.4	44.7	
Cambrian	WBL	Α	0.06	8.2	6.6	Α	0.12	5.7	9.3	Α	0.15	5.7	11.5	
Road at	WBT/R	Α	0.58	13.1	84.1	Α	0.45	7.4	71.3	Α	0.32	5.7	42.3	
Apolune	NBL	В	0.63	32.9	35.0	В	0.70	67.0	48.8	В	0.70	67.4	46.7	
Street	NBT/R	Α	0.09	0.2	0.0	Α	0.08	0.3	0.0	Α	0.28	12.7	12.3	
Signalized	SBL	Α	0.55	30.4	27.6	Α	0.54	57.6	34.4	Α	0.48	56.1	29.9	
	SBT/R	Α	0.05	0.2	0.0	Α	0.03	0.1	0.0	Α	0.19	14.4	10.4	
	Overall	Α	0.59	15.6	-	Α	0.52	15.4	-	Α	0.38	16.0	-	

			AM Pe	ak Hour			PM Peak Hour				SAT Peak Hour			
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
Cambrian	EB	-	-	-	-	-	-	-	-	-	-	-	-	
Road at	WB	Α	0.01	8.3	0.0	Α	0.01	8.7	0.0	Α	0.01	7.5	0.0	
Temporary	NB	С	0.07	17.4	1.5	С	0.18	22.2	5.3	Α	0.07	9.8	1.5	
Driveway Unsignalized	Overall	Α	-	0.4	-	Α	-	0.9	-	Α	-	2.0	-	
Cambrian	EB	Α	0.02	8.6	0.8	Α	0.04	8.8	0.8	Α	0.05	8.4	0.8	
Road at Site	WB	-	-	-	-	-	-	-	-	-	-	-	-	
Access #1	SB	С	0.12	16.2	3.0	С	0.33	21.8	10.5	С	0.27	17.1	8.3	
Unsignalized	Overall	Α	-	0.8	-	Α	-	2.1	-	Α	-	2.4	-	

Saturation flow rate of 1800 veh/h/lane

Notes: Peak Hour Factor = 1.00

V/C = volume-to-capacity ratio Queue is measured in metres Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

The study area intersections will operate similar to the 2024 future background condition. No additional capacity issues are noted.

The site is anticipated to generate less than a 2.3% increase in traffic during the weekday peak hours and less than a 4.5% increase during the Saturday peak at Cambrian Road at the River Mist Road intersection. These volume increases are not considered significant impacts on the intersections and remain the responsibility of the City to address through DC funding.

7.4 2029 Future Total Operations

Figure 19 illustrates the 2029 total volumes and Table 15 summarizes the 2029 total intersection operations. Synchro 11 has been used to model the unsignalized intersections and HCM 2010 methodology was used for unsignalized intersection operation. The synchro worksheets for the 2029 future total horizon are provided in Appendix K.

Signal warrant analysis was performed for the intersection of Cambrian Road at River Mist Road and continues to not meet signal warrant. As the City does not have a planned improvement at this location, it is assumed to remain as an all-way stop-controlled intersection. Signal warrant calculation sheets are provided in Appendix H.

42(27)[52] 0(0)[2] 176(128)[108] 49(31)[33] 16(12)[13] 71(38)[40] 51(76)[82] 397(494)[480] 51(128)[74] 96(137)[120] - 626(668)[226] - 9(6)[7] 464(429)[287] 60(119)[136] 33(68)[62] 595(624)[491] 14(42)[46] 257(461)[264] 129(255)[232] 532(647)[176] Cambrian 25(38)[23] 511(501)[420] 96(167)[117] 18(38)[50] **1**537(644)[439] 22(57)[66] - 122(93)[117] - 0(0)[1] - 270(193)[181] · 109(106)[82] · 50(15)[10] · 199(135)[112] 6(9)[10] Temporary Driveway

Figure 19: 2029 Future Total Volumes

Table 15: 2029 Future Total Intersection Operations

			AM Peak Hour				PM Pe	ak Hour		SAT Peak Hour				
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
Cambrian	EB	F	1.30	167.3	193.5	F	1.28	140.0	189.0	Е	0.95	45.3	87.0	
Road at	WB	F	1.11	83.5	108.0	F	1.28	142.7	189.8	F	1.06	86.6	141.8	
River Mist	NB	Е	0.84	35.6	50.3	С	0.58	19.8	22.5	С	0.43	15.6	15.0	
Road	SB	С	0.37	17.9	11.3	В	0.21	14.4	5.3	В	0.19	13.0	5.3	
Unsignalized	Overall	F	-	100.0	-	F	-	117.6	-	F	-	57.0	-	
	EBL	Α	0.04	9.5	3.6	Α	0.09	7.5	8.2	Α	0.08	7.2	8.5	
	EBT/R	Α	0.46	11.2	50.6	Α	0.60	11.9	133.3	Α	0.42	8.1	70.4	
Cambrian	WBL	Α	0.12	9.9	10.3	Α	0.31	10.4	23.9	Α	0.32	10.3	26.9	
Road at	WBT/R	В	0.67	17.3	#107.6	Α	0.53	10.9	99.8	Α	0.38	8.3	60.2	
Apolune	NBL	С	0.77	38.0	52.0	С	0.78	65.9	63.7	С	0.76	65.5	60.4	
Street	NBT/R	Α	0.15	0.4	0.0	Α	0.15	0.5	0.0	Α	0.34	9.3	14.2	
Signalized	SBL	Α	0.60	30.1	34.9	В	0.61	55.7	44.4	Α	0.59	55.9	39.0	
	NBT/R	Α	0.07	0.2	0.0	Α	0.04	0.1	0.0	Α	0.18	11.5	10.2	
	Overall	В	0.70	18.6	-	В	0.64	19.2	-	Α	0.48	18.6	-	
Cambrian	EB	-	-	-	-	-	-	-	-	-	-	-	-	
Road at	WB	Α	0.01	8.6	0.0	Α	0.01	9.1	0.0	Α	0.01	7.7	0.0	
Temporary	NB	С	0.08	20.8	2.3	D	0.25	30.8	7.5	В	0.09	11.6	2.3	
Driveway	Overall	Α	_	0.4	_	Α	_	1.1	_	Α	_	1.3	_	
Unsignalized	Overall		_	0.4	_	^	_	1.1	_		_	1.5		
Cambrian	EB	Α	0.02	8.8	0.8	Α	0.04	9.2	0.8	Α	0.05	8.7	1.5	
Road at Site	WB	-	-	-	-	-	-	-	-	-	-	-	-	
Access #1	SB	С	0.14	18.6	3.8	D	0.42	29.6	15.0	С	0.35	22.0	11.3	
Unsignalized	Overall	Α	-	0.8	-	Α	-	2.3	-	Α	-	2.5	-	

Saturation flow rate of 1800 veh/h/lane

Peak Hour Factor = 1.00 Notes: V/C = volume-to-capacity ratio Queue is measured in metres

Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

The Cambrian Road at River Mist Road intersection will operate similar to the 2029 future background condition. No additional capacity issues are noted. Compared to the 2024 future total condition, operational changes and increased queuing are similar to the changes between 2024 and 2029 future background conditions.

As outlined in the 2024 future total conditions, the site-generated volumes will have minimal impact the intersection of Cambrian Road at River Mist Road. The capacity issues are due to the background developments and are considered the responsibility of the City to address through DC funding.

7.5 Modal Share Sensitivity and Demand Rationalization Conclusions

7.5.1 Network Rationalization

The background conditions identify capacity constraints related to the intersection control at the Cambrian Road at River Mist Road intersection. Specifically, these are related to the eastbound movement during the AM and PM peak hours and westbound movement during the PM peak hour by 2024, and for the westbound movement during the AM and Saturday peak hours by 2029. These operational constraints are expected and have been reported previously in area TIAs that have assessed these intersections. The proposed site has minimal impact on the Cambrian Road volumes.

In the short term, motorist behavior may start to change to take alternative routes through the community to avoid these constraints. This has already been occurring with area diversions to Half Moon Bay at Greenbank Road where the City has addressed these diversions with a new mini-roundabout intersection.

Ultimately, the signalization of the intersection would be a local improvement for operations at this intersection, and more regional solution is the Re-Aligned Greenbank Road implementation south beyond Cambrian Road. The segment south of Cambrian Road would allow motorists to access the north-south arterial road network from east-west collections (e.g. Dundonald) rather than needing to use Cambrian Road for that connectivity.

Beyond the infrastructure noted, the subject site is a step towards mitigating the current vehicle trips headed to retail and grocery options north of the Jock River. It may not have a notable reduction on Cambrian Road at this time, but it likely has regional benefits that balance out the existence of the local constraints.

7.5.2 Development Rationalization

The proposed trip generation rates and modal shares are consistent with the surrounding area context and do not unduly impact the surrounding road network. No site specific demand rationalization is considered necessary as part of this TIA.

8 Development Design

8.1 Design for Sustainable Modes

The proposed development is a retail development with surface parking for both automobiles and bicycles. A total of 122 vehicle parking spaces and 18 bike parking spaces will be provided for the pharmacy and retails.

Future pedestrian and cycling facilities along Cambrian Road and future Greenbank Road are planned to be provided beyond the study horizon.

8.2 Circulation and Access

Within the study horizon, Access #1 will accommodate vehicles accessing the site, and access will be all-movement access. The two-way access onto Cambrian Road is 9.0 metres wide, and the throat length is 12.9 metres. The internal drive aisles are 6.7 metres. The loading areas are provided at the back of Building A/B and between

Buildings C and D. The delivery trucks and garbage collection vehicle turning templates were reviewed to confirm movements will be permitted on site, and the turning templates are provided in Appendix L.

Beyond 2031, Access #1 will become right-in/right-out with the new median as part of the Re-Aligned Greenbank Road and Cambrian Road signalized intersection when constructed by the City. Similarly, the right-in/right-out Accesses #2 and #3 will be opened with the Re-Aligned Greenbank Road construction. Access #2 width will be 7.6 metes and throat length will be 14.0 metres, serving automobile movements, and Access #3 width will be 9.0 metres and throat length will be 70.0 metres, serving as truck access for Building A/B.

Access #1 is approximately 95 metres from the future Re-Aligned Greenbank Road and Cambrian Road intersection, which meets the minimum corner clearance of 70 metres from TAC (2017). On the south side of Cambrian Road, the 3845 Cambrian Road development has an access proposed approximately 30 metres to the east of Access #1. TAC notes that the relative location should be examined but provides no direct guidance on the desirable offset except in conditions with inter-development interaction is expected to be significant. The drive-way volumes are not considered to be significant and low inter-development interaction is expected. As further examination, the left-turn movements were modeled with Auto-Turn to show possible conflicts and are provided in Appendix L. General automobile and larger truck (garbage truck) movements will have no overlap in travel sweeps and can be completed without concern should they proceed at the same time. Truck/trailer (WB-20) vehicles would overlap should they proceed to make opposing left-turn movements at the same time. This situation is considered to be an exceedingly rare occurrence and would not be a typical design consideration at access locations. Overall, this condition can be permitted during the interim condition prior to Cambrian Road becoming a divided road as part of the Re-Aligned Greenbank Road construction, where no interaction between the access would be permitted.

Beyond 2031, Access #2 would be located within 65 metres of the future Re-Aligned Greenbank Road and Cambrian Road intersection, which is closer than a typical 70 metre clearance requirement, and within the left-tun storage length plus bay taper for the southbound movement. The right-in/right-out restrictions on the future access conditions necessitate accesses be provided on both Cambrian Road and Re-Aligned Greenbank Road. While the Cambrian Road frontage and future signalization at Re-Aligned Greenbank limit the ability to separate the loading access from the shopper entrance, Re-Aligned Greenbank Road would allow these movements to be separated. Overall, the proposed Access #2 location has been located as far away from the future signalized intersection as possible, given lot size, site design and tenant requirements, and is a typical condition that is experienced throughout the City of Ottawa.

The current design activities for Re-Aligned Greenbank Road will need their design to consider and be supportive of the surrounding land-use, either approved, in application, or planned through the Barrhaven South Community Design Plan and Barrhaven South Community Core Concept Plan and Design Framework.

Access #3 is located beyond the corner clearance requirement of left-tun storage length plus bay taper.

9 Parking

9.1 Parking Supply

The site provides a total of 122 vehicle surface parking spaces and 18 bicycle parking spaces. The minimum parking provision is 3.6 vehicle parking spaces per 100 m² of gross floor area and 1 bicycle per 250 m² of gross floor area, which is 122 vehicle parking spaces and 13 bicycle parking spaces, and the minimum parking requirements are satisfied.

10 Boundary Street Design

Table 16 summarizes the MMLOS analysis for the boundary streets of Cambrian Road. The boundary street analysis is based on the land use of the "General Urban Area". The MMLOS worksheets have been provided in Appendix M.

Table 16: Boundary Street MMLOS Analysis

Sagment	Pedesti	rian LOS	Bicyc	le LOS	Trans	it LOS	Truck LOS	
Segment	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target
Cambrian Road (Existing)	F	С	F	В	N/A	N/A	N/A	N/A
Cambrian Road (Future)	Α	С	Α	В	N/A	N/A	N/A	N/A
Re-Aligned Greenbank Road (Future)	F	С	Α	В	В	В	Α	D

Cambrian Road does not meet the pedestrian and bicycle MMLOS targets in existing condition but will be met in the future conditions.

Future Re-Aligned Greenbank Road will not meet the pedestrian MMLOS target, and needs at least 2 metre-wide of sidewalk and boulevard. The City's design team will need to rationalize the various elements and targets for the roadway.

11 Access Intersections Design

11.1 Location and Design of Access

The site is proposed to have a full-movement access (Access #1) within the study horizon years. Once the Re-Aligned Greenbank Road is built (Beyond 2031), right-in/right-out Access #2 and Access #3 will be provided along Re-Aligned Greenbank Road. The access along Cambrian Road is proposed to be 9.0 metres wide, while the future Access #2 is proposed to be 7.6 metres wide and Access #3 is proposed to be 9.0 metres wide. All accesses widths meet the private approach by law.

The TAC Geometric Design Guidelines throat length requirements for a shopping if this size on an arterial road is 15.0 metres, as measured from the end of the corner radii. Access #1 will have a throat length of 12.9 metres once the future signalized intersection is constructed. This length is less than 15.0 metres primarily due to the larger radii required to support larger truck movements, and the actual space from the back of sidewalk to the first conflict point would be approximately 21.0 metres. This is similar to the future conditions at Access #2 where the length from the radii is 14.0 metres while the actual space is 19.0 metres. Access #3 does meet the 15.0 metre requirements.

Overall, no concerns are noted with the proposed configurations and are considered to meet the intentions of TAC in function and future operations.

11.2 Intersection Control

Based upon the projected volumes, the site access will have stop-control on the minor approach.

11.3 Access Intersection Design

11.3.1 Future Access Intersection Operations

The operations are noted in Section 7.4 and both 2024 and 2029 future total access intersections operate well with all movements and the overall intersection operating at LOS A.

11.3.2 Access Intersection MMLOS

Based upon the projected volumes, the site access will have stop-control on the minor approach.

11.3.3 Recommended Design Elements

No changes to the site access are proposed.

12 Transportation Demand Management

12.1 Context for TDM

The mode shares used within the TIA represent the unmodified district shares for the Barrhaven South. A shift from auto modes to transit modes, in both the subject and surrounding developments, may be anticipated once the BRT network is extended along the Re-Aligned Greenbank Road Corridor, but any such shifts are expected to occur outside of the analysis horizons of this report. Overall, the modal shares are likely to be achieved and supporting TDM measures should be provided.

The subject site is within the Barrhaven South Community Core design priority area.

12.2 Need and Opportunity

The subject site has been assumed to rely predominantly on auto travel and those assumptions have been carried through the analysis.

12.3 TDM Program

The "suite of post occupancy TDM measures" has been summarized in the TDM checklists for the residential land uses. The checklist is provided in Appendix N. The key TDM measures recommended include:

Provide a multimodal travel option package to new/relocating employees

In addition to these measures, providing more than the minimum bicycle parking required, will help in achieving the mode shares for the proposed development and is recommended.

13 Transit

13.1 Route Capacity

In Section 5.1 the trip generation by mode was estimated, including an estimate of the number of transit trips that will be generated by the proposed development. Table 17 summarizes the transit trip generation.

Table 17: Trip Generation by Transit Mode

	Travel	Mode	AN	/I Peak Ho	ur	PΝ	/I Peak Ho	ur	SAT Peak Hour			
	Mode	Share	In	Out	Total	In	Out	Total	In	Out	Total	
Γ	Transit	1%	0	0	0	2	2	4	2	2	4	

The proposed development is anticipated to generate an additional 4 PM and 4 Saturday peak hour two-way transit trips. Overall, the existing transit service is expected to be accommodate these increased riders and be predominantly localized trips within Barrhaven South.

13.2 Transit Priority

Examining the study area intersection delays, negligible impacts are noted on the transit movements and no decrease in transit LOS at the study area intersections are noted as a result of forecasted site-generated traffic. It is expected that the local transit service may be reconfigured or improved by the City once the Re-Aligned Greenbank Road and Cambrian Road widening are completed, and it is outside of the study horizons.

14 Network Intersection Design

14.1 Network Intersection Control

No change to the existing signalized control is recommended for the network intersections.

14.2 Network Intersection Design

14.2.1 2024 & 2029 Future Total Network Intersection Operations

The operations are noted in Section 7.4 and no changes on the intersections within the study area are required.

14.2.2 Network Intersection MMLOS

Table 18 summarizes the MMLOS analysis for the intersections of Cambrian Road at Apolune Street/Elevation Road. The existing intersection is not signalized and therefore only the future conditions will be analyzed. The future intersection geometry is assumed to be the same as the functional design completed by Stantec without cycling infrastructure along the Cambrian Road within the study horizon years. The intersection analysis is based on the land use of "General Urban Area". The MMLOS worksheets has been provided in Appendix M.

Table 18: Study Area Intersection MMLOS Analysis

Interception	Pedestrian LOS		Bicycle LOS		Transit LOS		Truck LOS		Auto LOS	
Intersection	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target	ALOS	Target
Cambrian Rd at Apolune St / Elevation Rd	E	С	E	В	N/A	N/A	N/A	N/A	В	D

The MMLOS targets will not be met for the pedestrian and bicycle LOS in the future condition at the intersection of Cambrian Road at Apolune Street/Elevation Road. The pedestrian level of service would require crossing distances of a maximum of three lane widths per crossing to meet a LOS C. The left-turn configurations would need to be improved/protected on each approach.

The MMLOS review for the Re-Aligned Greenbank Road is considered a responsibility of the City and their current design exercise. As they are currently working through this design, any review within this study would be premature.

14.2.3 Recommended Design Elements

No study area intersection design elements are proposed as part of this study.

15 Summary of Improvements Indicated and Modifications Options

The following summarizes the analysis and results presented in this TIA report:

Proposed Site and Screening

- The proposed site includes a 16,900 sq.ft of pharmacy and 20,960 sq.ft of retail buildings totalling 37,920 sq. ft
- The concept plan includes one new full-movement access on Cambrian Road in the interim condition
- In the ultimate condition, two right-in/right-out accesses are proposed on Re-Aligned Greenbank Road corridor, and the access on Cambrian Road will be two right-in/right-out access
- The ultimate condition is beyond the study horizon year, and would not be included in this report
- The development is proposed to be completed as a single phase by 2024
- The trip generation and location triggers were met for the TIA Screening

Existing Conditions

- Cambrian Road is an arterial road, and River Mist Road and Apolune Street are collector roads in the study area
- Sidewalks are provided on both sides of Cambrian Road east of Seeley's Bay Street, River Mist Road, and Apolune Street
- An approximate 760-metre sidewalk is provided on the north side of Cambrian Road west of Seeley's Bay Street
- The Re-Aligned Greenbank Road will be a spine cycling route, and Cambrian Road, Apolune Street, and River Mist Road are local routes
- South of Cambrian Road, Apolune Street will continue as Elevation Road, is a local route, and is anticipated to include multi-use pathways
- Within the study area, there are a total of two collisions during the 2016-2020 time period, with one
 involving property damage only and the remaining one having non-fatal injuries
- During peak hours in the existing conditions, the study area intersections operate well

Development Generated Travel Demand

- The proposed development is forecasted produce 64 AM, 177 PM, and 228 Saturday new peak hour people trips
- Of the forecasted people trips, a total of 33 AM, 41 PM, and 63 Saturday new peak hour two-way vehicle trips are projected as a result of the proposed development
- Of the forecasted trips, 10 % are anticipated to travel both the north and west, 30 % to the south, and 50 % to the east
- The proposed trip generation rates and modal shares are consistent with the surrounding area context and do not unduly impact the surrounding road network

Background Conditions

- The signalized intersection of Cambrian Road at Apolune Street/Elevation Road, including the planned auxiliary lanes will be analyzed at all future horizons
- All growth is assumed to be captured within the background development; therefore, no annual growth rate will be applied
- The background conditions identify capacity constraints related to the intersection control at the Cambrian Road at River Mist Road intersection
- The capacity issues are due to the background developments and are considered the responsibility of the City to address through DC funding
- In the short term, motorist behavior may start to change to take alternative routes through the community to avoid these constraints
- Ultimately, the signalization of the intersection would be a local improvement for operations at the Cambrian Road at River Mist Road intersection, and more regional solution is the Re-Aligned Greenbank Road implementation south beyond Cambrian Road

Development Design

- The proposed development is a retail development with surface parking for both automobiles and bicycles
- Future pedestrian and cycling facilities along Cambrian Road and future Greenbank Road are planned to be provided beyond the study horizon

- Two loading zones are provided within the development
- The delivery trucks and garbage collection vehicle turning templates were reviewed to confirm movements will be permitted on site
- Access #1 is approximately 95 metres from the future Re-Aligned Greenbank Road and Cambrian Road intersection, which meets the minimum corner clearance of 70 metres from TAC (2017)
- Access #2 would be located within 65 metres of the future Re-Aligned Greenbank Road and Cambrian Road intersection, which is closer than a typical 70 metre clearance requirement, and within the left-tun storage length plus bay taper for the southbound movement
- The proposed Access #2 location has been located as far away from the future signalized intersection as possible, given lot size, site design and tenant requirements, and is a typical condition that is experienced throughout the City of Ottawa
- Access #3 is located beyond the corner clearance requirement of left-tun storage length plus bay taper
- On the south side of Cambrian Road, the 3845 Cambrian Road development has an access proposed approximately 30 metres to the east of Access #1, and general automobile and larger truck (garbage truck) movements will have no overlap in travel sweeps

Parking

- The site provides a total of 122 vehicle surface parking spaces and 18 bicycle parking spaces
- The minimum parking requirements are satisfied

Boundary Street Design

- Cambrian Road does not meet the pedestrian and bicycle MMLOS targets in existing condition but will be met in the future conditions
- Future Re-Aligned Greenbank Road will not meet the pedestrian MMLOS target and needs at least 2 metre-wide of sidewalk and boulevard, and should be rationalized through the City's design team

Access Intersections Design

- The site is proposed to have a 9.0-meter-wide full-movement access (Access #1) within the study horizon years and will support shopper and truck movements
- Based upon the site-generated trips, Access #1 will be stop-control on the minor approach
- Beyond 2031, Access #2 is proposed 7.6 mete-wide and Access #3 is proposed 9.0 mete-wide and will be
 opened along Re-Aligned Greenbank Road when it is constructed by the City
- Access #2 will be for automobile movements and access #3 will predominantly be the truck access for Building A/B
- The throat length requirement of 15.0 metres, per TAC, will not be strictly met at Access #1 and Access #2
- The curb radii required at the accesses overlap with the throat length area, where a total distance from the back of sidewalk is approximately 21 metres for Access #1 and 19.0 metres for Access #2
- Given the available distance between the roadway sidewalk and the first conflict point internal to the site
 are greater than 15.0 metres, are considered to meet the intentions of TAC in function and future
 operations
- No concerns are noted with the proposed configurations and are considered to meet the intentions of TAC in function and future operations
- The 2024 and 2029 future total access intersections operate well with all movements and the overall intersection operating at LOS A

No additional design elements are proposed

TDM

- Supportive TDM measures to be included within the proposed development should include:
 - Provide a multimodal travel option package to new/relocating employees
- Providing more than the minimum bicycle parking required will help in achieving the mode shares for the proposed development and is recommended

Transit

- The proposed development is anticipated to generate an additional 4 PM and 4 Saturday peak hour twoway transit trips
- The existing transit service is expected to be accommodate these increased riders and be predominantly localized trips within Barrhaven South
- Negligible impacts are noted on the transit movements and no decrease in transit LOS at the study area intersections are noted as a result of forecasted site-generated traffic
- It is expected that the local transit service may be reconfigured or improved by the City once the Re-Aligned Greenbank Road and Cambrian Road widening are completed, and it is outside of the study horizons

Network Intersection Design

- The capacity issues are due to the background developments and are considered the responsibility of the
 City to address through DC funding
- No changes on the intersections within the study area are required
- No change to the existing signalized control is recommended for the network intersections
- The MMLOS targets will not be met the pedestrian and bicycle LOS at the intersections of Cambrian Road at Apolune Street/Elevation Road in the future conditions within the study horizon years
- Cambrian Road at Apolune Street/Elevation Road would require a maximum of three lane-widths per crossing and improved left-turn configurations on each approach to meet the PLOS and BLOS at the intersection
- The MMLOS review for the Re-Aligned Greenbank Road is considered a responsibility of the City and their current design exercise. As they are currently working through this design, any review within this study would be premature

16 Conclusion

It is recommended that, from a transportation perspective, the proposed development applications proceed.

Prepared By:

Reviewed By:

Yu-Chu Chen, EIT Transportation Engineering-Intern Andrew Harte, P.Eng. Senior Transportation Engineer

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2017 TIA Guidelines Step 1 - Screening Form Date: 06-Jul-22
Project Number: 2022-066
Project Reference: 3850 Cambrian

1.1 Description of Proposed Development	
Municipal Address	3850 Cambrian Road
Description of Location	Ward 3. 1.28 ha of rectangular parcel
Land Use Classification	General Mixed-Use Zone (GM[1628])
Development Size	Retail blocks totaling 36,748 sq ft
A 0000000	An access onto Cambrian Road, future access to Re-
Accesses	Aligned Greenbank Road
Phase of Development	Single
Buildout Year	2025
TIA Requirement	Full TIA Required

1.2 Trip Generation Trigger	
Land Use Type	Destination retail
Development Size	3,414 G.F.A.
Trip Generation Trigger	Yes

1.3 Location Triggers		
Does the development propose a new driveway to a boundary street that is		
designated as part of the City's Transit Priority, Rapid Transit or Spine	Yes	
Bicycle Networks?		Future access
Is the development in a Design Priority Area (DPA) or Transit-oriented	Yes	Barrhaven South Community
Development (TOD) zone?	res	Core Design Priority Area
Location Trigger	Yes	

1.4. Safety Triggers		
Are posted speed limits on a boundary street 80 km/hr or greater?	No	
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?	No	
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?	No	Future Re-Aligned Greenbank Road and Cambrian Road will be within 150m
Is the proposed driveway within auxiliary lanes of an intersection?	No	Future Re-Aligned Greenbank Road and Cambrian Road will have medians.
Does the proposed driveway make use of an existing median break that serves an existing site?	No	
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?	No	
Does the development include a drive-thru facility?	No	
Safety Trigger	No	

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{\text{appropriate field(s)}}$] is either transportation engineering $\sqrt{\text{or}}$ or transportation planning \square .
- License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at Ottawa (City)	this 20 day of September	, 2018
Name:	Andrew Harte (Please Print)	_
Professional Title:	Professional Engineer	
Signature	of Individual certifier that s/he meets the above four criteria	

Office Contact Information (Please Print)
Address: 13 Markham Avenue
City / Postal Code: Ottawa / K2G 3Z1
Telephone / Extension: (613) 697-3797
E-Mail Address: Andrew.Harte@CGHTransportation.com

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{\text{appropriate field(s)}}$] is either transportation engineering $\sqrt{\text{or}}$ or transportation planning \square .
- License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at Ottawa (City)	this 20 day of September	, 2018
Name:	Andrew Harte (Please Print)	
Professional Title:	Professional Engineer	
Signature	of Individual certifier that s/he meets the above four criteria	-

Office Contact Information (Please Print)									
Address: 6 Plaza Court									
City / Postal Code: Ottawa / K2H 7W1									
Telephone / Extension: (613) 697-3797									
E-Mail Address: Andrew.Harte@CGHTransportation.com									

Appendix B

Turning Movement Counts

Turning Movement Count - Study Results

CAMBRIAN RD @ RIVER MIST RD

 Survey Date:
 Wednesday, October 23, 2019
 WO No:
 38918

 Start Time:
 07:00
 Device:
 Miovision

Full Study Diagram

Transportation Services - Traffic Services

Turning Movement Count - Study Results

CAMBRIAN RD @ RIVER MIST RD

 Survey Date:
 Wednesday, October 23, 2019
 WO No:
 38918

 Start Time:
 07:00
 Device:
 Miovision

Full Study Peak Hour Diagram

July 14, 2020 Page 1 of 8 July 14, 2020 Page 2 of 8

Turning Movement Count - Peak Hour Diagram

CAMBRIAN RD @ RIVER MIST RD

 Survey Date:
 Wednesday, October 23, 2019
 WO No:
 38918

 Start Time:
 07:00
 Device:
 Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

CAMBRIAN RD @ RIVER MIST RD

 Survey Date:
 Wednesday, October 23, 2019
 WO No:
 38918

 Start Time:
 07:00
 Device:
 Miovision

Comments

Turning Movement Count - Peak Hour Diagram

CAMBRIAN RD @ RIVER MIST RD

 Survey Date:
 Wednesday, October 23, 2019
 WO No:
 38918

 Start Time:
 07:00
 Device:
 Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Study Results

CAMBRIAN RD @ RIVER MIST RD

 Survey Date:
 Wednesday, October 23, 2019
 WO No:
 38918

 Start Time:
 07:00
 Device:
 Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, October 23, 201

Total Observed U-Turns

Northbound: 1 Southbound: 0 .99

Eastbound: () Westbound:

								Eastbour	nd: ()		West	tbound:	0						
			RIVE	R MIS	T RD							CA	MBRIA	N RD					
_	No	rthbou	ınd		So	uthbou	ınd			E	astbou	ınd		٧	Vestbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	112	19	133	264	42	6	25	73	337	12	198	38	248	35	227	35	297	545	882
08:00 09:00	113	47	100	260	54	19	25	98	358	13	226	45	284	56	246	36	338	622	980
09:00 10:00	82	9	107	198	22	10	16	48	246	9	149	28	186	46	173	21	240	426	672
11:30 12:30	40	5	71	116	16	7	11	34	150	12	160	25	197	47	157	17	221	418	568
12:30 13:30	24	6	55	85	11	1	14	26	111	8	150	34	192	41	140	26	207	399	510
15:00 16:00	57	17	80	154	50	15	20	85	239	17	229	65	311	85	167	38	290	601	840
16:00 17:00	61	13	87	161	32	15	15	62	223	20	371	76	467	121	254	54	429	896	1119
17:00 18:00	69	14	101	184	34	15	20	69	253	24	355	102	481	127	248	63	438	919	1172
Sub Total	558	130	734	1422	261	88	146	495	1917	115	1838	413	2366	558	1612	290	2460	4826	6743
U Turns				1				0	1				0				0	0	1
Total	558	130	734	1423	261	88	146	495	1918	115	1838	413	2366	558	1612	290	2460	4826	6744
EQ 12Hr	776	181	1020	1978	363	122	203	688	2666	160	2555	574	3289	776	2241	403	3419	6708	9374
Note: These	values a	re calcı	lated b	y multipl	ying the	totals b	y the a	ppropriate	e expans	ion fac	tor.			1.39					
AVG 12Hr	658	153	865	1678	308	104	172	584	2399	136	2167	487	2790	658	1901	342	2900	6037	8437
Note: These	volumes	are cal	culated	by multi	plying th	ne Equiv	alent 1	2 hr. tota	ls by the	AADT	factor.			0.9					
AVG 24Hr	862	201	1134	2198	403	136	225	765	2963	178	2839	638	3654	862	2490	448	3799	7453	10416
Note: These	volumes	are cal	culated	by multi	plying th	ne Avera	age Dai	ly 12 hr. 1	totals by	12 to 2	4 expan	sion fac	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

2020-Jul-14 Page 3 of 3 July 14, 2020 Page 3 of 8

Turning Movement Count - Study Results

CAMBRIAN RD @ RIVER MIST RD

 Survey Date:
 Wednesday, October 23, 2019
 WO No:
 38918

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute Increments

	RIVER MIST RD											CAMBRIAN RD							
	No	orthboi	und		Sc	uthbou	ınd			Е	astbour	nd	Westbound						
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	24	4	33	61	10	0	4	14	1	3	50	7	60	9	57	2	68	1	203
07:15 07:30	22	5	37	64	10	2	7	19	3	2	53	9	64	11	46	8	65	3	212
07:30 07:45	28	5	30	63	13	2	7	22	2	4	43	11	58	7	61	12	80	2	223
07:45 08:00	38	5	33	76	9	2	7	18	2	3	52	11	66	8	63	13	84	2	244
08:00 08:15	32	12	28	72	9	1	10	20	5	5	57	12	74	12	65	14	91	5	257
08:15 08:30	33	28	22	83	26	6	6	38	5	4	56	10	70	10	58	15	83	5	274
08:30 08:45	18	5	21	44	14	7	3	24	4	2	63	16	81	19	61	3	83	4	232
08:45 09:00	30	2	29	61	5	5	6	16	1	2	50	7	59	15	62	4	81	1	217
09:00 09:15	32	7	52	91	9	5	4	18	4	1	49	12	62	13	66	5	84	4	255
09:15 09:30	18	0	18	36	9	2	3	14	0	5	38	3	46	13	38	5	56	0	152
09:30 09:45	14	1	26	41	2	1	3	6	1	1	37	3	41	13	34	7	54	1	142
09:45 10:00	18	1	11	30	2	2	6	10	1	2	25	10	37	7	35	4	46	1	123
11:30 11:45	16	0	21	37	2	3	5	10	3	2	38	10	50	13	46	2	61	3	158
11:45 12:00	7	1	8	16	5	1	5	11	1	2	39	4	45	10	41	5	56	1	128
12:00 12:15	9	3	20	32	7	2	1	10	1	2	47	5	54	12	41	4	57	1	153
12:15 12:30	8	1	22	31	2	1	0	3	5	6	36	6	48	12	29	6	47	5	129
12:30 12:45	10	2	16	29	2	0	5	7	1	2	41	6	49	8	38	7	53	1	138
12:45 13:00	7	0	7	14	6	1	4	11	1	1	40	12	53	12	36	2	50	1	128
13:00 13:15	2	3	17	22	2	0	4	6	3	3	33	8	44	10	30	6	46	3	118
13:15 13:30	5	1	15	21	1	0	1	2	2	2	36	8	46	11	36	11	58	2	127
15:00 15:15	10	2	11	23	21	3	4	28	7	4	61	11	76	18	37	10	65	7	192
15:15 15:30	7	5	14	26	12	4	10	26	2	3	52	16	71	25	40	9	74	2	197
15:30 15:45	12	2	23	37	8	7	2	17	4	6	67	18	91	16	45	7	68	4	213
15:45 16:00	28	8	32	68	9	1	4	14	3	4	49	20	73	26	45	12	83	3	238
16:00 16:15	18	3	24	45	11	4	3	18	2	7	91	17	115	30	63	14	107	2	285
16:15 16:30	8	3	18	29	8	5	5	18	5	3	75	21	99	27	63	12	102	5	248
16:30 16:45	16	3	23	42	7	5	5	17	0	5	119	18	142	29	65	14	108	0	309
16:45 17:00	19	4	22	45	6	1	2	9	3	5	86	20	111	35	63	14	112	3	277
17:00 17:15	13	5	40	58	8	4	5	17	2	6	83	31	120	24	67	14	105	2	300
17:15 17:30	21	3	18	42	8	2	3	13	2	4	85	25	114	35	65	22	122	2	291
17:30 17:45	12	3	21	36	10	5	9	24	3	5	105	23	133	36	58	16	110	3	303
17:45 18:00	23	3	22	48	8	4	3	15	2	9	82	23	114	32	58	11	101	2	278
Total:	558	130	734	1423	261	88	146	495	81	115	1838	413	2366	558	1612	290	2460	81	6,744

Note: U-Turns are included in Totals.

Transportation Services - Traffic Services

Turning Movement Count - Study Results

CAMBRIAN RD @ RIVER MIST RD

 Survey Date:
 Wednesday, October 23, 2019
 WO No:
 38918

 Start Time:
 07:00
 Device:
 Miovision

Full Study Cyclist Volume

		RIVER MIST RE	,	•				
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total	
07:00 07:15	0	0	0	0	1	1	1	
07:15 07:30	0	0	0	0	0	0	0	
07:30 07:45	1	0	1	1 0 1		1	2	
07:45 08:00	0	0	0	0	0	0	0	
08:00 08:15	0	1	1	0	0	0	1	
08:15 08:30	1	0	1	0	0	0	1	
08:30 08:45	0	0	0	0	0	0	0	
08:45 09:00	0	0	0	1	0	1	1	
09:00 09:15	0	0	0	0	0	0	0	
09:15 09:30	0	0	0	0	1	1	1	
09:30 09:45	1	0	1	0	0	0	1	
09:45 10:00	0	0	0	0	0	0	0	
11:30 11:45	0	0	0	0	0	0	0	
1:45 12:00	0	0	0	0	0	0	0	
2:00 12:15	0	0	0	0	0	0	0	
2:15 12:30	0	0	0	0	0	0	0	
2:30 12:45	0	0	0	0	0	0	0	
2:45 13:00	0	0	0	0	0	0	0	
13:00 13:15	0	0	0	0	0	0	0	
3:15 13:30	0	0	0	0	0	0	0	
15:00 15:15	0	2	2	0	0	0	2	
5:15 15:30	1	0	1	0	0	0	1	
5:30 15:45	0	0	0	0	0	0	0	
5:45 16:00	2	0	2	0	0	0	2	
6:00 16:15	0	1	1	0	0	0	1	
16:15 16:30	0	0	0	0	0	0	0	
6:30 16:45	0	0	0	0	0	0	0	
6:45 17:00	0	0	0	0	0	0	0	
7:00 17:15	0	0	0	0	0	0	0	
7:15 17:30	0	0	0	0	0	0	0	
17:30 17:45	0	0	0	0	0	0	0	
17:45 18:00	0	0	0	0	0	0	0	
Total	6	4	10	2	2	4	1/1	

July 14, 2020 Page 4 of 8 July 14, 2020 Page 5 of 8

Turning Movement Count - Study Results

CAMBRIAN RD @ RIVER MIST RD

 Survey Date:
 Wednesday, October 23, 2019
 WO No:
 38918

 Start Time:
 07:00
 Device:
 Miovision

Full Study Pedestrian Volume RIVER MIST RD CAMBRIAN RD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	1	2	3	1	4	5	8
07:15 07:30	0	3	3	7	1	8	11
07:30 07:45	0	5	5	1	4	5	10
07:45 08:00	0	6	6	0	0	0	6
08:00 08:15	1	19	20	3	11	14	34
08:15 08:30	0	8	8	0	13	13	21
08:30 08:45	4	6	10	7	7	14	24
08:45 09:00	4	8	12	2	8	10	22
09:00 09:15	0	0	0	0	1	1	1
09:15 09:30	0	1	1	0	3	3	4
09:30 09:45	0	1	1	0	2	2	3
09:45 10:00	1	1	2	0	3	3	5
11:30 11:45	2	2	4	23	4	27	31
11:45 12:00	0	2	2	0	0	0	2
12:00 12:15	2	5	7	2	4	6	13
12:15 12:30	0	4	4	2	3	5	9
12:30 12:45	1	1	2	0	1	1	3
12:45 13:00	2	2	4	1	3	4	8
13:00 13:15	0	4	4	4	3	7	11
13:15 13:30	0	1	1	0	0	0	1
15:00 15:15	3	9	12	6	30	36	48
15:15 15:30	0	3	3	8	5	13	16
15:30 15:45	2	8	10	0	8	8	18
15:45 16:00	1	12	13	8	3	11	24
16:00 16:15	3	6	9	3	6	9	18
16:15 16:30	2	7	9	1	4	5	14
16:30 16:45	1	2	3	4	0	4	7
16:45 17:00	1	9	10	4	4	8	18
17:00 17:15	1	2	3	1	6	7	10
17:15 17:30	0	0	0	0	6	6	6
17:30 17:45	1	6	7	3	10	13	20
17:45 18:00	0	2	2	1	7	8	10
Total	33	147	180	92	164	256	436

Transportation Services - Traffic Services

Turning Movement Count - Study Results

CAMBRIAN RD @ RIVER MIST RD

 Survey Date:
 Wednesday, October 23, 2019
 WO No:
 38918

 Start Time:
 07:00
 Device:
 Miovision

						F	ull S	tud	у Не	avy	Vel	nicle	es						
			RIVE	R MIS	T RD							CAM	IBRIA	N RD					
	N	orthbo	und		Sc	outhbou	ınd			Е	astbou	nd		W	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	0	1	1	0	0	0	0	1	1	2	1	4	3	4	0	7	11	12
07:15 07:30	0	0	3	3	0	0	0	0	3	0	7	2	9	2	4	1	7	16	19
07:30 07:45	1	0	1	2	0	0	0	0	2	0	3	0	3	1	4	1	6	9	11
07:45 08:00	2	0	0	2	0	0	0	0	2	1	7	2	10	2	5	0	7	17	19
08:00 08:15	0	3	1	4	0	0	1	1	5	0	3	1	4	2	4	1	7	11	16
08:15 08:30	1	2	0	3	2	0	0	2	5	0	5	0	5	1	4	1	6	11	16
08:30 08:45	0	0	3	3	0	1	0	1	4	0	7	0	7	3	8	0	11	18	22
08:45 09:00	1	0	0	1	0	0	0	0	1	1	4	2	7	1	8	0	9	16	17
09:00 09:15	3	0	1	4	0	0	0	0	4	0	0	1	1	1	8	0	9	10	14
09:15 09:30	0	0	0	0	0	0	0	0	0	0	3	0	3	1	1	0	2	5	5
09:30 09:45	0	0	1	1	0	0	0	0	1	0	5	0	5	2	2	1	5	10	11
09:45 10:00	0	0	1	1	0	0	0	0	1	0	4	0	4	2	2	0	4	8	9
11:30 11:45	0	0	2	2	1	0	0	1	3	0	6	1	7	2	1	0	3	10	13
11:45 12:00	0	0	1	1	0	0	0	0	1	0	0	0	0	2	1	0	3	3	4
12:00 12:15	0	0	1	1	0	0	0	0	1	1	3	1	5	1	1	0	2	7	8
12:15 12:30	0	1	3	4	0	1	0	1	5	0	1	0	1	1	2	0	3	4	9
12:30 12:45	0	0	1	1	0	0	0	0	1	0	4	0	4	1	1	1	3	7	8
12:45 13:00	0	0	0	0	0	0	1	1	1	1	4	1	6	1	2	1	4	10	11
13:00 13:15	0	0	2	2	0	0	1	1	3	0	4	1	5	1	0	0	1	6	9
13:15 13:30	1	0	1	2	0	0	0	0	2	1	5	0	6	1	4	0	5	11	13
15:00 15:15	1	0	1	2	5	0	0	5	7	1	4	2	7	1	1	0	2	9	16
15:15 15:30	0	0	1	1	0	0	1	1	2	0	2	1	3	1	2	0	3	6	8
15:30 15:45	1	0	3	4	0	0	0	0	4	0	2	1	3	1	5	0	6	9	13
15:45 16:00	1	0	1	2	0	0	1	1	3	0	7	0	7	1	3	0	4	11	14
16:00 16:15	1	0	1	2	0	0	0	0	2	0	6	0	6	1	3	1	5	11	13
16:15 16:30	2	0	2	4	0	1	0	1	5	0	1	0	1	0	6	0	6	7	12
16:30 16:45	0	0	0	0	0	0	0	0	0	0	1	0	1	1	2	0	3	4	4
16:45 17:00	0	0	3	3	0	0	0	0	3	0	2	1	3	0	0	0	0	3	6
17:00 17:15	0	0	2	2	0	0	0	0	2	0	2	0	2	1	1	0	2	4	6
17:15 17:30	0	0	2	2	0	0	0	0	2	0	3	0	3	0	0	0	0	3	5
17:30 17:45	1	0	2	3	0	0	0	0	3	0	2	0	2	1	1	0	2	4	7
17:45 18:00	0	0	2	2	0	0	0	0	2	0	2	0	2	0	1	0	1	3	5
Total: None	16	6	43	65	8	3	5	16	81	7	111	18	136	39	91	8	138	274	355

July 14, 2020 Page 6 of 8 July 14, 2020 Page 7 of 8

17:45

Total

18:00

0

Transportation Services - Traffic Services

Turning Movement Count - Study Results

CAMBRIAN RD @ RIVER MIST RD

 Survey Date:
 Wednesday, October 23, 2019
 WO No:
 38918

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute U-Turn Total RIVER MIST RD CAMBRIAN RD

Northbound Southbound Eastbound Westbound Time Period Total U-Turn Total U-Turn Total U-Turn Total **U-Turn Total** 07:00 07:15 07:15 07:30 0 0 0 0 07:30 07:45 0 0 0 0 07:45 08:00 0 0 0 0 08:00 08:15 0 08:15 08:30 0 0 08:30 08:45 0 0 0 08:45 09:00 0 0 0 09:00 09:15 0 0 0 09:15 09:30 0 0 0 0 09:30 09:45 0 0 0 0 09:45 10:00 0 0 0 0 11:30 11:45 0 0 0 0 11:45 12:00 0 0 0 12:00 12:15 0 0 0 12:15 12:30 0 0 0 0 12:30 12:45 0 0 0 12:45 13:00 0 0 0 0 13:00 13:15 0 0 0 0 13:15 13:30 0 0 0 0 15:00 15:15 0 0 0 0 15:15 15:30 0 0 0 15:30 15:45 0 0 0 0 15:45 16:00 0 0 0 0 0 16:00 16:15 0 0 0 16:15 16:30 0 0 0 0 16:30 16:45 0 0 0 0 16:45 17:00 0 0 0 0 17:00 17:15 0 0 0 0 17:15 17:30 0 0 0 0 0 17:30 17:45 0 0 0 0 0

July 14, 2020 Page 8 of 8

0

0

0

0

Mattamy Homes

Half Moon Bay West

Figure 9: Net New Site Traffic Volumes

Turning Movement Count Summary Report

Including OFF Peak, PM Peak and PHF
All Vehicles Except Bicycles

Cambr	ian	Roa	nd 8	k Ri	iver	Mis	t Ro	oad										Ва	arrh	ave	en V	Vest,	ON
Survey Da	te:	Satur	day,	Octo	ber 15	5, 202	22					Star	t Time	e:		1100			AAD	T Fa	ctor:		1.1
Weather: A	M:	Mainly	/ Suni	ny 15	° C		Surv	ey Dura	ation:	5	Hrs.	Surv	ey Ho	ours:		1100	- 160	0					
Weather PN	۸:	Overd	ast 12	2º C								Surv	eyor(s):		J. Mo	usse	au					
	(Caml	oria	n Ro	d.	(Caml	oriai	n Ro	d.		F	River	· Mis	t Ro	d.	F	River	Mis	t R	d.		
1		Eas	stbou	nd			We	stbou	ınd				No	rthbou	ınd			Sou	thbo	und			
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
1100-1200	3	233	21	0	257	63	232	39	0	334	591	45	5	85	0	135	32	9	9	0	50	185	776
1200-1300	6	262	39	0	307	69	280	72	0	421	728	40	10	79	0	129	32	13	16	0	61	190	918
1300-1400	16	243	27	0	286	61	253	33	0	347	633	52	8	90	0	150	42	8	14	0	64	214	847
1400-1500	7	264	49	0	320	75	261	40	0	376	696	32	6	68	0	106	26	4	11	0	41	147	843
1500-1600	14	237	40	0	291	77	272	48	0	397	688	48	10	72	0	130	24	4	14	0	42	172	860
Totals	46	1239	176	0	1461	345	1298	232	0	1875	3336	217	39	394	0	650	156	38	64	0	258	908	4244

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

OFF Peak H	our Fa	actor	→	0.	.98									Highe	st F	lourly	Vehic	le Vol	ume l	Betw	een 1	100h &	1500h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1200-1300	6	262	39	0	307	69	280	72	0	421	728	40	10	79	0	129	32	13	16	0	61	190	918
PM Peak Ho	ur Fa	- 4 - -		_																			
I III I CUIT IIC	uiia	ctor 4	<u> </u>	0.	.92									Highe	st F	lourly	Vehic	e Vol	ume l	Betw	een 1	500h &	1900h
PM Peak Hr	LT	ST	RT	UT		LT	ST	RT	UT	Total	Str. Tot.	LT	ST	Highe RT	st I	_	Vehic LT	le Vol	ume I RT	Betw UT	_	500h & Str. Tot.	_

Comments:

OC Transpo buses comprise 50.98% of the heavy vehicle traffic.

Notes:

- 1. Includes all vehicle types except bicycles and electric scooters.
- 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

TRUSTED TRAFFIC DATA

Turning Movement Count Summary, OFF and PM Peak Hour Flow Diagrams

All Vehicles Except Bicycles

Printed on: 10/17/2022 Prepared by: thetrafficspecialist@gmail.com

Printed on: 10/17/2022

Summary: All Vehicles

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: OFF PM Peak

Turning Movement Count Heavy Vehicle Summary (FHWA Class 4-13) Flow Diagram

Comments:

OC Transpo buses comprise 50.98% of the heavy vehicle traffic.

Turning Movement Count All Buses Summary (FHWA Class 4 ONLY) Flow Diagram

Comments:

OC Transpo buses comprise 50.98% of the heavy vehicle traffic.

Printed on: 10/17/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Heavy Vehicles Printed on: 10/17/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Buses Only

Turning Movement Count Bicycle Summary Flow Diagram

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram

Comments:

OC Transpo buses comprise 50.98% of the heavy vehicle traffic.

Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Time Period	Cambrian Rd.	Cambrian Rd.	Total	River Mist Rd.	River Mist Rd.	Total	Total
1100-1200	7	23	30	3	30	33	63
1200-1300	6	17	23	8	18	26	49
1300-1400	5	8	13	4	8	12	25
1400-1500	1	6	7	1	3	4	11
1500-1600	1	16	17	3	13	16	33
Totals	20	70	90	19	72	91	181

Comments:

OC Transpo buses comprise 50.98% of the heavy vehicle traffic.

Printed on: 10/17/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Pedestrian Crossings

Turning Movement Count Summary Report

Including OFF Peak, PM Peak and PHF All Vehicles Except Bicycles

Apolun	e S	tree	t/E	leva	atio	n R	oad	& (Can	nbri	an R	oac						Ва	ırrh	ave	en V	lest,	ON
Survey Da	te:	Satur	day,	Octo	ber 15	5, 202	2					Star	t Time	e:		1100			AAD	T Fa	ctor:		1.1
Weather: A	M:	Mostly	/ Sunr	ny 15	° C		Surve	y Dura	ation:	5	Hrs.	Surv	ey Ho	ours:		1100	- 160	0					
Weather PN	۸:	Overc	ast 12	2º C								Surv	eyor(s):		M. Br	azeaı	J					
	(Camb	oria	n Ro	d.	(Caml	oriai	n R	d.			Eleva	atior	ı Ro	l.		Apo	lune	e St			
1		Eas	stbou	nd			We	stbou	ınd				No	rthbou	ınd			Sou	thbou	und		1	
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
1100-1200	25	159	4	0	188	15	241	39	0	295	483	4	2	13	0	19	26	4	47	0	77	96	57
1200-1300	25	201	3	0	229	14	260	47	0	321	550	10	2	17	0	29	33	0	43	0	76	105	65
1300-1400	32	203	8	0	243	21	242	44	1	308	551	6	3	16	0	25	35	4	34	0	73	98	64
1400-1500	35	215	5	0	255	15	222	45	0	282	537	9	1	20	0	30	50	2	42	0	94	124	66
1500-1600	31	247	4	0	282	9	218	53	0	280	562	3	2	10	0	15	40	3	37	0	80	95	65
Totals	148	1025	24	0	1197	74	1183	228	1	1486	2683	32	10	76	0	118	184	13	203	0	400	518	320

Expansion factors are applied exclusively to standard weekday 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

OFF Peak H	lour F	actor	→	0.	95									Highe	st H	lourly	Vehicl	e Volu	ıme E	Betw	een 1	100h &	1500h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1345-1445	38	206	6	0	250	15	236	49	0	300	550	12	1	21	0	34	47	2	45	0	94	128	678
				_				_	_														
PM Peak Ho	our Fa			0.	89									Highe	st H	lourly	Vehicl	e Volu	ıme E	Betw	een 1	500h &	1900h
	our Fa		RT	0 .	89 Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	Highe RT	st H	lourly Total	Vehicle LT	e Vol u	ıme E	Betw UT	_	500h &	_

Comments:

New housing construction is underway in this area.

Notes:

Printed on: 10/17/2022

- 1. Includes all vehicle types except bicycles and electric scooters.
- 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Turning Movement Count Summary, OFF and PM Peak Hour

Flow Diagrams

Prepared by: thetrafficspecialist@gmail.com

Printed on: 10/17/2022

Summary: All Vehicles

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: OFF PM Peak

Turning Movement Count Heavy Vehicle Summary (FHWA Class 4-13) Flow Diagram

Comments:

New housing construction is underway in this area.

Turning Movement Count Bicycle Summary Flow Diagram

Comments:

Printed on: 10/17/2022

New housing construction is underway in this area

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram

Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Time Period	Cambrian Rd.	Cambrian Rd.	Total	Elevation Rd.	Apolune St.	Total	Total
1100-1200	3	2	5	2	0	2	7
1200-1300	0	5	5	0	0	0	5
1300-1400	0	0	0	1	0	1	1
1400-1500	0	0	0	0	0	0	0
1500-1600	0	0	0	1	0	1	1
Totals	3	7	10	4	0	4	14

Comments:

New housing construction is underway in this area.

Printed on: 10/17/2022 Prepared by: thetrafficspecialist@gmail.com Summary: Pedestrian Crossings

Appendix C

Synchro Intersection Worksheets – Existing Conditions

Intersection												
Intersection Delay, s/veh	20.3											
Intersection LOS	C											
Interested to the second secon												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		43-			4			4			44	
Traffic Vol, veh/h	14	308	49	49	247	45	121	50	104	58	16	26
Future Vol, veh/h	14	308	49	49	247	45	121	50	104	58	16	26
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	7	10	6	16	9	4	2	10	4	3	6	4
Mvmt Flow	16	342	54	54	274	50	134	56	116	64	18	29
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	23.1			21.9			17.5			12.5		
HCM LOS	С			С			С			В		
Lane		NBLn1	EBLn1		SBLn1							
Vol Left, %		44%	4%	14%	58%							
Vol Thru, %		18%	83%	72%	16%							
Vol Right, %		38%	13%	13%	26%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		275	371	341	100							
LT Vol		121	14	49	58							
Through Vol		50	308	247	16							
RT Vol		104	49	45	26							
Lane Flow Rate		306	412	379	111							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.555	0.71	0.676	0.224							
Departure Headway (Hd)		6.538	6.201	6.421	7.26							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		550	581	561	491							
Service Time		4.603	4.263	4.485	5.349							
HCM Cartes Delay		0.556	0.709	0.676	0.226							
HCM Control Delay		17.5	23.1	21.9	12.5							
HCM Lane LOS		C 3 4	C 5.8	C 5.1	В							

Intersection						
Int Delay, s/veh	2.2					
		===	WEE	11/0/5	0.0	005
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ની	∱		¥	
Traffic Vol, veh/h	9	225	397	14	64	32
Future Vol, veh/h	9	225	397	14	64	32
Conflicting Peds, #/hr	5	0	0	5	2	2
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	21	6	2	2	2
Mvmt Flow	10	250	441	16	71	36
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	462	0	viajui 2 -	0	726	456
Stage 1	402	U	-	-	454	400
Stage 2				- 1	272	
Critical Hdwy	4.12	-			6.42	6.22
Critical Hdwy Stq 1	4.12		- :		5.42	0.22
Critical Hdwy Stg 1	-	-	-		5.42	-
Follow-up Hdwy	2.218				3.518	2 210
Pot Cap-1 Maneuver	1099	-	-		391	604
	1099				640	004
Stage 1 Stage 2	-	-	-		774	-
	-				114	-
Platoon blocked, %	4004	-	-	-	000	000
Mov Cap-1 Maneuver	1094	-	-	-	383	600
Mov Cap-2 Maneuver	-	-	-	-	383	-
Stage 1	-	-	-	-	630	-
Stage 2	-	-	-	-	770	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		15.9	
HCM LOS	0.5		U		13.3 C	
TIOWI LOS					U	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1094	-	-	-	436
HCM Lane V/C Ratio		0.009	-	-	-	0.245
HCM Control Delay (s)		8.3	0	-	-	15.9
HCM Lane LOS		Α	Α	-	-	С
HCM 95th %tile Q(veh)	0	-	-	-	0.9
	,					

3.4

5.8 5.1 0.9

HCM 95th-tile Q

Intersection												
Intersection Delay, s/veh	24.7											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	20	325	94	123	285	64	69	15	103	29	12	15
Future Vol., veh/h	20	325	94	123	285	64	69	15	103	29	12	15
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	7	2	2	2
Mvmt Flow	22	361	104	137	317	71	77	17	114	32	13	17
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	25			30.3			13.6			11.4		
HCM LOS	С			D			В			В		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		37%	5%	26%	52%							
Vol Thru, %		8%	74%	60%	21%							
Vol Right, %		55%	21%	14%	27%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		187	439	472	56							
LT Vol		69	20	123	29							
Through Vol		15	325	285	12							
RT Vol		103	94	64	15							
Lane Flow Rate		208	488	524	62							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.38	0.768	0.829	0.126							
Departure Headway (Hd)		6.577	5.666	5.69	7.305							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		546	639	640	488							
Service Time		4.631	3.683	3.708	5.38							
HCM Lane V/C Ratio		0.381	0.764	0.819	0.127							

Intersection						
Int Delay, s/veh	1.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	4	1	ADI.	W	ODIT
Traffic Vol, veh/h	32	394	373	48	43	18
Future Vol. veh/h	32	394	373	48	43	18
Conflicting Peds, #/hr	6	0	0.0	6	3	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	36	438	414	53	48	20
Major/Minor I	Major1		Major2		Minor2	
	473	0	viajoi2 -	0	960	447
Conflicting Flow All		-		-	960 447	447
Stage 1			-	- 1	513	
Stage 2 Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	4.12				5.42	0.22
			-	-	5.42	-
Critical Hdwy Stg 2	2.218		- 1	-	3.518	
Follow-up Hdwy			-	-	285	612
Pot Cap-1 Maneuver	1089	-			644	012
Stage 1		-	-	-	601	
Stage 2	-			-	001	-
Platoon blocked, %	4000	-	-	-	000	000
Mov Cap-1 Maneuver	1083	-	-	-	269 269	609
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-	-	-	612	-
Stage 2	-	-	-	-	597	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.6		0		19.1	
HCM LOS					С	
		===				on
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1083	-	-	-	322
HCM Lane V/C Ratio		0.033	-	-	-	0.21
HCM Control Delay (s)		8.4	0	-	-	19.1
HCM Lane LOS		Α	Α	-	-	С
HCM 95th %tile Q(veh))	0.1	-	-	-	0.8

13.6

1.8

25

7.1 8.8

30.3 11.4

0.4

HCM Control Delay HCM Lane LOS

HCM 95th-tile Q

Intersection												
Intersection Delay, s/veh	14.5											
Intersection LOS	В											
Interested Les												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	6	262	39	69	280	72	40	10	79	32	13	16
Future Vol, veh/h	6	262	39	69	280	72	40	10	79	32	13	16
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	7	2	2	2	2	4	2	8	2
Mvmt Flow	7	291	43	77	311	80	44	11	88	36	14	18
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	13			17.4			10.6			10.1		
HCM LOS	В			С			В			В		
		NIDI 4			001 4							
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		31%	2%	16%	52%							
Vol Thru, %		8%	85%	67%	21%							
Vol Right, %		61%	13%	17%	26%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		129	307	421	61							
LT Vol		40	6	69	32							
Through Vol		10	262	280	13							
RT Vol		79	39	72	16							
Lane Flow Rate		143	341	468	68							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.231	0.488	0.659	0.117							
Departure Headway (Hd)		5.791	5.153	5.073	6.227							
Convergence, Y/N		Yes	Yes	Yes	Yes							
		040	000	744	F72							

Intersection						
Int Delay, s/veh	2.5					
		EDT	MOT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	00	4	\$	40	¥	45
Traffic Vol, veh/h	38	206	236	49	47	45
Future Vol, veh/h	38	206	236	49	47	45
Conflicting Peds, #/hr	_ 6	0	0	_ 6	3	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	42	229	262	54	52	50
14 : 04:				_		
	Major1		Major2		Minor2	
Conflicting Flow All	322	0	-	0	611	295
Stage 1	-	-	-	-	295	-
Stage 2	-	-	-	-	316	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-		3.318
Pot Cap-1 Maneuver	1238	-	-	-	457	744
Stage 1	-	-	-	-	755	-
Stage 2	-	-	-	-	739	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1231	-	-	-	434	740
Mov Cap-2 Maneuver	-	-	-	-	434	-
Stage 1	-	-	-	-	721	-
Stage 2		-			735	
omgo z						
Azzzzak			MD		00	
Approach	EB		WB		SB	
HCM Control Delay, s	1.3		0		13.1	
HCM LOS					В	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1231	-	WD1	TON	544
HCM Lane V/C Ratio		0.034		- 1	-	0.188
HCM Control Delay (s)	١	0.034	0		-	13.1
HCM Lane LOS)	A	A			13.1 B
	.\		Α -	-	-	0.7
HCM 95th %tile Q(veh	1)	0.1	-	-	-	0.7

Cap Service Time

HCM Lane V/C Ratio

HCM Control Delay HCM Lane LOS

HCM 95th-tile Q

618

10.6

0.9

3.19 3.106 4.286

13 17.4 10.1

5 0.4

0.231 0.488 0.658 0.119

2.7

3.841

Appendix D

Collision Data

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Traffic Control Condition	Classification Of Accident	Initial Impact Type	Road Surface Condition	# Vehicles	# Motorcycles	# Bicycles	# Pedestrians
2019-10-10	2019	15:43	APOLUNE ST @ CAMBRIAN RD (0018897)	01 - Clear	01 - Daylight	02 - Stop sign	01 - Functioning	03 - P.D. only	02 - Angle	01 - Dry	2	0	0	0
2016-01-30	2016	4:40	CAMBRIAN RD btwn BORRISOKANE RD & GRAND CANAL ST (7N36UU)	03 - Snow	07 - Dark	10 - No control	0	02 - Non-fatal injury	07 - SMV other	03 - Loose snow	1	0	0	0

Appendix E

Greenbank Road and South West Transitway Extension Preliminary Design

Appendix F

Background Development Volumes

Figure 8: New Site Generation Auto Volumes 000 Cambrian Road 0(0) 0(0) 99(174) 7 ← 28(50) Site 50(43) ----Future Site Access #2

81(48) 0(0) Cambrian Road Site Access #1 (Truck Entrance) 92(54) Site Access #2 0(0) 92(54) 3(12) 0(0) 10(6) 1

Figure 8: New 2027 Site Traffic Auto Volumes

CIGIH

QUINN'S POINTE 2 TRANSPORTATION IMPACT ASSESSMENT

Forecasting October 30, 2018

Figure 10 and Figure 11 summarize the trip assignment to the study area road network during the weekday AM and PM peak hours, respectively.

Figure 10 Trip Assignment – 2022 Interim – Weekday AM Peak Hour

Figure 11 Trip Assignment - 2022 Interim - Weekday PM Peak Hour

 $olw:\active \ 163601203 \ planning \ report\ strategy \ update \ submission \ rpt. quinns_pointe_2_40_strategy_report_10-30-2018. docx$

19

3831 Cambrian Road Transportation Impact Assessment

Street 7

Figure 9: Site Generated Trips

Transportation Impact Assessment Proposed Elementary School and Childcare in Barrhaven March 2022– 21-2355

Page 14

March 5, 2019 Rosanna Baggs, C.E.T. Page 3 of 4

Reference: Mattamy Half Moon Bay West Community Transportation Study Update

Table 2 - Auto Trip Generation - Original Draft Plan (October 2017)

Land Use Code	Units		AM Peak Hou	r	PM Peak Hour				
Land Use Code	Uillis	Inbound	Outbound	Rate	Inbound	Outbound	Rate		
Step 1: ITE Trip Generation Rates									
210 - Single Detached Houses	Single Detached Houses 518 25% 75% 0.72 63		63%	37%	0.89				
230 - Residential Condo / Townhouse 4		17%	83%	0.39	67%	33%	0.46		
220 - Apartments		20%	80%	0.53	65%	35%	0.74		
Step 2: Auto Trips Generated									
210 - Single Detached Houses 518		93	280	373	290	171	461		
230 - Residential Condo / Townhouse 4:		28	139	167	131	65	196		
220 - Apartments 92		10	39	49	44	24	68		
Total Development	131	458	589	465	260	725			

As can be seen in **Table 2**, the original draft plan was projected to generate 589 and 725 auto trips (two-way) during the AM and PM peak hours, respectively.

Table 3 - Auto Trip Generation - Revised Draft Plan (February 2019)

Land Use Code	Units		AM Peak Hour		PM Peak Hour					
Land Ose Code	Units	Inbound	Outbound	Rate	Inbound	Outbound	Rate			
Step 1: ITE Trip Generation Rates										
210 - Single Detached Houses	446	25%	75%	0.72	63%	37%	0.89			
230 - Residential Condo / Townhouse	455	17%	83%	0.39	67%	33%	0.46			
220 - Apartments	72	20%	80%	0.53	65%	35%	0.74			
Step 2: Auto Trips Generated										
210 - Single Detached Houses 446		80	241	321	250	147	397			
230 - Residential Condo / Townhouse	455	30	147	177	140	69	209			
220 - Apartments 72		8	30	38	34	19	53			
Total Development	118	418	536	424	235	659				

As can be seen in **Table 3**, the revised draft plan is expected to generate 536 and 659 auto trips (two-way) during the AM and PM peak hours, respectively.

CONCLUSION

A comparison of the original and revised plan shows that the proposed subdivision's collector road network and intersections with the existing boundary road network remain unchanged.

Design with community in mind

3809 Borrisokane Road Transportation Impact Assessment

3845 Cambrian Road Transportation Impact Assessment

Figure 11: New Site Generation Auto Volumes

Figure 12: Pass-by Volumes

Appendix G

Synchro Intersection Worksheets – 2024 Future Background Conditions

49.3											
E											
_											
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
	€\$			43-			43-			43-	
23	424	82	49	335	51	176	50	104	71	16	4
23	424	82	49	335	51	176	50	104	71	16	4
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
7	10	6	16	9	4	2	10	4	3	6	
23	424	82	49	335	51	176	50	104	71	16	4
0	1	0	0	1	0	0	1	0	0	1	-
EB			WB			NB			SB		
WB			EB			SB			NB		
1			1			1			1		
SB			NB			EB			WB		
1			1			1			1		
NB			SB			WB			EB		
1			1			1			1		
76.4			44.1			26.5			15.6		
F			Е			D			С		
	NBLn1	EBLn1	WBLn1	SBLn1							
	53%	4%	11%	53%							
	15%										
	469	518	487	414							
		5.056	5.485	6.735							
	5.769										
	0.704	1.021	0.893	0.321							
	EBL 23 23 1.00 7 23 0 EB WB 1 SB 1 NB 1 76.4	EBL EBT	EBL EBT EBR 423 424 82 23 424 82 1.00 1.00 1.00 7 10 6 23 424 82 0 1 0 EB WB 1 1 SB 1 76.4 F NBLn1 EBLn1 53% 4% 15% 80% 32% 16% Stop Stop 330 529 176 23 50 424 104 82 330 529 1 1 1 0.693 1.037 7.769 7.056 Yes Yes	EBL EBT EBR WBL 23 424 82 49 23 424 82 49 1.00 1.00 1.00 1.00 7 10 6 16 23 424 82 49 0 1 0 0 EB WB WB EB 1 1 1 SB NB 1 1 1 T6.4 44.1 F E NBLn1 EBLn1 WBLn1 53% 44% 11% 65% 80% 77% 32% 16% 12% Stop Stop Stop 330 529 435 176 23 49 50 424 335 104 82 51 330 529 435 104 82 51	EBL EBT EBR WBL WBT	EBL EBT EBR WBL WBT WBR 23 424 82 49 335 51 1.00 1.00 1.00 1.00 1.00 1.00 7 10 6 16 9 4 23 424 82 49 335 51 0 1 0 0 1 0 1 0 1 0 EB WB WB EB 1 1 1 1 1 SB NB 1 1 1 76.4 44.1 F E NBLn1 EBLn1 WBLn1 SBLn1 76.4 53% 4% 11% 53% 15% 80% 77% 12% 32% 16% 12% 35% Stop Stop Stop Stop 330 529 435 133 176 23 49 71 50 424 335 16 104 82 51 46 330 529 435 133 1 1 1 1 1 0.693 1.037 0.879 0.312 7.769 7.056 7.485 8.735 Yes Yes Yes	EBL EBT EBR WBL WBT WBR NBL 44 23 424 82 49 335 51 176 1.00 1.00 1.00 1.00 1.00 1.00 1.00 7 10 6 16 9 4 2 23 424 82 49 335 51 176 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL EBT EBR WBL WBT WBR NBL NBT 4	EBL EBT EBR WBL WBT WBR NBL NBT NBR 44 23 424 82 49 335 51 176 50 104 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 4	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT

	•	-	•	•	←	*	4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	1 >		ች	î,		ሻ	1 >		ች	1>	
Traffic Volume (vph)	9	246	90	31	441	79	189	0	66	140	0	3
Future Volume (vph)	9	246	90	31	441	79	189	0	66	140	0	3
Satd. Flow (prot)	1658	1474	0	1658	1485	0	1658	1483	0	1492	1483	
Flt Permitted	0.408			0.549			0.736			0.714		
Satd. Flow (perm)	712	1474	0	958	1485	0	1284	1483	0	1121	1483	(
Satd. Flow (RTOR)		36			18			568			335	
Lane Group Flow (vph)	9	336	0	31	520	0	189	66	0	140	32	
Turn Type	Perm	NA	-	Perm	NA	_	Perm	NA	_	Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6	_		4	•		8	-	
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase	=	=		-	-						-	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	39.6	39.6		39.6	39.6		30.4	30.4		30.4	30.4	
Total Split (%)	56.6%	56.6%		56.6%	56.6%		43.4%	43.4%		43.4%	43.4%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag	0.1	0.7		0.1	0.1		0.0	0.0		0.0	0.0	
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min		C-Min	C-Min		None	None		None	None	
Act Effct Green (s)	42.1	42.1		42.1	42.1		16.3	16.3		16.3	16.3	
Actuated g/C Ratio	0.60	0.60		0.60	0.60		0.23	0.23		0.23	0.23	
v/c Ratio	0.00	0.37		0.05	0.58		0.63	0.08		0.54	0.05	
Control Delay	8.3	9.1		8.2	13.0		32.9	0.00		30.0	0.03	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.2		0.0	0.2	
Total Delay	8.3	9.1		8.2	13.0		32.9	0.0		30.0	0.0	
LOS	0.5 A	9.1 A		Α.2	13.0 B		32.9 C	0.2 A		30.0 C	Α	
Approach Delay		9.1			12.8		U	24.5		U	24.5	
Approach LOS		9.1 A			12.0 B			24.5 C			24.5 C	
Queue Length 50th (m)	0.4	16.9		1.4	34.3		22.6	0.0		16.4	0.0	
Queue Length 95th (m)	2.7	43.6		6.1	83.9		35.0	0.0		27.1	0.0	
Internal Link Dist (m)	2.1	192.0		0.1	254.3		33.0	97.9		21.1	184.1	
Turn Bay Length (m)	37.5	132.0		37.5	204.0		30.0	31.3		30.0	104.1	
Base Capacity (vph)	428	901		576	901		449	888		392	736	
Starvation Cap Reductn	420	901		0	901		449	000		392	730	
	0	0		0	0		0	0		0	0	
Spillback Cap Reductn Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.02	0.37		0.05	0.58		0.42	0.07		0.36	0.04	
Reduced V/C Rallo	0.02	0.37		0.05	0.56		0.42	0.07		0.36	0.04	
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70					_							
Offset: 0 (0%), Referenced	to phase 2	EBTL and	6:WBTL	, Start of	Green							

Offset: 0 (0%), Refer Natural Cycle: 60

Control Type: Actuated-Coordinated

₩ Ø6 (R)

2024 Future Background AM Peak Hour

Maximum v/c Ratio: 0.63	
Intersection Signal Delay: 15.6	Intersection LOS: B
Intersection Capacity Utilization 56.9%	ICU Level of Service B
Analysis Period (min) 15	

Splits and Phases: 2: Elevation/Apolune & Cambrian

Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	£B1	LDI	WDL	₩Ы	NDL NDL	רושאו
Traffic Vol, veh/h	430	22	9	536	15	6
Future Vol. veh/h	430	22	9	536	15	6
Conflicting Peds, #/hr	430	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	riee -	None	riee -	None	Stop -	None
Storage Length		None -		None	0	None -
Veh in Median Storage			-	0	0	-
Grade. %	, # 0			0	0	
Peak Hour Factor	100	100	100	100	100	100
	2	100	100	100	100	2
Heavy Vehicles, %	430	22		536	15	6
Mvmt Flow	430	22	9	536	15	Ь
Major/Minor N	Major1		Major2		Minor1	
Conflicting Flow All	0	0	452	0	995	441
Stage 1	-	-	-	-	441	-
Stage 2			-		554	
Critical Hdwy	_	_	4.12	_	6.42	6.22
Critical Hdwy Stg 1			-		5.42	-
Critical Hdwy Stg 2	-		-		5.42	-
Follow-up Hdwy			2.218		3.518	3 318
Pot Cap-1 Maneuver	_	-	1109	_	271	616
Stage 1					648	-
Stage 2					575	
Platoon blocked. %					010	
Mov Cap-1 Maneuver		-	1109	_	268	616
Mov Cap-1 Maneuver			- 1109		268	010
Stage 1					648	
Stage 2					568	- 1
Slaye 2	-		-		000	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		17	
HCM LOS					С	
Mineral and Main M		UDL4	EDT	EDE	MIDI	MIDT
Minor Lane/Major Mvm	t I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		320	-	-	1109	-
HCM Lane V/C Ratio		0.066	-	-	0.008	-
HCM Control Delay (s)		17	-	-	8.3	0
LICM Lana LOC		_			Λ.	Λ.

С

- A A

HCM 2010 TWSC

HCM Lane LOS

HCM 95th %tile Q(veh)

5: Temporary Driveway & Cambrian

2024 Future Background

AM Peak Hour

Intersection												
Intersection Delay, s/veh	53.3											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			44			4	
Traffic Vol, veh/h	34	410	137	123	393	76	108	15	103	38	12	27
Future Vol, veh/h	34	410	137	123	393	76	108	15	103	38	12	27
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	7	2	2	2
Mvmt Flow	34	410	137	123	393	76	108	15	103	38	12	27
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	59.1			66.8			16.7			13		
HCM LOS	F			F			С			В		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		48%	6%	21%	49%							
Vol Thru. %												
		7%	71%	66%	16%							
Vol Right, %		46%	24%	13%	35%							
Sign Control		46% Stop	24% Stop	13% Stop	35% Stop							
Sign Control Traffic Vol by Lane		46% Stop 226	24% Stop 581	13% Stop 592	35% Stop 77							
Sign Control Traffic Vol by Lane LT Vol		46% Stop 226 108	24% Stop 581 34	13% Stop 592 123	35% Stop 77 38							
Sign Control Traffic Vol by Lane LT Vol Through Vol		46% Stop 226 108 15	24% Stop 581 34 410	13% Stop 592 123 393	35% Stop 77 38 12							
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		46% Stop 226 108 15 103	24% Stop 581 34 410 137	13% Stop 592 123 393 76	35% Stop 77 38 12 27							
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		46% Stop 226 108 15 103 226	24% Stop 581 34 410 137 581	13% Stop 592 123 393 76 592	35% Stop 77 38 12 27 77							
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		46% Stop 226 108 15 103 226	24% Stop 581 34 410 137 581	13% Stop 592 123 393 76 592	35% Stop 77 38 12 27 77							
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		46% Stop 226 108 15 103 226 1	24% Stop 581 34 410 137 581 1 0.988	13% Stop 592 123 393 76 592 1	35% Stop 77 38 12 27 77 1 0.174							
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		46% Stop 226 108 15 103 226 1 0.462 7.354	24% Stop 581 34 410 137 581 1 0.988 6.122	13% Stop 592 123 393 76 592 1 1.017 6.184	35% Stop 77 38 12 27 77 1 0.174 8.288							
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		46% Stop 226 108 15 103 226 1 0.462 7.354 Yes	24% Stop 581 34 410 137 581 1 0.988 6.122 Yes	13% Stop 592 123 393 76 592 1 1.017 6.184 Yes	35% Stop 77 38 12 27 77 1 0.174 8.288 Yes							
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		46% Stop 226 108 15 103 226 1 0.462 7.354 Yes 486	24% Stop 581 34 410 137 581 1 0.988 6.122 Yes 587	13% Stop 592 123 393 76 592 1 1.017 6.184 Yes 586	35% Stop 77 38 12 27 77 1 0.174 8.288 Yes 436							
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		46% Stop 226 108 15 103 226 1 0.462 7.354 Yes 486 5.452	24% Stop 581 34 410 137 581 1 0.988 6.122 Yes 587 4.201	13% Stop 592 123 393 76 592 1 1.017 6.184 Yes 586 4.263	35% Stop 77 38 12 27 77 1 0.174 8.288 Yes 436 6.288							
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		46% Stop 226 108 15 103 226 1 0.462 7.354 Yes 486 5.452 0.465	24% Stop 581 34 410 137 581 1 0.988 6.122 Yes 587 4.201 0.99	13% Stop 592 123 393 76 592 1 1.017 6.184 Yes 586 4.263 1.01	35% Stop 77 38 12 27 77 1 0.174 8.288 Yes 436 6.288 0.177							
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		46% Stop 226 108 15 103 226 1 0.462 7.354 Yes 486 5.452	24% Stop 581 34 410 137 581 1 0.988 6.122 Yes 587 4.201	13% Stop 592 123 393 76 592 1 1.017 6.184 Yes 586 4.263	35% Stop 77 38 12 27 77 1 0.174 8.288 Yes 436 6.288							

	•	-	•	•	—	*	1	†	1	-	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	î,		ች	î,		ች	f.		ች	1 >	
Traffic Volume (vph)	32	445	177	56	411	103	136	0	41	88	0	18
Future Volume (vph)	32	445	177	56	411	103	136	0	41	88	0	18
Satd. Flow (prot)	1658	1670	0	1658	1511	0	1658	1483	0	1492	1483	0
Flt Permitted	0.442		-	0.382		_	0.746		-	0.730		
Satd. Flow (perm)	766	1670	0	667	1511	0	1302	1483	0	1139	1483	C
Satd. Flow (RTOR)		33			21	-		443	-		464	
Lane Group Flow (vph)	32	622	0	56	514	0	136	41	0	88	18	C
Turn Type	Perm	NA		Perm	NA	•	Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2	-		6			4	•		8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase	_	-		Ū	Ū			•			•	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	82.0	82.0		82.0	82.0		38.0	38.0		38.0	38.0	
Total Split (%)	68.3%	68.3%		68.3%	68.3%		31.7%	31.7%		31.7%	31.7%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag	0.1	5.1		5.1	5.1		0.0	0.0		0.0	0.0	
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min		C-Min	C-Min		None	None		None	None	
Act Effct Green (s)	90.6	90.6		90.6	90.6		17.8	17.8		17.8	17.8	
Actuated g/C Ratio	0.76	0.76		0.76	0.76		0.15	0.15		0.15	0.15	
v/c Ratio	0.76	0.70		0.70	0.70		0.70	0.13		0.13	0.13	
Control Delay	5.2	7.7		5.6	7.4		67.0	0.07		56.8	0.03	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	5.2	7.7		5.6	7.4		67.0	0.0		56.8	0.0	
LOS	3.2 A	Α.		3.0 A	7.4 A		67.0	Ο.2		30.0 E	Α	
Approach Delay	A	7.5		А	7.2			51.5			47.2	
Approach LOS		7.5 A			7.2 A			51.5 D			47.2 D	
Queue Length 50th (m)	1.7	46.0		3.0	36.6		30.8	0.0		19.4	0.0	
Queue Length 95th (m)	5.4	86.5		8.7	70.6		48.8	0.0		33.9	0.0	
Internal Link Dist (m)	5.4	122.9		0.1	259.5		40.0	171.4		33.9	184.1	
Turn Bay Length (m)	37.5	122.5		37.5	209.0		30.0	17 1.4		30.0	104.1	
		1268			1115			704			736	
Base Capacity (vph)	578			503	1145		348	721 0		304		
Starvation Cap Reductn	0	0			0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn												
Reduced v/c Ratio	0.06	0.49		0.11	0.45		0.39	0.06		0.29	0.02	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120		EDTI	0.14/0.71	01 1 1	0							

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60
Control Type: Actuated-Coordinated

2024 Future Background PM Peak Hour

Maximum v/c Ratio: 0.70	
Intersection Signal Delay: 15.4	Intersection LOS: B
Intersection Capacity Utilization 73.4%	ICU Level of Service D
Analysis Period (min) 15	

Splits and Phases: 2: Elevation/Apolune & Cambrian

HCM 2010 TWSC 5: Temporary Driveway & Cambrian 2024 Future Background PM Peak Hour

Intersection						
Int Delay, s/veh	0.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u>EBI</u>	EDR	WDL	₩Ы	INDL W	NDIX
Traffic Vol, veh/h	517	57	6	532	38	9
Future Vol. veh/h	517	57	6	532	38	9
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	riee -	None	riee -	None	Stop -	None
Storage Length		-	- 1	-	0	-
Veh in Median Storage				0	0	
Grade. %	0			0	0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	517	57	6	532	38	9
WITHETION	011	01	U	002	00	U
	Major1		Major2		Minor1	
Conflicting Flow All	0	0	574	0	1090	546
Stage 1	-	-	-	-	546	-
Stage 2	-	-	-	-	544	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	999	-	238	538
Stage 1	-	-	-	-	580	-
Stage 2	-	-	-	-	582	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	999	-	236	538
Mov Cap-2 Maneuver	-	-	-	-	236	-
Stage 1	-	-	-	-	580	-
Stage 2	-	-	-	-	577	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		21.6	
HCM LOS	U		0.1		C	
		NIDI 1	EDE	EDE	MID	MIDT
Minor Lane/Major Mvm	it l	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		264	-	-	999	-
HCM Lane V/C Ratio		0.178	-		0.006	-
HCM Control Delay (s)		21.6	-	-	8.6	0
HCM Lane LOS		C	-	-	A	Α

Intersection												
Intersection Delay, s/veh	20.8											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4			4			4	
Traffic Vol, veh/h	18	330	82	69	378	82	80	10	79	40	13	27
Future Vol, veh/h	18	330	82	69	378	82	80	10	79	40	13	27
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	7	2	2	2	2	4	2	8	2
Mvmt Flow	18	330	82	69	378	82	80	10	79	40	13	27
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	18.4			26.8			12.4			11.2		
HCM LOS	С			D			В			В		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		47%	4%	13%	50%							
Vol Thru, %		6%	77%	71%	16%							
Vol Right, %		47%	19%	16%	34%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		169	430	529	80							
LT Vol		80	18	69	40							
Through Vol		10	330	378	13							
RT Vol		79	82	82	27							
Lane Flow Rate		169	430	529	80							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.306	0.653	0.799	0.154							
Departure Headway (Hd)		6.527	5.465	5.439	6.909							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		554	654	661	522							
Service Time		4.533	3.558	3.526	4.917							
		0.305	0.657	0.8	0.153							
HCM Lane V/C Ratio HCM Control Delay		12.4	18.4	26.8	11.2							
		12.4 B 1.3	18.4 C 4.8	26.8 D 8	11.2 B 0.5							

	•	-	\rightarrow	•	←	*	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1 >		ች	f >		ሻ	f >		ች	1>	
Traffic Volume (vph)	38	248	160	70	270	88	128	1	61	72	2	45
Future Volume (vph)	38	248	160	70	270	88	128	1	61	72	2	45
Satd. Flow (prot)	1566	1642	0	1271	1498	0	1658	1333	0	1436	1402	0
Flt Permitted	0.538			0.507			0.726			0.717		
Satd. Flow (perm)	878	1642	0	679	1498	0	1267	1333	0	1076	1402	0
Satd. Flow (RTOR)		48			24			61			45	
Lane Group Flow (vph)	38	408	0	70	358	0	128	62	0	72	47	0
Turn Type	Perm	NA	-	Perm	NA	_	Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6	_		4	•		8	-	
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase		_										
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	77.0	77.0		77.0	77.0		43.0	43.0		43.0	43.0	
Total Split (%)	64.2%	64.2%		64.2%	64.2%		35.8%	35.8%		35.8%	35.8%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag	0.1	5.1		5.1	5.1		0.0	0.0		0.0	0.0	
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min		C-Min	C-Min		None	None		None	None	
Act Effct Green (s)	91.0	91.0		91.0	91.0		17.4	17.4		17.4	17.4	
Actuated g/C Ratio	0.76	0.76		0.76	0.76		0.14	0.14		0.14	0.14	
v/c Ratio	0.06	0.32		0.14	0.31		0.70	0.25		0.46	0.19	
Control Delay	5.0	5.4		5.6	5.7		67.4	13.0		55.0	14.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	5.0	5.4		5.6	5.7		67.4	13.0		55.0	14.4	
LOS	A	Α.		Α.	Α.		67.4 E	В		D	В	
Approach Delay		5.4			5.7			49.7		U	38.9	
Approach LOS		J.4 A			3.7 A			43.7 D			30.9 D	
Queue Length 50th (m)	2.0	22.6		3.8	21.0		29.0	0.2		15.7	0.4	
Queue Length 95th (m)	6.0	44.7		10.4	41.6		46.7	11.7		28.7	10.4	
Internal Link Dist (m)	0.0	122.9		10.4	257.7		40.7	171.4		20.1	184.1	
Turn Bay Length (m)	37.5	122.9		37.5	231.1		30.0	17 1.4		30.0	104.1	
	665	1256		514	1141		391	454		332	464	
Base Capacity (vph)	0	1256		0			391	454		332	464	
Starvation Cap Reductn		0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn		0.32			0.31							
Reduced v/c Ratio	0.06	0.32		0.14	0.31		0.33	0.14		0.22	0.10	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120	1											

Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 60

Control Type: Actuated-Coordinated

2024 Future Background SAT Peak Hour

Maximum v/c Ratio: 0.70	
Intersection Signal Delay: 16.0	Intersection LOS: B
Intersection Capacity Utilization 61.0%	ICU Level of Service B
Analysis Period (min) 15	

Splits and Phases: 2: Elevation/Apolune & Cambrian

Ø2 (R)	√ 1 Ø4
77 s	43 s
₩ Ø6 (R)	₽ Ø8
77 s	43 s

HCM 2010 TWSC 5: Temporary Driveway & Cambrian 2024 Future Background SAT Peak Hour

Intersection		_		_		
Int Delay, s/veh	2.3					
•			14/50	14 mm	N.D.	N.D.E.
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽.		_	4	Y	
Traffic Vol, veh/h	40	66	7	83	44	10
Future Vol, veh/h	40	66	7	83	44	10
Conflicting Peds, #/hr	0	0	0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	40	66	7	83	44	10
Major/Minor N	/lajor1	1	Major2		Minor1	
Conflicting Flow All	0	0	106	0	170	73
Stage 1	-	-	-	-	73	-
Stage 2					97	
Critical Hdwv			4.12		6.42	6.22
Critical Hdwy Stg 1	-		7.12		5.42	0.22
Critical Hdwy Stg 2					5.42	
Follow-up Hdwy		-	2.218		3.518	
Pot Cap-1 Maneuver			1485		820	989
			1400		950	909
Stage 1	-	-		- 1	950	
Stage 2	-	-	-	_	927	-
Platoon blocked, %	-	-	4 40 =	-	0.10	
Mov Cap-1 Maneuver	-	-	1485	-	816	989
Mov Cap-2 Maneuver	-	-	-	-	816	-
Stage 1	-	-	-	-	950	-
Stage 2	-	-	-	-	922	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.6		9.6	
HCM LOS	U		0.0		9.0 A	
HOW LOS					А	
Minor Lane/Major Mvmt	t 1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		843	-	-	1485	-
HCM Lane V/C Ratio		0.064	-	-	0.005	-
HCM Control Delay (s)		9.6	-	-	7.4	0
HCM Lane LOS		Α			Α	A
HCM 95th %tile Q(veh)		0.2	-	-	0	-

Appendix H

Signal Warrant Calculation Sheet

Cambrian Road @ River Mist Road FB 2024

Justification #7

		Minimum R	equirement	Minimum R	equirement		Compliance			
Justification	Description	1 Lane Highway		2 or Mo	re Lanes	Secti	onal	Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Elitile 70		
Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	726	101%	101%	No	
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	192	113%	101%	NO	
	A. Vehicle volumes, major street (average hour)	480	720	600	900	534	74%			
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	115	153%	74%	No	

Notes

Refer to OTM Book 12, pg 92, Mar 2012

Lowest section percentage powers justification

A. Average hourly counters estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors

4. T-intersection factor corrected, applies only to 18

Cambrian Road @ River Mist Road FB 2029

Justification #7

		Minimum F	lequirement	Minimum R	Requirement		Compliance		
Justification	Description	1 Lane	Highway	2 or Mo	re Lanes	Sect	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	EIILII e 70	
Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	830	115%	4450/	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	204	120%	115%	
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	626	87%		
2. Delay to Cross Traffic			75	50	75	125	166%	87%	No

Notes

1. Refer to 0TM Book 12, pg 92, Mar 202

2. Lowest section percentage governs justification

2. Average Phony Including extraction percentage governs justification

3. Average Phony Including extracted from peak flow revolumes, AMV = PM/2 or (AMV + PM) / 4, including amplification factors

1. Frederication factor corrected, applies only to 38

Cambrian Road @ River Mist Road FT 2024

Justification #7

		Minimum R	equirement	Minimum F	equirement		Compliance			
Justification	Description	1 Lane Highway		2 or More Lanes		Secti	onal	Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Elltile 70		
Minimum Vehicular	A. Vehicle volume, all approaches n Vehicular (average hour)		720	600	900	738	102%	102%	No	
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	195	115%	102%	NO	
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	543	75%			
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	117	156%	75%	No	

Notes

Refer to OTM Book 12, pg 92, Mar 2012

Lowest section percentage governs justification

A warrage hourly volume estimated from pash bour volumes, AHV = PM/2 or (AM + PM/) 4, including amplification factors

4. T-intersection factor corrected, applies only to 18

Cambrian Road @ River Mist Road FT 2029

Justification #7

		Minimum F	lequirement	Minimum R	Requirement		Compliance		
Justification	Description	1 Lane Highway		2 or More Lanes		Secti	ional	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	EIILII e 70	
Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	842	117%	117%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	208	122%	11/76	INO
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	634	88%		
Z. Delay to Cross Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	127	169%	88%	No

Notes

1. Refer to 0TM Book 12, pg 92, Mar 202

2. Lowest section percentage governs justification

2. Average Phony Including extraction percentage governs justification

3. Average Phony Including extracted from peak flow revolumes, AMV = PM/2 or (AMV + PM) / 4, including amplification factors

1. Frederication factor corrected, applies only to 38

Appendix I

Synchro Intersection Worksheets – 2029 Future Background Conditions

96.9											
F											
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
	4			4			4			4	
24	507	93	51	391	51	194	50	109	71	16	47
24	507	93	51	391	51	194	50	109	71	16	47
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7	10	6	16	9	4	2	10	4	3	6	4
24	507	93	51	391	51	194	50	109	71	16	47
0	1	0	0	1	0	0	1	0	0	1	C
EB			WB			NB			SB		
WB			EB			SB			NB		
1			1			1			1		
									WB		
1			1			1			1		
NB			SB			WB			EB		
1						1			1		
F			F			D			С		
		.,.									
	431	487	454	368							
	0.40										
	6.49	5.497	6.1	7.814							
	0.819	1.281	1.086	0.364							
	0.819 34.1	1.281 164.9	1.086 77.3	0.364 17.6							
	0.819	1.281	1.086	0.364							
	24 24 1.00 7 24 0 EB WB 1 SB 1 NB	EBL EBT 24 507 1.00 1.00 7 10 24 507 0 1 EB WB 1 SB 1 NB 1 164.9	EBL EBT EBR 24 507 93 24 507 93 1.00 1.00 1.00 7 10 6 24 507 93 0 1 0 EB WB 1 1 SB 1 164.9 F NBLn1 EBLn1 555% 4% 14% 81% 31% 15% Stop Stop 353 624 194 24 50 507 109 93 353 624 1 1 0.764 1.281	EBL EBT EBR WBL 24 507 93 51 1.00 1.00 1.00 1.00 7 10 6 16 24 507 93 51 0 1 0 0 EB WB WB EB 1 1 1 SB NB 1 1 1 164.9 77.3 F NBLn1 EBLn1 WBLn1 555% 4% 10% 14% 81% 79% 31% 15% 10% Stop Stop Stop 353 624 493 1 1 1 50 507 391 109 93 51 353 624 493 1 1 1 1 0.764 1.281 1.022 8.49 7.497 8.1	EBL EBT EBR WBL WBT 24 507 93 51 391 1.00 1.00 1.00 1.00 1.00 7 10 6 16 9 24 507 93 51 391 0 1 0 0 1 EB WB WB WB WB EB 1 1 1 SB NB 1 1 1 164.9 77.3 F F NBLn1 EBLn1 WBLn1 55% 4% 10% 53% 14% 81% 79% 12% 31% 15% 10% 35% Stop Stop Stop Stop 353 624 493 134 1 1 1 109 93 51 47 353 624 493 134 1 1 1 1 10.764 1281 1.022 0.331 8.49 7.497 8.1 9.814	EBL EBT EBR WBL WBT WBR 24 507 93 51 391 51 24 507 93 51 391 51 1.00 1.00 1.00 1.00 1.00 1.00 7 10 6 16 9 4 24 507 93 51 391 51 0 1 0 0 1 0 EB WB WB EB 1 1 1 SB NB 1 1 1 164.9 777.3 F F NBLn1 EBLn1 WBLn1 SBLn1 55% 4% 10% 53% 14% 81% 79% 12% 31% 15% 10% 35% Stop Stop Stop Stop 353 624 493 134 1 194 24 51 71 50 507 391 16 109 93 51 47 353 624 493 134 1 1 1 1 1 10.764 1281 1.022 0.331 8.49 7.497 8.1 9.814	EBL EBT EBR WBL WBT WBR NBL 24 507 93 51 391 51 194 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 7 10 6 16 9 4 2 2 4 507 93 51 391 51 194 0 1.00 0.0 1.00 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00 1.00 1.00 1.00 1.00 0.0 0.0	EBL EBT EBR WBL WBT WBR NBL NBT 24 507 93 51 391 51 194 50 1.00	EBL EBT EBR WBL WBT WBR NBL NBT NBR 24 507 93 51 391 51 194 50 109 1.00 </td <td>EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 24 507 93 51 391 51 194 50 109 71 1.00</td> <td>EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT 24 507 93 51 391 51 194 50 109 71 16 1.00</td>	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 24 507 93 51 391 51 194 50 109 71 1.00	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT 24 507 93 51 391 51 194 50 109 71 16 1.00

	•	→	\rightarrow	•	←	•	4	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	î,		ች	1>		ሻ	^		*	1>	
Traffic Volume (vph)	14	256	129	57	464	95	270	0	117	174	0	42
Future Volume (vph)	14	256	129	57	464	95	270	0	117	174	0	42
Satd. Flow (prot)	1658	1475	0	1658	1483	0	1658	1483	0	1492	1483	(
Flt Permitted	0.360			0.497		_	0.730			0.682		
Satd, Flow (perm)	628	1475	0	867	1483	0	1274	1483	0	1071	1483	(
Satd. Flow (RTOR)		50			20			554			315	
Lane Group Flow (vph)	14	385	0	57	559	0	270	117	0	174	42	(
Turn Type	Perm	NA		Perm	NA	•	Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2	_		6	•		4	•		8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase	_	_		0	U		-	-		0	0	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	39.6	39.6		39.6	39.6		30.4	30.4		30.4	30.4	
Total Split (%)	56.6%	56.6%		56.6%	56.6%		43.4%	43.4%		43.4%	43.4%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag	3.1	3.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min		C-Min	C-Min		None	None		None	None	
	39.2	39.2		39.2	39.2		19.2	19.2		19.2	19.2	
Act Effct Green (s)	0.56	0.56			0.56		0.27	0.27		0.27	0.27	
Actuated g/C Ratio				0.56								
v/c Ratio	0.04	0.45		0.12	0.67		0.77	0.14		0.59	0.07	
Control Delay	9.5	11.1		9.9	17.2		38.0			29.6		
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	9.5	11.1		9.9	17.2		38.0	0.4		29.6	0.2	
LOS	A	В		Α	В		D	A		С	A	
Approach Delay		11.1			16.6			26.6			23.9	
Approach LOS		В			В			С			С	
Queue Length 50th (m)	0.8	23.7		3.3	46.4		31.9	0.0		19.3	0.0	
Queue Length 95th (m)	3.6	50.3		9.8	#107.4		52.0	0.0		34.3	0.0	
Internal Link Dist (m)		192.0			268.9			97.9			184.1	
Turn Bay Length (m)	37.5			37.5			30.0			30.0		
Base Capacity (vph)	351	847		485	838		445	879		374	723	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.04	0.45		0.12	0.67		0.61	0.13		0.47	0.06	
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 0 (0%), Referenced	to phase 2	FRTI and	16·WRTI	Start of	Green							
Natural Cycle: 65	to pridoe Z	LDIL dil	O.TTD I L	Juli U	CIOCII							
Control Type: Actuated-Co	ordinated											
33 1 Jpo. 7 lotation-000	o. amatod											

2029 Future Background AM Peak Hour

Maximum v/c Ratio: 0.77
Intersection Signal Delay: 18.6
Intersection Capacity Utilization 77.1%
Intersection Capacity Utilization 77.1%
ICU Level of Service D
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 2: Elevation/Apolune & Cambrian

→ Ø2 (R)	↑ ø4	
39.6 s	30.4s	
₩ Ø6 (R)	₩ Ø8	
39.6 c	30.4 s	

HCM 2010 TWSC 5: Temporary Driveway & Cambrian 2029 Future Background AM Peak Hour

Intersection						
Int Delay, s/veh	0.4					
**	•••					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			ની	Y	
Traffic Vol, veh/h	524	22	9	613	15	6
Future Vol, veh/h	524	22	9	613	15	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	524	22	9	613	15	6
Major/Minor I	Major1		Major2		Minor1	
						535
Conflicting Flow All	0	0	546	0	1166	535
Stage 1	-	-		-	535	
Stage 2	-	-	- 4.40	-	631	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-		3.318
Pot Cap-1 Maneuver	-	-	1023	-	214	545
Stage 1	-	-	-	-	587	-
Stage 2	-	-	-	-	530	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1023	-	211	545
Mov Cap-2 Maneuver	-	-	-	-	211	-
Stage 1	-	-	-	-	587	-
Stage 2	-	-	-	-	523	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		20.3	
HCM LOS	U		0.1		20.3 C	
HOW LOS					U	
Minor Lane/Major Mvm	t I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		256	-	-	1023	-
HCM Lane V/C Ratio		0.082	-	-	0.009	-
HCM Control Delay (s)		20.3	-	-	8.6	0
HCM Lane LOS		С		-	Α	Α
HOMOSH WITH OF IN		0.0				

0.3 - - 0 -

Intersection												
Intersection Delay, s/veh	108.4											
Intersection LOS	F											
miloroccion 200	•											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	36	494	162	128	487	76	130	15	106	38	12	29
Future Vol, veh/h	36	494	162	128	487	76	130	15	106	38	12	29
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	7	2	2	2
Mvmt Flow	36	494	162	128	487	76	130	15	106	38	12	29
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	126.5			133.4			19.1			14.2		
HCM LOS	F			F			С			В		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		52%	5%	19%	48%							
Vol Thru, %		6%	71%	70%	15%							
Vol Right, %		42%	23%	11%	37%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		251	692	691	79							
LT Vol		130	36	128	38							
Through Vol		15	494	487	12							
RT Vol		106	162	76	29							
Lane Flow Rate		251	692	691	79							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.507	1.193	1.21	0.181							
Departure Headway (Hd)		8.084	6.564	6.647	9.173							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		449	561	553	393							
Service Time		6.084	4.564	4.647	7.173							
HCM Lane V/C Ratio		0.559	1.234	1.25	0.201							
HCM Control Delay		19.1	126.5	133.4	14.2							
HCM Lane LOS		С	F	F	В							
HCM 95th-tile Q		2.8	23.6	24.3	0.7							

	•	-	\rightarrow	•	-	*		†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	f)		ሻ	ĥ		ሻ	ĵ.		ሻ	f)	
Traffic Volume (vph)	42	460	255	114	428	135	193	0	88	126	0	27
Future Volume (vph)	42	460	255	114	428	135	193	0	88	126	0	27
Satd. Flow (prot)	1658	1653	0	1658	1500	0	1658	1483	0	1492	1483	C
FIt Permitted	0.399			0.314			0.740			0.700		
Satd. Flow (perm)	692	1653	0	548	1500	0	1291	1483	0	1092	1483	0
Satd. Flow (RTOR)		46			26			430			447	
Lane Group Flow (vph)	42	715	0	114	563	0	193	88	0	126	27	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	82.0	82.0		82.0	82.0		38.0	38.0		38.0	38.0	
Total Split (%)	68.3%	68.3%		68.3%	68.3%		31.7%	31.7%		31.7%	31.7%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag	***			•	• • • • • • • • • • • • • • • • • • • •							
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min		C-Min	C-Min		None	None		None	None	
Act Effct Green (s)	85.3	85.3		85.3	85.3		23.1	23.1		23.1	23.1	
Actuated g/C Ratio	0.71	0.71		0.71	0.71		0.19	0.19		0.19	0.19	
v/c Ratio	0.09	0.60		0.29	0.52		0.78	0.14		0.60	0.04	
Control Delay	7.5	11.9		10.2	10.8		65.9	0.5		54.9	0.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.5	11.9		10.2	10.8		65.9	0.5		54.9	0.1	
LOS	Α	В		В	В		E	A		D	A	
Approach Delay	- / (11.6			10.7			45.4			45.3	
Approach LOS		В			В			D			D	
Queue Length 50th (m)	2.7	70.8		8.8	51.8		43.5	0.0		27.3	0.0	
Queue Length 95th (m)	8.2	133.0		22.8	98.9		63.7	0.0		43.5	0.0	
Internal Link Dist (m)	0.2	122.9		22.0	257.3		00.1	171.4		40.0	184.1	
Turn Bay Length (m)	37.5	122.5		37.5	201.0		30.0	17 1.4		30.0	104.1	
Base Capacity (vph)	491	1187		389	1073		345	711		292	724	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.09	0.60		0.29	0.52		0.56	0.12		0.43	0.04	
	0.09	0.00		0.29	0.02		0.50	0.12		0.43	0.04	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120			014/05	0								
Offset: 0 (0%), Referenced	to phase 2	FRII and	b.MBTI	Start of	Green							

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 70

Control Type: Actuated-Coordinated

Lanes, Volumes, Timings 2: Elevation/Apolune & Cambrian

2029 Future Background PM Peak Hour

Maximum v/c Ratio: 0.78	
Intersection Signal Delay: 19.1	Intersection LOS: B
Intersection Capacity Utilization 82.7%	ICU Level of Service E
Analysis Period (min) 15	

Splits and Phases: 2: Elevation/Apolune & Cambrian

HCM 2010 TWSC 5: Temporary Driveway & Cambrian 2029 Future Background PM Peak Hour

Intersection						
Int Delay, s/veh	1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1→	LDIX	WDL	4	NDL W	INDIX
Traffic Vol. veh/h	633	57	6	654	38	9
Future Vol. veh/h	633	57	6	654	38	9
	033	0	0	054	38	0
Conflicting Peds, #/hr	-	-		-		•
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	633	57	6	654	38	9
Major/Minor Ma	ajor1		Major2		Minor1	
						cco
Conflicting Flow All	0	0	690	0	1328	662
Stage 1	-	-	-	-	662	-
Stage 2	-	-	-	-	666	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-		-	0.0.0	
Pot Cap-1 Maneuver	-	-	905	-	171	462
Stage 1	-	-	-	-	513	-
Stage 2		-	-	-	511	-
Platoon blocked, %	-					
Mov Cap-1 Maneuver	-		905		169	462
Mov Cap-1 Maneuver			303		169	402
Stage 1		-	-	-	513	-
					506	
Stage 2	-	-	-	-	506	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		29.7	
HCM LOS	J		0.1		D	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		192	-	-	905	-
HCM Lane V/C Ratio		0.245	-	-	0.007	-
HCM Control Delay (s)		29.7	-	-	9	0
HCM Lane LOS		D			A	Α
HCM 95th %tile Q(veh)		0.9	_		0	-
0001 70010 0(1011)		0.0			0	

Intersection												
Intersection Delay, s/veh	49.4											
Intersection LOS	Е											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		- 43→			4			4			4	
Traffic Vol, veh/h	21	410	108	74	469	82	103	10	82	40	13	3
Future Vol, veh/h	21	410	108	74	469	82	103	10	82	40	13	30
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	7	2	2	2	2	4	2	8	2
Mvmt Flow	21	410	108	74	469	82	103	10	82	40	13	30
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	38.7			74.3			15			12.7		
HCM LOS	Е			F			В			В		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		53%	4%	12%	48%							
Vol Thru, %		5%	76%	75%	16%							
Vol Right, %		42%	20%	13%	36%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		195	539	625	83							
LT Vol		103	21	74	40							
Through Vol		10	410	469	13							
RT Vol		82	108	82	30							
Lane Flow Rate		195	539	625	83							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.388	0.884	1.048	0.177							
Departure Headway (Hd)		7.384	6.08	6.038	7.952							
		Yes	Yes	Yes	Yes							
Convergence, Y/N												
Convergence, Y/N Cap		491	598	606	454							
Convergence, Y/N Cap Service Time		491 5.384	4.08	4.038	5.952							
Convergence, Y/N Cap		491										
Convergence, Y/N Cap Service Time		491 5.384 0.397 15	4.08 0.901 38.7	4.038 1.031 74.3	5.952							
Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		491 5.384 0.397	4.08 0.901	4.038 1.031	5.952 0.183							

	*	→	•	•	←	•	4	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>		ሻ	f.		ሻ	₽		ሻ	4	
Traffic Volume (vph)	46	263	232	128	286	117	181	1	109	105	2	52
Future Volume (vph)	46	263	232	128	286	117	181	1	109	105	2	52
Satd. Flow (prot)	1566	1623	0	1271	1484	0	1658	1330	0	1436	1401	0
Flt Permitted	0.500			0.442			0.722			0.673		
Satd. Flow (perm)	817	1623	0	592	1484	0	1260	1330	0	1011	1401	0
Satd. Flow (RTOR)		65			30			109			52	
Lane Group Flow (vph)	46	495	0	128	403	0	181	110	0	105	54	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	77.0	77.0		77.0	77.0		43.0	43.0		43.0	43.0	
Total Split (%)	64.2%	64.2%		64.2%	64.2%		35.8%	35.8%		35.8%	35.8%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag					• • • • • • • • • • • • • • • • • • • •							
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min		C-Min	C-Min		None	None		None	None	
Act Effct Green (s)	85.8	85.8		85.8	85.8		22.6	22.6		22.6	22.6	
Actuated g/C Ratio	0.72	0.72		0.72	0.72		0.19	0.19		0.19	0.19	
v/c Ratio	0.08	0.42		0.30	0.38		0.76	0.32		0.55	0.18	
Control Delay	7.2	8.1		9.9	8.3		65.5	9.5		53.6	11.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.2	8.1		9.9	8.3		65.5	9.5		53.6	11.5	
LOS	A	A		A	A		E	A		D	В	
Approach Delay		8.0		- / (8.7		_	44.3			39.3	
Approach LOS		A			A			D			D	
Queue Length 50th (m)	2.9	35.8		9.8	30.1		40.8	0.2		22.6	0.4	
Queue Length 95th (m)	8.5	70.3		24.9	59.6		60.4	13.9		37.4	10.2	
Internal Link Dist (m)	0.0	122.9		24.0	257.3		00.1	171.4		01.1	184.1	
Turn Bay Length (m)	37.5	122.0		37.5	201.0		30.0			30.0	10111	
Base Capacity (vph)	583	1178		423	1069		389	486		312	469	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.08	0.42		0.30	0.38		0.47	0.23		0.34	0.12	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

2029 Future Background SAT Peak Hour

Maximum v/c Ratio: 0.76	
Intersection Signal Delay: 18.4	Intersection LOS: B
Intersection Capacity Utilization 69.6%	ICU Level of Service C
Analysis Period (min) 15	

Splits and Phases: 2: Elevation/Apolune & Cambrian

opino ana i nacco. El Elevatorio aporario a cambriari	
→ø2 (R)	↑ Ø4
77 s	43 s
▼ Ø6 (R)	₩ Ø8
77 s	43 s

HCM 2010 TWSC 5: Temporary Driveway & Cambrian 2029 Future Background SAT Peak Hour

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			ની	Y	
Traffic Vol, veh/h	154	66	7	205	44	10
Future Vol, veh/h	154	66	7	205	44	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	154	66	7	205	44	10
Major/Minor	Major1		Major2	-	Minor1	
Conflicting Flow All	0	0	220	0	406	187
Stage 1	-	-	-	-	187	-
Stage 2					219	
Critical Hdwy			4.12		6.42	6.22
Critical Hdwy Stg 1	- 1		4.12		5.42	0.22
Critical Hdwy Stg 2			_		5.42	
Follow-up Hdwy	- 1	-	2.218		3.518	
Pot Cap-1 Maneuver			1349		601	855
Stage 1			1040	- 1	845	000
Stage 2					817	
Platoon blocked, %	-				017	-
Mov Cap-1 Maneuver	-		1349		597	855
					597	
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-			845	
Stage 2	-	-	-	-	812	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		11.2	
HCM LOS					В	
					14/01	
Minor Lane/Major Mvn	nt I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		632	-	-	1349	-
HCM Lane V/C Ratio		0.085	-			-
HCM Control Delay (s)		11.2	-	-	7.7	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)	0.3	-	-	0	-

Appendix J

Synchro Intersection Worksheets – 2024 Future Total Conditions

ntersection												
Intersection Delay, s/veh	54.9											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4			43-			44	
Traffic Vol, veh/h	24	428	85	49	341	51	181	50	104	71	16	48
Future Vol, veh/h	24	428	85	49	341	51	181	50	104	71	16	48
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	7	10	6	16	9	4	2	10	4	3	6	4
Mvmt Flow	24	428	85	49	341	51	181	50	104	71	16	48
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	86.4			48.7			28.2			16.1		
HCM LOS	F			Е			D			С		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		54%	4%	11%	53%							
Vol Thru, %		15%	80%	77%	12%							
Vol Right, %		31%	16%	12%	36%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		335	537	441	135							
LT Vol		181	24	49	71							
Through Vol		50	428	341	16							
RT Vol		104	85	51	48							
Lane Flow Rate		335	537	441	135							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.713	1.069	0.904	0.322							
		7.897	7.164	7.61	8.907							
Departure Headway (Hd)		Yes	Yes	Yes	Yes							
Convergence, Y/N			510	481	406							
Convergence, Y/N Cap		462										
Convergence, Y/N Cap Service Time	_	5.897	5.164	5.61	6.907							
Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		5.897 0.725	5.164 1.053	0.917	0.333							
Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		5.897 0.725 28.2	5.164 1.053 86.4	0.917 48.7	0.333				_	_		
Convergence, Y/N		5.897 0.725	5.164 1.053	0.917	0.333							

	•	-	\rightarrow	•	←	*		†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ĵ.		7	f,		7	1>		*	1>	
Traffic Volume (vph)	9	247	90	34	441	80	189	0	71	142	0	32
Future Volume (vph)	9	247	90	34	441	80	189	0	71	142	0	32
Satd. Flow (prot)	1658	1474	0	1658	1485	0	1658	1483	0	1492	1483	0
Flt Permitted	0.408			0.548			0.736			0.711		
Satd. Flow (perm)	712	1474	0	956	1485	0	1284	1483	0	1117	1483	0
Satd. Flow (RTOR)		36			18			567			335	
Lane Group Flow (vph)	9	337	0	34	521	0	189	71	0	142	32	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	39.6	39.6		39.6	39.6		30.4	30.4		30.4	30.4	
Total Split (%)	56.6%	56.6%		56.6%	56.6%		43.4%	43.4%		43.4%	43.4%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag	***	• • • • • • • • • • • • • • • • • • • •										
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min		C-Min	C-Min		None	None		None	None	
Act Effct Green (s)	42.1	42.1		42.1	42.1		16.3	16.3		16.3	16.3	
Actuated g/C Ratio	0.60	0.60		0.60	0.60		0.23	0.23		0.23	0.23	
v/c Ratio	0.02	0.37		0.06	0.58		0.63	0.09		0.55	0.05	
Control Delay	8.3	9.1		8.2	13.1		32.9	0.2		30.4	0.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	8.3	9.1		8.2	13.1		32.9	0.2		30.4	0.2	
LOS	A	A		A	В		C	A		C	A	
Approach Delay	- / (9.1		,,	12.8			24.0		Ŭ	24.9	
Approach LOS		A			В.			C			C C	
Queue Length 50th (m)	0.4	17.0		1.6	34.3		22.6	0.0		16.6	0.0	
Queue Length 95th (m)	2.7	43.9		6.6	84.1		35.0	0.0		27.6	0.0	
Internal Link Dist (m)	2.1	192.0		0.0	170.7		00.0	97.9		21.0	184.1	
Turn Bay Length (m)	37.5	102.0		37.5	110.1		30.0	01.0		30.0	104.1	
Base Capacity (vph)	428	901		575	901		449	887		390	736	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.02	0.37		0.06	0.58		0.42	0.08		0.36	0.04	
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 0 (0%), Referenced	to phase 2	EBTL and	6:WBTI	. Start of	Green							
Natural Cycle: 60	To pridoo E			, Juil Oi	2.00							
Control Type: Actuated-Coo	ordinated											

Lanes, Volumes, Timings

2: Elevation/Apolune & Cambrian

2024 Future Total AM Peak Hour

Maximum v/c Ratio: 0.63	
Intersection Signal Delay: 15.6	Intersection LOS: B
Intersection Capacity Utilization 57.2%	ICU Level of Service B
Analysis Period (min) 15	
Analysis Period (min) 15	

Splits and Phases: 2: Elevation/Apolune & Cambrian

→ø2 (R)	↑ ø₄
39.6 s	30.4s
Ø6 (R)	₽ Ø8
39.6 s	30.4 s

HCM 2010 TWSC 5: Temporary Driveway & Cambrian 2024 Future Total AM Peak Hour

Interpostion						
Intersection	0.4					
Int Delay, s/veh	U.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			ર્ન	W	
Traffic Vol, veh/h	438	22	9	549	15	6
Future Vol. veh/h	438	22	9	549	15	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e. # 0	-		0	0	_
Grade. %	0			0	0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
	438	22	9	549	15	6
Mvmt Flow	438	22	9	549	15	р
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	460	0	1016	449
Stage 1	-	-	-	-	449	-
Stage 2	-	-	-	-	567	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1			-		5.42	-
Critical Hdwy Stg 2	-		-	-	5.42	
Follow-up Hdwy			2.218		3.518	3 318
Pot Cap-1 Maneuver	-		1101	-	264	610
Stage 1			-		643	-
Stage 2			_		568	
Platoon blocked, %	- 1				300	
Mov Cap-1 Maneuver			1101		261	610
					261	
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-	-	-	643	-
Stage 2	-	-	-	-	561	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		17.4	
HCM LOS	U		0.1		C	
TIONI LOO					U	
Minor Lane/Major Mvn	nt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		312	-	-	1101	-
HCM Lane V/C Ratio		0.067	-	-	0.008	-
HCM Control Delay (s)		17.4	-	-	8.3	0
HOM Level OC					Α.	^

Intersection Delay alveb	56.7											
Intersection Delay, s/veh Intersection LOS	50.7 F											
intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		43-			4			4			44	
Traffic Vol, veh/h	36	416	142	123	399	76	113	15	103	38	12	29
Future Vol, veh/h	36	416	142	123	399	76	113	15	103	38	12	29
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	7	2	2	2
Mvmt Flow	36	416	142	123	399	76	113	15	103	38	12	29
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	60.5			74.1			16.9			13.1		
HCM LOS	F			F			С			В		
		NIDI n1	EDI n1	M/DI n1	CDI n1							
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		49%	6%	21%	48%							
Vol Left, % Vol Thru, %		49% 6%	6% 70%	21% 67%	48% 15%							
Vol Left, % Vol Thru, % Vol Right, %		49% 6% 45%	6% 70% 24%	21% 67% 13%	48% 15% 37%							
Vol Left, % Vol Thru, % Vol Right, % Sign Control		49% 6% 45% Stop	6% 70% 24% Stop	21% 67% 13% Stop	48% 15% 37% Stop							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		49% 6% 45% Stop 231	6% 70% 24% Stop 594	21% 67% 13% Stop 598	48% 15% 37% Stop 79							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		49% 6% 45% Stop 231 113	6% 70% 24% Stop 594 36	21% 67% 13% Stop 598 123	48% 15% 37% Stop 79 38							
Vol Left, % Vol Thru, % Vol Right, % Signation Control Traffic Vol by Lane LT Vol Through Vol		49% 6% 45% Stop 231 113	6% 70% 24% Stop 594 36 416	21% 67% 13% Stop 598 123 399	48% 15% 37% Stop 79 38 12							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol TrThrough Vol RT Vol		49% 6% 45% Stop 231 113 15	6% 70% 24% Stop 594 36 416 142	21% 67% 13% Stop 598 123 399 76	48% 15% 37% Stop 79 38 12 29							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		49% 6% 45% Stop 231 113 15 103 231	6% 70% 24% Stop 594 36 416 142 594	21% 67% 13% Stop 598 123 399 76	48% 15% 37% Stop 79 38 12 29							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RTHOUGH VOI LANG EIGHT VOI LANG EIGHT VOI LANG EIGHT VOI GROUND LANG EIGHT VOI LANG EIGHT VOI GROUND VOI LANG EIGHT VOI LANG		49% 6% 45% Stop 231 113 15 103 231	6% 70% 24% Stop 594 36 416 142 594	21% 67% 13% Stop 598 123 399 76 598	48% 15% 37% Stop 79 38 12 29 79							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		49% 6% 45% Stop 231 113 15 103 231 1 0.465	6% 70% 24% Stop 594 36 416 142 594 1	21% 67% 13% Stop 598 123 399 76 598 1	48% 15% 37% Stop 79 38 12 29 79 1							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		49% 6% 45% Stop 231 113 15 103 231 1 0.465 7.518	6% 70% 24% Stop 594 36 416 142 594 1 0.993 6.248	21% 67% 13% Stop 598 123 399 76 598 1 1.043 6.279	48% 15% 37% Stop 79 38 12 29 79 1 0.178 8.343							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		49% 6% 45% Stop 231 113 15 103 231 1 0.465 7.518 Yes	6% 70% 24% Stop 594 36 416 142 594 1 0.993 6.248 Yes	21% 67% 13% Stop 598 123 399 76 598 1 1.043 6.279 Yes	48% 15% 37% Stop 79 38 12 29 79 1 0.178 8.343 Yes							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		49% 6% 45% Stop 231 113 15 103 231 1 0.465 7.518 Yes 483	6% 70% 24% Stop 594 36 416 142 594 1 0.993 6.248 Yes 588	21% 67% 13% Stop 598 123 399 76 598 1 1.043 6.279 Yes 580	48% 15% 37% Stop 79 38 12 29 79 1 0.178 8.343 Yes 433							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		49% 6% 45% Stop 231 113 15 103 231 1 0.465 7.518 Yes 483 5.518	6% 70% 24% Stop 594 36 416 142 594 1 0.993 6.248 Yes 588 4.248	21% 67% 13% Stop 598 123 399 76 598 1 1.043 6.279 Yes 580 4.286	48% 15% 37% Stop 79 38 12 29 79 1 0.178 8.343 Yes 433 6.343							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		49% 6% 45% Stop 231 113 15 103 231 1 0.465 7.518 Yes 483 5.518 0.478	6% 70% 24% Stop 594 36 416 142 594 1 0.993 6.248 Yes 588 4.248	21% 67% 13% Stop 598 123 399 76 598 1 1.043 6.279 Yes 580 4.286 1.031	48% 15% 37% Stop 79 38 12 29 79 1 0.178 8.343 Yes 433 6.343 0.182							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		49% 6% 45% Stop 231 113 15 103 231 1 0.465 7.518 Yes 483 5.518	6% 70% 24% Stop 594 36 416 142 594 1 0.993 6.248 Yes 588 4.248	21% 67% 13% Stop 598 123 399 76 598 1 1.043 6.279 Yes 580 4.286	48% 15% 37% Stop 79 38 12 29 79 1 0.178 8.343 Yes 433 6.343							

HCM 95th %tile Q(veh)

A A - - C

0.1 - - - 0.4

2024 Future Total PM Peak Hour

	•	\rightarrow	*	1	-	•	1	Ť		-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻ	1>		ሻ	ĥ		7	₽		ሻ	₽	
Traffic Volume (vph)	32	446	177	61	412	105	136	0	46	90	0	1
Future Volume (vph)	32	446	177	61	412	105	136	0	46	90	0	1
Satd. Flow (prot)	1658	1670	0	1658	1511	0	1658	1483	0	1492	1483	
Flt Permitted	0.441			0.382			0.746			0.727		
Satd. Flow (perm)	765	1670	0	667	1511	0	1302	1483	0	1134	1483	
Satd. Flow (RTOR)		33			21			442			463	
Lane Group Flow (vph)	32	623	0	61	517	0	136	46	0	90	18	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	82.0	82.0		82.0	82.0		38.0	38.0		38.0	38.0	
Total Split (%)	68.3%	68.3%		68.3%	68.3%		31.7%	31.7%		31.7%	31.7%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min		C-Min	C-Min		None	None		None	None	
Act Effct Green (s)	90.6	90.6		90.6	90.6		17.8	17.8		17.8	17.8	
Actuated g/C Ratio	0.76	0.76		0.76	0.76		0.15	0.15		0.15	0.15	
v/c Ratio	0.06	0.49		0.12	0.45		0.70	0.08		0.54	0.03	
Control Delay	5.2	7.7		5.7	7.4		67.0	0.3		57.6	0.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	5.2	7.7		5.7	7.4		67.0	0.3		57.6	0.1	
LOS	Α	Α		Α	Α		Е	Α		Е	Α	
Approach Delay		7.5			7.3			50.1			48.0	
Approach LOS		Α			Α			D			D	
Queue Length 50th (m)	1.7	46.2		3.3	37.1		30.8	0.0		19.8	0.0	
Queue Length 95th (m)	5.4	86.8		9.3	71.3		48.8	0.0		34.4	0.0	
Internal Link Dist (m)		122.9			169.1			171.4			184.1	
Turn Bay Length (m)	37.5			37.5			30.0			30.0		
Base Capacity (vph)	577	1268		503	1145		348	720		303	735	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.06	0.49		0.12	0.45		0.39	0.06		0.30	0.02	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120 Offset: 0 (0%) Referenced					_							

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60

Control Type: Actuated-Coordinated

Scenario 1 3850 Cambrian Road 11:59 pm 10/19/2022 2024 Future Total

Synchro 11 Report

Page 3

Lanes, Volumes, Timings 2: Elevation/Apolune & Cambrian

₹ø6 (R)

2024 Future Total PM Peak Hour

Maximum v/c Ratio: 0.70 Intersection Signal Delay: 15.4 Intersection LOS: B Intersection Capacity Utilization 73.5% Analysis Period (min) 15 ICU Level of Service D Splits and Phases: 2: Elevation/Apolune & Cambrian **↑**04

Intersection						
Int Delay, s/veh	0.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			લી	W	
Traffic Vol, veh/h	530	57	6	545	38	9
Future Vol, veh/h	530	57	6	545	38	9
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	530	57	6	545	38	9
Major/Minor N	lajor1	-	Major2		Minor1	
Conflicting Flow All	0	0	587	0	1116	559
Stage 1	-	-	307	-	559	559
Stage 2					557	
Critical Hdwv			4.12		6.42	6.22
Critical Hdwy Stg 1	- 1		4.12		5.42	0.22
	-				5.42	
Critical Hdwy Stg 2		-	-	-		-
Follow-up Hdwy	-		2.218		3.518	
Pot Cap-1 Maneuver	-	-	988	-	230	529
Stage 1	-	-	-	-	572	-
Stage 2	-	-	-	-	574	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	988	-	228	529
Mov Cap-2 Maneuver	-	-	-	-	228	-
Stage 1	-	-	-	-	572	-
Stage 2	-	-	-	-	569	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		22.2	
HCM LOS	U		0.1		C	
					14/01	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		256	-	-	988	-
HCM Lane V/C Ratio		0.184	-	-	0.006	-
HCM Control Delay (s)		22.2	-	-	8.7	0
HCM Lane LOS		С	-	-	Α	Α
HCM 95th %tile Q(veh)		0.7	-	-	0	-
HOW SOUL WILL COVERN)		0.7	-	-	U	

Intersection						
Int Delay, s/veh	2.1					
**	ED:	ED.	MOT	WDD	OD:	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	00	4	}	00	¥	00
Traffic Vol, veh/h	38	544	517	68	43	62
Future Vol, veh/h	38	544	517	68	43	62
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	38	544	517	68	43	62
		• • • •	•	-		
	Major1		Major2		Minor2	
Conflicting Flow All	585	0	-	0	1171	551
Stage 1	-	-	-	-	551	-
Stage 2	-	-	-	-	620	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	990		-	-	213	534
Stage 1					577	-
Stage 2			-		536	-
Platoon blocked, %		-	-		000	
Mov Cap-1 Maneuver	990		-	-	201	534
Mov Cap-1 Maneuver	990				201	554
	-	-	-	-	545	-
Stage 1	-	-	-	-		
Stage 2	-	-	-	-	536	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.6		0		21.8	
HCM LOS	0.0		U		21.0 C	
I IOIVI LUO					U	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		990	-	-	-	318
HCM Lane V/C Ratio		0.038	-			0.33
HCM Control Delay (s))	8.8	0		-	21.8
HCM Lane LOS	1	Α.	A			C C
HCM 95th %tile Q(veh	.)	0.1	-			1.4
now your wille Q(ven)	0.1	-	-	-	1.4

Intersection												
Intersection Delay, s/veh	23.9											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		44			4			43-			4	
Traffic Vol, veh/h	20	339	90	69	388	82	88	10	79	40	13	3
Future Vol., veh/h	20	339	90	69	388	82	88	10	79	40	13	3
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Heavy Vehicles, %	2	2	2	7	2	2	2	2	4	2	8	
Mvmt Flow	20	339	90	69	388	82	88	10	79	40	13	30
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	-
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	21.1			31.7			13			11.5		
HCM LOS	С			D			В			В		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left. %		50%	4%	13%	48%							
Vol Thru, %		6%	76%	72%	16%							
Vol Right, %		45%	20%	15%	36%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		177	449	539	83							
LT Vol		88	20	69	40							
Through Vol		10	339	388	13							
RT Vol		79	90	82	30							
Lane Flow Rate		177	449	539	83							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.328	0.706	0.844	0.163							
Departure Headway (Hd)		6.672	5.657	5.64	7.055							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		538	642	647	507							
Service Time		4.728	3.674	3.655	5.12							
HOM Land VIO Datia		0.329	0.699	0.833	0.164							
HUM Lane V/C Ratio												
HCM Lane V/C Ratio HCM Control Delay		13	21.1	31.7	11.5							
		13 B	21.1 C	31.7 D	11.5 B							

	•	\rightarrow	7	1	-	•	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f.		*	î,		ሻ	^		ሻ	1>	
Traffic Volume (vph)	38	249	160	78	271	91	128	1	69	75	2	45
Future Volume (vph)	38	249	160	78	271	91	128	1	69	75	2	45
Satd. Flow (prot)	1566	1642	0	1271	1496	0	1658	1332	0	1436	1402	0
Flt Permitted	0.536			0.506			0.726			0.711		
Satd. Flow (perm)	875	1642	0	677	1496	0	1267	1332	0	1067	1402	0
Satd. Flow (RTOR)		48			25			69			45	
Lane Group Flow (vph)	38	409	0	78	362	0	128	70	0	75	47	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	77.0	77.0		77.0	77.0		43.0	43.0		43.0	43.0	
Total Split (%)	64.2%	64.2%		64.2%	64.2%		35.8%	35.8%		35.8%	35.8%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min		C-Min	C-Min		None	None		None	None	
Act Effct Green (s)	91.0	91.0		91.0	91.0		17.4	17.4		17.4	17.4	
Actuated g/C Ratio	0.76	0.76		0.76	0.76		0.14	0.14		0.14	0.14	
v/c Ratio	0.06	0.33		0.15	0.32		0.70	0.28		0.48	0.19	
Control Delay	5.0	5.4		5.7	5.7		67.4	12.7		56.1	14.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	5.0	5.4		5.7	5.7		67.4	12.7		56.1	14.4	
LOS	Α	Α		Α	Α		Е	В		Е	В	
Approach Delay		5.4			5.7			48.1			40.1	
Approach LOS		Α			Α			D			D	
Queue Length 50th (m)	2.0	22.7		4.3	21.3		29.0	0.2		16.5	0.4	
Queue Length 95th (m)	6.0	44.7		11.5	42.3		46.7	12.3		29.9	10.4	
Internal Link Dist (m)		122.9			166.9			171.4			184.1	
Turn Bay Length (m)	37.5			37.5			30.0			30.0		
Base Capacity (vph)	663	1256		513	1140		391	459		329	464	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.06	0.33		0.15	0.32		0.33	0.15		0.23	0.10	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 60

Control Type: Actuated-Coordinated

2024 Future Future SAT Peak Hour

Maximum v/c Ratio: 0.70	
Intersection Signal Delay: 16.0	Intersection LOS: B
Intersection Capacity Utilization 61.0%	ICU Level of Service B
Analysis Period (min) 15	

Splits and Phases: 2: Elevation/Apolune & Cambrian

opino and i naces. 2. Elevation/ (polarie a cambrian	
→ Ø2 (R)	↑ Ø4
77 s	43 s
▼ Ø6 (R)	↓ Ø8
77 s	43 s

HCM 2010 TWSC 5: Temporary Driveway & Cambrian 2024 Future Future SAT Peak Hour

Intersection						
Int Delay, s/veh	2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
		EDR	WDL		INDL	INDIX
Lane Configurations	(1)	00	7	ની 103		40
Traffic Vol, veh/h	60	66	7		44	10
Future Vol, veh/h	60	66	7	103	44	
Conflicting Peds, #/hr	_ 0	_ 0	0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	60	66	7	103	44	10
Major/Minor A	laias1		Vacion O		Minaul	
	lajor1		Major2		Minor1	00
Conflicting Flow All	0	0	126	0	210	93
Stage 1	-	-	-	-	93	-
Stage 2	-	-	-	-	117	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-		
Pot Cap-1 Maneuver	-	-	1460	-	778	964
Stage 1	-	-	-	-	931	-
Stage 2	-	-	-	-	908	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1460	-	774	964
Mov Cap-2 Maneuver	-	-	-	-	774	-
Stage 1	-		-	-	931	-
Stage 2		-	-	-	903	-
Olago 2					000	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		9.8	
HCM LOS					Α	
Mineral and Maire Memore		NIDL 4	EDT	EDD	WDI	MOT
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		803	-	-	1460	-
HCM Lane V/C Ratio		0.067	-	-	0.005	-
HCM Control Delay (s)		9.8	-	-	7.5	0
LICM Lana LOC		Λ.			Λ.	Α.

A - - A A

HCM Lane LOS

Intersection						_
Int Delay, s/veh	2.4					
		===	14/07	14/0/5	0.00	0.05
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	Þ		Y	
Traffic Vol, veh/h	50	343	387	62	58	53
Future Vol, veh/h	50	343	387	62	58	53
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	50	343	387	62	58	53
	- 00	0.0	-001	02	- 00	- 00
	Major1		Major2		Minor2	
Conflicting Flow All	449	0	-	0	861	418
Stage 1	-	-	-	-	418	-
Stage 2	-	-	-	-	443	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1111	-	-	-	326	635
Stage 1	-	-	-	-	664	-
Stage 2	-	-	-	-	647	-
Platoon blocked, %		-	-	-	•	
Mov Cap-1 Maneuver	1111	_	_	-	308	635
Mov Cap-2 Maneuver					308	-
Stage 1				-	627	_
Stage 2			-	-	647	-
Staye 2					047	
Approach	EB		WB		SB	
HCM Control Delay, s	1.1		0		17.1	
HCM LOS					С	
N. 1 (N.4.) N.4.		EDI	EDT	MOT	WDD	OD! 4
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1111	-	-	-	408
HCM Lane V/C Ratio		0.045	-	-	-	0.272
HCM Control Delay (s)		8.4	0	-	-	17.1
HCM Lane LOS		Α	Α	-	-	С
HCM 95th %tile Q(veh))	0.1	-	-	-	1.1

Appendix K

Synchro Intersection Worksheets – 2029 Future Total Conditions

Intersection												
Intersection Delay, s/veh	100											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		43-			4			43-			43-	
Traffic Vol, veh/h	25	511	96	51	397	51	199	50	109	71	16	49
Future Vol, veh/h	25	511	96	51	397	51	199	50	109	71	16	49
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	7	10	6	16	9	4	2	10	4	3	6	4
Mvmt Flow	25	511	96	51	397	51	199	50	109	71	16	49
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	167.3			83.5			35.6			17.9		
HCM LOS	F			F			Е			С		
Lane		NIDL -4										
		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		56%	4%	10%	52%							
Vol Thru, %		56% 14%	4% 81%	10% 80%	52% 12%							
Vol Thru, % Vol Right, %		56% 14% 30%	4% 81% 15%	10% 80% 10%	52% 12% 36%							
Vol Thru, % Vol Right, % Sign Control		56% 14% 30% Stop	4% 81% 15% Stop	10% 80% 10% Stop	52% 12% 36% Stop							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		56% 14% 30% Stop 358	4% 81% 15% Stop 632	10% 80% 10% Stop 499	52% 12% 36% Stop 136							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		56% 14% 30% Stop 358 199	4% 81% 15% Stop 632 25	10% 80% 10% Stop 499 51	52% 12% 36% Stop 136 71							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		56% 14% 30% Stop 358 199 50	4% 81% 15% Stop 632 25 511	10% 80% 10% Stop 499 51 397	52% 12% 36% Stop 136 71 16							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		56% 14% 30% Stop 358 199 50 109	4% 81% 15% Stop 632 25 511 96	10% 80% 10% Stop 499 51 397 51	52% 12% 36% Stop 136 71 16 49							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		56% 14% 30% Stop 358 199 50 109 358	4% 81% 15% Stop 632 25 511 96 632	10% 80% 10% Stop 499 51 397 51	52% 12% 36% Stop 136 71 16 49							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		56% 14% 30% Stop 358 199 50 109 358 1	4% 81% 15% Stop 632 25 511 96 632 1	10% 80% 10% Stop 499 51 397 51 499	52% 12% 36% Stop 136 71 16 49 136							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		56% 14% 30% Stop 358 199 50 109 358 1	4% 81% 15% Stop 632 25 511 96 632 1	10% 80% 10% Stop 499 51 397 51 499 1	52% 12% 36% Stop 136 71 16 49 136 1							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		56% 14% 30% Stop 358 199 50 109 358 1 0.7777 8.555	4% 81% 15% Stop 632 25 511 96 632 1 1.286 7.577	10% 80% 10% Stop 499 51 397 51 499 1 1.043 8.161	52% 12% 36% Stop 136 71 16 49 136 1 0.337 9.908							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		56% 14% 30% Stop 358 199 50 109 358 1 0.7777 8.5555 Yes	4% 81% 15% Stop 632 25 511 96 632 1 1.286 7.577	10% 80% 10% Stop 499 51 397 51 499 1 1.043 8.161 Yes	52% 12% 36% Stop 136 71 16 49 136 1 0.337 9.908 Yes							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		56% 14% 30% Stop 358 199 50 109 358 1 0.7777 8.5555 Yes 426	4% 81% 15% Stop 632 25 511 96 632 1 1.286 7.577 Yes 487	10% 80% 10% Stop 499 51 397 51 499 1 1.043 8.161 Yes 449	52% 12% 36% Stop 136 71 16 49 136 1 0.337 9.908 Yes 366							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		56% 14% 30% Stop 358 199 50 109 358 1 0.7777 8.555 Yes 426 6.555	4% 81% 15% Stop 632 25 511 96 632 1 1.286 7.577 Yes 487 5.577	10% 80% 10% Stop 499 51 397 51 499 1 1.043 8.161 Yes 449 6.161	52% 12% 36% Stop 136 71 16 49 136 1 0.337 9.908 Yes 366 7.908							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		56% 14% 30% Stop 358 199 50 109 358 1 0.7777 8.555 Yes 426 6.555 0.84	4% 81% 15% Stop 632 25 511 96 632 1 1.286 7.577 Yes 487 5.577 1.298	10% 80% 10% Stop 499 51 397 51 499 1 1.043 8.161 Yes 449 6.161 1.111	52% 12% 36% Stop 136 71 16 49 136 1 0.337 9.908 Yes 366 7.908 0.372							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		56% 14% 30% Stop 358 199 50 109 358 1 0.777 8.555 Yes 426 6.555 0.84 35.6	4% 81% 15% Stop 632 25 511 96 632 1 1.286 7.577 Yes 487 5.577 1.298 167.3	10% 80% 10% Stop 499 51 397 51 499 1 1.043 8.161 Yes 449 6.161 1.111 83.5	52% 12% 36% Stop 136 71 16 49 136 1 0.337 9.908 Yes 366 7.908 0.372 17.9							
Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		56% 14% 30% Stop 358 199 50 109 358 1 0.7777 8.555 Yes 426 6.555 0.84	4% 81% 15% Stop 632 25 511 96 632 1 1.286 7.577 Yes 487 5.577 1.298	10% 80% 10% Stop 499 51 397 51 499 1 1.043 8.161 Yes 449 6.161 1.111	52% 12% 36% Stop 136 71 16 49 136 1 0.337 9.908 Yes 366 7.908 0.372							

	•	-	\rightarrow	•	-	*		†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	- 1>		ሻ	î,		ሻ	ĵ.		ሻ	f)	
Traffic Volume (vph)	14	257	129	60	464	96	270	0	122	176	0	42
Future Volume (vph)	14	257	129	60	464	96	270	0	122	176	0	42
Satd. Flow (prot)	1658	1475	0	1658	1482	0	1658	1483	0	1492	1483	C
FIt Permitted	0.359			0.496			0.730			0.679		
Satd. Flow (perm)	626	1475	0	866	1482	0	1274	1483	0	1066	1483	0
Satd. Flow (RTOR)		50			21			552			314	
Lane Group Flow (vph)	14	386	0	60	560	0	270	122	0	176	42	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	39.6	39.6		39.6	39.6		30.4	30.4		30.4	30.4	
Total Split (%)	56.6%	56.6%		56.6%	56.6%		43.4%	43.4%		43.4%	43.4%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min		C-Min	C-Min		None	None		None	None	
Act Effct Green (s)	39.2	39.2		39.2	39.2		19.2	19.2		19.2	19.2	
Actuated g/C Ratio	0.56	0.56		0.56	0.56		0.27	0.27		0.27	0.27	
v/c Ratio	0.04	0.46		0.12	0.67		0.77	0.15		0.60	0.07	
Control Delay	9.5	11.2		9.9	17.3		38.0	0.4		30.1	0.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	9.5	11.2		9.9	17.3		38.0	0.4		30.1	0.2	
LOS	Α	В		Α	В		D	Α		С	Α	
Approach Delay		11.1			16.6			26.3			24.3	
Approach LOS		В			В			С			С	
Queue Length 50th (m)	0.8	23.8		3.5	46.4		31.9	0.0		19.6	0.0	
Queue Length 95th (m)	3.6	50.6		10.3	#107.6		52.0	0.0		34.9	0.0	
Internal Link Dist (m)		192.0			170.7			97.9			184.1	
Turn Bay Length (m)	37.5			37.5			30.0			30.0		
Base Capacity (vph)	350	847		484	838		445	877		373	723	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.04	0.46		0.12	0.67		0.61	0.14		0.47	0.06	
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 0 (0%), Referenced	to phase 2	EBTL and	6:WBTL	, Start of	Green							
Natural Cycle: 65												
Control Type: Actuated-Cod	ordinated											

Control Type: Actuated-Coordinated

Lanes, Volumes, Timings
2: Elevation/Apolune & Cambrian

2029 Future Total AM Peak Hour

Maximum v/c Ratio: 0.77	
Intersection Signal Delay: 18.6	Intersection LOS: B
Intersection Capacity Utilization 83.7%	ICU Level of Service E
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be long	ger.
Queue shown is maximum after two cycles.	

Splits and Phases: 2: Elevation/Apolune & Cambrian

→ _{Ø2 (R)}	↑ 04
39.6 s	30.4 s
▼ø6 (R)	₩ 08
39.6 s	30.4 s

HCM 2010 TWSC 5: Temporary Driveway & Cambrian 2029 Future Total AM Peak Hour

late are etter						
Intersection	0.4					
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĥ			ર્ન	W	
Traffic Vol, veh/h	532	22	9	626	15	6
Future Vol, veh/h	532	22	9	626	15	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length		-	-	-	0	-
Veh in Median Storage,	,# 0	-	-	0	0	-
Grade. %	0			0	0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	532	22	9	626	15	6
WWITELLIOW	002	22	5	020	10	U
	Major1		Major2		Minor1	
Conflicting Flow All	0	0	554	0	1187	543
Stage 1	-	-	-	-	543	-
Stage 2	-	-	-	-	644	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1016	-	208	540
Stage 1	-		-	-	582	-
Stage 2				-	523	-
Platoon blocked, %					020	
Mov Cap-1 Maneuver	-		1016	-	205	540
Mov Cap-1 Maneuver	-		1010		205	J+0 -
Stage 1					582	
Stage 2					516	
Staye 2					510	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		20.8	
HCM LOS					С	
Naire and the second and the second		NIDL	EDT	EDD	MD	MDT
Minor Lane/Major Mvmt	t l	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		249	-	-	1016	-
HCM Lane V/C Ratio		0.084	-	-	0.000	-
HCM Control Delay (s)		20.8	-	-	8.6	0
HCM Lane LOS		С	-	-	Α	Α

0.3 - - 0 -

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1→		W	
Traffic Vol, veh/h	18	537	595	33	18	24
Future Vol. veh/h	18	537	595	33	18	24
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-		-	0	-
Veh in Median Storage	e.# -	0	0	_	0	-
Grade. %	-	0	0		0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	18	537	595	33	18	24
WWITETIOW	10	551	000	00	10	24
	Major1		Major2		Minor2	
Conflicting Flow All	628	0	-	0	1185	612
Stage 1	-	-	-	-	612	-
Stage 2	-	-	-	-	573	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	954	-	-	-	209	493
Stage 1	-	-	-	-	541	-
Stage 2	-	-	-	-	564	-
Platoon blocked. %			-		001	
Mov Cap-1 Maneuver	954	-	-	-	203	493
Mov Cap-2 Maneuver	-				203	-100
Stage 1			- 1		526	
Stage 2					564	
Stage 2	-	-	-	-	304	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		18.6	
HCM LOS					С	
Miner Lene/Meier M.m		EDI	EDT	WDT	WDD	SBLn1
Minor Lane/Major Mvn	IL	954	EBT	WBT		306
Capacity (veh/h)			-	-	-	
HCM Lane V/C Ratio		0.019	-	-		0.137
HCM Control Delay (s)		8.8	0	-	-	18.6
HCM Lane LOS		Α	Α	-	-	С
HCM 95th %tile Q(veh)	0.1	-	-	-	0.5

Intersection Intersection Delay, s/veh	117.6											
Intersection LOS	117.6 F											
intersection LOS	Г											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		43-			4			43-			4	
Traffic Vol, veh/h	38	501	167	128	494	76	135	15	106	38	12	3
Future Vol, veh/h	38	501	167	128	494	76	135	15	106	38	12	3
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	7	2	2	2
Mvmt Flow	38	501	167	128	494	76	135	15	106	38	12	31
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	140			142.7			19.8			14.4		
HCM LOS	F			F			С			В		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		53%	5%	18%	47%							
Vol Thru, %		6%	71%	71%	15%							
Vol Right, %		41%	24%	11%	38%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		256	706	698	81							
LT Vol		135	38	128	38							
Through Vol												
		15	501	494	12							
RT Vol		106	167	76	31							
Lane Flow Rate		106 256	167 706	76 698	31 81							
Lane Flow Rate Geometry Grp		106 256 1	167 706 1	76 698 1	31 81 1							
Lane Flow Rate Geometry Grp Degree of Util (X)		106 256 1 0.523	167 706 1 1.227	76 698 1 1.233	31 81 1 0.186							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		106 256 1 0.523 8.188	167 706 1 1.227 6.646	76 698 1 1.233 6.744	31 81 1 0.186 9.324							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		106 256 1 0.523 8.188 Yes	167 706 1 1.227 6.646 Yes	76 698 1 1.233 6.744 Yes	31 81 1 0.186 9.324 Yes							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		106 256 1 0.523 8.188 Yes 443	167 706 1 1.227 6.646 Yes 551	76 698 1 1.233 6.744 Yes 544	31 81 1 0.186 9.324 Yes 387							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		106 256 1 0.523 8.188 Yes 443 6.188	167 706 1 1.227 6.646 Yes 551 4.646	76 698 1 1.233 6.744 Yes 544 4.744	31 81 1 0.186 9.324 Yes 387 7.324							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		106 256 1 0.523 8.188 Yes 443 6.188 0.578	167 706 1 1.227 6.646 Yes 551 4.646 1.281	76 698 1 1.233 6.744 Yes 544 4.744 1.283	31 81 1 0.186 9.324 Yes 387 7.324 0.209							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM CONTOI Delay		106 256 1 0.523 8.188 Yes 443 6.188 0.578	167 706 1 1.227 6.646 Yes 551 4.646 1.281	76 698 1 1.233 6.744 Yes 544 4.744 1.283 142.7	31 81 0.186 9.324 Yes 387 7.324 0.209 14.4							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		106 256 1 0.523 8.188 Yes 443 6.188 0.578	167 706 1 1.227 6.646 Yes 551 4.646 1.281	76 698 1 1.233 6.744 Yes 544 4.744 1.283	31 81 1 0.186 9.324 Yes 387 7.324 0.209							

2029 Future Total PM Peak Hour

	•	-	*	1	—	•	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	î,		ሻ	ħ		7	f»		ሻ	₽	
Traffic Volume (vph)	42	461	255	119	429	137	193	0	93	128	0	27
Future Volume (vph)	42	461	255	119	429	137	193	0	93	128	0	27
Satd. Flow (prot)	1658	1653	0	1658	1500	0	1658	1483	0	1492	1483	0
Flt Permitted	0.398			0.314			0.740			0.697		
Satd. Flow (perm)	691	1653	0	548	1500	0	1291	1483	0	1088	1483	0
Satd. Flow (RTOR)		46			26			428			447	
Lane Group Flow (vph)	42	716	0	119	566	0	193	93	0	128	27	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	82.0	82.0		82.0	82.0		38.0	38.0		38.0	38.0	
Total Split (%)	68.3%	68.3%		68.3%	68.3%		31.7%	31.7%		31.7%	31.7%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag	0	0.1		0.1	0.1		0.0	0.0		0.0	0.0	
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min		C-Min	C-Min		None	None		None	None	
Act Effct Green (s)	85.3	85.3		85.3	85.3		23.1	23.1		23.1	23.1	
Actuated g/C Ratio	0.71	0.71		0.71	0.71		0.19	0.19		0.19	0.19	
v/c Ratio	0.09	0.60		0.31	0.53		0.78	0.15		0.61	0.04	
Control Delay	7.5	11.9		10.4	10.9		65.9	0.5		55.7	0.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.5	11.9		10.4	10.9		65.9	0.5		55.7	0.1	
LOS	Α.	В		В	В		E	Α.		E	A	
Approach Delay		11.7			10.8			44.6			46.0	
Approach LOS		В			В			TT.0			70.0 D	
Queue Length 50th (m)	2.7	70.9		9.3	52.3		43.5	0.0		27.8	0.0	
Queue Length 95th (m)	8.2	133.3		23.9	99.8		63.7	0.0		44.4	0.0	
Internal Link Dist (m)	0.2	122.9		20.0	169.1		03.1	171.4		44.4	184.1	
Turn Bay Length (m)	37.5	122.3		37.5	103.1		30.0	17 1.4		30.0	104.1	
Base Capacity (vph)	491	1187		389	1073		345	710		291	724	
Starvation Cap Reductn	491	0		309	0		345	710		291	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
	0	0		0	0		0	0		0	0	
Storage Cap Reductn Reduced v/c Ratio	0.09	0.60		0.31	0.53		0.56	0.13		0.44	0.04	
Neuuceu v/c Ralio	0.09	0.00		0.51	0.53		0.50	0.13		0.44	0.04	
Intersection Summary			_	_		_	_	_		_		
Cycle Length: 120												

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

Scenario 1 3850 Cambrian Road 11:59 pm 10/19/2022 2029 Future Total

Synchro 11 Report

Page 3

Lanes, Volumes, Timings 2: Elevation/Apolune & Cambrian

₩ Ø6 (R)

2029 Future Total PM Peak Hour

Maximum v/c Ratio: 0.78 Intersection Signal Delay: 19.2 Intersection LOS: B Intersection Capacity Utilization 82.7% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 2: Elevation/Apolune & Cambrian **↑**04

Interception						
Intersection	0.0					
Int Delay, s/veh	2.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1		W	
Traffic Vol., veh/h	38	644	624	68	43	62
Future Vol. veh/h	38	644	624	68	43	62
Conflicting Peds, #/hr	0	044	024	0	0	02
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	riee -	None	riee -	None	Stop -	None
Storage Length	- 1			None	0	
		-	-			-
Veh in Median Storage		0	0	-	0	-
Grade, %	400	0	0	400	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	38	644	624	68	43	62
Major/Minor	Major1		Major2		Minor2	
						CEO
Conflicting Flow All	692	0	-	0	1378	658
Stage 1	-	-	-	-	658	-
Stage 2	-	-	-	-	720	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	903	-	-	-	160	464
Stage 1	-	-	-	-	515	-
Stage 2	-	-	_	-	482	-
Platoon blocked. %		-	-			
Mov Cap-1 Maneuver	903				149	464
Mov Cap-1 Maneuver	303				149	404
Stage 1	-		-	-	481	
		-	-	-		-
Stage 2	-	-	-	-	482	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.5		0		29.6	
HCM LOS	0.0		- 0		D	
					0	
Minor Lane/Major Mvm					MIDD	ODL 4
minor Eurominajor min	nt	EBL	EBT	WBT	WBR	SBLUI
Capacity (veh/h)	nt	903	EBT -	WBT -	WBR	249
	nt			WBT -		249
Capacity (veh/h)		903	-	-	-	249

Intersection												
Intersection Delay, s/veh	57											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4			44			44	
Traffic Vol, veh/h	23	420	117	74	480	82	112	10	82	40	13	33
Future Vol, veh/h	23	420	117	74	480	82	112	10	82	40	13	33
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	7	2	2	2	2	4	2	8	2
Mvmt Flow	23	420	117	74	480	82	112	10	82	40	13	33
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	45.3			86.6			15.6			13		
HCM LOS	Е			F			С			В		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left. %		55%	4%	12%	47%							
Vol Thru. %		5%	75%	75%	15%							
Vol Right, %		40%	21%	13%	38%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		204	560	636	86							
LT Vol		112	23	74	40							
Through Vol		10	420	480	13							
RT Vol		82	117	82	33							
Lane Flow Rate		204	560	636	86							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.407	0.922	1.086	0.187							
Departure Headway (Hd)		7.543	6.192	6.145	8.123							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		479	588	598	445							
Service Time		5.543	4.192	4.152	6.123							
		0.426	0.952	1.064	0.123							
			0.002	1.004	0.100							
HCM Lane V/C Ratio			45.3	86.6	13							
		15.6 C	45.3 E	86.6 F	13 B							

	•	-	\rightarrow	1	←	*	4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>		ች	1>		ኝ	1>		ች	1>	
Traffic Volume (vph)	46	264	232	136	287	120	181	1	117	108	2	52
Future Volume (vph)	46	264	232	136	287	120	181	1	117	108	2	52
Satd. Flow (prot)	1566	1623	0	1271	1484	0	1658	1330	0	1436	1401	0
Flt Permitted	0.497			0.441			0.722			0.653		
Satd. Flow (perm)	812	1623	0	590	1484	0	1260	1330	0	981	1401	0
Satd. Flow (RTOR)		65			31			117			52	
Lane Group Flow (vph)	46	496	0	136	407	0	181	118	0	108	54	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	77.0	77.0		77.0	77.0		43.0	43.0		43.0	43.0	
Total Split (%)	64.2%	64.2%		64.2%	64.2%		35.8%	35.8%		35.8%	35.8%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min		C-Min	C-Min		None	None		None	None	
Act Effct Green (s)	85.8	85.8		85.8	85.8		22.6	22.6		22.6	22.6	
Actuated g/C Ratio	0.72	0.72		0.72	0.72		0.19	0.19		0.19	0.19	
v/c Ratio	0.08	0.42		0.32	0.38		0.76	0.34		0.59	0.18	
Control Delay	7.2	8.1		10.3	8.3		65.5	9.3		55.9	11.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.2	8.1		10.3	8.3		65.5	9.3		55.9	11.5	
LOS	Α	Α		В	Α		Е	Α		Е	В	
Approach Delay		8.0			8.8			43.3			41.1	
Approach LOS		Α			Α			D			D	
Queue Length 50th (m)	2.9	36.0		10.6	30.5		40.8	0.2		23.4	0.4	
Queue Length 95th (m)	8.5	70.4		26.9	60.2		60.4	14.2		39.0	10.2	
Internal Link Dist (m)		122.9			166.9			171.4			184.1	
Turn Bay Length (m)	37.5			37.5			30.0			30.0		
Base Capacity (vph)	580	1178		421	1069		389	492		303	469	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.08	0.42		0.32	0.38		0.47	0.24		0.36	0.12	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced	to phase 2	EBTL and	6:WBTL	, Start of	Green							
Natural Cycle: 60												

Natural Cycle: 60 Control Type: Actuated-Coordinated

Lanes, Volumes, Timings 2: Elevation/Apolune & Cambrian

2029 Future Future SAT Peak Hour

Maximum v/c Ratio: 0.76	
Intersection Signal Delay: 18.6	Intersection LOS: B
Intersection Capacity Utilization 69.6%	ICU Level of Service C
Analysis Period (min) 15	
Analysis Period (min) 15	

Splits and Phases: 2: Elevation/Apolune & Cambrian

opins and i hases. 2. Lievation/Apolatic & Cambrian	
Ø2 (R)	↑ Ø4
77 s	43 s
▼ Ø6 (R)	↓ Ø8
77 s	43 s

HCM 2010 TWSC 2029 Future Future 5: Cambrian SAT Peak Hour

Internation						
Intersection	1.3					
Int Delay, s/veh	1.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ»			ર્ન	, A	
Traffic Vol, veh/h	176	66	7	226	44	10
Future Vol, veh/h	176	66	7	226	44	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	176	66	7	226	44	10
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	242	0	449	209
Stage 1	-	-	-	-	209	200
Stage 2					240	
Critical Hdwy	-	-	4.12		6.42	6.22
Critical Hdwy Stg 1	-	-	-		5.42	-
Critical Hdwy Stg 2	-		-	-	5.42	-
Follow-up Hdwy			2.218			3.318
Pot Cap-1 Maneuver	-	-	1324	-	568	831
Stage 1	-	-			826	
Stage 2	-	-	-		800	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1324		565	831
Mov Cap-2 Maneuver	-	-			565	
Stage 1	-	-	-	-	826	-
Stage 2	-	-			795	
3.0						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		11.6 B	
HCM LOS					В	
Minor Lane/Major Mvm	nt I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		601	-	-	1324	-
HCM Lane V/C Ratio		0.09	-	-	0.005	-
HCM Control Delay (s)		11.6	-	-	7.7	0
HCM Lane LOS		В	-	-	Α	Α
HOMOSH WITH OF IT		0.0				

0.3 - - 0 -

Intersection						
Int Delay, s/veh	2.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	4	1₃	WDIX	₩.	ODIN
Traffic Vol, veh/h	50	439	491	62	58	53
Future Vol, veh/h	50	439	491	62	58	53
	0	439	491	02	0	0.0
Conflicting Peds, #/hr			-		_	•
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	50	439	491	62	58	53
Major/Minor I	Major1	h	Major2		Minor2	
						E00
Conflicting Flow All	553	0	-	0	1061 522	522
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	539	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-		3.318
Pot Cap-1 Maneuver	1017	-	-	-	248	555
Stage 1	-	-	-	-	595	-
Stage 2	-	-	-	-	585	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1017	-	-	-	232	555
Mov Cap-2 Maneuver	-	-	-	-	232	-
Stage 1	-	-	-	-	556	-
Stage 2	-	-	-	-	585	
y =					,	
Approach	EB		WB		SB	
HCM Control Delay, s	0.9		0		22	
HCM LOS					С	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WRP	SBLn1
Capacity (veh/h)		1017	LDI	WD1	WDIX	321
HCM Lane V/C Ratio		0.049		- 1		0.346
HCM Control Delay (s)		8.7		-	-	22
, , ,			0			
HCM Lane LOS		A	Α	-	-	C
HCM 95th %tile Q(veh)		0.2	-	-	-	1.5

Appendix L

Turning Templates

Appendix M

MMLOS Worksheets

Multi-Modal Level of Service - Intersections Form

Consultant	CGH Transportation Inc	Project	2022-024	
Scenario	Future	Date	3/24/2023	
Comments				

INTERSECTIONS					
	Crossing Side		brian Rd at Apo		
	Lanes	NORTH 4	SOUTH 4	EAST 5	WEST 5
	Median	No Median - 2.4 m			
	Conflicting Left Turns	Permissive	Permissive	Permissive	Permissive
	Conflicting Right Turns	Permissive or yield control			
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed
	Ped Signal Leading Interval?	No	No	No	No
jan	Right Turn Channel	No Channel	No Channel	No Channel	No Channel
sti	Corner Radius	10-15m	10-15m	10-15m	10-15m
Pedestrian	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings
_	PETSI Score	53	53	37	37
	Ped. Exposure to Traffic LoS	D	D	E	E
	Cycle Length Effective Walk Time				
	Average Pedestrian Delay				
	Pedestrian Delay LoS	-	-	-	-
		D	D	Е	Е
	Level of Service	E			
	Approach From	NORTH	SOUTH	EAST	WEST
	Bicycle Lane Arrangement on Approach				
	Right Turn Lane Configuration				
	Right Turning Speed				
Φ	Cyclist relative to RT motorists	Α	Α	Α	Α
, ci	Separated or Mixed Traffic	-	-	-	-
Bicycle	Left Turn Approach	No lane crossed	No lane crossed	No lane crossed	No lane crossed
	Operating Speed	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h
	Left Turning Cyclist	В	В	С	С
	Lovel of Camiles	В	В	С	С
	Level of Service		(
	Average Signal Delay				
ısi		-	_	-	_
Transit	Level of Service			-	
	Effective Corner Radius				
	Number of Receiving Lanes on Departure from Intersection				
Truck	Level of Service	-	-	-	-
	Level of Service			-	
9	Volume to Capacity Ratio		0.61	- 0.70	
Auto	Level of Service		E	3	

Multi-Modal Level of Service - Segments Form

Consultant	CGH Transportation Inc	Project	2022-024
Scenario	Existing/Future	Date	3/24/2023
Comments			

			0 1: 51/5:#)	0 1: 51/5:)	
SEGMENTS			Cambrian Rd (Existing) 1	Cambrian Rd (Future) 2	Re-Aligned Greenbank Road 3
	Sidewalk Width Boulevard Width		no sidewalk n/a	≥ 2 m < 0.5	1.8 m < 0.5 m
	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000	> 3000
Pedestrian	Operating Speed On-Street Parking		> 50 to 60 km/h no	> 50 to 60 km/h no	> 50 to 60 km/h no
est	Exposure to Traffic PLoS	F	F	E	F
ğ	Effective Sidewalk Width				
ď	Pedestrian Volume				
	Crowding PLoS		A	A	A
	Level of Service		F	E	F
	Type of Cycling Facility		Mixed Traffic	Physically Separated	Physically Separated
	Number of Travel Lanes		≤ 2 (no centreline)		
	Operating Speed		≥ 50 to 60 km/h		
	# of Lanes & Operating Speed LoS		D	-	-
Bicycle	Bike Lane (+ Parking Lane) Width				
ેં ડે	Bike Lane Width LoS	D	-	-	-
Ö	Bike Lane Blockages				
	Blockage LoS	4		-	-
	Median Refuge Width (no median = < 1.8 m) No. of Lanes at Unsignalized Crossing		< 1.8 m refuge ≤ 3 lanes		
	Sidestreet Operating Speed		≤ 40 km/h		
	Unsignalized Crossing - Lowest LoS		A A	A	
	Level of Service		D	Α	Α
Ħ	Facility Type				Bus lane
Transit	Friction or Ratio Transit:Posted Speed	В			Cf ≤ 60
Ξ̈́	Level of Service		-	-	В
	Truck Lane Width				≤ 3.5 m
Ş	Travel Lanes per Direction	Λ			> 1
Truck	Level of Service	Α		-	Α

Appendix N

TDM Checklist

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

	Legend
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance
*	The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC *	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	
	2.2	Bicycle skills training	
		Commuter travel	
BETTER *	2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	
BASIC	3.1.2	Provide online links to OC Transpo and STO information	
BETTER	3.1.3	Provide real-time arrival information display at entrances	
	3.2	Transit fare incentives	
		Commuter travel	
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	
BETTER 1	3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	
		Visitor travel	
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	
	3.4	Private transit service	
		Commuter travel	
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)	

8

Version 1.0 (30 June 2017)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	4.	RIDESHARING	
	4.1	Ridematching service	
		Commuter travel	
BASIC	4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com	
	4.2	Carpool parking price incentives	
		Commuter travel	
BETTER	4.2.1	Provide discounts on parking costs for registered carpools	
	4.3	Vanpool service	
		Commuter travel	
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters	
	5.	CARSHARING & BIKESHARING	
	5.1	Bikeshare stations & memberships	
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors	
		Commuter travel	
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel	
	5.2	Carshare vehicles & memberships	
		Commuter travel	
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants	
BETTER	5.2.2	Provide employees with carshare memberships for local business travel	
	6.	PARKING	
	6.1	Priced parking	
		Commuter travel	
BASIC	6.1.1	Charge for long-term parking (daily, weekly, monthly)	
BASIC		Unbundle parking cost from lease rates at multi-tenant sites	
		Visitor travel	
BETTER	6.1.3	Charge for short-term parking (hourly)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS	
	7.1	Multimodal travel information	
		Commuter travel	
BASIC ★	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	\square
		Visitor travel	
BETTER ★	7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	
	7.2	Personalized trip planning	
		Commuter travel	
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees	
	7.3	Promotions	
		Commuter travel	
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	
	8.	OTHER INCENTIVES & AMENITIES	
	8.1	Emergency ride home	
	_	Commuter travel	
BETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters	
	8.2	Alternative work arrangements	
	_	Commuter travel	
BASIC ★	8.2.1	Encourage flexible work hours	
BETTER	8.2.2	Encourage compressed workweeks	
BETTER ★	8.2.3	Encourage telework	
	8.3	Local business travel options	
		Commuter travel	
BASIC ★	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work	
	8.4	Commuter incentives	
		Commuter travel	
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance	
	8.5	On-site amenities	
		Commuter travel	
BETTER	8.5.1	Provide on-site amenities/services to minimize mid-day or mid-commute errands	

10

TDM-Supportive Development Design and Infrastructure Checklist: *Non-Residential Developments (office, institutional, retail or industrial)*

Legend				
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed			
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users			
The measure could maximize support for users of sustainable modes, and optimize development performance				

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	Ø
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	abla
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

5 6

			Check if completed &
	TDM-s	upportive design & infrastructure measures: Non-residential developments	add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	☑
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	☑
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	

TDM-supportive design & infrastructure measures: Non-residential developments			Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non- residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	Image: section of the content of the
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	