

Transportation Impact Assessment Addendum #2

New Campus Development for The Ottawa Hospital Hospital and Central Utility Plant

New Campus Development for The Ottawa Hospital

Hospital and Central Utility Plant

Transportation Impact Assessment Addendum #2

Prepared for: The Ottawa Hospital 1053 Carling Avenue, Ottawa, ON K1Y 4E9

Prepared by:

Parsons

1223 Michael Street North, Suite 100 Ottawa, ON K1J 7T2

14 April 2023

478340 - 03000

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check √ appropriate field(s)] is either transportation engineering or transportation planning □.

^{1,2} License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel. : 613-580-2424 Fax: 613-560-6006 Ville d'Ottawa Services d'infrastructure et Viabilité des collectivités Urbanisme et Gestion de la croissance 110, avenue Laurier Ouest Ottawa (Ontario) K1P 1J1 Tél. : 613-580-2424 Télécopieur: 613-560-6006

Dated at _	Ottawa	this	14	day_of_April, 2023	
-	(City)	_			_

Name:

Austin Shih, M.A.Sc., P.Eng (Please Print)

Professional Title:

Senior Transportation Engineer

atil.

Signature of Individual certifier that s/he meets the above four criteria

Office Contact Information (Please Print)					
Address:					
1223 Michael Street North, Suite 100					
City / Postal Code:					
Ottawa, Ontario, K1J 7T2					
Telephone / Extension:					
613-691-1569					
E-Mail Address:					
austin.shih@parsons.com					

DOCUMENT CONTROL PAGE

CLIENT:	The Ottawa Hospital					
PROJECT NAME:	New Campus Development					
REPORT TITLE:	TIA Addendum #2 – Site Plan Application for the Main Hospital Building and Central Utility Plant					
IN SUPPORT OF:	Site Plan Application (SPA)					
PARSONS PROJECT NO:	478340 - 03000					
VERSION:	Final					
DIGITAL MASTER:	H:\ISO\478340\3000\DOCS\20-TIA Addendum Main Building SPC\2023-03-02 Second Submission (April 2023)\TOH-TIA Addendum 2 Main Building w City & NCC Comments V3.docx					
ORIGINATOR	Juan Lavin, P. Eng.					
REVIEWER:	Austin Shih, P.Eng./ Mark Baker, P.Eng.					
AUTHORIZATION:						
CIRCULATION LIST:	Mike Giampa, P.Eng.					
HISTORY:	 TIA Step 1 Screening Form - Sept 29, 2020 TIA Step 2 Scoping Report - Sept 29, 2020 TIA Step 3 Forecasting Report - January 21, 2021 TIA Step 4 Strategy Report - March 31, 2021 TIA Step 5 Final Draft Report - July 30, 2021 Draft Addendum #1 - Phase 2: Parking Garage and Green Roof - Oct 8, 2021 Revised Addendum #1 - Phase 2: Parking Garage and Green Roof - Dec 3, 2021 Draft Addendum #2 - Site Plan Application for the Main Building - Nov. 29, 2022 Final Addendum #2 - Site Plan Application for the Main Building - April 14, 2023 					

TABLE OF CONTENTS

DOCU	MENT (ONTROL	PAGE	.1						
INTRO	DUCTIO	ON		5						
1.0	0 SCREENING FORM									
2.0	SCOF	SCOPING REPORT								
	1.0	6								
	2.0	6								
	2.1	Existing	and Planned Conditions	6						
		2.1.1	Proposed Development	6						
		2.1.2	Phasing Plan	7						
		2.1.3	Existing Conditions	8						
		2.1.4	Planned Conditions	8						
	2.2	Analysis	s Parameters1	0						
	2.3	Exempt	ion Review1	1						
3.0	FORE	CASTING	REPORT	1						
	3.0	11								
	3.1	Develop	oment-Generated Travel Demand1	1						
		3.1.1	People Trip Generation1	1						
		3.1.2	Mode Shares and Trips Generated by Mode1	7						
		3.1.3	Trip Distribution1	9						
		3.1.4	Trip Assignment1	9						
	3.2	Backgro	ound Network Travel Demands2	2						
	3.3	Deman	d Rationalization	2						
4.0	STRA	TEGY REP	ORT2	3						
	4.0	23								
	4.1	Develop	oment Design	3						
	4.2	Parking								
		4.2.1	Parking Supply 2	6						
		4.2.2	Parking Demand and Spillover2	7						
	4.3	Bounda	ry Street Design	7						
	4.4	Access	Intersection Design	8						
	4.5	Transportation Demand Management								

	4.6	Neighbourhood Traffic Management					
	4.7	Transit.		31			
	4.8	Review	of Network Concept	32			
	4.9	Intersection Design					
		4.9.1	Intersection Performance	33			
		4.9.2	Queueing Analysis	34			
	4.10	Monitor	ing	35			
5.0	CONC	LUSIONS		.35			

LIST OF TABLES

Table 1: Current and Anticipated Land Use Statistics for the NCD	7
Table 2: Types of Shift and Arrival/Departure Times	
Table 3: Exemption Review Summary	
Table 4: Full Time Employees Anticipated at the NCD in a Typical Weekday - 2028 and 2048	
Table 5: Arrival and Departure Hourly Distribution to/from NCD by Staff - 2028 and 2048	
Table 6: Estimated Hourly Employee Arrival and Departure Volume at NCD - 2028	
Table 7: Estimated Hourly Employee Arrival and Departure Volume at NCD - 2048	
Table 8: Estimated Annual and Daily Planned and Unplanned Visits (Data Provided by TOH)	
Table 9: Estimated Hourly Visitor Arrival and Departure Volume - 2028	
Table 10: Estimated Hourly Visitor Arrival and Departure Volume - 2048	
Table 11: Life Science Park Trip Generation Rates	
Table 12: Existing Employee Mode Shares at Civic Campus – 2022 Employee Survey	
Table 13: Mode Share Assumptions by User Type at the NCD - 2028	
Table 14: Mode Share Assumptions by User Type at the NCD - 2048	
Table 15: Trips Generated by NCD by Mode Shares – 2028	
Table 16: Trips Generated by NCD by Mode Shares - 2048	
Table 17: TIA and Mobility Study Trip Generation (July 2021) vs Updated Trip Generation (2023)	
Table 18: Minimum Required and Maximum Permitted Parking Spaces	
Table 19: Future Interim 2028 Adjacent Road Network MMLoS	
Table 20: Road E/Prince of Wales Drive Intersection Performance (Signalized vs Unsignalized) - 20	48 Horizon

LIST OF FIGURES

Figure 1: Components of the New Campus Development Hospital and Central Utility Plan Phases	7
Figure 2: Updated Other Area Developments	10
Figure 3: 2028 Opening Day Site Generated Volumes (Streets Adjacent to NCD)	20
Figure 4: 2048 Full Buildout Site Generated Volumes (Streets Adjacent to NCD)	21
Figure 5: Future Active Transportation Network Map	24
Figure 6: Study Area Intersections Fronting the NCD Site	

APPENDICES

Appendix A: Existing Civic Campus Parking Data Appendix B: 24-Hour Estimated Hourly Trip Generation – People Trips Appendix C: Conceptual Vehicle Circulation Diagrams for NCD

Appendix D: 24-Hour Estimated Hourly Trip Generation – Trips by Mode Share

Appendix E: Combined Other Area Development Background Volumes

Appendix F: Future Projected Background Volumes

Appendix G: Active Transportation Facility Proposed Widths

Appendix H: Composite Plan Showing Proposed Off-Site Intersection Designs

Appendix I: Historic OC-Transpo Ridership Data

Appendix J: Summary 2028 and 2048 Intersection Performance

Appendix K: 2028 and 2048 Detailed Intersection Performance

Appendix L: Summary Queueing Analysis and SimTraffic Outputs

Appendix M: Original TIA and Mobility Study (July 2021) Conclusions and Recommendations

The following *TIA Addendum #2* has been prepared in support of the Site Plan Control Application (SPC) for the main Hospital building at the New Campus Development (NCD) of The Ottawa Hospital (TOH). In July 2021, a *TIA and Mobility Study* was prepared in support a Zoning By-law Amendment (ZBLA) for the Master Site Plan of the NCD and to lift the holding provision were approved by City Council in October 2021. Following the Master Site Plan approval, a *TIA Addendum #1* supporting the SPC for *Phase 2: Parking Garage and Green Roof*, was submitted in October 2021 and was approved by City Council in February 2022. A draft version of this report was circulated to stakeholders, including City of Ottawa and NCC staff on November 29th, 2022. This report represents the final version that incorporates City of Ottawa and NCC technical comments.

INTRODUCTION

The Ottawa Hospital (TOH) has initiated the development approval process with the City of Ottawa and the federal government to establish a New Campus Development (NCD) to replace the existing Civic Hospital Campus and become the major referral centre for Eastern Ontario, Western Quebec, and parts of Nunavut. It will be the home of the Eastern Ontario Trauma Centre with a range of specialized services, research, and education facilities, along with related ancillary uses such as resident care stay facilities, and retail service uses. The existing Civic Hospital Campus is located at 1053 Carling Avenue and the NCD will be located approximately 1km to the east on lands leased to The Ottawa Hospital from Public Services and Procurement Canada (PSPC) adjacent to the Dow's Lake Pavilion and Central Experimental Farm (CEF).

The new campus will be generally bound by Carling Avenue to the north, Preston Street and Prince of Wales Drive to the east, the Birch Drive to the south, and Maple Drive to the west. The overall Master Site Plan proposal, the existing transportation conditions, and the planned network conditions were described in detail within the *TIA and Mobility Study (July 2021)*.

Since the Master Site Plan approval, TOH submitted a site plan control application for phase 2, the proposed parking garage, including a TIA Addendum #1 that was approved in 2022.

TOH is now proceeding with the site plan control application in support of Phases 3 and 4, the main hospital building and the central utility plant, which will be covered in this TIA Addendum #2.

The *TIA Addendum #2* will incorporate the latest information available, including the most recent development statistics for the NCD at Opening Day (2028) and Full Buildout (2048) have been provided in **Section 2.1**. The following list identifies the sections within this Addendum that have been refreshed from the original *TIA and Mobility Study (July 2021)* and the *TIA Addendum #1 (Oct 2021)*.

- Overall, the NCD site statistics are generally similar to what was assumed in the *TIA and Mobility Study* (*July 2021*). The overall footprint of the hospital remains comparable, with some redistribution of gross floor area for hospital uses, while the number of employees has decreased.
- A detailed breakdown of anticipated employee shift schedules and patient registrations at the NCD was provided by TOH. This data was used to update the trip generation forecast for the NCD based on first principles, using anticipated arrival and departure times by staff and different types of visitors. Existing Civic Campus staff and visitor parking activity/patterns were used to calibrate these projections. This methodology replaced the trip generation forecast based on the existing Civic Campus, completed within the original July 30th, 2021, submission. The comprehensive breakdown of future employee schedules at the NCD enabled more precise trip generation forecasts for the morning and afternoon "peak hour of the generator" (i.e., during shift changes at the hospital), in addition to the "peak hour of the adjacent street traffic" (i.e. typical commuter peak hours).
- Shift schedules were broken down for different programs at the future campus, which have been incorporated into this analysis. For example, the University of Ottawa Heart Institute will only transfer to the NCD in 2048 and the rehab program is now expected to remain at the existing Civic Campus location.

- Adjustments were made to the forecasted peak hour traffic volumes in background conditions from the *TIA and Mobility Study (July 2021)*. Specifically, a big data platform 'Streetlight' was used to provide a better understanding of baseline traffic volumes to/from the existing Civic Campus, which helped inform the process of removing some of these trips from the background network. Additionally, known development applications that were initiated since the Master Site Plan submission have been included in the analysis under "other area developments".
- Minor re-distribution of on-site trips based on the latest site plan (that has a more refined parking layout) and anticipated activities and vehicle destinations within the campus. Overall, an increase in forecasted vehicular traffic to the Prince of Wales/Road E intersection from the *TIA and Mobility Study* (*July 2021*) was forecasted.
- The proposed Road E/Prince of Wales Drive intersection design has evolved from the all movement unsignalized intersection in the Master Site Plan in 2021. A signalized protected intersection was briefly considered in response to refinements to the site plan and updated site generated traffic forecasts, however challenges with drainage, the required footprint that would have had significant impact to existing trees and greenspace on both sides of Prince of Wales Drive, and the associated costs steered the design to a modified unsignalized intersection that restricts the critical outbound left-turn movement from Road E to maintain adequate long-term intersection performance.
- The proposed Road B/Prince of Wales Drive intersection design has also evolved to no longer permit the through movement from the southbound curb-side lane, making it a right-turn lane only, which enables the proposed receiving lane to be removed. Providing two southbound through movements was not expected to notably improve anticipated queues since the limited storage and receiving lane length would hinder driver utilization. A sensitivity analysis and risk assessment was shared with the city traffic signals department, and they agreed with this conclusion. They confirmed they could manage the southbound queues through signal timing optimizations without the additional through movement and receiving lane, which also helps preserve trees at the southwest corner of the intersection.
- The Active Transportation Plan has been refined based on public and stakeholder feedback. As a result, this triggered refinements to the design of internal roadways (e.g., Road A and Road B) and adjacent intersections that balance mobility, capacity, and active transportation opportunities.

1.0 SCREENING FORM

Although the site statistics have changed, the screening form still meets the same criteria as outlined in the original *TIA* and *Mobility* Study (July 2021).

2.0 SCOPING REPORT

2.1 Existing and Planned Conditions

2.1.1 Proposed Development

The TIA Addendum #2 will focus on Phase 3 and 4 of the NCD, which represents the main hospital building as shown in **Figure 1**. This report will also update the long-term analysis at the anticipated full buildout horizon of 2048 using the latest information on ensuing development phases, which have been summarized in **Table 1**. The statistics assumed for future phases of the NCD may change over time and will only be confirmed at the time of their respective Site Plan Control application.

The conceptual Site Plan is shown in **Figure 1**. It is important to The proposed Site Plan will continue to be refined as it proceeds to Developed Design.

Independent Variable	Existing Civic Campus	NCD 2028 Opening Day	NCD 2048 Full Buildout			
General Statistics						
Total Number of Beds	559	641	1,136			
Number of Employees	3,473	5,000	9,956			
Number of Parking Spaces	2,500	3,097	3,097			
Development Gross Floor Area (G	FA) x1,000 ft ²					
Hospital Land Uses	1,815	2,605	3,322			
U. Ottawa Heart Institute	305	0	868			
Other1	0	81	750			
1. The 81,000 ft ² will include ancillary retail services within the NCD main hospital structure. The Life Science Park proposed for 2048 has						

Table 1: Current and Anticipated Land Use Statistics for the NCD

. The 81,000 ft² will include ancillary retail services within the NCD main hospital structure. The Life Science Park proposed for 2048 has approximately 100,000 ft² Ground Floor Commercial, 162,500 ft² Hospital Appointments, 487,500 ft² Research and Development land uses.

Overall, the site statistics remain similar to the *TIA* and *Mobility* Study (July 2021), with the most notable change being an overall reduction in anticipated number of staff by 2028 and 2048.

Figure 1: Components of the New Campus Development Hospital and Central Utility Plan Phases

2.1.2 Phasing Plan

There are no changes anticipated in the phasing plan, outlined in **Section 3.1.2** of the *TIA and Mobility Study* (*July 2021*).

2.1.3 Existing Conditions

The existing conditions as described in **Section 3.1.3** of the *TIA and Mobility Study (July 2021)* were still valid and used in this report.

Existing Transit Network

Minimal changes to existing transit network have occurred since the preparation of the *TIA and Mobility Study* (*July 2021*). Overall, the same routes within the study area continue to operate, with the following minor changes noted and accounted for within the analyses:

- Frequent Route #53: was moved from former Parkdale Avenue to Holland Avenue (Scott Street to Carling Avenue).
- Local Route #56: was moved from former Holland Avenue to Parkdale Avenue (Scott Street to Carling Avenue).
- Local Route #55: no longer originates at Bayshore Mall, it now originates from Westgate Shopping Center.

Existing Peak Hour Volumes

It is noteworthy that the peak hour volumes used in the *TIA* and *Mobility* Study (July 2021), *TIA* Addendum #1 (October 2021), and this report reflect <u>pre-COVID-19</u> pandemic traffic conditions. The pandemic work from home orders have been removed at the time of this writing, however commuting trends for both drivers and transit users have not returned to pre-pandemic levels. While the future of remote work is unclear, there may be a need to revisit baseline traffic assumptions as future phases of the NCD proceed, to determine if City-wide travel behaviour settles into a 'new normal' and the corresponding implications on the future transportation network.

2.1.4 Planned Conditions

New Official Plan and Transportation Master Plan

Section 3.1.4 of the *TIA and Mobility Study (July 2021)* acknowledged the draft new Official Plan and the 2013 Transportation Master Plan. Since that time, the New Official Plan was approved by City Council (November 24th, 2021) and has received provincial approval as of November 4th, 2022. The City's Transportation Master Plan (TMP) Update is still ongoing, with an anticipated completion date for Part 1 – Policies in Spring 2023 and Part 2 – infrastructure in Fall 2024, meaning the planned conditions still reflect the 2013 TMP.

Other Area Developments

New development applications within the study area have been accounted for in this report. **Figure 2** illustrates the previously captured developments in purple, and new developments to be added to background conditions in green. The new developments have also been described below:

<u>A – 1081 Carling Avenue</u>

The proposed development has a 22- and 28-storey residential towers. A total of 462 units are proposed. The Transportation Brief (prepared by Parsons) projects an increase in two-way traffic volumes of approximately 95 to 115 veh/h during peak hours. These volumes have been added to the background network.

<u> B – 101, 105, 111, 115 Champagne Avenue</u>

The 4 neighbouring high-rise towers, two for Envie and two for Soho will be treated as one lot.

- Envie Towers:
 - Phase 1 (105 Champagne): occupied prior to 2017 –captured in existing traffic counts
 - Phase 2 (101 Champagne): occupied in 2020 not been captured in existing traffic counts
- Soho Towers:
 - Phase 1 (111 Champagne): occupied prior to 2017 –captured in existing traffic counts

 Phase 2 (115 Champagne): under construction – not been captured in existing traffic counts

No TIA for the Soho development was found; however, a transportation brief by Parsons for Envie Phase 1 and 2 combined projected two-way traffic volumes of approximately 60 to 65 veh/h during peak hours. Since the Envie and Soho developments share a similar site context and development size, for the purpose of this TIA Addendum #2, the volumes forecasted for Envie Phase 1 and 2 have been layered to the background network to account for volumes not captured in existing counts for Envie Phase 2 and Soho Phase 2.

C - 829 Carling Avenue

The proposed development is a 61-storey residential building. A total of 459 units plus some ground floor commercial uses are proposed. The Transportation Brief (prepared by Novatech) projects an increase in two-way traffic volumes of approximately 150 to 100 veh/h during peak hours. These volumes have been added to the background network.

<u>D – 299 Carling Avenue</u>

The proposed development is envisioned as a mixed-use site which could include approximately 550 residential units and 55,000 ft² of commercial uses. This project is still in its infancy and no official Site Plan or Transportation Impact Study have been submitted, thus, no volumes have been added to the background network for this development.

<u>E – 275 Carling Avenue</u>

The proposed development will host 168 senior/retirement units with a ground floor pharmacy. The Transportation Brief (prepared by Parsons) projects an increase in two-way traffic volumes of approximately 40 to 65 veh/h during peak hours. These volumes have been added to the background network.

<u>F – 770 Bronson Avenue</u>

The proposed development is a 26-storey residential building. A total of 153 apartment units and 71 student units are proposed. The Transportation Brief (prepared by CGH) projects an increase in two-way traffic volumes of approximately 70 to 80 veh/h during peak hours. These volumes have been added to the background network.

Figure 2: Updated Other Area Developments

2.2 Analysis Parameters

The timing of opening day and full buildout of the NCD, 2028 and 2048 respectively, have not changed for this study. The anticipated peak hour periods have been refined based on new information provided by TOH. The projected employee schedules were provided with corresponding start and end times, which paint a more accurate picture of arrival and departure windows for future employees.

Table 2 summarizes the different types of employee shifts anticipated at the NCD, including their range of start and end times. TOH provided the proportion of employees that would apply to each shift. It is acknowledged that some employees may arrive or depart earlier or later than the shown hours, however it was assumed the majority will adhere to the noted schedule.

Type of Shift	General Arrival Time	General Departure Time	Proportion of Staff 2028 (2048)
Day Shift	06:00 - 08:00	15:00 - 18:00	68% (75%)
Evening Shift	14:00 - 15:00	23:00 - 00:00	11% (9%)
Night Shift	22:00 - 23:00	07:00 - 08:00	3% (3%)
12hr Day Shift	06:00 - 07:00	19:00 - 20:00	11% (8%)
12hr Night Shift	18:00 - 19:00	07:00 - 08:00	7% (5%)
		Tota	100% (100%)

Table 2: Types of Shift and Arrival/Departure Times

In general, the peak morning hour of the NCD ('generator') occurs at a similar time to the peak hour of the adjacent street, while in the afternoon, the peak hour of the NCD is expected to occur earlier than the adjacent street peak hour. For this study, three time periods were analyzed, including:

• Morning peak hour for the NCD and adjacent street: 07:00 – 08:00

- Afternoon peak departure hour for the NCD: 15:00 16:00
- Afternoon peak hour for the adjacent street: heaviest 60-minute period between 15:30 17:30

2.3 Exemption Review

Site Plan Control Applications (SPA) and Zoning By-Law Amendments (ZBLA) reports differ in their context according to the City's TIA Guidelines. The *TIA and Mobility Study (July 2021)* supported a ZBLA application. This TIA Addendum is supporting a SPC and as thus, different exemptions are permitted.

Additionally, there are four (4) separate transportation supporting studies that will accompany the SPC covering modules within the TIA in far greater detail. The following modules/elements of the TIA process will be exempted as listed in **Table 3**.

Module	Element	Exemption Consideration
4.2 Parking	4.2.2 Spillover Parking	Parking spillover will be captured within a separate "Off-Street Parking Strategy" Report
4.5 Transportation Demand Management (TDM)	All Elements	TDM will be captured within a separate "Transportation Demand Management Strategy" Report
4.6 Neighbourhood Traffic Management (NTM)	All Elements	NTM will be captured within a separate "Neighbourhood Traffic Management Strategy" Report
4.8 Review of Network Concept	All Elements	Zoning has already been approved and NCD does not project any major deviations from original zoning

Table 3: Exemption Review Summary

3.0 FORECASTING REPORT

3.1 Development-Generated Travel Demand

3.1.1 People Trip Generation

The *TIA* and *Mobility* Study (July 2021) developed a custom trip generation rate using the existing Civic Campus traffic data and calibrated based on research of similar institutions in North America. The three strongest independent variables; number of beds, number of employees and gross floor area (GFA) were blended together to produce a single local rate to derive person trips to/from the NCD.

At the time of the previous submission, TOH did not have any employee schedules or shifts available. Since that time, they have provided the project team with a comprehensive employee shift breakdown, which replaced the original trip generation approach and methodology. This new approach is expected to provide a more accurate estimate of the number and type of employee arriving and departing the NCD on each day of a week.

Note that approximately 81,000 ft² of commercial retail is proposed for Opening Day 2028; however, it is all assumed to be located inside of the main Hospital building and is meant to cater directly to people already within the NCD. All commercial retail trips for Opening Day 2028 are considered internal trips and will not generate any new people trips from the adjacent network.

Employee Person Trip Generation

TOH provided the estimated number of full-time equivalent (FTE) employees on a typical weekday based on their schedule and summarizes approximately how many employees work each type of position.

The project team then "adjusted" this number to reflect absenteeism and remote work. A 5% reduction was applied to account for absentees on vacation or sick leave. TOH also confirmed they anticipate approximately 25% of the "day-shift" workers will be administration roles, of which approximately 20% of them on average will be remote-workers and the remainder will travel to the NCD on a typical weekday. The final estimated employee breakdown at 2028 and 2048 is summarized in **Table 4**.

Type of Shift	Est. Arrival Window	Est. Departure Window	2028 FTE	2028 Adjusted	2048 FTE	2048 Adjusted	
The Ottawa Hospital Core Staff (TOH)							
Day Shift	06:00 - 08:00	15:00 - 18:00	3,466	3,128	4,488	4,050	
Evening Shift	14:00 - 15:00	23:00 - 00:00	524	498	679	645	
Night Shift	22:00 - 23:00	07:00 - 08:00	160	152	208	198	
12hr Day Shift	06:00 - 07:00	19:00 - 20:00	439	417	568	540	
12hr Night Shift	18:00 - 19:00	07:00 - 08:00	310	295	401	381	
University of Ottaw	a Heart Institute (UO	HI)					
Day Shift	06:00 - 08:00	15:00 - 18:00	0	0	964	916	
Evening Shift	14:00 - 15:00	23:00 - 00:00	0	0	146	139	
Night Shift	22:00 - 23:00	07:00 - 08:00	0	0	45	43	
12hr Day Shift	06:00 - 07:00	19:00 - 20:00	0	0	122	116	
12hr Night Shift	18:00 - 19:00	07:00 - 08:00	0	0	86	82	
Residents (Doctors	5)						
12hr Day Shift	06:00 - 07:00	19:00 - 20:00	75	71	97	92	
12hr Night Shift	18:00 - 19:00	07:00 - 08:00	25	24	32	30	
Research							
Day Shift	06:00 - 08:00	15:00 - 18:00	0	0	2,120	2,014	
TOTAL			5,000	4,585	9,956	9,246	

Table 4	4: Full Time	Employees	Anticipated	at the	NCD in a	Typical	Weekday -	2028 and 2048
rabio		Employeee	/ and ofpacoa		nob in a	1 y piloai	moonday	2020 414 20 10

Note: FTE = 'Full Time Equivalent' employees

The anticipated shift schedule provided by TOH was broken down further to understand arrival and departure patterns throughout the day. The employee schedules only provided a range of shift start times and end times, but it was acknowledged there would /be variability in the actual arrival and departure times.

Therefore, the project team requested the existing hourly employee parking entry and exit time stamps from the Civic Campus employee satellite lots. This helped provide a baseline estimate of hourly arrival and departures throughout a typical weekday that was applied to the future adjusted employee shift breakdown in **Table 4**. The parking data has been provided in **Appendix A**. **Table 5** summarizes the resulting arrival and departure distribution by shift type.

Type of Shift	00:00 -01:00	01:00 - 02:00	02:00 - 03:00	03:00 - 04:00	04:00 - 05:00	05:00 - 06:00	06:00 - 07:00	07:00 - 08:00	00:00 - 09:00	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00	16:00 - 17:00	17:00 - 18:00	18:00 - 19:00	19:00 - 20:00	20:00 - 21:00	21:00 - 22:00	22:00 - 23:00	23:00 - 24:00
Day Shift TOH						5%	32%	37%	14%	5%	3%	2%	2%	4%	10%	25%	22%	14%	8%	13%	4%			
Day Shift Other*							50%	30%	20%							50%	30%	20%						
Evening Shift	20%	20%													60%	20%	20%							60%
Night Shift								75%	25%														75%	25%
12hr Day Shift							75%	25%												75%	25%			
12hr Night Shift								75%	25%										75%	25%				

Table 5: Arrival and Departure	e Hourly Distribution	to/from NCD by Sta	ff - 2028 and 2048
--------------------------------	-----------------------	--------------------	--------------------

Green - Proportion of Arrivals to NCD; Eue - Proportion of Departures from NCD; Grey - Shift Group Working at NCD; *Day Shift Other refers to UCH and Research

The adjusted full time employee estimates from **Table 4** were then distributed hourly based on the distribution of arrival and departure times for each shift shown in **Table 5**. **Table 6** and **Table 7** show the estimated hourly employee arrival and departure volumes (i.e., employee person trips) at Opening Day 2028 and Full Buildout 2048, respectively. Note that only the heavier forecasted hours between 06:00-09:00 and 15:00-20:00 have been shown in the tables below. For a full 24-hour breakdown, please refer to **Appendix B**.

Table 6: Estimated Hourly Employee Arrival and Departure Volume at NCD - 2028

Type of Shift	Day Shift TOH	Day Shift Other*	Evening Shift	Night Shift	12hr Day Shift	12hr Night Shift	TOTAL IN	TOTAL OUT	TOTAL 2- Way
06:00 - 07:00	1,000	n/a			366		1,366		1,366
07:00 - 08:00	1,152	n/a		114	122	239	1,274	353	1,627
08:00 - 09:00	448	n/a		38		80	448	118	566
15:00 - 16:00	786	n/a	100				100	786	886
16:00 - 17:00	669	n/a	100				100	669	769
17:00 - 18:00	435	n/a						435	435
18:00 - 19:00	251					239	239	251	490
19:00 - 20:00	418				365	80	80	783	863
Green - Proportion of Arrivals to NCD: Blue - Proportion of Departures from NCD: *Day Shift Other refers to UOHI and Research									

Type of Shift	Day Shift TOH	Day Shift Other*	Evening Shift	Night Shift	12hr Day Shift	12hr Night Shift	TOTAL IN	TOTAL OUT	TOTAL 2- Way
06:00 - 07:00	1,295	1,465			561		3,321		3,321
07:00 - 08:00	1,492	879		181	187	371	2,558	552	3,110
08:00 - 09:00	580	586		61		124	1,166	185	1,351
15:00 - 16:00	1,018	1,465	236				236	2,483	2,719
16:00 - 17:00	866	879	157				157	1,745	1,902
17:00 - 18:00	563	586						1,149	1,149
18:00 - 19:00	325					371	371	325	696
19:00 - 20:00	541				561	124	124	1,102	1,226
Green - Proportion of Arrivals to NCD; Blue - Proportion of Departures from NCD; *Day Shift Other refers to UOHI and Research									

Table 7: Estimated Hourly Employee Arrival and Departure Volume at NCD - 2048

Visitor Person Trip Generation

The *TIA* and *Mobility Study (July 2021)* produced a blended trip generation rate that included employees, patients, and non-patient visitors. At the time, it was understood that approximately 1 in 4 person trips to the hospital was a visitor, while the remaining 3 in 4 people was an employee.

TOH has since provided more information regarding visitor trips, with historic numbers and future projections. The type of visit was split into two categories:

- Planned visits includes patients with appointments and other non-emergency visitors
- Unplanned visits emergency visits. Note that ambulances have been individually layered on top, which could cause a double counting of trips creating a slightly more conservative value.

TOH historic and forecasted visitation numbers were factored by an additional 20% to account for potential variability and to ensure a conservative approach. The resulting annual and daily visitor trips have been summarized in **Table 8**.

Type of Visitor	2018 Registered Visitor	2028 Estimated Visitor	2048 Estimated Visitor
Annual			
Planned Visitor	263,725	344,293	571,401
Unplanned/Emergency Visitor	86,275	112,632	186,928
TOTAL	350,000	456,925	758,329
Daily (Factored by 1.2)			
Planned Visitor	867	1,132	1,879
Unplanned/Emergency Visitor	284	370	615
TOTAL	1,151	1,502	2,493

Table 8: Estimated Annual and Daily Planned and Unplanned Visits (Data Provided by TOH)

Similar to the employee trip generation process, TOH also provided visitor parking activity within public lots at the existing Civic Campus, which provided arrival and departure times. Visitor arrivals and departures were generally consistent between 07:00 and 20:00, which coincided with typical visitor hours. During the time periods outside visitor hours, if the parking data showed no activity, a constant number was assumed to account for possible variability in emergency visits. It is noteworthy to mention that the total daily visitor numbers and growth factors for the future horizon years within this report are the same as the ones within the TDM Strategy Report; however, the number seen in the tables below varies to their peak visitor parking numbers within the heaviest parking demand hour. This is mostly to do with choosing the most conservative

distribution for both reports. For this report, it was assumed there would be uniform visitor arrivals and departures each hour, while TDM Strategy Report had assumed some visitors/patients may arrive and stay for longer than an hour. Besides this nuance, the total number of patients and visitors expected per day remains consistent between the two reports.

The resulting visitor trips at Opening Day 2028 and Full Buildout 2048 are shown in Table 9 and Table 10 respectively.

Type of Shift	Planned Visit Arrival	Planned Visit Departure	Unplanned Visit Arrival	Unplanned Visit Departure	TOTAL IN	TOTAL OUT	TOTAL 2- Way	
06:00 - 07:00			19	19	19	19	38	
07:00 - 08:00	103		19	19	122	19	141	
08:00 - 09:00	103	103	19	19	122	122	244	
15:00 - 16:00	103	103	19	19	122	122	244	
16:00 - 17:00	103	103	19	19	122	122	244	
17:00 - 18:00	51	103	19	19	70	122	192	
18:00 - 19:00	51	51	19	19	70	70	140	
19:00 - 20:00		51	19	19	19	70	89	
Green - Proportion of Arrivals to NCD: Blue - Proportion of Departures from NCD								

Table 9: Estimated Hourly Visitor Arrival and Departure Volume - 2028

Type of Shift	Planned Visit Arrival	Planned Visit Departure	Unplanned Visit Arrival	Unplanned Visit Departure	TOTAL IN	TOTAL OUT	TOTAL 2- Way		
06:00 - 07:00			31	31	31	31	62		
07:00 - 08:00	171		31	31	202	31	233		
08:00 - 09:00	171	171	31	31	202	202	404		
15:00 - 16:00	171	171	31	31	202	202	404		
16:00 - 17:00	171	171	31	31	202	202	404		
17:00 - 18:00	85	171	31	31	116	202	318		
18:00 - 19:00	85	85	31	31	116	116	232		
19:00 - 20:00		85	31	31	31	116	147		
Green - Proportion of Arrivals to NCD: Blue - Proportion of Departures from NCD									

Table 10: Estimated Hourly Visitor Arrival and Departure Volume - 2048

Life Sciences Park Person Trip Generation

The Life Sciences Park (formerly known as Carling Village) is a reserved parcel of land on the north-eastern quadrant of the site. No formal design has been submitted and only a very basic high-level vision for the site including approximately 750,000 ft² of development fronting Carling Avenue has been proposed.

The Life Science Park will not be built by 2028 and is outside of the current SPC scope of work. For completeness however, the trip generation analysis was updated to reflect potential land uses and incorporated into the 2048 horizon analysis. The former Carling Village trip generation within the original TIA and Mobility Study (July 2021), now Life Science Park, were still considered be applicable, however, in order to produce a more conservative analysis, this TIA addendum has assumed 650,000 ft² of medical/research office uses and 100,000 ft² of commercial uses.

The ITE Trip Generation Manual 11th Ed. was used to estimate the person trips generated by the Life Sciences Park. For the purposes of this analysis, it was assumed that 75% of the 650,000 ft² of medical/research office use was considered "Research and Development", while the remaining 25% were "Hospital Uses" under the ITE land use descriptions.

Additionally, the ground floor retail is intended to serve local foot traffic to/from the NCD and the local community already on the adjacent streets (i.e., Carling Avenue and Preston Street). Since these trips are already in the network, they are not creating a new trip and were subsequently treated as "internal" trips. An 80% internal reduction was used for the commercial retail component of the Life Sciences Park. **Table 11** summarizes the resulting person trips generated by the Life Science Park.

As previously mentioned, the Life Science Park (LSP) represents one of the final phases of the NCD, and the potential mix of uses and employee schedules will not be confirmed for many years. There are no reasonable estimate of staff and visitor schedules related to the LSP at this time. To reflect a worst-case scenario, the trip generation assumptions for the LSP were assigned only in the AM and PM peak hours for the adjacent street, despite peak period spreading of trips being possible. The trip generation assumptions and overall analysis will be revisited during the Site Plan Control application for the LSP.

Land Uses in Life Sciences Park	Size	Reference	Peak Hour	Trip Generation Rate1	Person Trips Generated		
Ground Floor Commercial	100 000 ft2		AM	1.20 (x)	24 ₂		
(Shopping Center)	100,000 112	IIE 020	PM	4.88 (x)	98 ₂		
Hospital Uso	162 500 ft2	ITE 610	AM	0.82 (x)	133		
nuspital use	102,500 112	ILE 010	PM	0.86 (x)	139		
Research and	197 E00 #2	ITE 760	AM	1.03 (x)	502		
Development	407,000 112	IIE 700	PM	0.98 (x)	477		
1. Trip Generation Rates include a 1.28 factor to account for typical North American auto occupancy, transit and non-motorized mode							

Table 11: Life Science Park Trip Generation Rates

2. Person trips for commercial were internally reduced by 80%.

Emergency Transports, Service Vehicles and Transport Trucks

Similar to **Section 4.1.4** in the *TIA and Mobility Study (July 2021)*, the NCD estimates approximately 100 emergency transports per day.

Contractor service vehicles and other specialized vehicles such as garbage trucks, small supply deliveries, electronic/ telecommunications technicians, police vehicles, etc. are expected to access the site in addition to employees and visitors. It was assumed 20 of these vehicles (10 vehicles entering and 10 vehicles exiting) would occur during the morning and afternoon peak hour in 2028 and increasing to 40 total vehicles (20 in and 20 out) by 2048. The majority of these vehicles were assumed to use Road E/Prince of Wales Drive or Maple Drive/Road D accesses. Note that Maple Drive/Road D will be strictly reserved for emergency vehicles only (i.e., active ambulances).

Large transport trucks were not expected to operate frequently during the peak hour periods, as they have different operating schedules than regular commuters. Conservative, it was assumed that 4 transport trucks (2 in and 2 out) would occur during the peak hours in 2028, increasing to 8 transport trucks (4 in and 4 out) by 2048. These trucks will be destined to the loading area off Road F, which will only be accessible via Prince of Wales and Road B.

Conceptual circulation diagrams for the emergency, non-urgent, supplementary vehicles and large transports have been provided in **Appendix C**.

3.1.2 Mode Shares and Trips Generated by Mode

Existing Mode Shares

In 2022, TOH distributed an employee commute survey to all Civic Campus staff that was prepared by Steer and Parsons to better understand current travel trends amongst different staff positions and levels. This survey helped refine the mode share assumptions and captured the widespread effect of COVID-19 (such as increased work from home opportunities) that was not accounted for in the initial estimate developed in the *TIA and Mobility Study (July 2021)*. For further details related to the employee survey, please refer to the Transportation Demand Management Strategy report.

A limitation of the 2022 employee survey was it did not include patients/visitor travel data that would be expected to have a higher auto-driver mode share. The survey results reflect a more optimistic view of travel behaviour all campus users.

The reported mode share from the employee survey is shown in **Table 12**, and were lower than originally forecasted in the *TIA and Mobility Study (July 2021)*.

	Table 12: Exis	sting Employee I	Mode Shares a	at Civic Camp	us - 2022 En	nployee Survey	
	Auto Driver	Passenger	Transit	Walk	Bike	Work from Home	Total
Staff Mode Share	62%	11%	7%	8%	6%	6%	100%

Future Mode Shares

The *TIA* and *Mobility* Study (July 2021) developed aggregate <u>future</u> mode share assumptions for all persontrips to/from the NCD, which had some limitations in not recognizing the discrete mode shares for different users (e.g. employees, planned visitors and emergency visitors), as this information was not clear or well defined at that time.

Since then, projected staff and visitor arrival and departure data have been provided by TOH, the project team was able to update future mode share assumptions to reflect each user-type noted above. Consideration was given for transit availability during different hours in day, the type of user, the trip context, and other factors which may influence someone from taking one mode of transportation versus another. At the end of this process, the updated mode share forecasts, when aggregated, was generally consistent with the original *TIA and Mobility Study (July 2021)* assumptions.

The mode share assumptions Opening Day 2028 and Full Buildout 2048 have been summarized in **Table 13** and **Table 14** respectively. It was assumed approximately 20% of administrative staff trips (approx. 25% of day shift employees are administrative staff) have been removed from people trips per time period for day shifts to reflect potential work-from-home opportunities separate from the traditional mode types, based on TOH guidance. These results mirror the future mode share assumptions made in the *Transportation Demand Management (TDM) Strategy* (within 0.5% related to rounding), which accounted for work-from-home as another mode share option based on the employee survey. Overall, the total number of trips and mode shares forecasted for 2028 and 2048 are consistent between both reports.

Type of Shift / Patient	Auto Driver	Passenger	Transit	Walk	Bike	Total
Staff Shift Type						
Day Shift	40%	7%	44%	1%	8%	100%
Evening Shift	75%	14%	6%	1%	4%	100%
Night Shift	75%	15%	6%	1%	3%	100%
12hr Day Shift	50%	10%	35%	1%	4%	100%
12hr Night Shift	50%	11%	33%	1%	5%	100%
Patient Type						
Planned	60%	15%	20%	1%	4%	100%
Unplanned	80%	20%	0%	0%	0%	100%
SUBTOTAL WEIGHTI	ED AVERAGE STAFF +	PATIENTS				
Combined	51.4%	10.5%	31.4%	1.0%	5.8%	100%

Table 13: Mode Share Assumptions by User Type at the NCD - 2028

Table 14: Mode Share Assumptions by User Type at the NCD - 2048

Type of Shift / Patient	Auto Driver	Passenger	Transit	Walk	Bike	Total
Staff Shift Type						
Day Shift	25%	11%	54%	2%	8%	100%
Evening Shift	70%	18%	7%	2%	3%	100%
Night Shift	70%	18%	7%	1%	4%	100%
12hr Day Shift	40%	15%	37%	2%	6%	100%
12hr Night Shift	40%	18%	34%	2%	6%	100%
Patient Type						
Planned	45%	25%	25%	2%	3%	100%
Unplanned	80%	20%	0%	0%	0%	100%
SUBTOTAL WEIGHTE	D AVERAGE STAFF +	PATIENTS				
Combined	36.3%	14.7%	40.6%	2.1%	6.3%	100%
Life Sciences Park						
Commercial	12%	3%	5%	40%	40%	100%
Medical/Research	25%	8%	57%	5%	5%	100%

Trips by Mode

The future mode share assumptions were applied to person-trip volumes from each user type: employees and visitors, in 2028 and 2048. The assumptions were also applied to the person-trip results for the future Life Sciences Park, and layered onto the hospital peak hour volumes, but only accounted for the 2048 horizon. Additionally, the emergency, supplementary, and large transports were added separately to the peak hour traffic volumes at each horizon. The anticipated peak hour traffic volumes (including the PM peak hour of the generator) in 2028 and 2048 are shown in **Table 14** and **Table 15** respectively.

To reflect a worse-case scenario, the trip generation assumptions for the LSP were assigned only during the AM and PM peak hours for the adjacent street, not the PM peak of the generator. There is a likelihood of peak period spreading of LSP trips, which will be confirmed and applied accordingly during the site plan control application for the LSP. For a full breakdown of each hour, please refer to **Appendix D**.

Mode Share		Auto Driver	Auto Passenger	Transit	Walk	Bike	TOTAL 2- Way		
AM Poak *	IN	611	112	570	14	101	1,408		
	OUT	233	47	86	3	15	384		
07:00 - 08:00	TOTAL	844	159	656	17	116	1,792		
PM Peak Generator	IN	164	33	27	2	8	234		
	OUT	403	74	367	9	67	920		
15:00 - 16:00	TOTAL	567	107	394	11	75	1,154		
PM Peak Adjacent	IN	164	33	27	2	8	234		
	OUT	357	66	315	8	58	804		
Street 16:00 - 17:00	TOTAL	521	99	342	10	66	1,038		
*AM Peak is both of Adjacent	*AM Peak is both of Adjacent Street and Generator								

Table 15: Trips Generated by NCD by Mode Shares - 2028

Green – Proportion of Arrivals to NCD; Blue – Proportion of Departures from NCD

Table 16: Trips Generated by NCD by Mode Shares – 2048

Mode Share	Auto Driver	Auto Passenger	Transit	Walk	Bike	TOTAL 2-WAY		
AM Peak *	IN	842	353	1,495	69	219	2,978	
	OUT	346	113	188	16	37	700	
07:00 - 08:00	TOTAL	1,188	466	1,683	85	256	3,678	
PM Peak Generator	IN	291	92	60	8	12	463	
15:00 - 16:00	OUT	748	322	1,384	52	204	2,710	
	TOTAL	1,039	414	1,444	60	216	3,173	
PM Peak Adjacent	IN	266	86	111	30	33	527	
	OUT	615	258	1,090	67	173	2,203	
Street 16:00 - 17:00	TOTAL	881	344	1,202	97	206	2,730	
*AM Peak is both of Adjacent Street and Generator								

3.1.3 Trip Distribution

The proposed number and location of site accesses has not changed from the original *TIA* and *Mobility Study* (*July 2021*). Overall, the trip distribution will remain the same, with approximately 35% of trips going to and from the east and west and approximately 15% of trips going to and from the north and south.

3.1.4 Trip Assignment

The new site generated trips from **Section 3.1.2** were assigned to the road network based on the updated trip distribution, which have been shown in **Figure 3** and **Figure 4** for Opening Day 2028 and Full Buildout 2048 respectively. The proposed parking layout on the campus have evolved, which affected the trip assignment. Specifically, there was a minor increase in vehicular traffic at the Road E/Prince of Wales Drive intersection with a corresponding reduction at all other accesses when compared to the *TIA and Mobility Study (July 2021)*. Further details related to on-site parking can be found in **Section 4.2**.

Please note, as part of the design review of the Road E/Prince of Wales Drive intersection, both City staff and TOH agreed that there were too many constraints (e.g. environmental, tree and drainage impacts etc.) to develop a traditional protected intersection or roundabout design at this location. Therefore, an unsignalized intersection with a restricted outbound left-turn from Road E was agreed upon as the preferred design proposal. This collaborative choice has been reflected in the trip assignment, particularly shifting all outbound left-turns to the outbound right-turn, followed by an increase in U-turn traffic at The Scenic Driveway/Prince of Wales Drive roundabout to proceed north.

Further details related to the final design for Road E/Prince of Wales Drive intersection can be found in **Section 4.4**.

3.2 Background Network Travel Demands

Since the submission of the *TIA* and *Mobility Study (July 2021)*, TOH retained a 'Streetlight' software license which uses historic pings from location-based devices. Using this software tool in combination with existing peak hour traffic counts and TRANS data, Parsons was able to better estimate existing vehicle trips traveling to and from the existing Civic Campus.

For the 2028 background volume horizon, the hospital land use proportion of trips was removed from the network while the trips destined to the UOHI were maintained, estimated based on employee proportions provided by TOH. For the 2048 background volume horizon, the remaining trip generation from the UOHI were removed from the network.

In both horizon years, rehab vehicle trip generation were estimated and added separately following the same process as "Day Shift" staff in **Section 3.1.1.** As previously noted, the rehab program is expected to remain at the existing Civic Campus site.

Finally, some turning movements were balanced to the existing peak hour counts and TRANS data, to ensure the total volumes exiting and entering the greater network aligned better with the total vehicle volumes and directional splits as determined by Streetlight.

Other area development background volumes were updated to reflect the latest development applications within the study area, as discussed in **Section 2.1.4.** The new developments were added to the background volumes for all subsequent analyses. The combined other area development site generated traffic volumes have been provided in **Appendix E.**

Overall, the future background volumes in the TIA Addendum #2 were higher (more conservative) compared to the *TIA and Mobility Study (July 2021)* as they include additional other area developments and less conservative reduction factors related to the existing Civic Campus.

3.3 Demand Rationalization

Table 17 provides a comparison of the trip generation results from Section 3.1 and the TIA and Mobility Study(July 2021).

Mode Share	Original (2021) TIA Peak Street		Updated (2023) Peak Street		% Change		New (2023) Peak Generator		New (2023) Peak 3h Total	
	AM	PM	AM	РМ	AM	РМ	AM	PM	AM	РМ
2028										
Vehicle IN	764	456	611	164	-20%	-64%	611	164	1,466	629
Vehicle OUT	359	530	233	357	-35%	-33%	233	403	394	957
TOTAL 2-way	1,123	986	844	521	-25%	-47%	844	567	1,860	1,586
2048										
Vehicle IN	914	557	842	266	-8%	-52%	842	291	2,177	934
Vehicle OUT	434	646	346	615	-20%	-5%	346	748	565	1,563
TOTAL 2-way	1,348	1,203	1,188	881	-12%	-27%	1,188	1,039	2,742	2,497

Table 17: TIA and Mobility Study Trip Generation (July 2021) vs Updated Trip Generation (2023)

The updated trip generation process resulted in notably lower peak hour vehicle traffic volume estimates in both 2028 and 2048 compared to the *TIA and Mobility Study (July 2021)*. The key reasons the updated results were considered more reliable and acceptable for this study is as follows:

• The TIA and Mobility Study (July 2021) aggregated the trip generation process by developing a local trip generation rate based on the existing Civic Campus, which comprised of a single day traffic count

at each access to the existing campus. This approach, while a common practice in the industry, is less reliable as it represents a single sample and risks not being representative of a typical weekday. The first principles approach based on projected employee shift schedules and historical arrival/departure data for employees and visitors provides a much more comprehensive and accurate forecast of travel activity at the NCD.

- The *TIA* and *Mobility Study (July 2021)* developed a trip generation rate using existing Civic Campus traffic counts that blended three independent variables: the number of beds, number of employees and the gross floor area. This approach is acceptable if no other information is available about employee travel patterns, but is less reliable based on how different the building design of existing Civic Campus will be compared to the NCD.
- The estimated number of employees at the NCD in 2028 and 2048 has decreased 24.6% and 4.6% relatively since the original *TIA and Mobility Study (July 2021)*, as more information about future programs has come to light.
- The original *TIA* and *Mobility Study (July 2021)* did not factor in remote work potential, which has since been confirmed by TOH. The assumed peak hour activity in the *TIA* and *Mobility Study (July 2021)* was based on the existing Civic Campus traffic counts prior to COVID-19.

There have been no major changes to the planned transportation network surrounding the NCD; the planned Carling Avenue Transit Priority project, the city-wide active transportation and transit initiatives, and active connections to the adjacent pathway networks remain the same. Therefore, <u>the demand rationalizations</u> <u>developed in Section 4.3 in the original *TIA and Mobility Study (July 2021)* were still considered acceptable and were applied to peak hour traffic background volumes for 2028 and 2048 in this study.</u>

The future background volumes were updated based on a new process discussed in **Section 3.2**. The demand rationalized background volumes and future forecasted volumes with the site generated trips, including updated other area developments have been provided in **Appendix F.**

4.0 STRATEGY REPORT

4.1 Development Design

The overall NCD site plan has undergone various refinements since the *TIA* and *Mobility* Study (July 2021) was submitted, however, many of these changes had little to no effect on the conclusions and recommendations from the previous submission. The more notable changes are discussed below.

With respect to access to and from the proposed parking garage, the original *TIA* and *Mobility* Study (July 2021) assumed entry to the parking garage via Road A was only open to the public, while the Road B and Navy Private parking garage accesses were open to staff only, for the purpose of balancing traffic distributions onsite and avoid congestion on the internal road network that risks spillback onto the municipal road network. **These assumptions were reassessed in this study with updated development information, and it was determined that these entry restrictions for specific user groups were no longer required.** The proposed parking garage accesses may be accessed by all user groups with low risk of congestion spilling back to the municipal road network.

The Active Transportation Plan for the NCD has been updated to reflect ongoing work and collaborations with City of Ottawa and the NCC, shown in **Figure 5**. The plan also identifies various design refinements made to the NCD site plan since the original *TIA and Mobility Study (July 2021)* submission. All pathways on site will be winter maintained and lit, with rest areas proposed every 30m.

Figure 5: Future Active Transportation Network Map

A list of the key changes is as follows:

- The Prince of Wales intersections at Preston and Road B are currently proposed as protected intersections, as per the City's Protected Intersection Design Guidelines (PIDG).
- The proposed Road E/Prince of Wales Drive intersection design is ongoing. The *TIA and Mobility Study* (*July 2021*) proposed an unsignalized all movement intersection at this location. As previously discussed in this report, the latest direction from City of Ottawa staff and TOH is to develop an unsignalized intersection that restricts the outbound left-turn movement that would reduce various environmental impacts compared to a signalized intersection at this location would also eliminate active transportation facilities crossing Prince of Wales Drive, but a new southbound unidirectional cycle track will be added, and the sidewalk will be maintained along the west side of Prince of Wales Drive.
- In the TIA and Mobility Study (July 2021), there was a gap in active transportation facilities on the south side of Road A between the front door of the NCD and the Road A/Road B intersection. The TIA Addendum #2 Draft (November 2022) proposed a multi-use pathway (MUP) to fill this gap. This MUP has since been upgraded to separate pedestrian sidewalk and a bi-directional cycle track facilities to provide an even better active transportation experience and connectivity within the site.
- Due to AODA standards compliance, a short section of approximately 60m in length on Road B between the Road B Garage Access and Road A/B intersection bidirectional cycle-track will require a "mixing" zone for cyclists to mitigate conflict points between pedestrians crossing from the layby are to the adjacent sidewalk.
- A new 3m wide pedestrian path has been proposed that connects the sidewalk along the west building face around to the Road A sidewalk near the front of the main building, called "Woodland Path".
- The sidewalk on Road D has been relocated to the opposing side and has now been upgraded to a MUP between Maple Drive/Road D intersection and the proposed bike parking adjacent to the pedestrian crosswalk on Road D. Once on the southern side of Road D, a sidewalk will extend east towards the West Entrance and a series of smaller pedestrian desire lines and west towards the rear entrance.
- Interim bike lanes are proposed between Sherwood Drive to Road A-Champagne Avenue/Carling Avenue to replace former Queen Juliana Park connection between Sherwood Drive and Prince of Wales Drive. In the following phase of construction, Phase 5 – Research Building, the option of creating a challenging connection due to grades from Sherwood Drive to Road A and Road B cycling facilities will be examined. This connection will not be included within this phase of construction since the final design for the research building has not been completed and that area may be used as a staging zone during construction. It is recommended, if feasible, to build this active transportation facility after phases 3, 4 and 5 of the NCD to prevent building this connection now and tearing it down during construction periods. This will be confirmed during future phases, namely the Research Building.
- As mentioned previously, the latest Site Plan (provided in **Figure 1**) does not show approach treatments for Road A/Road B and Road E/Prince of Wales Drive intersections as some details have yet to be finalized. Ongoing discussions with City Staff, NCC, traffic signals and TOH will determine the final design.
- Sidewalk facilities along Road E near Prince of Wales Drive were purposely omitted for Phases 3 and 4 to prevent pedestrian activity near the emergency area. Zones 5B and 4 (where the future University of Ottawa Heart Institute is proposed) will function in the interim as an emergency staging area for surge emergency events in addition to its planned emergency access point for ambulances. TOH operations prefer walking traffic from non-emergency staff and the public be restricted until such time the

University of Ottawa Heart Institute phase is implemented. At that time, when surge capacity may be considered elsewhere on the campus such as Zone 1 parking, the opportunity to expand the sidewalks facilities will be examined, along with the need for an east-west pedestrian crossings at the Road E/Prince of Wales Drive intersection.

- Some of the pedestrian and cycling facility widths have been increased, namely the Preston Street and Prince of Wales Drive segments fronting the site.
- The unidirectional cycling facility on the west side of Prince of Wales Drive that formerly transformed into a paved shoulder south of Road B has now been extended south to the Road E intersection along the site's frontage.
- An Environmental Assessment (EA) is currently underway for an improved connection between Dow's Lake Station and the NCD, along with a potential MUP bridge crossing over the Trillium Line Corridor which would connect the Trillium MUP to the Road A cycle and pedestrian facilities.

In general, sidewalks are now 2m or wider, Multi-Use Pathways (MUPs) are 3m wide, and uni-directional cycle tracks are 1.8m or wider, which meet or exceed minimum requirements. A detailed breakdown of active transportation facility widths has been provided in **Appendix G**.

It is important to note that discussions are ongoing between TOH, NCC and City of Ottawa on the ultimate design of active transportation facilities on the campus, which may result in further refinements to the Active Transportation Plan over the course of the Site Plan Control approvals process, leading into the Developed Design.

4.2 Parking

4.2.1 Parking Supply

Vehicle Parking

Table 18 summarizes the minimum required and maximum permitted parking spaces based on the land uses and location of the NCD.

Land Use		GFA x 1,000 m ²	Min Rate	Min Required	Max Rate	Max Permitted
Opening Day 2028	Hospital	155	0.7/100 m ²	1,085	1.6/100 m ²	2,480
Full Buildout 2048	Hospital Expansions1	175	0.7/100 m ²	1,225	1.6/100 m2	2,800
	Office	23.5	1/100 m ²	235	2.2/100 m ²	517
	Research and Dev.	6	0.4/100 m ²	24	1/100 m ²	60
	Medical Facility	22	2/100 m ²	440	5/100 m ²	1,100
	Retail	7	1.25/100 m ²	88	3.6/100 m ²	252
		3,097	Max Permitted	7,209		
		3,097				
	Additional NC	200				

Table 18: Minimum Required and Maximum Permitted Parking Spaces

1. This row pertains to the future expansion of the Hospital and Heart Institute, not included in the Phase 3 and 4 project.

2. Total parking provided does not include parking spaces reserved for snow storage, emergency surge events nor temporary police parking.

The total number of vehicle parking spaces has changed with the redistribution of spaces in the parking garage and the surface lots within the campus. The parking garage has increased in capacity to roughly 2,850 spaces (including 200 designated for NCC parking), but the overall footprint and size of the previously proposed parking garage remains the same.

The current Site Plan proposes 427 surface parking spaces, plus an additional 100 spaces that will function as snow storage space during winter and 70 flex spaces which function as additional space for surge capacity

(i.e., emergency tents during disaster or medical events etc.), which raised the total parking spaces provided higher than quoted in the original *TIA and Mobility Study*. However, these additional spaces do not count towards the by-law requirement (not reflected in Table 18), but they have been considered in this report and the *TDM Strategy* when reviewing parking management, which is provided in **Section 4.2.2**.

The number and location of parking spaces are expected to undergo refinements as TOH proceeds to developed design, but the overall recommendations from the *TIA Addendum #1 (October 2021)* in support of Phase 2 Site Plan Application for the Parking Garage and Green Roof are still valid.

Bicycle Parking

The number of bike parking spaces within or near the parking garage compared to **Section 4.1.2** of the *TIA Addendum #1 (October 2021)* has been reduced from approximately 540 bike parking spaces to 310. However, the total quantity of bike parking proposed is still consistent with the *TIA* and *Mobility Study (July 2021)* and meets the minimum required bike parking. The reduction in bike parking spaces within the parking structure reflects an effort to redistribute bike parking closer to the front door of the hospital and reduce the walking distance for cyclists from the place that they park their bike to walk into the NCD structure. The new Site Plan proposes 48 new short-term outdoor bike parking spaces near the front door of the NCD, 168 long term covered/secured bike parking and 104 short term covered bike parking and 126 outdoor short term bike parking within the parking garage structure, for a combined total of 630 bike parking spaces. Future phases of the NCD will determine if additional bike parking is required and where it should be added.

NCD also proposes showers and storage lockers, located near the bike parking at the west entrance of the NCD within levels E1 and level 1. Another facility is also proposed near the main entrance and pavilion entrance, near to the public elevator core.

Similar to vehicle parking statistics, the distribution, type and final number of bike parking spaces are still under refinement and will continue to evolve into the Developed Design.

4.2.2 Parking Demand and Spillover

As previously noted, this section of the report has been exempted. TOH is preparing two separate studies that will discuss on-site and off-site parking management.

On-site parking management will be a central focus of the *TDM Strategy*, which aims to define policies, measures, and strategies to aid TOH in reducing single-occupant vehicle demand at the NCD. The *TDM Strategy* anticipates there will be sufficient parking to accommodate projected parking demand by 2028 and only a minor shortfall (roughly 2%) by 2048 with recommended TDM measures in place.

The off-site parking implications will be discussed in detail within the *Off-Site Parking Strategy*, including potential mitigation options. An important element of this report is the recommended regulatory changes to better protect neighbourhood streets from parking infiltration, and the process that is outlined, which provides the local communities the mechanism to initiate these changes with City staff at the appropriate time prior to opening day of the NCD.

4.3 Boundary Street Design

There have been some refinements made to the boundary streets since the original *TIA and Mobility Study* submission, the differences have been discussed below and their respective multi-modal level of service (MMLOS) for interim conditions has been summarized in **Table 19**:

• The full buildout segment of Carling Avenue between the Trillium Pathway and Preston Street is envisioned to have a 3.5m sidewalk with more than 2m boulevard separation and a 3m bi-

directional cycle-track. The interim design proposes a 3m bi-directional cycle track and a 2m sidewalk without a boulevard separation.

- The full buildout segment on Preston Street from Carling Avenue to Prince of Wales Drive was originally proposed as a 3m sidewalk with a 3m cycle-track and greater than 2m boulevard separation. The latest RMA proposes a 3m sidewalk with a 3.5m bi-directional cycle-track and greater than 2m boulevard separation to be built prior to 2028 Opening Day. Although an improvement to cycling facilities, the MMLOS analysis will show the same results.
- The full buildout segment on Prince of Wales Drive from Preston Street to Road B was originally proposed as a 2m sidewalk with a 2m unidirectional cycle-track and greater than 2m boulevard separation. The latest RMA proposes a 2m sidewalk with a 1.8m unidirectional cycle-track and greater than 2m boulevard separation to be built prior to 2028 Opening Day. The MMLOS analysis will show the same results.
- No changes anticipated for Maple Drive.

Table 19: Future Interim 2028 Adjacent Road Network MMLoS

	· · ·									
Road Segment	Pedestrian			Bicycle		Transit		Truck		
	Full Buildout PLoS	Interim PLoS	Target	BLoS	Target	TLoS	Target	TkLoS	Target	
Carling Ave.	С	E	Α							
Preston St.	С	С	Α	No change from Table 36 in original TIA and Mobility Study (July 2021)						
Prince of Wales Dr.	С	С	Α							

Multi-Modal Level of Service (MMLOS)

As shown in **Table 19**, Preston Street and Prince of Wales Drive segments are expected to be constructed to its ultimate design by opening day 2028 and show no changes in MMLoS performance. The Carling Avenue frontage will be redeveloped as part of the Carling Avenue Transit Priority Project and is expected to include pedestrian and segregated cycling facilities.

It is important to note that discussions are ongoing between TOH, NCC and City of Ottawa on the ultimate design of the adjacent road network, which may result in further refinements over the course of the SPC approvals process.

4.4 Access Intersection Design

Figure 6 below illustrates the study area intersections along the NCD frontage. Intersections 1, 2 and 3 (on Carling Avenue) will be built to interim conditions until the Carling Avenue Transit Priority project is implemented. The precise timing of Carling Avenue works is currently unknown but anticipated prior to 2029. All other intersections are expected to be constructed to their ultimate design before Opening Day 2028.

Figure 6: Study Area Intersections Fronting the NCD Site

A description of the key changes to the noted intersection is provided below. It is important to note that the intended function and expected users of each intersection has not fundamentally changed since the *TIA* and *Mobility Study (July 2021)* submission – only the designs of certain intersections have been refined.

At this time, two of the four designs have been approved by City staff, including Road A/Carling Avenue and Prince of Wales Drive/Preston Street. The Road B/Prince of Wales Drive intersection design had been approved, but a recent modification in the design will trigger a resubmission. The first design submission for the Road E/Prince of Wales Drive intersection has been initiated.

A composite plan showing the proposed off-site intersection designs has been provided in Appendix H.

- **1.** Carling Avenue/Sherwood Drive: No changes are anticipated from the original *TIA* and *Mobility* Study (July 2021).
- 2. Carling Avenue/Champagne Avenue/Road A: An interim new south leg will be built as part of the NCD, with a 75m-long westbound left-turn lane and a 30m-long eastbound right-turn lane are proposed. An extended concrete island on the west approach is proposed to provide a pedestrian shelter when crossing Carling Avenue. Once the Carling Avenue Transit Priority Project is implemented, it is anticipated that all approaches will have unidirectional cross-rides. The ensuing intersection performance analysis reflects a bi-directional cross-ride on the south approach, which represents a worst-case scenario (i.e., would require a time separated phase and an eastbound right-turn lane). The northbound through movement will be prohibited at this intersection to reduce traffic infiltration along Champagne Avenue and Beech Street.
- **3.** Carling Avenue/Preston Street: No changes are anticipated from existing conditions until such time that the Carling Avenue Transit Priority Project is implemented. No changes are anticipated from the

original *TIA* and *Mobility Study (July 2021)* for the full buildout design. Once the Carling Avenue Transit Priority Project is implemented, it is anticipated that all approaches will have uni-directional cross-rides. The ensuing intersection performance analysis reflects a bi-directional cross-ride on the south approach, which represents a worst-case scenario (i.e., would require a time separated phase and an eastbound right-turn lane).

- 4. Life Science Park Laneway/Preston Street: the original *TIA* and *Mobility* Study (July 2021) suggested a one-way laneway from Preston Street to Road A. This assumption is still valid for horizon year 2048, once the Life Science Park is built. Prior to construction of the Life Science Park, the laneway will not connect across the Trillium Line and will function as a two-way laneway reserved for service vehicles and snow removal. It is anticipated to have very limited traffic and during off-peak hours only.
- 5. Prince of Wales Drive/Preston Street: The design of this intersection has evolved considerably since the original *TIA and Mobility Study (July 2021)*. In consultation with City of Ottawa staff and the NCC, the design has been augmented to a fully protected intersection with a bi-directional cross-ride on the west side (to facilitate the realigned Trillium Pathway connection), north side, and south side, with a unidirectional cross-ride on the east side.
- 6. Prince of Wales Drive/Navy Private/Parking Garage Access: No changes are anticipated from the original TIA and Mobility Study (July 2021).
- 7. Road B/Prince of Wales Drive: The design of this intersection has evolved considerably since the original *TIA* and *Mobility Study (July 2021)* and the *TIA* Addendum #2 Draft (November 2022) submission. The most notable change is the conversion of the shared through-right and through lane with two receiving lanes to a single right-turn lane and single through lane with a single receiving lane. This decision was made collaboratively with city staff to minimize environmental impacts along the Prince of Wales Drive frontage. City staff also confirmed they would be able to manage potential queues on Prince of Wales Drive through signal timing optimizations. Potential queuing implications and risks will be discussed in Section 4.9.

Uni-directional cycle-cross rides are now proposed on the north and west approaches, while a bidirectional cycle track crossing is proposed on the east side of the intersection. The east side of the intersection has also been augmented with a bi-directional bikeway and sidewalk.

8. Road E/Prince of Wales Drive: This intersection was originally proposed as an all-movement unsignalized intersection with a stop-control on the Road E approach within the *TIA and Mobility Study* (*July 2021*). Since that time, anticipated site generated traffic has been refined based on the evolving site plan, which resulted in more traffic utilizing Road E than previously anticipated and the all-movement unsignalized intersection no longer being sufficient to accommodate future NCD traffic.

At one point, either a signalized protected intersection or a roundabout was being contemplated, but both were ruled out due to significant environmental, drainage, and cost constraints. The latest direction with guidance from City of Ottawa, NCC and TOH has led back to an unsignalized intersection with a restricted outbound left-turn movement from Road E, which avoids the various constraints but still provides long-term operational capacity.

9. Maple Drive/Winding Way/Road D: No changes are anticipated from the original *TIA and Mobility Study (July 2021)*. TOH maintains their commitment to restrict access to Road D to emergency vehicles only, reducing traffic implications on Maple Drive.

Similar to the *TIA and Mobility Study (July 2021)*, traffic control signal warrants for Road B/Prince of Wales Drive and Road E/Prince of Wales Drive intersections were completed and in both cases, a signalized intersection was not warranted.

4.5 Transportation Demand Management

This section of the report has been exempted. TOH is preparing a comprehensive *Transportation Demand Management (TDM) Strategy* that will identify needs/opportunities, alternative solutions, and prepare a recommended plan that help TOH achieve the necessary mode share targets to limit single-occupant vehicle trips and ensure parking demand does not exceed supply at the NCD. This strategy also includes a long-term vision for TDM, through a framework that can be applied to all TOH hospitals and affiliates in the fullness of time. Key recommendations include:

- Continue work-from-home policies
- Virtual Care
- Travelling Doctors/Mobile Health Clinics
- TDM Coordinator
- TDM Platform

- Priority Carpool Parking
- Transit Subsidy
- Bike Room
- Bike Support Facilities
- Daily Parking Only

4.6 Neighbourhood Traffic Management

This section of the report has been exempted. TOH is preparing a comprehensive *Neighbourhood Traffic Management Strategy (NTMS)* that will identify needs/opportunities, develop a NTMS Toolkit, and prepare a recommended plan for area traffic management measures within the adjacent communities. Representatives from five adjacent community associations, Carlington Community Association, Civic Hospital Neighbourhood Association, Dalhousie Community Association, Dow's Lake Residents Association and Glebe Annex Community Association were engaged directly help identify community values, issues, and opportunities from varying perspectives, specific to each neighbourhood.

Various measures were recommended to help mitigate existing and potential future traffic implications related to the NCD in surrounding community associations, such as turn restrictions, speed humps, flex-posts etc. The strategy also included various community improvement measures for the City and/or NCC to consider that may not be directly related to area traffic management or the NCD, but were acknowledged as possessing intrinsic value and were of great importance to the local community associations.

The strategy also addressed the sensitivities of Maple Drive to the Central Experimental Farm (CEF) and Agriculture and Agri-food Canada (AAFC), and the recommended plan included measures to address potential concerns within the CEF.

4.7 Transit

The following transit discussion expands on the section provided in the *TIA* and *Mobility* Study (July 2021) now that more transit information has been provided by the City of Ottawa. The NCD will greatly benefit being located in close proximity to the Dow's Lake LRT Station (Line 2 – Trillium Line) and the future Carling Avenue Transit Priority Corridor – where bus rapid transit is envisioned within the next 10 years. As a result, there was a heavy focus on transit to move people to and from the site.

Transit Access

Although the site is predominantly within a 600m radius from the Dow's Lake LRT Station to the NCD, it is acknowledged this distance may be a challenge to some, predominantly those with mobility difficulties. The City is currently planning an Environmental Assessment (EA) process that would define possible grade separation solutions for pedestrians crossing Carling Avenue between Dow's Lake Station and the future Life Sciences Park.

Today, there are currently bus stops located on Preston Street between Carling Avenue and Prince of Wales Drive and on Prince of Wales Drive between Preston Street and The NCC Scenic Driveway. It is possible that in the future, OC Transpo may decide to bring these stops back in to regular weekday operation if demand exists. Similarly, buses may be routed via the front door of the hospital if there is such a demand; Roads A and B have been designed to accommodate this possibility as directed by City Council.

Future Transit Demand

For the purposes of this study, it was estimated that approximately two-thirds of transit trips will arrive or depart using the Trillium Line LRT, while the remaining one-third would use surface bus routes on Carling Avenue, Preston Street or Prince of Wales Drive in the future. This assumption was based on existing Civic Campus visitor origin-destination data and staff postal code information provided by TOH. In addition, factors such as how direct the route options to arrive to the NCD, how many transfers would be required, estimated transit travel time and available hours of service were all considered during this process.

Historic ridership data was requested from OC Transpo and has been provided in **Appendix I**. The data suggests low historic ridership, particularly the average load at departure for Line 2 LRT at Dow's Lake Station, which averages around 35 passengers on the train, on trains with capacity of approximately 500 passengers. It is important to note, however, that these average load departures are taken over a 3-hour period. Further communication with OC Transpo confirmed that the driving force for the Trillium Line ridership is Carleton University, specifically students. It is expected that loads will be much higher in the short periods prior to and after classes.

As previously shown in **Table 15** and **Table 16**, the NCD is forecasted to produce up to 650 new transit trips during the peak hour in 2028 and up to 1,700 new transit trips in 2048. For both 2028 and 2048, the peak transit activity for the NCD is forecasted between 06:00-07:00 based on projected staff schedules. In the PM peak, travel activity was found to be less focused to a single period. Once the Line 2 LRT returns to operation, it is forecasted that the line could provide capacity for approximately 2,500 passengers per direction per hour.

There is a potential risk of a very heavy transit demand hour, exceeding the Line 2 LRT capacity if NCD staff schedules were to coincide with class schedules. That said, current NCD staff daytime shifts (6am-7am) are expected to start earlier than typical University class schedules (8am-9am).

Transit Capacity

The Trillium Line is currently under construction as part of ongoing Stage 2 LRT expansion works by the City, which will increase the catchment area for the line and attract new users, namely: McDonald Cartier Airport; South Keys; Leitrim Park and Ride; and Riverside South. Line 1 LRT is also undergoing expansions, broadening its catchment area, and making the use of Line 1 to Line 2 connectivity more desirable. Based on the conservative estimate of 1,700 peak hour transit demand for the 2048 horizon year at the NCD, with a two thirds Trillium Line usage (approximately 1,200 LRT trips), combined with increased commuter ridership growth and continued Carleton University classes, it is possible that the Trillium Line may need additional capacity by 2048, which may include a full twinning of the Trillium Line, platform extensions to provide longer trains or increased train frequencies where available.

Recent data from OC Transpo suggests there has been a 50% decrease in transit usage post Covid-19 pandemic; however, these numbers are expected to return to normal in the fullness of time and likely grow as the transit network matures. Once the LRT line expansions are complete, and pending data from OC-Transpo regarding peak existing ridership arrives (Carleton University usage influence), then a more comprehensive understanding of route capacity can be completed.

4.8 Review of Network Concept

As shown in **Table 3**, this section of the report has been exempted as the Zoning By-Law Amendment (ZBLA) was approved in October 2021.
4.9 Intersection Design

As previously discussed, the anticipated peak hour of the NCD generator in the morning was found to coincide with the peak hour of the adjacent street. In the afternoon, the peak hour of the generator and of the adjacent street did not align, and both scenarios were analyzed in 2028 and 2048.

4.9.1 Intersection Performance

Similar to the *TIA and Mobility Study (July 2021)*, overall intersection performance in 2028 and 2048 did not change significantly, with 2048 normally performing only slightly worse than 2028. All signalized intersections were shown to operate within acceptable limits (LOS 'E' or better) overall, which was an improvement over the *TIA and Mobility Study (July 2021)*.

As for unsignalized intersections, Rochester Street/Carling Avenue intersection continued to perform at an LoS of 'F' for the critical southbound movement due to the proposed removal of through lanes on Carling Avenue and its heavy westbound through movement. If persistent delays are observed during peak hours at this intersection, drivers have the option of using adjacent signalized intersections instead such as Booth Street or Preston Street with Carling Avenue. The PM peak of the adjacent street almost always performed worse than the PM peak of the NCD.

A summary table of intersection performance for 2028 and 2048 has been provided in **Appendix J** and detailed Synchro outputs in **Appendix K.** All results in this study do not vary significantly from the *TIA and Mobility Study (July 2021)*.

Road B/Prince of Wales Drive

As discussed in **Section 4.4**, Road B/Prince of Wales Drive has evolved from a previously recommended westbound shared through-right and through lane with two receiving lanes to a single right-turn lane and single through lane with a single receiving lane. In discussions with city staff, their observations at other intersections with similar designs showed low utilization of the second through lane suggesting the additional through lane capacity is not necessary. Operationally, both intersection configurations were shown to operate within city standards, with comparable results. However, reducing the number of receiving lanes by one would avoid notable impacts to surrounding trees and environment. For these reasons, the decision to reduce the number of receiving lanes was agreed to by city staff. They also confirmed potential queues on Prince of Wales Drive could be managed through traffic signal optimizations. The potential queuing implications were evaluated in **Section 4.9.2**.

Road E/Prince of Wales Drive Options

As previously discussed in **Section 4.4**, at some point since the *TIA and Mobility Study (July 2021)* was approved, three alternative intersection options were considered at this location:

- A signalized protected intersection,
- A roundabout and,
- An unsignalized intersection with an outbound left-turn movement restriction from Road E.

The signalized protected intersection option was preferred over the roundabout option since it provided better active transportation accommodations than a roundabout and it had a smaller footprint, reducing the number of trees impacted.

The two remaining options were subsequently analyzed in Synchro and Sim Traffic; the intersection performance for these two options has been summarized in **Table 20**.

Table 20: Road E/Prince of Wales Drive Intersection Performance (Signalized vs Unsignalized) – 2048 Horizon

			Weekday AM I	Peak (PM Peak)		
Intersection		Critical Moveme	ent	Interse	ection 'As a	Whole'
intersection	LoS	Max Delay (s) or				Max v/c
		v/c	Movement	Delay (s)	LoS	
Signalized Intersections						
Road E/Prince of Wales Signalized	B(C)[B]	0.63(0.73)[0.66]	NBT(SBT)[SBT]	9.8(13.6)[12.7]	B(B)[B]	0.61(0.69)[0.62]
Road E/Prince of Wales Unsignalized1	B(C)[C]	13(23)[20]	EB(EB)[EB]	0(1)[2]	A(A)[A]	-
1. The NCC Scenic Driveway/Prince of Wales Dr	rive was also	tested with the added s	outhbound U-turn m	ovements from deviate	ed eastboun	d left-turners at Road
E/Prince of Wales Drive. Performance was similar	ar to the TIA	and Mobility Study (July	2021) and operated	within City Standards	i.	

Both intersection configurations operate within city standards. However, the unsignalized intersection design has far fewer implications related to the surrounding environment (e.g., trees), drainage and costs.

It is acknowledged that the preferred unsignalized option does not provide active transportation facilities across Prince of Wales Drive; however, there is not expected to be a strong pedestrian or cyclist desire line prior to opening of the University of Ottawa Heart Institute, which is planned closer to 2048. Implementing new facilities may be considered at that time as part of the Heart Institute Site Plan Control application. In the interim, there will be alternative crossing opportunities at the new Road B/Prince of Wales Drive or the existing Scenic Driveway/Prince of Wales Drive intersections.

4.9.2 Queueing Analysis

Another important measure of the health of an intersection is determining if there will be queueing implications and if vehicles are likely to spillback to adjacent intersections with consistency. A detailed summary of all queueing analysis using SimTraffic software along with intersections deemed sensitive or at risk of queueing implications have been summarized within the table in **Appendix L**.

Overall, most study area intersections have experienced a reduction in queue lengths compared to the *TIA* and *Mobility* Study (July 2021) with the exception of Preston Street/Prince of Wales Drive intersection.

Preston Street/Prince of Wales Drive

The Preston Street/Prince of Wales Drive intersection has a few movements which at times, predominantly the peak hours only, exceed the storage capacity. These movements include the eastbound left-turn, the southbound right-turn, and the southbound through-left-lane. However, this vehicular congestion is a direct result of applying contemporary protected intersection design guidelines to this intersection, which improves pedestrian and cycling priority at the expense of vehicle capacity. Anticipated queues will only occur during the peak hour periods, predominantly the hour between 15:30-16:30 when vehicle traffic is highest, but outside of these hours, the intersection is expected to function adequately.

Preston Street/Carling Avenue

The Preston Street/Carling Avenue intersection shows possible queuing constraints during the peak hour periods, but was considered reasonable considering it was modelled with a time separated bi-directional crossing of the south leg that improves cycling prioritization through the intersection. The City is expected to redesign this intersection as part of the Carling Avenue Transit Priority project, and the intersection will be reassessed at that time.

Road E/Prince of Wales Drive

The proposed unsignalized intersection design with a restricted outbound left-turn movement has no expected queuing complications with NCD traffic, while the alternative signalized protected intersection design has greater risks of spillback to The Scenic Driveway roundabout.

Road B/Prince of Wales Drive

A queuing sensitivity analysis was completed for Road B/Prince of Wales Drive between the two noted design configurations confirmed the city's assertion that removing the additional through lane does not have a notable impact on queues; while the additional benefit of this scaled-back configuration is it reduces the crossing distance for pedestrians and cyclists, and avoids impacts to the adjacent trees and environment.

There is approximately 85m between Road B and the right-in right-out (RIRO) along Prince of Wales Drive, and approximately 190m between Road B and Preston Street. The 95th percentile queue ranges between 170m and 190m in Sim Traffic and Synchro respectively during the critical PM peak hour, which suggests there is only a nominal risk of queue spillback to Preston Street during the most congested hour of the day. Outside of that peak hour, the risk of queue spillback drops significantly.

4.10 Monitoring

This section of the report has been exempted. TOH is preparing a comprehensive *Transportation Monitoring Strategy* that will outline how TOH will monitor, process, and report future traffic conditions to enable them to make informed decision related to the long-term implementation plan for each transportation strategy. The Monitoring Strategy will take shape after the recommendations within the four other transportation studies have been vetted by City of Ottawa staff.

5.0 CONCLUSIONS

As previously noted in the introduction of this report, there have been a number of refinements made to the NCD site plan since the submission of the *TIA and Mobility Study (July 2021)*. A summary of the key conclusions to the TIA Addendum #2 is as follows:

- The changes in the site plan and programming projections since the *TIA and Mobility Study (July 2021)* submission did not alter the overall conclusions and recommendations in that document.
- The main Hospital building can be accommodated by the adjacent road network with recommended modifications to the adjacent road network as included shown in the updated off-site roadway design plan attached in **Appendix H**. Note that new or updated RMA packages will be submitted for the Road E and Road B intersections with Prince of Wales Drive.
- The current Road E/Prince of Wales Drive intersection design will be an unsignalized intersection with eastbound left-turn movement prohibition.
- The Road B/Prince of Wales Drive intersection has been reduced in footprint by reducing the westbound movement from dual through lanes and dual receiving lanes to a single through lane with a single receiving lane. City of Ottawa staff accepted this adjustment and confirmed they could manage potential queues along Prince of Wales with signal timing optimizations.
- Discussions are ongoing between TOH, the City of Ottawa, NCC and federal departments on the design and implementation of adjacent road network modifications to support the main Hospital building and may be further refined prior to developed design.

For reference, the conclusions and recommendations from *TIA and Mobility Study (July 2021)* have been provided with corresponding commentary that relate to changes or implications stemming from the TIA Addendum #2, please refer to **Appendix M**.

Appendix A: Existing Civic Campus Parking Data

Appendix B: 24-Hour Estimated Hourly Trip Generation – People Trips

Type of Shift	00:00 -01:00	01:00 - 02:00	02:00 - 03:00	03:00 - 04:00	04:00 - 05:00	05:00 - 06:00	06:00 - 07:00	07:00 - 08:00	00:00 - 00:80	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00	16:00 - 17:00	17:00 - 18:00	18:00 - 19:00	19:00 - 20:00	20:00 - 21:00	21:00 - 22:00	22:00 - 23:00	23:00 - 24:00
Day Shift TOH						160	1000	1152	448	160	80	64	64	134	301	786	669	435	251	418	134			
Day Shift Other*							n/a	n/a	n/a							n/a	n/a	n/a						
Evening Shift	100	100													299	100	100							299
Night Shift								114	38														114	38
12hr Day Shift							313	104												312	104			
12hr Night Shift								221	74										221	74				
12hr Day Res.							53	18												53	18			
12hr Night Res.								18	6										18	6				
total In						160	1366	1274	448	160	80	64	64		299	100	100		239	80			114	38
total Out	100	100						353	118					134	301	786	669	435	251	783	256			299
TOTAL 2-WAY	100	100	0	0	0	160	1366	1627	566	160	80	64	64	134	600	886	769	435	490	863	256	0	114	337
Green – Pro	portion	of Arri	ivals to	NCD, E	Blue – F	Proporti	on of D	Departu	res fro	mNCD,	Grey –	Shift (Froup V	Vorking	at NCC	*Day s	Shift Ot	her ref	ersto	JOH ar	nd Rese	arch		

Number of Hourly Staff People Trips Generated To and From NCD - 2028

Type of Shift	00:00 -01:00	01:00 - 02:00	02:00 - 03:00	03:00 - 04:00	04:00 - 05:00	05:00 - 06:00	06:00 - 07:00	07:00 - 08:00	00:00 - 00:80	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00	16:00 - 17:00	17:00 - 18:00	18:00 - 19:00	19:00 - 20:00	20:00 - 21:00	21:00 - 22:00	22:00 - 23:00	23:00 - 24:00
Planned Visit Arrival								103	103	103	103	103	103	103	103	103	103	51	51					
Planned Visit Departure									103	103	103	103	103	103	103	103	103	103	51	51				
Unplanned Visit Arrival	6	9	9	9	6	6	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	6	6
Unplanned Visit Departure	9	9	9	9	9	9	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	9	9
TOTAL IN	6	9	9	9	9	6	19	122	122	122	122	122	122	122	122	122	122	70	70	19	19	19	6	9
TOTAL OUT	9	9	9	9	9	9	19	19	122	122	122	122	122	122	122	122	122	122	70	70	19	19	9	9
TOTAL 2-WAY	18	18	18	18	18	18	38	141	244	244	244	244	244	244	244	244	244	192	140	89	38	38	18	18

Hourly Breakdown Estimate of Planned and Unplanned Patient/Visitor Person Trips - 2028

Type of Shift	00:00 -01:00	01:00 - 02:00	02:00 - 03:00	03:00 - 04:00	04:00 - 05:00	05:00 - 06:00	06:00 - 07:00	07:00 - 08:00	00:00 - 00:80	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00	16:00 - 17:00	17:00 - 18:00	18:00 - 19:00	19:00 - 20:00	20:00 - 21:00	21:00 - 22:00	22:00 - 23:00	23:00 - 24:00
Day Shift TOH						207	1295	1492	580	207	104	83	83	173	390	1018	866	563	325	541	173			
Day Shift Other*							1465	879	586							1465	879	586						
Evening Shift	236	157													393	236	157							393
Night Shift								181	61														181	61
12hr Day Shift							492	164												492	164			
12hr Night Shift								348	116										348	116				
12hr Day Shift							69	23												69	23			
12hr Night Res.								23	8										23	8				
total In						207	3321	2558	1166	207	104	83	83		393	236	157		371	124			181	61
TOTAL OUT	236	157						552	185					173	390	2483	1745	1149	325	1102	360			393
TOTAL 2-WAY	236	157	0	0	0	207	3321	3110	1351	207	104	83	83	173	783	2719	1902	1149	696	1226	360	0	181	454
Green – Pro	portior	of Arri	ivalsto	NCD, E	Blue – F	Proporti	on of D	Departu	res fro	mNCD,	Grey –	Shift G	Group V	Vorking	at NCC) *Day S	Shift Ot	her ref	ersto	JOH ar	nd Rese	arch		

Number of Hourly Staff People Trips Generated To and From NCD - 2048

Type of Shift	00:00 -01:00	01:00 - 02:00	02:00 - 03:00	03:00 - 04:00	04:00 - 05:00	05:00 - 06:00	06:00 - 07:00	07:00 - 08:00	00:00 - 09:00	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00	16:00 - 17:00	17:00 - 18:00	18:00 - 19:00	19:00 - 20:00	20:00 - 21:00	21:00 - 22:00	22:00 - 23:00	23:00 - 24:00
Planned Visit Arrival								171	171	171	171	171	171	171	171	171	171	85	85					
Planned Visit Departure									171	171	171	171	171	171	171	171	171	171	85	85				
Unplanned Visit Arrival	15	15	15	15	15	15	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	15	15
Unplanned Visit Departure	15	15	15	15	15	15	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	15	15
TOTAL IN	15	15	15	15	15	15	31	202	202	202	202	202	202	202	202	202	202	116	116	31	31	31	15	15
TOTAL OUT	15	15	15	15	15	15	31	31	202	202	202	202	202	202	202	202	202	202	116	116	31	31	15	15
TOTAL 2-WAY	30	30	30	30	30	30	62	233	404	404	404	404	404	404	404	404	404	318	232	147	62	62	30	30
Green - Propor	tion of	Arrival	stoN	D Bue	- Pro	portion	of Den	arture	sfrom	NCD														

Hourly Breakdown Estimate of Planned and Unplanned Patient/Visitor Person Trips - 2048

Appendix C: Conceptual Vehicle Circulation Diagrams for NCD

1.3.6.2 Staff Circulation

Figure 60 illustrates that vehicular staff access and circulation is planned from Prince of Wales Drive to Level P1, or from Road B to Level P2, including the opportunity for staff to enter and exit the garage at Road B via Carling Avenue. Garage access from Road A is reserved for public, patients and visitors as a way to give precedent and to manage congestion into and out of the Parking Garage on Road A.

Likewise, staff will utilize Road E from Prince of Wales Drive to access parking lots south and east of the Hospital.

Figure 60: Hospital - Staff Vehicular Garage Access Circulation

1.3.6.3 Public Vehicular Access

Figure 61 illustrates public, front of house, vehicular access to the hospital from the north and east; from Carling Avenue and Prince of Wales Drive respectively. Public parking is provided at the main entrance to the Hospital on level 1 and on the lower level E for the emergency walk-in entrance. Primary public parking however will be provided for at the parking garage, accessible from Roads A and B and Prince of Wales Drive.

Figure 61: Hospital - Public Vehicular Circulation

1.3.6.4 Bicycle Circulation

Figure 62 illustrates bicycle circulation to and through the NCD, which plans for localized bike traffic from the Intersection of Roads A and B, with either a multi-use path or bi-directional cycle track along the south side of Road A to the main entrance of the Hospital on level 1.

Consistent with the Master Site Plan, a multi-use path is being provided along the north side of Road D, connecting Maple Drive to the west hospital entrance.

Bicycle parking is planned at each of the public entrances to the Hospital at level 1 main entry plaza and at the west entry on level E.

Figure 62: Hospital - Bicycle Circulation

1.3.6.5 Emergency Services Circulation

Figure 63 illustrates ambulance access routes, for which the destination is emergency services on the south side of the Hospital. Primary access for ambulances is shown from Carling Avenue and Maple Drive with secondary, access from Prince of Wales Drive.

Figure 63: Hospital - Emergency Services Circulation

1.3.6.6 Service Access

Loading docks are the lifeline of the Hospital and service and delivery trucks need to access the lowest level of the hospital to move matarials efficienty to and through the Hospital. For this reason, the docks are on Level B, with access to the formal City trucking route: Prince of Wales Drive.

The CUP will receive FedEx truck-style delivery and garbage pick-up vehicles, daily and weekly. It will also receive diesel fuel trucks approximately once per month to replace fuel used for emergency generator tests. These vehicled trips are intended to come from Prince of Wales Drive.

Once every five years large, semi-trucks are expected to need access to the CUP to replace equipment. Refer to Figure 64.

Figure 64: Hospital - Emergency Services Circulation

Appendix D: 24-Hour Estimated Hourly Trip Generation – Trips by Mode Share

Type of Shift	00:00 -01:00	01:00 - 02:00	02:00 - 03:00	03:00 - 04:00	04:00 - 05:00	05:00 - 06:00	06:00 - 07:00	07:00 - 08:00	08:00 - 09:00	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00	16:00 - 17:00	17:00 - 18:00	18:00 - 19:00	19:00 - 20:00	20:00 - 21:00	21:00 - 22:00	22:00 - 23:00	23:00 - 24:00
Auto Driver IN Staff	0	0	0	0	0	64	584	522	179	64	32	26	0	0	224	75	75	0	120	40	0	0	98	29
Auto Driver OUT Staff	75	75	0	0	0	0	0	206	69	0	0	0	26	54	120	314	268	174	100	350	115	0	0	224
Passenger Staff	14	14	0	0	0	11	106	136	46	11	6	4	4	9	63	69	61	30	44	74	21	0	17	48
Transit Staff	6	6	0	0	0	70	569	635	225	70	35	28	28	59	150	352	300	191	189	338	101	0	7	20
Walk Staff	1	1	0	0	0	2	14	16	5	2	1	1	1	1	6	9	8	4	5	9	2	0	1	ω
Bike Staff	4	4	0	0	0	13	95	112	41	13	6	5	5	11	36	67	58	35	32	51	16	0	3	13
Two-Way Total Staff	100	100	0	0	0	160	1368	1627	565	160	80	64	64	134	599	988	770	434	490	862	255	0	114	337
Auto Driver IN Patient	7	7	7	7	7	7	15	77	77	77	77	77	77	77	77	77	77	46	46	15	15	15	2	7
Auto Driver OUT Pat.	7	7	7	7	7	7	15	15	77	77	77	77	77	77	77	77	77	77	46	46	15	15	7	7
Passenger Patient	4	4	4	4	4	4	8	23	38	38	38	38	38	38	38	38	38	31	24	16	8	8	4	4
Transit Patient	0	0	0	0	0	0	0	21	42	42	42	42	42	42	42	42	42	31	20	10	0	0	0	0
Walk Patient	0	0	0	0	0	0	0	1	2	2	2	2	2	2	2	2	2	2	2	1	0	0	0	0
Bike Patient	0	0	0	0	0	0	0	4	8	8	8	8	8	8	8	8	8	6	4	2	0	0	0	0
Two-Way Total Pat.	18	18	18	18	18	18	38	141	244	244	244	244	244	244	244	244	244	193	142	90	38	38	18	18
Auto Driver IN LSP																								
Auto Driver OUT LSP																								
Passenger LSP																								
Transit LSP																								
Walk LSP																								
Bike LSP																								
Two-Way Total LSP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Driver IN TOTAL	7	7	7	7	7	71	599	611	256	141	109	103	77	77	301	164	164	46	166	55	15	15	93	36
Auto Driver OUT TOTAL	82	82	7	7	7	7	15	233	146	77	77	77	103	131	197	403	357	251	146	396	130	15	7	231

Trips Generated by NCD by Mode Shares - 2028

Passenger TOTAL	68	68	14	14	14	78	614	844	402	218	186	180	180	208	498	567	521	297	312	451	145	30	100	267
Transit TOTAL	18	18	4	4	4	15	114	159	84	49	44	42	42	47	101	107	66	61	89	90	29	8	21	52
Walk TOTAL	6	6	0	0	0	70	569	656	267	112	77	70	70	101	192	394	342	222	209	348	101	0	7	20
Bike TOTAL	1	1	0	0	0	2	14	17	7	4	3	3	3	3	8	11	10	6	7	10	2	0	1	ω
Transports								24								24	24							
TOTAL IN	6	6	6	9	6	169	1,387	1,408	569	282	202	186	122	122	421	234	234	71	310	66	19	19	123	47
TOTAL OUT	109	109	9	9	9	9	19	384	240	122	122	122	186	256	422	920	804	556	322	853	274	19	9	308
TOTAL 2-WAY	118	118	18	18	18	178	1406	1792	809	404	324	308	308	378	843	1154	1038	627	632	952	293	38	132	355

Type of Shift	00:00 -01:00	01:00 - 02:00	02:00 - 03:00	03:00 - 04:00	04:00 - 05:00	05:00 - 06:00	06:00 - 07:00	07:00 - 08:00	00:00 - 00:80	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00	16:00 - 17:00	17:00 - 18:00	18:00 - 19:00	19:00 - 20:00	20:00 - 21:00	21:00 - 22:00	22:00 - 23:00	23:00 - 24:00
Auto Driver IN Staff	0	0	0	0	0	52	916	668	292	52	26	21	0	0	275	165	110	0	148	49	0	0	126	43
Auto Driver OUT Staff	165	110	0	0	0	0	0	274	92	0	0	0	21	43	86	622	437	288	81	360	118	0	0	275
Passenger Staff	43	28	0	0	0	23	387	386	161	23	11	9	9	19	114	316	219	126	102	166	46	0	33	82
Transit Staff	17	11	0	0	0	112	1,698	1,489	677	112	56	45	45	93	239	1,358	954	621	302	542	163	0	12	33
Walk Staff	5	4	0	0	0	4	66	60	27	4	2	2	2	3	15	54	39	23	14	24	7	0	1	8
Bike Staff	7	თ	0	0	0	17	255	229	102	17	8	7	7	14	43	206	144	92	48	83	25	0	7	14
Two-Way Total Staff	237	158	0	0	0	208	3,322	3,106	1,351	208	103	84	84	172	784	2,721	1,903	1,150	695	1,224	359	0	179	455
Auto Driver IN Patient	12	12	12	12	12	12	25	102	102	102	102	102	102	102	102	102	102	63	63	25	25	25	12	12
Auto Driver OUT Pat.	12	12	12	12	12	12	25	25	102	102	102	102	102	102	102	102	102	102	63	63	25	25	12	12
Passenger Patient	6	6	6	6	6	6	12	55	98	98	98	98	98	98	98	98	86	76	54	33	12	12	6	6
Transit Patient	0	0	0	0	0	0	0	43	98	86	86	86	86	86	86	86	98	64	42	21	0	0	0	0
Walk Patient	0	0	0	0	0	0	0	3	6	6	6	6	6	6	6	6	6	5	4	2	0	0	0	0
Bike Patient	0	0	0	0	0	0	0	5	10	10	10	10	10	10	10	10	10	8	6	3	0	0	0	0
Two-Way Total Pat.	30	30	30	30	30	30	62	233	404	404	404	404	404	404	404	404	404	318	232	147	62	62	30	30
Auto Driver IN LSP								48									30							
Auto Driver OUT LSP								23									52							
Passenger LSP								25									27							
Transit LSP								151									163							
Walk LSP								22									52							
Bike LSP								22									52							
Two-Way Total LSP	0	0	0	0	0	0	0	291	0	0	0	0	0	0	0	0	376	0	0	0	0	0	0	0
Auto Driver IN TOTAL	12	12	12	12	12	64	941	842	394	154	128	123	102	102	377	291	266	63	211	74	25	25	138	55
Auto Driver OUT TOTAL	177	122	12	12	12	12	25	346	194	102	102	102	123	145	200	748	615	390	144	423	143	25	12	287

Trips Generated by NCD by Mode Shares - 2048

Passenger TOTAL	189	134	24	24	24	76	966	1,1	588	256	230	225	225	247	577	1,0	881	453	355	497	168	50	150	342
Transit TOTAL	49	34	9	6	6	29	399	466	259	121	109	107	107	117	212	414	344	202	156	199	85	12	39	88
Walk TOTAL	17	11	0	0	0	112	1,6	1,6 02	763	198	142	131	131	179	325	1,4	1,2	685	344	563	163	0	12	33
Bike TOTAL	5	4	0	0	0	4	66	85	33	10	8	8	8	9	21	60	97	28	18	26	7	0	1	8
Transports								48								48	48							
TOTAL IN	15	15	15	15	15	223	3,353	2,978	1,369	410	305	286	202	202	595	463	527	116	485	153	31	31	194	77
TOTAL OUT	252	173	15	15	15	15	31	700	386	202	202	202	286	374	593	2,710	2,203	1,352	442	1,218	390	31	15	408
TOTAL 2-WAY	267	188	30	30	30	238	3,384	3,678	1,755	612	507	488	488	576	1,188	3,173	2,730	1,468	927	1,371	421	62	209	485

Appendix E: Combined Other Area Development Background Volumes

Appendix F: Future Projected Background Volumes

2028 Background Volumes

BG 2028

2048 Background Volumes

2028 Forecasted Volumes with NCD

2028 Reduction

2048 Forecasted Volumes with NCD

2048 Reduction

2048 Reduction

Appendix G: Active Transportation Facility Proposed Widths

Roadway	Side	From where to where?	Sidewalk Facility	Cycling Facility	Multi-Use Pathway (MUP)
Road A	North	Carling to front door	2 to 2.5 m	-	-
Road A	South	35 m south of Carling to front door	2 m	3 m (bidirect.)	-
Carling to Road A	South	Connects Carling facilities to 35 m south of Carling facilities on south side of Road A	-	-	3 m
Road B	East	Road A to Prince of Wales	2 m	3 m (bidirect.)	-
Carling near Preston	South	Trillium MUP to Preston	2 m	3 m (bidirect.)	-
Preston	West	Carling to Prince of Wales	3 m	3.5 m (bidirect.)	-
Prince of Wales	Northwest	Preston to Road B	2 m	1.8 m (unidirect.)	-
Prince of Wales	Northwest	Road B to Road E	2 m	Paved shoulder	-
Prince of Wales	Southeast	Preston to Navy	2 m	1.8 m (unidirect.)	-
Prince of Wales	Southeast	Navy to Road E	2 m	Paved shoulder	-
Road D	North	Maple to bike racks & crosswalk	-	-	3 m
Road D	South	Along NCD frontage	2 m	-	-
Woodland Path	-	Road D sidewalks to Road A	2 m	-	-
Road E	East	Road D to Zone 4 Parking	1.8 to 3 m		
Road E	North	Zone 4 Parking to Prince of Wales		Part of a future phase	
Other Internals	-				

Active Transportation Facilities Proposed

Appendix H: Composite Plan Showing Proposed Off-Site Intersection Designs

Appendix I: Historic OC-Transpo Ridership Data

Bus stops near current hospital site

Sprin	Spring 2022 (April 24 - June 25)													
				AN	1 (06:00-09:	00)	PN	I (15:00-18: 0	00)		24-hr			
Stop	Location	Route	Dir.	Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure		
1324	Carling / Parkdalo	55	WB	0	0	4	0	0	7	0	0	4		
1524		85	WB	9	2	17	7	0	17	27	8	13		
2200	Carling / Parkdalo	55	EB	3	0	8	4	0	6	7	0	5		
2390	Carling / Farkuale	85	EB	1	1	13	5	9	15	14	23	11		
		55	EB	2	0	9	10	0	9	16	0	7		
3644	Carling / Melrose South	56	EB	0	1	6	9	3	6	10	5	5		
		85	EB	4	7	11	7	0	17	14	11	11		
7350	Parkdale / Ruskin	56	EB	0	0	7	1	0	4	1	1	3		
1555		114	WB	-	-	-	-	-	-	0	0	3		
7360	Parkdalo / Inglowood	56	WB	1	1	4	6	10	8	14	12	3		
7300	Farkuale / Inglewood	114	EB	-	-	-	-	-	-	0	0	4		
7361	Parkdale / Carling	56	EB	2	1	6	1	0	5	3	2	2		
7301	Tarkdale / Carling	114	WB	-	-	-	-	-	-	0	0	3		
		55	WB	0	16	6	1	2	7	1	33	5		
7365	Carling / Melrose South	56	WB	2	17	5	1	0	8	3	21	5		
		85	WB	1	7	17	4	0	16	20	15	12		
8016	Carling / TOH Civic Campus	55	WB	0	16	4	2	8	7	5	58	4		
0010		85	WB	8	20	16	17	3	16	79	59	13		
		55	EB	14	0	9	19	0	8	68	0	6		
8020	Carling / TOH Civic Campus	56	EB	3	5	6	16	1	6	23	8	5		
		85	EB	2	11	12	21	6	16	56	55	11		
8070	Parkdale / Ruskin	56	WB	0	2	4	5	0	9	8	2	3		
0070		114	EB	-	-	-	-	-	-	0	0	4		
8075	Parkdale / Inglewood	56	EB	0	4	6	0	0	4	1	5	3		
0075	8075 Parkdale / Inglewood	114	WB	-	-	-	-	-	-	0	0	3		

Data previously provided for Fall 2019 (October 6 - December 21) and Winter 2020 pre-pandemic (January 5 - March 11) periods

Bus stops near future hospital site

Fall 2	Fall 2019 (October 6 - December 21)												
				A	/ (06:00-09:	00)	PN	1 (15:00-18:0)0)		24-hr		
Stop	Location	Route	Dir.	Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure	
2397	Preston / Carling	85	WB	4	11	18	15	8	21	37	23	14	
6657	Preston / Carling	85	EB	12	11	22	21	5	23	54	40	16	
		55	WB	5	2	23	4	3	33	9	7	19	
7367	Carling / Sherwood	56	WB	1	0	12	6	0	18	7	1	11	
		85	WB	4	1	21	16	13	26	36	20	18	
		55	EB	1	4	36	2	6	23	7	15	20	
7368	Carling / Sherwood	56	EB	1	0	14	0	0	10	1	1	10	
		85	EB	4	5	27	4	8	26	23	33	19	
		55	EB	9	16	34	8	32	20	28	89	18	
7369	Carling / O-Train Station	56	EB	4	6	14	2	5	9	7	11	10	
		85	EB	7	46	23	4	51	22	31	214	16	
		55	WB	29	8	23	26	6	31	104	33	19	
8014	Carling / O-Train Station	56	WB	15	15	12	6	11	17	26	27	11	
		85	WB	33	5	20	88	13	26	273	54	17	
	Maple Drive /	55	WB	0	9	22	5	3	33	7	15	19	
8015	Control Exporimontal Form	56	WB	1	8	11	2	3	17	2	11	11	
	Central Experimental Farm	85	WB	11	9	19	23	21	26	82	54	18	
	Maple Drive /	55	EB	3	4	36	10	0	23	15	5	20	
8021	Control Exportmontal Form	56	EB	0	0	14	5	0	10	4	0	10	
0021	Central Experimental Farm	85	EB	2	1	26	12	2	26	22	14	19	
8023	8022 Carling / Broaton	55	EB	2	16	31	7	8	18	12	29	17	
0023	Carling / Fleston	56	EB	4	5	13	2	2	9	5	9	9	

Winter 2020 pre-pandemic (January 5 - March 16)

		, ,		Â	A (06:00-09:0	00)	PN	/I (15:00-18:0	00)	24-hr		
Stop	Location	Route	Dir.	Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure
2397	Preston / Carling	85	WB	5	24	22	21	6	20	43	42	15
6657	Preston / Carling	85	EB	27	32	22	20	7	19	68	64	15
		55	WB	5	2	23	1	9	27	9	16	18
7367	Carling / Sherwood	56	WB	4	20	9	0	2	15	4	25	10
		85	WB	1	2	24	11	8	27	41	28	18
		55	EB	2	2	31	3	2	17	9	13	18
7368	Carling / Sherwood	56	EB	2	0	7	0	0	12	2	0	9
		85	EB	17	10	28	9	13	22	30	34	17
		55	EB	9	22	29	4	32	15	19	106	16
7369	Carling / O-Train Station	56	EB	4	4	6	2	11	11	9	19	8
		85	EB	8	70	22	9	51	18	35	235	15
		55	WB	35	6	23	30	5	28	103	17	18
8014	Carling / O-Train Station	56	WB	8	5	11	12	5	16	24	12	11

		85	WB	29	10	23	86	24	27	257	69	18
	Manla Driva /	55	WB	0	10	22	9	3	28	10	19	17
8015	Control Exportmontal Form	56	WB	0	8	9	0	2	15	0	13	10
	Central Experimental Farm	85	WB	2	14	22	25	14	29	66	57	19
	Maple Drive /	55	EB	2	3	30	6	0	17	14	3	18
8021	Control Exportmontal Form	56	EB	2	2	7	7	0	12	9	3	9
	Central Experimental Farm	85	EB	3	10	27	11	1	23	21	20	17
8023	Carling / Proston	55	EB	2	21	27	6	9	14	18	39	16
0023	Caning / Freston	56	EB	1	1	7	5	2	12	6	6	9

Sprin	pring 2022 (April 24 - June 25)												
				A	A (06:00-09:	00)	PN	1 (15:00-18:0)0)		24-hr		
Stop	Location	Route	Dir.	Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure	
2397	Preston / Carling	85	WB	18	10	16	39	12	15	137	44	12	
6657	Preston / Carling	2	NB	7	48	4	17	79	6	53	317	4	
0037	r restorr / Carling	85	EB	10	21	9	19	35	14	62	107	9	
		55	WB	0	2	7	0	4	7	0	6	6	
7367	Carling / Sherwood	56	WB	0	0	7	0	0	8	0	1	6	
		85	WB	8	0	17	7	3	16	27	10	12	
		55	EB	2	0	9	2	1	9	4	1	7	
7368	Carling / Sherwood	56	EB	0	0	6	1	0	7	1	0	6	
		85	EB	9	4	12	0	5	18	13	16	11	
		55	EB	6	0	9	10	0	10	38	0	7	
7369	Carling / O-Train Station	56	EB	2	0	6	6	1	8	10	1	6	
		85	EB	1	17	10	2	21	15	8	73	10	
		55	WB	5	4	8	6	11	7	16	33	6	
8014	Carling / O-Train Station	56	WB	2	2	7	0	6	8	2	10	6	
		85	WB	12	1	17	14	0	15	56	9	12	
	Maple Drive /	55	WB	0	5	7	2	2	7	2	11	6	
8015	Central Experimental Earm	56	WB	0	4	7	0	0	8	0	4	6	
		85	WB	0	1	17	3	3	15	10	7	12	
	Maple Drive /	55	EB	0	0	9	5	0	9	5	0	7	
8021	Central Experimental Earm	56	EB	0	0	6	5	0	7	6	0	6	
		85	EB	2	6	11	4	2	18	10	18	11	
8023	Carling / Preston	55	EB	3	4	9	7	1	10	23	9	8	
0023	Carling / Fleston	56	EB	0	0	6	4	3	7	4	3	6	

O-Train Line 2, before closure for Stage 2 expansion

Winte	Winter 2020 pre-pandemic (January 5 - March 16)													
				A	M (06:00-09:	00)	PI	// (15:00-18:)	00)	24-hr				
Stop	Location	Route	Direction	Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure		
3061	Carling Station	Line 2	NB	124	165	40	207	308	65	589	1108	33		
3001	Carling Station	Line 2	SB	197	143	15	285	208	18	1134	694	13		

Appendix J: Summary 2028 and 2048 Intersection Performance

2028 Intersection Performance Based on Synchro and Sidra

Weekday AM Peak (PM Peak of Street) [PM Peak of Generator]

Intersection		Critical Movemen	it	Intersection 'As a Whole'			
intersection	LoS	Max Delay (s) or				Max v/c	
		v/c	Movement	Delay (s)	LoS	-	
Signalized Intersections							
	C	0.77	SBL	22.1	A	0.48	
Parkdale/Carling	(C)	(0.73)	(SBL)	(18.7)	(B)	(0.66)	
	[B]	[0.07]	[SBL]	2.0		[0.57]	
Civic / Carling	Α (Δ)	0.38		(6.8)	Α (Δ)	0.38	
onic/ outling	(A) [A]	[0.53]	(WBT)	[10,1]	(A) [A]	[0.52]	
	A	0.41	EBT	10.2	A	0.38	
Maple/Old Irving/Carling	(B)	(0.69)	(NBT)	(13.0)	(A)	(0.48)	
	[A]	[0.56]	[NBT]	[11.0]	[A]	[0.43]	
	С	0.71	SBL	11.6	А	0.42	
Sherwood/Carling	(B)	(0.70)	(SBL)	(10.0)	(A)	(0.56)	
	[B]	[0.69]	[SBL]	[10.0]	[A]	[0.44]	
Deed A (Oberry error (Oerling	C (D)	0.79	SBL	29.0	A	0.54	
Road A/ Champagne/ Caning	(D)	(0.82)	(SBL)	(39.3)	(B)	(0.66)	
		0.71	USDLJ WRT	<u>[27.0]</u> 83	[A] 	0.01	
Trillium MUP/Carling	(A)	(0.48)	(WBT)	(6.0)	(A)	(0.42)	
	[A]	[0.36]	IWBTI	[4.7]	[A]	[0.36]	
	E	0.92	EBR	60.4	D	0.87	
Preston/Carling	(E)	(0.99)	(NBL)	(80.0)	(E)	(0.97)	
	[E]	[0.96]	[WBL]	[61.2]	[D]	[0.82]	
	D	0.85	WBT	26.7	С	0.77	
Booth/Carling	(E)	(1.00)	(WBT)	(43.6)	(E)	(0.95)	
	[C]	[0.73]	[WBT]	[22.9]	[B]	[0.69]	
	D	0.89	EBL	41.2	D	0.86	
Bronson/Carling	(E)	(0.95)	(SBI)	(54.3)	(E)	(0.94)	
		0.75	WRT	22.0	[U] 	0.70	
Hwy 417 WB on-off/Parkdale	(D)	(0.83)	(WBT)	(26.2)	(C)	(0.76)	
	(C)	[0.74]	ISBTI	[18.9]	(B)	[0.68]	
	B	0.70	EBT	32.6	A	0.57	
Hwy 417 EB on-off/Parkdale	(C)	(0.78)	(EBT)	(32.5)	(B)	(0.63)	
	[C]	[0.78]	[EBT]	[26.1]	[B]	[0.61]	
	А	0.56	EBT	10.1	A	0.44	
Sherwood/Parkdale	(A)	(0.58)	(SBT)	(9.9)	(A)	(0.47)	
	[A]	[0.57]		[9.9]	[A]	[0.48]	
Puckin / Parkdala	A (A)	0.40	EBI	9.6	A	0.25	
Ruskiii/ Palkuale	(A) [A]	(0.39)		(10.2)	(A) [A]	(0.25)	
	 D	0.87	SBR	32.2	 C.	0.71	
Preston/Prince of Wales	(E)	(0.97)	(WBT)	(47.6)	(C)	(0.80)	
,	[D]	[0.89]	[SBR]	[39.8]	[B]	[0.70]	
	A	0.58	WBT	12.3	A	0.45	
Hwy 417 on Raymond/Rochester	(C)	(0.72)	(WBT)	(18.7)	(A)	(0.53)	
	[B]	[0.70]	[WBT]	[17.1]	[A]	[0.49]	
	B	0.70	EBT	11.2	A	0.44	
Hwy 417 off Urangeville/Rochester	(C)	(0.74)	(EBI)	(16.9)	(A)	(0.46)	
		[0.71]		[10.8]		[0.42]	
Hwy 417 on-off Catherine / Bronson	(F)	(0.90	(WRI)	(56.8)	(F)	(0.96)	
ing 411 on on outlenne/ biolison	(E)	[0.98]	[WBL]	[59,8]	(E)	[0.96]	
	D	0.85	EBR	17.7	B	0.66	
Hwy 417 EB off/Bronson	(D)	(0.86)	(EBR)	(18.5)	(C)	(0.74)	
-	[D]	[0.87]	[EBR]	[21.1]	[C]	[0.78]	

Pood P / Prince of Wales with Two WP	В	0.61	EBT	9.0	А	0.60
Rodu D/ Prince of wales with two wb	(A)	(0.55)	(SBL)	(9.8)	(A)	(0.49)
Receiving Lanes	[A]	[0.58]	[SBL]	[10.3]	[A]	[0.47]
Poad B/Prince of Wales with Single	В	0.61	EBT	11.6	A	0.60
WB Deceiving Lanes	(C)	(0.73)	(WBT)	(12.5)	(B)	(0.70)
WD Receiving Lanes	[A]	[0.60]	[WBT]	[11.8]	[A]	[0.59]
Unsignalized Intersections						
Melrose/Carling	C (E) [C]	20 (40) [24]	SB (SB) [SB]	1 (1) [0]	A (A) [A]	-
Rochester/Carling	C (F) [F]	17 (206) [84]	SB (SB) [SB]	1 (24) 12]	A (C) [B]	-
Navy/Prince of Wales	C (D) [C]	17 (34) [21]	NB (NB) [NB]	0 (0) [0]	A (A) [A]	-
Road A/Parking garage	B (B) [B]	11 (10) [10]	NB (NB) [NB]	4 (6) [6]	A (A) [A]	-
Road B/Parking garage	B (B) [B]	10 (10) [10]	WB (WB) [WB]	5 (7) [7]	A (A) [A]	-
Road B/Road F	B (B) [B]	10 (10) [10]	EB (EB) [EB]	0 (0) [0]	A (A) [A]	-
Road E/Road D	A (A) [A]	9 (9) [9]	NB (NB) [NB]	5 (7) [7]	A (A) [A]	-
Bayswater/Sherwood	A (B) [A]	9 (11) [9]	SB (SB) [SB]	9 (10) [9]	A (B) [A]	-
Maple/Road D	A (A) [A]	8 (8) [8]	SB (EB) [EB]	8 (8) [8]	A (A) [A]	-
Road A/Road B	A (A) [A]	9 (8) [8]	WB (WB) [WB]	8 (8) [8]	A (A) [A]	-
Road E/Prince of Wales1	B (C) [C]	13 (21) [17]	EB (EB) [EB]	0 (1) [1]	A (A) [A]	-

Note: Analysis of intersections assumes a PHF of 1.0 and a saturation flow rate of 1800 veh/h/lane; 1. Option as signals or unsignalized with EBL prohibited. Note signals only tested in more critical 2048. NCC Scenic Driveway/Prince of Wales only tested in more critical 2048 horizon with added U-turns from deviated EBL turns at Road E/Prince of Wales.

2048 Intersection Performance based on Synchro and Sidra

	Weekday AM Peak (PM Peak of Street) [PM Peak of Generator]								
Intersection		Critical Movemer	nt	Inter	rsection 'As a Wh	iole'			
intersection	LoS	Max Delay (s) or v/c	Movement	Delay (s)	LoS	Max v/c			
Signalized Intersections									
Parkdale/Carling									
Civic/Carling	-								
Maple/Old Irving/Carling	Will cont			Coo Toble 40 on	d Ann an dhe L fa uu	a sua alata ila)			
Sherwood/Carling	- WIII cont	inue to operate well,	similarly to 2028 ((See lable 18 and	a Appenaix J for n	nore details).			
Road A/Champagne/Carling									
Trillium MUP/Carling	-								
	D	0.90	WBL	59.4	С	0.78			
Preston/Carling	(E)	(0.97)	(NBL)	(66,7)	(D)	(0.84)			
, 0	ΪEΪ	0.941	ÎNBLÎ	153.81	ÎCÎ	108.01			
	D	0.85	WBT	25.9	C	0.77			
Booth/Carling	(E)	(0.97)	(WBT)	(37.9)	(E)	(0.92)			
, 0	(Ċ)	[0.71]	(WBT)	[21.6]	(B)	0.66			
	D	0.90	EBL	40.0	D	0.84			
Bronson/Carling	(E)	(0.96)	(EBL)	(54.4)	(E)	(0.95)			
	(E)	[0.94]	(SBT)	[50.2]	(E)	[0.92]			
Hwy 417 WB on-off/Parkdale									
Hwy 417 EB on-off/Parkdale	- 								
Sherwood/Parkdale	- Will cont	inue to operate well,	similarly to 2028 ((See lable 18 and	d Appendix J for n	nore details).			
Ruskin/Parkdale	-								
	D	0.89	SBR	32.4	С	0.71			
Preston/Prince of Wales	(E)	(0.94)	(SBT)	(45.5)	(C)	(0.77)			
,,	[D]	[0.88]	ISBR 1	[38,7]	[B]	[0.69]			
Hwy 417 on Raymond/Rochester									
Hwy 417 off Orangeville / Rochester	- Will cont	inue to operate well,	similarly to 2028 ((See Table 18 and	d Appendix J for n	nore details).			
	D	0.89	NBL	33.6	С	0.78			
Hwy 417 on-off Catherine/Bronson	(E)	(0.96)	(WBL)	(50.5)	(E)	(0.92)			
, ,	ΪEΪ	[0.97]	ĪWBLI	[52.0]	ΪEΪ	[0.93]			
	D	0.82	EBR	16.1	B	0.62			
Hwy 417 EB off/Bronson	(D)	(0.86)	(EBR)	(17.3)	(C)	(0.71)			
, , , , , , , , , , , , , , , , , , , ,	ÌDÌ	[0.86]	(EBR)	[17.8]	IC1	[0.74]			
	Will contin	ue to operate well, sir	nilarly to 2028 for	single or double	westbound recei	ving lanes (See			
Road B/ Prince of Wales		Tab	le 18 and Append	ix J for more deta	ils).	0 (
	В	0.63	NBT	9.8	В	0.61			
Road E/Prince of Wales1	(C)	(0.73)	(SBT)	(13.6)	(B)	(0.69)			
,	ÌΒ́]	0.66	(SBT)	[12.7]	ΪB)	[0.62]			
Unsignalized Intersections									
Melrose/Carling	C (E) [C]	19 (35) [21]	SB (SB) [SB]	0 (0) [0]	A (A) [A]	-			
Rochester/Carling	C (F) [F]	19 (186) [79]	SB (SB) [SB]	1 (17) [11]	A (B) [B]	-			
Navy/Prince of Wales	C (E) [C]	16 (36) [23]	NB (NB) [NB]	0 (1) [0]	A (A) [A]	-			
Bayswater/Sherwood									
Road A/Parking garage	-								
Road B/Parking garage									
Road B/Road F	Will cont	inue to operate well.	similarly to 2028 (See Table 18 and	d Appendix J for n	nore details).			
Road E/Road D			,		1. I				
Maple/Road D	-								
Road A/Road B									
Road F/Prince of Wales	B (C) [C]	13 (23) [20]	FB (FR) (FR)	0(1)[2]	Δ (Δ) [Δ]	-			
Roundabout Intersections		10 (20) [20]		< (-/ [-]					
NCC Scenic Driveway/Prince of Wales	B (C) [B]	14 (25) [19]	WB (EB) [EB]	7 (11) [8]	A (B) [A]	_			

Note: Analysis of intersections assumes a PHF of 1.0 and a saturation flow rate of 1800 veh/h/lane; 1. Option as signals or unsignalized with EBL prohibited

Appendix K: 2028 and 2048 Detailed Intersection Performance

	٦	-	+	•	1	~		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø10	
Lane Configurations	5	**	**	1	W.	-		
Traffic Volume (vph)	141	1068	497	93	122	103		
Future Volume (vph)	141	1068	497	93	122	103		
Satd Flow (prot)	1695	3390	3390	1517	1610	0		
Elt Permitted	0.950	0000	0000		0 974	Ŭ		
Satd Flow (perm)	1599	3390	3390	1273	1592	0		
Satd Flow (RTOR)	1000	0000	0000	93		Ŭ		
Lane Group Flow (vph)	141	1068	497	93	225	0		
Turn Type	Prot	NA	NA	Perm	Perm	•		
Protected Phases	5	2	6				10	
Permitted Phases	-		-	6	4			
Detector Phase	5	2	6	6	4			
Switch Phase								
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		1.0	
Minimum Split (s)	11.1	26.7	26.7	26.7	37.2		5.0	
Total Split (s)	40.0	73.0	33.0	33.0	47.0		5.0	
Total Split (%)	32.0%	58.4%	26.4%	26.4%	37.6%		4%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.0		2.0	
All-Red Time (s)	2.4	1.9	1.9	1.9	3.2		0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.1	5.6	5.6	5.6	6.2			
Lead/Lag	Lead		Lag	Lag				
Lead-Lag Optimize?	Yes		Yes	Yes				
Recall Mode	None	C-Min	C-Min	C-Min	None		Min	
Act Effct Green (s)	15.8	85.0	63.2	63.2	20.7			
Actuated g/C Ratio	0.13	0.68	0.51	0.51	0.17			
v/c Ratio	0.66	0.46	0.29	0.13	0.77			
Control Delay	66.2	10.9	20.4	5.0	58.2			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay	66.2	10.9	20.4	5.0	58.2			
LOS	E	В	С	А	E			
Approach Delay		17.3	17.9		58.2			
Approach LOS		В	В		E			
Queue Length 50th (m)	33.5	58.9	36.2	0.0	45.2			
Queue Length 95th (m)	52.1	89.6	59.8	10.5	67.3			
Internal Link Dist (m)		207.1	170.5		278.4			
Turn Bay Length (m)	155.0			80.0				
Base Capacity (vph)	459	2306	1713	689	543			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.31	0.46	0.29	0.13	0.41			
Intersection Summary								
Cycle Length: 125								
Actuated Cycle Length: 125								
Offset: 106 (85%), Reference	ed to phase	se 2:EBT	and 6:WI	BT, Start	of Green			
Natural Cycle: 80								
Control Type: Actuated-Coor	dinated							

Lanes, Volumes, Timings 10: Carling & Parkdale

Maximum v/c Ratio: 0.77		
Intersection Signal Delay: 22.1	Intersection LOS: C	
Intersection Capacity Utilization 59.1%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 10: Carling & Parkdale

→ø2 (R)		÷.	Ø10 Ø4	
73 s		5 s	47 s	
▶ _{Ø5}	 Ø6 (R)			
40 s	33 s			

Lane Group EBL EBT WBT WBR SBL SBR Lane Configurations 1
Lane Configurations Y AA Y Y Traffic Volume (vph) 50 1118 601 28 24 12 Future Volume (vph) 50 1118 601 28 24 12 Satd. Flow (prot) 1695 3390 3390 1517 1620 0 Fit Permitted 0.425 0.968 0 1118 601 28 0 Satd. Flow (perm) 746 3390 3390 1411 1575 0 Satd. Flow (RTOR) 28 12 1ane Group Flow (vph) 50 1118 601 28 36 0 Turm Type Perm Perm NA NA Perm Perm Protected Phases 2 6 6 4 Detector Phase 2 2 6 6 4 Stimm Phase 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.
Early original I II II III IIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Inits Out Dist Dist <thdis< th=""> Dist Dist D</thdis<>
Nation (ppr) 100 <t< td=""></t<>
Data Harry (M) 1300 0000 1011 1200 0 Stat. Flow (perm) 746 3390 3390 1411 1575 0 Satd. Flow (RTOR) 28 12 28 12 Lane Group Flow (vph) 50 1118 601 28 36 0 Turn Type Perm NA NA Perm Perm NA NA Perm Protected Phases 2 6 4 28 36 0 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 31.3 31.3 31.3 31.3 31.3 31.3 31.3 Total Split (%) 75.0% 75.0% 42.5% 25.0% Yellow Time (s) 3.7 3.7 3.7 3.7 3.7 3.7 3.3 All-Red Time (s) 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.0 Lost Time Adjust (s) </td
Art orinination 0.100 0.000 0.000 Satd. Flow (RTOR) 28 12 Lane Group Flow (vph) 50 1118 601 28 36 0 Turn Type Perm NA NA Perm Perm Perm Perm NA NA Perm Per
Satd. Flow (RTOR) THO Solo THT
Sala. How (RTerry) 20 12 Lane Group Flow (vph) 50 1118 601 28 36 0 Turn Type Perm NA NA Perm Perm Protected Phases 2 6 4 100 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Initial (s) 90.0 90.0 51.0 51.0 30.0 Total Split (s) 75.0% 75.0% 42.5% 42.5% 25.0% Yellow Time (s) 3.7 3.7 3.7 3.3 All-Red Time (s) 2.7 2.7 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 10.0 10.0 10.0 10.0 10.0 11.6 Actated gC Ratio 0.88 0.88 0.88 0.80 0.10 10 10 10 10 10 10 10 10 10 <td< td=""></td<>
Late Stop Flow (vpl) 30 1113 001 23 30 0 Prindected Phases 2 6 6 4 Protected Phases 2 6 6 4 Detector Phase 2 2 6 6 4 Switch Phase 2 2 6 6 4 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 31.3 31.5 50.0% Yelow 100.0 100.0
Turn type Permit Permit NRA Permit Permit Permit Permit Protected Phases 2 6 4 Detector Phase 2 2 6 4 Switch Phase 31.3 31.3 31.3 23.3 Total Split (s) 90.0 90.0 51.0 51.0 30.0 Total Split (s) 90.0 90.0 51.0 51.0 30.0 Total Split (s) 75.0% 75.0% 42.5% 42.5% 25.0% Yellow Time (s) 3.7 3.7 3.7 3.7 3.3 All-Red Time (s) 2.7 2.7 2.7 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Lead-Lag Optimize? Recall Mode C-Min C-Min C-Min None Act Effct Green (s) 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 10
Protector Phases 2 6 4 Permitted Phases 2 2 6 6 4 Switch Phase 2 2 6 6 4 Switch Phase 31.3 31.3 31.3 31.3 23.3 Total Split (s) 90.0 90.0 51.0 51.0 30.0 Total Split (s) 75.0% 75.0% 42.5% 42.5% 25.0% Yellow Time (s) 3.7 3.7 3.7 3.7 3.3 All-Red Time (s) 2.7 2.7 2.7 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Lost Time (s) 6.4 6.4 6.4 6.4 5.3 Lead-Lag Lead-Lag Lead-Lag 105.4 105.4 105.4 11.6 Actuated g/C Ratio 0.08 0.88 0.88 0.10 v/c Ratio 0.00 0.0
Permitted Phases 2 6 4 Detector Phase 2 2 6 6 4 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Initial (s) 90.0 90.0 51.0 51.0 30.0 Total Split (s) 90.0 90.0 51.0 51.0 30.0 Total Split (s) 90.0 90.0 51.0 51.0 30.0 Total Split (s) 90.0 0.0 0.0 0.0 0.0 Lost Time (s) 2.7 2.7 2.7 2.0 Lost Time (s) 6.4 6.4 6.4 5.3 Lead-Lag Lead-Lag Eead-Lag Eead-Lag None Actuated g/C Ratio 0.88 0.88 0.88 0.10 V/c Ratio 0.0
Detection Phase 2 2 0 0 4 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 31.3 31.3 31.3 23.3 Total Split (s) 90.0 90.0 51.0 51.0 30.0 Total Split (s) 90.0 90.0 51.0 51.0 30.0 Total Split (%) 75.0% 72.7 2.7 2.7 2.0 Lost Time (s) 2.7 2.7 2.7 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Lead/Lag C-Min (s) 6.4 6.4 6.4 6.4 5.3 Lead/Lag Lead/Lag Optimize? Recall Mode C-Min C-Min None Act Effct Green (s) 105.4 105.4 105.4 11.6 Actuated g/C Ratio 0.88 0.88 0.88 0.10 0.0 0.22 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0
Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Split (s) 31.3 31.3 31.3 31.3 23.3 Total Split (s) 90.0 90.0 51.0 51.0 30.0 Total Split (%) 75.0% 72.5% 42.5% 42.5% 25.0% Yellow Time (s) 3.7 3.7 3.7 3.7 3.3 All-Red Time (s) 2.7 2.7 2.7 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.4 6.4 6.4 6.4 5.3 Lead-Lag Lead-Lag Optimize? Recall Mode C-Min C-Min C-Min None Act Effct Green (s) 105.4 105.4 105.4 105.4 116. Actuated g/C Ratio 0.88 0.88 0.88 0.10 v/c Ratio 0.0 0.0 Vic Ratio 0.08 0.38 0.20 0.02 0.22 Control Delay 2.9
Minimum Initial (s) 10.0 <th10.0< th=""> <th10.0< th=""> 10.0</th10.0<></th10.0<>
Minimum Split (s) 31.3 31.3 31.3 31.3 31.3 23.3 Total Split (s) 90.0 90.0 51.0 51.0 30.0 Total Split (%) 75.0% 75.0% 42.5% 42.5% 25.0% Yellow Time (s) 3.7 3.7 3.7 3.7 3.3 All-Red Time (s) 2.7 2.7 2.7 2.7 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.4 6.4 6.4 5.3 Lead/Lag Lead-Lag Used-Lag Used-Lag Used-Lag Used-Lag Used-Lag Recall Mode C-Min C-Min C-Min None Act Effct Green (s) 105.4 105.4 105.4 116.6 Actuated g/C Ratio 0.88 0.88 0.88 0.88 0.10 0.2 Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0
Total Split (s) 90.0 90.0 51.0 51.0 30.0 Total Split (%) 75.0% 75.0% 42.5% 42.5% 25.0% Yellow Time (s) 3.7 3.7 3.7 3.7 3.3 All-Red Time (s) 2.7 2.7 2.7 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.4 6.4 6.4 6.4 5.3 Lead/Lag Ead/Lag Ead/Lag Ead/Lag Intervention Intervention Recall Mode C-Min C-Min C-Min None Act Effct Green (s) 105.4 105.4 105.4 11.6 Actuated g/C Ratio 0.88 0.88 0.88 0.88 0.10 v/c Ratio 0.02 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A D
Total Split (%) 75.0% 75.0% 42.5% 42.5% 25.0% Yellow Time (s) 3.7 3.7 3.7 3.7 3.3 All-Red Time (s) 2.7 2.7 2.7 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.4 6.4 6.4 6.4 5.3 Lead/Lag Lead-Lag Optimize? Recall Mode C-Min C-Min C-Min None Act Effet Green (s) 105.4 105.4 105.4 116. Actuated g/C Ratio 0.88 0.88 0.88 0.10 v/c Ratio 0.08 0.38 0.20 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A D Queue Delay 3.3 0.6 39.1 LOS A A A D D Queu
Yellow Time (s) 3.7 3.7 3.7 3.7 3.7 3.3 All-Red Time (s) 2.7 2.7 2.7 2.7 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.4 6.4 6.4 6.4 5.3 Lead-Lag Lead-Lag Optimize? Recall Mode C-Min C-Min C-Min None Act Effct Green (s) 105.4 105.4 105.4 105.4 116. Actuated g/C Ratio 0.88 0.88 0.88 0.10 v/c Ratio 0.08 0.38 0.20 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0 0.0 0.0 0.0 0.0 100 0.0 </td
All-Red Time (s) 2.7 2.7 2.7 2.7 2.7 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.4 6.4 6.4 6.4 5.3 Lead/Lag Lead-Lag Optimize? Recall Mode C-Min C-Min C-Min None Act Effet Green (s) 105.4 105.4 105.4 105.4 11.6 Actuated g/C Ratio 0.88 0.88 0.88 0.10 v/c Ratio 0.08 0.38 0.20 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0 39.1 0.0 0.0 0.0 0.0 Queue Delay 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 0.0
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.4 6.4 6.4 6.4 5.3 Lead/Lag Lead-Lag Optimize? Recall Mode C-Min C-Min C-Min None Act Effct Green (s) 105.4 105.4 105.4 105.4 11.6 Actuated g/C Ratio 0.88 0.88 0.88 0.10 v/c Ratio 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A D D Approach Delay 3.3 0.6 39.1 Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Inter
Total Lost Time (s) 6.4 6.4 6.4 5.3 Lead/Lag Lead-Lag Optimize? Recall Mode C-Min C-Min C-Min None Act Effct Green (s) 105.4 105.4 105.4 105.4 11.6 Actuated g/C Ratio 0.88 0.88 0.88 0.88 0.10 v/c Ratio 0.08 0.38 0.20 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A D Approach Delay 3.3 0.6 39.1 LOS A A A D D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 Turn Bay Length (m) 90.0 140.0 Sase Capacity (vph
Lead/Lag Lead-Lag Optimize? Recall Mode C-Min C-Min C-Min None Act Effct Green (s) 105.4 105.4 105.4 105.4 11.6 Actuated g/C Ratio 0.88 0.88 0.88 0.88 0.10 v/c Ratio 0.08 0.38 0.20 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A D Approach Delay 3.3 0.6 39.1 LOS A A A D D Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 39.9 Turn Bay Length (m) 90.0 0 0 0
Lead-Lag Optimize? Recall Mode C-Min C-Min C-Min None Act Effct Green (s) 105.4 105.4 105.4 105.4 116. Actuated g/C Ratio 0.88 0.88 0.88 0.88 0.10 v/c Ratio 0.08 0.38 0.20 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A D D Approach Delay 3.3 0.6 39.1 Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 33.3 Starvation Cap Reductn 0 0 0 0
Recall Mode C-Min C-Min C-Min C-Min None Act Effct Green (s) 105.4 105.4 105.4 105.4 116 Actuated g/C Ratio 0.88 0.88 0.88 0.88 0.10 v/c Ratio 0.08 0.38 0.20 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A D A Approach Delay 3.3 0.6 39.1 Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 39.9 1242 333 Starvation Cap Reductn 0 0
Act Effct Green (s) 105.4 105.4 105.4 105.4 105.4 11.6 Actuated g/C Ratio 0.88 0.88 0.88 0.88 0.10 v/c Ratio 0.08 0.38 0.20 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A D Approach Delay 3.3 0.6 39.1 LOS A A A D D Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 33.3 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Actuated g/C Ratio 0.88 0.88 0.88 0.88 0.10 v/c Ratio 0.08 0.38 0.20 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A A D Approach Delay 3.3 0.6 39.1 LOS A A A D Approach Delay 3.3 0.6 39.1 Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 1242 333 Starvation Cap Reductn 0 898 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0
v/c Ratio 0.08 0.38 0.20 0.02 0.22 Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A D Approach Delay 3.3 0.6 39.1 LOS A A A D Approach Delay 3.3 0.6 39.1 Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 33 Turn Bay Length (m) 90.0 140.0 140.0 Base Capacity (vph) 655 2976 2976 1242 333 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 <
Control Delay 2.9 3.1 0.6 0.0 39.1 Queue Delay 0.0 0.2 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A D Approach Delay 3.3 0.6 39.1 LOS A A A D Approach Delay 3.3 0.6 39.1 Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 39.9 1 Turn Bay Length (m) 90.0 14
Delay 0.0 0.2 0.0 0.0 0.0 Queue Delay 0.0 0.2 0.0 0.0 0.0 Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A A D Approach Delay 3.3 0.6 39.1 Approach Delay 3.3 0.6 39.1 Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 33 Turn Bay Length (m) 90.0 140.0 140.0 Base Capacity (vph) 655 2976 2976 1242 333 Starvation Cap Reductn 0 898 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.08 0.54 0.20 0.02 0.11 Intersection Su
Total Delay 2.9 3.3 0.6 0.0 39.1 LOS A A A A D Approach Delay 3.3 0.6 39.1 Approach Delay 3.3 0.6 39.1 Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 33.3 Starvation Cap Reduct 0
LOS A A A A D Approach Delay 3.3 0.6 39.1 Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 33.3 Turn Bay Length (m) 90.0 140.0 140.0 Base Capacity (vph) 655 2976 2976 1242 333 Starvation Cap Reductn 0 898 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.08 0.54 0.20 0.02 0.11 Intersection Summary Cycle Length: 120 420 420 420
Approach Delay 3.3 0.6 39.1 Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 Turn Bay Length (m) 90.0 140.0 Base Capacity (vph) 655 2976 2976 1242 333 Starvation Cap Reductn 0 898 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0.20 0.02 0.11 Intersection Summary Cycle Length: 120 4.00 4.00 4.00
Approach LOS A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 Turn Bay Length (m) 90.0 140.0 Base Capacity (vph) 655 2976 2976 1242 333 Starvation Cap Reductn 0 898 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.08 0.54 0.20 0.02 0.11 Intersection Summary Cycle Length: 120 4 400 4 400
Applicatifies A A A D Queue Length 50th (m) 1.8 29.1 2.4 0.0 5.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 Turn Bay Length (m) 90.0 140.0 Base Capacity (vph) 655 2976 2976 1242 333 Starvation Cap Reductn 0 898 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.08 0.54 0.20 0.02 0.11 Intersection Summary V/c Ratio 0.08 0.54 0.20 0.02 0.11
Queue Length 95th (m) 1.0 29.1 2.4 0.0 3.4 Queue Length 95th (m) 6.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 Turn Bay Length (m) 90.0 140.0 Base Capacity (vph) 655 2976 2976 1242 333 Starvation Cap Reductn 0 898 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.08 0.54 0.20 0.02 0.11 Intersection Summary Vice Length: 120 4 420 4 420
Outcode Length 95th (m) 0.0 54.0 4.6 0.0 14.6 Internal Link Dist (m) 170.5 180.8 39.9 Turn Bay Length (m) 90.0 140.0 Base Capacity (vph) 655 2976 2976 1242 333 Starvation Cap Reductn 0 898 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.08 0.54 0.20 0.02 0.11 Intersection Summary Cycle Length: 120 4 4 4 4
Turn Bay Length (m) 90.0 140.0 Base Capacity (vph) 655 2976 2976 1242 333 Starvation Cap Reductn 0 898 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.08 0.54 0.20 0.02 0.11 Intersection Summary Cycle Length: 120 4 420 4 4
Turn Bay Length (m) 90.0 140.0 Base Capacity (vph) 655 2976 2976 1242 333 Starvation Cap Reductn 0 898 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.08 0.54 0.20 0.02 0.11 Intersection Summary Cycle Length: 120 4 420 4 4
Base Capacity (vph) 655 2976 2976 1242 333 Starvation Cap Reductn 0 898 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.08 0.54 0.20 0.02 0.11 Intersection Summary Cycle Length: 120 4.400 4.400 4.400
Starvation Cap Reductn 0 898 0 0 0 Spillback Cap Reductn 0
Spillback Cap Reductn 0
Storage Cap Reductn 0
Reduced v/c Ratio 0.08 0.54 0.20 0.02 0.11 Intersection Summary
Intersection Summary Cycle Length: 120
Cycle Length: 120
Activated Guale Length: 100
Offset: 0 (0%) Referenced to phase 2 FBTL and 6 WRT. Start of Green
Natural Cycle: 55
Control Type: Actuated-Coordinated

Lanes, Volumes, Timings 11: Carling & Civic

Maximum v/c Ratio: 0.38 Intersection Signal Delay: 3.0 Intersection LOS: A Intersection Capacity Utilization 55.1% Analysis Period (min) 15

ICU Level of Service B

Splits and Phases: 11: Carling & Civic

Lanes, Volumes, Timings 13: Maple/Old Irvine & Carling

	٦	-	\rightarrow	•	-	•	1	†	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	1	ሻ	^	1		\$			4	
Traffic Volume (vph)	28	992	49	74	492	4	19	1	24	4	5	5
Future Volume (vph)	28	992	49	74	492	4	19	1	24	4	5	5
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1589	0	0	1646	0
Flt Permitted	0.470			0.258				0.884			0.940	
Satd. Flow (perm)	811	3390	1323	453	3390	1361	0	1413	0	0	1561	0
Satd. Flow (RTOR)			40			40		24			5	
Lane Group Flow (vph)	28	992	49	74	492	4	0	44	0	0	14	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	34.3	34.3	34.3	42.4	42.4		42.4	42.4	
Total Split (s)	77.0	77.0	77.0	77.0	77.0	77.0	43.0	43.0		43.0	43.0	
Total Split (%)	64.2%	64.2%	64.2%	64.2%	64.2%	64.2%	35.8%	35.8%		35.8%	35.8%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	4.4	4.4		4.4	4.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7		7.4			7.4	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	86.5	86.5	86.5	86.5	86.5	86.5		25.0			25.0	
Actuated g/C Ratio	0.72	0.72	0.72	0.72	0.72	0.72		0.21			0.21	
v/c Ratio	0.05	0.41	0.05	0.23	0.20	0.00		0.14			0.04	
Control Delay	9.7	10.2	3.9	13.3	9.1	0.0		18.8			24.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Delay	9.7	10.2	3.9	13.3	9.1	0.0		18.8			24.1	
LOS	A	B	A	В	A	A		B			C	
Approach Delay		9.9			9.6			18.8			24.1	
Approach LOS		A	<u> </u>		A	• •		В			C	
Queue Length 50th (m)	2.6	64.4	0.7	8.3	28.3	0.0		3.4			1.5	
Queue Length 95th (m)	6.5	79.3	5.5	18.1	37.7	m0.0		12.3			6.5	
Internal Link Dist (m)	00.0	236.1	45.0	45.0	191.5	05.0		1/4.3			220.8	
Turn Bay Length (m)	20.0	0444	15.0	45.0	0444	25.0		100			100	
Base Capacity (vph)	584	2444	965	326	2444	992		436			466	
Starvation Cap Reductin	0	0	0	0	0	0		0			0	
Spillback Cap Reductn	0	0	0	0	0	0		0			0	
Storage Cap Reductn	0	0	0	0	0	0		0			0	
Reduced v/c Ratio	0.05	0.41	0.05	0.23	0.20	0.00		0.10			0.03	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 75 (63%), Reference	d to phase	e 2:EBTL	and 6:W	BTL, Star	t of Gree	n						
Natural Cycle: 80												

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.41

Intersection Signal Delay: 10.2 Intersection Capacity Utilization 75.6% Intersection LOS: B ICU Level of Service D

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 13: Maple/Old Irvine & Carling

→ Ø2 (R)	₩ Ø4	
77 s	43 s	
	1 Ø8	
77 s	43 s	

	٦	-	-	•	1	-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	44	**	1	5	1
Traffic Volume (vph)	31	927	595	146	177	5
Future Volume (vph)	31	927	595	146	177	5
Satd Flow (prot)	1695	3390	3390	1517	1695	1517
Flt Permitted	0.950	0000	0000	1011	0.950	1011
Satd Flow (perm)	1510	3390	3390	1094	1668	1472
Satd Flow (RTOR)	1010	0000	0000	146	1000	4
Lane Group Flow (vph)	31	927	505	1/6	177	- 5
Turn Type	Prot	NΔ	NΔ	Perm	Perm	Perm
Protected Phases	5	- 2	6	i cili		i emi
Permitted Phases	J	2	0	6	٨	Λ
Detector Phases	F	2	e	6	4	4
Switch Dhoos	3	2	0	0	4	4
Switch Phase	FO	10.0	10.0	10.0	10.0	10.0
	5.0	10.0	10.0	10.0	10.0	10.0
	10.3	25.1	25.1	25.1	25.1	25.1
Total Split (s)	13.0	/9.0	66.0	66.0	41.0	41.0
Total Split (%)	10.8%	65.8%	55.0%	55.0%	34.2%	34.2%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	None
Act Effct Green (s)	7.7	91.3	82.8	82.8	18.1	18.1
Actuated g/C Ratio	0.06	0.76	0.69	0.69	0.15	0.15
v/c Ratio	0.29	0.36	0.25	0.18	0.71	0.02
Control Delay	63.5	4.8	6.8	1.0	62.8	26.6
Queue Delav	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	63.5	4.8	6.8	1.0	62.8	26.6
108	F	Δ	0.0 A	Α	F	C
Approach Delay	_	67	57	7.	61.8	Ŭ
Approach LOS		Δ	Δ		51.0 F	
Approach 200	7 2	25.7	24.0	0.0	/0 1	0.2
Queue Length 95th (m)	17.0	10.8	24.0	2.5	50.0	3.6
Internal Link Dict (m)	17.0	110.0	1/17	2.5	152.1	5.0
Turn Boy Longth (m)	20.0	110.5	141.7	00.0	192.1	15.0
Turri Day Lengin (m)	30.0	0570	0000	90.0	406	15.0
Base Capacity (vpn)	118	25/8	2338	800	496	440
Starvation Cap Reductin	0	0	0	0	0	0
Spillback Cap Reductin	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.26	0.36	0.25	0.18	0.36	0.01
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 120	0					
Offset: 112 (93%), Referen	ced to phase	se 2:EBT	and 6:W	BT, Start	of Green	
Natural Cycle: 65						
Control Type: Actuated-Co	ordinated					

Lanes, Volumes, Timings 15: Carling & Sherwood

Maximum v/c Ratio: 0.71 Intersection Signal Delay: 11.6 Intersection Capacity Utilization 47.4% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service A

Splits and Phases: 15: Carling & Sherwood

Lanes, Volumes, Timings 16: Road A/Champagne & Carling

	٦	-	\rightarrow	1	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	<u></u>	1	1	<u>^</u>	1	<u>۲</u>	eî.		7	eî	
Traffic Volume (vph)	110	807	174	180	677	67	62	0	69	176	0	90
Future Volume (vph)	110	807	174	180	677	67	62	0	69	176	0	90
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	1695	1414	0	1695	1456	0
Flt Permitted	0.950			0.950			0.699			0.712		
Satd. Flow (perm)	1516	3390	1370	1665	3390	1058	1218	1414	0	1206	1456	0
Satd. Flow (RTOR)						111					352	
Lane Group Flow (vph)	110	807	174	180	677	67	62	69	0	176	90	0
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases			2			6	8			4		
Detector Phase	5	2	2	1	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	10.3	26.3	26.3	10.3	26.3	26.3	18.3	18.3		32.9	32.9	
Total Split (s)	16.0	32.0	32.0	38.0	59.0	59.0	35.0	35.0		35.0	35.0	
Total Split (%)	13.3%	26.7%	26.7%	31.7%	49.2%	49.2%	29.2%	29.2%		29.2%	29.2%	
Yellow Time (s)	3.3	3.7	3.7	3.3	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.0	1.6	1.6	2.0	1.6	1.6	2.0	2.0		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3		5.9	5.9	
Lead/Lag	Lead			Lead								
Lead-Lag Optimize?	Yes			Yes								
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	12.0	60.8	60.8	18.1	67.3	67.3	22.8	22.8		22.2	22.2	
Actuated g/C Ratio	0.10	0.51	0.51	0.15	0.56	0.56	0.19	0.19		0.18	0.18	
v/c Ratio	0.65	0.47	0.25	0.71	0.36	0.10	0.27	0.26		0.79	0.16	
Control Delay	63.7	26.7	25.1	75.4	8.1	1.0	42.4	41.8		70.3	0.6	
Queue Delay	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0		0.0	0.0	
Total Delay	63.7	26.7	25.1	75.4	8.2	1.0	42.4	41.8		70.3	0.6	
LOS	E	С	С	E	A	A	D	D		E	А	
Approach Delay		30.2			20.8			42.1			46.7	
Approach LOS		С			С			D			D	
Queue Length 50th (m)	24.6	69.6	26.0	40.0	9.7	0.0	12.5	13.9		39.7	0.0	
Queue Length 95th (m)	#53.4	118.7	55.1	45.5	72.4	3.3	23.7	25.5		61.2	0.0	
Internal Link Dist (m)		141.7			98.6			63.9			477.2	
Turn Bay Length (m)	55.0		75.0	61.0		35.0				30.0		
Base Capacity (vph)	176	1716	693	461	1901	642	301	349		292	619	
Starvation Cap Reductn	0	0	0	0	409	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.63	0.47	0.25	0.39	0.45	0.10	0.21	0.20		0.60	0.15	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced to	o phase 2	:EBT and	6:WBT,	Start of G	Green							
Natural Cycle: 90												

Control Type: Actuated-Coordinated

Lane Group	Ø9	Ø10	Ø11
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Satd. Flow (prot)			
Flt Permitted			
Satd, Flow (perm)			
Satd Flow (RTOR)			
Lane Group Flow (vph)			
Protected Phases	g	10	11
Permitted Phases	0	10	
Detector Phase			
Switch Phase			
Minimum Initial (a)	10	10	10
Minimum Colit (c)	1.0	1.0	1.0
Total Split (s)	5.U	5.0	5.0
Total Split (S)	10.0	5.U	0.C
	δ%	4%	4%
reliow Time (S)	2.0	2.0	2.0
All-Red Lime (s)	0.0	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	
Recall Mode	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Rase Canacity (vnh)			
Starvation Can Reducto			
Snillback Can Poducth			
Storage Can Poducto			
Boducod v/o Rotio			
Intersection Summarv			

Lanes, Volumes, Timings 16: Road A/Champagne & Carling

Maximum v/c Ratio: 0.79

Intersection Signal Delay: 29.0 Intersection Capacity Utilization 67.5% Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 16: Road A/Champagne & Carling

√ Ø1	🧍 🖉 💗 🗰 🖉 🖉 👘 🖉 🕺	
38 s	10 s 32 s	5 s 35 s
Ø5	(R)	<hr/> Ø8
16 s 59 s		35 s

Lanes, Volumes, Timings 17: Carling & Trillium MUP

	٦	-	$\mathbf{\hat{z}}$	4	+	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^			^							
Traffic Volume (vph)	0	969	0	0	1027	0	0	0	0	0	0	0
Future Volume (vph)	0	969	0	0	1027	0	0	0	0	0	0	0
Satd. Flow (prot)	0	3390	0	0	3390	0	0	0	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	3390	0	0	3390	0	0	0	0	0	0	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	969	0	0	1027	0	0	0	0	0	0	0
Turn Type		NA			NA							
Protected Phases		2			6							
Permitted Phases												
Detector Phase		2			6							
Switch Phase												
Minimum Initial (s)		10.0			10.0							
Minimum Split (s)		31.3			31.3							
Total Split (s)		84.0			84.0							
Total Split (%)		70.0%			70.0%							
Yellow Time (s)		3.7			3.7							
All-Red Time (s)		1.4			1.4							
Lost Time Adjust (s)		0.0			0.0							
Total Lost Time (s)		5.1			5.1							
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Min			C-Min							
Act Effct Green (s)		87.4			87.4							
Actuated g/C Ratio		0.73			0.73							
v/c Ratio		0.39			0.42							
Control Delay		6.5			9.1							
Queue Delay		0.1			0.8							
Total Delay		6.6			9.9							
LOS		А			А							
Approach Delay		6.6			9.9							
Approach LOS		А			А							
Queue Length 50th (m)		35.5			56.7							
Queue Length 95th (m)		35.0			70.2							
Internal Link Dist (m)		98.6			92.8			53.0			60.9	
Turn Bay Length (m)												
Base Capacity (vph)		2470			2470							
Starvation Cap Reductn		355			1025							
Spillback Cap Reductn		0			0							
Storage Cap Reductn		0			0							
Reduced v/c Ratio		0.46			0.71							
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced to	o phase 2	:EBT and	6:WBT, 8	Start of G	reen							
Natural Cycle: 70												
Control Type: Actuated-Coor	dinated											

Lane Group	Ø4	Ø8
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd, Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	4	8
Permitted Phases		U
Detector Phase		
Switch Phase		
Minimum Initial (s)	10.0	10.0
Minimum Split (s)	35.6	35.6
Total Split (s)	36.0	36.0
Total Split (%)	30%	30%
Yellow Time (s)	3.0	3.0
All-Red Time (s)	3.6	3.6
Lost Time Adjust (s)	5.0	5.0
Total Lost Time (s)		
Leau/Lay		
	Mono	Nono
Act Effet Crean (a)	NONE	NONE
Actuated a/C Datio		
Actualeu y/C Ratio		
V/U KallO Control Dolov		
Control Delay		
Queue Delay		
Total Delay		
LUS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
intersection Summary		

Lanes, Volumes, Timings 17: Carling & Trillium MUP

Maximum v/c Ratio: 0.42	
Intersection Signal Delay: 8.3	Intersection LOS: A
Intersection Capacity Utilization 34.2%	ICU Level of Service A
Analysis Period (min) 15	

Splits and Phases: 17: Carling & Trillium MUP

→ø2 (R)	A Aga	
84 s	36 s	
← Ø6 (R)		
84 s	36 s	

Lanes, Volumes, Timings 18: Preston & Carling

	≯	-	\rightarrow	-	-	•	1	†	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	^	1	ኘ	^	1	۲.	A		۲	¢,	
Traffic Volume (vph)	141	732	208	233	507	86	199	462	266	110	250	75
Future Volume (vph)	141	732	208	233	507	86	199	462	266	110	250	75
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	1695	3168	0	1695	1679	0
Flt Permitted	0.950			0.950			0.201			0.375		
Satd. Flow (perm)	1586	3390	1517	1647	3390	1272	351	3168	0	665	1679	0
Satd. Flow (RTOR)						193					11	
Lane Group Flow (vph)	141	732	208	233	507	86	199	728	0	110	325	0
Turn Type	Prot	NA	custom	Prot	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases	5	92	93	1	6		3	8			4	
Permitted Phases						6	8			4		
Detector Phase	5	92	93	1	6	6	3	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0			5.0	10.0	10.0	5.0	10.0		10.0	10.0	
Minimum Split (s)	11.2			11.2	30.0	30.0	11.9	43.9		38.9	38.9	
Total Split (s)	23.5			31.0	41.6	41.6	16.0	54.9		38.9	38.9	
Total Split (%)	18.1%			23.8%	32.0%	32.0%	12.3%	42.2%		29.9%	29.9%	
Yellow Time (s)	3.7			3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5			2.5	2.3	2.3	3.6	3.6		3.6	3.6	
Lost Time Adjust (s)	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.2			6.2	6.0	6.0	6.9	6.9		6.9	6.9	
Lead/Lag	Lead			Lead			Lead					
Lead-Lag Optimize?	Yes			Yes			Yes					
Recall Mode	None			None	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	14.8	39.5	19.5	21.7	41.5	41.5	49.8	45.8		29.8	29.8	
Actuated g/C Ratio	0.11	0.30	0.15	0.17	0.32	0.32	0.38	0.35		0.23	0.23	
v/c Ratio	0.73	0.71	0.92	0.83	0.47	0.16	0.87	0.65		0.72	0.83	
Control Delay	76.9	46.6	96.3	75.3	39.2	0.6	88.9	64.2		72.7	63.9	
Queue Delay	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	76.9	48.8	96.3	75.3	39.2	0.6	88.9	64.2		72.7	63.9	
LOS	E	D	F	E	D	А	F	E		E	E	
Approach Delay		61.6			45.3			69.5			66.1	
Approach LOS		E			D			E			E	
Queue Length 50th (m)	35.1	92.6	53.5	57.5	58.6	0.0	47.0	90.9		25.6	75.5	
Queue Length 95th (m)	57.0	#119.1	#100.7	#89.1	76.3	0.0	#87.4	119.4		#52.8	#116.1	
Internal Link Dist (m)		92.8			165.9			145.6			55.2	
Turn Bay Length (m)	70.0		90.0	120.0		95.0				35.0		
Base Capacity (vph)	225	1029	227	323	1083	537	228	1169		163	421	
Starvation Cap Reductn	0	173	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.63	0.86	0.92	0.72	0.47	0.16	0.87	0.62		0.67	0.77	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 116 (89%), Reference	ed to pha	se 2:EBT	and 6:WI	3T, Start	of Green							
Natural Cycle: 115												
Control Type: Actuated-Coor	dinated											

Parsons

Lane Group	Ø2	Ø9	Ø10	Ø11	Ø12
Lane Configurations					
Traffic Volume (vph)					
Future Volume (vph)					
Satd. Flow (prot)					
Flt Permitted					
Satd, Flow (perm)					
Satd. Flow (RTOR)					
Lane Group Flow (vph)					
Turn Type					
Protected Phases	2	9	10	11	12
Permitted Phases		-			
Detector Phase					
Switch Phase					
Minimum Initial (s)	10.0	1.0	1.0	1.0	1.0
Minimum Split (s)	30.0	7.0	5.0	5.0	5.0
Total Split (s)	30.1	9.0	5.0	5.0	5.0
Total Split (%)	23%	7%	4%	4%	4%
Yellow Time (s)	37	37	2.0	2.0	2.0
All-Red Time (s)	23	2.3	0.0	0.0	0.0
Lost Time Adjust (s)	2.0	2.0	0.0	0.0	0.0
Total Lost Time (s)					
Lead/Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	
Recall Mode	C-Min	Min	None	None	None
Act Effet Green (s)		IVIIII	None	None	None
Actuated g/C Ratio					
v/c Ratio					
Control Delay					
Queue Delay					
Total Delay					
LOS					
Approach Delay					
Approach LOS					
Queue Length 50th (m)					
Queue Length 95th (m)					
Internal Link Dist (m)					
Turn Bay Length (m)					
Base Capacity (vph)					
Starvation Cap Reductn					
Spillback Cap Reductn					
Storage Cap Reductn					
Reduced v/c Ratio					
Intersection Summary					

Lanes, Volumes, Timings 18: Preston & Carling

Maximum v/c Ratio: 0.92					
Intersection Signal Delay: 60.4					
Intersection Capacity Utilization 93.6%					

Intersection LOS: E ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 18: Preston & Carling

Ø 1	₽ → Ø2 (R)	→ Ø9 → Ø3	A Boyl 04			
31 s	30.1 s	9 s 16 s	5 s 38.9 s			
	A R 00 06 (R)	1 012 Ø8	3			
23.5 s	5 s 41.6 s	5 s 54.9 s				
	≯	-	+	•	1	~
------------------------------	-------------	----------	-----------	-----------	-----------	--------
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	**	٨	1	5	1
Traffic Volume (vnh)	347	967	636	184	209	166
Future Volume (vph)	347	967	636	184	209	166
Satd Flow (prot)	1695	3390	1784	1517	1695	1517
Flt Permitted	0 135	0000	1104	1017	0.950	1017
Satd Flow (perm)	241	3390	1784	1107	1658	1187
Satd Flow (RTOR)	271	0000	1704	65	1000	163
Lane Group Flow (vph)	3/17	967	636	18/	200	166
	nm+nt	507	NIA	Dorm	Dorm	Dorm
Protocted Phases	pin+pi	1NA 2	INA 6	Feilii	Feilii	Feilii
Protected Phases	0	2	0	6	4	1
Permilled Phases	2	0	0	0	4	4
Detector Phase	5	2	6	6	4	4
Switch Phase		100	10.0	100	100	100
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	10.9	29.7	29.7	29.7	39.0	39.0
Total Split (s)	34.0	81.0	47.0	47.0	39.0	39.0
Total Split (%)	28.3%	67.5%	39.2%	39.2%	32.5%	32.5%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.3	3.3
All-Red Time (s)	2.2	2.0	2.0	2.0	2.7	2.7
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.9	5.7	5.7	5.7	6.0	6.0
Lead/Lag	Lead		Laq	Lao		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	None
Act Effct Green (s)	70 1	79.3	50.2	50.2	29.0	29.0
Actuated a/C Ratio	0.66	0.66	0.42	0.42	0.24	0.24
v/c Ratio	0.00	0.00	0.42	0.42	0.24	0.24
Control Dolay	0.19	11.2	0.00	20.04	12.02	0.40
	34.7	11.3	47.1	20.0	43.3	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	34.7	11.3	47.1	20.0	43.3	8.5
LOS	С	В	D	В	D	A
Approach Delay		17.4	41.0		27.9	
Approach LOS		В	D		С	
Queue Length 50th (m)	49.9	58.2	145.6	19.8	40.9	0.5
Queue Length 95th (m)	83.0	72.2	#230.3	40.8	64.0	17.2
Internal Link Dist (m)		100.4	299.3		220.7	
Turn Bay Length (m)	50.0			30.0		30.0
Base Capacity (vph)	499	2239	746	538	455	444
Starvation Can Reductn	0	0	0	0	.05	0
Spillback Can Reductn	0	0	0	0	0	0
Storage Can Reductin	0	0	0	0	0	0
Boduced v/o Petio	0 70	0 42	0.95	0.24	0.46	0 27
Reduced V/C Rallo	0.70	0.43	0.00	0.34	0.40	0.37
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 120)					
Offset: 116 (97%), Reference	ced to phas	se 2:EBT	L and 6:V	VBT, Star	t of Gree	n
Natural Cycle: 100						
Control Type: Actuated-Coo	ordinated					

Lanes, Volumes, Timings 20: Carling & Booth

Maximum v/c Ratio: 0.85	
Intersection Signal Delay: 26.7	Intersection LOS: C
Intersection Capacity Utilization 97.0%	ICU Level of Service F
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lor	ger.
Queue shown is maximum after two cycles	

Splits and Phases: 20: Carling & Booth

→ø2 (R)		Ø4
81s		39 s
▶ _{Ø5}	 Ø6 (R)	
34 s	47 s	

Lanes, Volumes, Timings 21: Bronson & Carling/Glebe

	٦	-	\mathbf{r}	4	-	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	र्भ	*				ሻሻ	4Î			4 16	
Traffic Volume (vph)	497	106	587	0	0	0	576	854	18	0	649	197
Future Volume (vph)	497	106	587	0	0	0	576	854	18	0	649	197
Satd, Flow (prot)	1610	1646	1517	0	0	0	3288	1773	0	0	3223	0
Flt Permitted	0.950	0.971					0.950					
Satd. Flow (perm)	1520	1591	1274	0	0	0	3200	1773	0	0	3223	0
Satd. Flow (RTOR)			177					2			37	
Lane Group Flow (vph)	343	260	587	0	0	0	576	872	0	0	846	0
Turn Type	Perm	NA	pm+ov				Prot	NA			NA	
Protected Phases		4	5				5	2			6	
Permitted Phases	4		4									
Detector Phase	4	4	5				5	2			6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0				10.0	10.0			10.0	
Minimum Split (s)	31.0	31.0	16.0				16.0	25.1			33.0	
Total Split (s)	31.0	31.0	33.0				33.0	79.0			46.0	
Total Split (%)	26.5%	26.5%	28.2%				28.2%	67.5%			39.3%	
Yellow Time (s)	3.3	3.3	3.3				3.3	3.3			3.3	
All-Red Time (s)	2.7	2.7	2.7				2.7	2.7			2.7	
Lost Time Adjust (s)	0.0	0.0	0.0				0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0				6.0	6.0			6.0	
Lead/Lag			Lead				Lead				Lag	
Lead-Lag Optimize?			Yes				Yes				Yes	
Recall Mode	None	None	None				None	C-Min			C-Min	
Act Effct Green (s)	29.8	29.8	54.9				25.1	67.8			36.7	
Actuated g/C Ratio	0.25	0.25	0.47				0.21	0.58			0.31	
v/c Ratio	0.89	0.64	0.79				0.82	0.85			0.82	
Control Delay	68.4	48.8	25.9				53.9	29.1			42.5	
Queue Delav	0.0	0.0	0.0				0.0	0.0			0.0	
Total Delay	68.4	48.8	25.9				53.9	29.1			42.5	
LOS	E	D	С				D	С			D	
Approach Delay		43.1						39.0			42.5	
Approach LOS		D						D			D	
Queue Length 50th (m)	80.9	56.7	65.8				63.8	152.9			91.4	
Queue Length 95th (m)	#150.1	#98.5	#117.0				83.6	195.7			109.7	
Internal Link Dist (m)		74.7			115.0			394.4			328.4	
Turn Bay Length (m)	40.0						50.0					
Base Capacity (vph)	387	405	765				758	1106			1126	
Starvation Cap Reductn	0	0	0				0	0			0	
Spillback Cap Reductn	0	0	0				0	0			0	
Storage Cap Reductn	0	0	0				0	0			0	
Reduced v/c Ratio	0.89	0.64	0.77				0.76	0.79			0.75	
Intersection Summary												
Cycle Length: 117												
Actuated Cycle Length: 117	,											
Offset: 0 (0%), Referenced	to phase 2	:NBT and	d 6:SBT, S	Start of Gr	een							
Natural Cycle: 90												

Natural Cycle: 90 Control Type: Actuated-Coordinated

Lane Group	Ø10
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Satd. Flow (RTOR)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	10
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	1.0
Minimum Split (s)	7.0
Total Split (s)	7.0
Total Split (%)	6%
Yellow Time (s)	2.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Recall Mode	Min
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Interpretion Summer	
intersection Summary	

Maximum v/c Ratio: 0.89 Intersection Signal Delay: 41.2 Intersection Capacity Utilization 82.8%

Intersection LOS: D ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 21: Bronson & Carling/Glebe

Ø2 (R)	,	*	ø	.0 04	
79 s		7 s		31 s	
\$ Ø5	Ø6 (R)				
33 s	46 s				

Lanes, Volumes, Timings 22: Parkdale & 417 WB on/off

	≯	-	\mathbf{r}	-	-	•	1	†	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				5	ţ,		5	•			ĥ	
Traffic Volume (vph)	0	0	0	260	0	515	171	329	0	0	431	226
Future Volume (vph)	0	0	0	260	0	515	171	329	0	0	431	226
Satd. Flow (prot)	0	0	0	1695	1481	0	1695	1784	0	0	1662	0
Flt Permitted				0.950			0.266					
Satd. Flow (perm)	0	0	0	1695	1481	0	475	1784	0	0	1662	0
Satd. Flow (RTOR)					482						35	
Lane Group Flow (vph)	0	0	0	260	515	0	171	329	0	0	657	0
Turn Type				Perm	NA		pm+pt	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8			2					
Detector Phase				8	8		5	2			6	
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	
Minimum Split (s)				29.0	29.0		10.3	27.3			25.1	
Total Split (s)				34.0	34.0		14.0	66.0			52.0	
Total Split (%)				34.0%	34.0%		14.0%	66.0%			52.0%	
Yellow Time (s)				3.3	3.3		3.0	3.0			3.0	
All-Red Time (s)				2.2	2.2		2.2	3.3			3.3	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				5.5	5.5		5.2	6.3			6.3	
Lead/Lag							Lag				Lead	
Lead-Lag Optimize?							Yes				Yes	
Recall Mode				None	None		None	C-Min			C-Min	
Act Effct Green (s)				21.0	21.0		68.3	67.2			52.3	
Actuated g/C Ratio				0.21	0.21		0.68	0.67			0.52	
v/c Ratio				0.73	0.75		0.39	0.27			0.74	
Control Delay				48.3	11.5		14.1	7.3			25.7	
Queue Delay				0.0	0.0		10.7	1.4			5.6	
Total Delay				48.3	11.5		24.8	8.7			31.3	
LOS				D	В		С	А			С	
Approach Delay					23.8			14.2			31.3	
Approach LOS					С			В			С	
Queue Length 50th (m)				47.1	5.2		11.6	23.7			97.3	
Queue Length 95th (m)				67.1	34.9		21.1	41.9			#170.6	
Internal Link Dist (m)		157.5			140.3			45.3			171.5	
Turn Bay Length (m)												
Base Capacity (vph)				483	766		448	1198			885	
Starvation Cap Reductn				0	0		243	665			0	
Spillback Cap Reductn				0	0		0	0			172	
Storage Cap Reductn				0	0		0	0			0	
Reduced v/c Ratio				0.54	0.67		0.83	0.62			0.92	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 69 (69%), Referenced	to phase	2:NBTL	and 6:SE	BT, Start o	of Green							
Natural Cycle: 80												
Control Type: Actuated-Coord	dinated											

Lanes, Volumes, Timings 22: Parkdale & 417 WB on/off

Maximum v/c Ratio: 0.75 Intersection Signal Delay: 23.9

Intersection Capacity Utilization 120.1%

Intersection LOS: C ICU Level of Service H

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 22: Parkdale & 417 WB on/off

Ø2 (R)		
66 s		
Ø6 (R)	Ø 5	Ø8
52 s	14 s	34 s

Lanes, Volumes, Timings 23: Parkdale & 417 EB on/off

	٭	-	\rightarrow	1	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्च	1					≜t ⊾		5	•	
Traffic Volume (vph)	210	0	165	0	0	0	0	294	394	417	279	0
Future Volume (vph)	210	0	165	0	0	0	0	294	394	417	279	0
Satd. Flow (prot)	0	1695	1517	0	0	0	0	2918	0	1695	1784	0
Flt Permitted		0.950								0.278		
Satd. Flow (perm)	0	1692	1474	0	0	0	0	2918	0	487	1784	0
Satd. Flow (RTOR)			165					372				
Lane Group Flow (vph)	0	210	165	0	0	0	0	688	0	417	279	0
Turn Type	Perm	NA	Perm					NA		pm+pt	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4							6		
Detector Phase	4	4	4					2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0					10.0		5.0	10.0	
Minimum Split (s)	25.1	25.1	25.1					25.1		10.3	25.1	
Total Split (s)	34.0	34.0	34.0					40.0		26.0	66.0	
Total Split (%)	34.0%	34.0%	34.0%					40.0%		26.0%	66.0%	
Yellow Time (s)	3.3	3.3	3.3					3.0		3.0	3.0	
All-Red Time (s)	2.6	2.6	2.6					2.8		2.3	2.8	
Lost Time Adjust (s)		0.0	0.0					0.0		0.0	0.0	
Total Lost Time (s)		5.9	5.9					5.8		5.3	5.8	
Lead/Lag								Lag		Lead		
Lead-Lag Optimize?								Yes		Yes		
Recall Mode	None	None	None					C-Min		None	C-Min	
Act Effct Green (s)		17.7	17.7					43.0		71.1	70.6	
Actuated g/C Ratio		0.18	0.18					0.43		0.71	0.71	
v/c Ratio		0.70	0.42					0.47		0.68	0.22	
Control Delay		50.9	8.5					13.9		21.0	8.6	
Queue Delay		0.0	0.0					0.2		56.9	2.5	
Total Delay		50.9	8.5					14.1		77.9	11.1	
LOS		D	А					В		Е	В	
Approach Delay		32.3						14.1			51.1	
Approach LOS		С						В			D	
Queue Length 50th (m)		38.7	0.0					25.4		49.8	25.3	
Queue Length 95th (m)		57.8	15.5					49.9		76.3	m45.1	
Internal Link Dist (m)		109.8			145.0			90.1			45.3	
Turn Bay Length (m)			75.0									
Base Capacity (vph)		475	532					1493		634	1259	
Starvation Cap Reductn		0	0					213		296	842	
Spillback Cap Reductn		0	0					44		0	0	
Storage Cap Reductn		0	0					0		0	0	
Reduced v/c Ratio		0.44	0.31					0.54		1.23	0.67	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 53 (53%), Referenced	d to phase	e 2:NBT a	and 6:SBT	L, Start o	f Green							
Natural Cycle: 70												
Control Type: Actuated-Coor	dinated											

Maximum v/c Ratio: 0.70

Intersection Signal Delay: 32.6 Intersection Capacity Utilization 120.1% Intersection LOS: C ICU Level of Service H

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 23: Parkdale & 417 EB on/off

Ø1	🖡 🕇 ø2 (R)	
26 s	40 s	34 s
Ø6 (R)	•	
66 s		

	∕	-	\rightarrow	-	-	•	1	†	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			\$	
Traffic Volume (vph)	91	2	8	0	0	132	8	394	12	109	368	61
Future Volume (vph)	91	2	8	0	0	132	8	394	12	109	368	61
Satd. Flow (prot)	0	1665	0	0	1441	0	0	1769	0	0	1726	0
Flt Permitted		0.565						0.991			0.835	
Satd. Flow (perm)	0	978	0	0	1441	0	0	1754	0	0	1441	0
Satd. Flow (RTOR)		4			537			5			20	
Lane Group Flow (vph)	0	101	0	0	132	0	0	414	0	0	538	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	1.0	1.0		1.0	1.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	18.0	18.0		18.0	18.0		25.1	25.1		25.1	25.1	
Total Split (s)	18.0	18.0		18.0	18.0		82.0	82.0		82.0	82.0	
Total Split (%)	18.0%	18.0%		18.0%	18.0%		82.0%	82.0%		82.0%	82.0%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.0			4.0			5.6			5.6	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	Ped	Ped		Ped	Ped		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)		18.0			18.0			72.4			72.4	
Actuated g/C Ratio		0.18			0.18			0.72			0.72	
v/c Ratio		0.56			0.19			0.33			0.51	
Control Delay		47.6			0.6			6.3			8.1	
Queue Delay		0.0			0.0			0.0			0.4	
Total Delay		47.6			0.6			6.3			8.4	
LOS		D			А			А			А	
Approach Delay		47.6			0.6			6.3			8.4	
Approach LOS		D			А			Α			А	
Queue Length 50th (m)		17.4			0.0			24.1			36.4	
Queue Length 95th (m)		32.0			0.0			46.0			42.9	
Internal Link Dist (m)		221.3			335.0			289.1			90.1	
Turn Bay Length (m)												
Base Capacity (vph)		179			700			1341			1105	
Starvation Cap Reductn		0			0			0			190	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.56			0.19			0.31			0.59	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100)											
Offset: 25 (25%), Reference	ed to phase	e 2:NBTL	and 6:SE	BTL, Starl	t of Green							
Natural Cycle: 55												
Control Type: Actuated-Coc	ordinated											

Lanes, Volumes, Timings 24: Parkdale & Sherwood

Maximum v/c Ratio: 0.56 Intersection Signal Delay: 10.1 Intersection Capacity Utilization 93.3% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service F

Splits and Phases: 24: Parkdale & Sherwood

Ø2 (R)		
82 s	18 s	
Ø6 (R)	₹ø8	
82 s	18 s	

Lanes, Volumes, Timings 25: Parkdale & Ruskin

	٦	-	\mathbf{r}	-	-	*	1	1	1	1	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		ኘ	eî 🕺			\$			\$	
Traffic Volume (vph)	24	63	11	11	9	86	5	273	20	43	214	21
Future Volume (vph)	24	63	11	11	9	86	5	273	20	43	214	21
Satd. Flow (prot)	0	1714	0	1695	1468	0	0	1761	0	0	1747	0
Flt Permitted		0.895		0.716				0.996			0.920	
Satd. Flow (perm)	0	1542	0	1184	1468	0	0	1756	0	0	1616	0
Satd. Flow (RTOR)		6			86			10			11	
Lane Group Flow (vph)	0	98	0	11	95	0	0	298	0	0	278	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	19.4	19.4		19.4	19.4		31.8	31.8		31.8	31.8	
Total Split (s)	20.0	20.0		20.0	20.0		65.0	65.0		65.0	65.0	
Total Split (%)	23.5%	23.5%		23.5%	23.5%		76.5%	76.5%		76.5%	76.5%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.8	2.8		2.8	2.8	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)		5.4		5.4	5.4			5.8			5.8	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)		13.3		13.3	13.3			64.7			64.7	
Actuated g/C Ratio		0.16		0.16	0.16			0.76			0.76	
v/c Ratio		0.40		0.06	0.31			0.22			0.23	
Control Delay		34.9		30.6	11.9			4.5			4.6	
Queue Delay		0.0		0.0	0.0			0.0			0.0	
Total Delay		34.9		30.6	11.9			4.5			4.6	
LOS		С		С	В			А			А	
Approach Delay		34.9			13.8			4.5			4.6	
Approach LOS		С			В			А			А	
Queue Length 50th (m)		13.4		1.5	1.3			14.0			13.0	
Queue Length 95th (m)		27.4		5.9	13.5			23.6			22.3	
Internal Link Dist (m)		220.6			228.6			278.4			289.1	
Turn Bay Length (m)				40.0								
Base Capacity (vph)		269		203	323			1339			1233	
Starvation Cap Reductn		0		0	0			0			0	
Spillback Cap Reductn		0		0	0			0			0	
Storage Cap Reductn		0		0	0			0			0	
Reduced v/c Ratio		0.36		0.05	0.29			0.22			0.23	
Intersection Summary												
Cycle Length: 85												
Actuated Cycle Length: 85												
Offset: 45 (53%), Reference	ed to phase	e 2:NBTL	and 6:SE	BTL, Starl	t of Green							
Natural Cycle: 55												
Control Type: Actuated-Coc	ordinated											

Lanes, Volumes, Timings 25: Parkdale & Ruskin

Maximum v/c Ratio: 0.40 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 62.5% Analysis Period (min) 15

Intersection LOS: A ICU Level of Service B

Splits and Phases: 25: Parkdale & Ruskin

Ø2 (R)	<u>⊿_</u> ø4	
65 s	20 s	
Ø6 (R)	₩ Ø8	
65 s	20 s	

Lanes, Volumes, Timings 30: Prince of Wales & Preston

	٦	-	\rightarrow	4	-	*	1	1	1	1	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	•		ሻ	•	1		4			र्स	1
Traffic Volume (vph)	743	265	1	0	225	321	0	2	1	241	1	583
Future Volume (vph)	743	265	1	0	225	321	0	2	1	241	1	583
Satd. Flow (prot)	3288	1782	0	1784	1784	1517	0	1633	0	0	1700	1517
Flt Permitted	0.950										0.726	
Satd. Flow (perm)	3218	1782	0	1784	1784	1483	0	1633	0	0	1203	1422
Satd. Flow (RTOR)						273						
Lane Group Flow (vph)	743	266	0	0	225	321	0	3	0	0	242	583
Turn Type	Prot	NA		Prot	NA	Free		NA		custom	NA	custom
Protected Phases	5	2		1	6			8		11	4 11	5
Permitted Phases						Free	8			4		4
Detector Phase	5	2		1	6		8	8		11	4 11	5
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		10.0		5.0
Minimum Split (s)	11.1	27.1		10.3	26.1		23.5	23.5		20.0		11.1
Total Split (s)	56.0	69.9		10.3	29.2		24.8	24.8		20.0		56.0
Total Split (%)	43.1%	53.8%		7.9%	22.5%		19.1%	19.1%		15.4%		43.1%
Yellow Time (s)	3.7	3.7		3.3	3.7		3.3	3.3		2.0		3.7
All-Red Time (s)	2.4	2.4		2.0	2.4		2.2	2.2		0.0		2.4
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0				0.0
Total Lost Time (s)	6.1	6.1		5.3	6.1			5.5				6.1
Lead/Lag				Lead								
Lead-Lag Optimize?		0.14		Yes	0.14							
Recall Mode	None	C-Min		None	C-Min	400.0	None	None		None	00.0	None
Act Effet Green (s)	45.6	83.4			33.1	130.0		13.5			28.0	58.5
Actuated g/C Ratio	0.35	0.64			0.25	1.00		0.10			0.22	0.45
V/C Ratio	0.64	0.23			0.50	0.22		0.02			0.77	0.87
Control Delay	38.0	13.0			49.4	0.3		49.0			60.1	31.0
Queue Delay	20.0	12.0			10.0	0.0		10.0			0.0	22.0
	30.0 D	13.U D			49.4	0.5		49.0			00.1 E	32.0
LUS Approach Doloy	U	D 21.0			20.5	A		40.0			10.2	U
Approach LOS		31.0			20.5			49.0 D			40.3	
Approach 2005	75.0	20.2			53.6	0.0		0.7			51 F	77 3
Queue Length 95th (m)	118.2	20.2			#84.0	0.0		3.6			m60 /	m01 3
Internal Link Dist (m)	110.5	70.0			173.8	0.0		12 /			1/5.6	1131.5
Turn Bay Length (m)	45.0	10.0			175.0	45.0		12.7			145.0	
Base Canacity (vnh)	1281	1142			454	1483		242			378	731
Starvation Can Reductn	0	0			-54	0		0			0/0	19
Spillback Can Reductn	0	0			0	0		0			0	0
Storage Can Reductn	0	0			0	0		0			0	0
Reduced v/c Ratio	0.58	0.23			0.50	0.22		0.01			0.64	0.82
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 0 (0%), Referenced t	to phase 2	EBT and	6:WBT, \$	Start of G	Green							
Natural Cycle: 90												

Control Type: Actuated-Coordinated

Lane Group	Ø4	Ø9	Ø12
LaneConfigurations			
Traffic Volume (vph)			
Future Volume (vph)			
Satd, Flow (prot)			
Flt Permitted			
Satd, Flow (perm)			
Satd Flow (RTOR)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	4	q	12
Permitted Phases	т	5	14
Detector Phase			
Switch Phase			
Minimum Initial (a)	10.0	10	10
Minimum Split (c)	10.0	5.0	20.0
Total Split (s)	10.0	5.0	20.0
Total Split (8)	24.0	0.C	20.0
Yollow Time (7)	19%	4%	15%
Tellow Time (S)	3.3	2.0	2.0
All-Red Time (s)	Z.Z	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lag	
Lead-Lag Optimize?		Yes	
Recall Mode	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Can Reducto			
Snillback Can Reductn			
Storage Can Peductn			
Peduced v/c Patio			
Intersection Summary			

Lanes, Volumes, Timings 30: Prince of Wales & Preston

Maximum v/c Ratio: 0.87 Intersection Signal Delay: 32.2

Intersection Capacity Utilization 83.0%

Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 30: Prince of Wales & Preston

✓ Ø1 ↓ Ø9 Ø2 (R)	•	Ø11	↓ Ø4
10.3 s 5 s 69.9 s		20 s	24.8 s
* Ø5	← Ø6 (R)	1. 12	√1 ø8
56 s	29.2 s	20 s	24.8 s

Lanes, Volumes, Timings 31: Rochester & 417 WB on/Raymond

	≯	-	\mathbf{r}	-	-	•	1	†	1	1	↓ I	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	f,		5	•			†	7
Traffic Volume (vph)	0	0	0	200	131	102	163	320	0	0	142	233
Future Volume (vph)	0	0	0	200	131	102	163	320	0	0	142	233
Satd. Flow (prot)	0	0	0	1695	1621	0	1695	1784	0	0	1784	1517
Flt Permitted				0.950			0.533					
Satd. Flow (perm)	0	0	0	1678	1621	0	930	1784	0	0	1784	1436
Satd. Flow (RTOR)					67							233
Lane Group Flow (vph)	0	0	0	200	233	0	163	320	0	0	142	233
Turn Type				Perm	NA		pm+pt	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8			2					6
Detector Phase				8	8		5	2			6	6
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	10.0
Minimum Split (s)				23.7	23.7		10.9	27.3			24.9	24.9
Total Split (s)				24.0	24.0		11.0	36.0			25.0	25.0
Total Split (%)				40.0%	40.0%		18.3%	60.0%			41.7%	41.7%
Yellow Time (s)				3.3	3.3		3.3	3.3			3.3	3.3
All-Red Time (s)				2.4	2.4		2.6	2.6			2.6	2.6
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)				5.7	5.7		5.9	5.9			5.9	5.9
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				None	None		None	C-Min			C-Min	C-Min
Act Effct Green (s)				13.0	13.0		35.4	35.4			24.7	24.7
Actuated g/C Ratio				0.22	0.22		0.59	0.59			0.41	0.41
v/c Ratio				0.55	0.58		0.26	0.30			0.19	0.32
Control Delay				26.2	20.1		5.9	5.9			14.9	4.0
Queue Delay				0.0	0.0		0.0	0.2			0.0	0.0
Total Delay				26.2	20.1		5.9	6.2			14.9	4.0
LOS				C	C		A	A			B	A
Approach Delay					22.9			6.1			8.2	, ,
Approach LOS					C			A			A	
Queue Length 50th (m)				20.0	16.2		7.6	15.3			10.4	0.0
Queue Length 95th (m)				32.7	30.5		11.8	21.2			23.0	12.5
Internal Link Dist (m)		122.0			89.8			72.3			151.7	
Turn Bay Length (m)												35.0
Base Capacity (vph)				511	540		639	1051			736	729
Starvation Cap Reductn				0	0		0	257			0	0
Spillback Cap Reductn				0	0		0	0			0	0
Storage Cap Reductn				0	0		0	0			0	0
Reduced v/c Ratio				0.39	0.43		0.26	0.40			0.19	0.32
Intersection Summary												
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 53 (88%), Referenced	to phase	2:NBTL	and 6:SE	BT, Start o	of Green							
Natural Cycle: 60												
Control Type: Actuated-Coord	inated											

Maximum v/c Ratio: 0.58 Intersection Signal Delay: 12.3 Intersection Capacity Utilization 56.2% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Lanes, Volumes, Timings 32: Rochester & 417 EB off/Orangeville

	٦	-	\mathbf{r}	1	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		đ þ						¥î≽			41	
Traffic Volume (vph)	165	222	304	0	0	0	0	314	47	19	316	0
Future Volume (vph)	165	222	304	0	0	0	0	314	47	19	316	0
Satd. Flow (prot)	0	3078	0	0	0	0	0	3307	0	0	3380	0
Flt Permitted		0.988									0.928	
Satd. Flow (perm)	0	3075	0	0	0	0	0	3307	0	0	3144	0
Satd. Flow (RTOR)		304						33				
Lane Group Flow (vph)	0	691	0	0	0	0	0	361	0	0	335	0
Turn Type	Perm	NA						NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4									6		
Detector Phase	4	4						2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0						10.0		10.0	10.0	
Minimum Split (s)	26.0	26.0						25.1		25.1	25.1	
Total Split (s)	30.0	30.0						30.0		30.0	30.0	
Total Split (%)	50.0%	50.0%						50.0%		50.0%	50.0%	
Yellow Time (s)	3.3	3.3						3.3		3.3	3.3	
All-Red Time (s)	23	2.3						21		21	21	
Lost Time Adjust (s)	2.0	0.0						0.0			0.0	
Total Lost Time (s)		5.6						5.4			5.4	
Lead/Lag		0.0						0.1			0.1	
Lead-Lag Optimize?												
Recall Mode	None	None						C-Min		C-Min	C-Min	
Act Effct Green (s)		14 7						34.3		0	34.3	
Actuated g/C Ratio		0.24						0.57			0.57	
v/c Ratio		0.70						0.19			0.19	
Control Delay		14.9						7.2			7.9	
Queue Delay		0.0						0.0			0.0	
Total Delay		14.9						7.2			7.9	
LOS		B						A			A	
Approach Delay		14.9						7.2			7.9	
Approach LOS		B						A			A	
Queue Length 50th (m)		19.3						15.7			13.7	
Queue Length 95th (m)		29.9						m19.2			21.6	
Internal Link Dist (m)		104.8			107.2			99.1			72.3	
Turn Bay Length (m)								••••				
Base Capacity (vph)		1430						1904			1797	
Starvation Cap Reductn		0						0			0	
Spillback Cap Reductn		0						0			0	
Storage Cap Reductn		0						0			0	
Reduced v/c Ratio		0.48						0.19			0.19	
Intersection Summary												
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 52 (87%), Reference	ed to phase	e 2:NBT a	nd 6:SBT	L, Start o	f Green							
Natural Cycle: 55												
Control Type: Actuated-Cod	ordinated											

Maximum v/c Ratio: 0.70

Intersection Signal Delay: 11.2 Intersection Capacity Utilization 59.6% Intersection LOS: B ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 32: Rochester & 417 EB off/Orangeville

Lanes, Volumes, Timings 33: Bronson & Catherine 417 WB on

	≯	-	\mathbf{r}	-	-	*	1	†	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ፈቶኩ		۲.	44			≜ †Ъ	
Traffic Volume (vph)	0	0	0	596	515	329	493	1020	0	0	416	112
Future Volume (vph)	0	0	0	596	515	329	493	1020	0	0	416	112
Satd. Flow (prot)	0	0	0	1458	4239	0	1695	3390	0	0	3239	0
Flt Permitted				0.950	0.991		0.230					
Satd. Flow (perm)	0	0	0	1458	4239	0	404	3390	0	0	3239	0
Satd. Flow (RTOR)					56						33	
Lane Group Flow (vph)	0	0	0	405	1035	0	493	1020	0	0	528	0
Turn Type				Perm	NA		pm+pt	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8			2					
Detector Phase				8	8		5	2			6	
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	
Minimum Split (s)				25.9	25.9		11.0	25.1			25.1	
Total Split (s)				41.0	41.0		26.0	54.0			28.0	
Total Split (%)				43.2%	43.2%		27.4%	56.8%			29.5%	
Yellow Time (s)				3.3	3.3		3.3	3.3			3.3	
All-Red Time (s)				2.6	2.6		2.7	2.8			2.8	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				5.9	5.9		6.0	6.1			6.1	
Lead/Lag							Lead				Lag	
Lead-Lag Optimize?							Yes				Yes	
Recall Mode				None	None		None	C-Min			C-Min	
Act Effct Green (s)				31.7	31.7		51.4	51.3			21.0	
Actuated g/C Ratio				0.33	0.33		0.54	0.54			0.22	
v/c Ratio				0.83	0.71		0.90	0.56			0.71	
Control Delay				44.6	28.7		43.8	20.5			38.2	
Queue Delay				4.2	0.1		14.3	4.0			0.0	
Total Delay				48.9	28.9		58.0	24.5			38.3	
LOS				D	С		E	С			D	
Approach Delay					34.5			35.4			38.3	
Approach LOS					С			D			D	
Queue Length 50th (m)				75.0	57.4		77.6	80.1			45.2	
Queue Length 95th (m)				#119.5	72.1		#135.5	107.5			61.3	
Internal Link Dist (m)		151.3			165.9			71.3			230.9	
Turn Bay Length (m)												
Base Capacity (vph)				538	1602		549	1831			789	
Starvation Cap Reductn				0	0		55	709			0	
Spillback Cap Reductn				75	72		0	0			1	
Storage Cap Reductn				0	0		0	0			0	
Reduced v/c Ratio				0.87	0.68		1.00	0.91			0.67	
Intersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95												
Offset: 35 (37%), Referenced	to phase	2:NBTL a	and 6:SE	BT, Start o	of Green							
Natural Cycle: 90												
Control Type: Actuated-Coord	linated											

Maximum v/c Ratio: 0.90 Intersection Signal Delay: 35.5

Intersection Capacity Utilization 112.0%

Intersection LOS: D ICU Level of Service H

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

ŝ	Splits and Phases:	33: Bronson & Catherine 417 WB on
Г		

1 Ø2 (R)	•	
54 s		
▲ Ø5	🛡 🕈 Ø6 (R)	▼ Ø8
26 s	28 s	41 s

	٦	\rightarrow	1	†	Ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1		**	44	
Traffic Volume (vph)	308	383	0	1284	1059	0
Future Volume (vph)	308	383	0	1284	1059	0
Satd. Flow (prot)	1695	1517	0	3390	3390	0
Flt Permitted	0.950					
Satd. Flow (perm)	1695	1474	0	3390	3390	0
Satd. Flow (RTOR)		115				
Lane Group Flow (vph)	308	383	0	1284	1059	0
Turn Type	Perm	Perm	-	NA	NA	-
Protected Phases				2	6	
Permitted Phases	4	4		_	-	
Detector Phase	4	4		2	6	
Switch Phase				-	Ŭ	
Minimum Initial (s)	10.0	10.0		10.0	10.0	
Minimum Solit (s)	25.1	25.1		34.3	34.3	
Total Split (s)	20.1	30.0		65.0	65.0	
Total Split (%)	31.6%	31.6%		68 /0/	68.4%	
	ر JT.O /0	22		00. 4 /0 م	00. 4 /0 2 2	
All-Red Time (s)	0.0 0.1	0.0 0.1		0.0 2.5	0.0 0.5	
Lost Time Adjust (s)	2.1	2.1		2.5	2.5	
Total Lost Time (a)	0.0 E /	0.0		0.0	0.0	
	5.4	J.4		J.0	J.0	
Leau/Lag						
Leau-Lag Optimize?	Mana	Mana		C Min	C Min	
	None	None		C-IVIIN	C-IVIIN	
Act Elici Green (S)	23.5	23.5		00.3	00.3	
Actuated g/C Ratio	0.25	0.25		0.63	0.63	
V/C Ratio	0.74	0.85		0.60	0.49	
Control Delay	43.2	41.1		12.5	6.8	
Queue Delay	0.6	0.0		0.2	0.6	
Total Delay	43.8	41.1		12.8	7.5	
LOS	D	D		В	A	
Approach Delay	42.3			12.8	7.5	
Approach LOS	D			В	A	
Queue Length 50th (m)	51.0	47.1		69.0	2.8	
Queue Length 95th (m)	76.1	#82.8		96.5	114.6	
Internal Link Dist (m)	81.4			50.7	71.3	
Turn Bay Length (m)		60.0				
Base Capacity (vph)	467	489		2209	2209	
Starvation Cap Reductn	0	0		0	712	
Spillback Cap Reductn	28	0		308	0	
Storage Cap Reductn	0	0		0	0	
Reduced v/c Ratio	0.70	0.78		0.68	0.71	
Intersection Summary						
Cycle Length: 95						
Actuated Cycle Length: 95						
Offset: 72 (76%) Reference	ad to phase	2.NRT a	nd 6·SP	T Start of	f Green	
Natural Cycle: 60			10 0.00	, otari u		
Control Type: Actuated-Cor	ordinated					
Control Type. Actuated-Cot	Junaleu					

Lanes, Volumes, Timings 34: Bronson & 417 EB off

Maximum v/c Ratio: 0.85	
Intersection Signal Delay: 17.7	Intersection LOS: B
Intersection Capacity Utilization 112.0%	ICU Level of Service H
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lor	nger.
Queue shown is maximum after two cycles.	
Splits and Phases: 34: Bronson & 417 EB off	

∫ Ø2 (R)	√_ø4
65 s	30 s
▼ Ø6 (R)	
65 s	

Lanes, Volumes, Timings 39: Prince of Wales & Road B

۶

(dual WBT)

					-	2	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø9
Lane Configurations	۲	1	≜ †⊅		۲	1	
Traffic Volume (vph)	55	918	612	55	41	26	
Future Volume (vph)	55	918	612	55	41	26	
Satd. Flow (prot)	1695	1784	3338	0	1695	1517	
Flt Permitted	0.364				0.950		
Satd. Flow (perm)	646	1784	3338	0	1634	1419	
Satd. Flow (RTOR)						26	
Lane Group Flow (vph)	55	918	667	0	41	26	
Turn Type	pm+pt	NA	NA		Perm	Perm	
Protected Phases	5	2	6				9
Permitted Phases	2				4	4	
Detector Phase	5	2	6		4	4	
Switch Phase							
Minimum Initial (s)	5.0	10.0	10.0		10.0	10.0	1.0
Minimum Split (s)	10.3	23.3	23.3		23.3	23.3	15.0
Total Split (s)	10.4	91.7	81.3		23.3	23.3	15.0
Total Split (%)	8.0%	70.5%	62.5%		17.9%	17.9%	12%
Yellow Time (s)	3.3	3.3	3.3		3.3	3.3	2.0
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.3	5.3	5.3		5.3	5.3	
Lead/Lag	Lead		Lag				
Lead-Lag Optimize?	Yes		Yes				
Recall Mode	None	C-Min	C-Min		None	None	None
Act Effct Green (s)	107.9	108.9	99.6		11.6	11.6	
Actuated g/C Ratio	0.83	0.84	0.77		0.09	0.09	
v/c Ratio	0.09	0.61	0.26		0.28	0.17	
Control Delay	4.3	8.7	6.1		59.3	20.3	
Queue Delay	0.0	0.0	0.0		0.0	0.0	
Total Delay	4.3	8.7	6.1		59.3	20.3	
LOS	A	А	А		Е	С	
Approach Delay		8.5	6.1		44.2		
Approach LOS		А	А		D		
Queue Length 50th (m)	1.8	58.4	3.4		10.1	0.0	
Queue Length 95th (m)	9.1	208.6	69.4		20.3	8.5	
Internal Link Dist (m)		198.2	95.9		17.7		
Turn Bay Length (m)	45.0						
Base Capacity (vph)	585	1494	2567		226	218	
Starvation Cap Reductn	0	0	0		0	0	
Spillback Cap Reductn	0	0	0		0	0	
Storage Cap Reductn	0	0	0		0	0	
Reduced v/c Ratio	0.09	0.61	0.26		0.18	0.12	
Interneting O							
Intersection Summary							
Actuated Cycle Langth: 100							
Actuated Cycle Length: 130	ha mhann O			Ctort of t	Croos		
Notural Curley 00	to phase 2	.EBIL ar	iu o:WBT,	Start of 0	Green		
inatural Cycle: 90							

ŧ

1

Control Type: Actuated-Coordinated

Lanes, Volumes, Timings 39: Prince of Wales & Road B (dual WBT)

Maximum v/c Ratio: 0.61	
Intersection Signal Delay: 9.0	Inter
Intersection Capacity Utilization 70.1%	ICU
Analysis Period (min) 15	

tersection LOS: A

Splits and Phases: 39: Prince of Wales & Road B

	۶	-	-	•	1	-		
Lane Group	FBI	FBT	WBT	WBR	SBI	SBR	Ø9	
Lane Configurations	3		*	1	3	1	~~	
Traffic Volume (vph)	55	918	612	55	41	26		
Future Volume (vph)	55	918	612	55	41 41	26		
Satd Flow (prot)	1695	1784	1784	1517	1695	1517		
Elt Permitted	0.354	1104	1704	1017	0.950	1017		
Satd Flow (perm)	632	1784	1784	1455	1634	1354		
Satd Flow (RTOR)	002	1104	1704	1400	1004	26		
Lane Group Flow (vph)	55	918	612	55	41	26		
Turn Type	nm+nt	NA	NA	Perm	Perm	Perm		
Protected Phases	5	2	6	I UIII	I UIII		Q	
Permitted Phases	2	-	Ū	6	4	4	v	
Detector Phase	5	2	6	6	4	4		
Switch Phase	0	2	Ū	Ū	Т	т		
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	10	
Minimum Solit (s)	10.3	23.3	23.3	23.3	23.3	23.3	15.0	
Total Solit (s)	10.0	91.7	81.3	81.3	23.3	23.3	15.0	
Total Split (%)	8.0%	70.5%	62.5%	62.5%	17.9%	17.9%	12%	
Vellow Time (s)	33	10.070	33	33	33	33	20	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	53	53	53	53	53	53		
Lead/Lag	l ead	0.0	l an	l an	0.0	0.0		
Lead-Lag Ontimize?	Yes		Yes	Yes				
Recall Mode	None	C-Min	C-Min	C-Min	None	None	None	
Act Effct Green (s)	107.9	108.9	99.6	99.6	11.6	11.6	None	
Actuated g/C Ratio	0.83	0.84	0.77	0.77	0.09	0.09		
v/c Ratio	0.00	0.61	0.45	0.05	0.00	0.00		
Control Delay	4.3	87	12.8	9.00	59.3	20.6		
Queue Delay	0.0	0.0	0.4	0.0	0.0	0.0		
Total Delay	4.3	8.7	13.2	9.4	59.3	20.6		
	4.0 A	Δ	R	0.4 A	- 00.0 F	20.0 C		
Approach Delay		8.5	12 9	/\	44.3	Ŭ		
Approach LOS		Δ	R		D			
Queue Length 50th (m)	18	58.4	88.2	31	10 1	0.0		
Queue Length 95th (m)	91	208.6	m123.2	m11.6	20.3	8.5		
Internal Link Dist (m)	0.1	198.2	95.9		17.7	0.0		
Turn Bay Length (m)	45.0	.00.2	00.0	35.0				
Base Capacity (vph)	574	1494	1371	1119	226	209		
Starvation Cap Reductn	0	0	316	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	0.10	0.61	0.58	0.05	0.18	0.12		
Intersection Summary								
Cycle Length: 130								
Actuated Cycle Length: 130)							
Offset: 95 (73%) Reference	ed to phase	2.EBTI	and 6.WI	BT Start	of Green			
Natural Cycle: 90		. 2.2012		si, start				
Control Type: Actuated-Cod	ordinated							

Maximum v/c Ratio: 0.61

Intersection Signal Delay: 11.6 Intersection Capacity Utilization 70.1% Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 39: Prince of Wales & Road B

ø₂ (₩	₽∎ _{Ø9}	Ø4
91.7 s	15 s	23.3 s
≠ ∞5 v ∞6 (R)		
10.4 s 81.3 s		

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	- ሽ	- 11	- 11	1	۰¥	
Traffic Vol, veh/h	24	1135	580	5	14	20
Future Vol, veh/h	24	1135	580	5	14	20
Conflicting Peds, #/hr	40	0	0	40	3	9
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	25	-	-	20	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	24	1135	580	5	14	20

Major/Minor	Major1	Ν	/lajor2		Minor2		
Conflicting Flow All	625	0	-	0	1239	339	
Stage 1	-	-	-	-	620	-	
Stage 2	-	-	-	-	619	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	952	-	-	-	168	657	
Stage 1	-	-	-	-	499	-	
Stage 2	-	-	-	-	499	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	920	-	-	-	153	630	
Mov Cap-2 Maneuver	-	-	-	-	153	-	
Stage 1	-	-	-	-	470	-	
Stage 2	-	-	-	-	482	-	
Annroach	FR		W/B		SB		
HCM Control Delay	0.2		0		19.9		
HCM LOS	0.2		v		C.		
					U		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		920	-	-	-	276	
HCM Lane V/C Ratio		0.026	-	-	-	0.123	
HCM Control Delay (s)	9	-	-	-	19.9	
HCM Lane LOS		Α	-	-	-	С	
HCM 95th %tile Q(veh	ו)	0.1	-	-	-	0.4	

Interes a ations	
	Interpetion
Intersection	Intersection

Int	Delav	s/veh	

Int Delay, s/veh	1.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	↑	1		1
Traffic Vol, veh/h	0	1205	615	260	0	151
Future Vol, veh/h	0	1205	615	260	0	151
Conflicting Peds, #/hr	36	0	0	36	1	2
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	30	-	0
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	1205	615	260	0	151

Major/Minor	Major1	Ν	/lajor2	Μ	inor2		
Conflicting Flow All	-	0	-	0	-	653	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	-	-	-	-	6.23	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	3.319	
Pot Cap-1 Maneuver	0	-	-	-	0	466	
Stage 1	0	-	-	-	0	-	
Stage 2	0	-	-	-	0	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	-	-	-	-	-	451	
Mov Cap-2 Maneuver	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0		0		16.9		
HCM LOS					С		
Minor Lane/Major Mvr	nt	EBT	WBT	WBR S	BLn1		
Capacity (veh/h)		-	-	-	451		
HCM Lane V/C Ratio		-	-	- ().335		
HCM Control Delay (s	;)	-	-	-	16.9		
HCM Lane LOS		-	-	-	С		
HCM 95th %tile Q(vel	า)	-	-	-	1.5		

Intersection

Int Delay, s/veh

0

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ef 👘			- र् स			4				1
Traffic Vol, veh/h	0	946	4	3	680	76	0	0	1	0	0	5
Future Vol, veh/h	0	946	4	3	680	76	0	0	1	0	0	5
Conflicting Peds, #/hr	2	0	7	7	0	2	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	0
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	946	4	3	680	76	0	0	1	0	0	5

Major/Minor	Major1		Major2		Minor1		Μ	inor2			
Conflicting Flow All	-	0	0 957	0	0 1682	1719	955	-	-	720	
Stage 1	-	-		-	- 955	955	-	-	-	-	
Stage 2	-	-		-	- 727	764	-	-	-	-	
Critical Hdwy	-	-	- 4.12	-	- 7.12	6.52	6.22	-	-	6.22	
Critical Hdwy Stg 1	-	-		-	- 6.12	5.52	-	-	-	-	
Critical Hdwy Stg 2	-	-		-	- 6.12	5.52	-	-	-	-	
Follow-up Hdwy	-	-	- 2.218	-	- 3.518	4.018	3.318	-	-	3.318	
Pot Cap-1 Maneuver	0	-	- 719	-	- 75	90	313	0	0	428	
Stage 1	0	-		-	- 310	337	-	0	0	-	
Stage 2	0	-		-	- 415	413	-	0	0	-	
Platoon blocked, %		-	-	-	-						
Mov Cap-1 Maneuver	r -	-	- 715	-	- 73	89	311	-	-	427	
Mov Cap-2 Maneuver	r -	-		-	- 73	89	-	-	-	-	
Stage 1	-	-		-	- 310	335	-	-	-	-	
Stage 2	-	-		-	- 407	409	-	-	-	-	
Annroach	FR		W/R		NR			SB			

Approach	ER	VVB	NB	SB	
HCM Control Delay, s	0	0	16.6	13.5	
HCM LOS			С	В	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	WBR S	BLn1
Capacity (veh/h)	311	-	-	715	-	-	427
HCM Lane V/C Ratio	0.003	-	-	0.004	-	- (0.012
HCM Control Delay (s)	16.6	-	-	10.1	0	-	13.5
HCM Lane LOS	С	-	-	В	Α	-	В
HCM 95th %tile Q(veh)	0	-	-	0	-	-	0

Intersection	on
	aluah

Int Delay, s/veh	0.3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1	- ሽ	↑	↑	1	
Traffic Vol, veh/h	0	35	13	973	564	75	
Future Vol, veh/h	0	35	13	973	564	75	
Conflicting Peds, #/hr	0	0	10	0	0	10	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	0	50	-	-	50	
Veh in Median Storage	,# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	12	10	8	2	2	4	
Mvmt Flow	0	35	13	973	564	75	

Major/Minor	Minor2	l	Major1	Maj	jor2		
Conflicting Flow All	-	574	649	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.3	4.18	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.39	2.272	-	-	-	
Pot Cap-1 Maneuver	0	503	909	-	-	-	
Stage 1	0	-	-	-	-	-	
Stage 2	0	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuve	r -	499	901	-	-	-	
Mov Cap-2 Maneuve	r -	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	12.8	0.1	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBL	NBT EB	SLn1	SBT	SBR
Capacity (veh/h)	901	-	499	-	-
HCM Lane V/C Ratio	0.014	- (0.07	-	-
HCM Control Delay (s)	9.1	- '	12.8	-	-
HCM Lane LOS	А	-	В	-	-
HCM 95th %tile Q(veh)	0	-	0.2	-	-

4.4

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4îb			et þ			÷			÷	
Traffic Vol, veh/h	0	31	120	180	174	5	18	0	99	0	0	5
Future Vol, veh/h	0	31	120	180	174	5	18	0	99	0	0	5
Conflicting Peds, #/hr	10	0	10	10	0	10	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	31	120	180	174	5	18	0	99	0	0	5

Major/Minor	Major1		Ν	lajor2		Ν	1inor1		Ν	/linor2			
Conflicting Flow All	189	0	0	161	0	0	548	650	86	563	708	100	
Stage 1	-	-	-	-	-	-	101	101	-	547	547	-	
Stage 2	-	-	-	-	-	-	447	549	-	16	161	-	
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32	
Pot Cap-1 Maneuver	1382	-	-	1416	-	-	419	387	956	409	358	936	
Stage 1	-	-	-	-	-	-	894	811	-	489	516	-	
Stage 2	-	-	-	-	-	-	560	515	-	1001	764	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1370	-	-	1404	-	-	368	327	948	324	302	928	
Mov Cap-2 Maneuver	-	-	-	-	-	-	368	327	-	324	302	-	
Stage 1	-	-	-	-	-	-	887	805	-	485	439	-	
Stage 2	-	-	-	-	-	-	478	438	-	896	758	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			4.1			10.6			8.9			
HCM LOS							В			A			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1	
Capacity (veh/h)	763	1370	-	-	1404	-	-	928	
HCM Lane V/C Ratio	0.153	-	-	-	0.128	-	-	0.005	
HCM Control Delay (s)	10.6	0	-	-	7.9	0.2	-	8.9	
HCM Lane LOS	В	А	-	-	Α	А	-	А	
HCM 95th %tile Q(veh)	0.5	0	-	-	0.4	-	-	0	

Intersection

Int Delay, s/veh	4.8						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	۰¥		↑	1		-4↑	
Traffic Vol, veh/h	42	24	54	54	96	23	
Future Vol, veh/h	42	24	54	54	96	23	
Conflicting Peds, #/hr	0	0	0	15	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	0	-	-	
Veh in Median Storage	,# 0	-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	42	24	54	54	96	23	

Major/Minor	Minor1	Ν	1ajor1	Μ	lajor2		
Conflicting Flow All	273	69	0	0	123	0	
Stage 1	69	-	-	-	-	-	
Stage 2	204	-	-	-	-	-	
Critical Hdwy	6.63	6.23	-	-	4.13	-	
Critical Hdwy Stg 1	5.43	-	-	-	-	-	
Critical Hdwy Stg 2	5.83	-	-	-	-	-	
Follow-up Hdwy	3.519	3.319	-	- 2	2.219	-	
Pot Cap-1 Maneuver	705	994	-	-	1463	-	
Stage 1	953	-	-	-	-	-	
Stage 2	811	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	· 649	981	-	-	1444	-	
Mov Cap-2 Maneuver	· 649	-	-	-	-	-	
Stage 1	941	-	-	-	-	-	
Stage 2	757	-	-	-	-	-	

Approach	WB	NB	SB	
HCM Control Delay, s	10.3	0	6.2	
HCMLOS	В			

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	- 740	1444	-	
HCM Lane V/C Ratio	-	- 0.089	0.066	-	
HCM Control Delay (s)	-	- 10.3	7.7	0	
HCM Lane LOS	-	- B	Α	Α	
HCM 95th %tile Q(veh)	-	- 0.3	0.2	-	

0.2					
EBL	EBR	NBL	NBT	SBT	SBR
۰¥			- 4 ↑	∱ î≽	
0	2	2	108	66	0
0	2	2	108	66	0
0	0	5	0	0	5
Stop	Stop	Free	Free	Free	Free
-	None	-	None	-	None
0	-	-	-	-	-
,# 0	-	-	0	0	-
0	-	-	0	0	-
100	100	100	100	100	100
100	100	100	2	2	100
0	2	2	108	66	0
	0.2 EBL 0 0 0 Stop - 0 , # 0 0 100 100 0 0	0.2 EBL EBR ↓ 0 2 0 2 0 2 0 2 0 2 0 3 5top Stop Stop Stop • None 0 - 100 - 100 - 100 100 100 2	0.2 EBL EBR NBL ↓ 0 2 2 0 2 2 0 2 2 0 2 2 0 5 Stop Stop Free None - 0 - 0 - ↓ ↓ 0 - 100 100 100 100 100 100 0 2 2	0.2 EBL EBR NBL NBT Y	0.2 EBL EBR NBL NBT SBT Y 1 1 1 Q 2 2 108 66 Q 0 5 0 0 Stop Stop Free Free Free None - None - - Q - - 0 0 0 Mone - 0 0 0 0 Q - - 0 0 0 Q - - 0 0 0 Q - - 0 0 0 Q 100 100 100 100 100 Q 2 2 108 66

Major/Minor	Minor2	N	Major1	Ma	jor2	
Conflicting Flow All	129	38	71	0	-	0
Stage 1	71	-	-	-	-	-
Stage 2	58	-	-	-	-	-
Critical Hdwy	8.8	8.9	6.1	-	-	-
Critical Hdwy Stg 1	7.8	-	-	-	-	-
Critical Hdwy Stg 2	7.8	-	-	-	-	-
Follow-up Hdwy	4.5	4.3	3.2	-	-	-
Pot Cap-1 Maneuver	632	780	1029	-	-	-
Stage 1	717	-	-	-	-	-
Stage 2	731	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve	r 626	777	1025	-	-	-
Mov Cap-2 Maneuve	r 626	-	-	-	-	-
Stage 1	713	-	-	-	-	-
Stage 2	728	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	9.6	0.2	0
HCM LOS	А		

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)	1025	-	777	-	-
HCM Lane V/C Ratio	0.002	-	0.003	-	-
HCM Control Delay (s)	8.5	0	9.6	-	-
HCM Lane LOS	А	Α	А	-	-
HCM 95th %tile Q(veh)	0	-	0	-	-

Intersection						
Int Delay, s/veh	5.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			- सी	۰¥	
Traffic Vol, veh/h	0	18	4	0	15	12
Future Vol, veh/h	0	18	4	0	15	12
Conflicting Peds, #/hr	0	10	10	0	10	10
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	18	4	0	15	12

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	C) 0	28	0	37	29	
Stage 1	-		-	-	19	-	
Stage 2	-		-	-	18	-	
Critical Hdwy	•		4.12	-	6.42	6.22	
Critical Hdwy Stg 1			-	-	5.42	-	
Critical Hdwy Stg 2	-		-	-	5.42	-	
Follow-up Hdwy	-		2.218	-	3.518	3.318	
Pot Cap-1 Maneuver	-		1585	-	975	1046	
Stage 1	-		-	-	1004	-	
Stage 2	-		-	-	1005	-	
Platoon blocked, %	-			-			
Mov Cap-1 Maneuver	r-		1572	-	956	1028	
Mov Cap-2 Maneuver	r -		-	-	956	-	
Stage 1	-		-	-	996	-	
Stage 2	-		-	-	994	-	
Approach	FP	ł	WR		NB		
HCM Control Delay	20)	73		8.8		
HCM LOS			1.0		Δ		
					7		
Minor Lane/Major Mv	mt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		987	-	-	1572	-	
HCM Lane V/C Ratio		0.027	-	-	0.003	-	
HCM Control Delay (s	5)	8.8	-	-	7.3	0	
HCM Lane LOS		A	-	-	А	Α	
HCM 95th %tile Q(ve	h)	0.1	-	-	0	-	
tersection							
-------------------------	-----						
tersection Delay, s/veh	8.6						
tersection LOS	А						

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	42	107	16	2	77	80	3	5	2	66	65	20
Future Vol, veh/h	42	107	16	2	77	80	3	5	2	66	65	20
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	42	107	16	2	77	80	3	5	2	66	65	20
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.7			8.2			7.9			8.8		
HCM LOS	А			А			А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	30%	25%	1%	44%	
Vol Thru, %	50%	65%	48%	43%	
Vol Right, %	20%	10%	50%	13%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	10	165	159	151	
LT Vol	3	42	2	66	
Through Vol	5	107	77	65	
RT Vol	2	16	80	20	
Lane Flow Rate	10	165	159	151	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.013	0.206	0.186	0.196	
Departure Headway (Hd)	4.785	4.486	4.211	4.672	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	747	802	854	769	
Service Time	2.82	2.507	2.232	2.698	
HCM Lane V/C Ratio	0.013	0.206	0.186	0.196	
HCM Control Delay	7.9	8.7	8.2	8.8	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0	0.8	0.7	0.7	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	32	0	30	0	0	15	30	32	0	18	72	73
Future Vol, veh/h	32	0	30	0	0	15	30	32	0	18	72	73
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	32	0	30	0	0	15	30	32	0	18	72	73
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	7.6				6.9		7.7			7.8		
HCM LOS	А				А		А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	48%	52%	0%	11%	
Vol Thru, %	52%	0%	0%	44%	
Vol Right, %	0%	48%	100%	45%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	62	62	15	163	
LT Vol	30	32	0	18	
Through Vol	32	0	0	72	
RT Vol	0	30	15	73	
Lane Flow Rate	62	62	15	163	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.074	0.071	0.016	0.175	
Departure Headway (Hd)	4.289	4.145	3.878	3.867	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	828	850	928	921	
Service Time	2.353	2.241	1.878	1.921	
HCM Lane V/C Ratio	0.075	0.073	0.016	0.177	
HCM Control Delay	7.7	7.6	6.9	7.8	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.2	0.2	0	0.6	

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	↑ ĵ≽		٦	•	Y		
Traffic Vol, veh/h	96	17	102	90	23	55	
Future Vol, veh/h	96	17	102	90	23	55	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	96	17	102	90	23	55	
Number of Lanes	2	0	1	1	1	0	
Approach	EB		WB		NB		
Opposing Approach	WB		EB				
Opposing Lanes	2		2		0		
Conflicting Approach Left			NB		EB		
Conflicting Lanes Left	0		1		2		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		2		
HCM Control Delay	7.9		8.6		7.7		
HCM LOS	А		А		А		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2
Vol Left, %	29%	0%	0%	100%	0%
Vol Thru, %	0%	100%	65%	0%	100%
Vol Right, %	71%	0%	35%	0%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	78	64	49	102	90
LT Vol	23	0	0	102	0
Through Vol	0	64	32	0	90
RT Vol	55	0	17	0	0
Lane Flow Rate	78	64	49	102	90
Geometry Grp	2	7	7	7	7
Degree of Util (X)	0.093	0.087	0.063	0.148	0.118
Departure Headway (Hd)	4.291	4.876	4.632	5.232	4.731
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Сар	839	738	776	679	750
Service Time	2.296	2.587	2.343	3.013	2.512
HCM Lane V/C Ratio	0.093	0.087	0.063	0.15	0.12
HCM Control Delay	7.7	8.1	7.7	8.9	8.2
HCM Lane LOS	А	А	А	А	А
HCM 95th-tile Q	0.3	0.3	0.2	0.5	0.4

	٦	-	+	•	1	-			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø10		
Lane Configurations	5	**	**	1	W.	-			
Traffic Volume (vph)	97	647	1374	98	30	196			
Future Volume (vph)	97	647	1374	98	30	196			
Satd Flow (prot)	1695	3390	3390	1517	1524	0			
Flt Permitted	0.950	0000	0000		0.993	Ŭ			
Satd Flow (perm)	1656	3390	3390	1239	1522	0			
Satd Flow (RTOR)	1000	0000	0000	88	188	Ū			
Lane Group Flow (vph)	97	647	1374	98	226	0			
Turn Type	Prot	NA	NA	Perm	Perm	Ū			
Protected Phases	5	2	6	I UIIII			10		
Permitted Phases	U	2	Ū	6	4		10		
Detector Phase	5	2	6	6					
Switch Phase	5	2	0	0	-				
Minimum Initial (a)	5.0	10.0	10.0	10.0	10.0		1.0		
Minimum Split (s)	11 1	26.7	10.0 26 7	26.7	27.0		5.0		
Total Split (S)	16.0	20.7	20.7	20.7	31.Z		5.U		
	11.00/	92.8	/0.0 EC 00/	/0.0 FC 00/	31.2		0.C		
Total Split (%)	11.9%	00.1%	00.9%	00.9%	21.0%		4%		
Yellow Time (s)	3.7	3.7	3.7	3.7	3.0		2.0		
All-Red Time (s)	2.4	1.9	1.9	1.9	3.2		0.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0				
Total Lost Time (s)	6.1	5.6	5.6	5.6	6.2				
Lead/Lag	Lead		Lag	Lag					
Lead-Lag Optimize?	Yes		Yes	Yes					
Recall Mode	None	C-Min	C-Min	C-Min	None		Min		
Act Effct Green (s)	13.7	103.2	83.3	83.3	12.5				
Actuated g/C Ratio	0.10	0.76	0.62	0.62	0.09				
v/c Ratio	0.56	0.25	0.66	0.12	0.73				
Control Delay	69.8	5.2	19.7	3.8	26.7				
Queue Delay	0.0	0.0	1.6	0.0	0.0				
Total Delay	69.8	5.2	21.2	3.8	26.7				
LOS	E	Α	С	Α	С				
Approach Delay		13.6	20.1		26.7				
Approach LOS		В	С		С				
Queue Length 50th (m)	25.0	20.7	111.3	0.9	9.8				
Queue Length 95th (m)	42.3	36.4	173.6	9.7	35.3				
Internal Link Dist (m)		297.5	170.5		278.4				
Turn Bay Length (m)	155.0			80.0					
Base Capacity (vph)	174	2591	2092	798	494				
Starvation Cap Reductn	0	0	499	0	0				
Spillback Cap Reductn	0	0	0	0	0				
Storage Cap Reductn	0	0	0	0	0				
Reduced v/c Ratio	0.56	0.25	0.86	0.12	0.46				
Intersection Summary									
Cycle Length: 135									
Actuated Cycle Length: 135	;								
Offset: 66 (49%) Reference	ed to phase	2. FBT a	and 6 WB	T Start o	f Green				
Natural Cycle: 100				r, otari u					
Control Type: Actuated-Coc	ordinated								

Lanes, Volumes, Timings 10: Carling & Parkdale

Maximum v/c Ratio: 0.73 Intersection Signal Delay: 18.7 Intersection Capacity Utilization 80.2% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service D

Splits and Phases: 10: Carling & Parkdale

	٦	-	+	•	1	∢
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	8	**	**	#	M	
Traffic Volume (vph)	21	728	1600	50	20	19
Future Volume (vph)	21	728	1600	50	20	19
Satd Flow (prot)	1695	3390	3390	1517	1590	0
Flt Permitted	0 950	0000	0000	1017	0.975	U
Satd Flow (perm)	1686	3390	3390	1394	1578	0
Satd Flow (RTOR)	1000	0000	0000	50	10/0	U
Lane Group Flow (vph)	21	728	1600	50	30	٥
	Prot	NA	NA	Dorm	Dorm	U
Protected Phases	5	2	6	I CIIII	I CIIII	
Protected Phases	5	2	0	6	1	
Detector Decco	5	2	6	6	4	
Switch Phase	5	2	Ø	Ö	4	
Switch Phase	F O	10.0	10.0	10.0	10.0	
Iviinimum Initial (S)	5.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	11.4	31.3	31.3	31.3	23.3	
Total Split (s)	12.5	106.7	94.2	94.2	23.3	
Total Split (%)	9.6%	82.1%	/2.5%	/2.5%	17.9%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.3	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.4	6.4	6.4	6.4	5.3	
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	
Act Effct Green (s)	7.2	111.0	102.3	102.3	11.6	
Actuated g/C Ratio	0.06	0.85	0.79	0.79	0.09	
v/c Ratio	0.23	0.25	0.60	0.05	0.25	
Control Delay	63.9	2.8	7.3	1.5	36.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	63.9	2.8	7.3	1.5	36.6	
LOS	E	А	А	А	D	
Approach Delay		4.5	7.2		36.6	
Approach LOS		А	А		D	
Queue Length 50th (m)	5.3	16.2	71.9	0.0	4.9	
Queue Length 95th (m)	13.8	30.6	82.2	1.9	15.2	
Internal Link Dist (m)		170.5	180.8		39.9	
Turn Bay Length (m)	90.0	110.0	100.0	140.0	00.0	
Base Canacity (vph)	95	2895	2685	1114	234	
Starvation Can Reductn	0	2000	2000	0	0	
Spillback Can Reductn	0	0	0	0	0	
Storage Cap Reductin	0	0	0	0	0	
Poducod v/o Potio	0 22	0.25	0 60	0.04	0 17	
	0.22	0.25	0.00	0.04	0.17	
Intersection Summary						
Cycle Length: 130						
Actuated Cycle Length: 130						
Offset: 0 (0%). Referenced t	o phase 2	EBT and	6:WBT.	Start of G	Green	
Natural Cycle: 80			,			
Control Type: Actuated-Coo	rdinated					

Lanes, Volumes, Timings 11: Carling & Civic

Maximum v/c Ratio: 0.60 Intersection Signal Delay: 6.8 Intersection Capacity Utilization 67.4% Analysis Period (min) 15

Intersection LOS: A ICU Level of Service C

Splits and Phases: 11: Carling & Civic

Lanes, Volumes, Timings 13: Maple/Old Irvine & Carling

	٦	-	\rightarrow	•	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	<u>†</u> †	1	ኘ	^	1		4			\$	
Traffic Volume (vph)	38	652	52	53	1140	7	123	10	44	10	9	11
Future Volume (vph)	38	652	52	53	1140	7	123	10	44	10	9	11
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1649	0	0	1652	0
Flt Permitted	0.214			0.390				0.774			0.891	
Satd. Flow (perm)	372	3390	1293	665	3390	1178	0	1309	0	0	1486	0
Satd. Flow (RTOR)			37			37		13			11	
Lane Group Flow (vph)	38	652	52	53	1140	7	0	177	0	0	30	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	34.3	34.3	34.3	42.4	42.4		42.4	42.4	
Total Split (s)	87.0	87.0	87.0	87.0	87.0	87.0	43.0	43.0		43.0	43.0	
Total Split (%)	66.9%	66.9%	66.9%	66.9%	66.9%	66.9%	33.1%	33.1%		33.1%	33.1%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	4.4	4.4		4.4	4.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7		7.4			7.4	
Lead/Lag	•	•	•	•	•	•						
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	92.4	92.4	92.4	92.4	92.4	92.4		24.5			24.5	
Actuated g/C Ratio	0.71	0.71	0.71	0.71	0.71	0.71		0.19			0.19	
v/c Ratio	0.14	0.27	0.06	0.11	0.47	0.01		0.69			0.10	
Control Delay	8.3	6.6	2.9	8.8	10.2	0.0		57.7			28.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Delay	8.3	6.6	2.9	8.8	10.2	0.0		57.7			28.0	
LOS	A	A	A	A	B	A		E			C	
Approach Delay		6.4			10.1			57.7			28.0	
Approach LOS		A			В			E			С	
Queue Length 50th (m)	1.6	15.1	0.4	3.5	55.1	0.0		40.7			4.2	
Queue Length 95th (m)	5.6	28.7	3.3	11.0	97.3	0.0		58.6			11.3	
Internal Link Dist (m)		236.1			191.5			174.3			220.8	
Turn Bay Length (m)	20.0		15.0	45.0		25.0						
Base Capacity (vph)	264	2408	929	472	2408	847		367			414	
Starvation Cap Reductn	0	0	0	0	0	0		0			0	
Spillback Cap Reductn	0	0	0	0	0	0		0			0	
Storage Cap Reductn	0	0	0	0	0	0		0			0	
Reduced v/c Ratio	0.14	0.27	0.06	0.11	0.47	0.01		0.48			0.07	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 28 (22%) Reference	d to phase	2 PRTI	and 6.W/	STL Star	t of Gree	n						
Natural Cycle: 80		<i></i>		2 i L, Otal								
Control Type: Actuated-Coo	rdinated											

Lanes, Volumes, Timings 13: Maple/Old Irvine & Carling

Maximum v/c Ratio: 0.69 Intersection Signal Delay: 13.0 Intersection Capacity Utilization 81.5% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service D

Splits and Phases: 13: Maple/Old Irvine & Carling

	٦	-	+	×	1	-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	44	* *	1	5	1
Traffic Volume (vph)	65	662	1258	183	161	7
Future Volume (vph)	65	662	1258	183	161	7
Satd. Flow (prot)	1695	3390	3390	1517	1695	1517
Flt Permitted	0.950				0.950	
Satd Flow (perm)	1615	3390	3390	1072	1669	1473
Satd Flow (RTOR)	1010	0000	0000	183	1000	5
Lane Group Flow (vph)	65	662	1258	183	161	7
Turn Type	Prot	NΔ	NΔ	Perm	Perm	Perm
Protected Phases	5	2	6	i cini	i cini	
Permitted Phases	5	2	0	6	Δ	Δ
Detector Phase	5	2	6	6	4	- 1
Switch Dhace	- 5	2	0	0	4	4
Minimum Initial (a)	ΕO	10.0	10.0	10.0	10.0	10.0
Minimum Colit (c)	0.0 10.2	10.0 0E 4	10.0 0E 4	10.0	10.0 2E 4	10.0 0E 4
Total Split (S)	10.3	20.1	20.1	20.1	25.1	∠0. I
Total Split (S)	15.0	69.U	74.0	74.0	41.0	41.0
Total Split (%)	11.5%	68.5%	56.9%	56.9%	31.5%	31.5%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Lime (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	None
Act Effct Green (s)	10.3	101.5	88.2	88.2	17.9	17.9
Actuated g/C Ratio	0.08	0.78	0.68	0.68	0.14	0.14
v/c Ratio	0.49	0.25	0.55	0.23	0.70	0.03
Control Delay	69.3	4.5	3.2	0.6	69.1	30.3
Queue Delay	0.0	0.0	0.3	0.0	0.0	0.0
Total Delay	69.3	4.5	3.5	0.6	69.1	30.3
LOS	E	А	А	А	Е	С
Approach Delay		10.3	3.1		67.5	
Approach LOS		В	А		E	
Queue Length 50th (m)	16.3	20.3	13.1	0.0	39.9	0.5
Queue Length 95th (m)	30.5	33.1	17.2	m0.0	60.0	4.7
Internal Link Dist (m)		118.3	141.7		152.1	
Turn Bay Length (m)	30.0			90.0	102.1	15.0
Base Capacity (vph)	146	2646	2300	786	458	408
Starvation Can Reductn	0	2040	395	0,00	0	100
Snillhack Can Reductn	0	0	035	0	0	0
Storage Can Reductin	0	0	0	0	0	0
Reduced v/c Patio	0.45	0.25	0 66	0 22	0.35	0.02
	0.45	0.23	0.00	0.23	0.55	0.02
Intersection Summary						
Cycle Length: 130						
Actuated Cycle Length: 130		0		T 01 1	(0	
Offset: 24 (18%), Reference	ed to phase	e 2:EBT a	and 6:WB	I, Start o	of Green	
Natural Cycle: 70						
Control Type: Actuated-Coc	ordinated					

Lanes, Volumes, Timings 15: Carling & Sherwood

Maximum v/c Ratio: 0.70 Intersection Signal Delay: 10.0

Intersection Capacity Utilization 64.8%

Intersection LOS: A ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 15: Carling & Sherwood

Lanes, Volumes, Timings 16: Road A/Champagne & Carling

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBL SBR SBR Lane Configurations 1		٦	-	\rightarrow	1	-	•	1	1	1	1	Ŧ	~
Lane Configurations Image: Configurations <	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 88 641 44 46 1101 150 97 0 110 183 0 114 Future Volume (vph) 88 641 44 46 1101 150 97 0 110 183 0 114 Future Volume (vph) 88 641 44 46 1101 150 97 0 110 183 0 114 Satil, Flow (perm) 1588 3390 1357 1641 3390 1021 854 1402 0 156 1417 0 Satil, Flow (RTOR) 177 1695 1300 1021 854 1402 0 183 114 0 Turn Type Prot NA Perm Prot NA Perm NA Perm <td>Lane Configurations</td> <td>٦</td> <td><u>^</u></td> <td>1</td> <td>۲</td> <td>^</td> <td>1</td> <td>۲.</td> <td>eî 👘</td> <td></td> <td>ሻ</td> <td>4Î</td> <td></td>	Lane Configurations	٦	<u>^</u>	1	۲	^	1	۲.	eî 👘		ሻ	4Î	
Future Volume (vph) 88 641 44 46 1101 150 97 0 110 183 0 114 Satd. Flow (prot) 1695 3390 1517 1695 1402 0 1695 1417 0 Satd. Flow (perm) 1588 3390 1357 1641 3390 1021 854 1402 0 1156 1417 0 Satd. Flow (perm) 1588 641 44 46 1101 150 97 110 0 183 114 0 Satd. Flow (PFOR Prot NA Perm Prot NA Perm pm+pt NA Perm NA Perm NA Perm NA Perm Pather NA Perm NA Perm NA Perm Pather NA Perm N	Traffic Volume (vph)	88	641	44	46	1101	150	97	0	110	183	0	114
Satd. Flow (prot) 1695 3390 1517 1695 1402 0 1695 1417 0 FIt Permitted 0.950 0.950 0.498 0.686 0.868 Satd. Flow (perm) 1588 3390 1357 1641 3390 1021 854 1402 0 1156 1417 0 Satd. Flow (RTOR) 147 147 10 183 114 0 183 114 0 Lane Group Flow (vph) 88 641 44 6 1011 150 97 110 0 183 114 0 Urm Type Prot NA Perm Prot NA Perm m+pt NA Perm NA Perm NA Perm Prot NA Perm Prot NA Perm NA	Future Volume (vph)	88	641	44	46	1101	150	97	0	110	183	0	114
Fit Permitted 0.950 0.488 0.686 Satd. Flow (RTOR) 1588 3390 1357 1641 3390 1021 854 1402 0 1156 1417 0 Satd. Flow (RTOR) 147 147 147 0 183 114 0 Turn Type Prot NA Perm Prot NA Perm pm+tt NA Perm NA Protected Phases 5 2 1 6 6 3 8 4 4 Detector Phase 5 2 2 1 6 6 3 8 4 4 Switch Phase 5 2 2 1 6 6 3 8 4 4 Switch Phase 5 2 2 1 6 6 3 8 4 4 Switch Phase 5 2 2 1 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	1695	1402	0	1695	1417	0
Statl. Flow (perm) 1588 3390 1357 1641 3390 1021 854 1402 0 1156 1417 0 Satd. Flow (RTOR) 147 147 147 147 147 294 Turn Type Prot NA Perm Prot NA Perm pm+pt NA Perm NA Perm PM+pt NA Perm NA Permited Phases 2 6 8 4 4 4 Detector Phase 5 2 2 1 6 6 3 8 4 4 Detector Phase 5 2 2 1 6 6 3 8 4 4 Minimum Initial (s) 10.0 10.0 10.0 10.0 50.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Flt Permitted	0.950			0.950			0.498			0.686		
Satd. Flow (RTOR) 147 294 Lane Group Flow (vph) 88 641 44 46 1101 150 97 110 0 183 114 0 Turm Type Prot NA Perm Prot NA Perm NA Perm <td< td=""><td>Satd. Flow (perm)</td><td>1588</td><td>3390</td><td>1357</td><td>1641</td><td>3390</td><td>1021</td><td>854</td><td>1402</td><td>0</td><td>1156</td><td>1417</td><td>0</td></td<>	Satd. Flow (perm)	1588	3390	1357	1641	3390	1021	854	1402	0	1156	1417	0
Lane Group Flow (vph) 88 641 44 46 1101 150 97 110 0 183 114 0 Turn Type Prot NA Perm Prot NA Perm PA Perm NA	Satd. Flow (RTOR)						147					294	
Turn Type Prot NA Perm Prot NA Perm pm+pt NA Perm NA Protected Phases 5 2 1 6 3 8 4 Detector Phase 5 2 2 1 6 6 3 8 4 4 Detector Phase 5 2 2 1 6 6 3 8 4 4 Switch Phase	Lane Group Flow (vph)	88	641	44	46	1101	150	97	110	0	183	114	0
Protected Phases 5 2 1 6 3 8 4 Permitted Phases 2 6 8 4 Detector Phase 5 2 2 1 6 6 8 4 4 Switch Phase 5 2 2 1 6 6 3 8 4 4 Minimum Split (s) 15.3 26.3 15.3 26.3 26.3 10.3 23.3 37.9 37.9 Total Split (s) 11.8 39.1% 39.1% 42.9% 42.9% 8.5% 41.5% 29.2% 29.2% Yellow Time (s) 3.3 3.7 3.7 3.3 3.7 3.3 3.53	Turn Type	Prot	NA	Perm	Prot	NA	Perm	pm+pt	NA		Perm	NA	
Permitted Phases 2 6 8 4 Detector Phase 5 2 2 1 6 6 3 8 4 4 Switch Phase 5 2 2 1 6 6 3 8 4 4 Switch Phase 5 2 2 1 6 6 3 8 4 4 Switch Phase 15.3 26.3 26.3 10.0 1	Protected Phases	5	2		1	6		3	8			4	
Detector Phase 5 2 2 1 6 6 3 8 4 4 Switch Phase Minimum Initial (s) 10.0 <td< td=""><td>Permitted Phases</td><td></td><td></td><td>2</td><td></td><td></td><td>6</td><td>8</td><td></td><td></td><td>4</td><td></td><td></td></td<>	Permitted Phases			2			6	8			4		
Switch Phase Minimum Initial (s) 10.0	Detector Phase	5	2	2	1	6	6	3	8		4	4	
Minimum Initial (s) 10.0	Switch Phase												
Minimum Split (s) 15.3 26.3 26.3 15.3 26.3 26.3 10.3 23.3 37.9 37.9 Total Split (s) 15.3 50.8 50.8 15.3 55.8 11.0 53.9 37.9 37.9 Total Split (s) 11.8% 39.1% 39.1% 11.8% 42.9% 42.9% 8.5% 41.5% 29.2% 29.2% Yellow Time (s) 3.3 3.7 3.7 3.3 3.7 3.3 3.3 3.3 3.3 All-Red Time (s) 2.0 1.6 1.6 2.0 0.0	Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0		10.0	10.0	
Total Split (s) 15.3 50.8 50.8 15.3 55.8 55.8 11.0 53.9 37.9 37.9 37.9 Total Split (%) 11.8% 39.1% 11.8% 42.9% 42.9% 8.5% 41.5% 29.2% 29.2% Yellow Time (s) 3.3 3.7 3.7 3.3 3.7 3.7 3.3	Minimum Split (s)	15.3	26.3	26.3	15.3	26.3	26.3	10.3	23.3		37.9	37.9	
Total Split (%) 11.8% 39.1% 11.8% 42.9% 42.9% 8.5% 41.5% 29.2% 29.2% Yellow Time (s) 3.3 3.7 3.7 3.3 3.7 3.3 3.3 3.3 3.3 All-Red Time (s) 2.0 1.6 1.6 2.0 1.6 2.0 2.6 2.6 Lost Time Adjust (s) 0.0 <td>Total Split (s)</td> <td>15.3</td> <td>50.8</td> <td>50.8</td> <td>15.3</td> <td>55.8</td> <td>55.8</td> <td>11.0</td> <td>53.9</td> <td></td> <td>37.9</td> <td>37.9</td> <td></td>	Total Split (s)	15.3	50.8	50.8	15.3	55.8	55.8	11.0	53.9		37.9	37.9	
Yellow Time (s) 3.3 3.7 3.7 3.3 3.7 3.7 3.3	Total Split (%)	11.8%	39.1%	39.1%	11.8%	42.9%	42.9%	8.5%	41.5%		29.2%	29.2%	
All-Red Time (s) 2.0 1.6 1.6 2.0 1.6 1.6 2.0 2.0 2.6 2.6 Lost Time Adjust (s) 0.0	Yellow Time (s)	3.3	3.7	3.7	3.3	3.7	3.7	3.3	3.3		3.3	3.3	
Lost Time Adjust (s) 0.0	All-Red Time (s)	2.0	1.6	1.6	2.0	1.6	1.6	2.0	2.0		2.6	2.6	
Total Lost Time (s) 5.3 5.4 34.1	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Lead/Lag Lead Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode None C-Min C-Min None C-Min None None None None Act Effct Green (s) 11.5 65.4 65.4 10.1 61.9 39.7 39.7 25.0 25.0 Actuated g/C Ratio 0.09 0.50 0.50 0.08 0.48 0.48 0.31 0.31 0.19 0.19 v/c Ratio 0.59 0.38 0.06 0.35 0.68 0.27 0.31 0.26 0.82 0.22 Control Delay 75.8 21.8 19.8 64.9 30.9 5.4 34.2 33.9 77.9 1.0 Queue Delay 0.0 0.0 0.0 18.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3		5.9	5.9	
Lead-Lag Optimize? Yes Yes Yes Yes Yes Recall Mode None C-Min C-Min None C-Min None Additional and additional anditional anditional and additional and additionanditional and ad	Lead/Lag	Lead			Lead			Lead					
Recall Mode None C-Min C-Min C-Min C-Min None	Lead-Lag Optimize?	Yes			Yes			Yes					
Act Effct Green (s) 11.5 65.4 65.4 10.1 61.9 39.7 39.7 25.0 25.0 Actuated g/C Ratio 0.09 0.50 0.50 0.08 0.48 0.48 0.31 0.31 0.19 0.19 v/c Ratio 0.59 0.38 0.06 0.35 0.68 0.27 0.31 0.26 0.82 0.22 Control Delay 75.8 21.8 19.8 64.9 30.9 5.4 34.2 33.9 77.9 1.0 Queue Delay 0.0 0.0 0.0 18.6 0.0 0.0 0.0 0.0 Total Delay 75.8 21.8 19.8 64.9 49.4 5.4 34.2 33.9 77.9 1.0 LOS E C B E D A C C E A Approach LOS C D C D C D D Queue Length 50th (m) 20.9 62.9 6.0 11.4 117.1 0.4 17.8 20.6 45.1 0.0 <	Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min	None	None		None	None	
Actuated g/C Ratio 0.09 0.50 0.50 0.08 0.48 0.48 0.31 0.31 0.19 0.19 v/c Ratio 0.59 0.38 0.06 0.35 0.68 0.27 0.31 0.26 0.82 0.22 Control Delay 75.8 21.8 19.8 64.9 30.9 5.4 34.2 33.9 77.9 1.0 Queue Delay 0.0 0.0 0.0 18.6 0.0 0.0 0.0 0.0 Total Delay 75.8 21.8 19.8 64.9 49.4 5.4 34.2 33.9 77.9 1.0 LOS E C B E D A C C E A Approach Delay 27.8 44.9 34.1 48.4 A A A C C D D D Queue Length 50th (m) 20.9 62.9 6.0 11.4 117.1 0.4 17.8 20.6 45.1 0.0 Queue Length 95th (m) 446.9 92.5 14.6 24.2 161	Act Effct Green (s)	11.5	65.4	65.4	10.1	61.9	61.9	39.7	39.7		25.0	25.0	
v/c Ratio 0.59 0.38 0.06 0.35 0.68 0.27 0.31 0.26 0.82 0.22 Control Delay 75.8 21.8 19.8 64.9 30.9 5.4 34.2 33.9 77.9 1.0 Queue Delay 0.0 0.0 0.0 0.0 18.6 0.0 0.0 0.0 0.0 Total Delay 75.8 21.8 19.8 64.9 49.4 5.4 34.2 33.9 77.9 1.0 LOS E C B E D A C C E A Approach Delay 27.8 44.9 34.1 48.4 Approach LOS C D C D D Queue Length 50th (m) 20.9 62.9 6.0 11.4 117.1 0.4 17.8 20.6 45.1 0.0 Queue Length 95th (m) #46.9 92.5 14.6 24.2 161.4 14.3 28.9 33.1 68.4 0.0 Internal Link Dist (m) 141.7 98.6 63.9 477	Actuated g/C Ratio	0.09	0.50	0.50	0.08	0.48	0.48	0.31	0.31		0.19	0.19	
Control Delay 75.8 21.8 19.8 64.9 30.9 5.4 34.2 33.9 77.9 1.0 Queue Delay 0.0 0.0 0.0 0.0 18.6 0.0 0.0 0.0 0.0 Total Delay 75.8 21.8 19.8 64.9 49.4 5.4 34.2 33.9 77.9 1.0 LOS E C B E D A C C E A Approach Delay 27.8 44.9 34.1 48.4 Approach LOS C D C D D Queue Length 50th (m) 20.9 62.9 6.0 11.4 117.1 0.4 17.8 20.6 45.1 0.0 Queue Length 95th (m) #46.9 92.5 14.6 24.2 161.4 14.3 28.9 33.1 68.4 0.0 Internal Link Dist (m) 141.7 98.6 63.9 477.2 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 </td <td>v/c Ratio</td> <td>0.59</td> <td>0.38</td> <td>0.06</td> <td>0.35</td> <td>0.68</td> <td>0.27</td> <td>0.31</td> <td>0.26</td> <td></td> <td>0.82</td> <td>0.22</td> <td></td>	v/c Ratio	0.59	0.38	0.06	0.35	0.68	0.27	0.31	0.26		0.82	0.22	
Queue Delay 0.0 0.0 0.0 0.0 18.6 0.0	Control Delay	75.8	21.8	19.8	64.9	30.9	5.4	34.2	33.9		77.9	1.0	
I otal Delay 75.8 21.8 19.8 64.9 49.4 5.4 34.2 33.9 77.9 1.0 LOS E C B E D A C C E A Approach Delay 27.8 44.9 34.1 48.4 Approach LOS C D C D D Queue Length 50th (m) 20.9 62.9 6.0 11.4 117.1 0.4 17.8 20.6 45.1 0.0 Queue Length 95th (m) #46.9 92.5 14.6 24.2 161.4 14.3 28.9 33.1 68.4 0.0 Internal Link Dist (m) 141.7 98.6 63.9 477.2 Turn Bay Length (m) 55.0 75.0 61.0 35.0 30.0 Base Capacity (vph) 149 1704 682 131 1613 563 311 524 284 570	Queue Delay	0.0	0.0	0.0	0.0	18.6	0.0	0.0	0.0		0.0	0.0	
LOS E C B E D A C C E A Approach Delay 27.8 44.9 34.1 48.4 Approach LOS C D C D Queue Length 50th (m) 20.9 62.9 6.0 11.4 117.1 0.4 17.8 20.6 45.1 0.0 Queue Length 95th (m) #46.9 92.5 14.6 24.2 161.4 14.3 28.9 33.1 68.4 0.0 Internal Link Dist (m) 141.7 98.6 63.9 477.2 Turn Bay Length (m) 55.0 75.0 61.0 35.0 30.0 Base Capacity (vph) 149 1704 682 131 1613 563 311 524 284 570	Total Delay	/5.8	21.8	19.8	64.9	49.4	5.4	34.2	33.9		//.9	1.0	
Approach Delay 27.8 44.9 34.1 48.4 Approach LOS C D C D Queue Length 50th (m) 20.9 62.9 6.0 11.4 117.1 0.4 17.8 20.6 45.1 0.0 Queue Length 95th (m) #46.9 92.5 14.6 24.2 161.4 14.3 28.9 33.1 68.4 0.0 Internal Link Dist (m) 141.7 98.6 63.9 477.2 Turn Bay Length (m) 55.0 75.0 61.0 35.0 30.0 Base Capacity (vph) 149 1704 682 131 1613 563 311 524 284 570	LOS	E	C	В	E	D	A	C	C		E	A	_
Approach LOS C D C D C D Queue Length 50th (m) 20.9 62.9 6.0 11.4 117.1 0.4 17.8 20.6 45.1 0.0 Queue Length 95th (m) #46.9 92.5 14.6 24.2 161.4 14.3 28.9 33.1 68.4 0.0 Internal Link Dist (m) 141.7 98.6 63.9 477.2 Turn Bay Length (m) 55.0 75.0 61.0 35.0 30.0 Base Capacity (vph) 149 1704 682 131 1613 563 311 524 284 570	Approach Delay		27.8			44.9			34.1			48.4	
Queue Length Soth (m) 20.9 62.9 6.0 11.4 117.1 0.4 17.8 20.6 45.1 0.0 Queue Length 95th (m) #46.9 92.5 14.6 24.2 161.4 14.3 28.9 33.1 68.4 0.0 Internal Link Dist (m) 141.7 98.6 63.9 477.2 Turn Bay Length (m) 55.0 75.0 61.0 35.0 30.0 Base Capacity (vph) 149 1704 682 131 1613 563 311 524 284 570	Approach LUS	00.0	0	0.0	44.4		0.4	47.0				D	
Queue Length 95th (m) #46.9 92.5 14.6 24.2 161.4 14.3 28.9 33.1 68.4 0.0 Internal Link Dist (m) 141.7 98.6 63.9 477.2 Turn Bay Length (m) 55.0 75.0 61.0 35.0 30.0 Base Capacity (vph) 149 1704 682 131 1613 563 311 524 284 570	Queue Length 50th (m)	20.9	62.9	0.0	11.4	117.1	0.4	17.8	20.0		45.1	0.0	
Internal Link Dist (m) 141.7 98.6 63.9 477.2 Turn Bay Length (m) 55.0 75.0 61.0 35.0 30.0 Base Capacity (vph) 149 1704 682 131 1613 563 311 524 284 570	Queue Length 95th (m)	#46.9	92.5	14.6	Z4.Z	101.4	14.3	28.9	33.1		68.4	0.0	
Base Capacity (vph) 149 1704 682 131 1613 563 311 524 284 570	Internal Link Dist (m)	55.0	141.7	75.0	C1 0	98.0	25.0		63.9		20.0	4//.Z	
Base Capacity (vpn) 149 1704 662 131 1613 563 311 524 264 570	Turn Bay Length (m)	20.0	1704	/ 5.0	121	1610	35.0	211	504		30.0	E70	
Staniation Can Deductra 0 0 0 0 E20 0 0 0 0 0 0	Base Capacity (vpn)	149	1704	002	131	1013 E20	503	311	524		204	5/0	
Starvation Cap Reductin 0 0 0 0 550 0 0 0 0 0 0	Starvation Cap Reductin	0	0	0	0	530	0	0	0		0	0	
Spinback Cap Reductin 0 0 0 0 19 0 0 0 0 0 1	Spillback Cap Reductin	0	0	0	0	19	0	0	0		0	1	
Storage Cap Reductin U U U U U U U U U U U U U U U U U U U	Storage Cap Reductin	0.50	0 20	0.06	0.25	1 00	0.07	0.24	0.01		0.64	0 00	
Reduced V/C Ratio 0.59 0.38 0.06 0.35 1.02 0.27 0.31 0.21 0.64 0.20	Reduced V/C Ratio	0.59	0.38	0.00	0.35	1.02	U.Z7	0.31	0.21		0.04	0.20	
Intersection Summary Cycle Longth: 130	Intersection Summary												
	Actuated Cycle Length: 120												
Actualed Cycle Length. T30 Offect: 0 (0%) Referenced to phase 2:ERT and 6:WPT. Start of Groop	Offect: 0 (0%) Deferenced t	o nhaca 0			Start of C	roon							
Natural Cycle: 115	Natural Cycle: 115	o priase z		10.001,									

Control Type: Actuated-Coordinated

Lane Group	Ø9	Ø10	Ø11
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Satd, Flow (prot)			
Flt Permitted			
Satd, Flow (perm)			
Satd. Flow (RTOR)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	9	10	11
Permitted Phases	Ū	10	
Detector Phase			
Switch Phase			
Minimum Initial (a)	10	10	10
Minimum Split (c)	10.0	5.0	5.0
Total Split (s)	10.0	5.0	5.0
Total Split (8)	10.0	5.0	5.0 40/
Yollow Time (2)	0%	4%	4%
	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes
Recall Mode	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vnh)			
Starvation Can Reducto			
Snillback Can Reductn			
Storage Can Peducth			
Peduced v/c Patio			
Intersection Summary			

Lanes, Volumes, Timings 16: Road A/Champagne & Carling

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 39.3 Intersection Capacity Utilization 78.8% Intersection LOS: D ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 16: Road A/Champagne & Carling

√ Ø1		↑ Ø3 Å Å Ø4
15.3 s	10 s 50.8 s	11 s 5 s 37.9 s
	1 ≥ 10 206 (R)	<1 ø8
15.3 s	5 s 55.8 s	53.9 s

Lanes, Volumes, Timings 17: Carling & Trillium MUP

	۶	-	$\mathbf{\hat{z}}$	4	+	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			44							
Traffic Volume (vph)	0	939	0	0	1434	0	0	0	0	0	0	0
Future Volume (vph)	0	939	0	0	1434	0	0	0	0	0	0	0
Satd. Flow (prot)	0	3390	0	0	3390	0	0	0	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	3390	0	0	3390	0	0	0	0	0	0	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	939	0	0	1434	0	0	0	0	0	0	0
Turn Type		NA			NA							
Protected Phases		2			6							
Permitted Phases												
Detector Phase		2			6							
Switch Phase												
Minimum Initial (s)		10.0			10.0							
Minimum Split (s)		31.1			31.1							
Total Split (s)		35.0			35.0							
Total Split (%)		50.0%			50.0%							
Yellow Time (s)		3.7			3.7							
All-Red Time (s)		1.4			1.4							
Lost Time Adjust (s)		0.0			0.0							
Total Lost Time (s)		5.1			5.1							
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Min			C-Min							
Act Effct Green (s)		62.0			62.0							
Actuated g/C Ratio		0.89			0.89							
v/c Ratio		0.31			0.48							
Control Delay		4.9			6.6							
Queue Delay		0.0			0.0							
Total Delay		49			6.6							
		Α			Δ							
Approach Delay		49			6.6							
Approach LOS		Α			Δ							
Queue Length 50th (m)		0.0			7.5							
Queue Length 95th (m)		67.7		m	n#114 7							
Internal Link Dist (m)		98.6			92.8			53.0			60.9	
Turn Bay Length (m)		00.0			02.0			00.0			00.0	
Base Capacity (vph)		3002			3002							
Starvation Can Reductn		45			29							
Spillback Cap Reductn		68			0							
Storage Can Reductn		0			0							
Reduced v/c Ratio		0.32			0 48							
		0.02			0.40							
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: (1/0%) Referenced to	nhaco 9	·FRT and	6.WRT	Start of C	reen							
Natural Cycle: 75	phase Z		0.WD1, C	Start OF G								
Control Type: Actuated-Coordi	inated											

Lane Group	Ø4	Ø8
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd, Flow (prot)		
Flt Permitted		
Satd, Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	4	8
Permitted Phases	•	Ū
Detector Phase		
Switch Phase		
Minimum Initial (s)	10	10
Minimum Split (s)	35.6	35.6
Total Solit (s)	35.0	35.0
Total Split (%)	50%	50%
Yellow Time (s)	3070	3070
All-Red Time (s)	3.0	3.0
Lost Timo Adjust (s)	5.0	5.0
Lost Time Aujust (S)		
Lead/Lag		
Leau-Lag Optimize?	Neze	Mana
	None	None
Act Elict Green (S)		
Actuated g/C Ratio		
V/C Ratio		
Control Delay		
Queue Delay		
Total Delay		
LUS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
intersection Summary		

Lanes, Volumes, Timings 17: Carling & Trillium MUP

Maximum v/c Ratio: 0.48							
Intersection Signal Delay: 6.0	Intersection LOS: A						
Intersection Capacity Utilization 46.1%	ICU Level of Service A						
Analysis Period (min) 15							
# 95th percentile volume exceeds capacity, queue may be longer.							
Queue shown is maximum after two cycles.							

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 17: Carling & Trillium MUP

→ø2 (R)	Ak ₀₄							
35 s		35 s						
← Ø6 (R)		₩A _{Ø8}						
35 s		35 s						

Lanes, Volumes, Timings 18: Preston & Carling

	≯	-	\rightarrow	•	-	•	1	†	1	1	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	^	1	ሻ	^	1	5	≜1 }		ሻ	ĥ	
Traffic Volume (vph)	123	536	297	326	1010	54	283	359	179	95	287	95
Future Volume (vph)	123	536	297	326	1010	54	283	359	179	95	287	95
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	1695	3099	0	1695	1662	0
Flt Permitted	0.950			0.950			0.128			0.452		
Satd. Flow (perm)	1631	3390	1517	1633	3390	1242	228	3099	0	769	1662	0
Satd. Flow (RTOR)						179					11	
Lane Group Flow (vph)	123	536	297	326	1010	54	283	538	0	95	382	0
Turn Type	Prot	NA	custom	Prot	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases	5	92	93	1	6		3	8			4	
Permitted Phases						6	8			4		
Detector Phase	5	92	93	1	6	6	3	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0			5.0	10.0	10.0	5.0	10.0		10.0	10.0	
Minimum Split (s)	11.2			11.2	25.0	25.0	11.9	38.9		38.9	38.9	
Total Split (s)	20.2			36.0	46.1	46.1	24.8	61.7		38.9	38.9	
Total Split (%)	14.4%			25.7%	32.9%	32.9%	17.7%	44.1%		27.8%	27.8%	
Yellow Time (s)	3.7			3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5			2.5	2.3	2.3	3.6	3.6		3.6	3.6	
Lost Time Adjust (s)	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.2			6.2	6.0	6.0	6.9	6.9		6.9	6.9	
Lead/Lag	Lead			Lead			Lead					
Lead-Lag Optimize?	Yes			Yes			Yes					
Recall Mode	None			None	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	13.1	32.5	29.1	28.9	42.4	42.4	61.3	55.7		32.5	32.5	
Actuated g/C Ratio	0.09	0.23	0.21	0.21	0.30	0.30	0.44	0.40		0.23	0.23	
v/c Ratio	0.78	0.68	0.94	0.93	0.98	0.11	0.99	0.44		0.53	0.97	
Control Delay	91.3	50.0	93.1	85.6	76.8	0.3	106.6	15.2		60.0	90.1	
Queue Delay	0.0	1.4	8.4	4.9	15.7	0.0	20.1	0.0		0.0	40.4	
Total Delay	91.3	51.4	101.5	90.4	92.5	0.3	126.7	15.2		60.0	130.5	
LOS	F	D	F	F	F	A	F	В		E	F	
Approach Delay		72.1			88.4			53.6			116.5	
Approach LOS		E			F			D			F	
Queue Length 50th (m)	33.6	72.8	82.7	94.3	~156.9	0.0	62.2	25.0		23.4	103.6	
Queue Length 95th (m)	#64.3	80.5	#148.8 n	n#107.8 r	n#172.9	m0.0	#117.2	31.8		42.9	#168.9	
Internal Link Dist (m)		92.8			165.9			145.6			55.2	
Turn Bay Length (m)	70.0		90.0	120.0		95.0				35.0		
Base Capacity (vph)	169	744	315	360	1026	500	287	1232		178	394	
Starvation Cap Reductn	0	79	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	14	15	56	0	19	0		0	69	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.73	0.81	0.99	0.94	1.04	0.11	1.06	0.44		0.53	1.18	
Intersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 140												
Offset: 6 (4%), Referenced to	phase 2:	EBT and	d 6:WBT,	Start of G	Green							
Natural Cycle: 120												

Control Type: Actuated-Coordinated

Lane Group	Ø2	Ø9	Ø10	Ø11	Ø12
Lane Configurations					
Traffic Volume (vph)					
Future Volume (vph)					
Satd. Flow (prot)					
Flt Permitted					
Satd. Flow (perm)					
Satd. Flow (RTOR)					
Lane Group Flow (vph)					
Turn Type					
Protected Phases	2	9	10	11	12
Permitted Phases		-			
Detector Phase					
Switch Phase					
Minimum Initial (s)	10.0	1.0	1.0	1.0	1.0
Minimum Split (s)	26.0	5.3	5.0	5.0	5.0
Total Split (s)	29.0	6.3	5.0	5.0	7.0
Total Split (%)	21%	5%	4%	4%	5%
Yellow Time (s)	20	20	2.0	2.0	20
All-Red Time (s)	0.0	2.3	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	2.0	0.0	0.0	0.0
Total Lost Time (s)					
Lead/Lag	Lag		Laq	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	
Recall Mode	C-Min	Min	None	None	None
Act Effct Green (s)			110110	10110	10110
Actuated g/C Ratio					
v/c Ratio					
Control Delay					
Queue Delay					
Total Delay					
Approach Delay					
Approach LOS					
Oueue Length 50th (m)					
Queue Length 95th (m)					
Internal Link Dist (m)					
Turn Bay Length (m)					
Base Canacity (vnh)					
Starvation Can Reductn					
Spillback Can Reductn					
Storage Cap Reductn					
Reduced v/c Ratio					
Intersection Summary					

Maximum v/c Ratio: 0.99						
Intersection Signal Delay: 80.0	Intersection LOS: E					
Intersection Capacity Utilization 101.3%	ICU Level of Service G					
Analysis Period (min) 15						
 Volume exceeds capacity, queue is theoretically infinite. 						
Queue shown is maximum after two cycles.						
# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.						
m Volume for 95th percentile queue is metered by upstream signal.						

Splits and Phases: 18: Preston & Carling

Ø1		● → Ø2 (R)	*	09 Q	3	×	Ø1 Ø4		
36 s		29 s	6.3 s	24.8 s		5 s	38.9 s		
	₩ø10 ø6 ()		He	12 Ø8				
20.2 s	5s 46.1s			7 s	61.7 s				

	٦	-	+	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	**	*	1	3	1
Traffic Volume (vph)	214	739	990	90	268	281
Future Volume (vph)	214	739	990	90	268	281
Satd. Flow (prot)	1695	3390	1784	1517	1695	1517
Flt Permitted	0.048				0.950	
Satd, Flow (perm)	86	3390	1784	1141	1663	1187
Satd, Flow (RTOR)				25		175
Lane Group Flow (vph)	214	739	990	90	268	281
Turn Type	pm+pt	NA	NA	Perm	Perm	Perm
Protected Phases	5	2	6			
Permitted Phases	2	2	Ū	6	4	4
Detector Phase	5	2	6	6	4	4
Switch Phase	5	2	0	0	т	т
Minimum Initial (a)	5.0	10.0	10.0	10.0	10.0	10.0
Minimum Solit (s)	10.0	20.7	20.7	20.7	20.0	30.0
Total Split (s)	10.9	29.7	29.1	29.1	39.0	39.0
Total Split (S)	19.2	70 40/	01.0 E0 40/	01.0 E0 40/	39.0	39.0
Total Split (%)	13.1%	12.1%	50.4%	50.4%	21.9%	21.9%
Tellow Time (S)	3.7	3.7	3.7	3.7	3.3	3.3
All-Red Lime (s)	2.2	2.0	2.0	2.0	2.7	2.7
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.9	5.7	5.7	5.7	6.0	6.0
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	None
Act Effct Green (s)	97.9	98.1	77.7	77.7	30.2	30.2
Actuated g/C Ratio	0.70	0.70	0.56	0.56	0.22	0.22
v/c Ratio	0.95	0.31	1.00	0.14	0.75	0.72
Control Delay	97.1	7.4	60.3	11.9	64.5	29.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	97.1	7.4	60.3	11.9	64.5	29.1
LOS	F	А	E	В	Е	С
Approach Delay		27.6	56.2		46.4	
Approach LOS		С	Е		D	
Queue Length 50th (m)	~52.6	32.0	~290.2	8.4	68.2	26.7
Queue Length 95th (m)	m#99.4	38.7	#368.9	17.6	99.7	60.7
Internal Link Dist (m)		100.4	299.3		220.7	-
Turn Bay Length (m)	50.0			30.0		30.0
Base Capacity (vph)	226	2375	990	644	391	413
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Can Reductn	0	0	0 0	0	0 0	0 0
Storage Can Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.95	0.31	1 00	0 14	0 69	0.68
	0.00	0.01	1.00	0.14	0.00	0.00
Intersection Summary						
Actuated Quale Length: 140						
Actuated Cycle Length: 140	1 1			Oto 1 of	0	
Unset: U (U%), Referenced	to phase 2	EBIL ar	10 9:11B	, Start of	Green	
Natural Cycle: 120						
Control Type: Actuated-Coc	ordinated					

Maximum v/c Ratio: 1.00	
Intersection Signal Delay: 43.6	Intersection LOS: D
Intersection Capacity Utilization 109.0%	ICU Level of Service G
Analysis Period (min) 15	
~ Volume exceeds capacity, queue is theoretically infinite.	
Queue shown is maximum after two cycles.	
# 95th percentile volume exceeds capacity, queue may be lor	nger.
Queue shown is maximum after two cycles.	
m Volume for 95th percentile queue is metered by upstream s	ignal.

Splits and Phases: 20: Carling & Booth

→ _{Ø2 (R)}		Ø4
101 s		39 s
•	↓	
- Ø5	Ø6 (R)	
19.2 s	81.8 s	

Lanes, Volumes, Timings 21: Bronson & Carling/Glebe

	٦	-	\mathbf{r}	4	-	*	1	1	1	1	↓	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	र्भ	1				ሻሻ	4			tβ	
Traffic Volume (vph)	400	110	528	0	0	0	563	642	14	0	1135	275
Future Volume (vph)	400	110	528	0	0	0	563	642	14	0	1135	275
Satd. Flow (prot)	1610	1651	1517	0	0	0	3288	1770	0	0	3246	0
Flt Permitted	0.950	0.974					0.950					
Satd. Flow (perm)	1511	1597	1413	0	0	0	3244	1770	0	0	3246	0
Satd. Flow (RTOR)			103					2			26	
Lane Group Flow (vph)	276	234	528	0	0	0	563	656	0	0	1410	0
Turn Type	Perm	NA	pm+ov				Prot	NA			NA	
Protected Phases		4	5				5	2			6	
Permitted Phases	4		4									
Detector Phase	4	4	5				5	2			6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0				10.0	10.0			10.0	
Minimum Split (s)	31.0	31.0	16.0				16.0	25.1			33.0	
Total Split (s)	36.0	36.0	33.0				33.0	104.0			71.0	
Total Split (%)	24.5%	24.5%	22.4%				22.4%	70.7%			48.3%	
Yellow Time (s)	3.3	3.3	3.3				3.3	3.3			3.3	
All-Red Time (s)	2.7	2.7	2.7				2.7	2.7			2.7	
Lost Time Adjust (s)	0.0	0.0	0.0				0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0				6.0	6.0			6.0	
Lead/Lag			Lead				Lead				Lag	
Lead-Lag Optimize?			Yes				Yes				Yes	
Recall Mode	None	None	None				None	C-Min			C-Min	
Act Effct Green (s)	28.9	28.9	55.6				26.7	99.0			66.3	
Actuated g/C Ratio	0.20	0.20	0.38				0.18	0.67			0.45	
v/c Ratio	0.93	0.75	0.85				0.94	0.55			0.95	
Control Delay	94.6	70.9	45.4				84.2	14.8			53.4	
Queue Delay	0.0	0.0	0.0				0.0	0.0			0.0	
Total Delay	94.6	70.9	45.4				84.2	14.8			53.4	
LOS	F	Е	D				F	В			D	
Approach Delay		64.2						46.9			53.4	
Approach LOS		E						D			D	
Queue Length 50th (m)	83.3	67.6	105.4				84.2	94.3			206.4	
Queue Length 95th (m)	#137.2	99.8	#160.2				#117.6	126.0			#258.4	
Internal Link Dist (m)		74.7			115.0			394.4			328.4	
Turn Bay Length (m)	40.0						50.0					
Base Capacity (vph)	308	325	620				603	1192			1477	
Starvation Cap Reductn	0	0	0				0	0			0	
Spillback Cap Reductn	0	0	0				0	0			0	
Storage Cap Reductn	0	0	0				0	0			0	
Reduced v/c Ratio	0.90	0.72	0.85				0.93	0.55			0.95	
Intersection Summary												
Cycle Length: 147												
Actuated Cycle Length: 147	7											
Offset: 0 (0%), Referenced	to phase 2	:NBT and	d 6:SBT, S	Start of Gr	een							
Natural Cvcle: 120												

Control Type: Actuated-Coordinated

Lane Group	Ø10
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Satd. Flow (RTOR)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	10
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	1.0
Minimum Split (s)	7.0
Total Split (s)	7.0
Total Split (%)	5%
Yellow Time (s)	2.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Recall Mode	Min
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	

Lanes, Volumes, Timings 21: Bronson & Carling/Glebe

Maximum v/c Ratio: 0.95 Intersection Signal Delay: 54.3

Intersection Capacity Utilization 96.3%

Intersection LOS: D ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Splits and Phases: 21: Bronson & Carling/Glebe

f ø2 (R)		۶.	010-104
104 s		7 s	36 s
\$ Ø5	Ø6 (R)		
33 s	71 s		

Lanes, Volumes, Timings 22: Parkdale & 417 WB on/off

	≯	-	\mathbf{r}	-	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				5	ţ,		5	•			ĥ	
Traffic Volume (vph)	0	0	0	284	23	450	84	536	0	0	559	208
Future Volume (vph)	0	0	0	284	23	450	84	536	0	0	559	208
Satd, Flow (prot)	0	0	0	1695	1474	0	1695	1784	0	0	1685	0
Flt Permitted				0.950			0.225					
Satd. Flow (perm)	0	0	0	1695	1474	0	401	1784	0	0	1685	0
Satd. Flow (RTOR)					337						29	
Lane Group Flow (vph)	0	0	0	284	473	0	84	536	0	0	767	0
Turn Type				Perm	NA		pm+pt	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8			2					
Detector Phase				8	8		5	2			6	
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	
Minimum Split (s)				29.0	29.0		10.3	27.3			25.1	
Total Split (s)				29.0	29.0		11.0	71.0			60.0	
Total Split (%)				29.0%	29.0%		11.0%	71.0%			60.0%	
Yellow Time (s)				3.3	3.3		3.0	3.0			3.0	
All-Red Time (s)				2.2	2.2		2.2	3.3			3.3	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				5.5	5.5		5.2	6.3			6.3	
Lead/Lag							Lag				Lead	
Lead-Lag Optimize?							Yes				Yes	
Recall Mode				None	None		None	C-Min			C-Min	
Act Effct Green (s)				20.7	20.7		69.7	67.5			58.4	
Actuated g/C Ratio				0.21	0.21		0.70	0.68			0.58	
v/c Ratio				0.81	0.83		0.23	0.45			0.77	
Control Delay				55.9	24.2		5.2	5.5			23.7	
Queue Delav				0.0	0.0		1.4	1.5			8.2	
Total Delay				55.9	24.2		6.5	7.0			31.9	
LOS				E	С		A	A			С	
Approach Delay					36.1			7.0			31.9	
Approach LOS					D			A			С	
Queue Lenath 50th (m)				51.3	23.8		4.4	32.1			116.1	
Queue Length 95th (m)				#81.0	#74.2		m1.2	15.2			#181.4	
Internal Link Dist (m)		157.5			140.3			45.3			171.5	
Turn Bay Length (m)												
Base Capacity (vph)				398	604		359	1204			997	
Starvation Cap Reductn				0	0		154	462			0	
Spillback Cap Reductn				0	0		0	0			196	
Storage Cap Reductn				0	0		0	0			0	
Reduced v/c Ratio				0.71	0.78		0.41	0.72			0.96	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 39 (39%), Referenced	to phase	2:NBTL	and 6:SE	BT, Start o	of Green							
Natural Cycle: 90												
Control Type: Actuated-Coord	linated											

Lanes, Volumes, Timings 22: Parkdale & 417 WB on/off

Maximum v/c Ratio: 0.83	
Intersection Signal Delay: 26.2	Intersection LOS: C
Intersection Capacity Utilization 124.2%	ICU Level of Service H
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lo	onger.
Queue shown is maximum after two cycles.	
m Volume for 95th percentile queue is metered by upstream	signal.

Splits and Phases: 22: Parkdale & 417 WB on/off

∫ [™] Ø2 (R)				
71s				
Ø6 (R)		Ø5	₩ Ø8	
60 s	1	.1 s	29 s	

Lanes, Volumes, Timings 23: Parkdale & 417 EB on/off

	٦	-	\rightarrow	1	-	*	1	†	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	1					≜t ≽		5	•	
Traffic Volume (vph)	353	2	173	0	0	0	0	268	217	455	384	0
Future Volume (vph)	353	2	173	0	0	0	0	268	217	455	384	0
Satd. Flow (prot)	0	1700	1517	0	0	0	0	3031	0	1695	1784	0
Flt Permitted		0.953		-	-	-	-		-	0.360		-
Satd, Flow (perm)	0	1700	1482	0	0	0	0	3031	0	626	1784	0
Satd, Flow (RTOR)			173					217				
Lane Group Flow (vph)	0	355	173	0	0	0	0	485	0	455	384	0
Turn Type	Perm	NA	Perm					NA		pm+pt	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4							6	-	
Detector Phase	4	4	4					2		1	6	
Switch Phase		-								-	-	
Minimum Initial (s)	10.0	10.0	10.0					10.0		5.0	10.0	
Minimum Split (s)	25.1	25.1	25.1					25.1		10.3	25.1	
Total Split (s)	30.0	30.0	30.0					38.0		32.0	70.0	
Total Split (%)	30.0%	30.0%	30.0%					38.0%		32.0%	70.0%	
Yellow Time (s)	3.3	3.3	3.3					3.0		3.0	3.0	
All-Red Time (s)	2.6	2.6	2.6					2.8		2.3	2.8	
Lost Time Adjust (s)	2.0	0.0	0.0					0.0		0.0	0.0	
Total Lost Time (s)		5.9	5.9					5.8		5.3	5.8	
Lead/Lag		0.0	0.0					Lag		Lead	0.0	
Lead-Lag Optimize?								Yes		Yes		
Recall Mode	None	None	None					C-Min		None	C-Min	
Act Effct Green (s)	Nono	26.8	26.8					36.2		62.0	61.5	
Actuated g/C Ratio		0.27	0.27					0.36		0.62	0.62	
v/c Ratio		0.78	0.33					0.39		0.76	0.35	
Control Delay		45.7	57					16.0		21.1	13.9	
Queue Delay		0.0	0.0					0.0		41.8	3.3	
Total Delay		45.7	5.7					16.0		62.9	17.2	
		D	0.1 A					B		02.0 F	B	
Approach Delay		32.6						16.0		<u> </u>	42.0	
Approach LOS		C						B			D	
Queue Length 50th (m)		63 1	0.0					18.9		56.8	46.2	
Queue Length 95th (m)		87.3	13.7					40.7		m74 1	m62.4	
Internal Link Dist (m)		109.8			145.0			90.1			45.3	
Turn Bay Length (m)			75.0					••••				
Base Capacity (vph)		472	536					1314		677	1162	
Starvation Cap Reductn		0	0					0		250	664	
Spillback Cap Reductn		0	0					23		0	0	
Storage Cap Reductn		0	0					0		0	0	
Reduced v/c Ratio		0.75	0.32					0.38		1.07	0.77	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 29 (29%), Reference	d to phase	e 2:NBT a	and 6:SBT	L, Start o	f Green							
Natural Cycle: 70												
Control Type: Actuated-Coo	rdinated											

Maximum v/c Ratio: 0.78

Intersection Signal Delay: 32.5	Intersection LOS: C
Intersection Capacity Utilization 124.2%	ICU Level of Service H

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 23: Parkdale & 417 EB on/off

Ø1	Ø2 (R)	₽ 04	
32 s	38 s	30 s	
Ø6 (R)			
70 s			

	٦	-	\mathbf{i}	•	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			4			4	
Traffic Volume (vph)	72	8	7	0	7	140	5	429	7	72	377	68
Future Volume (vph)	72	8	7	0	7	140	5	429	7	72	377	68
Satd. Flow (prot)	0	1683	0	0	1489	0	0	1777	0	0	1726	0
Flt Permitted		0.704						0.995			0.891	
Satd. Flow (perm)	0	1231	0	0	1489	0	0	1769	0	0	1544	0
Satd. Flow (RTOR)		7			140			2			23	
Lane Group Flow (vph)	0	87	0	0	147	0	0	441	0	0	517	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	1.0	1.0		1.0	1.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	18.0	18.0		18.0	18.0		25.1	25.1		25.1	25.1	
Total Split (s)	18.0	18.0		18.0	18.0		37.0	37.0		37.0	37.0	
Total Split (%)	32.7%	32.7%		32.7%	32.7%		67.3%	67.3%		67.3%	67.3%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.0			4.0			5.6			5.6	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	Ped	Ped		Ped	Ped		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)		14.0			14.0			31.4			31.4	
Actuated g/C Ratio		0.25			0.25			0.57			0.57	
v/c Ratio		0.27			0.30			0.44			0.58	
Control Delay		18.1			6.1			8.4			10.5	
Queue Delay		0.0			0.0			0.0			0.4	
Total Delay		18.1			6.1			8.4			10.9	
LOS		В			А			А			В	
Approach Delay		18.1			6.1			8.4			10.9	
Approach LOS		В			А			А			В	
Queue Length 50th (m)		6.3			0.5			21.7			27.2	
Queue Length 95th (m)		15.9			11.2			37.9			50.5	
Internal Link Dist (m)		221.3			335.0			289.1			90.1	
Turn Bay Length (m)												
Base Capacity (vph)		318			483			1010			891	
Starvation Cap Reductn		0			0			0			99	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.27			0.30			0.44			0.65	
Intersection Summary												
Cycle Length: 55												
Actuated Cycle Length: 55												
Offset: 26 (47%), Reference	ed to phase	e 2:NBTL	and 6:SE	STL, Starl	t of Green							
Natural Cycle: 50												
Control Type: Actuated-Coc	ordinated											

Lanes, Volumes, Timings 24: Parkdale & Sherwood

Maximum v/c Ratio: 0.58 Intersection Signal Delay: 9.9 Intersection Capacity Utilization 93.6% Analysis Period (min) 15

Intersection LOS: A ICU Level of Service F

Splits and Phases: 24: Parkdale & Sherwood

Ø2 (R)	→ ₀₄	
37 s	18 s	
Ø6 (R)	4 Ø8	
37 s	18 s	

Lanes, Volumes, Timings 25: Parkdale & Ruskin

	≯	-	\rightarrow	-	-	*	1	1	1	1	Ŧ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	4			4			4	
Traffic Volume (vph)	27	29	9	21	33	67	3	213	12	61	243	10
Future Volume (vph)	27	29	9	21	33	67	3	213	12	61	243	10
Satd. Flow (prot)	0	1695	0	1695	1512	0	0	1762	0	0	1757	0
Flt Permitted		0.820		0.807				0.997			0.903	
Satd. Flow (perm)	0	1385	0	1353	1512	0	0	1758	0	0	1588	0
Satd. Flow (RTOR)		7			67			8			5	
Lane Group Flow (vph)	0	65	0	21	100	0	0	228	0	0	314	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	19.4	19.4		19.4	19.4		31.8	31.8		31.8	31.8	
Total Split (s)	20.0	20.0		20.0	20.0		75.0	75.0		75.0	75.0	
Total Split (%)	21.1%	21.1%		21.1%	21.1%		78.9%	78.9%		78.9%	78.9%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.8	2.8		2.8	2.8	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)		5.4		5.4	5.4			5.8			5.8	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)		12.4		12.4	12.4			75.6			75.6	
Actuated g/C Ratio		0.13		0.13	0.13			0.80			0.80	
v/c Ratio		0.35		0.12	0.39			0.16			0.25	
Control Delay		39.0		37.2	20.0			3.5			4.1	
Queue Delay		0.0		0.0	0.0			0.0			0.0	
Total Delay		39.0		37.2	20.0			3.5			4.1	
LOS		D		D	В			А			А	
Approach Delay		39.0			23.0			3.5			4.1	
Approach LOS		D			С			А			А	
Queue Length 50th (m)		9.6		3.4	5.3			10.2			15.6	
Queue Length 95th (m)		21.8		9.9	19.6			16.8			24.6	
Internal Link Dist (m)		220.6			228.6			278.4			289.1	
Turn Bay Length (m)				40.0								
Base Capacity (vph)		218		207	289			1401			1265	
Starvation Cap Reductn		0		0	0			0			0	
Spillback Cap Reductn		0		0	0			0			0	
Storage Cap Reductn		0		0	0			0			0	
Reduced v/c Ratio		0.30		0.10	0.35			0.16			0.25	
Intersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95												
Offset: 40 (42%), Reference	ed to phase	e 2:NBTL	and 6:SE	BTL, Starl	t of Green							
Natural Cycle: 55												
Control Type: Actuated-Coc	ordinated											

Lanes, Volumes, Timings 25: Parkdale & Ruskin

Maximum v/c Ratio: 0.39 Intersection Signal Delay: 10.2 Intersection Capacity Utilization 68.7% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service C

Splits and Phases: 25: Parkdale & Ruskin

Ø2 (R)		
75 s	20 s	
Ø6 (R)	₩ Ø8	
75 s	20 s	

Lanes, Volumes, Timings 30: Prince of Wales & Preston

	٦	-	\rightarrow	4	-	•	1	1	1	1	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	•		5	•	1		4			र्स	1
Traffic Volume (vph)	491	246	0	3	395	428	1	0	0	426	3	595
Future Volume (vph)	491	246	0	3	395	428	1	0	0	426	3	595
Satd. Flow (prot)	3288	1784	0	1695	1784	1517	0	1695	0	0	1700	1517
Flt Permitted	0.950			0.950				0.513			0.728	
Satd. Flow (perm)	3189	1784	0	1474	1784	1484	0	785	0	0	1157	1352
Satd. Flow (RTOR)						213						
Lane Group Flow (vph)	491	246	0	3	395	428	0	1	0	0	429	595
Turn Type	Prot	NA		Prot	NA	Free	Perm	NA		custom	NA	custom
Protected Phases	5	2		1	6			8		11	4 11	5
Permitted Phases						Free	8			4		4
Detector Phase	5	2		1	6		8	8		11	4 11	5
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		10.0		5.0
Minimum Split (s)	11.1	27.1		10.3	26.1		24.5	24.5		15.3		11.1
Total Split (s)	52.0	66.7		10.3	30.0		33.0	33.0		25.0		52.0
Total Split (%)	37.1%	47.6%		7.4%	21.4%		23.6%	23.6%		17.9%		37.1%
Yellow Time (s)	3.7	3.7		3.3	3.7		3.3	3.3		3.3		3.7
All-Red Time (s)	2.4	2.4		2.0	2.4		2.2	2.2		2.0		2.4
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0				0.0
Total Lost Time (s)	6.1	6.1		5.3	6.1			5.5				6.1
Lead/Lag				Lead								
Lead-Lag Optimize?				Yes								
Recall Mode	None	C-Min		None	C-Min		None	None		None		None
Act Effct Green (s)	40.0	75.0		5.2	32.0	140.0		25.3			44.8	64.7
Actuated g/C Ratio	0.29	0.54		0.04	0.23	1.00		0.18			0.32	0.46
v/c Ratio	0.52	0.26		0.05	0.97	0.29		0.01			0.96	0.89
Control Delay	44.5	18.3		67.0	91.1	0.5		46.0			77.6	45.5
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0			0.0	0.0
Total Delay	44.5	18.3		67.0	91.1	0.5		46.0			77.6	45.5
LOS	D	В		E	F	Α		D			E	D
Approach Delay		35.8			44.1			46.0			58.9	
Approach LOS		D			D			D			E	
Queue Length 50th (m)	51.0	29.5		0.8	~118.2	0.0		0.2			121.2	104.7
Queue Length 95th (m)	79.7	48.6		4.1	#202.6	0.0		1.8		r	n#135.1	m100.1
Internal Link Dist (m)		79.9			173.8			12.4			145.6	
Turn Bay Length (m)	45.0			30.0		45.0						
Base Capacity (vph)	1077	956		62	407	1484		154			464	736
Starvation Cap Reductn	0	0		0	0	0		0			0	1
Spillback Cap Reductn	0	0		0	0	0		0			0	0
Storage Cap Reductn	0	0		0	0	0		0			0	0
Reduced v/c Ratio	0.46	0.26		0.05	0.97	0.29		0.01			0.92	0.81
Intersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 140												
Offset: 105.9 (76%), Refere	nced to ph	ase 2:EB	T and 6:V	VBT, Sta	rt of Gree	n						
Natural Cycle: 110												
Control Type: Actuated-Coo	ordinated											

Lane Group	Ø4	Ø9	Ø12
LaneConfigurations			
Traffic Volume (vph)			
Future Volume (vph)			
Satd. Flow (prot)			
Flt Permitted			
Satd, Flow (perm)			
Satd Flow (RTOR)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	4	g	12
Permitted Phases	т	5	12
Detector Phase			
Switch Phase			
Minimum Initial (a)	10.0	10	10
Minimum Split (c)	10.0	1.0 5.0	20.0
Total Split (s)	10.0	5.0	20.0
Total Split (S)	33.0	5.0	25.0
Total Split (%)	24%	4%	10%
reliow Time (s)	3.3	2.0	2.0
AII-Rea Time (s)	2.2	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lag	
Lead-Lag Optimize?		Yes	
Recall Mode	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Canacity (vnh)			
Starvation Can Reductn			
Snillback Can Poductn			
Storage Can Poduoto			
Boduced v/o Betio			
Intersection Summary			

Maximum v/c Ratio: 0.97							
Intersection Signal Delay: 47.6	Intersection LOS: D						
Intersection Capacity Utilization 93.6%	ICU Level of Service F						
Analysis Period (min) 15							
~ Volume exceeds capacity, queue is theoretically infinite.							
Queue shown is maximum after two cycles.							
# 95th percentile volume exceeds capacity, queue may be longer.							
Queue shown is maximum after two cycles.							
m Volume for 95th percentile queue is metered by upstream signal.							

Splits and Phases: 30: Prince of Wales & Preston

Ø1		Ø11	Ø4
10.3 s 5 s 66.7 s		25 s	33 s
₩ _{Ø5}	← Ø6 (R)	₩ø12	™ ø8
52 s	30 s	25 s	33 s
Lanes, Volumes, Timings 31: Rochester & 417 WB on/Raymond

	≯	-	\mathbf{r}	-	-	•	1	†	1	1	↓	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	f,		5	•			•	1
Traffic Volume (vph)	0	0	0	193	187	128	188	392	0	0	201	135
Future Volume (vph)	0	0	0	193	187	128	188	392	0	0	201	135
Satd. Flow (prot)	0	0	0	1695	1636	0	1695	1784	0	0	1784	1517
Flt Permitted				0.950			0.519					
Satd. Flow (perm)	0	0	0	1685	1636	0	899	1784	0	0	1784	1414
Satd. Flow (RTOR)					56							135
Lane Group Flow (vph)	0	0	0	193	315	0	188	392	0	0	201	135
Turn Type				Perm	NA		pm+pt	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8			2					6
Detector Phase				8	8		5	2			6	6
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	10.0
Minimum Split (s)				32.0	32.0		10.9	27.3			24.9	24.9
Total Split (s)				32.0	32.0		13.0	38.0			25.0	25.0
Total Split (%)				45.7%	45.7%		18.6%	54.3%			35.7%	35.7%
Yellow Time (s)				3.3	3.3		3.3	3.3			3.3	3.3
All-Red Time (s)				2.4	2.4		2.6	2.6			2.6	2.6
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)				5.7	5.7		5.9	5.9			5.9	5.9
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				None	None		None	C-Min			C-Min	C-Min
Act Effct Green (s)				16.9	16.9		41.5	41.5			27.0	27.0
Actuated g/C Ratio				0.24	0.24		0.59	0.59			0.39	0.39
v/c Ratio				0.47	0.72		0.30	0.37			0.29	0.21
Control Delay				25.3	28.7		12.6	14.4			18.7	5.1
Queue Delay				0.0	0.0		0.0	0.6			0.0	0.0
Total Delay				25.3	28.7		12.6	15.0			18.7	5.1
LOS				С	С		В	В			В	A
Approach Delay					27.4			14.2			13.3	
Approach LOS					С			В			В	
Queue Length 50th (m)				21.7	31.1		11.5	42.8			17.9	0.0
Queue Length 95th (m)				33.2	47.9		31.3	62.5			38.7	11.3
Internal Link Dist (m)		122.0			89.8			72.3			151.7	
Turn Bay Length (m)												35.0
Base Capacity (vph)				633	649		631	1056			689	628
Starvation Cap Reductn				0	0		0	336			0	0
Spillback Cap Reductn				0	0		0	0			0	0
Storage Cap Reductn				0	0		0	0			0	0
Reduced v/c Ratio				0.30	0.49		0.30	0.54			0.29	0.21
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 8 (11%), Referenced to	o phase 2	2:NBTL a	nd 6:SB	I, Start of	Green							
Natural Cycle: 70												
Control Type: Actuated-Coord	linated											

Parsons

Maximum v/c Ratio: 0.72 Intersection Signal Delay: 18.7 Intersection Capacity Utilization 60.8% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Lanes, Volumes, Timings 32: Rochester & 417 EB off/Orangeville

	٦	-	\mathbf{r}	•	-	*	•	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		đ þ						A12				
Traffic Volume (vph)	235	283	155	0	0	0	0	349	82	31	350	0
Future Volume (vph)	235	283	155	0	0	0	0	349	82	31	350	0
Satd. Flow (prot)	0	3190	0	0	0	0	0	3269	0	0	3377	0
Flt Permitted		0.983									0.901	
Satd. Flow (perm)	0	3184	0	0	0	0	0	3269	0	0	3051	0
Satd. Flow (RTOR)		57						65				
Lane Group Flow (vph)	0	673	0	0	0	0	0	431	0	0	381	0
Turn Type	Perm	NA						NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4									6		
Detector Phase	4	4						2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0						10.0		10.0	10.0	
Minimum Split (s)	26.0	26.0						25.1		25.1	25.1	
Total Split (s)	26.0	26.0						44.0		44.0	44.0	
Total Split (%)	37.1%	37.1%						62.9%		62.9%	62.9%	
Yellow Time (s)	3.3	3.3						3.3		3.3	3.3	
All-Red Time (s)	2.3	2.3						2.1		2.1	2.1	
Lost Time Adjust (s)		0.0						0.0			0.0	
Total Lost Time (s)		5.6						5.4			5.4	
Lead/Lag								•			••••	
Lead-Lag Optimize?												
Recall Mode	None	None						C-Min		C-Min	C-Min	
Act Effct Green (s)		19.0						40.0		-	40.0	
Actuated g/C Ratio		0.27						0.57			0.57	
v/c Ratio		0.74						0.23			0.22	
Control Delay		26.2						6.9			12.0	
Queue Delav		0.0						0.0			0.0	
Total Delay		26.2						6.9			12.0	
LOS		С						A			В	
Approach Delay		26.2						6.9			12.0	
Approach LOS		С						А			В	
Queue Length 50th (m)		38.1						12.7			8.8	
Queue Length 95th (m)		50.2						m19.5			40.0	
Internal Link Dist (m)		104.8			107.2			99.1			72.3	
Turn Bay Length (m)												
Base Capacity (vph)		1008						1935			1780	
Starvation Cap Reductn		0						0			0	
Spillback Cap Reductn		0						9			0	
Storage Cap Reductn		0						0			0	
Reduced v/c Ratio		0.67						0.22			0.21	
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 67 (96%), Reference	ed to phase	e 2:NBT a	nd 6:SBT	L, Start o	f Green							
Natural Cycle: 55												
Control Type: Actuated-Cod	ordinated											

Maximum v/c Ratio: 0.74

Intersection Signal Delay: 16.9 Intersection Capacity Utilization 66.5% Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 32: Rochester & 417 EB off/Orangeville

Ø2 (R)	A 04	
44 s	26 s	
Ø6 (R)		
44 s		

Lanes, Volumes, Timings 33: Bronson & Catherine 417 WB on

	≯	-	\mathbf{r}	-	-	•	1	†	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				5	.at∳b		5	44			≜t ≽	
Traffic Volume (vph)	0	0	0	799	559	256	277	750	0	0	790	157
Future Volume (vph)	0	0	0	799	559	256	277	750	0	0	790	157
Satd. Flow (prot)	0	0	0	1458	4335	0	1695	3390	0	0	3258	0
Flt Permitted				0.950	0.988		0.115					
Satd. Flow (perm)	0	0	0	1458	4335	0	205	3390	0	0	3258	0
Satd. Flow (RTOR)					96						25	
Lane Group Flow (vph)	0	0	0	543	1071	0	277	750	0	0	947	0
Turn Type				Perm	NA		pm+pt	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8			2					
Detector Phase				8	8		5	2			6	
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	
Minimum Split (s)				25.9	25.9		11.0	25.1			25.1	
Total Split (s)				42.0	42.0		18.0	53.0			35.0	
Total Split (%)				44.2%	44.2%		18.9%	55.8%			36.8%	
Yellow Time (s)				3.3	3.3		3.3	3.3			3.3	
All-Red Time (s)				2.6	2.6		2.7	2.8			2.8	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				5.9	5.9		6.0	6.1			6.1	
Lead/Lag							Lead				Lag	
Lead-Lag Optimize?							Yes				Yes	
Recall Mode				None	None		None	C-Min			C-Min	
Act Effct Green (s)				36.3	36.3		46.8	46.7			28.7	
Actuated g/C Ratio				0.38	0.38		0.49	0.49			0.30	
v/c Ratio				0.97	0.62		0.96	0.45			0.95	
Control Delay				63.4	23.5		72.9	23.2			50.4	
Queue Delay				25.6	0.1		0.0	3.8			44.7	
Total Delay				89.0	23.5		72.9	27.0			95.0	
LOS				F	С		E	С			F	
Approach Delay					45.6			39.4			95.0	
Approach LOS					D			D			F	
Queue Length 50th (m)				112.4	55.4		47.3	65.0			86.5	
Queue Length 95th (m)				#189.5	70.6		#84.9	79.5			#125.9	
Internal Link Dist (m)		151.3			165.9			71.3			237.2	
Turn Bay Length (m)												
Base Capacity (vph)				557	1714		289	1673			1008	
Starvation Cap Reductn				0	0		0	815			0	
Spillback Cap Reductn				47	50		0	0			188	
Storage Cap Reductn				0	0		0	0			0	
Reduced v/c Ratio				1.06	0.64		0.96	0.87			1.15	
Intersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95			10.07		(0							
Unset: 59 (62%), Referenced	to phase	2:NBTL	and 6:SE	si, Start o	of Green							
Natural Cycle: 90	· I											
Control Type: Actuated-Coord	inated											

Maximum v/c Ratio: 0.97 Intersection Signal Delay: 56.8

Intersection Capacity Utilization 114.6% Analysis Period (min) 15 Intersection LOS: E ICU Level of Service H

100 2000

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 33: Bronson & Catherine 417 WB on

1 Ø2 (R)		
53 s		
▲ ø5	Ø6 (R)	↓ Ø8
18 s	35 s	42 s

Lane Group EBL EBR NBL NBT SBT SBR Lane Configurations 1
Lane Configurations Image: Configuration in the image: Configuratin the image: Configuration in the image: Configuration in the im
Traffic Volume (vph) 145 377 0 911 1472 0 Future Volume (vph) 145 377 0 911 1472 0 Satd. Flow (port) 1695 1517 0 3390 3390 0 Satd. Flow (perm) 1695 1491 0 3390 3390 0 Satd. Flow (RTOR) 46 46 46 46 46 46 47 0 Lane Group Flow (vph) 145 377 0 911 1472 0 7 0 11 1472 0 Turn Type Prot Perm NA SA
Future Volume (vph) 145 377 0 911 1472 0 Satd. Flow (port) 1695 1517 0 3390 3390 0 Satd. Flow (perm) 1695 1491 0 3390 3390 0 Satd. Flow (perm) 1695 1491 0 3390 3390 0 Satd. Flow (RTOR) 46
Satd. Flow (prot) 1695 1517 0 3390 3390 0 Flt Permitted 0.950 0 3390 3390 0 3390 0 Satd. Flow (perm) 1695 1491 0 3390 3390 0 Satd. Flow (prot) 145 377 0 911 1472 0 Turn Type Prot Perm NA NA Protected Phases 4 2 6 Permitted Phases 4 2 6 5 5 5 5 5 5 Minimum Initial (s) 10.0
Fit Permitted 0.950 Satd. Flow (perm) 1695 1491 0 3390 3390 0 Satd. Flow (RTOR) 46
Satd. Flow (perm) 1695 1491 0 3390 3390 0 Satd. Flow (RTOR) 46 46 7 0 911 1472 0 Turn Type Prot Perm NA NA NA Protected Phases 4 2 6 6 Permitted Phases 4 2 6 Switch Phase 4 4 2 6 Switch Phase 4 4 2 6 Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Initial (s) 30.0 30.0 65.0 65.0 Total Split (s) 25.1 25.1 34.3 34.3 Total Split (s) 31.6% 68.4% 68.4% Yellow Time (s) 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.4 Ead/Lag Ead/Lag Ead/Lag Ead/Lag Ead/Lag Ead/Lag Ead
Satd. Flow (RTOR) 46 Lane Group Flow (vph) 145 377 0 911 1472 0 Turn Type Prot Perm NA NA NA Protected Phases 4 2 6 Permitted Phases 4 2 6 Switch Phase 4 2 6 Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Split (s) 25.1 25.1 34.3 34.3 Total Split (s) 30.0 30.0 65.0 65.0 Total Split (s) 31.6% 68.4% 68.4% 44 Yellow Time (s) 3.1 3.3 3.3 3.3 3.3 All-Red Time (s) 2.1 2.1 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 5.4 5.4 5.8 5.8 1.4 2.4 1.4 1.1 1.4 2.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Lane Group Flow (vph) 145 377 0 911 1472 0 Turn Type Prot Perm NA NA NA Protected Phases 4 2 6 Permitted Phases 4 2 6 Switch Phase 4 2 6 Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Initial (s) 30.0 30.0 65.0 65.0 Total Split (s) 31.6% 31.6% 68.4% 68.4% Yellow Time (s) 2.1 2.1 2.5 2.5 Lost Time (s) 2.1 2.1 2.5 2.5 Lost Time (s) 5.4 5.4 5.8 5.8 Lead-Lag Eead-Lag Detimize? Recall Mode None None C-Min C-Min Act Effet Green (s) 25.7 25.7 58.1 58.1 Actated g/C Ratio 0.27
Turn Type Prot Perm NA NA Protected Phases 4 2 6 Permitted Phases 4 2 6 Switch Phase 4 4 2 6 Switch Phase 5 34.3 34.3 34.3 Total Split (s) 25.1 25.1 34.3 34.3 Total Split (s) 30.0 30.0 65.0 65.0 Total Split (s) 31.6% 31.6% 68.4% 68.4% Yellow Time (s) 3.3 3.3 3.3 3.3 3.3 All-Red Time (s) 2.1 2.1 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 5.4 5.4 5.8 5.8 Lead-Lag Lead-Lag Ead-Lag Ead-Lag Detimize? Recall Mode None None C-Min C-Min Act Effet Green (s) 25.7 25.7 58.1 58.1 Act 20 Control Delay 29.4 49.6<
Protected Phases 4 2 6 Permitted Phases 4 2 6 Detector Phase 4 4 2 6 Switch Phase 10.0 10.0 10.0 10.0 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 25.1 25.1 34.3 34.3 34.3 Total Split (s) 30.0 30.0 65.0 65.0 65.0 Total Split (%) 31.6% 31.6% 68.4% 68.4% Yellow Time (s) 2.1 2.1 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.4 5.4 5.8 5.8 Lead/Lag Eead/Lag
Permitted Phases 4 2 6 Switch Phase 4 4 2 6 Switch Phase 4 4 2 6 Switch Phase 5 10.0 10.0 10.0 10.0 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 25.1 25.1 34.3 34.3 34.3 Total Split (s) 30.0 30.0 65.0 65.0 10.0 10.0 Total Split (%) 31.6% 31.6% 68.4% 68.4% 10.0
Detector Phase 4 4 2 6 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 25.1 25.1 34.3 34.3 Total Split (s) 31.6% 31.6% 68.4% 68.4% Yellow Time (s) 3.3 3.3 3.3 3.3 All-Red Time (s) 2.1 2.1 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.4 5.4 5.8 5.8 Lead-Lag Eead-Lag Eead-Lag Eead-Lag Eead-Lag Lead-Lag Optimize? Recall Mode None None C-Min C-Min Actuated g/C Ratio 0.27 0.27 0.61 0.61 v/c Vc Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 11.0 14.2
Switch Phase Image: Second Secon
Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Split (s) 25.1 25.1 34.3 34.3 Total Split (s) 30.0 30.0 65.0 65.0 Total Split (s) 31.6% 31.6% 68.4% 68.4% Yellow Time (s) 3.3 3.3 3.3 3.3 All-Red Time (s) 2.1 2.1 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.4 5.4 5.8 5.8 Lead-Lag Optimize? Recall Mode None None C-Min C-Min Act Effct Green (s) 25.7 25.7 58.1 58.1 58.1 Actuated g/C Ratio 0.27 0.27 0.61 0.61 v/c Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 11.0 14.2 LOS C D B B Approach LoS <t< td=""></t<>
Minimum Split (s) 25.1 25.1 34.3 34.3 Total Split (s) 30.0 30.0 65.0 65.0 Total Split (%) 31.6% 31.6% 68.4% 68.4% Yellow Time (s) 3.3 3.3 3.3 3.3 All-Red Time (s) 2.1 2.1 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.4 5.4 5.8 5.8 Lead-Lag Optimize? Recall Mode None None C-Min C-Min Actuated g/C Ratio 0.27 0.27 0.61 0.61 v/c Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.36 36. Total Delay 29.4 49.6 11.0 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
Total Split (s) 30.0 30.0 65.0 65.0 Total Split (%) 31.6% 31.6% 68.4% 68.4% Yellow Time (s) 3.3 3.3 3.3 3.3 All-Red Time (s) 2.1 2.1 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.4 5.4 5.8 5.8 Lead/Lag Lead-Lag Optimize? Recall Mode None C-Min C-Min Actuated g/C Ratio 0.27 0.27 0.61 0.61 v/c Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 14.2 LOS D B B Approach Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 LOS C D B B B Queue Length SOth (m) 20.1
Total Split (%) 31.6% 31.6% 68.4% 68.4% Yellow Time (s) 3.3 3.3 3.3 3.3 3.3 All-Red Time (s) 2.1 2.1 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.4 5.4 5.8 5.8 Lead/Lag
Yellow Time (s) 3.3 3.3 3.3 3.3 All-Red Time (s) 2.1 2.1 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.4 5.4 5.8 5.8 Lead-Lag Lead-Lag Optimize? Recall Mode None None C-Min C-Min Act Effct Green (s) 25.7 25.7 58.1 58.1 Actuated g/C Ratio 0.27 0.61 0.61 V/c Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 LOS C D B B B Approach Delay 44.0 11.0 14.2 LOS C D B B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 <t< td=""></t<>
All-Red Time (s) 2.1 2.1 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.4 5.4 5.8 5.8 Lead/Lag Lead-Lag Optimize? Recall Mode None None C-Min C-Min Act Effct Green (s) 25.7 25.7 58.1 58.1 Actuated g/C Ratio 0.27 0.61 0.61 V/c Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.0 3.6 11.0 14.2 LOS C D B B B Approach Delay 44.0 11.0 14.2 LOS C D B B B B B B C C C D B B C C C C D B B C C C D C C C D C C C C D C
Autriced nume (s) 2.1 2.1 2.3 2.3 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.4 5.4 5.8 5.8 Lead/Lag Eead/Lag Eead/Lag Eead/Lag Lead-Lag Optimize? Recall Mode None None C-Min C-Min Act Effct Green (s) 25.7 25.7 58.1 58.1 Actuated g/C Ratio 0.27 0.27 0.61 0.61 v/c Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 LOS C D B B Approach Delay 44.0 11.0 14.2 Approach LOS D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 111.0
Lost Time Pages (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.4 5.4 5.8 5.8 Lead/Lag Lead-Lag Optimize? Recall Mode None None C-Min C-Min Act Effct Green (s) 25.7 25.7 58.1 58.1 58.1 Actuated g/C Ratio 0.27 0.27 0.61 0.61 0.61 V/c Ratio 0.32 0.86 0.44 0.71 0.61 0.61 Control Delay 29.4 49.6 10.9 10.6 0.0 3.6 Queue Delay 0.1 0.0 0.0 3.6 11.0 14.2 LOS C D B B B B B B B B B C 11.0 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.4
Lead/Lag Lead-Lag Optimize? Recall Mode None None C-Min C-Min Act Effct Green (s) 25.7 25.7 58.1 58.1 Actuated g/C Ratio 0.27 0.27 0.61 0.61 v/c Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 LOS C D B B Approach Delay 44.0 11.0 14.2 LOS C D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 0 0 567
Lead/Lag None None None C-Min C-Min Act Effct Green (s) 25.7 25.7 58.1 58.1 Actuated g/C Ratio 0.27 0.27 0.61 0.61 v/c Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 LOS C D B B Approach Delay 44.0 11.0 14.2 LOS C D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 71.3 Turn Bay Length (m) 60.0 0 0 567
Recall Mode None None C-Min C-Min Act Effct Green (s) 25.7 25.7 58.1 58.1 Actuated g/C Ratio 0.27 0.27 0.61 0.61 v/c Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 LOS C D B B Approach Delay 44.0 11.0 14.2 LOS C D B B Queue Length S0th (m) 20.1 55.4 47.3 80.7 Queue Length 50th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 Base Capacity (vph) 475 451 2147 2147 Starvation Can Beductn 0 0 567
Recall Mode None None None C-Min C-Min Act Effct Green (s) 25.7 25.7 58.1 58.1 Actuated g/C Ratio 0.27 0.27 0.61 0.61 v/c Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 LOS C D B B Approach Delay 44.0 11.0 14.2 Approach LOS D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 71.3 Turn Bay Length (m) 60.0 60.0 8 60.0 Base Capacity (vph) 475 451 2147 2147
Actuated g/C Ratio 0.27 0.27 0.61 0.61 v/c Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 LOS C D B B Approach Delay 44.0 11.0 14.2 LOS C D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 50th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 60.0 567
Actuated g/C Ratio 0.27 0.27 0.61 0.61 v/c Ratio 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 LOS C D B B Approach Delay 44.0 11.0 14.2 Approach LOS D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 60.0 Base Capacity (vph) 475 451 2147 2147
V/C KAUO 0.32 0.86 0.44 0.71 Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 LOS C D B B Approach Delay 44.0 11.0 14.2 Approach LOS D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 Base Capacity (vph) 475 451 2147 2147 Starvation Can Beducth 0 0 0 567
Control Delay 29.4 49.6 10.9 10.6 Queue Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 LOS C D B B Approach Delay 44.0 11.0 14.2 Approach LOS D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 Base Capacity (vph) 475 451 2147 2147 Stanzation Can Beducth 0 0 0 567 567
Queue Delay 0.1 0.0 0.0 3.6 Total Delay 29.4 49.6 11.0 14.2 LOS C D B B Approach Delay 44.0 11.0 14.2 Approach LOS D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 60.0 Base Capacity (vph) 475 451 2147 2147 Starvation Can Beducth 0 0 567
Total Delay 29.4 49.6 11.0 14.2 LOS C D B B Approach Delay 44.0 11.0 14.2 Approach LOS D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 60.0 Base Capacity (vph) 475 451 2147 2147
LOS C D B B Approach Delay 44.0 11.0 14.2 Approach LOS D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 Base Capacity (vph) 475 451 2147 2147 Stancation Can Beducth 0 0 567
Approach Delay 44.0 11.0 14.2 Approach LOS D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 Base Capacity (vph) 475 451 2147 2147 Stancation Can Beducth 0 0 567
Approach LOS D B B Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 Base Capacity (vph) 475 451 2147 2147 Stancation Can Beducth 0 0 567
Queue Length 50th (m) 20.1 55.4 47.3 80.7 Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 Base Capacity (vph) 475 451 2147 2147 Starvation Cap Beducth 0 0 567
Queue Length 95th (m) 38.0 #112.0 53.5 m126.3 Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0 Base Capacity (vph) 475 451 2147 2147 Starvation Cap Reduct 0 0 567
Internal Link Dist (m) 81.4 50.7 71.3 Turn Bay Length (m) 60.0
Turn Bay Length (m) 60.0 Base Capacity (vph) 475 451 2147 2147 Stanvation Cap Reducts 0 0 567
Base Capacity (vph) 475 451 2147 2147 Standarding Cap Reducts 0 0 0 567
Starvation Can Reducta 0 0 0 567
Spillback Cap Reductn 21 0 126 0
Storage Cap Reductn 0 0 0 0
Reduced v/c Ratio 0.32 0.84 0.45 0.93
Intersection Summary
Cvcle Lenath: 95
Actuated Cycle Length: 95
Offset: 91 (96%) Referenced to phase 2:NRT and 6:SRT. Start of Green
Natural Cycle: 60
Control Type: Actuated-Coordinated

Lanes, Volumes, Timings 34: Bronson & 417 EB off

Maximum v/c Ratio: 0.86								
Intersection Signal Delay: 18.5	Intersection LOS: B							
Intersection Capacity Utilization 114.6%	ICU Level of Service H							
Analysis Period (min) 15								
# 95th percentile volume exceeds capacity, queue may be longer.								
Queue shown is maximum after two cycles.								
	· · ·							

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 34: Bronson & 417 EB off

● 1 Ø2 (R)	A 04
65 s	30 s
Ø6 (R)	
65 s	

Lanes, Volumes, Timings 39: Prince of Wales & Road B

۶

(dual WBT)

Lane Group	FRI	FRT	WRT	WRR	SBL	SBR	Ø
Lane Configurations	<u> </u>		A1.	WDIX		1	00
	20	603	001	15		25	
Future Volume (vph)	20	603	001	15	8/	25	
Sate Flow (prot)	1605	178/	3381	0	1605	1517	
Elt Dermitted	0.244	1704	5501	U	0.050	1317	
Satd Flow (perm)	/35	178/	3381	٥	1620	1/2/	
Satu Flow (PTOP)	400	1704	5501	U	1023	25	
Lane Group Flow (vph)	20	603	1006	٥	8/	25	
	20 nm+nt	095 NA	NA	U	Dorm	Dorm	
Protected Phases	5	2	6		I CIIII	I CIIII	0
Permitted Phases	2	2	0		1	1	5
Detector Phase	5	2	6		- 1		
Switch Phase	0	2	0		т Т		
Minimum Initial (s)	50	10.0	10.0		10.0	10.0	10
Minimum Snlit (s)	10.3	23.3	23.3		23.3	23.3	15.0
Total Split (s)	12.0	97 N	85.0		28.0	28.0	15.0
Total Split (%)	8.6%	69.3%	60.7%		20.0%	20.0%	11%
Yellow Time (s)	33	33	33		20.070	20.070	20
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.3	5.3	5.3		5.3	5.3	
	Lead	0.0	l aq		0.0	0.0	
Lead-Lag Optimize?	Yes		Yes				
Recall Mode	None	C-Min	C-Min		None	None	None
Act Effct Green (s)	113.3	113.3	106.4		13.1	13.1	Nono
Actuated g/C Ratio	0.81	0.81	0.76		0.09	0.09	
v/c Ratio	0.05	0.48	0.39		0.55	0.16	
Control Delay	4.5	67	6.5		73 7	21.2	
Queue Delay	0.0	0.0	0.0		0.0	0.0	
Total Delay	4.5	6.7	6.5		73.7	21.2	
LOS	A	A	A		E	C	
Approach Delay		6.6	6.5		61.7		
Approach LOS		A	A		E		
Queue Length 50th (m)	0.7	41.1	41.2		22.7	0.0	
Queue Length 95th (m)	4.2	121.0	m95.0		38.7	8.8	
Internal Link Dist (m)		198.2	95.9		17.7		
Turn Bay Length (m)	45.0						
Base Capacity (vph)	412	1443	2570		264	251	
Starvation Cap Reductn	0	0	0		0	0	
Spillback Cap Reductn	0	0	0		0	0	
Storage Cap Reductn	0	0	0		0	0	
Reduced v/c Ratio	0.05	0.48	0.39		0.32	0.10	
Intersection Summary							
Cycle Length: 140							
Actuated Cycle Length: 140							
Offset: 0 (0%) Referenced to	nhase 2	•FBTL ar	d 6·WRT	Start of	Green		
Natural Cycle: 80				Startor	0.001		

ŧ

7

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.55

Intersection Signal Delay: 9.8 Intersection Capacity Utilization 57.6% Intersection LOS: A ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 39: Prince of Wales & Road B

	≯	-	-	•	1	~		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø9	ľ
Lane Configurations	5	•	•	1	5	1		
Traffic Volume (vph)	20	693	991	15	84	25		
Future Volume (vph)	20	693	991	15	84	25		
Satd. Flow (prot)	1695	1784	1784	1517	1695	1517		
Flt Permitted	0.177				0.950			
Satd, Flow (perm)	316	1784	1784	1453	1629	1345		
Satd. Flow (RTOR)						25		
Lane Group Flow (vph)	20	693	991	15	84	25		
Turn Type	pm+pt	NA	NA	Perm	Perm	Perm		
Protected Phases	5	2	6				9	
Permitted Phases	2			6	4	4		
Detector Phase	5	2	6	6	4	4		
Switch Phase								
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	1.0	
Minimum Split (s)	10.3	23.3	23.3	23.3	23.3	23.3	15.0	
Total Split (s)	10.3	101.7	91.4	91.4	23.3	23.3	15.0	
Total Split (%)	7.4%	72.6%	65.3%	65.3%	16.6%	16.6%	11%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	2.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3		
Lead/Lag	Lead		Lag	Lag				
Lead-Lag Optimize?	Yes		Yes	Yes				
Recall Mode	None	C-Min	C-Min	C-Min	None	None	None	
Act Effct Green (s)	113.3	113.3	106.8	106.8	13.1	13.1		
Actuated g/C Ratio	0.81	0.81	0.76	0.76	0.09	0.09		
v/c Ratio	0.06	0.48	0.73	0.01	0.55	0.17		
Control Delay	4.7	6.7	10.3	4.5	73.7	21.5		
Queue Delay	0.0	0.0	1.1	0.0	0.0	0.0		
Total Delay	4.7	6.7	11.4	4.5	73.7	21.5		
LOS	А	А	В	А	E	С		
Approach Delay		6.6	11.3		61.7			
Approach LOS		А	В		E			
Queue Length 50th (m)	0.7	41.1	88.3	1.3	22.7	0.0		
Queue Length 95th (m)	4.2	121.0	m197.0	m1.1	38.7	8.8		
Internal Link Dist (m)		198.2	95.9		17.7			
Turn Bay Length (m)	45.0			35.0				
Base Capacity (vph)	310	1443	1360	1108	209	194		
Starvation Cap Reductn	0	0	163	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	0.06	0.48	0.83	0.01	0.40	0.13		
Intersection Summary								
Cycle Length: 140								
Actuated Cycle Length: 140								
Offset: 137 (98%). Reference	ed to phas	se 2:FBT	L and 6:V	VBT, Star	t of Gree	1		
Natural Cycle: 120								
Control Type: Actuated-Coor	dinated							

Parsons

Maximum v/c Ratio: 0.73

Intersection Signal Delay: 12.5 Intersection Capacity Utilization 74.1% Intersection LOS: B ICU Level of Service D

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 39: Prince of Wales & Road B

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	- ሽ	- 11	- 11	1	۰¥	
Traffic Vol, veh/h	26	800	1500	17	5	14
Future Vol, veh/h	26	800	1500	17	5	14
Conflicting Peds, #/hr	42	0	0	42	4	8
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	25	-	-	20	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	26	800	1500	17	5	14

Major/Minor	Major1	Ν	lajor2	1	Minor2		
Conflicting Flow All	1559	0	-	0	1998	800	
Stage 1	-	-	-	-	1542	-	
Stage 2	-	-	-	-	456	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	420	-	-	-	52	328	
Stage 1	-	-	-	-	162	-	
Stage 2	-	-	-	-	605	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	405	-	-	-	45	314	
Mov Cap-2 Maneuver	-	-	-	-	45	-	
Stage 1	-	-	-	-	146	-	
Stage 2	-	-	-	-	583	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0.5		0		39.9		
HCM LOS					Е		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		405	-	-	-	122	
HCM Lane V/C Ratio		0.064	-	-	-	0.156	
HCM Control Delay (s)	14.5	-	-	-	39.9	
HCM Lane LOS		В	-	-	-	E	
HCM 95th %tile Q(veh	ו)	0.2	-	-	-	0.5	

24					
EBL	EBT	WBT	WBR	SBL	SBR
	- 11	↑	1		1
0	864	1124	74	0	272
0	864	1124	74	0	272
70	0	0	70	1	5
Free	Free	Free	Free	Stop	Stop
-	None	-	None	-	None
-	-	-	30	-	0
, # -	0	0	-	0	-
-	0	0	-	0	-
100	100	100	100	100	100
2	2	2	2	2	2
0	864	1124	74	0	272
	24 EBL 0 70 Free - , # - 100 2 0	24 EBL EBT ↑↑ 0 864 0 864 70 0 Free Free - None ,# - 0 100 100 2 2 0 864	24 EBL EBT WBT ↑↑ ↑ 0 864 1124 0 864 1124 0 864 1124 70 0 0 Free Free Free - None - ,# - 0 0 100 100 100 2 2 2 0 864 1124	24 WBT WBR EBL EBT WBT WBR ↑↑ ↑↑ ↑↑ 0 864 1124 74 0 864 1124 74 0 864 1124 74 0 864 1124 74 0 0 0 70 Free Free Free Free None - 30 ,# - 0 0 - 100 100 100 100 2 2 2 2 0 864 1124 74	24 EBL EBT WBT WBR SBL ↑↑ ↓

Major/Minor	Major1	Ν	/lajor2	Minor2				
Conflicting Flow All	-	0	-	0 -	1199			
Stage 1	-	-	-		-			
Stage 2	-	-	-		-			
Critical Hdwy	-	-	-		6.23			
Critical Hdwy Stg 1	-	-	-		-			
Critical Hdwy Stg 2	-	-	-		-			
Follow-up Hdwy	-	-	-		3.319			
Pot Cap-1 Maneuver	0	-	-	- 0	~ 225			
Stage 1	0	-	-	- 0	-			
Stage 2	0	-	-	- 0	-			
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuver	• -	-	-		~ 211			
Mov Cap-2 Maneuver	• -	-	-		-			
Stage 1	-	-	-		-			
Stage 2	-	-	-		-			
Approach	EB		WB	SB				
HCM Control Delay, s	; 0		0	206				
HCM LOS				F				
Minor Lane/Major Mvr	mt	EBT	WBT	WBR SBLn1				
Capacity (veh/h)		-	-	- 211				
HCM Lane V/C Ratio		-	-	- 1.289				
HCM Control Delay (s	5)	-	-	- 206				
HCM Lane LOS	/	-	-	- F				
HCM 95th %tile Q(veh	h)	-	-	- 14.6				
Notes								
~: Volume exceeds ca	apacity	\$: De	lay ex	ceeds 300s	+: Com	putation Not Defined	*: All major volume in platoon	

Intersection

Int Delay, s/veh

0.5

••												
Movement	EBL	EBT	EBR	WBL	WBI	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 1 2			- †			- 44				1
Traffic Vol, veh/h	0	776	1	1	968	32	3	0	6	0	0	28
Future Vol, veh/h	0	776	1	1	968	32	3	0	6	0	0	28
Conflicting Peds, #/hr	8	0	6	6	0	8	1	0	0	0	0	1
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	0
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	776	1	1	968	32	3	0	6	0	0	28

Major/Minor	Major1		Major2		Minor1		N	linor2			
Conflicting Flow All	-	0	0 783	0	0 1784	1793	783	-	-	993	
Stage 1	-	-		-	- 783	783	-	-	-	-	
Stage 2	-	-		-	- 1001	1010	-	-	-	-	
Critical Hdwy	-	-	- 4.12	-	- 7.12	6.52	6.22	-	-	6.22	
Critical Hdwy Stg 1	-	-		-	- 6.12	5.52	-	-	-	-	
Critical Hdwy Stg 2	-	-		-	- 6.12	5.52	-	-	-	-	
Follow-up Hdwy	-	-	- 2.218	-	- 3.518	4.018	3.318	-	-	3.318	
Pot Cap-1 Maneuver	0	-	- 835	-	- 63	81	394	0	0	298	
Stage 1	0	-		-	- 387	404	-	0	0	-	
Stage 2	0	-		-	- 293	317	-	0	0	-	
Platoon blocked, %		-	-	-	-						
Mov Cap-1 Maneuver	· -	-	- 831	-	- 57	80	392	-	-	296	
Mov Cap-2 Maneuver	· -	-		-	- 57	80	-	-	-	-	
Stage 1	-	-		-	- 387	402	-	-	-	-	
Stage 2	-	-		-	- 264	314	-	-	-	-	
Annroach	FR		W/R		NR			SB			

HCM Control Delay, s 0	0	34.3	18.4	
HCM LOS		D	С	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	WBR SBL
Capacity (veh/h)	132	-	-	831	-	- 29
HCM Lane V/C Ratio	0.068	-	-	0.001	-	- 0.09
HCM Control Delay (s)	34.3	-	-	9.3	-	- 18
HCM Lane LOS	D	-	-	А	-	-
HCM 95th %tile Q(veh)	0.2	-	-	0	-	- 0

Intersection

Int Delay, s/veh	0.6						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1	- ሽ	↑	↑	1	
Traffic Vol, veh/h	0	53	4	713	995	21	
Future Vol, veh/h	0	53	4	713	995	21	
Conflicting Peds, #/hr	0	0	10	0	0	10	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	0	50	-	-	50	
Veh in Median Storage	, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	8	7	33	2	2	21	
Mvmt Flow	0	53	4	713	995	21	

Major/Minor	Minor2	l	Major1	Maj	or2	
Conflicting Flow All	-	1005	1026	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.27	4.43	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.363	2.497	-	-	-
Pot Cap-1 Maneuver	0	287	570	-	-	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve	r –	285	565	-	-	-
Mov Cap-2 Maneuve	r –	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	NB	SB	
HCM Control Delay, s	20.5	0.1	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	565	- 285	-	-
HCM Lane V/C Ratio	0.007	- 0.186	-	-
HCM Control Delay (s)	11.4	- 20.5	-	-
HCM Lane LOS	В	- C	-	-
HCM 95th %tile Q(veh)	0	- 0.7	-	-

6

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4îb			đ þ			÷			\$	
Traffic Vol, veh/h	0	48	30	46	44	5	28	0	159	0	0	5
Future Vol, veh/h	0	48	30	46	44	5	28	0	159	0	0	5
Conflicting Peds, #/hr	10	0	10	10	0	10	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	48	30	46	44	5	28	0	159	0	0	5

Major/Minor	Major1		N	Major2		I	Minor1		Ν	/linor2			
Conflicting Flow All	59	0	0	88	0	0	187	224	49	173	237	35	
Stage 1	-	-	-	-	-	-	73	73	-	149	149	-	
Stage 2	-	-	-	-	-	-	114	151	-	24	88	-	
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32	
Pot Cap-1 Maneuver	1543	-	-	1506	-	-	756	674	1009	774	663	1030	
Stage 1	-	-	-	-	-	-	928	833	-	838	773	-	
Stage 2	-	-	-	-	-	-	879	771	-	991	821	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1530	-	-	1493	-	-	728	642	1000	630	632	1021	
Mov Cap-2 Maneuver	-	-	-	-	-	-	728	642	-	630	632	-	
Stage 1	-	-	-	-	-	-	921	826	-	831	742	-	
Stage 2	-	-	-	-	-	-	847	740	-	833	814	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			3.6			9.7			8.5			
HCM LOS							А			А			
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		947	1530	_	_	1493	_	_	1021				
HCM Lane V/C Ratio		0 197	-	_	_	0.031	_	_	0.005				

HUM Lane V/C Ratio	0.197	-	-	- 0	.031	-	- (J.005
HCM Control Delay (s)	9.7	0	-	-	7.5	0	-	8.5
HCM Lane LOS	А	А	-	-	Α	А	-	А
HCM 95th %tile Q(veh)	0.7	0	-	-	0.1	-	-	0

Intersection

Int Delay, s/veh	6.8

WBL	WBR	NBT	NBR	SBL	SBT
۰¥		- †	1		-4†
87	38	14	19	24	20
87	38	14	19	24	20
0	0	0	15	0	0
Stop	Stop	Free	Free	Free	Free
-	None	-	None	-	None
0	-	-	0	-	-
,# 0	-	0	-	-	0
0	-	0	-	-	0
100	100	100	100	100	100
2	2	2	2	2	2
87	38	14	19	24	20
	WBL *** 87 0 Stop - 0 ,# 0 0 100 2 87	WBL WBR W7 38 87 38 0 0 Stop Stop - None 0 - ,# 0 - 100 100 2 2 87 38	WBL WBR NBT Y ↑ 87 38 14 87 38 14 0 0 0 Stop Stop Free None - 0 - - # 0 - 0 0 - 0 - # 0 - 0 100 100 100 100 2 2 2 2 87 38 14	WBL WBR NBT NBR Y Image: Constraint of the symbol	WBL WBR NBT NBR SBL Y Image: Constraint of the symbol state 87 38 14 19 24 87 38 14 19 24 0 0 0 15 0 Stop Stop Free Free Free None - None - 0 - 0 - - 0 - 0 - - - 0 - 0 - - - - 0 - 0 - - - - - 100 100 100 100 100 100 2 2 2 2 87 38 14 19 24 - -

Major/Minor	Minor1	Ν	/lajor1	М	ajor2				
Conflicting Flow All	87	29	0	0	48	0			
Stage 1	29	-	-	-	-	-			
Stage 2	58	-	-	-	-	-			
Critical Hdwy	6.63	6.23	-	-	4.13	-			
Critical Hdwy Stg 1	5.43	-	-	-	-	-			
Critical Hdwy Stg 2	5.83	-	-	-	-	-			
Follow-up Hdwy	3.519	3.319	-	- 2	2.219	-			
Pot Cap-1 Maneuver	909	1045	-	-	1558	-			
Stage 1	993	-	-	-	-	-			
Stage 2	958	-	-	-	-	-			
Platoon blocked, %			-	-		-			
Mov Cap-1 Maneuver	883	1032	-	-	1538	-			
Mov Cap-2 Maneuver	883	-	-	-	-	-			
Stage 1	980	-	-	-	-	-			
Stage 2	943	-	-	-	-	-			
Augustal			ND		OD				

Approach	WB	NB	SB	
HCM Control Delay, s	9.5	0	4	
HCM LOS	Α			

Minor Lane/Major Mvmt	NBT	NBRWB	Ln1	SBL	SBT	
Capacity (veh/h)	-	- !	924	1538	-	
HCM Lane V/C Ratio	-	- 0.	135 (0.016	-	
HCM Control Delay (s)	-	-	9.5	7.4	0	
HCM Lane LOS	-	-	А	Α	А	
HCM 95th %tile Q(veh)	-	-	0.5	0	-	

0.3					
EBL	EBR	NBL	NBT	SBT	SBR
۰¥			-4 ↑	≜ î≽	
0	2	2	33	107	0
0	2	2	33	107	0
0	0	5	0	0	5
Stop	Stop	Free	Free	Free	Free
-	None	-	None	-	None
0	-	-	-	-	-
e, # 0	-	-	0	0	-
0	-	-	0	0	-
100	100	100	100	100	100
100	100	100	2	2	100
0	2	2	33	107	0
	0.3 EBL 0 0 0 Stop - 0 e, # 0 0 100 100 0	0.3 EBL EBR 0 2 0 2 0 2 0 2 0 0 Stop Stop - None 0 - 8, # 0 - 0 - 100 100 100 2	0.3 EBL EBR NBL	0.3 EBL EBR NBL NBT	0.3 EBL EBR NBL NBT SBT

Major/Minor	Minor2	Ν	lajor1	Maj	or2		
Conflicting Flow All	133	59	112	0	-	0	
Stage 1	112	-	-	-	-	-	
Stage 2	21	-	-	-	-	-	
Critical Hdwy	8.8	8.9	6.1	-	-	-	
Critical Hdwy Stg 1	7.8	-	-	-	-	-	
Critical Hdwy Stg 2	7.8	-	-	-	-	-	
Follow-up Hdwy	4.5	4.3	3.2	-	-	-	
Pot Cap-1 Maneuver	627	749	978	-	-	-	
Stage 1	673	-	-	-	-	-	
Stage 2	774	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuve	r 621	746	974	-	-	-	
Mov Cap-2 Maneuve	r 621	-	-	-	-	-	
Stage 1	669	-	-	-	-	-	
Stage 2	771	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	9.8	0.5	0
HCM LOS	Α		

Vinor Lane/Major Mvmt	NBL	NBT E	EBLn1	SBT	SBR
Capacity (veh/h)	974	-	746	-	-
HCM Lane V/C Ratio	0.002	-	0.003	-	-
HCM Control Delay (s)	8.7	0	9.8	-	-
HCM Lane LOS	А	А	Α	-	-
HCM 95th %tile Q(veh)	0	-	0	-	-

Intersection						
Int Delay, s/veh	6.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	et -			÷.	Y	
Traffic Vol, veh/h	0	9	7	0	20	3
Future Vol, veh/h	0	9	7	0	20	3
Conflicting Peds, #/hr	0	10	10	0	10	10
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	9	7	0	20	3

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	19	0	39	25	
Stage 1	-	· -	-	-	15	-	
Stage 2	-	· -	-	-	24	-	
Critical Hdwy	-	· -	4.12	-	6.42	6.22	
Critical Hdwy Stg 1	-		-	-	5.42	-	
Critical Hdwy Stg 2	-		-	-	5.42	-	
Follow-up Hdwy	-		2.218	-	3.518	3.318	
Pot Cap-1 Maneuver	-	· -	1597	-	973	1051	
Stage 1	-		-	-	1008	-	
Stage 2	-	· -	-	-	999	-	
Platoon blocked, %	-			-			
Mov Cap-1 Maneuver	· -		1583	-	954	1033	
Mov Cap-2 Maneuver	-	· -	-	-	954	-	
Stage 1	-	· -	-	-	1000	-	
Stage 2	-	· -	-	-	987	-	
Approach	FB	1	WB		NB		
HCM Control Delay	0		7.3		8.8		
HCM LOS			1.0		A		
					7		
Minor Lane/Major Mvi	nt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		964	-	-	1583	-	
HCM Lane V/C Ratio		0.024	-	-	0.004	-	
HCM Control Delay (s	5)	8.8	-	-	7.3	0	
HCM Lane LOS		A	-	-	А	А	
HCM 95th %tile Q(vel	1)	0.1	-	-	0	-	

itersection	
tersection Delay, s/veh	10.3
itersection LOS	В

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	30	72	4	1	103	101	0	7	2	109	181	47
Future Vol, veh/h	30	72	4	1	103	101	0	7	2	109	181	47
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	30	72	4	1	103	101	0	7	2	109	181	47
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	9			9.3				8.1		11.3		
HCM LOS	А			А				А		В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	28%	0%	32%	
Vol Thru, %	78%	68%	50%	54%	
Vol Right, %	22%	4%	49%	14%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	9	106	205	337	
LT Vol	0	30	1	109	
Through Vol	7	72	103	181	
RT Vol	2	4	101	47	
Lane Flow Rate	9	106	205	337	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.012	0.149	0.263	0.436	
Departure Headway (Hd)	4.966	5.059	4.618	4.662	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	715	705	775	768	
Service Time	3.038	3.115	2.665	2.708	
HCM Lane V/C Ratio	0.013	0.15	0.265	0.439	
HCM Control Delay	8.1	9	9.3	11.3	
HCM Lane LOS	А	А	А	В	
HCM 95th-tile Q	0	0.5	1.1	2.2	

norocouon	
Intersection Delay, s/veh	eh 8.1
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	100	0	30	0	0	20	30	100	0	9	52	52
Future Vol, veh/h	100	0	30	0	0	20	30	100	0	9	52	52
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	100	0	30	0	0	20	30	100	0	9	52	52
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	8.4				7.1		8.3			7.8		
HCM LOS	А				А		А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	23%	77%	0%	8%	
Vol Thru, %	77%	0%	0%	46%	
Vol Right, %	0%	23%	100%	46%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	130	130	20	113	
LT Vol	30	100	0	9	
Through Vol	100	0	0	52	
RT Vol	0	30	20	52	
Lane Flow Rate	130	130	20	113	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.161	0.163	0.022	0.131	
Departure Headway (Hd)	4.445	4.511	4.025	4.164	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	809	797	890	863	
Service Time	2.461	2.529	2.048	2.18	
HCM Lane V/C Ratio	0.161	0.163	0.022	0.131	
HCM Control Delay	8.3	8.4	7.1	7.8	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.6	0.6	0.1	0.5	

Intersection	
ntersection Delay, s/veh	7.5
Intersection LOS	А

Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	A⊅		ľ	•	¥	
Traffic Vol, veh/h	48	19	26	46	20	31
Future Vol, veh/h	48	19	26	46	20	31
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	48	19	26	46	20	31
Number of Lanes	2	0	1	1	1	0
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	2		2		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		1		2	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	1		0		2	
HCM Control Delay	7.4		7.8		7.2	
HCM LOS	А		А		А	

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	
Vol Left, %	39%	0%	0%	100%	0%	
Vol Thru, %	0%	100%	46%	0%	100%	
Vol Right, %	61%	0%	54%	0%	0%	
Sign Control	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	51	32	35	26	46	
LT Vol	20	0	0	26	0	
Through Vol	0	32	16	0	46	
RT Vol	31	0	19	0	0	
Lane Flow Rate	51	32	35	26	46	
Geometry Grp	2	7	7	7	7	
Degree of Util (X)	0.056	0.041	0.042	0.037	0.06	
Departure Headway (Hd)	3.978	4.66	4.28	5.158	4.657	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	
Сар	906	766	834	693	768	
Service Time	1.978	2.402	2.021	2.895	2.394	
HCM Lane V/C Ratio	0.056	0.042	0.042	0.038	0.06	
HCM Control Delay	7.2	7.6	7.2	8.1	7.7	
HCM Lane LOS	А	А	А	А	А	
HCM 95th-tile Q	0.2	0.1	0.1	0.1	0.2	

	≯	-	-	•	1	1			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø10		
Lane Configurations	5	**	**	1	W.				
Traffic Volume (voh)	96	613	1158	122	26	157			
Future Volume (vph)	96	613	1158	122	26	157			
Satd Flow (prot)	1695	3390	3390	1517	1526	0			
Flt Permitted	0.950	0000	0000	1011	0.993	Ŭ			
Satd Flow (perm)	1643	3390	3390	1239	1524	0			
Satd Flow (RTOR)	1010	0000	0000	122	157	v			
Lane Group Flow (vph)	96	613	1158	122	183	0			
Turn Type	Prot	NA	ΝA	Perm	Perm	v			
Protected Phases	5	2	6	T OIIII	T OIIII		10		
Permitted Phases	0	2	0	6	1		10		
Detector Phase	5	2	6	6	4				
Switch Dhose	5	2	0	0	4				
Minimum Initial (a)	E 0	10.0	10.0	10.0	10.0		10		
Minimum Calit (a)	0.C	10.0	10.0	10.0	10.0		1.0		
winninum Split (S)	11.1	20.7	20.7	20.7	31.2		5.0		
Total Split (S)	10.0	92.8	/6.8	76.8	37.2		5.0		
Total Split (%)	11.9%	68.7%	56.9%	56.9%	27.6%		4%		
Yellow Time (s)	3.7	3.7	3.7	3.7	3.0		2.0		
All-Red Time (s)	2.4	1.9	1.9	1.9	3.2		0.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0				
Total Lost Time (s)	6.1	5.6	5.6	5.6	6.2				
Lead/Lag	Lead		Lag	Lag					
Lead-Lag Optimize?	Yes		Yes	Yes					
Recall Mode	None	C-Min	C-Min	C-Min	None		Min		
Act Effct Green (s)	13.6	104.0	84.3	84.3	11.7				
Actuated g/C Ratio	0.10	0.77	0.62	0.62	0.09				
v/c Ratio	0.56	0.23	0.55	0.15	0.67				
Control Delay	69.9	4.8	16.5	2.6	25.0				
Queue Delay	0.0	0.0	0.7	0.0	0.0				
Total Delay	69.9	4.8	17.2	2.6	25.0				
LOS	E	А	В	А	С				
Approach Delay		13.6	15.8		25.0				
Approach LOS		В	В		С				
Queue Length 50th (m)	24.7	19.3	84.6	0.0	6.6				
Queue Length 95th (m)	41.7	31.7	127.1	8.7	29.5				
Internal Link Dist (m)		297.5	170.5		278.4				
Turn Bay Length (m)	155.0			80.0					
Base Capacity (vph)	173	2612	2116	819	470				
Starvation Can Reductn	0	0	570	0	0				
Spillback Cap Reductn	0	0	0	0	Ő				
Storage Can Reducto	0	0	0	0	0				
Reduced v/c Ratio	0.55	0.23	0.75	0 15	0 30				
	0.55	0.23	0.15	0.15	0.55				
Intersection Summary									
Cycle Length: 135	-								
Actuated Cycle Length: 135)	0 507		T 01 1	(0				
Uffset: 66 (49%), Reference	ed to phase	e 2:EBT a	and 6:WB	I, Start o	f Green				
Natural Cycle: 90									
Control Type: Actuated-Cod	ordinated								

Intersection LOS: B
ICU Level of Service C

Splits and Phases: 10: Carling & Parkdale

	٦	-	+	•	1	∢
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	**	**	1	M	
Traffic Volume (voh)	88	568	1263	40	17	16
Future Volume (vph)	88	568	1263	40	17	16
Satd Flow (prot)	1695	3390	3390	1517	1592	0
Flt Permitted	0.950	0000	0000		0.975	U
Satd Flow (perm)	1680	3390	3390	1394	1580	0
Satd Flow (BTOR)	1000	0000	0000	40	16	U
Lane Group Flow (vph)	88	568	1263	40	33	٥
	Prot	NΔ	NΔ	Perm	Perm	0
Protected Phases	5	2	6	T CITI	T CITI	
Permitted Phases	J	2	0	6	1	
Detector Phase	5	C	6	6	4	
Switch Dhose	5	2	0	0	4	
Switch Phase	ΕO	10.0	10.0	10.0	10.0	
Minimum Initial (S)	5.0	10.0	10.0	10.0	10.0	
	11.4	31.3	31.3	31.3	23.3	
Total Split (S)	12.5	106.7	94.2	94.2	23.3	
i otal Split (%)	9.6%	82.1%	12.5%	12.5%	17.9%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.3	
All-Red Lime (s)	2.7	2.7	2.7	2.7	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
I otal Lost Time (s)	6.4	6.4	6.4	6.4	5.3	
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	
Act Effct Green (s)	15.2	115.4	91.2	91.2	11.6	
Actuated g/C Ratio	0.12	0.89	0.70	0.70	0.09	
v/c Ratio	0.44	0.19	0.53	0.04	0.21	
Control Delay	60.9	2.2	9.8	2.6	36.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	60.9	2.2	9.8	2.6	36.3	
LOS	E	А	А	А	D	
Approach Delay		10.1	9.5		36.3	
Approach LOS		В	А		D	
Queue Length 50th (m)	21.4	11.8	63.7	0.0	4.1	
Queue Length 95th (m)	37.8	23.1	78.5	3.2	13.7	
Internal Link Dist (m)	••	170.5	180.8	•=	39.9	
Turn Bay Length (m)	90.0	11 0.0	100.0	140 0	00.0	
Base Canacity (vnh)	198	3009	2442	1015	232	
Starvation Can Reductn	0	0000	0	0	0	
Spillback Can Reductn	0	0	0	0	0	
Storage Can Reductin	0	0	0	0	0	
Poducod v/o Potio	0.44	0 10	0.52	0.04	0 14	
	0.44	0.19	0.52	0.04	0.14	
Intersection Summary						
Cycle Length: 130						
Actuated Cycle Length: 130						
Offset: 0 (0%). Referenced t	to phase 2	EBT and	6:WBT	Start of G	Green	
Natural Cycle: 70						
Control Type: Actuated-Coo	rdinated					

Maximum v/c Ratio: 0.53 Intersection Signal Delay: 10.1 Intersection Capacity Utilization 68.0% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service C

Splits and Phases: 11: Carling & Civic

	٦	-	\rightarrow	4	-	•	1	1	۲	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	<u>^</u>	1	1	<u></u>	1		\$			\$	
Traffic Volume (vph)	40	470	41	37	1062	7	75	20	44	6	4	14
Future Volume (vph)	40	470	41	37	1062	7	75	20	44	6	4	14
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1643	0	0	1599	0
Flt Permitted	0.240			0.483				0.818			0.921	
Satd. Flow (perm)	415	3390	1293	808	3390	1178	0	1370	0	0	1483	0
Satd. Flow (RTOR)			37			37		18			14	
Lane Group Flow (vph)	40	470	41	37	1062	7	0	139	0	0	24	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	34.3	34.3	34.3	42.4	42.4		42.4	42.4	
Total Split (s)	87.0	87.0	87.0	87.0	87.0	87.0	43.0	43.0		43.0	43.0	
Total Split (%)	66.9%	66.9%	66.9%	66.9%	66.9%	66.9%	33.1%	33.1%		33.1%	33.1%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	4.4	4.4		4.4	4.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7		7.4			7.4	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	94.7	94.7	94.7	94.7	94.7	94.7		22.2			22.2	
Actuated g/C Ratio	0.73	0.73	0.73	0.73	0.73	0.73		0.17			0.17	
v/c Ratio	0.13	0.19	0.04	0.06	0.43	0.01		0.56			0.09	
Control Delay	7.4	5.5	1.8	8.0	8.9	0.0		49.1			23.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Delay	7.4	5.5	1.8	8.0	8.9	0.0		49.1			23.0	
LOS	А	Α	Α	А	Α	Α		D			С	
Approach Delay		5.4			8.8			49.1			23.0	
Approach LOS		Α			А			D			С	
Queue Length 50th (m)	1.4	8.6	0.1	2.0	40.7	0.0		30.2			2.3	
Queue Length 95th (m)	9.9	20.3	1.0	7.8	85.3	m0.0		44.2			8.7	
Internal Link Dist (m)		236.1			191.5			174.3			220.8	
Turn Bay Length (m)	20.0		15.0	45.0		25.0						
Base Capacity (vph)	302	2470	952	588	2470	868		388			416	
Starvation Cap Reductn	0	0	0	0	0	0		0			0	
Spillback Cap Reductn	0	0	0	0	0	0		0			0	
Storage Cap Reductn	0	0	0	0	0	0		0			0	
Reduced v/c Ratio	0.13	0.19	0.04	0.06	0.43	0.01		0.36			0.06	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 28 (22%), Reference	d to phase	e 2:EBTL	and 6:W	BTL, Star	t of Gree	n						
Natural Cycle: 80												

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.56 Intersection Signal Delay: 11.0

Intersection Capacity Utilization 69.3%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

 $m \quad \mbox{Volume for 95th percentile queue is metered by upstream signal.}$

Splits and Phases: 13: Maple/Old Irvine & Carling

≠Ø2 (R)	Ø4
87 s	43 s
	1 Ø8
87 s	43 s

	٦	-	+	•	1	-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	**	**	1	5	1
Traffic Volume (vph)	43	527	951	209	154	9
Future Volume (vph)	43	527	951	209	154	9
Satd Flow (prot)	1695	3390	3390	1517	1695	1517
Flt Permitted	0.950	0000	0000	1011	0.950	1011
Satd Flow (perm)	1573	3390	3390	1072	1669	1473
Satd Flow (RTOR)	10/0	0000	0000	209	1000	7
Lane Group Flow (vph)	43	527	951	200	154	ģ
	Prot		NΔ	Porm	Porm	Porm
Protected Phases	5	2	6	I CIIII	I CIIII	I CIIII
Protected Phases	0	2	0	6	1	1
Petrotor Phases	F	0	G	0 C	4	4
Delector Phase	5	2	Ö	Ö	4	4
Switch Phase	F 0	10.0	10.0	10.0	10.0	10.0
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	10.3	25.1	25.1	25.1	25.1	25.1
Total Split (s)	15.0	89.0	74.0	74.0	41.0	41.0
Total Split (%)	11.5%	68.5%	56.9%	56.9%	31.5%	31.5%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	None
Act Effct Green (s)	8.7	102.0	90.2	90.2	17.4	17.4
Actuated g/C Ratio	0.07	0.78	0.69	0.69	0.13	0.13
v/c Ratio	0.38	0.10	0.00	0.00	0 60	0.10
Control Delay	66.7	/ 1	2.40	0.20	60.03	27.8
	00.7	4.1	2.0	0.7	09.0	21.0
Queue Delay	0.0	0.0	0.1	0.0	0.0	0.0
Total Delay	66.7	4.1	2.9	0.7	09.3	27.8
	E	A	A	А	E	C
Approach Delay		8.8	2.5		67.0	
Approach LOS		A	A		E	
Queue Length 50th (m)	10.7	15.2	7.9	0.0	38.2	0.5
Queue Length 95th (m)	22.5	25.6	20.0	0.0	57.8	5.4
Internal Link Dist (m)		118.3	141.7		152.1	
Turn Bay Length (m)	30.0			90.0		15.0
Base Capacity (vph)	133	2660	2352	807	458	409
Starvation Cap Reductn	0	0	361	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.32	0.20	0.48	0.26	0.34	0.02
	0.02	0.20	0.10	0.20	0.01	0.02
Intersection Summary						
Cycle Length: 130						
Actuated Cycle Length: 130						
Offset: 24 (18%), Reference	ed to phase	e 2:EBT a	and 6:WB	T, Start o	f Green	
Natural Cycle: 65						
Control Type: Actuated-Coo	rdinated					

Interpretion Cignal Delay 10.0	
intersection Signal Delay. 10.0 Intersection LOS. A	
Intersection Capacity Utilization 55.6% ICU Level of Service B	
Analysis Period (min) 15	

Splits and Phases: 15: Carling & Sherwood

Lanes, Volumes, Timings2028 PM Demand Rationalized Main Hospital SPA PEAK GEN16: Road A/Champagne & Carling03/20/2023

	٦	-	\mathbf{r}	4	-	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	<u></u>	1	1	^	1	ľ	el el		ľ	el el	
Traffic Volume (vph)	65	550	44	46	908	139	109	0	125	127	0	142
Future Volume (vph)	65	550	44	46	908	139	109	0	125	127	0	142
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	1695	1402	0	1695	1417	0
Flt Permitted	0.950			0.950			0.405			0.677		
Satd. Flow (perm)	1555	3390	1356	1634	3390	1019	697	1402	0	1142	1417	0
Satd. Flow (RTOR)						147					309	
Lane Group Flow (vph)	65	550	44	46	908	139	109	125	0	127	142	0
Turn Type	Prot	NA	Perm	Prot	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases	5	2		1	6		3	8			4	
Permitted Phases			2			6	8			4		
Detector Phase	5	2	2	1	6	6	3	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0		10.0	10.0	
Minimum Split (s)	15.3	26.3	26.3	15.3	26.3	26.3	10.3	23.3		37.9	37.9	
Total Split (s)	15.3	48.2	48.2	15.3	53.2	53.2	12.5	56.5		39.0	39.0	
Total Split (%)	11.8%	37.1%	37.1%	11.8%	40.9%	40.9%	9.6%	43.5%		30.0%	30.0%	
Yellow Time (s)	3.3	3.7	3.7	3.3	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.0	1.6	1.6	2.0	1.6	1.6	2.0	2.0		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3		5.9	5.9	
Lead/Lag	Lead			Lead			Lead					
Lead-Lag Optimize?	Yes			Yes			Yes					
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	10.7	67.6	67.6	10.3	68.2	68.2	37.3	37.3		20.5	20.5	
Actuated g/C Ratio	0.08	0.52	0.52	0.08	0.52	0.52	0.29	0.29		0.16	0.16	
v/c Ratio	0.47	0.31	0.06	0.34	0.51	0.23	0.40	0.31		0.71	0.29	
Control Delay	65.3	21.5	21.9	64.1	24.6	4.5	37.4	36.2		71.1	1.5	
Queue Delay	0.0	0.0	0.0	0.0	1.6	0.0	0.0	0.0		0.0	0.0	
Total Delay	65.3	21.5	21.9	64.1	26.2	4.5	37.4	36.2		71.1	1.5	
LOS	E	С	С	E	С	Α	D	D		Е	Α	
Approach Delay		25.9			25.1			36.8			34.4	
Approach LOS		С			С			D			С	
Queue Length 50th (m)	16.7	51.4	5.1	11.4	79.0	0.0	21.3	25.2		31.4	0.0	
Queue Length 95th (m)	24.8	82.1	18.7	24.0	129.0	12.1	31.2	36.4		47.9	0.0	
Internal Link Dist (m)		141.7			98.6			63.9			477.2	
Turn Bay Length (m)	55.0		75.0	61.0		35.0				30.0		
Base Capacity (vph)	139	1762	704	134	1778	604	275	552		290	591	
Starvation Cap Reductn	0	0	0	0	653	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.47	0.31	0.06	0.34	0.81	0.23	0.40	0.23		0.44	0.24	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 0 (0%), Referenced to	o phase 2	:EBT and	16:WBT,	Start of G	Breen							

Natural Cycle: 105

Control Type: Actuated-Coordinated

Lane Group	Ø9	Ø10	Ø11
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Satd, Flow (prot)			
Flt Permitted			
Satd, Flow (perm)			
Satd Flow (RTOR)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	g	10	11
Permitted Phases	5	10	
Detector Phase			
Switch Phase			
Minimum Initial (a)	1.0	1.0	1.0
Minimum Colit (s)	1.0	1.U	1.U E 0
IVIINIMUM Split (s)	10.0	5.0	5.0
	10.0	5.0	5.0
Total Split (%)	8%	4%	4%
Yellow Time (s)	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes
Recall Mode	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delav			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Oueue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Diet (m)			
Turn Boy Longth (m)			
Dage Consolity (mb)			
Dase Capacity (Vpn)			
Starvation Cap Reductin			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

Lanes, Volumes, Timings2028 PM Demand Rationalized Main Hospital SPA PEAK GEN16: Road A/Champagne & Carling03/20/2023

Maximum v/c Ratio: 0.71	
Intersection Signal Delay: 27.6	Intersection LOS: C
Intersection Capacity Utilization 83.0%	ICU Level of Service E
Analysis Period (min) 15	

Splits and Phases: 16: Road A/Champagne & Carling

	٦	-	$\mathbf{\hat{z}}$	4	+	•	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			* *							
Traffic Volume (vph)	0	814	0	0	1085	0	0	0	0	0	0	0
Future Volume (vph)	0	814	0	0	1085	0	0	0	0	0	0	0
Satd, Flow (prot)	0	3390	0	0	3390	0	0	0	0	0	0	0
Elt Permitted			-	-		-	-	-	-	-	-	-
Satd, Flow (perm)	0	3390	0	0	3390	0	0	0	0	0	0	0
Satd. Flow (RTOR)	•		•	·		•	•	•	•	•	•	
Lane Group Flow (vph)	0	814	0	0	1085	0	0	0	0	0	0	0
Turn Type	•	NA	•	•	NA	•	•	•	•		•	•
Protected Phases		2			6							
Permitted Phases		-			Ŭ							
Detector Phase		2			6							
Switch Phase		2			Ū							
Minimum Initial (s)		10.0			10.0							
Minimum Split (s)		31.1			31.1							
Total Split (s)		35.0			35.0							
Total Split (%)		50.0%			50.0%							
Vellow Time (s)		30.070			30.070							
All Red Time (s)		J.7 1 /			5.7 1 /							
Lost Time Adjust (s)		0.0			0.0							
Total Lost Time (s)		0.0 5 1			0.0 5.1							
		5.1			5.1							
Lead Lag Optimize?												
		C Min			C Min							
		62.0			62.0							
Actuated a/C Datio		02.0			02.0							
Actualed g/C Rallo		0.09			0.09							
V/C Rallo		0.27			0.30							
Control Delay		4.7			4.7							
Queue Delay		0.0			0.0							
l otal Delay		4./			4.7							
LUS		A			A							
Approach Delay		4./			4.7							
Approach LUS		A			A							
Queue Length 50th (m)		0.0			0.0							
Queue Length 95th (m)		56.5			m94.4			50.0			00.0	
Internal Link Dist (m)		98.6			92.8			53.0			60.9	
Turn Bay Length (m)		0000			0000							
Base Capacity (vph)		3002			3002							
Starvation Cap Reductn		0			32							
Spillback Cap Reductn		0			0							
Storage Cap Reductn		0			0							
Reduced v/c Ratio		0.27			0.37							
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 0 (0%), Referenced to	phase 2	EBT and	6:WBT, S	Start of G	reen							
Natural Cycle: 70												
Control Type: Actuated-Coord	dinated											

Lane Group	Ø4	Ø8
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd, Flow (perm)		
Satd, Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	4	8
Permitted Phases	•	Ŭ
Detector Phase		
Switch Phase		
Minimum Initial (s)	10	10
Minimum Split (s)	35.6	35.6
Total Split (s)	35.0	35.0
Total Split (%)	50%	50%
Yellow Time (s)	30/0	30
All-Red Time (s)	3.6	3.6
Lost Time Adjust (s)	5.0	5.0
Total Lost Time (s)		
Leau/Lay		
Leau-Lay Optimize ?	Nono	Nono
Act Effot Groop (a)	NOTIE	NOTIE
Actuated a/C Patio		
Actuated y/C Ratio		
V/C Kallo		
Control Delay		
Queue Delay		
Total Delay		
LUS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
Maximum v/c Ratio: 0.36 Intersection Signal Delay: 4.7

Intersection Capacity Utilization 35.9%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 17: Carling & Trillium MUP

→ø2 (R)	. Åå ø₄					
35 s	35 s					
← Ø6 (R)	ÅÅø8					
35 s	35 s					

Lanes, Volumes, Timings 18: Preston & Carling

	≯	-	\rightarrow	-	-	•	1	1	1	1	. ↓	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	1	ሻ	^	1	ሻ	A		ሻ	ĥ	
Traffic Volume (vph)	142	477	195	297	748	68	278	396	171	111	302	67
Future Volume (vph)	142	477	195	297	748	68	278	396	171	111	302	67
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	1695	3127	0	1695	1695	0
Flt Permitted	0.950			0.950			0.132			0.439		
Satd. Flow (perm)	1602	3390	1517	1617	3390	1242	236	3127	0	748	1695	0
Satd. Flow (RTOR)						179					7	
Lane Group Flow (vph)	142	477	195	297	748	68	278	567	0	111	369	0
Turn Type	Prot	NA	custom	Prot	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases	5	92	93	1	6		3	8			4	
Permitted Phases						6	8			4		
Detector Phase	5	92	93	1	6	6	3	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0			5.0	10.0	10.0	5.0	10.0		10.0	10.0	
Minimum Split (s)	11.2			11.2	25.0	25.0	11.9	38.9		38.9	38.9	
Total Split (s)	21.0			32.0	45.0	45.0	25.0	64.0		39.0	39.0	
Total Split (%)	15.0%			22.9%	32.1%	32.1%	17.9%	45.7%		27.9%	27.9%	
Yellow Time (s)	3.7			3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5			2.5	2.3	2.3	3.6	3.6		3.6	3.6	
Lost Time Adjust (s)	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.2			6.2	6.0	6.0	6.9	6.9		6.9	6.9	
Lead/Lag	Lead			Lead			Lead					
Lead-Lag Optimize?	Yes			Yes			Yes					
Recall Mode	None			None	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	14.2	36.2	34.0	25.7	41.9	41.9	60.8	56.8		31.5	31.5	
Actuated g/C Ratio	0.10	0.26	0.24	0.18	0.30	0.30	0.43	0.41		0.22	0.22	
v/c Ratio	0.83	0.55	0.53	0.96	0.74	0.14	0.95	0.45		0.66	0.96	
Control Delay	97.2	44.6	56.4	97.6	50.1	0.6	77.8	13.7		69.4	88.0	
Queue Delay	0.0	0.9	1.8	0.0	0.0	0.0	6.3	0.0		0.0	39.3	
Total Delay	97.2	45.4	58.2	97.6	50.1	0.6	84.1	13.7		69.4	127.3	
LOS	F	D	E	F	D	Α	F	В		E	F	
Approach Delay		57.5			59.8			36.8			113.9	
Approach LOS		E			E			D			F	
Queue Length 50th (m)	39.0	61.2	47.4	82.2	101.2	0.0	34.3	21.2		28.1	99.5	
Queue Length 95th (m)	#75.3	70.5	82.8	#138.3	125.1	0.0	#111.7	30.7		#53.6	#159.3	
Internal Link Dist (m)		92.8			165.9			145.6			55.2	
Turn Bay Length (m)	70.0		90.0	120.0		95.0				35.0		
Base Capacity (vph)	179	849	369	312	1015	497	294	1275		171	394	
Starvation Cap Reductn	0	153	36	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	72	0	0	0	10	0		0	54	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.79	0.69	0.66	0.95	0.74	0.14	0.98	0.44		0.65	1.09	
Intersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 140												
Offset: 6 (4%), Referenced t	to phase 2:	EBT and	d 6:WBT,	Start of G	Green							
Natural Cycle: 120												

Control Type: Actuated-Coordinated

Lane Group	Ø2	Ø9	Ø10	Ø11	Ø12
Lane Configurations					
Traffic Volume (vph)					
Future Volume (vph)					
Satd. Flow (prot)					
Flt Permitted					
Satd. Flow (perm)					
Satd. Flow (RTOR)					
Lane Group Flow (vph)					
Turn Type					
Protected Phases	2	9	10	11	12
Permitted Phases					
Detector Phase					
Switch Phase					
Minimum Initial (s)	10.0	1.0	1.0	1.0	1.0
Minimum Split (s)	26.0	5.3	5.0	5.0	5.0
Total Split (s)	28.9	10.1	5.0	5.0	5.0
Total Split (%)	21%	7%	4%	4%	4%
Yellow Time (s)	2.0	2.0	2.0	2.0	2.0
All-Red Time (s)	0.0	2.3	0.0	0.0	0.0
Lost Time Adjust (s)					
Total Lost Time (s)					
Lead/Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	
Recall Mode	C-Min	Min	None	None	None
Act Effct Green (s)					
Actuated g/C Ratio					
v/c Ratio					
Control Delav					
Queue Delay					
Total Delay					
LOS					
Approach Delay					
Approach LOS					
Queue Length 50th (m)					
Queue Length 95th (m)					
Internal Link Dist (m)					
Turn Bay Length (m)					
Base Capacity (vph)					
Starvation Cap Reductn					
Spillback Cap Reductn					
Storage Cap Reductn					
Reduced v/c Ratio					
Intersection Summarv					

Maximum v/c Ratio: 0.96	
Intersection Signal Delay: 61.2	Intersection LOS: E
Intersection Capacity Utilization 94.4%	ICU Level of Service F
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lon	ger.
Queue shown is maximum after two cycles.	

4

Splits and Phases:	18: Preston & Carling			
√ Ø1	∎ →1Ø2 (R)	₩ Ø9	\$ Ø3	1 04
32 s	28.9 s	10.1 s	25 s	5 s 39 s
≯ _{Ø5}	1 BØ10 006 (R)		A 012 08	

	٦	-	←	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	**	*	1	5	1
Traffic Volume (vnh)	197	705	708	109	258	255
Future Volume (vph)	197	705	708	109	258	255
Satd Flow (prot)	1695	3390	1784	1517	1695	1517
Flt Permitted	0 196	0000	1104	1017	0.950	1011
Satd Flow (perm)	350	3390	1784	1161	1665	1209
Satd Flow (RTOR)	000	0000	1704	/0	1005	1203
Lane Group Flow (wh)	107	705	708	100	258	255
	197 nm i nt		700 NA	Dorm	Dorm	Dorm
Turri Type Dratastad Dhasaa	pm+pt		INA 6	Feim	Penn	Feim
Protected Phases	5	2	0	C	A	Α
Permitted Phases	2	0	0	6	4	4
Detector Phase	5	2	6	6	4	4
Switch Phase						
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	10.9	29.7	29.7	29.7	39.0	39.0
Total Split (s)	23.0	90.0	67.0	67.0	40.0	40.0
Total Split (%)	17.7%	69.2%	51.5%	51.5%	30.8%	30.8%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.3	3.3
All-Red Time (s)	2.2	2.0	2.0	2.0	2.7	2.7
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.9	5.7	5.7	5.7	6.0	6.0
Lead/Lag	l ead	0.1	Lan	Lan	0.0	0.0
Lead-Lag Ontimize?	Vac		Vas	Vas		
	None	C_Min	C_Min	C_Min	None	None
Act Effet Creen (a)		00 /	70.7	70.7	20.0	20.0
Act Effect Green (S)	00.2	00.4	10.1	10.1	29.9	29.9
Actuated g/C Ratio	0.68	0.68	0.54	0.54	0.23	0.23
v/c Ratio	0.55	0.31	0.73	0.17	0.68	0.61
Control Delay	14.4	9.4	30.1	11.9	54.3	19.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	14.4	9.4	30.1	11.9	54.3	19.3
LOS	В	А	С	В	D	В
Approach Delay		10.5	27.7		36.9	
Approach LOS		В	С		D	
Queue Length 50th (m)	18.3	38.2	138.8	8.7	58.7	14.7
Queue Length 95th (m)	28.7	48.6	#213.5	21.2	86.9	43.1
Internal Link Dist (m)	20.1	100.4	299.3	21.2	220.7	10.1
Turn Bay Length (m)	50.0	100.4	200.0	30.0	220.1	30.0
Page Canadity (uph)	JU.U	020E	060	640	125	30.0
Base Capacity (vpn)	415	2305	969	649	435	451
Starvation Cap Reductin	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.47	0.31	0.73	0.17	0.59	0.57
Intersection Summary						
Cycle Length: 130						
Actuated Cycle Length: 130)					
Offset: 110 (85%) Referen	ced to pha	se 2 [.] FBT	l and 6.V	VBT Star	t of Gree	n
Natural Cycle: 90		00 Z.LDT		vor, otai		
Control Type: Actuated-Cor	ordinated					
Control Type. Actuated-Co	Junated					

Maximum v/c Ratio: 0.73		
Intersection Signal Delay: 22.9	Intersection LOS: C	
Intersection Capacity Utilization 92.3%	ICU Level of Service F	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue may be lon	iger.	
Queue shown is maximum after two cycles.		
Splits and Phases: 20: Carling & Booth		-

ø₂ (R)	,	Ø4	
90 s		40 s	
	 Ø6 (R)		
23 s	67 s		

	٦	-	\mathbf{r}	4	-	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	र्स	1				ሻሻ	4			tβ	
Traffic Volume (vph)	420	100	443	0	0	0	480	718	20	0	1083	249
Future Volume (vph)	420	100	443	0	0	0	480	718	20	0	1083	249
Satd. Flow (prot)	1610	1649	1517	0	0	0	3288	1766	0	0	3251	0
Flt Permitted	0.950	0.973					0.950					
Satd. Flow (perm)	1511	1592	1415	0	0	0	3239	1766	0	0	3251	0
Satd. Flow (RTOR)			105					2			22	
Lane Group Flow (vph)	290	230	443	0	0	0	480	738	0	0	1332	0
Turn Type	Perm	NA	pm+ov				Prot	NA			NA	
Protected Phases		4	5				5	2			6	
Permitted Phases	4		4									
Detector Phase	4	4	5				5	2			6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0				10.0	10.0			10.0	
Minimum Split (s)	31.0	31.0	16.0				16.0	25.1			33.0	
Total Split (s)	47.0	47.0	29.0				29.0	93.0			64.0	
Total Split (%)	32.0%	32.0%	19.7%				19.7%	63.3%			43.5%	
Yellow Time (s)	3.3	3.3	3.3				3.3	3.3			3.3	
All-Red Time (s)	2.7	2.7	2.7				2.7	2.7			2.7	
Lost Time Adjust (s)	0.0	0.0	0.0				0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0				6.0	6.0			6.0	
Lead/Lag			Lead				Lead				Lag	
Lead-Lag Optimize?			Yes				Yes				Yes	
Recall Mode	None	None	None				None	C-Min			C-Min	
Act Effct Green (s)	32.9	32.9	58.5				25.6	95.1			63.5	
Actuated g/C Ratio	0.22	0.22	0.40				0.17	0.65			0.43	
v/c Ratio	0.86	0.65	0.69				0.84	0.65			0.94	
Control Delay	77.6	59.6	29.6				72.3	20.3			53.3	
Queue Delay	0.0	0.0	0.0				0.0	0.0			0.0	
Total Delay	77.6	59.6	29.6				72.3	20.3			53.3	
LOS	E	E	С				E	С			D	
Approach Delay		51.2						40.8			53.3	
Approach LOS		D						D			D	
Queue Length 50th (m)	85.7	64.2	71.2				68.4	124.2			~202.5	
Queue Length 95th (m)	115.2	88.3	103.6				#104.2	192.1			#258.5	
Internal Link Dist (m)		74.7			115.0			394.4			328.4	
Turn Bay Length (m)	40.0						50.0					
Base Capacity (vph)	421	444	645				574	1143			1417	
Starvation Cap Reductn	0	0	0				0	0			0	
Spillback Cap Reductn	0	0	0				0	0			0	
Storage Cap Reductn	0	0	0				0	0			0	
Reduced v/c Ratio	0.69	0.52	0.69				0.84	0.65			0.94	
Intersection Summary												
Cycle Length: 147												
Actuated Cycle Length: 147												
Offset: 0 (0%), Referenced	to phase 2	:NBT and	d 6:SBT, S	Start of Gr	reen							
Natural Cycle: 110												

Control Type: Actuated-Coordinated

Lane Group	Ø10	
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	10	
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	
Minimum Split (s)	7.0	
Total Split (s)	7.0	
Total Split (%)	5%	
Yellow Time (s)	2.0	
All-Red Time (s)	0.0	
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Recall Mode	Min	
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Internetion Commence		
mersection Summary		

Maximum v/c Ratio: 0.94					
Intersection Signal Delay: 48.4	Intersection LOS: D				
Intersection Capacity Utilization 91.7%	ICU Level of Service F				
Analysis Period (min) 15					
~ Volume exceeds capacity, queue is theoretically infinite.					
Queue shown is maximum after two cycles.					
# 95th percentile volume exceeds capacity, queue may be longer.					
Queue shown is maximum after two cycles.					
Queue snown is maximum after two cycles.					

Splits and Phases: 21: Bronson & Carling/Glebe

Ø2 (R)	•	۶.	010 - 104
93 s		7 s	47 s
\$ Ø5	■ ↓ Ø6 (R)		
29 s	64 s		

Lanes, Volumes, Timings 22: Parkdale & 417 WB on/off

2028 PM Demand Rationalized Main Hospital SPA PEAK GEN 03/20/2023

	≯	-	\mathbf{r}	¥	-	•	1	1	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				٦	f,		۲	†			eî 👘	
Traffic Volume (vph)	0	0	0	224	8	416	121	441	0	0	531	191
Future Volume (vph)	0	0	0	224	8	416	121	441	0	0	531	191
Satd. Flow (prot)	0	0	0	1695	1465	0	1695	1784	0	0	1687	0
Flt Permitted				0.950			0.254					
Satd. Flow (perm)	0	0	0	1695	1465	0	453	1784	0	0	1687	0
Satd. Flow (RTOR)					409						28	
Lane Group Flow (vph)	0	0	0	224	424	0	121	441	0	0	722	0
Turn Type				Perm	NA		pm+pt	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8			2					
Detector Phase				8	8		5	2			6	
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	
Minimum Split (s)				29.0	29.0		10.3	27.3			25.1	
Total Split (s)				29.0	29.0		11.0	71.0			60.0	
Total Split (%)				29.0%	29.0%		11.0%	71.0%			60.0%	
Yellow Time (s)				3.3	3.3		3.0	3.0			3.0	
All-Red Time (s)				2.2	2.2		2.2	3.3			3.3	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				5.5	5.5		5.2	6.3			6.3	
Lead/Lag							Lag				Lead	
Lead-Lag Optimize?							Yes				Yes	
Recall Mode				None	None		None	C-Min			C-Min	
Act Effct Green (s)				18.2	18.2		71.1	70.0			57.4	
Actuated g/C Ratio				0.18	0.18		0.71	0.70			0.57	
v/c Ratio				0.72	0.71		0.29	0.35			0.74	
Control Delay				51.7	11.2		4.9	3.6			22.0	
Queue Delay				0.0	0.0		1.5	1.0			2.0	
Total Delay				51.7	11.2		6.4	4.6			24.0	
LOS				D	В		А	А			С	
Approach Delay					25.2			5.0			24.0	
Approach LOS					С			А			С	
Queue Length 50th (m)				41.2	2.4		4.6	18.5			96.6	
Queue Length 95th (m)				62.1	29.1		m2.8	14.1			153.9	
Internal Link Dist (m)		157.5			140.3			45.3			171.5	
Turn Bay Length (m)												
Base Capacity (vph)				398	657		413	1248			987	
Starvation Cap Reductn				0	0		164	541			0	
Spillback Cap Reductn				0	0		0	0			138	
Storage Cap Reductn				0	0		0	0			0	
Reduced v/c Ratio				0.56	0.65		0.49	0.62			0.85	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 39 (39%), Referenced	to phase	2:NBTL	and 6:SE	3T, Start	of Green							
Natural Cycle: 80												
Control Type: Actuated-Coord	dinated											

Maximum v/c Ratio: 0.74 Intersection Signal Delay: 18.9

Intersection Capacity Utilization 119.8%

Intersection LOS: B ICU Level of Service H

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 22: Parkdale & 417 WB on/off

Lanes, Volumes, Timings 23: Parkdale & 417 EB on/off

	≯	-	\mathbf{r}	4	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્સ	1					¢β		5	•	
Traffic Volume (vph)	311	0	150	0	0	0	0	222	358	433	272	0
Future Volume (vph)	311	0	150	0	0	0	0	222	358	433	272	0
Satd. Flow (prot)	0	1695	1517	0	0	0	0	2898	0	1695	1784	0
Flt Permitted		0.950								0.317		
Satd. Flow (perm)	0	1695	1482	0	0	0	0	2898	0	555	1784	0
Satd. Flow (RTOR)			150					358				
Lane Group Flow (vph)	0	311	150	0	0	0	0	580	0	433	272	0
Turn Type	Perm	NA	Perm					NA		pm+pt	NA	
Protected Phases		4						2		<u>'</u> 1	6	
Permitted Phases	4		4							6		
Detector Phase	4	4	4					2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0					10.0		5.0	10.0	
Minimum Split (s)	25.1	25.1	25.1					25.1		10.3	25.1	
Total Split (s)	30.0	30.0	30.0					38.0		32.0	70.0	
Total Split (%)	30.0%	30.0%	30.0%					38.0%		32.0%	70.0%	
Yellow Time (s)	3.3	3.3	3.3					3.0		3.0	3.0	
All-Red Time (s)	2.6	2.6	2.6					2.8		2.3	2.8	
Lost Time Adjust (s)		0.0	0.0					0.0		0.0	0.0	
Total Lost Time (s)		5.9	5.9					5.8		5.3	5.8	
Lead/Lag								Lag		Lead		
Lead-Lag Optimize?								Yes		Yes		
Recall Mode	None	None	None					C-Min		None	C-Min	
Act Effct Green (s)		23.7	23.7					39.3		65.1	64.6	
Actuated g/C Ratio		0.24	0.24					0.39		0.65	0.65	
v/c Ratio		0.78	0.32					0.43		0.73	0.24	
Control Delay		48.7	6.5					11.1		20.7	11.4	
Queue Delay		0.0	0.0					0.1		24.0	1.9	
Total Delay		48.7	6.5					11.3		44.7	13.3	
LOS		D	А					В		D	В	
Approach Delay		35.0						11.3			32.6	
Approach LOS		С						В			С	
Queue Length 50th (m)		56.5	0.0					14.7		45.8	23.8	
Queue Length 95th (m)		78.6	13.4					37.3		75.6	m48.3	
Internal Link Dist (m)		109.8			145.0			90.1			45.3	
Turn Bay Length (m)			75.0									
Base Capacity (vph)		440	496					1407		674	1186	
Starvation Cap Reductn		0	0					178		244	749	
Spillback Cap Reductn		0	0					1		0	0	
Storage Cap Reductn		0	0					0		0	0	
Reduced v/c Ratio		0.71	0.30					0.47		1.01	0.62	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 29 (29%), Referenced	d to phase	e 2:NBT a	and 6:SBT	L, Start o	f Green							
Natural Cycle: 70												
Control Type: Actuated-Coor	dinated											

Parsons

Maximum v/c Ratio: 0.78 Intersection Signal Delay: 26.1

Intersection Capacity Utilization 119.8%

Intersection LOS: C ICU Level of Service H

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 23: Parkdale & 417 EB on/off

Ø1	Ø2 (R)	₽ 04	
32 s	38 s	30 s	
Ø6 (R)			
70 s			

	≯	-	\mathbf{r}	-	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Volume (vph)	72	8	7	0	7	117	5	408	7	72	372	68
Future Volume (vph)	72	8	7	0	7	117	5	408	7	72	372	68
Satd. Flow (prot)	0	1683	0	0	1493	0	0	1777	0	0	1726	0
Flt Permitted		0.717						0.995			0.894	
Satd. Flow (perm)	0	1254	0	0	1493	0	0	1769	0	0	1548	0
Satd. Flow (RTOR)		7			117			3			23	
Lane Group Flow (vph)	0	87	0	0	124	0	0	420	0	0	512	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	1.0	1.0		1.0	1.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	18.0	18.0		18.0	18.0		25.1	25.1		25.1	25.1	
Total Split (s)	18.0	18.0		18.0	18.0		37.0	37.0		37.0	37.0	
Total Split (%)	32.7%	32.7%		32.7%	32.7%		67.3%	67.3%		67.3%	67.3%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	•	0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.0			4.0			5.6			5.6	
Lead/Lag		•			•			0.0			0.0	
Lead-Lag Optimize?												
Recall Mode	Ped	Ped		Ped	Ped		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)		14.0			14.0			31.4			31.4	
Actuated g/C Ratio		0.25			0.25			0.57			0.57	
v/c Ratio		0.27			0.27			0.42			0.57	
Control Delay		18.0			6.2			8.2			10.3	
Queue Delay		0.0			0.0			0.0			0.4	
Total Delay		18.0			6.2			8.2			10.8	
LOS		В			A			A			В	
Approach Delay		18.0			6.2			8.2			10.8	
Approach LOS		В			A			A			В	
Queue Length 50th (m)		6.3			0.5			20.3			26.8	
Queue Length 95th (m)		15.8			10.4			35.6			49.6	
Internal Link Dist (m)		221.3			335.0			289.1			90.1	
Turn Bay Length (m)												
Base Capacity (vph)		324			467			1011			893	
Starvation Cap Reductn		0			0			0			101	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.27			0.27			0.42			0.65	
Intersection Summary												
Cycle Length: 55												
Actuated Cycle Length: 55												
Offset: 26 (47%), Reference	ed to phase	e 2:NBTL	and 6:SE	BTL, Starl	t of Green							
Natural Cycle: 50												
Control Type: Actuated-Cod	ordinated											

Maximum v/c Ratio: 0.57	
Intersection Signal Delay: 9.9	Intersection LOS: A
Intersection Capacity Utilization 92.1%	ICU Level of Service F
Analysis Period (min) 15	

Splits and Phases: 24: Parkdale & Sherwood

Ø2 (R)	<u>→₀₄</u>	
37 s	18 s	
Ø6 (R)	4 Ø8	
37 s	18 s	

	٦	-	\mathbf{F}	•	-	*	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		5	î,			4			4.	
Traffic Volume (vph)	27	29	9	21	33	43	3	216	12	56	243	10
Future Volume (vph)	27	29	9	21	33	43	3	216	12	56	243	10
Satd. Flow (prot)	0	1695	0	1695	1554	0	0	1762	0	0	1759	0
Flt Permitted	-	0.830	-	0.807				0.997	-	-	0.910	-
Satd, Flow (perm)	0	1401	0	1353	1554	0	0	1759	0	0	1601	0
Satd. Flow (RTOR)	-	7	-		43			8	-	-	5	-
Lane Group Flow (vph)	0	65	0	21	76	0	0	231	0	0	309	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	19.4	19.4		19.4	19.4		31.8	31.8		31.8	31.8	
Total Split (s)	20.0	20.0		20.0	20.0		75.0	75.0		75.0	75.0	
Total Split (%)	21.1%	21.1%		21.1%	21.1%		78.9%	78.9%		78.9%	78.9%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.8	2.8		2.8	2.8	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)		5.4		5.4	5.4			5.8			5.8	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)		12.4		12.4	12.4			75.6			75.6	
Actuated g/C Ratio		0.13		0.13	0.13			0.80			0.80	
v/c Ratio		0.35		0.12	0.32			0.16			0.24	
Control Delay		38.9		37.2	22.7			3.5			4.0	
Queue Delay		0.0		0.0	0.0			0.0			0.0	
Total Delay		38.9		37.2	22.7			3.5			4.0	
LOS		D		D	С			A			A	
Approach Delay		38.9			25.9			3.5			4.0	
Approach LOS		D			С			A			A	
Queue Length 50th (m)		9.6		3.4	5.4			10.3			15.2	
Queue Length 95th (m)		21.8		9.9	17.8			17.1			24.1	
Internal Link Dist (m)		220.6			228.6			278.4			289.1	
Turn Bay Length (m)				40.0								
Base Capacity (vph)		221		207	275			1402			1275	
Starvation Cap Reductn		0		0	0			0			0	
Spillback Cap Reductn		0		0	0			0			0	
Storage Cap Reductn		0		0	0			0			0	
Reduced v/c Ratio		0.29		0.10	0.28			0.16			0.24	
Intersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95												
Offset: 40 (42%), Reference	d to phase	e 2:NBTL	and 6:SE	BTL, Starl	of Green							
Natural Cycle: 55												
Control Type: Actuated-Cool	rdinated											

Parsons

Maximum v/c Ratio: 0.35	
Intersection Signal Delay: 10.1	Intersection LOS: B
Intersection Capacity Utilization 68.7%	ICU Level of Service C
Analysis Period (min) 15	

Splits and Phases: 25: Parkdale & Ruskin

Ø2 (R)		
75 s	20 s	
Ø6 (R)	₩ Ø8	
75 s	20 s	

	≯	-	\rightarrow	4	-	•	1	†	1	1	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	•		ሻ	•	1		\$			ર્સ	1
Traffic Volume (vph)	569	197	2	3	302	386	4	3	1	279	4	599
Future Volume (vph)	569	197	2	3	302	386	4	3	1	279	4	599
Satd. Flow (prot)	3288	1777	0	1695	1784	1517	0	1683	0	0	1700	1517
Flt Permitted	0.950			0.950				0.834			0.724	
Satd. Flow (perm)	3175	1777	0	1459	1784	1484	0	1313	0	0	1153	1357
Satd. Flow (RTOR)						227						
Lane Group Flow (vph)	569	199	0	3	302	386	0	8	0	0	283	599
Turn Type	Prot	NA		Prot	NA	Free	Perm	NA		custom	NA	custom
Protected Phases	5	2		1	6			8		11	4 11	5
Permitted Phases						Free	8			4		4
Detector Phase	5	2		1	6		8	8		11	4 11	5
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		10.0		5.0
Minimum Split (s)	11.1	27.1		10.3	26.1		24.5	24.5		15.3		11.1
Total Split (s)	52.0	67.0		10.3	30.3		35.7	35.7		22.0		52.0
Total Split (%)	37.1%	47.9%		7.4%	21.6%		25.5%	25.5%		15.7%		37.1%
Yellow Time (s)	3.7	3.7		3.3	3.7		3.3	3.3		3.3		3.7
All-Red Time (s)	2.4	2.4		2.0	2.4		2.2	2.2		2.0		2.4
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0				0.0
Total Lost Time (s)	6.1	6.1		5.3	6.1			5.5				6.1
Lead/Lag				Lead								
Lead-Lag Optimize?				Yes								
Recall Mode	None	C-Min		None	C-Min		None	None		None		None
Act Effct Green (s)	47.7	85.7		5.9	35.4	140.0		17.1			33.8	64.1
Actuated g/C Ratio	0.34	0.61		0.04	0.25	1.00		0.12			0.24	0.46
v/c Ratio	0.51	0.18		0.04	0.67	0.26		0.05			0.83	0.89
Control Delay	38.2	12.4		65.3	57.1	0.4		49.5			60.9	56.3
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0			0.0	0.7
Total Delay	38.2	12.4		65.3	57.1	0.4		49.5			60.9	57.0
LOS	D	В		E	E	A		D			E	E
Approach Delay		31.5			25.5			49.5			58.3	
Approach LOS		С			С			D			E	
Queue Length 50th (m)	55.6	19.1		0.8	73.9	0.0		2.0			82.3	171.2
Queue Length 95th (m)	82.2	34.6		4.1	#142.4	0.0		6.6			m93.8	m128.2
Internal Link Dist (m)		79.9			173.8			12.4			145.6	
Turn Bay Length (m)	45.0			30.0		45.0						
Base Capacity (vph)	1140	1087		71	450	1484		283			451	685
Starvation Cap Reductn	0	0		0	0	0		0			0	11
Spillback Cap Reductn	0	0		0	0	0		0			0	0
Storage Cap Reductn	0	0		0	0	0		0			0	0
Reduced v/c Ratio	0.50	0.18		0.04	0.67	0.26		0.03			0.63	0.89
Intersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 140	ممما احتا	0.ED	L and C.V			-						
Natural Cycle: 100	ceu lo pr	Idse Z.EB		vd1, 5ťa		11						

Control Type: Actuated-Coordinated

Lane Group	Ø4	Ø9	Ø12
LaneConfigurations			
Traffic Volume (vph)			
Future Volume (vph)			
Satd, Flow (prot)			
Flt Permitted			
Satd, Flow (perm)			
Satd, Flow (RTOR)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	4	9	12
Permitted Phases	•	Ū	
Detector Phase			
Switch Phase			
Minimum Initial (s)	10.0	10	10
Minimum Solit (s)	15.5	5.0	20.0
Total Split (s)	35.7	5.0	22.0
Total Split (%)	26%	۵.0 ۵%	16%
Yellow Time (s)	2070	20	20
All-Red Time (s)	2.0	0.0	0.0
Lost Time Adjust (s)	2.2	0.0	0.0
Total Lost Time (s)			
		Log	
Leau/Lay		Lay	
	Mono	Nono	Nono
Act Effet Creen (e)	NONE	NULLE	NULLE
Actuated a/C Patia			
Notualeu y/C Natio			
v/c rtall0			
Queue Delay			
LUS Annreach Delau			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 30: Prince of Wales & Preston

Ø1 1 02 (R)	•	Ø11	Ø4
10.3 <mark>s 5s</mark> 67s		22 s	35.7 s
₩ _{Ø5}	← ● Ø6 (R)	1. Ø12	™ ø8
52 s	30.3 s	22 s	35.7 s

Lanes, Volumes, Timings2028 PM Demand Rationalized Main Hospital SPA PEAK GEN31: Rochester & 417 WB on/Raymond03/20/2023

	≯	-	$\mathbf{\hat{z}}$	1	-	•	1	1	1	1	↓	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ĥ		ሻ	•			•	1
Traffic Volume (vph)	0	0	0	120	170	115	182	337	0	0	151	192
Future Volume (vph)	0	0	0	120	170	115	182	337	0	0	151	192
Satd. Flow (prot)	0	0	0	1695	1636	0	1695	1784	0	0	1784	1517
Flt Permitted				0.950			0.546					
Satd. Flow (perm)	0	0	0	1685	1636	0	944	1784	0	0	1784	1414
Satd. Flow (RTOR)					56							192
Lane Group Flow (vph)	0	0	0	120	285	0	182	337	0	0	151	192
Turn Type				Perm	NA		pm+pt	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8			2					6
Detector Phase				8	8		5	2			6	6
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	10.0
Minimum Split (s)				32.0	32.0		10.9	27.3			24.9	24.9
Total Split (s)				32.0	32.0		13.0	38.0			25.0	25.0
Total Split (%)				45.7%	45.7%		18.6%	54.3%			35.7%	35.7%
Yellow Time (s)				3.3	3.3		3.3	3.3			3.3	3.3
All-Red Time (s)				2.4	2.4		2.6	2.6			2.6	2.6
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)				5.7	5.7		5.9	5.9			5.9	5.9
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				None	None		None	C-Min			C-Min	C-Min
Act Effct Green (s)				15.7	15.7		42.7	42.7			28.0	28.0
Actuated g/C Ratio				0.22	0.22		0.61	0.61			0.40	0.40
v/c Ratio				0.32	0.70		0.27	0.31			0.21	0.28
Control Delay				23.4	28.4		12.9	14.0			17.3	4.6
Queue Delay				0.0	0.0		0.0	0.5			0.0	0.0
Total Delay				23.4	28.4		12.9	14.5			17.3	4.6
LOS				С	С		В	В			В	A
Approach Delay					26.9			13.9			10.2	
Approach LOS					С			В			В	
Queue Length 50th (m)				13.2	27.6		14.9	33.3			12.5	0.0
Queue Length 95th (m)				22.8	44.7		33.5	58.5			29.8	13.4
Internal Link Dist (m)		122.0			89.8			72.3			151.7	
Turn Bay Length (m)												35.0
Base Capacity (vph)				633	649		671	1087			714	681
Starvation Cap Reductn				0	0		0	395			0	0
Spillback Cap Reductn				0	0		0	0			0	0
Storage Cap Reductn				0	0		0	0			0	0
Reduced v/c Ratio				0.19	0.44		0.27	0.49			0.21	0.28
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70 Offset: 8 (11%) Referenced to	nhase) NRTL av	nd 6·SB ⁻	E Start of	Green							
Natural Cycle: 70	1000 2			., otart of	510011							
Control Type: Actuated-Coordi	nated											

Parsons

Lanes, Volumes, Timings 2028 PM Demand Rationalized Main Hospital SPA PEAK GEN 31: Rochester & 417 WB on/Raymond 03/20/2023

Maximum v/c Ratio: 0.70	
Intersection Signal Delay: 17.1	Intersection LOS: B
Intersection Capacity Utilization 58.7%	ICU Level of Service B
Analysis Period (min) 15	

Lanes, Volumes, Timings 2028 PM Demand Rationalized Main Hospital SPA PEAK GEN 32: Rochester & 417 EB off/Orangeville 03/20/2023

	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	Ť	۲	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		đ î i						A				
Traffic Volume (vph)	210	230	122	0	0	0	0	304	50	17	232	0
Future Volume (vph)	210	230	122	0	0	0	0	304	50	17	232	0
Satd. Flow (prot)	0	3195	0	0	0	0	0	3302	0	0	3380	0
Flt Permitted		0.982									0.925	
Satd. Flow (perm)	0	3188	0	0	0	0	0	3302	0	0	3133	0
Satd. Flow (RTOR)		51						42				
Lane Group Flow (vph)	0	562	0	0	0	0	0	354	0	0	249	0
Turn Type	Perm	NA						NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4									6		
Detector Phase	4	4						2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0						10.0		10.0	10.0	
Minimum Split (s)	26.0	26.0						25.1		25.1	25.1	
Total Split (s)	26.0	26.0						44.0		44.0	44.0	
Total Split (%)	37.1%	37.1%						62.9%		62.9%	62.9%	
Yellow Time (s)	3.3	3.3						3.3		3.3	3.3	
All-Red Time (s)	2.3	2.3						2.1		2.1	2.1	
Lost Time Adjust (s)		0.0						0.0			0.0	
Total Lost Time (s)		5.6						5.4			5.4	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None						C-Min		C-Min	C-Min	
Act Effct Green (s)		16.6						42.4			42.4	
Actuated g/C Ratio		0.24						0.61			0.61	
v/c Ratio		0.71						0.18			0.13	
Control Delay		26.9						6.2			9.2	
Queue Delay		0.0						0.0			0.0	
Total Delay		26.9						6.2			9.2	
LOS		С						А			А	
Approach Delay		26.9						6.2			9.2	
Approach LOS		С						А			А	
Queue Length 50th (m)		32.3						8.2			2.7	
Queue Length 95th (m)		43.2						16.4			28.0	
Internal Link Dist (m)		104.8			107.2			99.1			72.3	
Turn Bay Length (m)												
Base Capacity (vph)		977						2028			1909	
Starvation Cap Reductn		0						0			0	
Spillback Cap Reductn		0						0			0	
Storage Cap Reductn		0						0			0	
Reduced v/c Ratio		0.58						0.17			0.13	
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70	1.4	0.1157	10.055		(0							
Unset: 67 (96%), Reference	ed to phase	e 2:NBT a	nd 6:SB1	L, Start o	Green							
Natural Cycle: 55												
Control Type: Actuated-Coc	ordinated											

Lanes, Volumes, Timings 2028 PM Demand Rationalized Main Hospital SPA PEAK GEN 32: Rochester & 417 EB off/Orangeville 03/20/2023

Maximum v/c Ratio: 0.71	
Intersection Signal Delay: 16.8	Intersection LOS: B
Intersection Capacity Utilization 50.6%	ICU Level of Service A
Analysis Period (min) 15	

Lanes, Volumes, Timings2028 PM Demand Rationalized Main Hospital SPA PEAK GEN33: Bronson & Catherine 417 WB on03/20/2023

	۶	-	$\mathbf{\hat{z}}$	1	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				5	.at≜ta		5	44			≜ 1≽	
Traffic Volume (vph)	0	0	0	805	506	284	284	732	0	0	772	168
Future Volume (vph)	0	0	0	805	506	284	284	732	0	0	772	168
Satd. Flow (prot)	0	0	0	1458	4306	0	1695	3390	0	0	3248	0
Flt Permitted				0.950	0.988		0.116					
Satd. Flow (perm)	0	0	0	1458	4306	0	207	3390	0	0	3248	0
Satd. Flow (RTOR)					114						28	
Lane Group Flow (vph)	0	0	0	547	1048	0	284	732	0	0	940	0
Turn Type				Perm	NA		pm+pt	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8			2					
Detector Phase				8	8		5	2			6	
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	
Minimum Split (s)				25.9	25.9		11.0	25.1			25.1	
Total Split (s)				42.0	42.0		18.0	53.0			35.0	
Total Split (%)				44.2%	44.2%		18.9%	55.8%			36.8%	
Yellow Time (s)				3.3	3.3		3.3	3.3			3.3	
All-Red Time (s)				2.6	2.6		2.7	2.8			2.8	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				5.9	5.9		6.0	6.1			6.1	
Lead/Lag							Lead				Lag	
Lead-Lag Optimize?							Yes				Yes	
Recall Mode				None	None		None	C-Min			C-Min	
Act Effct Green (s)				36.4	36.4		46.7	46.6			28.6	
Actuated g/C Ratio				0.38	0.38		0.49	0.49			0.30	
v/c Ratio				0.98	0.61		0.98	0.44			0.94	
Control Delay				64.5	22.7		76.8	24.9			49.7	
Queue Delay				39.3	0.2		0.0	3.4			45.0	
Total Delay				103.8	22.9		76.8	28.3			94.7	
LOS				F	С		E	С			F	
Approach Delay					50.6			41.9			94.7	
Approach LOS					D			D			F	
Queue Length 50th (m)				113.7	52.7		47.1	67.1			85.5	
Queue Length 95th (m)				#191.7	67.4		#88.0	77.4			#124.1	
Internal Link Dist (m)		151.3			165.9			71.3			237.2	
Turn Bay Length (m)												
Base Capacity (vph)				558	1718		289	1673			1007	
Starvation Cap Reductn				0	0		0	820			0	
Spillback Cap Reductn				123	126		0	0			170	
Storage Cap Reductn				0	0		0	0			0	
Reduced v/c Ratio				1.26	0.66		0.98	0.86			1.12	
Intersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95												
Offset: 59 (62%), Reference	d to phase	2:NBTL a	and 6:SE	BT, Start o	of Green							
Natural Cycle: 80												
Control Type: Actuated-Coo	rdinated											

Maximum v/c Ratio: 0.98	
Intersection Signal Delay: 59.8	Intersection LOS: E
Intersection Capacity Utilization 116.5%	ICU Level of Service H
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be low	nger.
Queue shown is maximum after two cycles.	
Splits and Phases: 33: Bronson & Catherine 417 WB on	

53 s			
▲ ø5	♥ ♥ Ø6 (R)	₹Ø8	
18 s	35 s	42 s	

	≯	\rightarrow	1	†	ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1		^	* *	
Traffic Volume (vph)	144	408	0	915	1501	0
Future Volume (vph)	144	408	0	915	1501	0
Satd. Flow (prot)	1695	1517	0	3390	3390	0
Flt Permitted	0.950					
Satd. Flow (perm)	1695	1491	0	3390	3390	0
Satd, Flow (RTOR)		43				
Lane Group Flow (vph)	144	408	0	915	1501	0
Turn Type	Prot	Perm		NA	NA	
Protected Phases	4			2	6	
Permitted Phases		4		_	-	
Detector Phase	4	4		2	6	
Switch Phase	T			2		
Minimum Initial (s)	10.0	10.0		10.0	10.0	
Minimum Solit (s)	25.1	25.1		34 3	34 3	
Total Solit (s)	20.1	30.0		65.0	65.0	
Total Split (%)	31.6%	31.6%		68 /0/	68 /0/	
	0/ U /0 د د	31.070		00.4/0 2 2	2 2	
All Ped Time (s)	0.0 0.1	0.0		3.3 2 E	0.0 0.5	
Lost Timo Adjust (a)	2.1	2.1		2.0	2.0	
Total Lost Time (a)	U.U	0.0		U.U 5 0	0.0	
	5.4	J.4		J.0	J.0	
Lead/Lag						
Lead-Lag Optimize?	News	Nlama		O Min	0 14:-	
Recall Mode	None	None		C-IVIIN	C-Min	
Act Effect Green (s)	27.9	27.9		55.9	55.9	
Actuated g/C Ratio	0.29	0.29		0.59	0.59	
v/c Ratio	0.29	0.87		0.46	0.75	
Control Delay	28.4	50.2		11.8	12.5	
Queue Delay	0.0	0.0		0.0	5.5	
Total Delay	28.4	50.2		11.9	18.1	
LOS	С	D		В	В	
Approach Delay	44.5			11.9	18.1	
Approach LOS	D			В	В	
Queue Length 50th (m)	18.9	59.6		52.1	108.5	
Queue Length 95th (m)	37.8	#126.6		53.8	m134.4	
Internal Link Dist (m)	81.4			50.7	71.3	
Turn Bay Length (m)		60.0				
Base Capacity (vph)	497	468		2112	2112	
Starvation Cap Reductn	0	0		0	548	
Spillback Cap Reductn	0	0		113	0	
Storage Cap Reductn	0	0		0	0	
Reduced v/c Ratio	0.29	0.87		0.46	0.96	
Intersection Summary						
Cycle Length: 95						
Actuated Cycle Length: 95						
Offset: 91 (96%), Reference	ed to phase	e 2:NBT a	nd 6:SB	T, Start o	f Green	
Natural Cycle: 65						
Control Type: Actuated-Cor	ordinated					

Maximum v/c Ratio: 0.87	
Intersection Signal Delay: 21.1	Intersection LOS: C
Intersection Capacity Utilization 116.5%	ICU Level of Service H
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lon	ger.
Queue shown is maximum after two cycles.	
m Volume for 95th percentile queue is metered by upstream s	ignal.

Splits and Phases: 34: Bronson & 417 EB off

● 1 Ø2 (R)	🕹 ø4
65 s	30 s
Ø6 (R)	
65 s	

2028 PM Demand Rationalized Main Hospital SPA PEAK GEN Lanes, Volumes, Timings 39: 03/20/2023 Prince of Wales & Road B (Dual WBT)

(Dual WBT)	٦	-	-	*	1	1			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø9		
Lane Configurations	ሻ	•	≜1 ≽		ሻ	1			
Traffic Volume (vph)	16	663	828	15	92	27			
Future Volume (vph)	16	663	828	15	92	27			
Satd. Flow (prot)	1695	1784	3377	0	1695	1517			
Flt Permitted	0.298				0.950				
Satd. Flow (perm)	532	1784	3377	0	1629	1424			
Satd. Flow (RTOR)						27			
Lane Group Flow (vph)	16	663	843	0	92	27			
Turn Type	pm+pt	NA	NA		Perm	Perm			
Protected Phases	5	2	6				9		
Permitted Phases	2				4	4			
Detector Phase	5	2	6		4	4			
Switch Phase									
Minimum Initial (s)	5.0	10.0	10.0		10.0	10.0	1.0		
Minimum Split (s)	10.3	23.3	23.3		23.3	23.3	15.0		
Total Split (s)	12.0	97.0	85.0		28.0	28.0	15.0		
Total Split (%)	8.6%	69.3%	60.7%		20.0%	20.0%	11%		
Yellow Time (s)	3.3	3.3	3.3		3.3	3.3	2.0		
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	0.0		
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0			
Total Lost Time (s)	5.3	5.3	5.3		5.3	5.3			
Lead/Lag	Lead		Lag						
Lead-Lag Optimize?	Yes		Yes						
Recall Mode	None	C-Min	C-Min		None	None	None		
Act Effct Green (s)	112.8	112.8	108.2		13.6	13.6			
Actuated g/C Ratio	0.81	0.81	0.77		0.10	0.10			
v/c Ratio	0.03	0.46	0.32		0.58	0.17			
Control Delay	4.6	6.6	5.9		74.7	20.7			
Queue Delay	0.0	0.0	0.0		0.0	0.0			
Total Delay	4.6	6.6	5.9		74.7	20.7			
LOS	Α	Α	А		E	С			
Approach Delay		6.6	5.9		62.4				
Approach LOS		Α	А		E				
Queue Length 50th (m)	0.6	39.7	3.6		24.9	0.0			
Queue Length 95th (m)	3.6	113.8	m91.2		41.8	9.0			
Internal Link Dist (m)		198.2	95.9		17.7				
Turn Bay Length (m)	45.0								
Base Capacity (vph)	484	1437	2609		264	253			
Starvation Cap Reductn	0	0	0		0	0			
Spillback Cap Reductn	0	0	0		0	0			
Storage Cap Reductn	0	0	0		0	0			
Reduced v/c Ratio	0.03	0.46	0.32		0.35	0.11			
Intersection Summary								 	
Cycle Length: 140									
Actuated Cycle Length: 140									

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

Control Type: Actuated-Coordinated

Lanes, Volumes, Timings 39: 2028 PM Demand Rationalized Main Hospital SPA PEAK GEN Prince of Wales & Road B (Dual 03/20/2023

WBT) Maximum v/c Ratio: 0.58

Intersection Signal Delay: 10.3

Intersection Capacity Utilization 55.9%

Intersection LOS: B ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 39: Prince of Wales & Road B

Lanes, Volumes, Timings 2028 PM Demand Rationalized Main Hospital SPA PEAK GEN Prince of Wales & Road B (single WBT) 04/04/2023

	۶	-	+	×	1	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø9
Lane Configurations	5	*	+	1	5	1	
Traffic Volume (vph)	16	663	828	15	92	27	
Future Volume (vph)	16	663	828	15	92	27	
Satd. Flow (prot)	1695	1784	1784	1517	1695	1517	
Flt Permitted	0.253				0.950		
Satd, Flow (perm)	451	1784	1784	1453	1629	1345	
Satd. Flow (RTOR)						27	
Lane Group Flow (vph)	16	663	828	15	92	27	
Turn Type	pm+pt	NA	NA	Perm	Perm	Perm	
Protected Phases	5	2	6				9
Permitted Phases	2			6	4	4	
Detector Phase	5	2	6	6	4	4	
Switch Phase							
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	1.0
Minimum Split (s)	10.3	23.3	23.3	23.3	23.3	23.3	15.0
Total Split (s)	10.3	101.7	91.4	91.4	23.3	23.3	15.0
Total Split (%)	7.4%	72.6%	65.3%	65.3%	16.6%	16.6%	11%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	2.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3	
Lead/Lag	Lead		Lag	Lag			
Lead-Lag Optimize?	Yes		Yes	Yes			
Recall Mode	None	C-Min	C-Min	C-Min	None	None	None
Act Effct Green (s)	112.8	112.8	108.2	108.2	13.6	13.6	
Actuated g/C Ratio	0.81	0.81	0.77	0.77	0.10	0.10	
v/c Ratio	0.04	0.46	0.60	0.01	0.58	0.17	
Control Delay	4.7	6.6	8.2	4.0	74.7	21.0	
Queue Delay	0.0	0.0	0.7	0.0	0.0	0.0	
Total Delay	4.7	6.6	8.9	4.0	74.7	21.0	
LOS	А	А	А	А	Е	С	
Approach Delay		6.6	8.8		62.5		
Approach LOS		А	А		Е		
Queue Length 50th (m)	0.6	39.7	18.2	0.3	24.9	0.0	
Queue Length 95th (m)	3.6	113.8	m154.5	m1.3	41.8	9.0	
Internal Link Dist (m)		198.2	95.9		17.7		
Turn Bay Length (m)	45.0			35.0			
Base Capacity (vph)	414	1438	1383	1126	210	197	
Starvation Cap Reductn	0	0	241	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.04	0.46	0.73	0.01	0.44	0.14	
Intersection Summary							
Cycle Length: 140							
Actuated Cycle Length: 140							
Offset: 42 (30%) Reference	d to phase	2:EBTI	and 6.WI	BT. Start	of Green		
Natural Cycle: 100				si, start			
Control Type: Actuated-Coor	rdinated						

Lanes, Volumes, Timings 2028 PM Demand Rationalized Main Hospital SPA PEAK GEN Prince of Wales & Road B (single WBT) 04/04/2023

Maximum v/c Ratio: 0.60	
Intersection Signal Delay: 11.8	Intersection LOS: B
Intersection Capacity Utilization 65.1%	ICU Level of Service C
Analysis Period (min) 15	

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 39: Prince of Wales & Road B

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	- 11	- 11	1	Y	
Traffic Vol, veh/h	11	531	1230	14	6	17
Future Vol, veh/h	11	531	1230	14	6	17
Conflicting Peds, #/hr	42	0	0	42	4	8
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	25	-	-	20	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	531	1230	14	6	17

Major/Minor	Major1	Ν	/lajor2		Minor2		
Conflicting Flow All	1286	0	-	0	1564	665	
Stage 1	-	-	-	-	1272	-	
Stage 2	-	-	-	-	292	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	535	-	-	-	102	403	
Stage 1	-	-	-	-	227	-	
Stage 2	-	-	-	-	732	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	516	-	-	-	93	386	
Mov Cap-2 Maneuver	-	-	-	-	93	-	
Stage 1	-	-	-	-	214	-	
Stage 2	-	-	-	-	706	-	
Annroach	FB		WB		SB		
HCM Control Delay s	0.2		0		24		
HCM LOS	0.2		v		C		
					Ū		
				MOT			
Minor Lane/Major Mvr	nt	EBL	FRI	WBI	WBR 8	SBLn1	
Capacity (veh/h)		516	-	-	-	212	
HCM Lane V/C Ratio		0.021	-	-	-	0.108	
HCM Control Delay (s)	12.1	-	-	-	24	
HCM Lane LOS		В	-	-	-	С	
HCM 95th %tile Q(ver	ו)	0.1	-	-	-	0.4	

Intersection						
Int Delay, s/veh	11.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	•	1		1
Traffic Vol, veh/h	0	817	875	70	0	287
Future Vol, veh/h	0	817	875	70	0	287
Conflicting Peds, #/hr	70	0	0	70	1	5
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	30	-	0
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	817	875	70	0	287

Major/Minor	Major1	1	Major2	Mi	nor2				
Conflicting Flow All	-	0	-	0	-	950			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Critical Hdwy	-	-	-	-	-	6.23			
Critical Hdwy Stg 1	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-			
Follow-up Hdwy	-	-	-	-	-	3.319			
Pot Cap-1 Maneuver	0	-	-	-	0	315			
Stage 1	0	-	-	-	0	-			
Stage 2	0	-	-	-	0	-			
Platoon blocked, %		-	-	-					
Mov Cap-1 Maneuver	-	-	-	-	-	295			
Mov Cap-2 Maneuver	-	-	-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Approach	EB		WB		SB				
HCM Control Delay, s	0		0		84.4				
HCM LOS					F				
Minor Lane/Major Mvr	nt	EBT	WBT	WBR SE	3Ln1				
Capacity (veh/h)		-	-	-	295				
HCM Lane V/C Ratio		-	-	- 0	.973				
HCM Control Delay (s)	-	-	-	84.4				
HCM Lane LOS		-	-	-	F				
HCM 95th %tile Q(veh	1)	-	-	-	9.9				

Intersection

Int Delay, s/veh

0.3

Ma		CDT						NDT		0.01	ODT	000
Movement	EBL	EBT	EBK	WBL	WBI	WBR	NBL	NBT	NBK	SBL	SBT	SBR
Lane Configurations		- Þ			- †			- 44				1
Traffic Vol, veh/h	0	783	0	0	822	45	1	0	5	0	0	25
Future Vol, veh/h	0	783	0	0	822	45	1	0	5	0	0	25
Conflicting Peds, #/hr	8	0	6	6	0	8	1	0	0	0	0	1
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	0
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	783	0	0	822	45	1	0	5	0	0	25

Major/Minor	Major1		Ma	ajor2			Minor1		I	Minor2			
Conflicting Flow All	-	0	0	-	-	0	1647	1664	789	-	-	854	
Stage 1	-	-	-	-	-	-	789	789	-	-	-	-	
Stage 2	-	-	-	-	-	-	858	875	-	-	-	-	
Critical Hdwy	-	-	-	-	-	-	7.12	6.52	6.22	-	-	6.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	-	3.518	4.018	3.318	-	-	3.318	
Pot Cap-1 Maneuver	0	-	-	0	-	-	79	97	391	0	0	358	
Stage 1	0	-	-	0	-	-	384	402	-	0	0	-	
Stage 2	0	-	-	0	-	-	352	367	-	0	0	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	r -	-	-	-	-	-	73	96	389	-	-	355	
Mov Cap-2 Maneuver	r -	-	-	-	-	-	73	96	-	-	-	-	
Stage 1	-	-	-	-	-	-	384	400	-	-	-	-	
Stage 2	-	-	-	-	-	-	327	364	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	s 0			0			21.4			15.9			
HCM LOS							С			С			

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT	WBR	SBLr	1	11
Capacity (veh/h)	226	-	-	-	-	35	5	55
HCM Lane V/C Ratio	0.027	-	-	-	-	0.0	17	70
HCM Control Delay (s)	21.4	-	-	-	-	15	9	.9
HCM Lane LOS	С	-	-	-	-		С	C
HCM 95th %tile Q(veh)	0.1	-	-	-	-	· 0	.2	.2

Intersection

Int Delay, s/veh	0.7								
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		1	<u>۲</u>	↑	↑	1			
Traffic Vol, veh/h	0	59	4	679	834	21			
Future Vol, veh/h	0	59	4	679	834	21			
Conflicting Peds, #/hr	0	0	10	0	0	10			
Sign Control	Stop	Stop	Free	Free	Free	Free			
RT Channelized	-	None	-	None	-	None			
Storage Length	-	0	50	-	-	50			
Veh in Median Storage	e, # 0	-	-	0	0	-			
Grade, %	0	-	-	0	0	-			
Peak Hour Factor	100	100	100	100	100	100			
Heavy Vehicles, %	7	6	25	2	2	14			
Mvmt Flow	0	59	4	679	834	21			

Major/Minor	Minor2	ļ	Major1	Ma	jor2	
Conflicting Flow All	-	844	865	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.26	4.35	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.354	2.425	-	-	-
Pot Cap-1 Maneuver	0	357	689	-	-	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	r -	354	683	-	-	-
Mov Cap-2 Maneuver	r –	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	NB	SB	
HCM Control Delay, s	17.2	0.1	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	683	- 354	-	-
HCM Lane V/C Ratio	0.006	- 0.167	-	-
HCM Control Delay (s)	10.3	- 17.2	-	-
HCM Lane LOS	В	- C	-	-
HCM 95th %tile Q(veh)	0	- 0.6	-	-
Intersection				
------------------	-----			
Int Delay, s/veh	6.2			

3.													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		र्स कि			đ þ			\$			\$		
Traffic Vol, veh/h	0	55	30	46	44	5	31	0	180	0	0	5	
Future Vol, veh/h	0	55	30	46	44	5	31	0	180	0	0	5	
Conflicting Peds, #/hr	10	0	10	10	0	10	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	55	30	46	44	5	31	0	180	0	0	5	

Major/Minor	Major1		Ν	/lajor2		I	Minor1		Ν	/linor2			
Conflicting Flow All	59	0	0	95	0	0	194	231	53	177	244	35	
Stage 1	-	-	-	-	-	-	80	80	-	149	149	-	
Stage 2	-	-	-	-	-	-	114	151	-	28	95	-	
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32	
Pot Cap-1 Maneuver	1543	-	-	1497	-	-	748	668	1003	769	657	1030	
Stage 1	-	-	-	-	-	-	919	828	-	838	773	-	
Stage 2	-	-	-	-	-	-	879	771	-	985	815	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1530	-	-	1484	-	-	720	637	995	609	626	1021	
Mov Cap-2 Maneuver	-	-	-	-	-	-	720	637	-	609	626	-	
Stage 1	-	-	-	-	-	-	912	821	-	831	742	-	
Stage 2	-	-	-	-	-	-	847	740	-	807	808	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			3.6			9.9			8.5			
HCM LOS							А			А			
Minor Lane/Major Mvn	nt N	IBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		942	1530	-	-	1484	-	-	1021				

0.224	-	-	- 0.031	-	- 0.	005			
9.9	0	-	- 7.5	0	-	8.5			
А	А	-	- A	А	-	А			
0.9	0	-	- 0.1	-	-	0			
	0.224 9.9 A 0.9	0.224 - 9.9 0 A A 0.9 0	0.224 9.9 0 - A A - 0.9 0 -	0.224 0.031 9.9 0 7.5 A A A 0.9 0 0.1	0.224 0.031 - 9.9 0 7.5 0 A A A A 0.9 0 0.1 -	0.224 0.031 0. 9.9 0 7.5 0 - A A A A - 0.9 0 0.1	0.224 0.031 0.005 9.9 0 7.5 0 - 8.5 A A A A - A 0.9 0 0.1 - 0	0.224 0.031 - 0.005 9.9 0 - 7.5 0 - 8.5 A A - A A - A 0.9 0 - 0.1 - 0	0.224 0.031 0.005 9.9 0 7.5 0 - 8.5 A A A A - A 0.9 0 0.1 0

Intersection

Int Delay, s/veh	7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		↑	1		-4†
Traffic Vol, veh/h	95	43	14	15	24	23
Future Vol, veh/h	95	43	14	15	24	23
Conflicting Peds, #/hr	0	0	0	15	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	0	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	95	43	14	15	24	23

Major/Minor	Minor1	Ν	/lajor1	Ν	lajor2		
Conflicting Flow All	89	29	0	0	44	0	
Stage 1	29	-	-	-	-	-	
Stage 2	60	-	-	-	-	-	
Critical Hdwy	6.63	6.23	-	-	4.13	-	
Critical Hdwy Stg 1	5.43	-	-	-	-	-	
Critical Hdwy Stg 2	5.83	-	-	-	-	-	
Follow-up Hdwy	3.519	3.319	-	-	2.219	-	
Pot Cap-1 Maneuver	907	1045	-	-	1564	-	
Stage 1	993	-	-	-	-	-	
Stage 2	956	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	881	1032	-	-	1544	-	
Mov Cap-2 Maneuver	881	-	-	-	-	-	
Stage 1	980	-	-	-	-	-	
Stage 2	941	-	-	-	-	-	
Approach	WB		NB		SB		

Approach	VVB	NB	SB	
HCM Control Delay, s	9.6	0	3.8	
HCM LOS	Α			

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT	
Capacity (veh/h)	-	-	923	1544	-	
HCM Lane V/C Ratio	-	-	0.15	0.016	-	
HCM Control Delay (s)	-	-	9.6	7.4	0	
HCM Lane LOS	-	-	Α	Α	Α	
HCM 95th %tile Q(veh)	-	-	0.5	0	-	

Intersection							
Int Delay, s/veh	0.3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	L I
Lane Configurations	۰¥			{1 †	≜ î≽		
Traffic Vol, veh/h	0	2	2	29	118	0)
Future Vol, veh/h	0	2	2	29	118	0)
Conflicting Peds, #/hr	0	0	5	0	0	5	j
Sign Control	Stop	Stop	Free	Free	Free	Free)
RT Channelized	-	None	-	None	-	None)
Storage Length	0	-	-	-	-	-	-
Veh in Median Storage	,# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	100	100	100	2	2	100)
Mvmt Flow	0	2	2	29	118	0)

Major/Minor	Minor2	Ν	1ajor1	Maj	or2		
Conflicting Flow All	142	64	123	0	-	0	
Stage 1	123	-	-	-	-	-	
Stage 2	19	-	-	-	-	-	
Critical Hdwy	8.8	8.9	6.1	-	-	-	
Critical Hdwy Stg 1	7.8	-	-	-	-	-	
Critical Hdwy Stg 2	7.8	-	-	-	-	-	
Follow-up Hdwy	4.5	4.3	3.2	-	-	-	
Pot Cap-1 Maneuver	617	742	964	-	-	-	
Stage 1	661	-	-	-	-	-	
Stage 2	777	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	[.] 611	739	960	-	-	-	
Mov Cap-2 Maneuver	⁻ 611	-	-	-	-	-	
Stage 1	657	-	-	-	-	-	
Stage 2	774	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	9.9	0.6	0
HCM LOS	А		

Minor Lane/Major Mvmt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)	960	-	739	-	-
HCM Lane V/C Ratio	0.002	-	0.003	-	-
HCM Control Delay (s)	8.8	0	9.9	-	-
HCM Lane LOS	А	А	А	-	-
HCM 95th %tile Q(veh)	0	-	0	-	-

rsection

Int Delay, s/veh	6.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f			- सी	۰¥	
Traffic Vol, veh/h	0	9	8	0	22	3
Future Vol, veh/h	0	9	8	0	22	3
Conflicting Peds, #/hr	0	10	10	0	10	10
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	9	8	0	22	3

Major/Minor	Major1	1	Major2		Minor1	
Conflicting Flow All	0	0	19	0	41	25
Stage 1	-	-	-	-	15	-
Stage 2	-	-	-	-	26	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1597	-	970	1051
Stage 1	-	-	-	-	1008	-
Stage 2	-	-	-	-	997	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1583	-	950	1033
Mov Cap-2 Maneuver	-	-	-	-	950	-
Stage 1	-	-	-	-	1000	-
Stage 2	-	-	-	-	984	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		7.3		8.9	
HCM LOS	-				A	
Minor Lane/Major Mym	nt l	NRI n1	FRT	FRR	WRI	WRT
Canacity (veh/h)		050		LDIX	1582	101
HCM Lane V/C Patio		0.026	-	-	0.005	-
ICM Cantral Dalay (a)		0.020	-	-	0.000	-

 HCM Control Delay (s)
 8.9
 7.3
 0

 HCM Lane LOS
 A
 A
 A

 HCM 95th %tile Q(veh)
 0.1
 0

Intersection	
Intersection Delay, s/veh	8.6
Intersection LOS	А

EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	4			4			4			4	
27	48	10	2	94	112	1	8	0	63	86	35
27	48	10	2	94	112	1	8	0	63	86	35
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	2	2	2	2	2	2	2	2	2	2	2
27	48	10	2	94	112	1	8	0	63	86	35
0	1	0	0	1	0	0	1	0	0	1	0
EB			WB			NB			SB		
WB			EB			SB			NB		
1			1			1			1		
SB			NB			EB			WB		
1			1			1			1		
NB			SB			WB			EB		
1			1			1			1		
8.2			8.5			7.9			8.9		
А			А			А			А		
	EBL 27 27 1.00 2 27 0 EB WB 1 SB 1 SB 1 SB 1 NB 1 8.2 A	EBL EBT 27 48 27 48 27 48 1.00 1.00 2 2 27 48 0 1 EB 1 WB 1 SB 1 1 SB 1 SB 1 A	EBL EBT EBR 27 48 10 27 48 10 27 48 10 1.00 1.00 1.00 2 2 2 27 48 10 0 1.00 1.00 2 2 2 27 48 10 0 1 0 EB WB SB 1 NB 1 8.2 A	EBL EBT EBR WBL 27 48 10 2 27 48 10 2 27 48 10 2 1.00 1.00 1.00 1.00 2 2 2 2 27 48 10 2 28 2 2 2 29 48 10 2 20 1 0 0 20 1 0 0 EB WB EB EB 1 1 1 1 SB SB SB 1 1 1 1 1 NB SB SB 1 1 1 1 1 8.2 8.5 A A	EBL EBT EBR WBL WBT 27 48 10 2 94 27 48 10 2 94 27 48 10 2 94 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 27 48 10 2 94 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 27 48 10 2 94 0 1 0 0 1 EB WB EB EB 1 SB NB 1 1 1 SB SB SB 1 1 NB SB 1 1 1 8.2 8.5 4 4 4	EBL EBT EBR WBL WBT WBR 27 48 10 2 94 112 27 48 10 2 94 112 27 48 10 2 94 112 1.00 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 27 48 10 2 94 112 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 27 48 10 2 94 112 0 1 0 0 1 0 EB WB EB WB EB NB SB NB SB 1 1 1 8.2 8.5 A A	EBL EBT EBR WBL WBT WBR NBL 27 48 10 2 94 112 1 27 48 10 2 94 112 1 27 48 10 2 94 112 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 2 2 27 48 10 2 94 112 1 1.00 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 2 2 27 48 10 2 94 112 1 0 1 0 0 1 0 0 0 EB WB EB SB SB SB 1 1 1 SB SB SB WB 1 1 1 1 R2 8.5 7.9 <td>EBL EBT EBR WBL WBT WBR NBL NBT 27 48 10 2 94 112 1 8 27 48 10 2 94 112 1 8 27 48 10 2 94 112 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 2 2 2 27 48 10 2 94 112 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 3</td> <td>EBL EBR WBL WBT WBR NBL NBT NBR 27 48 10 2 94 112 1 8 0 27 48 10 2 94 112 1 8 0 27 48 10 2 94 112 1 8 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 1</td> <td>EBL EBR WBL WBT WBR NBL NBT NBR SBL 27 48 10 2 94 112 1 8 0 63 27 48 10 2 94 112 1 8 0 63 27 48 10 2 94 112 1 8 0 63 1.00 0.0 <</td> <td>EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 27 48 10 2 94 112 1 8 0 63 86 27 48 10 2 94 112 1 8 0 63 86 27 48 10 2 94 112 1 8 0 63 86 1.00</td>	EBL EBT EBR WBL WBT WBR NBL NBT 27 48 10 2 94 112 1 8 27 48 10 2 94 112 1 8 27 48 10 2 94 112 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 2 2 2 27 48 10 2 94 112 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 3	EBL EBR WBL WBT WBR NBL NBT NBR 27 48 10 2 94 112 1 8 0 27 48 10 2 94 112 1 8 0 27 48 10 2 94 112 1 8 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 1	EBL EBR WBL WBT WBR NBL NBT NBR SBL 27 48 10 2 94 112 1 8 0 63 27 48 10 2 94 112 1 8 0 63 27 48 10 2 94 112 1 8 0 63 1.00 0.0 <	EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 27 48 10 2 94 112 1 8 0 63 86 27 48 10 2 94 112 1 8 0 63 86 27 48 10 2 94 112 1 8 0 63 86 1.00

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	11%	32%	1%	34%	
Vol Thru, %	89%	56%	45%	47%	
Vol Right, %	0%	12%	54%	19%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	9	85	208	184	
LT Vol	1	27	2	63	
Through Vol	8	48	94	86	
RT Vol	0	10	112	35	
Lane Flow Rate	9	85	208	184	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.012	0.109	0.241	0.232	
Departure Headway (Hd)	4.826	4.608	4.173	4.544	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	741	779	863	791	
Service Time	2.859	2.63	2.19	2.568	
HCM Lane V/C Ratio	0.012	0.109	0.241	0.233	
HCM Control Delay	7.9	8.2	8.5	8.9	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0	0.4	0.9	0.9	

Intersection	
Intersection Delay, s/veh	8.1
Intersection LOS	А

EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	4			4			4			4	
100	0	30	0	0	22	30	100	0	9	52	52
100	0	30	0	0	22	30	100	0	9	52	52
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	2	2	2	2	2	2	2	2	2	2	2
100	0	30	0	0	22	30	100	0	9	52	52
0	1	0	0	1	0	0	1	0	0	1	0
EB				WB		NB			SB		
WB				EB		SB			NB		
1				1		1			1		
SB				NB		EB			WB		
1				1		1			1		
NB				SB		WB			EB		
1				1		1			1		
8.4				7.2		8.3			7.8		
А				А		А			А		
	EBL 100 100 2 100 0 EB WB 1 SB 1 SB 1 NB 1 8.4 A	EBL EBT 100 0 100 0 100 1.00 2 2 100 0 0 1 EB 0 WB 1 SB 1 NB 1 1 8.4 A 4	EBL EBT EBR 100 0 30 100 0 30 100 0 30 100 1.00 1.00 2 2 2 100 0 30 0 1 0 EB WB SB 1 NB 1 8.4	EBL EBT EBR WBL 100 0 30 0 100 0 30 0 100 0 30 0 100 1.00 1.00 1.00 2 2 2 2 100 0 30 0 0 1 0 0 EB WB SB 1 NB 8.4	EBL EBT EBR WBL WBT 100 0 30 0 0 100 0 30 0 0 100 0 30 0 0 100 0 30 0 0 100 1.00 1.00 1.00 1.00 2 2 2 2 2 100 0 30 0 0 0 1 0 0 1 0 1 0 0 1 KB EB KB 1 1 1 SB SB SB 1 1 1 8.4 7.2 A	EBL EBT EBR WBL WBT WBR 100 0 30 0 0 22 100 0 30 0 0 22 100 0 30 0 0 22 100 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 100 0 30 0 0 22 100 0 30 0 1.00 1.00 2 2 2 2 2 2 100 0 30 0 0 22 100 0 30 0 0 22 100 1.00 30 0 0 22 100 1 0 0 1 0 EB EB EB EB 1 1 1 1 SB 1 1 1 NB SB 1 1 8.4 7.2 1 A A A	EBL EBT EBR WBL WBT WBR NBL 100 0 30 0 0 22 30 100 0 30 0 0 22 30 100 0 30 0 0 22 30 100 1.00 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 2 30 100 0 30 0 0 1.00 1.00 1.00 2 2 2 2 2 2 30 0 0 22 30 0 1 0 0 1 0	EBL EBT EBR WBL WBT WBR NBL NBT 100 0 30 0 0 22 30 100 100 0 30 0 0 22 30 100 100 0 30 0 0 22 30 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 30 100 1 0 0 1 10 1 1 1 1 1 1 1 1 1 <	EBL EBT EBR WBL WBT WBR NBL NBT NBR 100 0 30 0 0 22 30 100 0 100 0 30 0 0 22 30 100 0 100 0 30 0 0 22 30 100 0 100 1.00 <	EBLEBTEBRWBLWBTWBRNBLNBTNBRSBL1000300022301000910003000223010009100030002230100091.001.001.001.001.001.001.001.001.002222222222100030002230100090100100900100100900100100900100100900100100901001000100100100100111111111111111211111111311111111411111111511111111411111	EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 100 0 30 0 0 22 30 100 0 9 52 100 0 30 0 0 22 30 100 0 9 52 100 0 30 0 0 22 30 100 0 9 52 1.00

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	23%	77%	0%	8%	
Vol Thru, %	77%	0%	0%	46%	
Vol Right, %	0%	23%	100%	46%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	130	130	22	113	
LT Vol	30	100	0	9	
Through Vol	100	0	0	52	
RT Vol	0	30	22	52	
Lane Flow Rate	130	130	22	113	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.161	0.163	0.025	0.131	
Departure Headway (Hd)	4.451	4.516	4.027	4.171	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	809	797	890	862	
Service Time	2.466	2.532	2.048	2.186	
HCM Lane V/C Ratio	0.161	0.163	0.025	0.131	
HCM Control Delay	8.3	8.4	7.2	7.8	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.6	0.6	0.1	0.5	

Intersection						
Intersection Delay, s/veh	7.5					
Intersection LOS	А					
				MOT		
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u></u> ≜†⊅		ሻ	↑	- ¥	
Traffic Vol, veh/h	51	22	26	49	23	34
Future Vol, veh/h	51	22	26	49	23	34

	-			-	-	-	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	51	22	26	49	23	34	
Number of Lanes	2	0	1	1	1	0	
Approach	EB		WB		NB		
Opposing Approach	WB		EB				
Opposing Lanes	2		2		0		
Conflicting Approach Left			NB		EB		
Conflicting Lanes Left	0		1		2		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		2		
HCM Control Delay	7.4		7.8		7.3		
HCM LOS	А		А		А		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	
Vol Left, %	40%	0%	0%	100%	0%	
Vol Thru, %	0%	100%	44%	0%	100%	
Vol Right, %	60%	0%	56%	0%	0%	
Sign Control	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	57	34	39	26	49	
LT Vol	23	0	0	26	0	
Through Vol	0	34	17	0	49	
RT Vol	34	0	22	0	0	
Lane Flow Rate	57	34	39	26	49	
Geometry Grp	2	7	7	7	7	
Degree of Util (X)	0.063	0.044	0.046	0.037	0.064	
Departure Headway (Hd)	4.007	4.674	4.279	5.174	4.673	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	
Сар	899	763	833	691	765	
Service Time	2.007	2.419	2.023	2.913	2.412	
HCM Lane V/C Ratio	0.063	0.045	0.047	0.038	0.064	
HCM Control Delay	7.3	7.6	7.2	8.1	7.7	
HCM Lane LOS	А	А	А	А	А	
HCM 95th-tile Q	0.2	0.1	0.1	0.1	0.2	

	≯	-	+	•	1	~		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø10	
Lane Configurations	5	**	**	1	W.	-		
Traffic Volume (vph)	113	1019	483	97	132	91		
Future Volume (vph)	113	1019	483	97	132	91		
Satd. Flow (prot)	1695	3390	3390	1517	1619	0		
Flt Permitted	0.950				0.971	-		
Satd, Flow (perm)	1597	3390	3390	1273	1600	0		
Satd. Flow (RTOR)				97	29	-		
Lane Group Flow (vph)	113	1019	483	97	223	0		
Turn Type	Prot	NA	NA	Perm	Perm			
Protected Phases	5	2	6				10	
Permitted Phases				6	4			
Detector Phase	5	2	6	6	4			
Switch Phase								
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		1.0	
Minimum Split (s)	11.1	26.7	26.7	26.7	37.2		5.0	
Total Split (s)	40.0	73.0	33.0	33.0	47.0		5.0	
Total Split (%)	32.0%	58.4%	26.4%	26.4%	37.6%		4%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.0		2.0	
All-Red Time (s)	2.4	1.9	1.9	1.9	3.2		0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.1	5.6	5.6	5.6	6.2			
Lead/Lag	Lead		Lag	Lag				
Lead-Lag Optimize?	Yes		Yes	Yes				
Recall Mode	None	C-Min	C-Min	C-Min	None		Min	
Act Effct Green (s)	13.7	84.8	65.0	65.0	20.9			
Actuated g/C Ratio	0.11	0.68	0.52	0.52	0.17			
v/c Ratio	0.61	0.44	0.27	0.14	0.77			
Control Delay	66.4	10.7	19.0	4.7	59.5			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay	66.4	10.7	19.0	4.7	59.5			
LOS	Е	В	В	А	Е			
Approach Delay		16.3	16.6		59.5			
Approach LOS		В	В		Е			
Queue Length 50th (m)	26.9	55.4	33.7	0.0	46.3			
Queue Length 95th (m)	44.1	84.5	55.8	10.4	68.5			
Internal Link Dist (m)		207.1	170.5		278.4			
Turn Bay Length (m)	155.0			80.0				
Base Capacity (vph)	459	2299	1762	708	541			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.25	0.44	0.27	0.14	0.41			
Intersection Summary								
Cycle Length: 125								
Actuated Cycle Length: 125								
Offset: 106 (85%), Reference	ed to phas	se 2:EBT	and 6:WI	BT, Start	of Green			
Natural Cycle: 80								
Control Type: Actuated-Coor	dinated							

Lanes, Volumes, Timings 10: Carling & Parkdale

Maximum v/c Ratio: 0.77	
Intersection Signal Delay: 21.4	Intersection LOS: C
Intersection Capacity Utilization 57.5%	ICU Level of Service B
Analysis Period (min) 15	

Splits and Phases: 10: Carling & Parkdale

→ø2 (R)		÷.	Ø10 Ø4	
73 s		5 s	47 s	
▶ _{Ø5}	 Ø6 (R)			
40 s	33 s			

	≯	-	←	•	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ħ	**	**	1	¥	
Traffic Volume (vph)	37	1102	595	13	22	10
Future Volume (vph)	37	1102	595	13	22	10
Satd Flow (prot)	1695	3390	3390	1517	1626	0
Flt Permitted	0 427	0000	0000	1011	0.967	Ū
Satd Flow (perm)	749	3390	3390	1411	1579	0
Satd Flow (RTOR)	145	0000	0000	13	10	Ū
Lane Group Flow (vph)	37	1102	595	13	32	0
	Perm	NΔ	NΔ	Porm	Porm	U
Protected Phases	I CIIII	2	6	I CIIII	I CIIII	
Permitted Phases	2	2	0	6	Λ	
Detector Phase	2	0	e	0	4	
Switch Phone	2	2	0	0	4	
Switch Phase	10.0	10.0	10.0	10.0	10.0	
	10.0	10.0	10.0	10.0	10.0	
iviinimum Split (S)	31.3	31.3	31.3	51.5	23.3	
Total Split (S)	90.0	90.0	51.0	51.0	30.0	
i otal Split (%)	/5.0%	/5.0%	42.5%	42.5%	25.0%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.3	
All-Red Lime (s)	2.7	2.7	2.7	2.7	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.4	6.4	6.4	6.4	5.3	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Min	C-Min	C-Min	C-Min	None	
Act Effct Green (s)	105.4	105.4	105.4	105.4	11.6	
Actuated g/C Ratio	0.88	0.88	0.88	0.88	0.10	
v/c Ratio	0.06	0.37	0.20	0.01	0.20	
Control Delay	2.9	3.1	0.6	0.0	39.6	
Queue Delay	0.0	0.2	0.0	0.0	0.0	
Total Delay	2.9	3.2	0.6	0.0	39.6	
LOS	А	А	А	А	D	
Approach Delay		3.2	0.6		39.6	
Approach LOS		А	А		D	
Queue Length 50th (m)	1.3	28.5	2.3	0.0	4.9	
Queue Length 95th (m)	4.7	52.8	4.5	0.0	13.7	
Internal Link Dist (m)		170.5	180.8		39.9	
Turn Bay Length (m)	90.0			140.0		
Base Capacity (vph)	657	2976	2976	1240	332	
Starvation Cap Reductn	0	904	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.06	0.53	0.20	0.01	0 10	
	0.00	0.00	5.20	0.01	0.10	
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 120						
Offset: 0 (0%), Referenced t	o phase 2	EBTL ar	nd 6:WBT	, Start of	Green	
Natural Cycle: 55						
Control Type: Actuated-Coo	rdinated					

Lanes, Volumes, Timings 11: Carling & Civic

 Maximum v/c Ratio: 0.37
 Intersection Signal Delay: 3.0
 Intersection LOS: A

 Intersection Capacity Utilization 53.9%
 ICU Level of Service A

 Analysis Period (min) 15
 ICU Level of Service A

Lanes, Volumes, Timings 13: Maple/Old Irvine & Carling

	٦	-	\rightarrow	4	+	•	1	†	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	1	ሻ	^	1		\$			\$	
Traffic Volume (vph)	26	990	51	77	475	4	20	1	26	4	5	5
Future Volume (vph)	26	990	51	77	475	4	20	1	26	4	5	5
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1587	0	0	1646	0
Flt Permitted	0.479			0.258				0.883			0.939	
Satd. Flow (perm)	825	3390	1323	453	3390	1361	0	1410	0	0	1559	0
Satd. Flow (RTOR)			40			40		26			5	
Lane Group Flow (vph)	26	990	51	77	475	4	0	47	0	0	14	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	34.3	34.3	34.3	42.4	42.4		42.4	42.4	
Total Split (s)	77.0	77.0	77.0	77.0	77.0	77.0	43.0	43.0		43.0	43.0	
Total Split (%)	64.2%	64.2%	64.2%	64.2%	64.2%	64.2%	35.8%	35.8%		35.8%	35.8%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	4.4	4.4		4.4	4.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7		7.4			7.4	
Lead/Lag												
Lead-Lag Optimize?		.										
Recall Mode	C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	86.5	86.5	86.5	86.5	86.5	86.5		25.0			25.0	
Actuated g/C Ratio	0.72	0.72	0.72	0.72	0.72	0.72		0.21			0.21	
V/C Ratio	0.04	0.41	0.05	0.24	0.19	0.00		0.15			0.04	
Control Delay	9.8	10.2	4.0	13.5	9.2	0.0		18.6			24.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		10.0			0.0	
Total Delay	9.8	10.2	4.0	13.5	9.2	0.0		10.0			24.1	
LUS Annraech Delevi	А	B	A	В	A	А		10 C				
Approach Delay		9.9			9.7			10.0 D			24.1	
Approach LOS	2.4	61 2	0.0	0 0	A 07.2	0.0		26			15	
Queue Length 50th (m)	2.4	04.3 70.2	0.9 5 9	0.0	21.3	0.0 m0.0		3.0 10.7			1.0	
Laternel Link Diet (m)	0.2	79.2	5.0	10.0	101 5	110.0		17/ 2			0.0	
Turp Bay Longth (m)	20.0	230.1	15.0	45.0	191.5	25.0		174.5			220.0	
Rase Canacity (ynh)	20.0	2444	065	326	2444	20.0		136			166	
Starvation Can Reductn	095	2444	900	520	2444	992		430			400	
Snillback Can Reductn	0	0	0	0	0	0		0			0	
Storage Can Reductin	0	0	0	0	0	0		0			0	
Reduced v/c Ratio	0.04	0.41	0.05	0.24	0.19	0.00		0.11			0.03	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 75 (63%), Reference	d to phase	e 2:EBTL	and 6:W	BTL, Star	t of Gree	n						
Natural Cycle: 80												

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.41

Intersection Signal Delay: 10.2 Intersection Capacity Utilization 75.6% Intersection LOS: B ICU Level of Service D

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 13: Maple/Old Irvine & Carling

≠Ø2 (R)	↓ Ø4	
77 s	43 s	
●	1 Ø8	
77 s	43 s	

	≯	-	+	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	**	**	1	5	1
Traffic Volume (vph)	31	931	574	154	184	5
Future Volume (vph)	31	931	574	154	184	5
Satd, Flow (prot)	1695	3390	3390	1517	1695	1517
Flt Permitted	0.950	0000	0000	1017	0.950	
Satd Flow (perm)	1504	3390	3390	1094	1668	1472
Satd Flow (RTOR)	1001	0000	0000	154	1000	3
Lane Group Flow (vph)	31	931	574	154	184	5
	Prot	NΔ	NΔ	Perm	Perm	Perm
Protected Phases	5	2	6	T CIIII	T CITI	T CIIII
Permitted Phases	5	2	0	6	1	1
Detector Phase	5	2	6	6	4	4
Switch Phase	3	2	0	0	4	4
Minimum Initial (a)	50	10.0	10.0	10.0	10.0	10.0
Minimum Colit (c)	5.0	10.0	10.0	10.0	10.0	10.0
IVIIIIIIIIIIIIIIII SPIIT (S)	10.3	25.1	25.1	25.1	25.1	25.1
	13.0	79.0	00.0	00.0	41.0	41.0
	10.8%	65.8%	55.0%	55.0%	34.2%	34.2%
Yellow Lime (s)	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Lime (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	None
Act Effct Green (s)	7.7	90.8	82.3	82.3	18.6	18.6
Actuated g/C Ratio	0.06	0.76	0.69	0.69	0.16	0.16
v/c Ratio	0.29	0.36	0.25	0.19	0.71	0.02
Control Delay	64.7	4.8	7.0	1.1	62.6	29.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	64.7	4.8	7.0	1.1	62.6	29.6
LOS	E	A	A	A	E	С
Approach Delav		6.7	5.8		61.7	
Approach LOS		A	A		F	
Queue Length 50th (m)	7.3	24.4	25.2	0.3	41.7	0.4
Queue Length 95th (m)	17.1	38.8	28.5	22	61.5	3.8
Internal Link Dist (m)	.,	118.3	141 7	2.2	152.1	0.0
Turn Bay Length (m)	30.0	110.0	141.7	90.0	102.1	15.0
Rase Canacity (ynh)	118	2564	2223	708	106	10.0
Stanuation Can Poduota	0	2304	2323	130	430	440
Starvation Cap Reductin	0	0	0	0	0	0
Spillback Cap Reductin	0	0	0	0	0	0
Storage Cap Reductin	0.06	0.26	0.05	0 10	0 27	0.01
Reduced V/C Ratio	0.20	0.30	0.25	0.19	0.37	0.01
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12	0					
Offset: 112 (93%) Referen	ced to nha	se 2'FRT	and 6.W	RT Start	of Green	
Natural Cycle: 65				JI, Otart		
Control Type: Actuated_Co	ordinated					

Lanes, Volumes, Timings 15: Carling & Sherwood

Maximum v/c Ratio: 0.71 Intersection Signal Delay: 11.9 Intersection Capacity Utilization 47.9% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service A

Splits and Phases: 15: Carling & Sherwood

Lanes, Volumes, Timings 16: Road A/Champagne & Carling

	٦	-	\rightarrow	-	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	^	1	ሻ	^	1	<u> </u>	eî 🗧		5	eî 🗍	
Traffic Volume (vph)	110	753	237	237	624	47	90	0	94	176	0	90
Future Volume (vph)	110	753	237	237	624	47	90	0	94	176	0	90
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	1695	1414	0	1695	1456	0
Flt Permitted	0.950			0.950			0.699			0.695		
Satd. Flow (perm)	1503	3390	1370	1663	3390	1058	1218	1414	0	1180	1456	0
Satd. Flow (RTOR)						111					363	
Lane Group Flow (vph)	110	753	237	237	624	47	90	94	0	176	90	0
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases			2			6	8			4		
Detector Phase	5	2	2	1	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	10.3	26.3	26.3	10.3	26.3	26.3	18.3	18.3		32.9	32.9	
Total Split (s)	16.0	32.0	32.0	38.0	59.0	59.0	35.0	35.0		35.0	35.0	
Total Split (%)	13.3%	26.7%	26.7%	31.7%	49.2%	49.2%	29.2%	29.2%		29.2%	29.2%	
Yellow Time (s)	3.3	3.7	3.7	3.3	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.0	1.6	1.6	2.0	1.6	1.6	2.0	2.0		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3		5.9	5.9	
Lead/Lag	Lead			Lead								
Lead-Lag Optimize?	Yes			Yes								
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	12.0	56.5	56.5	22.1	67.1	67.1	23.0	23.0		22.4	22.4	
Actuated g/C Ratio	0.10	0.47	0.47	0.18	0.56	0.56	0.19	0.19		0.19	0.19	
v/c Ratio	0.65	0.47	0.37	0.76	0.33	0.07	0.39	0.35		0.80	0.16	
Control Delay	63.8	29.5	30.2	64.0	7.9	0.9	45.6	43.9		71.3	0.6	
Queue Delay	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0		0.0	0.0	
Total Delay	63.8	29.5	30.2	64.1	8.1	0.9	45.6	43.9		71.3	0.6	
LOS	E	С	С	E	А	А	D	D		E	А	
Approach Delay		33.1			22.3			44.7			47.4	
Approach LOS		С			С			D			D	
Queue Length 50th (m)	24.3	66.4	38.3	43.7	14.2	0.1	18.5	19.2		39.7	0.0	
Queue Length 95th (m)	#53.2	116.4	80.8	44.5	66.1	2.5	32.3	32.8		61.6	0.0	
Internal Link Dist (m)		141.7			98.6			63.9			477.2	
Turn Bay Length (m)	55.0		75.0	61.0		35.0				30.0		
Base Capacity (vph)	176	1596	645	461	1894	640	301	349		286	628	
Starvation Cap Reductn	0	0	0	9	454	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.63	0.47	0.37	0.52	0.43	0.07	0.30	0.27		0.62	0.14	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced t	o phase 2	EBT and	I 6:WBT,	Start of G	Green							
Natural Cycle: 90												

Control Type: Actuated-Coordinated

Lane Group	Ø9	Ø10	Ø11
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Satd. Flow (prot)			
Flt Permitted			
Satd, Flow (perm)			
Satd, Flow (RTOR)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	9	10	11
Permitted Phases	J	10	
Detector Phase			
Switch Phase			
Minimum Initial (a)	10	10	10
Minimum Solit (s)	5.0	5.0	5.0
Total Split (s)	0.0 10.0	5.U E 0	5.U E 0
Total Split (8)	10.0	0.C	0.C
	ō%	4%	4%
	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	
Recall Mode	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Lenath 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Canacity (vnh)			
Starvation Can Reducto			
Snillback Can Doducto			
Storage Can Beduetn			
Boducod v/o Dotio			
Intersection Summary			

Lanes, Volumes, Timings 16: Road A/Champagne & Carling

Maximum v/c Ratio: 0.80

Intersection Signal Delay: 31.5 Intersection Capacity Utilization 69.2% Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 16: Road A/Champagne & Carling

√ Ø1	👬 🖉 😦 🤠 🐨 Ø2 (R)	Å ₿ø ± Ø4
38 s	10 s 32 s	5 s 35 s
Ø5	26 (R)	<\$ [↑] Ø8
16 s 59 s		35 s

Lanes, Volumes, Timings 17: Carling & Trillium MUP

	٦	-	\mathbf{r}	4	+	•	•	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			* *							
Traffic Volume (vph)	0	942	0	0	996	0	0	0	0	0	0	0
Future Volume (vph)	0	942	0	0	996	0	0	0	0	0	0	0
Satd, Flow (prot)	0	3390	0	0	3390	0	0	0	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	3390	0	0	3390	0	0	0	0	0	0	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	942	0	0	996	0	0	0	0	0	0	0
Turn Type		NA			NA							
Protected Phases		2			6							
Permitted Phases												
Detector Phase		2			6							
Switch Phase												
Minimum Initial (s)		10.0			10.0							
Minimum Split (s)		31.3			31.3							
Total Split (s)		84.0			84.0							
Total Split (%)		70.0%			70.0%							
Yellow Time (s)		3.7			3.7							
All-Red Time (s)		1.4			1.4							
Lost Time Adjust (s)		0.0			0.0							
Total Lost Time (s)		5.1			5.1							
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Min			C-Min							
Act Effct Green (s)		87.4			87.4							
Actuated g/C Ratio		0.73			0.73							
v/c Ratio		0.38			0.40							
Control Delay		7.3			9.0							
Queue Delay		0.1			0.7							
Total Delay		7.4			9.7							
LOS		А			А							
Approach Delay		7.4			9.7							
Approach LOS		А			А							
Queue Length 50th (m)		38.3			54.4							
Queue Length 95th (m)		43.0			67.2							
Internal Link Dist (m)		98.6			92.8			53.0			60.9	
Turn Bay Length (m)												
Base Capacity (vph)		2470			2470							
Starvation Cap Reductn		469			1039							
Spillback Cap Reductn		0			0							
Storage Cap Reductn		0			0							
Reduced v/c Ratio		0.47			0.70							
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced to	o phase 2	EBT and	6:WBT, S	Start of G	reen							
Natural Cycle: 70												
Control Type: Actuated-Coor	dinated											

Lane Group	Ø4	Ø8
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd, Flow (perm)		
Satd Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	4	8
Permitted Phases	•	v
Detector Phase		
Switch Phase		
Minimum Initial (s)	10.0	10.0
Minimum Snlit (s)	35.6	35.6
Total Split (s)	36.0	36.0
Total Split (%)	200/	30.0
	30%	30%
All Pod Time (s)	3.0	3.0
All-Red Time (S)	3.0	3.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Lanes, Volumes, Timings 17: Carling & Trillium MUP

Maximum v/c Ratio: 0.40	
Intersection Signal Delay: 8.6	Intersection LOS: A
Intersection Capacity Utilization 33.3%	ICU Level of Service A
Analysis Period (min) 15	

Splits and Phases: 17: Carling & Trillium MUP

→Ø2 (R)	₩A@4
84 s	36 s
← Ø6 (R)	A A g8
84 s	36 s

Lanes, Volumes, Timings 18: Preston & Carling

	≯	-	\rightarrow	-	-	•	1	†	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	^	1	ሻ	^	1	۲.	đβ		ሻ	4	
Traffic Volume (vph)	138	717	192	275	518	81	179	444	267	106	247	66
Future Volume (vph)	138	717	192	275	518	81	179	444	267	106	247	66
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	1695	3164	0	1695	1688	0
Flt Permitted	0.950			0.950			0.213			0.381		
Satd. Flow (perm)	1588	3390	1517	1646	3390	1272	371	3164	0	676	1688	0
Satd. Flow (RTOR)						193					10	
Lane Group Flow (vph)	138	717	192	275	518	81	179	711	0	106	313	0
Turn Type	Prot	NA	custom	Prot	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases	5	92	93	1	6		3	8			4	
Permitted Phases						6	8			4		
Detector Phase	5	92	93	1	6	6	3	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0			5.0	10.0	10.0	5.0	10.0		10.0	10.0	
Minimum Split (s)	11.2			11.2	30.0	30.0	11.9	43.9		38.9	38.9	
Total Split (s)	23.5			31.0	41.6	41.6	16.0	54.9		38.9	38.9	
Total Split (%)	18.1%			23.8%	32.0%	32.0%	12.3%	42.2%		29.9%	29.9%	
Yellow Time (s)	3.7			3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5			2.5	2.3	2.3	3.6	3.6		3.6	3.6	
Lost Time Adjust (s)	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.2			6.2	6.0	6.0	6.9	6.9		6.9	6.9	
Lead/Lag	Lead			Lead			Lead					
Lead-Lag Optimize?	Yes			Yes			Yes					
Recall Mode	None			None	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	14.7	37.8	19.5	23.6	41.8	41.8	49.5	45.5		29.5	29.5	
Actuated g/C Ratio	0.11	0.29	0.15	0.18	0.32	0.32	0.38	0.35		0.23	0.23	
v/c Ratio	0.72	0.73	0.85	0.90	0.48	0.15	0.77	0.64		0.69	0.80	
Control Delay	76.1	48.1	84.5	82.5	39.2	0.6	75.6	64.2		69.0	61.4	
Queue Delay	0.0	2.4	0.0	0.5	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	76.1	50.5	84.5	83.1	39.2	0.6	75.6	64.2		69.0	61.4	
LOS	E	D	F	F	D	A	E	E		E	E	
Approach Delay		60.1			49.4			66.5			63.3	
Approach LOS		E			D			E			E	
Queue Length 50th (m)	34.3	91.8	48.7	68.8	60.0	0.0	42.1	89.2		24.4	72.0	
Queue Length 95th (m)	55.8	115.3	#90.6	#114.6	78.1	0.0	#73.0	116.9		#49.4	105.4	
Internal Link Dist (m)		92.8			165.9			145.6			55.2	
Turn Bay Length (m)	70.0		90.0	120.0		95.0				35.0		
Base Capacity (vph)	225	985	227	323	1090	540	233	1168		166	423	
Starvation Cap Reductn	0	153	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	3	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.61	0.86	0.85	0.86	0.48	0.15	0.77	0.61		0.64	0.74	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 116 (89%), Reference	ed to phas	e 2:EBT	and 6:W	BT, Start	of Green							
Natural Cycle: 115												
Control Type: Actuated-Coo	rdinated											

Lane Group	Ø2	Ø9	Ø10	Ø11	Ø12
Lane Configurations					
Traffic Volume (vph)					
Future Volume (vph)					
Satd. Flow (prot)					
Flt Permitted					
Satd, Flow (perm)					
Satd. Flow (RTOR)					
Lane Group Flow (vph)					
Turn Type					
Protected Phases	2	9	10	11	12
Permitted Phases		-			
Detector Phase					
Switch Phase					
Minimum Initial (s)	10.0	1.0	1.0	1.0	1.0
Minimum Split (s)	30.0	7.0	5.0	5.0	5.0
Total Split (s)	30.1	9.0	5.0	5.0	5.0
Total Split (%)	23%	7%	4%	4%	4%
Yellow Time (s)	37	37	20	2.0	2.0
All-Red Time (s)	2.3	2.3	0.0	0.0	0.0
Lost Time Adjust (s)	2.0	2.0	0.0	0.0	0.0
Total Lost Time (s)					
Lead/Lag	Lag		Laq	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	
Recall Mode	C-Min	Min	None	None	None
Act Effct Green (s)			10110	10110	10110
Actuated g/C Ratio					
v/c Ratio					
Control Delay					
Queue Delay					
Total Delay					
Approach Delay					
Approach LOS					
Oueue Length 50th (m)					
Queue Length 95th (m)					
Internal Link Dist (m)					
Turn Bay Length (m)					
Base Canacity (vnh)					
Starvation Can Reductn					
Spillback Can Reductn					
Storage Cap Reductn					
Reduced v/c Ratio					
Intersection Summary					

Lanes, Volumes, Timings 18: Preston & Carling

Maximum v/c Ratio: 0.90 Intersection Signal Delay: 59.4 Intersection Capacity Utilization 94.3%

Intersection LOS: E ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Splits and Phases: 18: Preston & Carling

√ Ø1	🚽 🗝 🕫 2 (R)	→ Ø9 → Ø3	A A O A
31 s	30.1 s	9 s 16 s	5 s 38.9 s
▶	₩	1 Ø12 Ø8	3
23.5 s	5 s 41.6 s	5 s 54.9 s	

	≯	-	+	×	×	-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	3	**	•	1	5	1
Traffic Volume (vph)	330	954	646	174	199	178
Future Volume (vph)	330	954	646	174	199	178
Satd Flow (prot)	1695	3390	1784	1517	1695	1517
Elt Permitted	0 138	0000			0.950	1011
Satd Flow (perm)	246	3390	1784	1197	1658	1187
Satd Flow (RTOR)	210	0000	1101	61	1000	178
Lane Group Flow (vph)	330	954	646	174	199	178
	nm+nt	NΔ	NΔ	Perm	Perm	Perm
Protected Phases	5	2	6	T CITI	T CITI	T CHI
Permitted Phases	2	2	0	6	٨	Λ
Notactor Phase	5	2	6	6	-4	4
Switch Phase	0	2	0	0	4	4
Minimum Initial (a)	50	10.0	10.0	10.0	10.0	10.0
Minimum Colit (c)	5.U	10.0	10.0	10.0	20.0	20.0
Total Split (s)	10.9	29.7	29.1	29.7	39.0	39.0
Total Split (S)	34.0	δ1.U	47.0	47.0	39.0	39.0
Total Split (%)	20.3%	07.5%	39.2%	39.2%	32.5%	32.5%
Yellow Time (S)	3.7	3.7	3.7	3.7	3.3	3.3
All-Red Time (s)	2.2	2.0	2.0	2.0	2.7	2.7
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
I otal Lost Time (s)	5.9	5.7	5.7	5.7	6.0	6.0
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	None
Act Effct Green (s)	79.2	79.4	51.4	51.4	28.9	28.9
Actuated g/C Ratio	0.66	0.66	0.43	0.43	0.24	0.24
v/c Ratio	0.77	0.43	0.85	0.32	0.50	0.42
Control Delay	32.2	11.2	45.7	19.4	42.6	8.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.2	11.2	45.7	19.4	42.6	8.2
LOS	С	В	D	В	D	А
Approach Delay		16.6	40.1		26.4	
Approach LOS		В	D		С	
Queue Lenath 50th (m)	45.1	57.2	145.6	18.1	38.7	0.0
Queue Lenath 95th (m)	76.4	70.8	#235.7	39.0	60.8	17.0
Internal Link Dist (m)		100.4	299.3	20.0	220.7	
Turn Bay Length (m)	50.0		200.0	30.0		30.0
Base Canacity (vnh)	501	2242	764	547	455	455
Starvation Can Reductn	001	<u>۲۲</u> ۲۲ ۱	ب ن , ۱	0		0
Snillback Can Reductin	0	0	0	0	0	0
Storage Can Poducto	0	0	0	0	0	0
Storage Cap Reductin	0	0 42	0.95	0 22	0.44	0.20
Reduced V/C Rallo	0.00	0.45	0.00	0.52	0.44	0.39
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 120						
Offset: 116 (97%), Referenc	ed to phas	se 2:EBT	L and 6:V	VBT, Star	t of Gree	n
Natural Cycle: 100						
Control Type: Actuated-Coo	rdinated					

Ма	iximum v/c Ratio: 0.85	
Int	ersection Signal Delay: 25.9	Intersection LOS: C
Int	ersection Capacity Utilization 96.6%	ICU Level of Service F
An	alysis Period (min) 15	
#	95th percentile volume exceeds capacity, queue may be lon	ger.
	Queue shown is maximum after two cycles.	

Splits and Phases: 20: Carling & Booth

→ø2 (R)		Ø4
81s		39 s
▶ _{Ø5}	 Ø6 (R)	
34 s	47 s	

Lanes, Volumes, Timings 21: Bronson & Carling/Glebe

	٦	-	\mathbf{r}	4	-	*	1	1	1	1	↓	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	र्स	*				ሻሻ	4			tβ	
Traffic Volume (vph)	516	100	553	0	0	0	537	804	17	0	611	238
Future Volume (vph)	516	100	553	0	0	0	537	804	17	0	611	238
Satd. Flow (prot)	1610	1644	1517	0	0	0	3288	1773	0	0	3190	0
Flt Permitted	0.950	0.970					0.950					
Satd. Flow (perm)	1520	1587	1274	0	0	0	3201	1773	0	0	3190	0
Satd. Flow (RTOR)			187					2			53	
Lane Group Flow (vph)	356	260	553	0	0	0	537	821	0	0	849	0
Turn Type	Perm	NA	pm+ov				Prot	NA			NA	
Protected Phases		4	5				5	2			6	
Permitted Phases	4		4									
Detector Phase	4	4	5				5	2			6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0				10.0	10.0			10.0	
Minimum Split (s)	31.0	31.0	16.0				16.0	25.1			33.0	
Total Split (s)	31.0	31.0	33.0				33.0	79.0			46.0	
Total Split (%)	26.5%	26.5%	28.2%				28.2%	67.5%			39.3%	
Yellow Time (s)	3.3	3.3	3.3				3.3	3.3			3.3	
All-Red Time (s)	2.7	2.7	2.7				2.7	2.7			2.7	
Lost Time Adjust (s)	0.0	0.0	0.0				0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0				6.0	6.0			6.0	
Lead/Lag			Lead				Lead				Lag	
Lead-Lag Optimize?			Yes				Yes				Yes	
Recall Mode	None	None	None				None	C-Min			C-Min	
Act Effct Green (s)	30.5	30.5	54.5				24.0	67.1			37.1	
Actuated g/C Ratio	0.26	0.26	0.47				0.21	0.57			0.32	
v/c Ratio	0.90	0.63	0.74				0.80	0.81			0.81	
Control Delay	69.7	47.9	22.4				53.3	26.5			41.2	
Queue Delay	0.0	0.0	0.0				0.0	0.0			0.0	
Total Delay	69.7	47.9	22.4				53.3	26.5			41.2	
LOS	E	D	С				D	С			D	
Approach Delay		42.5						37.1			41.2	
Approach LOS		D						D			D	
Queue Length 50th (m)	84.0	56.2	57.4				60.0	139.2			89.0	
Queue Length 95th (m)	#157.0	#98.7	99.5				77.3	173.3			109.0	
Internal Link Dist (m)		74.7			115.0			394.4			328.4	
Turn Bay Length (m)	40.0						50.0					
Base Capacity (vph)	396	413	777				758	1106			1125	
Starvation Cap Reductn	0	0	0				0	0			0	
Spillback Cap Reductn	0	0	0				0	0			0	
Storage Cap Reductn	0	0	0				0	0			0	
Reduced v/c Ratio	0.90	0.63	0.71				0.71	0.74			0.75	
Intersection Summary												
Cycle Length: 11/	,											
Actuated Cycle Length: 11/	1											
Vilset: U (U%), Referenced	to phase 2	INB I and	10:SBL, S	start of Gr	een							
inatural Cycle: 90												

Control Type: Actuated-Coordinated

Lane Group	Ø10
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Satd. Flow (RTOR)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	10
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	1.0
Minimum Split (s)	7.0
Total Split (s)	7.0
Total Split (%)	6%
Yellow Time (s)	2.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Recall Mode	Min
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summarv	

Maximum v/c Ratio: 0.90 Intersection Signal Delay: 40.0

Intersection Capacity Utilization 82.5%

Intersection LOS: D ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Splits and Phases: 21: Bronson & Carling/Glebe

¶ø2 (R)	,	Ă	i.	10 1 0	
79 s		7 s		31 s	
\$ 05	Ø6 (R)				
33 s	46 s				

Lanes, Volumes, Timings 22: Parkdale & 417 WB on/off

	≯	-	\mathbf{r}	-	-	•	1	†	1	1	↓	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				5	ţ,		5	•		-	1.	
Traffic Volume (vph)	0	0	0	232	0	488	171	315	0	0	406	214
Future Volume (vph)	0	0	0	232	0	488	171	315	0	0	406	214
Satd. Flow (prot)	0	0	0	1695	1481	0	1695	1784	0	0	1660	0
Flt Permitted				0.950			0.296					
Satd, Flow (perm)	0	0	0	1695	1481	0	528	1784	0	0	1660	0
Satd. Flow (RTOR)					497						35	
Lane Group Flow (vph)	0	0	0	232	488	0	171	315	0	0	620	0
Turn Type				Perm	NA		pm+pt	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8			2					
Detector Phase				8	8		5	2			6	
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	
Minimum Split (s)				29.0	29.0		10.3	27.3			25.1	
Total Split (s)				34.0	34.0		14.0	66.0			52.0	
Total Split (%)				34.0%	34.0%		14.0%	66.0%			52.0%	
Yellow Time (s)				3.3	3.3		3.0	3.0			3.0	
All-Red Time (s)				2.2	2.2		2.2	3.3			3.3	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				5.5	5.5		5.2	6.3			6.3	
Lead/Lag							Lag				Lead	
Lead-Lag Optimize?							Yes				Yes	
Recall Mode				None	None		None	C-Min			C-Min	
Act Effct Green (s)				19.6	19.6		69.7	68.6			52.9	
Actuated g/C Ratio				0.20	0.20		0.70	0.69			0.53	
v/c Ratio				0.70	0.71		0.35	0.26			0.69	
Control Delay				48.2	9.0		12.7	7.6			23.3	
Queue Delay				0.0	0.0		3.8	1.3			0.9	
Total Delay				48.2	9.0		16.5	8.9			24.2	
LOS				D	А		В	Α			С	
Approach Delay					21.6			11.6			24.2	
Approach LOS					С			В			С	
Queue Length 50th (m)				42.2	0.0		11.6	22.7			84.5	
Queue Length 95th (m)				61.0	23.2		23.8	41.1			138.1	
Internal Link Dist (m)		157.5			140.3			45.3			171.5	
Turn Bay Length (m)												
Base Capacity (vph)				483	777		498	1224			894	
Starvation Cap Reductn				0	0		245	691			0	
Spillback Cap Reductn				0	0		0	0			93	
Storage Cap Reductn				0	0		0	0			0	
Reduced v/c Ratio				0.48	0.63		0.68	0.59			0.77	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 69 (69%), Referenced	to phase	2:NBTL	and 6:SE	31, Start o	of Green							
Natural Cycle: 75												
Control Type: Actuated-Coord	inated											

Lanes, Volumes, Timings 22: Parkdale & 417 WB on/off

Maximum v/c Ratio: 0.71 Intersection Signal Delay: 19.8 Intersection Capacity Utilization 114.3% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service H

Splits and Phases: 22: Parkdale & 417 WB on/off

Lanes, Volumes, Timings 23: Parkdale & 417 EB on/off

	٭	-	\mathbf{r}	1	-	*	1	†	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ۍ ۲	1					≜t ⊾		5	•	
Traffic Volume (vph)	199	0	163	0	0	0	0	290	362	395	247	0
Future Volume (vph)	199	0	163	0	0	0	0	290	362	395	247	0
Satd. Flow (prot)	0	1695	1517	0	0	0	0	2933	0	1695	1784	0
Flt Permitted		0.950	-							0.308		
Satd, Flow (perm)	0	1692	1474	0	0	0	0	2933	0	539	1784	0
Satd. Flow (RTOR)			163					341				
Lane Group Flow (vph)	0	199	163	0	0	0	0	652	0	395	247	0
Turn Type	Perm	NA	Perm					NA		pm+pt	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4							6		
Detector Phase	4	4	4					2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0					10.0		5.0	10.0	
Minimum Split (s)	25.1	25.1	25.1					25.1		10.3	25.1	
Total Split (s)	34.0	34.0	34.0					40.0		26.0	66.0	
Total Split (%)	34.0%	34.0%	34.0%					40.0%		26.0%	66.0%	
Yellow Time (s)	3.3	3.3	3.3					3.0		3.0	3.0	
All-Red Time (s)	2.6	2.6	2.6					2.8		2.3	2.8	
Lost Time Adjust (s)		0.0	0.0					0.0		0.0	0.0	
Total Lost Time (s)		5.9	5.9					5.8		5.3	5.8	
Lead/Lag								Lag		Lead		
Lead-Lag Optimize?								Yes		Yes		
Recall Mode	None	None	None					C-Min		None	C-Min	
Act Effct Green (s)		17.0	17.0					46.1		71.8	71.3	
Actuated g/C Ratio		0.17	0.17					0.46		0.72	0.71	
v/c Ratio		0.69	0.42					0.42		0.64	0.19	
Control Delay		51.0	8.8					12.9		17.5	7.9	
Queue Delay		0.0	0.0					0.2		56.6	2.0	
Total Delay		51.0	8.8					13.1		74.1	9.9	
LOS		D	А					В		E	А	
Approach Delay		32.0						13.1			49.4	
Approach LOS		С						В			D	
Queue Length 50th (m)		36.6	0.0					24.7		37.3	18.6	
Queue Length 95th (m)		55.2	15.5					46.2		71.5	m39.4	
Internal Link Dist (m)		109.8			145.0			90.1			45.3	
Turn Bay Length (m)			75.0									
Base Capacity (vph)		475	531					1540		646	1271	
Starvation Cap Reductn		0	0					267		287	866	
Spillback Cap Reductn		0	0					66		0	0	
Storage Cap Reductn		0	0					0		0	0	
Reduced v/c Ratio		0.42	0.31					0.51		1.10	0.61	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 53 (53%), Reference	ed to phase	e 2:NBT a	and 6:SBT	L, Start o	f Green							
Natural Cycle: 70												
Control Type: Actuated-Coc	ordinated											

Maximum v/c Ratio: 0.69

Intersection Signal Delay: 31.3 Intersection Capacity Utilization 114.3% Intersection LOS: C ICU Level of Service H

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 23: Parkdale & 417 EB on/off

Ø1	Ø2 (R)	
26 s	40 s	34 s
Ø6 (R)	•	
66 s		

	٦	-	\mathbf{r}	4	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4				
Traffic Volume (vph)	91	2	8	0	0	139	8	369	12	116	328	61
Future Volume (vph)	91	2	8	0	0	139	8	369	12	116	328	61
Satd. Flow (prot)	0	1665	0	0	1441	0	0	1769	0	0	1722	0
Flt Permitted		0.553						0.991			0.822	
Satd. Flow (perm)	0	958	0	0	1441	0	0	1754	0	0	1413	0
Satd. Flow (RTOR)		4			561			5			21	
Lane Group Flow (vph)	0	101	0	0	139	0	0	389	0	0	505	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	1.0	1.0		1.0	1.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	18.0	18.0		18.0	18.0		25.1	25.1		25.1	25.1	
Total Split (s)	18.0	18.0		18.0	18.0		82.0	82.0		82.0	82.0	
Total Split (%)	18.0%	18.0%		18.0%	18.0%		82.0%	82.0%		82.0%	82.0%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.0			4.0			5.6			5.6	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	Ped	Ped		Ped	Ped		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)		18.6			18.6			71.8			71.8	
Actuated g/C Ratio		0.19			0.19			0.72			0.72	
v/c Ratio		0.56			0.19			0.31			0.50	
Control Delay		46.6			0.6			6.4			7.9	
Queue Delay		0.0			0.0			0.0			0.4	
Total Delay		46.6			0.6			6.4			8.2	
LOS		D			А			А			А	
Approach Delay		46.6			0.6			6.4			8.2	
Approach LOS		D			А			А			А	
Queue Length 50th (m)		17.2			0.0			23.1			31.0	
Queue Length 95th (m)		31.9			0.0			43.7			41.7	
Internal Link Dist (m)		221.3			335.0			289.1			90.1	
Turn Bay Length (m)												
Base Capacity (vph)		181			724			1341			1084	
Starvation Cap Reductn		0			0			0			206	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.56			0.19			0.29			0.58	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 25 (25%), Reference	ed to phase	e 2:NBTL	and 6:SE	BTL, Start	of Green							
Natural Cycle: 50												
Control Type: Actuated-Coc	ordinated											

Lanes, Volumes, Timings 24: Parkdale & Sherwood

Maximum v/c Ratio: 0.56 Intersection Signal Delay: 10.1 Intersection Capacity Utilization 90.1% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service E

Splits and Phases: 24: Parkdale & Sherwood

Ø2 (R)		
82 s	18 s	
Ø6 (R)	₹ø8	
82 s	18 s	

Lanes, Volumes, Timings 25: Parkdale & Ruskin

	≯	-	\rightarrow	-	-	*	1	†	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	f.			\$			4	
Traffic Volume (vph)	24	63	11	7	9	75	5	268	7	16	221	21
Future Volume (vph)	24	63	11	7	9	75	5	268	7	16	221	21
Satd. Flow (prot)	0	1714	0	1695	1472	0	0	1775	0	0	1754	0
Flt Permitted		0.898		0.716				0.996			0.977	
Satd. Flow (perm)	0	1547	0	1184	1472	0	0	1769	0	0	1717	0
Satd. Flow (RTOR)		6			75			4			12	
Lane Group Flow (vph)	0	98	0	7	84	0	0	280	0	0	258	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	19.4	19.4		19.4	19.4		31.8	31.8		31.8	31.8	
Total Split (s)	20.0	20.0		20.0	20.0		65.0	65.0		65.0	65.0	
Total Split (%)	23.5%	23.5%		23.5%	23.5%		76.5%	76.5%		76.5%	76.5%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.8	2.8		2.8	2.8	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)		5.4		5.4	5.4			5.8			5.8	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)		13.3		13.3	13.3			64.7			64.7	
Actuated g/C Ratio		0.16		0.16	0.16			0.76			0.76	
v/c Ratio		0.40		0.04	0.29			0.21			0.20	
Control Delay		34.9		30.3	12.3			4.5			4.3	
Queue Delay		0.0		0.0	0.0			0.0			0.0	
Total Delay		34.9		30.3	12.3			4.5			4.3	
LOS		С		C	В			A			A	
Approach Delay		34.9			13.6			4.5			4.3	
Approach LOS		С			В			A			A	
Queue Length 50th (m)		13.4		1.0	1.2			13.3			11.7	
Queue Length 95th (m)		27.4		4.5	12.9			22.2			20.1	
Internal Link Dist (m)		220.6			228.6			278.4			289.1	
Turn Bay Length (m)				40.0								
Base Capacity (vph)		270		203	314			1347			1310	
Starvation Cap Reductn		0		0	0			0			0	
Spillback Cap Reductn		0		0	0			0			0	
Storage Cap Reductn		0		0	0			0			0	
Reduced v/c Ratio		0.36		0.03	0.27			0.21			0.20	
Intersection Summary												
Cycle Length: 85												
Actuated Cycle Length: 85												
Offset: 45 (53%). Reference	d to phase	e 2:NBTL	and 6:SE	BTL, Starf	of Green							
Natural Cycle: 55				,								
Control Type: Actuated-Coo	rdinated											
Lanes, Volumes, Timings 25: Parkdale & Ruskin

Maximum v/c Ratio: 0.40 Intersection Signal Delay: 9.7 Intersection Capacity Utilization 45.0% Analysis Period (min) 15

Intersection LOS: A ICU Level of Service A

Splits and Phases: 25: Parkdale & Ruskin

Ø2 (R)	<u></u> Ø4	
65 s	20 s	
Ø6 (R)	↓ Ø8	
65 s	20 s	

Lanes, Volumes, Timings 30: Prince of Wales & Preston

	٦	-	\mathbf{r}	-	-	*	1	†	1	1	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	•		ሻ	•	1		4			र्स	1
Traffic Volume (vph)	723	263	1	0	229	301	0	2	1	229	1	614
Future Volume (vph)	723	263	1	0	229	301	0	2	1	229	1	614
Satd. Flow (prot)	3288	1782	0	1784	1784	1517	0	1633	0	0	1700	1517
Flt Permitted	0.950										0.726	
Satd. Flow (perm)	3219	1782	0	1784	1784	1483	0	1633	0	0	1203	1422
Satd. Flow (RTOR)						252						
Lane Group Flow (vph)	723	264	0	0	229	301	0	3	0	0	230	614
Turn Type	Prot	NA		Prot	NA	Free		NA		custom	NA	custom
Protected Phases	5	2		1	6			8		11	4 11	5
Permitted Phases						Free	8			4		4
Detector Phase	5	2		1	6		8	8		11	4 11	5
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		10.0		5.0
Minimum Split (s)	11.1	27.1		10.3	26.1		23.5	23.5		20.0		11.1
Total Split (s)	56.0	69.9		10.3	29.2		24.8	24.8		20.0		56.0
Total Split (%)	43.1%	53.8%		7.9%	22.5%		19.1%	19.1%		15.4%		43.1%
Yellow Time (s)	3.7	3.7		3.3	3.7		3.3	3.3		2.0		3.7
All-Red Time (s)	2.4	2.4		2.0	2.4		2.2	2.2		0.0		2.4
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0				0.0
Total Lost Time (s)	6.1	6.1		5.3	6.1			5.5				6.1
Lead/Lag				Lead								
Lead-Lag Optimize?		0 N.		Yes	0.14							
Recall Mode	None	C-Min		None	C-Min	100.0	None	None		None	07.0	None
Act Effet Green (s)	47.1	83.8			32.1	130.0		13.5			27.6	59.9
Actuated g/C Ratio	0.36	0.64			0.25	1.00		0.10			0.21	0.46
V/C Ratio	0.61	0.23			0.52	0.20		0.02			0.74	0.89
Control Delay	38.4	12.5			50.8	0.3		49.0			59.8	31.0
Queue Delay	0.0	10.0			0.0	0.0		10.0			0.0	0.0
	30.4	12.5			0.00	0.3		49.0			59.6 F	32.3
LUS Approach Delay	D	21 E			D 00.4	A		40.0			20.0	U
Approach LOS		31.5			22.1			49.0			39.0 D	
Approach LOS	71 1	22.0			55.6	0.0		0.7			51 A	75.0
Queue Length 95th (m)	112.8	22.9 58.5			#88.1	0.0		3.6			m64.0	75.0 m86.8
Internal Link Dist (m)	112.0	70.0			173.8	0.0		12 /			1/5.6	1100.0
Turn Bay Length (m)	45.0	19.9			175.0	45.0		12.4			145.0	
Base Canacity (vnh)	1299	1149			441	1483		242			374	740
Starvation Can Reductn	0	0			0	0		0			0	19
Spillback Can Reductn	0	0			0	0		0			0	0
Storage Can Reductn	0	0			0	0		0			0	0
Reduced v/c Ratio	0.56	0.23			0.52	0.20		0.01			0.61	0.85
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 0 (0%), Referenced t	o phase 2	EBT and	6:WBT, \$	Start of G	Green							
Natural Cycle: 100												

Control Type: Actuated-Coordinated

Lane Group	Ø4	Ø9	Ø12
LaneConfigurations			
Traffic Volume (vph)			
Future Volume (vph)			
Satd, Flow (prot)			
Elt Permitted			
Satd Flow (perm)			
Satd Flow (BTOR)			
Lane Group Flow (vph)			
Protected Phases	Λ	Q	12
Permitted Phases	т	5	12
Detector Phase			
Switch Dhoop			
Minimum Initial (a)	10.0	1.0	1.0
Minimum Calit (s)	10.0	1.0	1.0
Minimum Split (s)	10.0	5.0	20.0
	24.8	5.0	20.0
Total Split (%)	19%	4%	15%
Yellow Time (s)	3.3	2.0	2.0
All-Red Time (s)	2.2	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lag	
Lead-Lag Optimize?		Yes	
Recall Mode	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Canacity (vnh)			
Starvation Can Poducto			
Starvation Cap Reductin			
Storage Can Bodustr			
Boducod v/o Dotio			
Intersection Summary			

Lanes, Volumes, Timings 30: Prince of Wales & Preston

Maximum v/c Ratio: 0.89 Intersection Signal Delay: 32.4

Intersection Capacity Utilization 85.1%

Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 30: Prince of Wales & Preston

✓ Ø1		Ø11	↓ Ø4
10.3 s 5 s 69.9 s		20 s	24.8 s
* Ø5	← ● Ø6 (R)	₩ø12	
56 s	29.2 s	20 s	24.8 s

Lanes, Volumes, Timings 31: Rochester & 417 WB on/Raymond

	≯	-	\mathbf{r}	-	-	•	1	1	1	1	. ↓	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				5	ĥ		5	•			•	1
Traffic Volume (vph)	0	0	0	202	124	97	164	306	0	0	142	221
Future Volume (vph)	0	0	0	202	124	97	164	306	0	0	142	221
Satd, Flow (prot)	0	0	0	1695	1621	0	1695	1784	0	0	1784	1517
Flt Permitted				0.950			0.533					
Satd. Flow (perm)	0	0	0	1678	1621	0	930	1784	0	0	1784	1436
Satd. Flow (RTOR)					68							221
Lane Group Flow (vph)	0	0	0	202	221	0	164	306	0	0	142	221
Turn Type				Perm	NA		pm+pt	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8			2					6
Detector Phase				8	8		5	2			6	6
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	10.0
Minimum Split (s)				23.7	23.7		10.9	27.3			24.9	24.9
Total Split (s)				24.0	24.0		11.0	36.0			25.0	25.0
Total Split (%)				40.0%	40.0%		18.3%	60.0%			41.7%	41.7%
Yellow Time (s)				3.3	3.3		3.3	3.3			3.3	3.3
All-Red Time (s)				2.4	2.4		2.6	2.6			2.6	2.6
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)				5.7	5.7		5.9	5.9			5.9	5.9
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				None	None		None	C-Min			C-Min	C-Min
Act Effct Green (s)				13.0	13.0		35.4	35.4			24.7	24.7
Actuated g/C Ratio				0.22	0.22		0.59	0.59			0.41	0.41
v/c Ratio				0.55	0.55		0.26	0.29			0.19	0.31
Control Delay				26.3	18.9		5.9	5.8			14.9	4.0
Queue Delay				0.0	0.0		0.0	0.2			0.0	0.0
Total Delay				26.3	18.9		5.9	6.1			14.9	4.0
LOS				С	В		A	A			В	A
Approach Delay					22.4			6.0			8.3	
Approach LOS					С			A			A	
Queue Length 50th (m)				20.2	14.8		7.5	14.4			10.4	0.0
Queue Length 95th (m)				33.0	28.5		11.6	20.1			23.0	12.2
Internal Link Dist (m)		122.0			89.8			72.3			151.7	
Turn Bay Length (m)												35.0
Base Capacity (vph)				511	541		639	1051			736	722
Starvation Cap Reductn				0	0		0	271			0	0
Spillback Cap Reductn				0	0		0	0			0	0
Storage Cap Reductn				0	0		0	0			0	0
Reduced v/c Ratio				0.40	0.41		0.26	0.39			0.19	0.31
Intersection Summary												
Cycle Length: 60												
Actuated Cycle Length: 60			10.01		()							
Unset: 53 (88%), Referenced	to phase	2:NBTL	and 6:SE	si, Start o	of Green							
Natural Cycle: 60	· I											
Control Type: Actuated-Coord	inated											

Maximum v/c Ratio: 0.55 Intersection Signal Delay: 12.2 Intersection Capacity Utilization 55.2% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Lanes, Volumes, Timings 32: Rochester & 417 EB off/Orangeville

	٦	-	\mathbf{r}	1	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ፋጉ						¢β			4 1≽	
Traffic Volume (vph)	156	210	301	0	0	0	0	310	45	18	318	0
Future Volume (vph)	156	210	301	0	0	0	0	310	45	18	318	0
Satd. Flow (prot)	0	3070	0	0	0	0	0	3311	0	0	3380	0
Flt Permitted		0.988									0.931	
Satd. Flow (perm)	0	3067	0	0	0	0	0	3311	0	0	3154	0
Satd. Flow (RTOR)		301						32				
Lane Group Flow (vph)	0	667	0	0	0	0	0	355	0	0	336	0
Turn Type	Perm	NA						NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4									6	-	
Detector Phase	4	4						2		6	6	
Switch Phase		•						_		•	•	
Minimum Initial (s)	10.0	10.0						10.0		10.0	10.0	
Minimum Split (s)	26.0	26.0						25.1		25.1	25.1	
Total Split (s)	30.0	30.0						30.0		30.0	30.0	
Total Split (%)	50.0%	50.0%						50.0%		50.0%	50.0%	
Yellow Time (s)	3.3	3.3						33		3.3	3.3	
All-Red Time (s)	2.3	2.3						2.1		2.1	2.1	
Lost Time Adjust (s)	2.0	0.0						0.0		2.1	0.0	
Total Lost Time (s)		5.6						5.4			5.0	
		0.0						J.T			J.T	
Lead-Lag Ontimize?												
Recall Mode	None	None						C-Min		C-Min	C-Min	
Act Effct Green (s)	None	14.0						35.0			35.0	
Actuated g/C Ratio		0.23						0.58			0.58	
v/c Ratio		0.20						0.00			0.00	
Control Delay		15.2						67			73	
		0.0						0.0			0.0	
Total Delay		15.2						6.7			73	
		10.2 R						Δ			Δ	
Approach Delay		15.2						67			73	
Approach LOS		10.2 R						Δ			Δ	
Oueue Length 50th (m)		18.8						14 1			13.5	
Queue Length 95th (m)		20.5						m18.5			21 /	
Internal Link Dist (m)		104.8			107.2			QQ 1			723	
Turn Bay Length (m)		104.0			107.2			33.1			12.0	
Rase Canacity (vnh)		1/25						19/6			18/10	
Starvation Can Reductn		0						0+0			0+01	
Snillback Can Reductn		0						0			0	
Storage Cap Reductn		0						0			0	
Peduced v/c Patio		0.47						0 18			0 18	
		0.47						0.10			0.10	
Intersection Summary												
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 52 (87%), Reference	ed to phase	e 2:NBT a	nd 6:SBT	L, Start o	f Green							
Natural Cycle: 55												
Control Type: Actuated-Coc	ordinated											

Maximum v/c Ratio: 0.71

Intersection Signal Delay: 11.0 Intersection Capacity Utilization 58.2% Intersection LOS: B ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 32: Rochester & 417 EB off/Orangeville

Lanes, Volumes, Timings 33: Bronson & Catherine 417 WB on

	≯	-	\rightarrow	-	+	•	1	Ť	1	1	↓	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ፈቶኬ		5	44			≜t ≽	
Traffic Volume (vph)	0	0	0	613	513	312	467	973	0	0	399	106
Future Volume (vph)	0	0	0	613	513	312	467	973	0	0	399	106
Satd. Flow (prot)	0	0	0	1458	4248	0	1695	3390	0	0	3243	0
Flt Permitted				0.950	0.990		0.270					
Satd. Flow (perm)	0	0	0	1458	4248	0	474	3390	0	0	3243	0
Satd. Flow (RTOR)					64						33	
Lane Group Flow (vph)	0	0	0	417	1021	0	467	973	0	0	505	0
Turn Type				Perm	NA		pm+pt	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8			2					
Detector Phase				8	8		5	2			6	
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	
Minimum Split (s)				25.9	25.9		11.0	25.1			25.1	
Total Split (s)				41.0	41.0		26.0	54.0			28.0	
Total Split (%)				43.2%	43.2%		27.4%	56.8%			29.5%	
Yellow Time (s)				3.3	3.3		3.3	3.3			3.3	
All-Red Time (s)				2.6	2.6		2.7	2.8			2.8	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				5.9	5.9		6.0	6.1			6.1	
Lead/Lag							Lead				Lag	
Lead-Lag Optimize?							Yes				Yes	
Recall Mode				None	None		None	C-Min			C-Min	
Act Effct Green (s)				32.3	32.3		50.8	50.7			23.3	
Actuated g/C Ratio				0.34	0.34		0.53	0.53			0.25	
v/c Ratio				0.84	0.69		0.89	0.54			0.62	
Control Delay				45.0	27.5		42.4	19.6			34.4	
Queue Delay				3.5	0.1		13.6	2.6			0.0	
Total Delay				48.5	27.5		56.0	22.2			34.4	
LOS				D	С		E	С			С	
Approach Delay					33.6			33.2			34.4	
Approach LOS					С			С			С	
Queue Length 50th (m)				77.0	55.0		70.0	66.0			43.1	
Queue Length 95th (m)				#130.8	70.3		#115.8	101.2			58.4	
Internal Link Dist (m)		151.3			165.9			71.3			230.9	
Turn Bay Length (m)												
Base Capacity (vph)				541	1617		530	1815			850	
Starvation Cap Reductn				0	0		58	691			0	
Spillback Cap Reductn				62	61		0	0			1	
Storage Cap Reductn				0	0		0	0			0	
Reduced v/c Ratio				0.87	0.66		0.99	0.87			0.59	
Intersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95												
Offset: 35 (37%), Referenced	to phase	2:NBTL	and 6:SE	BT, Start o	of Green							
Natural Cycle: 90												
Control Type: Actuated-Coord	inated											

Maximum v/c Ratio: 0.89 Intersection Signal Delay: 33.6

Intersection Capacity Utilization 108.1%

Intersection LOS: C ICU Level of Service G

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases:	33: Bronson & Catherine 417 WB on

1 Ø2 (R)	•		
54 s			
▲ Ø5	🛛 🗸 Ø6 (R)	Ø8	
26 s	28 s	1s	

	≯	\rightarrow	1	†	Ŧ	1			
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	۲.	1		**	44				
Traffic Volume (vph)	292	363	0	1223	1056	0			
Future Volume (vph)	292	363	0	1223	1056	0			
Satd. Flow (prot)	1695	1517	0	3390	3390	0			
Flt Permitted	0.950								
Satd. Flow (perm)	1695	1474	0	3390	3390	0			
Satd. Flow (RTOR)		116							
Lane Group Flow (vph)	292	363	0	1223	1056	0			
Turn Type	Perm	Perm		NA	NA				
Protected Phases				2	6				
Permitted Phases	4	4			-				
Detector Phase	4	4		2	6				
Switch Phase				-	Ŭ				
Minimum Initial (s)	10.0	10.0		10.0	10.0				
Minimum Snlit (s)	25.1	25.1		34.3	34.3				
Total Split (s)	30.0	30.0		65.0	65.0				
Total Split (%)	31.6%	31.6%		68.4%	68.4%				
	22	2 2 2		ر ۱ .۵۵	22				
All-Red Time (s)	2.5	0.0 0.1		2.5	2.5				
Lost Time Adjust (s)	2.1	2.1		2.0	2.5				
Total Lost Time (s)	5.0	5.0		0.0 5.2	5.8				
	5.4	0.4		5.0	5.0				
Load Lag Optimize?									
Leau-Lay Optimize?	Nene	Mana		C Min	C Min				
	None			C-IVIIN	C-IVIIN				
Activities of the second secon	22.9	22.9		00.9	00.9				
Actuated g/C Ratio	0.24	0.24		0.64	0.64				
V/C Katio	0.71	0.82		0.56	0.49				
Control Delay	42.1	37.4		12.0	5.6				
Queue Delay	0.4	0.0		0.1	0.5				
Total Delay	42.6	37.4		12.1	6.0				
LOS	D	D		В	Α				
Approach Delay	39.7			12.1	6.0				
Approach LOS	D			В	А				
Queue Length 50th (m)	49.1	43.7		60.1	3.6				
Queue Length 95th (m)	67.6	68.2		99.8	105.1				
Internal Link Dist (m)	81.4			50.7	71.3				
Turn Bay Length (m)		60.0							
Base Capacity (vph)	472	494		2238	2238				
Starvation Cap Reductn	0	0		0	665				
Spillback Cap Reductn	26	0		157	0				
Storage Cap Reductn	0	0		0	0				
Reduced v/c Ratio	0.65	0.73		0.59	0.67				
Intersection Summary									
Cycle Length: 95									
Actuated Cycle Length: 05									
Offect: 72 (76%) Deference	nd to phone		nd 6.CD	T Start at	Groon				
Natural Cuale: 60	ed to phase	SZINDI a	nu 0.3B	r, Start O	GIEEII				
Control Type: Actuated Car	ordinated								
Control Type: Actuated-Coc	Junated								

Lanes, Volumes, Timings 34: Bronson & 417 EB off

Maximum v/c Ratio: 0.82 Intersection Signal Delay: 16.1 Intersection Capacity Utilization 108.1% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service G

Splits and Phases: 34: Bronson & 417 EB off

Lanes, Volumes, Timings 39: Prince of Wales & Road B

(dual WBT)

(dual WBT)	≯	-	+	•	1	~		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø9	
Lane Configurations	5	•	4 16		ሻ	1		
Traffic Volume (vph)	73	880	628	67	60	37		
Future Volume (vph)	73	880	628	67	60	37		
Satd. Flow (prot)	1695	1784	3330	0	1695	1517		
Flt Permitted	0.351				0.950			
Satd. Flow (perm)	623	1784	3330	0	1634	1419		
Satd. Flow (RTOR)						37		
Lane Group Flow (vph)	73	880	695	0	60	37		
Turn Type	pm+pt	NA	NA		Perm	Perm		
Protected Phases	5	2	6				9	
Permitted Phases	2				4	4		
Detector Phase	5	2	6		4	4		
Switch Phase								
Minimum Initial (s)	5.0	10.0	10.0		10.0	10.0	1.0	
Minimum Split (s)	10.3	23.3	23.3		23.3	23.3	15.0	
Total Split (s)	10.4	91.7	81.3		23.3	23.3	15.0	
Total Split (%)	8.0%	70.5%	62.5%		17.9%	17.9%	12%	
Yellow Time (s)	3.3	3.3	3.3		3.3	3.3	2.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0		
Total Lost Time (s)	5.3	5.3	5.3		5.3	5.3		
Lead/Lag	Lead		Lag					
Lead-Lag Optimize?	Yes		Yes					
Recall Mode	None	C-Min	C-Min		None	None	None	
Act Effct Green (s)	107.5	108.5	98.6		12.0	12.0		
Actuated g/C Ratio	0.83	0.83	0.76		0.09	0.09		
v/c Ratio	0.13	0.59	0.28		0.40	0.23		
Control Delay	4.4	8.4	7.5		62.7	18.8		
Queue Delay	0.0	0.0	0.0		0.0	0.0		
Total Delay	4.4	8.4	7.5		62.7	18.8		
LOS	А	А	А		Е	В		
Approach Delay		8.1	7.5		46.0			
Approach LOS		А	А		D			
Queue Length 50th (m)	2.4	54.0	11.5		15.0	0.0		
Queue Length 95th (m)	11.4	190.6	82.2		27.5	10.2		
Internal Link Dist (m)		198.2	95.9		17.7			
Turn Bay Length (m)	45.0							
Base Capacity (vph)	570	1489	2546		226	228		
Starvation Cap Reductn	0	0	0		0	0		
Spillback Cap Reductn	0	0	0		0	0		
Storage Cap Reductn	0	0	0		0	0		
Reduced v/c Ratio	0.13	0.59	0.27		0.27	0.16		
Intersection Summary								
Cycle Length: 130								
Actuated Cycle Length: 130								
Offset: 0 (0%), Referenced t	o phase 2	:EBTL an	d 6:WBT.	Start of	Green			
Natural Cycle: 90								

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.59
Intersection Signal Delay: 9.9
Intersection Capacity Utilization 67.9%
Analysis Period (min) 15

Intersection LOS: A ICU Level of Service C

Splits and Phases: 39: Prince of Wales & Road B

	٦	-	+	•	1	-		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø9	
Lane Configurations	5	*	*	1	5	1	~~	
Traffic Volume (vph)	73	880	628	67	60	37		
Future Volume (vph)	73	880	628	67	60	37		
Satd Flow (prot)	1695	1784	1784	1517	1695	1517		
Flt Permitted	0.343				0.950	1011		
Satd Flow (perm)	612	1784	1784	1455	1634	1354		
Satd, Flow (RTOR)	•					37		
Lane Group Flow (vph)	73	880	628	67	60	37		
Turn Type	pm+pt	NA	NA	Perm	Perm	Perm		
Protected Phases	5	2	6				9	
Permitted Phases	2			6	4	4		
Detector Phase	5	2	6	6	4	4		
Switch Phase	-		-	-				
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	1.0	
Minimum Split (s)	10.3	23.3	23.3	23.3	23.3	23.3	15.0	
Total Split (s)	10.8	91.7	80.9	80.9	23.3	23.3	15.0	
Total Split (%)	8.3%	70.5%	62.2%	62.2%	17.9%	17.9%	12%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	2.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3		
Lead/Lag	Lead		Lag	Lag				
Lead-Lag Optimize?	Yes		Yes	Yes				
Recall Mode	None	C-Min	C-Min	C-Min	None	None	None	
Act Effct Green (s)	107.5	108.5	98.6	98.6	12.0	12.0		
Actuated g/C Ratio	0.83	0.83	0.76	0.76	0.09	0.09		
v/c Ratio	0.13	0.59	0.46	0.06	0.40	0.23		
Control Delay	4.4	8.4	6.9	4.5	62.7	19.1		
Queue Delay	0.0	0.0	0.2	0.0	0.0	0.0		
Total Delay	4.4	8.4	7.1	4.5	62.7	19.1		
LOS	A	А	А	A	Е	В		
Approach Delay		8.1	6.9		46.1	_		
Approach LOS		А	A		D			
Queue Length 50th (m)	2.4	54.0	49.5	4.9	15.0	0.0		
Queue Length 95th (m)	11.4	190.6	m98.4	m5.3	27.5	10.2		
Internal Link Dist (m)		198.2	95.9		17.7			
Turn Bay Length (m)	45.0			35.0				
Base Capacity (vph)	562	1489	1363	1111	226	219		
Starvation Cap Reductn	0	0	183	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	0.13	0.59	0.53	0.06	0.27	0.17		
Interception Summers								
Actuated Cycle Length: 130								
Offset: 32 (25%) Reference	, ad to phase	2.ERTI	and 6.W	RT Start	of Green			
Natural Cycle: 00	su to priase	Z.LDTL		JI, Start	or Green			
Control Type: Actuated Cor	ordinated							

Parsons

Maximum v/c Ratio: 0.59

Intersection Signal Delay: 9.7 Intersection Capacity Utilization 67.9% Intersection LOS: A ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 39: Prince of Wales & Road B

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	<u>ک</u>	^	- 11	1	Y	
Traffic Vol, veh/h	18	1125	562	1	12	15
Future Vol, veh/h	18	1125	562	1	12	15
Conflicting Peds, #/hr	40	0	0	40	3	9
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	25	-	-	20	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	18	1125	562	1	12	15

Major/Minor	Major1	Ν	/lajor2		Minor2		
Conflicting Flow All	603	0	-	0	1204	330	
Stage 1	-	-	-	-	602	-	
Stage 2	-	-	-	-	602	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	971	-	-	-	177	666	
Stage 1	-	-	-	-	510	-	
Stage 2	-	-	-	-	510	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	938	-	-	-	162	639	
Mov Cap-2 Maneuver	-	-	-	-	162	-	
Stage 1	-	-	-	-	483	-	
Stage 2	-	-	-	-	493	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0.1		0		19.4		
HCM LOS					С		
Minor Lane/Major Mvi	nt	EBL	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		938	-	-	-	277	
HCM Lane V/C Ratio		0.019	-	-	-	0.097	
HCM Control Delay (s	;)	8.9	-	-	-	19.4	
HCM Lane LOS		Α	-	-	-	С	
HCM 95th %tile Q(vel	ר)	0.1	-	-	-	0.3	

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	↑	1		1
Traffic Vol, veh/h	0	1181	646	245	0	172
Future Vol, veh/h	0	1181	646	245	0	172
Conflicting Peds, #/hr	36	0	0	36	1	2
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	30	-	0
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	1181	646	245	0	172

Major/Minor	Major1	1	Major2	Ν	/linor2					
Conflicting Flow All	-	0	-	0	-	684		 		
Stage 1	-	-	-	-	-	-				
Stage 2	-	-	-	-	-	-				
Critical Hdwy	-	-	-	-	-	6.23				
Critical Hdwy Stg 1	-	-	-	-	-	-				
Critical Hdwy Stg 2	-	-	-	-	-	-				
Follow-up Hdwy	-	-	-	-	-	3.319				
Pot Cap-1 Maneuver	0	-	-	-	0	448				
Stage 1	0	-	-	-	0	-				
Stage 2	0	-	-	-	0	-				
Platoon blocked, %		-	-	-						
Mov Cap-1 Maneuver	• -	-	-	-	-	434				
Mov Cap-2 Maneuver	· _	-	-	-	-	-				
Stage 1	-	-	-	-	-	-				
Stage 2	-	-	-	-	-	-				
Approach	EB		WB		SB					
HCM Control Delay, s	s 0		0		18.6					
HCM LOS					С					
Minor Long/Major Mu	mt	EDT								
	m	EDI	VVBI	VUBR						
Capacity (veh/h)		-	-	-	434					
HCM Lane V/C Ratio		-	-	-	0.396					
HCM Control Delay (s	5)	-	-	-	18.6					
HCM Lane LOS		-	-	-	С					
HCM 95th %tile Q(vel	h)	-	-	-	1.9					

Intersection

Int Delay, s/veh

0.1

		FDT			MOT		NIDI	NDT		0.01	ODT	000
Movement	EBL	FRI	EBR	WBL	WBI	WBR	NBL	NBT	NBK	SBL	SBT	SBR
Lane Configurations		- 1 +			- सी			- 44				1
Traffic Vol, veh/h	0	928	4	3	706	89	0	0	1	0	0	7
Future Vol, veh/h	0	928	4	3	706	89	0	0	1	0	0	7
Conflicting Peds, #/hr	2	0	7	7	0	2	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	0
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	928	4	3	706	89	0	0	1	0	0	7

Major/Minor	Major1		Ма	ajor2		Ν	/linor1		Ν	/linor2			
Conflicting Flow All	-	0	0	939	0	0	1697	1740	937	-	-	753	
Stage 1	-	-	-	-	-	-	937	937	-	-	-	-	
Stage 2	-	-	-	-	-	-	760	803	-	-	-	-	
Critical Hdwy	-	-	-	4.12	-	-	7.12	6.52	6.22	-	-	6.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	-	-	-	
Follow-up Hdwy	-	-	- 2	.218	-	-	3.518	4.018	3.318	-	-	3.318	
Pot Cap-1 Maneuver	0	-	-	730	-	-	73	87	321	0	0	410	
Stage 1	0	-	-	-	-	-	318	343	-	0	0	-	
Stage 2	0	-	-	-	-	-	398	396	-	0	0	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	• -	-	-	726	-	-	71	86	319	-	-	409	
Mov Cap-2 Maneuver	• -	-	-	-	-	-	71	86	-	-	-	-	
Stage 1	-	-	-	-	-	-	318	341	-	-	-	-	
Stage 2	-	-	-	-	-	-	388	392	-	-	-	-	
Approach	EB			WB			NB			SB			

Approach		VVD		50	
HCM Control Delay, s	0	0	16.3	14	
HCM LOS			С	В	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	WBR SE	3Ln1
Capacity (veh/h)	319	-	-	726	-	-	409
HCM Lane V/C Ratio	0.003	-	-	0.004	-	- 0	.017
HCM Control Delay (s)	16.3	-	-	10	0	-	14
HCM Lane LOS	С	-	-	А	Α	-	В
HCM 95th %tile Q(veh)	0	-	-	0	-	-	0.1

Intersection
Int Dolov, alugh

Int Delay, s/veh	0.6						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1		↑	- †	1	
Traffic Vol, veh/h	0	59	18	953	555	112	
Future Vol, veh/h	0	59	18	953	555	112	
Conflicting Peds, #/hr	0	0	10	0	0	10	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	0	50	-	-	50	
Veh in Median Storage	e, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	7	6	6	2	2	27	
Mvmt Flow	0	59	18	953	555	112	

Major/Minor	Minor2		Major1	Ma	jor2		
Conflicting Flow All	-	565	677	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.26	4.16	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.354	2.254	-	-	-	
Pot Cap-1 Maneuver	0	517	896	-	-	-	
Stage 1	0	-	-	-	-	-	
Stage 2	0	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuve	r -	513	888	-	-	-	
Mov Cap-2 Maneuve	r -	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	12.9	0.2	0
HCMLOS	В		

Vinor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	888	- 513	-	-
HCM Lane V/C Ratio	0.02	- 0.115	-	-
HCM Control Delay (s)	9.1	- 12.9	-	-
HCM Lane LOS	А	- B	-	-
HCM 95th %tile Q(veh)	0.1	- 0.4	-	-

Lanes, Volumes, Timings 2: Prince of Wales & Road E

(as signalized)	۶	\mathbf{r}	1	Ť	Ļ	~			
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	Ø9	Ø11	
Lane Configurations	۲	1	۲	•	•	1			
Traffic Volume (vph)	41	18	18	912	555	112			
Future Volume (vph)	41	18	18	912	555	112			
Satd. Flow (prot)	1695	1517	1695	1784	1784	1517			
Flt Permitted	0.950		0.352						
Satd. Flow (perm)	1695	1517	628	1784	1784	1382			
Satd. Flow (RTOR)									
Lane Group Flow (vph)	41	18	18	912	555	112			
Turn Type	Perm	Perm	pm+pt	NA	NA	Perm			
Protected Phases			5	2	6		9	11	
Permitted Phases	4	4	2			6			
Detector Phase	4	4	5	2	6	6			
Switch Phase									
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	23.3	23.3	15.3	23.3	23.3	23.3	5.0	5.0	
Total Split (s)	24.0	24.0	16.0	86.0	70.0	70.0	5.0	5.0	
Total Split (%)	20.0%	20.0%	13.3%	71.7%	58.3%	58.3%	4%	4%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	2.0	2.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3			
Lead/Lag			Lead		Lag	Lag			
Lead-Lag Optimize?			Yes		Yes	Yes			
Recall Mode	None	None	None	Min	Min	Min	None	None	
Act Effct Green (s)	12.8	12.8	48.9	52.5	51.2	51.2			
Actuated g/C Ratio	0.20	0.20	0.75	0.81	0.79	0.79			
v/c Ratio	0.12	0.06	0.03	0.63	0.40	0.10			
Control Delay	32.6	33.1	5.0	9.8	8.1	6.7			
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0			
Total Delay	32.6	33.1	5.0	9.8	8.1	6.7			
LOS	С	С	A	A	A	A			
Approach Delay	32.7			9.7	7.9				
Approach LOS	С			A	A				
Queue Length 50th (m)	4.5	1.9	0.6	57.7	24.9	3.8			
Queue Length 95th (m)	18.5	10.3	3.6	184.2	106.7	20.5			
Internal Link Dist (m)	165.3			385.8	63.5				
Turn Bay Length (m)	50.0		50.0			50.0			
Base Capacity (vph)	580	519	681	1675	1620	1255			
Starvation Cap Reductn	0	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0	0			
Reduced v/c Ratio	0.07	0.03	0.03	0.54	0.34	0.09			
Intersection Summary									
Cycle Length: 120									
Actuated Cycle Length: 65.1 Natural Cycle: 90									
Control Type: Actuated-Unco	ordinated	1							
Maximum v/c Ratio: 0.63									

Protected Design Single NBT AM LPI NBL pm 7:21 pm 02/23/2023

Intersection Signal Delay: 9.8 Intersection Capacity Utilization 67.8% Analysis Period (min) 15

Intersection LOS: A ICU Level of Service C

Splits and Phases: 2: Prince of Wales & Road E

4.8

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		đ þ			4î þ			4			4	
Traffic Vol, veh/h	0	45	164	237	237	5	26	0	138	0	0	5
Future Vol, veh/h	0	45	164	237	237	5	26	0	138	0	0	5
Conflicting Peds, #/hr	10	0	10	10	0	10	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	45	164	237	237	5	26	0	138	0	0	5

Major/Minor	Major1		Ν	/lajor2		I	Minor1		Ν	/linor2			
Conflicting Flow All	252	0	0	219	0	0	730	863	115	747	943	131	
Stage 1	-	-	-	-	-	-	137	137	-	724	724	-	
Stage 2	-	-	-	-	-	-	593	726	-	23	219	-	
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32	
Pot Cap-1 Maneuver	1310	-	-	1348	-	-	310	291	916	301	261	894	
Stage 1	-	-	-	-	-	-	852	782	-	383	429	-	
Stage 2	-	-	-	-	-	-	459	428	-	992	721	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1299	-	-	1337	-	-	257	228	908	213	204	886	
Mov Cap-2 Maneuver	-	-	-	-	-	-	257	228	-	213	204	-	
Stage 1	-	-	-	-	-	-	845	776	-	380	338	-	
Stage 2	-	-	-	-	-	-	363	338	-	841	715	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			4.2			12.4			9.1			
HCM LOS							В			А			
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1				
Capacity (veh/h)		648	1299	-	-	1337	-	-	886				
		0.050				0 4 7 7			0.000				

HCM Lane V/C Ratio	0.253	-	-	- 0	.177	-	- (0.006	
HCM Control Delay (s)	12.4	0	-	-	8.3	0.3	-	9.1	
HCM Lane LOS	В	А	-	-	Α	А	-	Α	
HCM 95th %tile Q(veh)	1	0	-	-	0.6	-	-	0	

Intersection

Int Delay s/veh

Int Delay, s/veh	5.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		↑	1		-4↑
Traffic Vol, veh/h	61	35	74	63	131	32
Future Vol, veh/h	61	35	74	63	131	32
Conflicting Peds, #/hr	0	0	0	15	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	0	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	61	35	74	63	131	32

Major/Minor	Minor1	N	1ajor1	M	ajor2	
Conflicting Flow All	367	89	0	0	152	0
Stage 1	89	-	-	-	-	-
Stage 2	278	-	-	-	-	-
Critical Hdwy	6.63	6.23	-	-	4.13	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.83	-	-	-	-	-
Follow-up Hdwy	3.519	3.319	-	- 2	2.219	-
Pot Cap-1 Maneuver	619	969	-	-	1428	-
Stage 1	934	-	-	-	-	-
Stage 2	745	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	553	957	-	-	1410	-
Mov Cap-2 Maneuver	553	-	-	-	-	-
Stage 1	922	-	-	-	-	-
Stage 2	674	-	-	-	-	-
Augustal					00	

Approach	WB	NB	SB	
HCM Control Delay, s	11.4	0	6.3	
HCMLOS	В			

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	- 654	1410	-	
HCM Lane V/C Ratio	-	- 0.147	0.093	-	
HCM Control Delay (s)	-	- 11.4	7.8	0	
HCM Lane LOS	-	- B	А	Α	
HCM 95th %tile Q(veh)	-	- 0.5	0.3	-	

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۰¥			-41₽	_ ≜ î≽	
Traffic Vol, veh/h	0	4	4	137	93	0
Future Vol, veh/h	0	4	4	137	93	0
Conflicting Peds, #/hr	0	0	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	100	100	100	2	2	100
Mvmt Flow	0	4	4	137	93	0

Major/Minor	Minor2	Ν	lajor1	Maj	or2	
Conflicting Flow All	175	52	98	0	-	0
Stage 1	98	-	-	-	-	-
Stage 2	77	-	-	-	-	-
Critical Hdwy	8.8	8.9	6.1	-	-	-
Critical Hdwy Stg 1	7.8	-	-	-	-	-
Critical Hdwy Stg 2	7.8	-	-	-	-	-
Follow-up Hdwy	4.5	4.3	3.2	-	-	-
Pot Cap-1 Maneuver	581	759	995	-	-	-
Stage 1	687	-	-	-	-	-
Stage 2	710	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve	r 574	756	991	-	-	-
Mov Cap-2 Maneuve	r 574	-	-	-	-	-
Stage 1	682	-	-	-	-	-
Stage 2	707	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	9.8	0.2	0
HCM LOS	А		

Minor Lane/Major Mvmt	NBL	NBTI	EBLn1	SBT	SBR
Capacity (veh/h)	991	-	756	-	-
HCM Lane V/C Ratio	0.004	-	0.005	-	-
HCM Control Delay (s)	8.6	0	9.8	-	-
HCM Lane LOS	А	Α	А	-	-
HCM 95th %tile Q(veh)	0	-	0	-	-

Intersection						
Int Delay, s/veh	4.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			<u>्</u>	۰¥	
Traffic Vol, veh/h	0	37	6	0	18	16
Future Vol, veh/h	0	37	6	0	18	16
Conflicting Peds, #/hr	0	10	10	0	10	10
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	37	6	0	18	16

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	47	0	51	39
Stage 1	-	-	-	-	29	-
Stage 2	-	-	-	-	22	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1560	-	958	1033
Stage 1	-	-	-	-	994	-
Stage 2	-	-	-	-	1001	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	· _	-	1547	-	939	1016
Mov Cap-2 Maneuver	· _	-	-	-	939	-
Stage 1	-	-	-	-	986	-
Stage 2	-	-	-	-	989	-
Approach	FR		W/R		NR	
HCM Control Doloy			72			
HOM CONTINUE Delay, S	5 U		1.5		0.0	
					A	
Minor Lane/Major Mvi	mt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		974	-	-	1547	-
HCM Lane V/C Ratio		0.035	-	-	0.004	-
HCM Control Delay (s	5)	8.8	-	-	7.3	0
HCM Lane LOS		A	-	-	A	A
HCM 95th %tile Q(vel	h)	0.1	-	-	0	-

ersection	
ersection Delay, s/veh	8.6
ersection LOS	А

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	42	120	16	2	85	80	3	5	2	66	65	20
Future Vol, veh/h	42	120	16	2	85	80	3	5	2	66	65	20
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	42	120	16	2	85	80	3	5	2	66	65	20
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.8			8.3			7.9			8.9		
HCM LOS	А			А			А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	30%	24%	1%	44%	
Vol Thru, %	50%	67%	51%	43%	
Vol Right, %	20%	9%	48%	13%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	10	178	167	151	
LT Vol	3	42	2	66	
Through Vol	5	120	85	65	
RT Vol	2	16	80	20	
Lane Flow Rate	10	178	167	151	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.013	0.222	0.197	0.198	
Departure Headway (Hd)	4.837	4.498	4.242	4.72	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	739	799	847	761	
Service Time	2.874	2.522	2.265	2.747	
HCM Lane V/C Ratio	0.014	0.223	0.197	0.198	
HCM Control Delay	7.9	8.8	8.3	8.9	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0	0.8	0.7	0.7	

ersection	
ersection Delay, s/veh	7.8
tersection LOS	А

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	32	0	30	0	0	18	30	32	0	37	72	73
Future Vol, veh/h	32	0	30	0	0	18	30	32	0	37	72	73
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	32	0	30	0	0	18	30	32	0	37	72	73
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	7.6				7		7.7			8		
HCM LOS	А				А		А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	48%	52%	0%	20%	
Vol Thru, %	52%	0%	0%	40%	
Vol Right, %	0%	48%	100%	40%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	62	62	18	182	
LT Vol	30	32	0	37	
Through Vol	32	0	0	72	
RT Vol	0	30	18	73	
Lane Flow Rate	62	62	18	182	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.074	0.074	0.02	0.198	
Departure Headway (Hd)	4.31	4.287	3.923	3.92	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	822	841	917	906	
Service Time	2.388	2.288	1.925	1.982	
HCM Lane V/C Ratio	0.075	0.074	0.02	0.201	
HCM Control Delay	7.7	7.6	7	8	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.2	0.2	0.1	0.7	

rsection rsection Delay, s/veh 8.7		
rsection Delay, s/veh 8.7	ntersection	
r 100	ntersection Delay, s/veh	8.7
rsection LOS A	ntersection LOS	А

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	≜ †}		٦	1	Y		
Traffic Vol, veh/h	132	24	139	124	32	76	
Future Vol, veh/h	132	24	139	124	32	76	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	132	24	139	124	32	76	
Number of Lanes	2	0	1	1	1	0	
Approach	EB		WB		NB		
Opposing Approach	WB		EB				
Opposing Lanes	2		2		0		
Conflicting Approach Left			NB		EB		
Conflicting Lanes Left	0		1		2		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		2		
HCM Control Delay	8.3		9.1		8.3		
HCM LOS	А		А		А		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	
Vol Left, %	30%	0%	0%	100%	0%	
Vol Thru, %	0%	100%	65%	0%	100%	
Vol Right, %	70%	0%	35%	0%	0%	
Sign Control	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	108	88	68	139	124	
LT Vol	32	0	0	139	0	
Through Vol	0	88	44	0	124	
RT Vol	76	0	24	0	0	
Lane Flow Rate	108	88	68	139	124	
Geometry Grp	2	7	7	7	7	
Degree of Util (X)	0.136	0.123	0.09	0.209	0.169	
Departure Headway (Hd)	4.544	5.033	4.784	5.422	4.92	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	
Сар	791	713	749	663	730	
Service Time	2.565	2.758	2.509	3.146	2.644	
HCM Lane V/C Ratio	0.137	0.123	0.091	0.21	0.17	
HCM Control Delay	8.3	8.5	8	9.6	8.6	
HCM Lane LOS	А	А	А	А	А	
HCM 95th-tile Q	0.5	0.4	0.3	0.8	0.6	

	٦	-	+	•	1	-			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø10		
Lane Configurations	3	**	**	1	¥.	-			
Traffic Volume (vph)	87	625	1301	112	25	166			
Future Volume (vph)	87	625	1301	112	25	166			
Satd, Flow (prot)	1695	3390	3390	1517	1524	0			
Flt Permitted	0.950				0.993	· ·			
Satd, Flow (perm)	1652	3390	3390	1239	1522	0			
Satd. Flow (RTOR)				106	166	· ·			
Lane Group Flow (vph)	87	625	1301	112	191	0			
Turn Type	Prot	NA	NA	Perm	Perm	· ·			
Protected Phases	5	2	6				10		
Permitted Phases	•	_	•	6	4				
Detector Phase	5	2	6	6	4				
Switch Phase	Ū	_	Ū	Ŭ	•				
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		10		
Minimum Split (s)	11 1	26.7	26.7	26.7	37.2		5.0		
Total Split (s)	16.0	92.8	76.8	76.8	37.2		5.0		
Total Split (%)	11.9%	68.7%	56.9%	56.9%	27.6%		4%		
Yellow Time (s)	37	37	37	37	3.0		2.0		
All-Red Time (s)	2.4	1 9	19	1 9	3.2		0.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.2		0.0		
Total Lost Time (s)	6.1	5.6	5.6	5.6	6.2				
lead/Lag	Lead	0.0	l an	l an	0.2				
Lead-Lag Lead-Lag Ontimize?	Yes		Yes	Yes					
Recall Mode	None	C-Min	C-Min	C-Min	None		Min		
Act Effet Green (s)	12.6	104.0	85.3	85.3	11 7		IVIIII		
Actuated g/C Ratio	0.09	0 77	0.63	0.63	0.09				
v/c Ratio	0.00	0.77	0.60	0.00	0.00				
Control Delay	70.9	4.8	17.2	3.0	24.5				
	0.0	0.0	1 1	0.0	24.0				
Total Delay	70.0	1.8	18.3	3.0	24.5				
	70.3 E	4.0 Δ	10.5 R	Δ	24.5 C				
Approach Delay	L	12 0	17.1	7	24.5				
Approach LOS		12.3 R	R		24.5 C				
Oueue Length 50th (m)	22.5	19.8	98.7	05	6.4				
Queue Length 95th (m)	38.6	32.5	149 5	0.J Q 1	29.6				
Internal Link Dist (m)	50.0	297.5	170.5	5.1	278.4				
Turn Bay Length (m)	155.0	251.5	110.5	80.0	210.4				
Base Canacity (vph)	163	2612	21/1	821	<u>4</u> 77				
Starvation Can Reducto	0	2012	5/17	021	0				
Snillback Can Reductn	0	0	0	0	0				
Storage Can Reductin	0	0	0	0	0				
Reduced v/c Ratio	0.53	0.24	0.82	0 14	0 40				
Intersection Summary	0.00	5.∠⊣f	0.02	V . 1- F	0.10				
Actuated Cycle Length: 125									
Offect: 66 (40%) Deference) od to phose		nd GM/D	T Charte	f Groop				
Natural Cycle: 00	eu lo prias	Z.EDI 8		r, start o	Green				
Control Type: Actuated Car	ordinated								
COMPOLINDE ACTUATED-COC	numaieo								

Lanes, Volumes, Timings 10: Carling & Parkdale

Maximum v/c Ratio: 0.67 Intersection Signal Delay: 16.4 Intersection Capacity Utilization 76.1% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service D

Splits and Phases: 10: Carling & Parkdale

	٦	-	+	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	44	**	1	W.	
Traffic Volume (vph)	16	705	1546	42	16	16
Future Volume (vph)	16	705	1546	42	16	16
Satd. Flow (prot)	1695	3390	3390	1517	1587	0
Flt Permitted	0.950			• • •	0.976	-
Satd. Flow (perm)	1685	3390	3390	1394	1575	0
Satd. Flow (RTOR)				42	16	-
Lane Group Flow (vph)	16	705	1546	42	32	0
Turn Type	Prot	NA	NA	Perm	Perm	-
Protected Phases	5	2	6			
Permitted Phases		_		6	4	
Detector Phase	5	2	6	6	4	
Switch Phase	0	L	0	0	т	
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	
Minimum Snlit (s)	11 /	31 3	31 3	31 3	23.3	
Total Split (s)	12.5	106.7	0/1.0	0/ 2	20.0	
Total Split (%)	0.6%	82 1%	72 5%	72 5%	17 0%	
	3.0 /0	2.1/0	12.5 /0	27	11.3/0	
	0.7	0.7	5.7 9.7	0.7	0.0 0.0	
Lost Time Adjust (s)	2.7	2.1	2.1	2.1	2.0	
Total Lost Time (s)	0.0	0.0	0.0	0.0	0.0	
	0.4	0.4	0.4	0.4	5.5	
Leau/Lay	Leau		Lay	Lay		
Leau-Lay Optimize?	res	C Mire	C Min	C Mir	None	
	NONe		0-IVIII1	0-IVIII1		
Actuated a/C Datia	0.0	0.00	0.901	0.901	0.00	
Actuated g/C Ratio	0.05	0.89	0.84	0.84	0.09	
V/C Katio	0.18	0.23	0.54	0.04	0.21	
Control Delay	62.9	2.3	5.7	1./	35.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	62.9	2.3	5.7	1.7	35.6	
LOS	E	A	A	A	D	
Approach Delay		3.7	5.6		35.6	
Approach LOS		A	А		D	
Queue Length 50th (m)	4.0	15.5	44.5	0.0	3.9	
Queue Length 95th (m)	11.5	29.5	84.6	m2.2	13.2	
Internal Link Dist (m)		170.5	180.8		39.9	
Turn Bay Length (m)	90.0			140.0		
Base Capacity (vph)	91	3009	2871	1187	231	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.18	0.23	0.54	0.04	0.14	
Intersection Summary						
Cycle Length: 130						
Actuated Cycle Length: 130						
Offset: 0 (0%), Referenced	to phase 2	EBT and	6:WBT.	Start of G	Green	
Natural Cycle: 80			,			
Control Type: Actuated-Coo	ordinated					

Lanes, Volumes, Timings 11: Carling & Civic

Maximum v/c Ratio: 0.54

Intersection Signal Delay: 5.4 Intersection Capacity Utilization 65.8% Intersection LOS: A ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 11: Carling & Civic

→Ø2 (R)	Ø4
106.7 s	23.3 s
▶ = = = = = = = = = = = = = = = = = = =	
12.5 s 94.2 s	

Lanes, Volumes, Timings 13: Maple/Old Irvine & Carling

	≯	-	\rightarrow	-	-	•	1	†	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	<u>†</u> †	1	ኘ	^	1		\$			4	
Traffic Volume (vph)	38	623	57	54	1105	7	125	10	48	10	9	11
Future Volume (vph)	38	623	57	54	1105	7	125	10	48	10	9	11
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1648	0	0	1652	0
Flt Permitted	0.223			0.403				0.777			0.891	
Satd. Flow (perm)	386	3390	1293	685	3390	1178	0	1312	0	0	1486	0
Satd. Flow (RTOR)			38			37		14			11	
Lane Group Flow (vph)	38	623	57	54	1105	7	0	183	0	0	30	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	34.3	34.3	34.3	42.4	42.4		42.4	42.4	
Total Split (s)	87.0	87.0	87.0	87.0	87.0	87.0	43.0	43.0		43.0	43.0	
Total Split (%)	66.9%	66.9%	66.9%	66.9%	66.9%	66.9%	33.1%	33.1%		33.1%	33.1%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	4.4	4.4		4.4	4.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7		7.4			7.4	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	92.1	92.1	92.1	92.1	92.1	92.1		24.8			24.8	
Actuated g/C Ratio	0.71	0.71	0.71	0.71	0.71	0.71		0.19			0.19	
v/c Ratio	0.14	0.26	0.06	0.11	0.46	0.01		0.70			0.10	
Control Delay	7.9	6.5	2.7	8.8	10.0	0.0		58.1			28.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Delay	7.9	6.5	2.7	8.8	10.0	0.0		58.1			28.0	
LOS	Α	Α	А	А	А	А		E			С	
Approach Delay		6.3			9.9			58.1			28.0	
Approach LOS		A			A			E			С	
Queue Length 50th (m)	2.5	25.5	1.0	3.6	52.6	0.0		42.0			4.1	
Queue Length 95th (m)	5.2	24.7	3.1	m11.0	90.8	m0.0		60.4			11.3	
Internal Link Dist (m)		236.1			191.5			174.3			220.8	
Turn Bay Length (m)	20.0		15.0	45.0		25.0						
Base Capacity (vph)	273	2401	926	485	2401	845		369			414	
Starvation Cap Reductn	0	0	0	0	0	0		0			0	
Spillback Cap Reductn	0	0	0	0	0	0		0			0	
Storage Cap Reductn	0	0	0	0	0	0		0			0	
Reduced v/c Ratio	0.14	0.26	0.06	0.11	0.46	0.01		0.50			0.07	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 28 (22%), Reference	ed to phase	e 2:EBTL	and 6:W	BTL, Star	t of Gree	n						
Natural Cycle: 80												
Control Type: Actuated-Coc	ordinated											

Parsons

Lanes, Volumes, Timings 13: Maple/Old Irvine & Carling

Maximum v/c Ratio: 0.70

Intersection Signal Delay: 13.1 Intersection Capacity Utilization 80.7% Intersection LOS: B ICU Level of Service D

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 13: Maple/Old Irvine & Carling

	Ø4
87 s	43 s
●	1 Ø8
87 s	43 s

	٦	-	-	•	1	-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	44	44	1	5	1
Traffic Volume (vph)	65	637	1217	200	159	7
Future Volume (vph)	65	637	1217	200	159	7
Satd. Flow (prot)	1695	3390	3390	1517	1695	1517
Elt Permitted	0.950	0000	0000	1011	0.950	1011
Satd Flow (perm)	1610	3390	3390	1072	1669	1473
Sate Flow (RTOR)	1010	0000	0000	200	1000	5
Lane Group Flow (vnh)	65	637	1217	200	150	7
	Prot	NΔ	NΔ	Perm	Perm	Perm
Protected Phases	5	- 2	6	i cili		i enn
Permitted Phases	5	2	0	6	1	٨
Detector Phases	5	2	6	6	4	4
Switch Phase	5	2	0	0	4	4
Minimum Initial (a)	ΕO	10.0	10.0	10.0	10.0	10.0
Minimum Colit (c)	0.U	10.0	10.0	10.0	10.0	10.0
iviiriifiiufii Split (S)	10.3	25.1	25.1	25.1	25.1	25.1
	15.0	89.0	74.0	74.0	41.0	41.0
i otal Split (%)	11.5%	00.5%	50.9%	50.9%	31.5%	31.5%
reliow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Lime (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes	_	Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	None
Act Effct Green (s)	10.3	101.6	88.3	88.3	17.8	17.8
Actuated g/C Ratio	0.08	0.78	0.68	0.68	0.14	0.14
v/c Ratio	0.49	0.24	0.53	0.25	0.70	0.03
Control Delay	69.7	4.4	3.4	0.6	69.1	30.4
Queue Delay	0.0	0.0	0.2	0.0	0.0	0.0
Total Delay	69.7	4.4	3.6	0.6	69.1	30.4
LOS	Е	А	А	А	Е	С
Approach Delay		10.4	3.2		67.4	
Approach LOS		В	А		E	
Queue Length 50th (m)	16.3	19.1	17.0	0.2	39.4	0.5
Queue Length 95th (m)	30.6	31.2	18.7	0.0	59.3	4.7
Internal Link Dist (m)	00.0	118.3	141 7	0.0	152.1	
Turn Bay Length (m)	30.0	1.0.0		90.0	102.1	15.0
Rase Canacity (vnh)	146	2650	2303	792	458	408
Starvation Can Reductn	01	2000	202	0		00 - 00
Spillback Can Reductin	0	0	090	0	0	0
Storage Can Reductin	0	0	0	0	0	0
Reduced v/a Datio	0.45	0.24	064	0.25	0.25	0 02
	0.45	0.24	0.04	0.23	0.55	0.02
Intersection Summary						
Cycle Length: 130	`					
Actuated Cycle Length: 130)	0 ====		T 01 1	()	
Offset: 24 (18%), Reference	ed to phase	e 2:EBT a	and 6:WB	I, Start o	of Green	
Natural Cycle: 65						
Control Type: Actuated-Coo	ordinated					
Lanes, Volumes, Timings 15: Carling & Sherwood

Maximum v/c Ratio: 0.70 Intersection Signal Delay: 10.1 Intersection Capacity Utilization 63.6% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Splits and Phases: 15: Carling & Sherwood

Lanes, Volumes, Timings 16: Road A/Champagne & Carling

	٦	-	\rightarrow	-	-	•	1	†	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	^	1	5	^	1	ሻ	4Î		ሻ	ĥ	
Traffic Volume (vph)	88	581	70	70	1033	150	165	0	171	182	0	98
Future Volume (vph)	88	581	70	70	1033	150	165	0	171	182	0	98
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	1695	1402	0	1695	1417	0
Flt Permitted	0.950			0.950			0.531			0.649		
Satd. Flow (perm)	1577	3390	1356	1636	3390	1019	909	1402	0	1099	1417	0
Satd. Flow (RTOR)						147					295	
Lane Group Flow (vph)	88	581	70	70	1033	150	165	171	0	182	98	0
Turn Type	Prot	NA	Perm	Prot	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases	5	2		1	6		3	8			4	
Permitted Phases			2			6	8			4		
Detector Phase	5	2	2	1	6	6	3	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0		10.0	10.0	
Minimum Split (s)	15.3	26.3	26.3	15.3	26.3	26.3	10.3	23.3		37.9	37.9	
Total Split (s)	15.3	47.8	47.8	15.3	52.8	52.8	14.0	56.9		37.9	37.9	
Total Split (%)	11.8%	36.8%	36.8%	11.8%	40.6%	40.6%	10.8%	43.8%		29.2%	29.2%	
Yellow Time (s)	3.3	3.7	3.7	3.3	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.0	1.6	1.6	2.0	1.6	1.6	2.0	2.0		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3		5.9	5.9	
Lead/Lag	Lead			Lead			Lead					
Lead-Lag Optimize?	Yes			Yes			Yes					
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	11.5	61.1	61.1	10.6	58.2	58.2	43.4	43.4		25.7	25.7	
Actuated g/C Ratio	0.09	0.47	0.47	0.08	0.45	0.45	0.33	0.33		0.20	0.20	
v/c Ratio	0.59	0.36	0.11	0.51	0.68	0.28	0.45	0.37		0.84	0.19	
Control Delay	71.5	24.3	22.7	70.5	33.1	5.9	34.9	33.9		80.1	0.8	
Queue Delay	0.0	0.0	0.0	0.0	12.0	0.0	0.0	0.0		0.0	0.0	
I otal Delay	/1.5	24.3	22.7	/0.5	45.1	5.9	34.9	33.9		80.1	0.8	
LOS	E	C	С	E	D	A	С	C		F	A	
Approach Delay		29.8			41.8			34.4			52.4	
Approach LOS	40.0	C	40.0		D	0.5	00.7	C 24 C		447	D	
Queue Length 50th (m)	18.9	59.1	12.2	17.5	114.6	0.5	29.7	31.6		44.7	0.0	
Queue Length 95th (m)	#47.5	85.2	26.4	33.3	153.8	14.9	44.4	47.9		69.2	0.0	
Internal Link Dist (m)	FF 0	141.7	75.0	C1 0	98.6	25.0		63.9		20.0	477.2	
Turn Bay Length (m)	55.0	4500	/5.0	61.0	4547	35.0	200	550		30.0	F 74	
Base Capacity (vpn)	149	1593	637	138	1517	537	369	000		270	5/1	
Starvation Cap Reductin	0	0	0	0	472	0	0	0		0	0	
Spillback Cap Reductin	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductin	0 50	0.26	0 11	0 5 1	0	0 20	0.45	0.24		0.67	0 17	
	0.59	0.30	0.11	0.51	0.99	0.20	0.45	0.31		0.07	0.17	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 0 (0%), Referenced to	phase 2	:EBT and	I 6:WBT,	Start of G	Green							
Natural Cycle: 105												

Control Type: Actuated-Coordinated

Lane Group	Ø9	Ø10	Ø11
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Satd, Flow (prot)			
Flt Permitted			
Satd, Flow (perm)			
Satd, Flow (RTOR)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	g	10	11
Permitted Phases	J	10	
Detector Phase			
Switch Phase			
Minimum Initial (s)	10	10	10
Minimum Split (s)	10.0	5.0	5.0
Total Split (s)	10.0	5.0	5.0
Total Split (8)	10.0	5.0	5.U 40/
Vellow Time (2)	0%	4%	4%
	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes
Recall Mode	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Can Reductn			
Snillback Can Reductin			
Storage Can Peducth			
Intersection Summary			

Lanes, Volumes, Timings 16: Road A/Champagne & Carling

Maximum v/c Ratio: 0.84

Intersection Signal Delay: 38.6 Intersection Capacity Utilization 89.3% Intersection LOS: D ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 16: Road A/Champagne & Carling

√ Ø1	🕺 🖗 👳 🤝 🗤 🖉 🖉 2 (R)	▲ Ø3 Å k øn Ø4
15.3 s	10 s 47.8 s	14 s 5 s 37.9 s
		Ø
15.3 s	5 s 52.8 s	56.9 s

Lanes, Volumes, Timings 17: Carling & Trillium MUP

	۶	-	\mathbf{F}	4	+	•	•	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^			^							
Traffic Volume (vph)	0	930	0	0	1382	0	0	0	0	0	0	0
Future Volume (vph)	0	930	0	0	1382	0	0	0	0	0	0	0
Satd. Flow (prot)	0	3390	0	0	3390	0	0	0	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	3390	0	0	3390	0	0	0	0	0	0	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	0	930	0	0	1382	0	0	0	0	0	0	0
Turn Type		NA			NA							
Protected Phases		2			6							
Permitted Phases												
Detector Phase		2			6							
Switch Phase												
Minimum Initial (s)		10.0			10.0							
Minimum Split (s)		31.1			31.1							
Total Split (s)		35.0			35.0							
Total Split (%)		50.0%			50.0%							
Yellow Time (s)		3.7			3.7							
All-Red Time (s)		1.4			1.4							
Lost Time Adjust (s)		0.0			0.0							
Total Lost Time (s)		5.1			5.1							
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Min			C-Min							
Act Effct Green (s)		62.0			62.0							
Actuated g/C Ratio		0.89			0.89							
v/c Ratio		0.31			0.46							
Control Delay		4.9			6.2							
Queue Delay		0.0			0.0							
Total Delay		4.9			6.2							
LOS		A			A							
Approach Delay		49			62							
Approach LOS		A			A							
Queue Length 50th (m)		0.0			2.0							
Queue Length 95th (m)		66.8		m	n#113 7							
Internal Link Dist (m)		98.6			92.8			53.0			60.9	
Turn Bay Length (m)		00.0			02.0			00.0			00.0	
Base Capacity (vph)		3002			3002							
Starvation Cap Reductn		45			29							
Spillback Cap Reductn		46			0							
Storage Cap Reductn		0			0							
Reduced v/c Ratio		0.31			0.46							
Intersection Summarv												
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 0 (0%), Referenced to	phase 2	EBT and	6:WBT. S	Start of G	reen							
Natural Cycle: 75			,									
Control Type: Actuated-Coord	inated											

Parsons

Lane Group	Ø4	Ø8
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd, Flow (prot)		
Flt Permitted		
Satd, Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	4	8
Permitted Phases	•	Ū
Detector Phase		
Switch Phase		
Minimum Initial (s)	10	10
Minimum Split (s)	35.6	35.6
Total Solit (s)	35.0	35.0
Total Split (%)	50%	50%
Yellow Time (s)	3070	3070
All-Red Time (s)	3.0	3.0
Lost Timo Adjust (s)	5.0	5.0
Lost Time Aujust (S)		
Lead/Lag		
Leau-Lag Optimize?	Neze	Mana
	None	None
Act Elict Green (S)		
Actuated g/C Ratio		
V/C Ratio		
Control Delay		
Queue Delay		
Total Delay		
LUS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
intersection Summary		

Lanes, Volumes, Timings 17: Carling & Trillium MUP

Maximum v/c Ratio: 0.46	
Intersection Signal Delay: 5.7	Intersection LOS: A
Intersection Capacity Utilization 44.6%	ICU Level of Service A
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lor	iger.
Queue shown is maximum after two cycles.	

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 17: Carling & Trillium MUP

→ø2 (R)	A 804	
35 s	35 s	
← Ø6 (R)	₩A _{Ø8}	
35 s	35 s	

Lanes, Volumes, Timings 18: Preston & Carling

	٦	-	\rightarrow	•	+	•	1	1	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	^	1	5	*	1	ሻ	≜ 16		ሻ	ĥ	
Traffic Volume (vph)	124	550	273	330	983	52	267	356	204	91	274	88
Future Volume (vph)	124	550	273	330	983	52	267	356	204	91	274	88
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	1695	3072	0	1695	1665	0
Flt Permitted	0.950			0.950			0.139			0.442		
Satd. Flow (perm)	1628	3390	1517	1636	3390	1243	248	3072	0	753	1665	0
Satd. Flow (RTOR)						179					11	
Lane Group Flow (vph)	124	550	273	330	983	52	267	560	0	91	362	0
Turn Type	Prot	NA	custom	Prot	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases	5	92	93	1	6		3	8			4	
Permitted Phases						6	8			4		
Detector Phase	5	92	93	1	6	6	3	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0			5.0	10.0	10.0	5.0	10.0		10.0	10.0	
Minimum Split (s)	11.2			11.2	25.0	25.0	11.9	38.9		38.9	38.9	
Total Split (s)	20.2			37.0	47.1	47.1	23.8	61.7		38.9	38.9	
Total Split (%)	14.4%			26.4%	33.6%	33.6%	17.0%	44.1%		27.8%	27.8%	
Yellow Time (s)	3.7			3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5			2.5	2.3	2.3	3.6	3.6		3.6	3.6	
Lost Time Adjust (s)	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.2			6.2	6.0	6.0	6.9	6.9		6.9	6.9	
Lead/Lag	Lead			Lead			Lead					
Lead-Lag Optimize?	Yes			Yes			Yes					
Recall Mode	None			None	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	13.2	34.0	28.0	29.6	44.6	44.6	59.1	54.3		31.3	31.3	
Actuated g/C Ratio	0.09	0.24	0.20	0.21	0.32	0.32	0.42	0.39		0.22	0.22	
v/c Ratio	0.78	0.67	0.90	0.92	0.91	0.10	0.96	0.47		0.54	0.95	
Control Delay	91.4	49.0	87.4	90.9	51.6	0.3	97.9	15.0		61.1	87.2	
Queue Delay	0.0	0.9	5.9	0.0	2.9	0.0	7.5	0.0		0.0	46.2	
Total Delay	91.4	49.9	93.4	90.9	54.4	0.3	105.4	15.0		61.1	133.4	
LOS	F	D	F	F	D	A	F	В		E	F	
Approach Delay		67.9			61.2			44.2			118.9	
Approach LOS		E			E			D			F	
Queue Length 50th (m)	33.9	75.1	75.8	85.9	134.9	0.0	56.3	24.4		22.3	96.4	
Queue Length 95th (m)	#65.4	84.8	#136.3 n	n#103.3 n	n#167.6	m0.0	#106.8	30.8		41.7	#155.8	
Internal Link Dist (m)		92.8			165.9			145.6			55.2	
Turn Bay Length (m)	70.0		90.0	120.0		95.0				35.0		
Base Capacity (vph)	169	795	302	372	1080	518	279	1202		172	389	
Starvation Cap Reductn	0	78	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	14	0	45	0	10	0		0	73	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.73	0.77	0.95	0.89	0.95	0.10	0.99	0.47		0.53	1.15	
Intersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 140												
Offset: 6 (4%), Referenced to	o phase 2:	EBT and	d 6:WBT,	Start of G	Green							
Natural Cycle: 120												

Control Type: Actuated-Coordinated

Lane Group	Ø2	Ø9	Ø10	Ø11	Ø12
Lane Configurations					
Traffic Volume (vph)					
Future Volume (vph)					
Satd Flow (prot)					
Elt Permitted					
Satd Flow (perm)					
Satd Flow (RTOR)					
Lane Group Flow (vph)					
Protected Phases	2	g	10	11	12
Permitted Phases	2	0	10		12
Detector Phase					
Switch Phase					
Minimum Initial (c)	10.0	10	10	10	1 0
Minimum Split (s)	26.0	5.2	1.0 5.0	5.0	5.0
Total Split (s)	20.0	0.0	5.0	5.0	5.0
Total Split (%)	29.0	0.3 E ^{0/}	5.U /0/	5.U /0/	0.0
Vollow Time (a)	21%	3%	4%	4%	4%
All Ded Time (s)	2.0	2.0	2.0	2.0	2.0
All-Red Time (S)	0.0	2.3	0.0	0.0	0.0
Lost Time Adjust (S)					
Total Lost Time (S)	1		1.00	1.00	
Lead/Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes	N 41	Yes	Yes	
Recall Mode	C-Min	Min	None	None	None
Act Effet Green (s)					
Actuated g/C Ratio					
v/c Ratio					
Control Delay					
Queue Delay					
Total Delay					
LUS					
Approach Delay					
Approach LOS					
Queue Length 50th (m)					
Queue Length 95th (m)					
Internal Link Dist (m)					
Turn Bay Length (m)					
Base Capacity (vph)					
Starvation Cap Reductn					
Spillback Cap Reductn					
Storage Cap Reductn					
Reduced v/c Ratio					
Intersection Summary					

Lanes, Volumes, Timings 18: Preston & Carling

Maximum v/c Ratio: 0.96	
Intersection Signal Delay: 66.3	Intersection LOS: E
Intersection Capacity Utilization 99.6%	ICU Level of Service F
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lor	nger.
Queue shown is maximum after two cycles.	

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 18: Preston & Carling

√ Ø1		₩ → Ø2 (R)	➡	Ø9 Ø3	H	Ø 1 Ø4		
37 s		29 s	6.3 s	23.8 s	5 s	38.9 s		
∕ ∕	10 Ø6 (R			₩ø12 ø8				
20.2 s	5s 47.1s			6s 61.7s				

	٦	-	+	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	**	•	1	3	1
Traffic Volume (vph)	208	771	965	85	254	273
Future Volume (vph)	208	771	965	85	254	273
Satd. Flow (prot)	1695	3390	1784	1517	1695	1517
Flt Permitted	0.048	0000		1011	0.950	
Satd Flow (perm)	86	3390	1784	1141	1663	1187
Satd Flow (RTOR)	00	0000	1704	25	1000	179
Lane Group Flow (vph)	208	771	065	25	254	273
	200 nm+nt	NA	905 NA	Dorm	Dorm	Dorm
Protected Phases	pm+pt	AVI 2	E C		i enn	
Pormitted Phases		2	0	e	Λ	Λ
Petrotor Dhace	Z	0	C	Ö	4	4
Delector Phase	5	2	6	6	4	4
Switch Phase		40.0	40.0	40.0	40.0	40.0
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	10.9	29.7	29.7	29.7	39.0	39.0
Total Split (s)	19.2	101.0	81.8	81.8	39.0	39.0
Total Split (%)	13.7%	72.1%	58.4%	58.4%	27.9%	27.9%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.3	3.3
All-Red Time (s)	2.2	2.0	2.0	2.0	2.7	2.7
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.9	5.7	5.7	5.7	6.0	6.0
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	None
Act Effct Green (s)	98.1	98.3	78.5	78.5	30.0	30.0
Actuated g/C Ratio	0.70	0.70	0.56	0.56	0.21	0.21
v/c Ratio	0.95	0.32	0.97	0.13	0.72	0.69
Control Delay	82.0	7 3	51 0	11.6	62 3	26.6
	02.0	1.5	0.0	0.0	02.0	20.0
Total Delay	0.0	0.0	0.0 E1 0	11 6	60.0	26.6
	02.U	1.3	51.9	0.11	02.3 F	20.0
LUS Annragah Dalau	F	A	U	В	E AD D	U
Approach Delay		23.1	48.6		43.8	
Approach LUS	47.0	C	D		D	00.4
Queue Length 50th (m)	47.3	24.5	257.0	1.7	63.9	23.1
Queue Length 95th (m)	#93.4	52.0	#354.5	16.6	93.9	55.9
Internal Link Dist (m)		100.4	299.3		220.7	
Turn Bay Length (m)	50.0			30.0		30.0
Base Capacity (vph)	220	2380	999	650	391	416
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.95	0.32	0.97	0.13	0.65	0.66
Intersection Summary						
Cycle Length: 140						
Actuated Cycle Length: 140						
Offset: 110 (79%) Reference	ed to phase	se 2 FRT	l and 6·V	VBT_Star	t of Gree	n
Natural Cycle: 120				, otal		
Control Type: Actuated_Coo	rdinated					

Lanes, Volumes, Timings 20: Carling & Booth

Maximum v/c Ratio: 0.97	
Intersection Signal Delay: 37.9	Intersection LOS: D
Intersection Capacity Utilization 107.2%	ICU Level of Service G
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lor	iger.
Queue shown is maximum after two cycles.	

Splits and Phases: 20: Carling & Booth

ø _{2 (R)}	I	Ø4	
101 s		39 s	
•	<u>↓</u>		
Ø5	Ø6 (R)		
19.2 s	81.8 s		

Lanes, Volumes, Timings 21: Bronson & Carling/Glebe

	٦	-	\mathbf{r}	1	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	र्स	1				ሻሻ	4			∱1 ≽	
Traffic Volume (vph)	462	102	492	0	0	0	535	604	13	0	1070	288
Future Volume (vph)	462	102	492	0	0	0	535	604	13	0	1070	288
Satd. Flow (prot)	1610	1648	1517	0	0	0	3288	1770	0	0	3232	0
Flt Permitted	0.950	0.972					0.950					
Satd. Flow (perm)	1511	1588	1413	0	0	0	3241	1770	0	0	3232	0
Satd. Flow (RTOR)			108					1			29	
Lane Group Flow (vph)	319	245	492	0	0	0	535	617	0	0	1358	0
Turn Type	Perm	NA	pm+ov				Prot	NA			NA	
Protected Phases		4	5				5	2			6	
Permitted Phases	4		4									
Detector Phase	4	4	5				5	2			6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0				10.0	10.0			10.0	
Minimum Split (s)	31.0	31.0	16.0				16.0	25.1			33.0	
Total Split (s)	39.0	39.0	31.0				31.0	101.0			70.0	
Total Split (%)	26.5%	26.5%	21.1%				21.1%	68.7%			47.6%	
Yellow Time (s)	3.3	3.3	3.3				3.3	3.3			3.3	
All-Red Time (s)	2.7	2.7	2.7				2.7	2.7			2.7	
Lost Time Adjust (s)	0.0	0.0	0.0				0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0				6.0	6.0			6.0	
Lead/Lag			Lead				Lead				Lag	
Lead-Lag Optimize?			Yes				Yes				Yes	
Recall Mode	None	None	None				None	C-Min			C-Min	
Act Effct Green (s)	32.4	32.4	57.5				25.1	95.5			64.4	
Actuated g/C Ratio	0.22	0.22	0.39				0.17	0.65			0.44	
v/c Ratio	0.96	0.70	0.77				0.95	0.54			0.95	
Control Delay	95.9	64.6	36.8				87.9	16.1			53.3	
Queue Delay	0.0	0.0	0.0				0.0	0.0			0.0	
Total Delay	95.9	64.6	36.8				87.9	16.1			53.3	
LOS	F	E	D				F	В			D	
Approach Delay		61.1						49.4			53.3	
Approach LOS		E						D			D	
Queue Length 50th (m)	97.0	69.4	90.3				80.6	91.8			195.8	
Queue Length 95th (m)	#157.8	101.8	132.6				#115.6	122.6			#245.6	
Internal Link Dist (m)		74.7			115.0			394.4			328.4	
Turn Bay Length (m)	40.0						50.0					
Base Capacity (vph)	339	356	636				561	1150			1432	
Starvation Cap Reductn	0	0	0				0	0			0	
Spillback Cap Reductn	0	0	0				0	0			0	
Storage Cap Reductn	0	0	0				0	0			0	
Reduced v/c Ratio	0.94	0.69	0.77				0.95	0.54			0.95	
Intersection Summary												
Cycle Length: 147												
Actuated Cycle Length: 147	7											
Offset: 0 (0%), Referenced	to phase 2	:NBT and	d 6:SBT, S	Start of Gr	een							
Natural Cycle: 110												

Control Type: Actuated-Coordinated

Lane Group	Ø10
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Satd. Flow (RTOR)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	10
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	1.0
Minimum Split (s)	7.0
Total Split (s)	7.0
Total Split (%)	5%
Yellow Time (s)	2.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Recall Mode	Min
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summarv	

Lanes, Volumes, Timings 21: Bronson & Carling/Glebe

Maximum v/c Ratio: 0.96 Intersection Signal Delay: 54.4

Intersection Capacity Utilization 95.7%

Intersection LOS: D ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 21: Bronson & Carling/Glebe

Ø2 (R)		ł	Ø 10-104
101 s		7 s	39 s
\$ Ø5	🛡 Ø6 (R)		
31s	70 s		

Lanes, Volumes, Timings 22: Parkdale & 417 WB on/off

	≯	-	\mathbf{r}	-	-	•	1	†	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				5	ĥ		5	•			ĥ	
Traffic Volume (vph)	0	0	0	266	22	426	101	516	0	0	531	197
Future Volume (vph)	0	0	0	266	22	426	101	516	0	0	531	197
Satd. Flow (prot)	0	0	0	1695	1474	0	1695	1784	0	0	1685	0
Flt Permitted				0.950			0.252					
Satd. Flow (perm)	0	0	0	1695	1474	0	450	1784	0	0	1685	0
Satd. Flow (RTOR)					351						29	
Lane Group Flow (vph)	0	0	0	266	448	0	101	516	0	0	728	0
Turn Type				Perm	NA		pm+pt	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8			2					
Detector Phase				8	8		5	2			6	
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	
Minimum Split (s)				29.0	29.0		10.3	27.3			25.1	
Total Split (s)				29.0	29.0		11.0	71.0			60.0	
Total Split (%)				29.0%	29.0%		11.0%	71.0%			60.0%	
Yellow Time (s)				3.3	3.3		3.0	3.0			3.0	
All-Red Time (s)				2.2	2.2		2.2	3.3			3.3	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				5.5	5.5		5.2	6.3			6.3	
Lead/Lag							Lag				Lead	
Lead-Lag Optimize?							Yes				Yes	
Recall Mode				None	None		None	C-Min			C-Min	
Act Effct Green (s)				20.0	20.0		70.4	68.2			58.6	
Actuated g/C Ratio				0.20	0.20		0.70	0.68			0.59	
v/c Ratio				0.78	0.78		0.25	0.42			0.73	
Control Delay				54.1	18.9		5.8	6.1			21.8	
Queue Delay				0.0	0.0		1.3	1.3			1.3	
Total Delay				54.1	18.9		7.0	7.4			23.0	
LOS				D	В		Α	А			С	
Approach Delay					32.0			7.3			23.0	
Approach LOS					С			Α			С	
Queue Length 50th (m)				48.2	15.9		5.7	32.9			102.6	
Queue Length 95th (m)				74.0	52.2		m1.8	37.2			156.4	
Internal Link Dist (m)		157.5			140.3			45.3			171.5	
Turn Bay Length (m)												
Base Capacity (vph)				398	614		398	1216			1006	
Starvation Cap Reductn				0	0		163	473			0	
Spillback Cap Reductn				0	0		0	0			117	
Storage Cap Reductn				0	0		0	0			0	
Reduced v/c Ratio				0.67	0.73		0.43	0.69			0.82	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100		0.115-	10.0-	-								
Offset: 39 (39%), Referenced	to phase	2:NBTL	and 6:SE	31, Start o	of Green							
Natural Cycle: 90	la ata d											
CONTROL LYDE: ACTUATED-COORD	mated											

Parsons

Lanes, Volumes, Timings 22: Parkdale & 417 WB on/off

Maximum v/c Ratio: 0.78

Intersection Signal Delay: 21.4 Intersection Capacity Utilization 118.4% Intersection LOS: C ICU Level of Service H

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 22: Parkdale & 417 WB on/off

Lanes, Volumes, Timings 23: Parkdale & 417 EB on/off

	٦	-	\rightarrow	1	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્સ	1					≜ t≽		ሻ	•	
Traffic Volume (vph)	334	2	170	0	0	0	0	282	186	431	363	0
Future Volume (vph)	334	2	170	0	0	0	0	282	186	431	363	0
Satd. Flow (prot)	0	1700	1517	0	0	0	0	3068	0	1695	1784	0
Flt Permitted		0.953								0.383		
Satd. Flow (perm)	0	1700	1482	0	0	0	0	3068	0	666	1784	0
Satd. Flow (RTOR)			170					165				
Lane Group Flow (vph)	0	336	170	0	0	0	0	468	0	431	363	0
Turn Type	Perm	NA	Perm					NA		pm+pt	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4							6		
Detector Phase	4	4	4					2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0					10.0		5.0	10.0	
Minimum Split (s)	25.1	25.1	25.1					25.1		10.3	25.1	
Total Split (s)	30.0	30.0	30.0					38.0		32.0	70.0	
Total Split (%)	30.0%	30.0%	30.0%					38.0%		32.0%	70.0%	
Yellow Time (s)	3.3	3.3	3.3					3.0		3.0	3.0	
All-Red Time (s)	2.6	2.6	2.6					2.8		2.3	2.8	
Lost Time Adjust (s)		0.0	0.0					0.0		0.0	0.0	
Total Lost Time (s)		5.9	5.9					5.8		5.3	5.8	
Lead/Lag								Lag		Lead		
Lead-Lag Optimize?								Yes		Yes		
Recall Mode	None	None	None					C-Min		None	C-Min	
Act Effct Green (s)		25.2	25.2					38.9		63.6	63.1	
Actuated g/C Ratio		0.25	0.25					0.39		0.64	0.63	
v/c Ratio		0.78	0.34					0.36		0.70	0.32	
Control Delay		47.6	6.1					17.0		17.6	12.4	
Queue Delay		0.0	0.0					0.0		8.4	2.6	
Total Delay		47.6	6.1					17.0		26.1	15.0	
LOS		D	A					В		С	В	
Approach Delay		33.6						17.0			21.0	
Approach LOS		С						В			C	
Queue Length 50th (m)		60.5	0.0					20.3		43.7	36.1	
Queue Length 95th (m)		83.9	13.9					43.2		70.4	61.2	
Internal Link Dist (m)		109.8			145.0			90.1			45.3	
Turn Bay Length (m)			75.0									
Base Capacity (vph)		456	522					1352		701	1174	
Starvation Cap Reductn		0	0					0		229	675	
Spillback Cap Reductn		0	0					31		0	0	
Storage Cap Reductn		0	0					0		0	0	
Reduced v/c Ratio		0.74	0.33					0.35		0.91	0.73	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 29 (29%), Reference	d to phase	e 2:NBT a	and 6:SBT	L, Start o	f Green							
Natural Cycle: 70												
Control Type: Actuated-Cool	rdinated											

Parsons

Lanes, Volumes, Timings 23: Parkdale & 417 EB on/off

Maximum v/c Ratio: 0.78	
Intersection Signal Delay: 23.6	Intersection LOS: C
Intersection Capacity Utilization 118.4%	ICU Level of Service H
Analysis Period (min) 15	

Splits and Phases: 23: Parkdale & 417 EB on/off

Ø1	● ¶ø2 (R)	↓ 04
32 s	38 s	30 s
Ø6 (R)	•	
70 s		

	٭	-	\rightarrow	-	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			\$	
Traffic Volume (vph)	72	8	7	0	7	154	5	400	7	76	357	68
Future Volume (vph)	72	8	7	0	7	154	5	400	7	76	357	68
Satd. Flow (prot)	0	1683	0	0	1489	0	0	1776	0	0	1724	0
Flt Permitted		0.697						0.995			0.887	
Satd. Flow (perm)	0	1219	0	0	1489	0	0	1769	0	0	1535	0
Satd. Flow (RTOR)		7			154			3			24	
Lane Group Flow (vph)	0	87	0	0	161	0	0	412	0	0	501	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	1.0	1.0		1.0	1.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	18.0	18.0		18.0	18.0		25.1	25.1		25.1	25.1	
Total Split (s)	18.0	18.0		18.0	18.0		37.0	37.0		37.0	37.0	
Total Split (%)	32.7%	32.7%		32.7%	32.7%		67.3%	67.3%		67.3%	67.3%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.0			4.0			5.6			5.6	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	Ped	Ped		Ped	Ped		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)		14.0			14.0		-	31.4		-	31.4	
Actuated g/C Ratio		0.25			0.25			0.57			0.57	
v/c Ratio		0.28			0.33			0.41			0.57	
Control Delay		18.2			6.0			8.1			10.2	
Queue Delay		0.0			0.0			0.0			0.4	
Total Delay		18.2			6.0			8.1			10.6	
LOS		В			А			А			В	
Approach Delay		18.2			6.0			8.1			10.6	
Approach LOS		В			А			А			В	
Queue Length 50th (m)		6.3			0.5			19.8			25.8	
Queue Length 95th (m)		15.9			11.7			34.7			48.2	
Internal Link Dist (m)		221.3			335.0			289.1			90.1	
Turn Bay Length (m)												
Base Capacity (vph)		315			493			1011			886	
Starvation Cap Reductn		0			0			0			97	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.28			0.33			0.41			0.63	
Intersection Summary												
Cycle Length: 55												
Actuated Cycle Length: 55												
Offset: 26 (47%), Reference	ed to phase	e 2:NBTL	and 6:SE	STL, Starl	t of Green							
Natural Cycle: 50												
Control Type: Actuated-Coc	ordinated											

Lanes, Volumes, Timings 24: Parkdale & Sherwood

Maximum v/c Ratio: 0.57 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 91.1% Analysis Period (min) 15

Intersection LOS: A ICU Level of Service F

Splits and Phases: 24: Parkdale & Sherwood

Ø2 (R)	→ ₀₄	
37 s	18 s	
Ø6 (R)	4 Ø8	
37 s	18 s	

Lanes, Volumes, Timings 25: Parkdale & Ruskin

	≯	-	\rightarrow	-	-	•	1	†	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	4Î			\$			4	
Traffic Volume (vph)	27	29	9	7	33	47	3	221	7	55	238	10
Future Volume (vph)	27	29	9	7	33	47	3	221	7	55	238	10
Satd. Flow (prot)	0	1695	0	1695	1546	0	0	1771	0	0	1759	0
Flt Permitted		0.829		0.807				0.997			0.911	
Satd. Flow (perm)	0	1399	0	1353	1546	0	0	1767	0	0	1603	0
Satd. Flow (RTOR)		7			47			4			5	
Lane Group Flow (vph)	0	65	0	7	80	0	0	231	0	0	303	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	19.4	19.4		19.4	19.4		31.8	31.8		31.8	31.8	
Total Split (s)	20.0	20.0		20.0	20.0		75.0	75.0		75.0	75.0	
Total Split (%)	21.1%	21.1%		21.1%	21.1%		78.9%	78.9%		78.9%	78.9%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.8	2.8		2.8	2.8	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)		5.4		5.4	5.4			5.8			5.8	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)		12.4		12.4	12.4		-	75.6		-	75.6	
Actuated g/C Ratio		0.13		0.13	0.13			0.80			0.80	
v/c Ratio		0.35		0.04	0.33			0.16			0.24	
Control Delay		38.9		35.6	22.1			3.6			4.0	
Queue Delav		0.0		0.0	0.0			0.0			0.0	
Total Delay		38.9		35.6	22.1			3.6			4.0	
LOS		D		D	С			A			A	
Approach Delay		38.9			23.2			3.6			4.0	
Approach LOS		D			С			A			A	
Queue Length 50th (m)		9.6		1.1	5.4			10.6			14.8	
Queue Length 95th (m)		21.8		5.0	18.2			17.3			23.5	
Internal Link Dist (m)		220.6			228.6			278.4			289.1	
Turn Bay Length (m)				40.0								
Base Capacity (vph)		220		207	277			1407			1277	
Starvation Cap Reductn		0		0	0			0			0	
Spillback Cap Reductn		0		0	0			0			0	
Storage Cap Reductn		0		0	0			0			0	
Reduced v/c Ratio		0.30		0.03	0.29			0.16			0.24	
Intersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95												
Offset: 40 (42%), Reference	ed to phase	2:NBTL	and 6:SE	BTL, Starl	of Green							
Natural Cycle: 55												
Control Type: Actuated-Coc	ordinated											

Lanes, Volumes, Timings 25: Parkdale & Ruskin

Maximum v/c Ratio: 0.35 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 68.7% Analysis Period (min) 15

Intersection LOS: A ICU Level of Service C

Splits and Phases: 25: Parkdale & Ruskin

Ø2 (R)	<u>_</u>	
75 s	20 s	
Ø6 (R)	₩ Ø8	
75 s	20 s	

Lanes, Volumes, Timings 30: Prince of Wales & Preston

	٦	-	\rightarrow	4	←	•	1	1	1	1	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	•		ሻ	•	1		\$			ર્સ	1
Traffic Volume (vph)	521	260	0	3	382	402	1	0	0	402	3	587
Future Volume (vph)	521	260	0	3	382	402	1	0	0	402	3	587
Satd. Flow (prot)	3288	1784	0	1695	1784	1517	0	1695	0	0	1700	1517
Flt Permitted	0.950			0.950				0.524			0.728	
Satd. Flow (perm)	3187	1784	0	1479	1784	1484	0	798	0	0	1157	1352
Satd. Flow (RTOR)						213						
Lane Group Flow (vph)	521	260	0	3	382	402	0	1	0	0	405	587
Turn Type	Prot	NA		Prot	NA	Free	Perm	NA		custom	NA	custom
Protected Phases	5	2		1	6			8		11	4 11	5
Permitted Phases						Free	8			4		4
Detector Phase	5	2		1	6		8	8		11	4 11	5
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		10.0		5.0
Minimum Split (s)	11.1	27.1		10.3	26.1		24.5	24.5		15.3		11.1
Total Split (s)	52.0	67.0		10.3	30.3		32.7	32.7		25.0		52.0
Total Split (%)	37.1%	47.9%		7.4%	21.6%		23.4%	23.4%		17.9%		37.1%
Yellow Time (s)	3.7	3.7		3.3	3.7		3.3	3.3		3.3		3.7
All-Red Time (s)	2.4	2.4		2.0	2.4		2.2	2.2		2.0		2.4
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0				0.0
Total Lost Time (s)	6.1	6.1		5.3	6.1			5.5				6.1
Lead/Lag				Lead								
Lead-Lag Optimize?				Yes								
Recall Mode	None	C-Min		None	C-Min		None	None		None		None
Act Effct Green (s)	41.3	77.0		5.2	32.6	140.0		23.3			42.8	64.1
Actuated g/C Ratio	0.30	0.55		0.04	0.23	1.00		0.17			0.31	0.46
v/c Ratio	0.54	0.27		0.05	0.92	0.27		0.01			0.94	0.88
Control Delay	41.8	18.5		67.0	80.6	0.5		46.0			76.9	46.8
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0			0.0	0.0
Total Delay	41.8	18.5		67.0	80.6	0.5		46.0			76.9	46.9
LOS	D	В		E	F	Α		D			E	D
Approach Delay		34.0			39.6			46.0			59.1	
Approach LOS		С			D			D			E	
Queue Length 50th (m)	52.7	33.8		0.8	106.2	0.0		0.2			114.9	101.6
Queue Length 95th (m)	82.2	56.6		4.1	#193.5	0.0		1.8			m130.6	m104.7
Internal Link Dist (m)		79.9			173.8			12.4			145.6	
Turn Bay Length (m)	45.0			30.0		45.0						
Base Capacity (vph)	1077	981		62	415	1484		155			461	716
Starvation Cap Reductn	0	0		0	0	0		0			0	1
Spillback Cap Reductn	0	0		0	0	0		0			0	0
Storage Cap Reductn	0	0		0	0	0		0			0	0
Reduced v/c Ratio	0.48	0.27		0.05	0.92	0.27		0.01			0.88	0.82
Intersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 140												
Offset: 105.9 (76%), Referen	nced to ph	ase 2:EB	T and 6:V	VBT, Sta	rt of Gree	n						
Natural Cycle: 100												

Control Type: Actuated-Coordinated

Lane Group	Ø4	Ø9	Ø12
LanetConfigurations			
Traffic Volume (vph)			
Future Volume (vph)			
Satd. Flow (prot)			
Flt Permitted			
Satd, Flow (perm)			
Satd Flow (RTOR)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	4	g	12
Permitted Phases	т	5	14
Detector Phase			
Switch Phase			
Minimum Initial (a)	10.0	10	10
Minimum Split (s)	10.0	1.0 5.0	20.0
Total Split (s)	10.0	5.U E 0	20.0
Total Split (S)	32.1	5.U 40/	20.0
Total Split (%)	23%	4%	10%
reliow Time (S)	3.3	2.0	2.0
All-Red Time (S)	2.2	0.0	0.0
Lost Time Adjust (s)			
lotal Lost Time (s)			
Lead/Lag		Lag	
Lead-Lag Optimize?		Yes	
Recall Mode	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Canacity (vnh)			
Starvation Can Reducto			
Snillback Can Peducth			
Storage Can Poduoto			
Boducod v/o Botio			
Neuliceu VIC Mallu			
Intersection Summary			

Lanes, Volumes, Timings 30: Prince of Wales & Preston

Maximum v/c Ratio: 0.94					
Intersection Signal Delay: 45.5	Intersection LOS: D				
Intersection Capacity Utilization 92.3%	ICU Level of Service F				
Analysis Period (min) 15					
# 95th percentile volume exceeds capacity, queue may be longer.					
Queue shown is maximum after two cycles.					
Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may Queue shown is maximum after two cycles.	/ be longer.				

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 30: Prince of Wales & Preston

Ø1 Ø1 Ø9 Ø2(R) Ø		Ø11	↓ _{Ø4}
10.3 <mark>s 5s</mark> 67s		25 s	32.7 s
* [*] Ø5	← Ø6 (R)		™ ø8
52 s	30.3 s	25 s	32.7 s

Lanes, Volumes, Timings 31: Rochester & 417 WB on/Raymond

	≯	-	\mathbf{r}	-	-	•	1	†	1	1	↓	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ţ,		5	•			•	1
Traffic Volume (vph)	0	0	0	190	177	121	194	373	0	0	195	128
Future Volume (vph)	0	0	0	190	177	121	194	373	0	0	195	128
Satd. Flow (prot)	0	0	0	1695	1636	0	1695	1784	0	0	1784	1517
Flt Permitted				0.950			0.523					
Satd. Flow (perm)	0	0	0	1685	1636	0	906	1784	0	0	1784	1414
Satd. Flow (RTOR)					56							134
Lane Group Flow (vph)	0	0	0	190	298	0	194	373	0	0	195	128
Turn Type				Perm	NA		pm+pt	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8			2					6
Detector Phase				8	8		5	2			6	6
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	10.0
Minimum Split (s)				32.0	32.0		10.9	27.3			24.9	24.9
Total Split (s)				32.0	32.0		13.0	38.0			25.0	25.0
Total Split (%)				45.7%	45.7%		18.6%	54.3%			35.7%	35.7%
Yellow Time (s)				3.3	3.3		3.3	3.3			3.3	3.3
All-Red Time (s)				2.4	2.4		2.6	2.6			2.6	2.6
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)				5.7	5.7		5.9	5.9			5.9	5.9
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				None	None		None	C-Min			C-Min	C-Min
Act Effct Green (s)				16.4	16.4		42.0	42.0			27.4	27.4
Actuated g/C Ratio				0.23	0.23		0.60	0.60			0.39	0.39
v/c Ratio				0.48	0.70		0.30	0.35			0.28	0.20
Control Delay				26.1	28.2		12.3	13.7			18.3	4.7
Queue Delay				0.0	0.0		0.0	0.6			0.0	0.0
Total Delay				26.1	28.2		12.3	14.2			18.3	4.7
LOS				С	С		В	В			В	А
Approach Delay					27.4			13.5			12.9	
Approach LOS					С			В			В	
Queue Length 50th (m)				21.7	29.1		13.4	38.3			17.0	0.0
Queue Length 95th (m)				33.4	45.7		31.8	59.7			37.7	10.3
Internal Link Dist (m)		122.0			89.8			72.3			151.7	
Turn Bay Length (m)												35.0
Base Capacity (vph)				633	649		643	1071			699	636
Starvation Cap Reductn				0	0		0	356			0	0
Spillback Cap Reductn				0	0		0	0			0	0
Storage Cap Reductn				0	0		0	0			0	0
Reduced v/c Ratio				0.30	0.46		0.30	0.52			0.28	0.20
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 8 (11%), Referenced to phase 2:NBTL and 6:SBT, Start of Green												
Natural Cycle: 70												
Control Type: Actuated-Coordi	nated											

Parsons

Maximum v/c Ratio: 0.70 Intersection Signal Delay: 18.3 Intersection Capacity Utilization 60.2% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Lanes, Volumes, Timings 32: Rochester & 417 EB off/Orangeville

	٦	-	\mathbf{r}	1	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ፈጉ						≜t ≽			A∱	
Traffic Volume (vph)	223	268	153	0	0	0	0	348	78	29	343	0
Future Volume (vph)	223	268	153	0	0	0	0	348	78	29	343	0
Satd. Flow (prot)	0	3186	0	0	0	0	0	3277	0	0	3377	0
Flt Permitted		0.983									0.905	
Satd. Flow (perm)	0	3180	0	0	0	0	0	3277	0	0	3065	0
Satd. Flow (RTOR)		60						61				
Lane Group Flow (vph)	0	644	0	0	0	0	0	426	0	0	372	0
Turn Type	Perm	NA						NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4									6		
Detector Phase	4	4						2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0						10.0		10.0	10.0	
Minimum Split (s)	26.0	26.0						25.1		25.1	25.1	
Total Split (s)	26.0	26.0						44.0		44.0	44.0	
Total Split (%)	37.1%	37.1%						62.9%		62.9%	62.9%	
Yellow Time (s)	3.3	3.3						3.3		3.3	3.3	
All-Red Time (s)	2.3	2.3						2.1		2.1	2.1	
Lost Time Adjust (s)		0.0						0.0			0.0	
Total Lost Time (s)		5.6						5.4			5.4	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None						C-Min		C-Min	C-Min	
Act Effct Green (s)		18.3						40.7			40.7	
Actuated g/C Ratio		0.26						0.58			0.58	
v/c Ratio		0.74						0.22			0.21	
Control Delay		26.4						6.9			11.0	
Queue Delay		0.0						0.0			0.0	
Total Delay		26.4						6.9			11.0	
LOS		С						А			В	
Approach Delay		26.4						6.9			11.0	
Approach LOS		С						А			В	
Queue Length 50th (m)		36.8						10.8			3.8	
Queue Length 95th (m)		48.1						m18.6			39.2	
Internal Link Dist (m)		104.8			107.2			99.1			72.3	
Turn Bay Length (m)												
Base Capacity (vph)		998						1962			1811	
Starvation Cap Reductn		0						0			0	
Spillback Cap Reductn		0						0			0	
Storage Cap Reductn		0						0			0	
Reduced v/c Ratio		0.65						0.22			0.21	
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 67 (96%), Reference	ed to phase	e 2:NBT a	nd 6:SBT	L, Start o	f Green							
Natural Cycle: 55												
Control Type: Actuated-Coo	ordinated											

Maximum v/c Ratio: 0.74

Intersection Signal Delay: 16.6 Intersection Capacity Utilization 65.6% Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 32: Rochester & 417 EB off/Orangeville

Ø2 (R)	A 04	
44 s	26 s	
Ø6 (R)		
44 s		

Lanes, Volumes, Timings 33: Bronson & Catherine 417 WB on

	≯	-	\mathbf{r}	-	-	•	1	†	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				5	.at≜t≽		5	44			≜t ⊾	
Traffic Volume (vph)	0	0	0	783	539	242	262	722	0	0	752	149
Future Volume (vph)	0	0	0	783	539	242	262	722	0	0	752	149
Satd. Flow (prot)	0	0	0	1458	4341	0	1695	3390	0	0	3258	0
Flt Permitted				0.950	0.988		0.115					
Satd. Flow (perm)	0	0	0	1458	4341	0	205	3390	0	0	3258	0
Satd. Flow (RTOR)					94						25	
Lane Group Flow (vph)	0	0	0	532	1032	0	262	722	0	0	901	0
Turn Type				Perm	NA		pm+pt	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8			2					
Detector Phase				8	8		5	2			6	
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	
Minimum Split (s)				25.9	25.9		11.0	25.1			25.1	
Total Split (s)				42.0	42.0		18.0	53.0			35.0	
Total Split (%)				44.2%	44.2%		18.9%	55.8%			36.8%	
Yellow Time (s)				3.3	3.3		3.3	3.3			3.3	
All-Red Time (s)				2.6	2.6		2.7	2.8			2.8	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				5.9	5.9		6.0	6.1			6.1	
Lead/Lag							Lead				Lag	
Lead-Lag Optimize?							Yes				Yes	
Recall Mode				None	None		None	C-Min			C-Min	
Act Effct Green (s)				36.0	36.0		47.1	47.0			28.9	
Actuated g/C Ratio				0.38	0.38		0.50	0.49			0.30	
v/c Ratio				0.96	0.61		0.90	0.43			0.89	
Control Delay				61.0	23.2		61.9	21.6			43.3	
Queue Delay				22.7	0.1		0.0	1.8			37.3	
Total Delay				83.7	23.3		61.9	23.4			80.6	
LOS				F	С		E	С			F	
Approach Delay					43.8			33.6			80.6	
Approach LOS					D			С			F	
Queue Length 50th (m)				108.8	52.6		42.0	44.3			80.6	
Queue Length 95th (m)				#184.1	67.2		#77.8	76.5			#116.0	
Internal Link Dist (m)		151.3			165.9			71.3			237.2	
Turn Bay Length (m)												
Base Capacity (vph)				554	1707		291	1678			1009	
Starvation Cap Reductn				0	0		0	750			0	
Spillback Cap Reductn				47	48		0	0			171	
Storage Cap Reductn				0	0		0	0			0	
Reduced v/c Ratio				1.05	0.62		0.90	0.78			1.08	
Intersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95												
Offset: 59 (62%), Referenced	to phase	2:NBTL a	and 6:SE	BT, Start o	of Green							
Natural Cycle: 80												
Control Type: Actuated-Coord	inated											

Parsons

Maximum v/c Ratio: 0.96 Intersection Signal Delay: 50.5

Intersection Capacity Utilization 110.0% Analysis Period (min) 15 Intersection LOS: D ICU Level of Service H

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 33: Bronson & Catherine 417 WB on

1 Ø2 (R)		
53 s		
▲ ø5	Ø6 (R)	₹ø8
18 s	35 s	42 s

	≯	\mathbf{r}	1	†	ŧ	1	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	5	1		**	44		
Traffic Volume (vph)	137	357	0	874	1426	0	
Future Volume (vph)	137	357	0	874	1426	0	
Satd. Flow (prot)	1695	1517	0	3390	3390	0	
Flt Permitted	0.950						
Satd, Flow (perm)	1695	1491	0	3390	3390	0	
Satd. Flow (RTOR)		51					
Lane Group Flow (vph)	137	357	0	874	1426	0	
Turn Type	Prot	Perm		NA	NA		
Protected Phases	4			2	6		
Permitted Phases		4					
Detector Phase	4	4		2	6		
Switch Phase				-	·		
Minimum Initial (s)	10.0	10.0		10.0	10.0		
Minimum Snlit (s)	25.1	25.1		34.3	34.3		
Total Split (s)	30.0	30.0		65.0	65.0		
Total Split (%)	31.6%	31.6%		68.4%	68.4%		
Yellow Time (s)	21.070	21.070		२ २ २ २	२२ २२		
All-Red Time (s)	2.0	2.0		2.5	2.5		
Lost Time Adjust (s)	2.1	0.0		2.0	2.5		
Total Lost Time (s)	5.0	5.4		0.0 5 Q	5.8		
	J.4	J.4		5.0	5.0		
Leau/Lay							
	Nono	Nono		C Min	C Min		
Act Effet Groop (c)	24.2	24.2		50.6	50 G		
Actuated a/C Patia	0.25	24.2		0.62	0.62		
No Datio	0.20	0.25		0.03	0.03		
vic raliu Control Dolovi	0.52	00.00		10.41	0.07		
	30.1	40.9		10.1	0.9		
Queue Delay	0.0	0.0		10.0	3.0 10.5		
Total Delay	30.1	48.9		10.1	12.5		
LUS Annual Data	U 40 7	U		B	AD C		
Approach Delay	43.7			10.1	12.5		
Approach LUS	D	F0 (B	B		
Queue Length 50th (m)	19.7	52.1		41.6	57.6		
Queue Length 95th (m)	36.2	#101.1		50.7	m126.4		
Internal Link Dist (m)	81.4			50.7	71.3		
Turn Bay Length (m)		60.0		• •			
Base Capacity (vph)	463	444		2176	2176		
Starvation Cap Reductn	0	0		0	640		
Spillback Cap Reductn	0	0		107	0		
Storage Cap Reductn	0	0		0	0		
Reduced v/c Ratio	0.30	0.80		0.42	0.93		
Intersection Summary							
Cycle Length: 95							
Actuated Cycle Length: 05							
Aduated Cyde Letigtii. 30 Officet: 01 (06%) Deferenced to phase 2:NPT and 6:SPT. Start of Crean							
Natural Cycle: 60	su to prias			i, Start U	Green		
Control Type: Actuated Cor	ordinated						
Control Type. Actuated-Cot	Junaleu						

Lanes, Volumes, Timings 34: Bronson & 417 EB off

Maximum v/c Ratio: 0.86					
Intersection Signal Delay: 17.3	Intersection LOS: B				
Intersection Capacity Utilization 110.0%	ICU Level of Service H				
Analysis Period (min) 15					
# 95th percentile volume exceeds capacity, queue may be longer.					
Queue shown is maximum after two cycles.	•				
Volume for OFIL and all the second structure of the se	to a st				

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 34: Bronson & 417 EB off

₫ ø2 (R)	★ _{Ø4}
65 s	30 s
▼ Ø6 (R)	
65 s	

Lanes, Volumes, Timings 39: Prince of Wales & Road B

۶

(dual WBT)

	-	_		-	-		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø9
Lane Configurations	5	•	≜t ≽		ሻ	1	
Traffic Volume (vph)	28	692	960	21	129	42	
Future Volume (vph)	28	692	960	21	129	42	
Satd. Flow (prot)	1695	1784	3377	0	1695	1517	
Flt Permitted	0.246				0.950		
Satd. Flow (perm)	439	1784	3377	0	1629	1424	
Satd. Flow (RTOR)						42	
Lane Group Flow (vph)	28	692	981	0	129	42	
Turn Type	pm+pt	NA	NA		Perm	Perm	
Protected Phases	5	2	6				9
Permitted Phases	2				4	4	
Detector Phase	5	2	6		4	4	
Switch Phase							
Minimum Initial (s)	5.0	10.0	10.0		10.0	10.0	1.0
Minimum Split (s)	10.3	23.3	23.3		23.3	23.3	15.0
Total Split (s)	12.0	97.0	85.0		28.0	28.0	15.0
Total Split (%)	8.6%	69.3%	60.7%		20.0%	20.0%	11%
Yellow Time (s)	3.3	3.3	3.3		3.3	3.3	2.0
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.3	5.3	5.3		5.3	5.3	
Lead/Lag	Lead		Lag				
Lead-Lag Optimize?	Yes		Yes				
Recall Mode	None	C-Min	C-Min		None	None	None
Act Effct Green (s)	110.1	110.1	103.0		16.3	16.3	
Actuated g/C Ratio	0.79	0.79	0.74		0.12	0.12	
v/c Ratio	0.07	0.49	0.39		0.68	0.21	
Control Delay	5.6	8.2	8.6		76.6	16.8	
Queue Delay	0.0	0.0	0.0		0.0	0.0	
Total Delay	5.6	8.2	8.6		76.6	16.8	
LOS	А	Α	А		E	В	
Approach Delay		8.1	8.6		61.9		
Approach LOS		А	А		E		
Queue Length 50th (m)	1.3	50.1	40.7		34.8	0.0	
Queue Length 95th (m)	6.0	135.1	m117.5		54.3	10.7	
Internal Link Dist (m)		198.2	95.9		17.7		
Turn Bay Length (m)	45.0						
Base Capacity (vph)	406	1403	2486		264	266	
Starvation Cap Reductn	0	0	0		0	0	
Spillback Cap Reductn	0	0	0		0	0	
Storage Cap Reductn	0	0	0		0	0	
Reduced v/c Ratio	0.07	0.49	0.39		0.49	0.16	
Intersection Summary							
Cycle Length: 140							
Actuated Cycle Length: 140)						
Offset: () (0%) Referenced	, to nhase 2	·FRTL av	nd 6·\WR⊤	Start of	Green		
Natural Cycle: 80	to phase Z		10 0.7VD1,				

۰

 \mathbf{V}

2

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.68

Intersection Signal Delay: 13.3 Intersection Capacity Utilization 57.5% Intersection LOS: B ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 39: Prince of Wales & Road B

	≯	-	-	•	1	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø9
Lane Configurations	5	•	•	1	5	1	
Traffic Volume (vph)	28	692	960	21	129	42	
Future Volume (vph)	28	692	960	21	129	42	
Satd, Flow (prot)	1695	1784	1784	1517	1695	1517	
Flt Permitted	0.180				0.950		
Satd, Flow (perm)	321	1784	1784	1453	1629	1345	
Satd. Flow (RTOR)						42	
Lane Group Flow (vph)	28	692	960	21	129	42	
Turn Type	pm+pt	NA	NA	Perm	Perm	Perm	
Protected Phases	5	2	6				9
Permitted Phases	2			6	4	4	
Detector Phase	5	2	6	6	4	4	
Switch Phase							
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	1.0
Minimum Split (s)	10.3	23.3	23.3	23.3	23.3	23.3	15.0
Total Split (s)	10.3	101.7	91.4	91.4	23.3	23.3	15.0
Total Split (%)	7.4%	72.6%	65.3%	65.3%	16.6%	16.6%	11%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	2.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3	
Lead/Lag	Lead		Lag	Lag			
Lead-Lag Optimize?	Yes		Yes	Yes			
Recall Mode	None	C-Min	C-Min	C-Min	None	None	None
Act Effct Green (s)	111.0	111.0	104.4	104.4	15.4	15.4	
Actuated g/C Ratio	0.79	0.79	0.75	0.75	0.11	0.11	
v/c Ratio	0.09	0.49	0.72	0.02	0.72	0.23	
Control Delay	5.2	7.4	11.1	4.9	82.2	18.1	
Queue Delay	0.0	0.0	0.7	0.0	0.0	0.0	
Total Delay	5.2	7.4	11.8	4.9	82.2	18.1	
LOS	А	А	В	А	F	В	
Approach Delay		7.3	11.7		66.4		
Approach LOS		А	В		Е		
Queue Length 50th (m)	1.3	50.1	85.5	1.8	34.8	0.0	
Queue Length 95th (m)	5.4	120.6	m195.7	m1.5	56.5	11.1	
Internal Link Dist (m)		198.2	95.9		17.7		
Turn Bay Length (m)	45.0			35.0			
Base Capacity (vph)	310	1414	1330	1083	211	210	
Starvation Cap Reductn	0	0	133	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.09	0.49	0.80	0.02	0.61	0.20	
Intersection Summary							
Cycle Length: 140							
Actuated Cycle Length: 140							
Offset: 41 (29%), Reference	d to phase	2:EBTI	and 6:WI	3T. Start	of Green		
Natural Cycle: 110				.,	0.0011		
Control Type: Actuated-Coo	rdinated						

Maximum v/c Ratio: 0.72

Intersection Signal Delay: 15.0 Intersection Capacity Utilization 72.4% Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 39: Prince of Wales & Road B

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	- 11	- 11	1	Y	
Traffic Vol, veh/h	23	771	1449	13	3	8
Future Vol, veh/h	23	771	1449	13	3	8
Conflicting Peds, #/hr	42	0	0	42	4	8
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	25	-	-	20	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	23	771	1449	13	3	8

Major/Minor	Major1	Ν	/lajor2		Minor2		
Conflicting Flow All	1504	0	-	0	1927	775	
Stage 1	-	-	-	-	1491	-	
Stage 2	-	-	-	-	436	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	441	-	-	-	58	341	
Stage 1	-	-	-	-	173	-	
Stage 2	-	-	-	-	619	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	425	-	-	-	51	327	
Mov Cap-2 Maneuver	-	-	-	-	51	-	
Stage 1	-	-	-	-	158	-	
Stage 2	-	-	-	-	597	-	
Annroach	FR		W/R		SB		
HCM Control Delay	0 /		0		3/1 7		
HCM LOS	0.4		U		<u>л</u> -г		
					U		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		425	-	-	-	132	
HCM Lane V/C Ratio		0.054	-	-	-	0.083	
HCM Control Delay (s)	14	-	-	-	34.7	
HCM Lane LOS		В	-	-	-	D	
HCM 95th %tile Q(veh	ı)	0.2	-	-	-	0.3	

Intersection						
Int Delay, s/veh	21.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	↑	1		1
Traffic Vol, veh/h	0	894	1100	70	0	269
Future Vol, veh/h	0	894	1100	70	0	269
Conflicting Peds, #/hr	70	0	0	70	1	5
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	30	-	0
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	894	1100	70	0	269

Major/Minor	Major1	Ν	Major2	Minor2				
Conflicting Flow All	-	0	-	0 -	1175			
Stage 1	-	-	-		-			
Stage 2	-	-	-		-			
Critical Hdwy	-	-	-		6.23			
Critical Hdwy Stg 1	-	-	-		-			
Critical Hdwy Stg 2	-	-	-		-			
Follow-up Hdwy	-	-	-		3.319			
Pot Cap-1 Maneuver	0	-	-	- 0	~ 232			
Stage 1	0	-	-	- 0	-			
Stage 2	0	-	-	- 0	-			
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuver	-	-	-		~ 217			
Mov Cap-2 Maneuver	-	-	-		-			
Stage 1	-	-	-		-			
Stage 2	-	-	-		-			
Approach	EB		WB	SB				
HCM Control Delay, s	0		0	185.8				
HCM LOS				F				
Minor Lane/Major Mvr	nt	EBT	WBT	WBR SBLn1				
Capacity (veh/h)		-	-	- 217				
HCM Lane V/C Ratio		-	-	- 1.24				
HCM Control Delay (s	;)	-	-	- 185.8				
HCM Lane LOS	/	-	-	- F				
HCM 95th %tile Q(veh	า)	-	-	- 13.8				
Notes								
~: Volume exceeds ca	apacity	\$: De	elay ex	ceeds 300s	+: Com	putation Not Defined	*: All major volume in platoon	

Intersection

Int Delay, s/veh

0.5

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations Image: Confi	-												
Lane Configurations Image: height and the system Image: height and th	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h 0 820 1 1 939 38 3 0 6 0 0 33 Future Vol, veh/h 0 820 1 1 939 38 3 0 6 0 0 33 Conflicting Peds, #/hr 8 0 6 6 0 8 1 0 0 0 0 1 Sign Control Free Free Free Free Free Free Free Stop S	Lane Configurations		f			•			- 🗘				1
Future Vol, veh/h 0 820 1 1 939 38 3 0 6 0 0 33 Conflicting Peds, #/hr 8 0 6 6 0 8 1 0 0 0 0 1 Sign Control Free Free Free Free Free Free Stop	Traffic Vol, veh/h	0	820	1	1	939	38	3	0	6	0	0	33
Conflicting Peds, #/hr 8 0 6 6 0 8 1 0 0 0 0 1 Sign Control Free Free Free Free Free Free Stop None - - None - None - None - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0	Future Vol, veh/h	0	820	1	1	939	38	3	0	6	0	0	33
Sign Control Free Free Free Free Free Free Stop	Conflicting Peds, #/hr	8	0	6	6	0	8	1	0	0	0	0	1
RT Channelized - None - No None -	Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
Storage Length - - - - - - - 0 Veh in Median Storage, # - 0 - - <td>RT Channelized</td> <td>-</td> <td>-</td> <td>None</td> <td>-</td> <td>-</td> <td>None</td> <td>-</td> <td>-</td> <td>None</td> <td>-</td> <td>-</td> <td>None</td>	RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Veh in Median Storage, # - 0 - 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	Storage Length	-	-	-	-	-	-	-	-	-	-	-	0
Grade, % - 0 - - 0 - - 0 100	Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor 100	Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Heavy Vehicles, % 2	Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Mymt Flow 0 820 1 1 939 38 3 0 6 0 0 33	Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
	Mvmt Flow	0	820	1	1	939	38	3	0	6	0	0	33

Major/Minor	Major1		Ma	ajor2			Minor1		Ν	/linor2			
Conflicting Flow All	-	0	0	827	0	0	1805	1814	827	-	-	967	
Stage 1	-	-	-	-	-	-	827	827	-	-	-	-	
Stage 2	-	-	-	-	-	-	978	987	-	-	-	-	
Critical Hdwy	-	-	-	4.12	-	-	7.12	6.52	6.22	-	-	6.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	-	-	-	
Follow-up Hdwy	-	-	- 2	.218	-	-	3.518	4.018	3.318	-	-	3.318	
Pot Cap-1 Maneuver	0	-	-	804	-	-	61	78	371	0	0	308	
Stage 1	0	-	-	-	-	-	366	386	-	0	0	-	
Stage 2	0	-	-	-	-	-	301	325	-	0	0	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	· -	-	-	800	-	-	54	77	369	-	-	306	
Mov Cap-2 Maneuver	· -	-	-	-	-	-	54	77	-	-	-	-	
Stage 1	-	-	-	-	-	-	366	384	-	-	-	-	
Stage 2	-	-	-	-	-	-	268	322	-	-	-	-	
Approach	FR			W/R			NR			SB			
Approach				0			26			10.0			
HUM Control Delay, s	5 0			U			30			10.2			
HUM LUS							E			C			

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	WBR SBI	_n1
Capacity (veh/h)	125	-	-	800	-	- ;	306
HCM Lane V/C Ratio	0.072	-	-	0.001	-	- 0.1	08
HCM Control Delay (s)	36	-	-	9.5	-	- 1	8.2
HCM Lane LOS	E	-	-	А	-	-	С
HCM 95th %tile Q(veh)	0.2	-	-	0	-	-	0.4

Intersection

Int Delay, s/veh	1.4						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	l
Lane Configurations		1	<u>ار ا</u>	•	•	1	
Traffic Vol, veh/h	0	103	7	720	962	37	,
Future Vol, veh/h	0	103	7	720	962	37	,
Conflicting Peds, #/hr	0	0	10	0	0	10)
Sign Control	Stop	Stop	Free	Free	Free	Free	;
RT Channelized	-	None	-	None	-	None	;
Storage Length	-	0	50	-	-	50)
Veh in Median Storage	,# 0	-	-	0	0	-	-
Grade, %	0	-	-	0	0	-	-
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	11	6	40	2	2	30)
Mvmt Flow	0	103	7	720	962	37	'

Major/Minor	Minor2	I	Major1	Maje	or2		
Conflicting Flow All	-	972	1009	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.26	4.5	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.354	2.56	-	-	-	
Pot Cap-1 Maneuver	0	301	558	-	-	-	
Stage 1	0	-	-	-	-	-	
Stage 2	0	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	• -	298	553	-	-	-	
Mov Cap-2 Maneuver	• -	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	23.3	0.1	0
HCMLOS	С		

Vinor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	553	- 298	-	-
HCM Lane V/C Ratio	0.013	- 0.346	-	-
HCM Control Delay (s)	11.6	- 23.3	-	-
HCM Lane LOS	В	- C	-	-
HCM 95th %tile Q(veh)	0	- 1.5	-	-

Lanes, Volumes, Timings 2: Prince of Wales & Road E

(as signalized)

1 t ŧ ~ ٭ \mathbf{i} EBL EBR NBL NBT SBT Lane Group SBR Ø10 Lane Configurations ٦ ۴ ٦ ŧ ŧ ۴ 32 649 962 37 Traffic Volume (vph) 71 7 Future Volume (vph) 71 32 7 649 962 37 1517 Satd. Flow (prot) 1695 1517 1695 1784 1784 **Flt Permitted** 0.950 0.950 Satd. Flow (perm) 1695 1517 1671 1784 1784 1379 Satd. Flow (RTOR) 649 Lane Group Flow (vph) 32 7 962 37 71 Turn Type NA NA Perm Perm Prot Perm Protected Phases 5 2 6 10 Permitted Phases 4 4 6 4 2 6 Detector Phase 4 5 6 Switch Phase 10.0 Minimum Initial (s) 10.0 5.0 10.0 10.0 10.0 1.0 Minimum Split (s) 23.3 23.3 10.3 23.3 23.3 23.3 10.0 Total Split (s) 26.0 26.0 10.3 94.0 83.7 83.7 10.0 64.4% Total Split (%) 20.0% 20.0% 7.9% 72.3% 64.4% 8% Yellow Time (s) 3.3 3.3 3.3 3.3 3.3 3.3 2.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 0.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.3 5.3 5.3 5.3 5.3 5.3 Lead/Lag Lead Lag Lag Yes Lead-Lag Optimize? Yes Yes Recall Mode None Min None None None Min Min Act Effct Green (s) 12.8 12.8 5.9 55.6 54.4 54.4 Actuated g/C Ratio 0.17 0.17 0.08 0.76 0.74 0.74 v/c Ratio 0.24 0.12 0.05 0.48 0.73 0.04 Control Delay 36.5 45.7 6.1 37.1 7.3 14.8 Queue Delay 0.0 0.0 0.0 0.0 0.6 0.0 Total Delay 37.1 36.5 45.7 7.3 15.4 6.1 LOS D D D А В А Approach Delay 36.9 7.7 15.0 Approach LOS D А В 0.8 Queue Length 50th (m) 7.9 3.5 31.5 64.7 1.2 Queue Length 95th (m) 31.0 16.7 6.7 96.7 #273.8 7.8 Internal Link Dist (m) 165.3 455.5 63.5 Turn Bay Length (m) 50.0 50.0 50.0 558 499 Base Capacity (vph) 135 1676 1647 1273 Starvation Cap Reductn 319 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0.05 Reduced v/c Ratio 0.13 0.06 0.03 0.39 0.72 Intersection Summary Cycle Length: 130 Actuated Cycle Length: 73.6 Natural Cycle: 100 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.73

Intersection Signal Delay: 13.6	Intersection LOS: B
Intersection Capacity Utilization 70.6%	ICU Level of Service C
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lon	iger.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Prince of Wales & Road E

6.8

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4î þ			đ þ			4			4	
Traffic Vol, veh/h	0	83	48	70	70	5	47	0	254	0	0	5
Future Vol, veh/h	0	83	48	70	70	5	47	0	254	0	0	5
Conflicting Peds, #/hr	10	0	10	10	0	10	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	83	48	70	70	5	47	0	254	0	0	5

Major1		Ν	/lajor2		Ν	1inor1		Ν	/linor2			
85	0	0	141	0	0	292	342	76	265	364	48	
-	-	-	-	-	-	117	117	-	223	223	-	
-	-	-	-	-	-	175	225	-	42	141	-	
4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94	
-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32	
1509	-	-	1440	-	-	638	579	970	666	563	1011	
-	-	-	-	-	-	875	798	-	759	718	-	
-	-	-	-	-	-	810	716	-	967	779	-	
	-	-		-	-							
1496	-	-	1428	-	-	605	541	962	467	526	1002	
-	-	-	-	-	-	605	541	-	467	526	-	
-	-	-	-	-	-	868	792	-	753	676	-	
-	-	-	-	-	-	765	674	-	712	773	-	
FR			W/R			NR			SB			
			27			11.0			00			
0			J.1			II.Z			0.0			
						D			А			
	<u>Major1</u> 85 - 4.14 - 2.22 1509 - - 1496 - - - 5 - - - - - - - - - - - - - - -	Major1 85 0 4.14 2.22 - 1509	Major1 N 85 0 0 - - - 4.14 - - - - - 4.14 - - - - - 2.22 - - 1509 - - - - - 1496 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Major1 Major2 85 0 0 141 - - - - 4.14 - - 4.14 - - - - 4.14 - - 4.14 - - - - 2.22 - 2.22 - 1509 - 1440 - - - - - 1496 - 1428 - - - - - EB WB 0 3.7	Major1 Major2 85 0 0 141 0 - - - - - 4.14 - 4.14 - - - - - - - 2.22 - 2.22 - - 1509 - 1440 - - - - - - 1496 - 1428 - - - - - - EB WB 0 3.7	Major1 Major2 M 85 0 0 141 0 0 - - - - - - - 4.14 - - - - - - - 4.14 - - - - - - - - - - - - - - - - 2.22 - 2.22 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>Major1 Major2 Minor1 85 0 0 141 0 0 292 - - - - 117 - - - - 117 - - - - 117 - - - - 117 - - - - 117 - - - - 117 - - - - 117 - - - - 117 - - - - 175 4.14 - - 7.54 - - - - 6.54 2.22 - 2.22 - 3.52 1509 - 1440 - 638 - - - 810 - - - - 605 - - - <t< td=""><td>Major1 Major2 Minor1 85 0 0 141 0 0 292 342 - - - - 117 117 - - - - 117 117 - - - - 175 225 4.14 - - 7.54 6.54 - - - - 6.54 5.54 - - - - 6.54 5.54 2.22 - 2.22 - 3.52 4.02 1509 - 1440 - 638 579 - - - 810 716 - - - - 880 541 - - - - 868 792 - - - - 765 674 - - - - 765 674 <</td><td>Major1 Major2 Minor1 N 85 0 0 141 0 0 292 342 76 - - - - 117 117 - - - - - 117 117 - - - - - 175 225 - 4.14 - - 7.54 6.54 6.94 - - - - 6.54 5.54 - - - - - 6.54 5.54 - 2.22 - 2.22 - 3.52 4.02 3.32 1509 - 1440 - 638 579 970 - - - - 810 716 - - - - - 810 716 - - - - - 605 541 962 <t< td=""><td>Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 - - - - 117 117 - 223 - - - - 117 117 - 223 - - - - 1175 225 - 42 4.14 - - 7.54 6.54 6.94 7.54 - - - - 6.54 5.54 - 6.54 - - - - 6.54 5.54 - 6.54 2.22 - 2.22 - 3.52 4.02 3.32 3.52 1509 - 1440 - - 638 579 970 666 - - - 810 716 967 - - - - - 605<</td><td>Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 364 - - - - 117 117 - 223 223 - - - - 117 117 - 223 223 - - - - 1175 225 - 42 141 4.14 - - 7.54 6.54 6.94 7.54 6.54 - - - - 6.54 5.54 - 6.54 5.54 - - - - 6.54 5.54 - 6.54 5.54 2.22 - 2.22 - 3.52 4.02 3.32 3.52 4.02 1509 - 1440 - 638 579 970 666 563 - - - 805<td>Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 364 48 - - - - 117 117 - 223 223 - - - - - 117 117 - 223 223 - - - - - 1175 225 - 42 141 - 4.14 - - 7.54 6.54 6.94 7.54 6.54 6.94 - - - - 6.54 5.54 - 6.54 5.54 - 2.22 - 2.22 - 3.52 4.02 3.32 3.52 4.02 3.32 1509 - 1440 - - 638 579 970 666 563 1011 - - - 810 716</td></td></t<></td></t<></td>	Major1 Major2 Minor1 85 0 0 141 0 0 292 - - - - 117 - - - - 117 - - - - 117 - - - - 117 - - - - 117 - - - - 117 - - - - 117 - - - - 117 - - - - 175 4.14 - - 7.54 - - - - 6.54 2.22 - 2.22 - 3.52 1509 - 1440 - 638 - - - 810 - - - - 605 - - - <t< td=""><td>Major1 Major2 Minor1 85 0 0 141 0 0 292 342 - - - - 117 117 - - - - 117 117 - - - - 175 225 4.14 - - 7.54 6.54 - - - - 6.54 5.54 - - - - 6.54 5.54 2.22 - 2.22 - 3.52 4.02 1509 - 1440 - 638 579 - - - 810 716 - - - - 880 541 - - - - 868 792 - - - - 765 674 - - - - 765 674 <</td><td>Major1 Major2 Minor1 N 85 0 0 141 0 0 292 342 76 - - - - 117 117 - - - - - 117 117 - - - - - 175 225 - 4.14 - - 7.54 6.54 6.94 - - - - 6.54 5.54 - - - - - 6.54 5.54 - 2.22 - 2.22 - 3.52 4.02 3.32 1509 - 1440 - 638 579 970 - - - - 810 716 - - - - - 810 716 - - - - - 605 541 962 <t< td=""><td>Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 - - - - 117 117 - 223 - - - - 117 117 - 223 - - - - 1175 225 - 42 4.14 - - 7.54 6.54 6.94 7.54 - - - - 6.54 5.54 - 6.54 - - - - 6.54 5.54 - 6.54 2.22 - 2.22 - 3.52 4.02 3.32 3.52 1509 - 1440 - - 638 579 970 666 - - - 810 716 967 - - - - - 605<</td><td>Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 364 - - - - 117 117 - 223 223 - - - - 117 117 - 223 223 - - - - 1175 225 - 42 141 4.14 - - 7.54 6.54 6.94 7.54 6.54 - - - - 6.54 5.54 - 6.54 5.54 - - - - 6.54 5.54 - 6.54 5.54 2.22 - 2.22 - 3.52 4.02 3.32 3.52 4.02 1509 - 1440 - 638 579 970 666 563 - - - 805<td>Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 364 48 - - - - 117 117 - 223 223 - - - - - 117 117 - 223 223 - - - - - 1175 225 - 42 141 - 4.14 - - 7.54 6.54 6.94 7.54 6.54 6.94 - - - - 6.54 5.54 - 6.54 5.54 - 2.22 - 2.22 - 3.52 4.02 3.32 3.52 4.02 3.32 1509 - 1440 - - 638 579 970 666 563 1011 - - - 810 716</td></td></t<></td></t<>	Major1 Major2 Minor1 85 0 0 141 0 0 292 342 - - - - 117 117 - - - - 117 117 - - - - 175 225 4.14 - - 7.54 6.54 - - - - 6.54 5.54 - - - - 6.54 5.54 2.22 - 2.22 - 3.52 4.02 1509 - 1440 - 638 579 - - - 810 716 - - - - 880 541 - - - - 868 792 - - - - 765 674 - - - - 765 674 <	Major1 Major2 Minor1 N 85 0 0 141 0 0 292 342 76 - - - - 117 117 - - - - - 117 117 - - - - - 175 225 - 4.14 - - 7.54 6.54 6.94 - - - - 6.54 5.54 - - - - - 6.54 5.54 - 2.22 - 2.22 - 3.52 4.02 3.32 1509 - 1440 - 638 579 970 - - - - 810 716 - - - - - 810 716 - - - - - 605 541 962 <t< td=""><td>Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 - - - - 117 117 - 223 - - - - 117 117 - 223 - - - - 1175 225 - 42 4.14 - - 7.54 6.54 6.94 7.54 - - - - 6.54 5.54 - 6.54 - - - - 6.54 5.54 - 6.54 2.22 - 2.22 - 3.52 4.02 3.32 3.52 1509 - 1440 - - 638 579 970 666 - - - 810 716 967 - - - - - 605<</td><td>Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 364 - - - - 117 117 - 223 223 - - - - 117 117 - 223 223 - - - - 1175 225 - 42 141 4.14 - - 7.54 6.54 6.94 7.54 6.54 - - - - 6.54 5.54 - 6.54 5.54 - - - - 6.54 5.54 - 6.54 5.54 2.22 - 2.22 - 3.52 4.02 3.32 3.52 4.02 1509 - 1440 - 638 579 970 666 563 - - - 805<td>Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 364 48 - - - - 117 117 - 223 223 - - - - - 117 117 - 223 223 - - - - - 1175 225 - 42 141 - 4.14 - - 7.54 6.54 6.94 7.54 6.54 6.94 - - - - 6.54 5.54 - 6.54 5.54 - 2.22 - 2.22 - 3.52 4.02 3.32 3.52 4.02 3.32 1509 - 1440 - - 638 579 970 666 563 1011 - - - 810 716</td></td></t<>	Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 - - - - 117 117 - 223 - - - - 117 117 - 223 - - - - 1175 225 - 42 4.14 - - 7.54 6.54 6.94 7.54 - - - - 6.54 5.54 - 6.54 - - - - 6.54 5.54 - 6.54 2.22 - 2.22 - 3.52 4.02 3.32 3.52 1509 - 1440 - - 638 579 970 666 - - - 810 716 967 - - - - - 605<	Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 364 - - - - 117 117 - 223 223 - - - - 117 117 - 223 223 - - - - 1175 225 - 42 141 4.14 - - 7.54 6.54 6.94 7.54 6.54 - - - - 6.54 5.54 - 6.54 5.54 - - - - 6.54 5.54 - 6.54 5.54 2.22 - 2.22 - 3.52 4.02 3.32 3.52 4.02 1509 - 1440 - 638 579 970 666 563 - - - 805 <td>Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 364 48 - - - - 117 117 - 223 223 - - - - - 117 117 - 223 223 - - - - - 1175 225 - 42 141 - 4.14 - - 7.54 6.54 6.94 7.54 6.54 6.94 - - - - 6.54 5.54 - 6.54 5.54 - 2.22 - 2.22 - 3.52 4.02 3.32 3.52 4.02 3.32 1509 - 1440 - - 638 579 970 666 563 1011 - - - 810 716</td>	Major1 Major2 Minor1 Minor2 85 0 0 141 0 0 292 342 76 265 364 48 - - - - 117 117 - 223 223 - - - - - 117 117 - 223 223 - - - - - 1175 225 - 42 141 - 4.14 - - 7.54 6.54 6.94 7.54 6.54 6.94 - - - - 6.54 5.54 - 6.54 5.54 - 2.22 - 2.22 - 3.52 4.02 3.32 3.52 4.02 3.32 1509 - 1440 - - 638 579 970 666 563 1011 - - - 810 716

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1	
Capacity (veh/h)	881	1496	-	-	1428	-	-	1002	
HCM Lane V/C Ratio	0.342	-	-	-	0.049	-	-	0.005	
HCM Control Delay (s)	11.2	0	-	-	7.7	0.1	-	8.6	
HCM Lane LOS	В	А	-	-	А	Α	-	Α	
HCM 95th %tile Q(veh)	1.5	0	-	-	0.2	-	-	0	

Intersection

Int Delay, s/veh	7.3							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	۰¥		↑	1		-4î†		
Traffic Vol, veh/h	133	65	22	24	39	35		
Future Vol, veh/h	133	65	22	24	39	35		
Conflicting Peds, #/hr	0	0	0	15	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-	None		
Storage Length	0	-	-	0	-	-		
Veh in Median Storage	,# 0	-	0	-	-	0		
Grade, %	0	-	0	-	-	0		
Peak Hour Factor	100	100	100	100	100	100		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	133	65	22	24	39	35		

Major/Minor	Minor1	Ν	/lajor1	Ν	lajor2	
Conflicting Flow All	133	37	0	0	61	0
Stage 1	37	-	-	-	-	-
Stage 2	96	-	-	-	-	-
Critical Hdwy	6.63	6.23	-	-	4.13	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.83	-	-	-	-	-
Follow-up Hdwy	3.519	3.319	-	-	2.219	-
Pot Cap-1 Maneuver	854	1035	-	-	1541	-
Stage 1	985	-	-	-	-	-
Stage 2	917	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	· 821	1022	-	-	1521	-
Mov Cap-2 Maneuver	⁻ 821	-	-	-	-	-
Stage 1	972	-	-	-	-	-
Stage 2	893	-	-	-	-	-

Approach	WB	NB	SB	
HCM Control Delay, s	10.3	0	3.9	
HCMLOS	В			

Minor Lane/Major Mvmt	NBT	NBRWBLr	1 SBL	SBT
Capacity (veh/h)	-	- 87	8 1521	-
HCM Lane V/C Ratio	-	- 0.22	6 0.026	-
HCM Control Delay (s)	-	- 10	3 7.4	0
HCM Lane LOS	-	-	3 A	Α
HCM 95th %tile Q(veh)	-	- 0	9 0.1	-

0.3					
EBL	EBR	NBL	NBT	SBT	SBR
۰¥			-4 ↑	≜ î≽	
0	4	4	46	168	0
0	4	4	46	168	0
0	0	5	0	0	5
Stop	Stop	Free	Free	Free	Free
-	None	-	None	-	None
0	-	-	-	-	-
e, # 0	-	-	0	0	-
0	-	-	0	0	-
100	100	100	100	100	100
100	100	100	2	2	100
0	4	4	46	168	0
	0.3 EBL 0 0 0 Stop - 0 s, # 0 0 100 100 0	0.3 EBL EBR 10 4 0 4 0 4 0 4 0 5top Stop Stop Stop 0 - None 0 - 100 100 100 0 4 - - - - - - - - - - - - -	0.3 EBL EBR NBL ↓ 0 4 4 0 4 4 0 0 5 Stop Stop Free - None - 0 - 0 - 0 - 100 100 100 100 100 100 100 100	0.3 EBL EBR NBL NBT	0.3 EBL EBR NBL NBT SBT

Major/Minor	Minor2	Ν	lajor1	Maj	or2		
Conflicting Flow All	204	89	173	0	-	0	
Stage 1	173	-	-	-	-	-	
Stage 2	31	-	-	-	-	-	
Critical Hdwy	8.8	8.9	6.1	-	-	-	
Critical Hdwy Stg 1	7.8	-	-	-	-	-	
Critical Hdwy Stg 2	7.8	-	-	-	-	-	
Follow-up Hdwy	4.5	4.3	3.2	-	-	-	
Pot Cap-1 Maneuver	550	708	905	-	-	-	
Stage 1	612	-	-	-	-	-	
Stage 2	763	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	r 543	705	901	-	-	-	
Mov Cap-2 Maneuver	r 543	-	-	-	-	-	
Stage 1	606	-	-	-	-	-	
Stage 2	760	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	10.1	0.7	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBL	NBT EE	3Ln1	SBT	SBR
Capacity (veh/h)	901	-	705	-	-
HCM Lane V/C Ratio	0.004	- 0	.006	-	-
HCM Control Delay (s)	9	0	10.1	-	-
HCM Lane LOS	A	А	В	-	-
HCM 95th %tile Q(veh)	0	-	0	-	-

Intersection						
Int Delay, s/veh	5.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			- सी	۰¥	
Traffic Vol, veh/h	0	19	12	0	24	5
Future Vol, veh/h	0	19	12	0	24	5
Conflicting Peds, #/hr	0	10	10	0	10	10
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	19	12	0	24	5

Major/Minor	Major1	N	Major2	l	Minor1			_
Conflicting Flow All	0	0	29	0	54	30		
Stage 1	-	-	-	-	20	-		
Stage 2	-	-	-	-	34	-		
Critical Hdwy	-	-	4.12	-	6.42	6.22		
Critical Hdwy Stg 1	-	-	-	-	5.42	-		
Critical Hdwy Stg 2	-	-	-	-	5.42	-		
Follow-up Hdwy	-	-	2.218	-	3.518	3.318		
Pot Cap-1 Maneuver	-	-	1584	-	954	1044		
Stage 1	-	-	-	-	1003	-		
Stage 2	-	-	-	-	988	-		
Platoon blocked, %	-	-		-				
Mov Cap-1 Maneuver	• -	-	1571	-	931	1026		
Mov Cap-2 Maneuver	• -	-	-	-	931	-		
Stage 1	-	-	-	-	995	-		
Stage 2	-	-	-	-	972	-		
Approach	EB		WB		NB			
HCM Control Delay, s	0		7.3		8.9			
HCM LOS					A			
Minor Long/Major Mu	mt N		EDT	EDD				
	III IN		CDI	EDK	VVDL	VVDI		_
Capacity (ven/n)		946	-	-	15/1	-		
HCM Lane V/C Ratio	1	0.031	-	-	0.008	-		
HCM Control Delay (s	5)	8.9	-	-	7.3	0		
HCM Lane LOS		A	-	-	A	A		

0

_

HCM 95th %tile Q(veh)

0.1

Intersection Intersection Delay, s/veh 10.4 Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			4			4	
Traffic Vol, veh/h	30	72	4	1	120	101	0	7	2	109	181	47
Future Vol, veh/h	30	72	4	1	120	101	0	7	2	109	181	47
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	30	72	4	1	120	101	0	7	2	109	181	47
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	9.1			9.6				8.2		11.4		
HCM LOS	А			А				А		В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	28%	0%	32%	
Vol Thru, %	78%	68%	54%	54%	
Vol Right, %	22%	4%	45%	14%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	9	106	222	337	
LT Vol	0	30	1	109	
Through Vol	7	72	120	181	
RT Vol	2	4	101	47	
Lane Flow Rate	9	106	222	337	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.013	0.15	0.286	0.44	
Departure Headway (Hd)	5.012	5.085	4.645	4.701	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	707	701	770	762	
Service Time	3.093	3.149	2.699	2.754	
HCM Lane V/C Ratio	0.013	0.151	0.288	0.442	
HCM Control Delay	8.2	9.1	9.6	11.4	
HCM Lane LOS	А	А	А	В	
HCM 95th-tile Q	0	0.5	1.2	2.3	

ersection	
ersection Delay, s/veh	8.2
ersection LOS	А

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	100	0	30	0	0	24	30	100	0	19	52	52
Future Vol, veh/h	100	0	30	0	0	24	30	100	0	19	52	52
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	100	0	30	0	0	24	30	100	0	19	52	52
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	8.5				7.2		8.3			7.9		
HCM LOS	А				А		А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	23%	77%	0%	15%	
Vol Thru, %	77%	0%	0%	42%	
Vol Right, %	0%	23%	100%	42%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	130	130	24	123	
LT Vol	30	100	0	19	
Through Vol	100	0	0	52	
RT Vol	0	30	24	52	
Lane Flow Rate	130	130	24	123	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.161	0.164	0.027	0.144	
Departure Headway (Hd)	4.468	4.54	4.052	4.214	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	805	792	884	852	
Service Time	2.484	2.558	2.074	2.23	
HCM Lane V/C Ratio	0.161	0.164	0.027	0.144	
HCM Control Delay	8.3	8.5	7.2	7.9	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.6	0.6	0.1	0.5	

ntersection	
ntersection Delay, s/veh	7.9
ntersection LOS	А

Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† 1>		٦	1	Y	
Traffic Vol, veh/h	78	32	41	76	35	52
Future Vol, veh/h	78	32	41	76	35	52
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	78	32	41	76	35	52
Number of Lanes	2	0	1	1	1	0
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	2		2		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		1		2	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	1		0		2	
HCM Control Delay	7.7		8.2		7.7	
HCM LOS	А		А		А	

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2
Vol Left, %	40%	0%	0%	100%	0%
Vol Thru, %	0%	100%	45%	0%	100%
Vol Right, %	60%	0%	55%	0%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	87	52	58	41	76
LT Vol	35	0	0	41	0
Through Vol	0	52	26	0	76
RT Vol	52	0	32	0	0
Lane Flow Rate	87	52	58	41	76
Geometry Grp	2	7	7	7	7
Degree of Util (X)	0.101	0.069	0.07	0.06	0.1
Departure Headway (Hd)	4.192	4.75	4.363	5.247	4.746
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Сар	860	745	810	677	748
Service Time	2.192	2.535	2.147	3.023	2.522
HCM Lane V/C Ratio	0.101	0.07	0.072	0.061	0.102
HCM Control Delay	7.7	7.9	7.5	8.4	8.1
HCM Lane LOS	А	А	А	А	А
HCM 95th-tile Q	0.3	0.2	0.2	0.2	0.3

	≯	-	+	•	1	-			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø10		
Lane Configurations	3	**	**	1	¥.	-			
Traffic Volume (vph)	85	590	1112	141	19	129			
Future Volume (vph)	85	590	1112	141	19	129			
Satd Flow (prot)	1695	3390	3390	1517	1524	0			
Flt Permitted	0.950	0000	0000	1011	0.994	Ŭ			
Satd, Flow (perm)	1639	3390	3390	1239	1521	0			
Satd. Flow (RTOR)				141	129				
Lane Group Flow (vph)	85	590	1112	141	148	0			
Turn Type	Prot	NA	NA	Perm	Perm				
Protected Phases	5	2	6				10		
Permitted Phases				6	4				
Detector Phase	5	2	6	6	4				
Switch Phase	-			-	-				
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0		1.0		
Minimum Split (s)	11.1	26.7	26.7	26.7	37.2		5.0		
Total Split (s)	16.0	92.8	76.8	76.8	37.2		5.0		
Total Split (%)	11.9%	68.7%	56.9%	56.9%	27.6%		4%		
Yellow Time (s)	3.7	3.7	3.7	3.7	3.0		2.0		
All-Red Time (s)	2.4	1.9	1.9	1.9	3.2		0.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0				
Total Lost Time (s)	6.1	5.6	5.6	5.6	6.2				
Lead/Lag	Lead		Lag	Lag					
Lead-Lag Optimize?	Yes		Yes	Yes					
Recall Mode	None	C-Min	C-Min	C-Min	None		Min		
Act Effct Green (s)	12.4	104.6	86.1	86.1	11.1				
Actuated g/C Ratio	0.09	0.77	0.64	0.64	0.08				
v/c Ratio	0.55	0.22	0.51	0.17	0.61				
Control Delay	71.0	4.5	14.9	2.3	24.3				
Queue Delay	0.0	0.0	0.6	0.0	0.0				
Total Delay	71.0	4.5	15.5	2.3	24.3				
LOS	E	А	В	А	С				
Approach Delay		12.9	14.0		24.3				
Approach LOS		В	В		С				
Queue Length 50th (m)	22.0	18.5	77.0	0.0	4.8				
Queue Length 95th (m)	38.1	28.5	113.5	8.9	25.5				
Internal Link Dist (m)		297.5	170.5		278.4				
Turn Bay Length (m)	155.0			80.0					
Base Capacity (vph)	161	2627	2162	841	448				
Starvation Cap Reductn	0	0	612	0	0				
Spillback Cap Reductn	0	0	0	0	0				
Storage Cap Reductn	0	0	0	0	0				
Reduced v/c Ratio	0.53	0.22	0.72	0.17	0.33				
Intersection Summary									
Cycle Length: 135									
Actuated Cycle Length: 135	5								
Offset: 66 (49%), Reference	ed to phase	e 2:EBT a	and 6:WB	T, Start o	f Green				
Natural Cycle: 90									
Control Type: Actuated-Cod	ordinated								

Maximum v/c Ratio: 0.61	
Intersection Signal Delay: 14.4	Intersection LOS: B
Intersection Capacity Utilization 68.7%	ICU Level of Service C
Analysis Period (min) 15	

Splits and Phases: 10: Carling & Parkdale

	٦	-	←	•	1	-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	**	**	1	M	
Traffic Volume (vph)	75	556	1247	21	11	12
Future Volume (vph)	75	556	1247	21	11	12
Satd. Flow (prot)	1695	3390	3390	1517	1584	0
Flt Permitted	0.950	0000	0000	1011	0.977	v
Satd Flow (perm)	1680	3390	3390	1394	1573	0
Satd Flow (RTOR)	1000	0000	0000	21	12	U
Lane Group Flow (vph)	75	556	1247	21	23	0
	Prot	NΔ	NΔ	Porm	Porm	0
Protected Phases	5	2	6	I CIIII	I CIIII	
Permitted Phases	5	2	0	6	Λ	
Detector Phases	5	2	6	6	4	
Switch Phase	3	2	0	0	4	
Switch Flidse	ΕO	10.0	10.0	10.0	10.0	
	5.0	10.0	10.0	10.0	10.0	
iviiniimum Split (s) Total Split (a)	11.4	31.3	31.3	31.3	23.3	
Total Split (S)	12.5	106.7	94.2	94.2	23.3	
i otal Split (%)	9.6%	82.1%	72.5%	72.5%	17.9%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.3	
All-Red Lime (s)	2.7	2.7	2.7	2.7	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.4	6.4	6.4	6.4	5.3	
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes	_	Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	
Act Effct Green (s)	12.8	115.4	93.6	93.6	11.6	
Actuated g/C Ratio	0.10	0.89	0.72	0.72	0.09	
v/c Ratio	0.45	0.18	0.51	0.02	0.15	
Control Delay	63.6	2.2	9.4	3.7	35.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	63.6	2.2	9.4	3.7	35.1	
LOS	Е	А	А	А	D	
Approach Delay		9.5	9.3		35.1	
Approach LOS		А	А		D	
Queue Length 50th (m)	18.4	11.5	61.5	0.0	2.7	
Queue Length 95th (m)	33.6	22.6	81.3	m2.4	10.9	
Internal Link Dist (m)	20.0	170.5	180.8		39.9	
Turn Bay Length (m)	90.0			140.0	00.0	
Base Canacity (vnh)	167	3009	2489	1029	228	
Starvation Can Reductn	0	0000	2400 0	020	0	
Snillback Can Reductn	0	0	0	0	0	
Storage Can Reducto	0	0	0	0	0	
Reduced v/c Ratio	0.45	0 18	0 50	0.02	0 10	
	0.43	0.10	0.50	0.02	0.10	
Intersection Summary						
Cycle Length: 130						
Actuated Cycle Length: 130)					
Offset: 0 (0%), Referenced	to phase 2	EBT and	6:WBT,	Start of G	Green	
Natural Cycle: 70						
Control Type: Actuated-Coc	ordinated					

Maximum v/c Ratio: 0.51 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 66.8%

Intersection LOS: A ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 11: Carling & Civic

→Ø2 (R)	Ø4	
106.7 s	23.3 s	
▶ → → ∞ (R)		
12.5 s 94.2 s		

Lanes, Volumes, Timings
13: Maple/Old Irvine & Carling2048 PM Demand Rationalized Main Hospital SPA PEAK GEN
03/20/2023

	≯	-	\rightarrow	-	-	•	1	†	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	<u></u>	1	ľ	<u></u>	1		\$			\$	
Traffic Volume (vph)	40	450	47	39	1045	7	73	20	48	6	4	14
Future Volume (vph)	40	450	47	39	1045	7	73	20	48	6	4	14
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1637	0	0	1599	0
Flt Permitted	0.246			0.492				0.825			0.920	
Satd. Flow (perm)	424	3390	1293	821	3390	1178	0	1376	0	0	1481	0
Satd. Flow (RTOR)			44			37		20			14	
Lane Group Flow (vph)	40	450	47	39	1045	7	0	141	0	0	24	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	34.3	34.3	34.3	42.4	42.4		42.4	42.4	
Total Split (s)	87.0	87.0	87.0	87.0	87.0	87.0	43.0	43.0		43.0	43.0	
Total Split (%)	66.9%	66.9%	66.9%	66.9%	66.9%	66.9%	33.1%	33.1%		33.1%	33.1%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	4.4	4.4		4.4	4.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7		7.4			7.4	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	94.7	94.7	94.7	94.7	94.7	94.7		22.2			22.2	
Actuated g/C Ratio	0.73	0.73	0.73	0.73	0.73	0.73		0.17			0.17	
v/c Ratio	0.13	0.18	0.05	0.07	0.42	0.01		0.56			0.09	
Control Delay	7.1	5.4	1.7	7.7	8.6	0.0		48.5			23.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Delay	7.1	5.4	1.7	7.7	8.6	0.0		48.5			23.0	
LOS	А	А	А	А	А	А		D			С	
Approach Delay		5.2			8.5			48.5			23.0	
Approach LOS		А			А			D			С	
Queue Length 50th (m)	1.2	7.3	0.1	2.0	39.0	0.0		30.2			2.3	
Queue Length 95th (m)	9.8	30.1	0.9	7.9	79.3	m0.0		44.5			8.7	
Internal Link Dist (m)		236.1			191.5			174.3			220.8	
Turn Bay Length (m)	20.0		15.0	45.0		25.0						
Base Capacity (vph)	309	2470	954	598	2470	868		391			415	
Starvation Cap Reductn	0	0	0	0	0	0		0			0	
Spillback Cap Reductn	0	0	0	0	0	0		0			0	
Storage Cap Reductn	0	0	0	0	0	0		0			0	
Reduced v/c Ratio	0.13	0.18	0.05	0.07	0.42	0.01		0.36			0.06	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 28 (22%), Reference	d to phase	e 2:EBTL	and 6:W	BTL, Star	t of Gree	n						
Natural Cycle: 80												
Control Type: Actuated-Coo	rdinated											

Parsons

Maximum v/c Ratio: 0.56 Intersection Signal Delay: 10.8

Intersection Capacity Utilization 69.4%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

 $m \quad \mbox{Volume for 95th percentile queue is metered by upstream signal.}$

Splits and Phases: 13: Maple/Old Irvine & Carling

≠Ø2 (R)	↓ Ø4
87 s	43 s
● ● Ø6 (R)	√ ø8
87 s	43 s

	≯	-	+	×	1	-
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	44	**	1	5	1
Traffic Volume (vph)	43	507	942	233	155	9
Future Volume (vph)	43	507	942	233	155	9
Satd. Flow (prot)	1695	3390	3390	1517	1695	1517
Flt Permitted	0.950				0.950	
Satd, Flow (perm)	1571	3390	3390	1072	1669	1473
Satd, Flow (RTOR)				233		7
Lane Group Flow (vph)	43	507	942	233	155	9
Turn Type	Prot	NA	NA	Perm	Perm	Perm
Protected Phases	5	2	6			
Permitted Phases	Ū	-	Ū	6	4	4
Detector Phase	5	2	6	6	4	4
Switch Phase	5	2	0	0	+	+
Minimum Initial (s)	50	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	10.2	25.1	25.1	25.1	25.1	25.1
Total Split (s)	10.3	20.1	20.1	20.1	20.1	20.1
Total Split (S)	11 5.0	09.U	74.0	74.0	41.U	41.U 24 E0/
Total Split (%)	11.5%	00.5%	50.9%	50.9%	31.5%	31.5%
	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (S)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
I otal Lost I ime (s)	5.3	5.3	5.3	5.3	5.3	5.3
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes	-	Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	None
Act Effct Green (s)	8.7	102.0	90.1	90.1	17.4	17.4
Actuated g/C Ratio	0.07	0.78	0.69	0.69	0.13	0.13
v/c Ratio	0.38	0.19	0.40	0.29	0.69	0.04
Control Delay	66.7	4.1	3.3	0.8	69.2	27.8
Queue Delay	0.0	0.0	0.1	0.0	0.0	0.0
Total Delay	66.7	4.1	3.5	0.8	69.2	27.8
LOS	Е	А	А	А	Е	С
Approach Delay		9.0	2.9		66.9	
Approach LOS		А	А		E	
Queue Lenath 50th (m)	10.7	14.6	12.0	0.0	38.5	0.5
Queue Lenath 95th (m)	22.5	24.6	21.7	0.0	58.3	5.4
Internal Link Dist (m)		118.3	141 7	0.0	152.1	•
Turn Bay Length (m)	30.0	110.0		90.0	102.1	15.0
Base Canacity (vnh)	133	2658	2350	814	458	409
Starvation Can Reducto	0	2000	£330	0		
Snillback Can Reductn	0	0	-25	0	0	0
Storage Can Reductin	0	0	0	0	0	0
Boducod v/o Patio	0 3 2	0 10	0 40	0.20	034	0 02
Reduced V/C Rallo	0.32	0.19	0.49	0.29	0.54	0.02
Intersection Summary						
Cycle Length: 130						
Actuated Cycle Length: 130				_		
Offset: 24 (18%), Reference	d to phase	e 2:EBT a	and 6:WB	T, Start o	of Green	
Natural Cycle: 65						
Control Type: Actuated-Coo	rdinated					

Maximum v/c Ratio: 0.69	
Intersection Signal Delay: 10.3	Intersection LOS: B
Intersection Capacity Utilization 55.4%	ICU Level of Service B
Analysis Period (min) 15	

Splits and Phases: 15: Carling & Sherwood

Lanes, Volumes, Timings2048 PM Demand Rationalized Main Hospital SPA PEAK GEN16: Road A/Champagne & Carling03/20/2023

	≯	-	\mathbf{r}	4	-	•	1	1	۲	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	<u></u>	1	۲	<u></u>	1	<u>۲</u>	eî 👘		1	eî.	
Traffic Volume (vph)	65	492	77	77	843	139	203	0	210	118	0	129
Future Volume (vph)	65	492	77	77	843	139	203	0	210	118	0	129
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	1695	1402	0	1695	1417	0
Flt Permitted	0.950			0.950			0.430			0.626		
Satd. Flow (perm)	1541	3390	1350	1628	3390	1015	739	1402	0	1063	1417	0
Satd. Flow (RTOR)						147					282	
Lane Group Flow (vph)	65	492	77	77	843	139	203	210	0	118	129	0
Turn Type	Prot	NA	Perm	Prot	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases	5	2		1	6		3	8			4	
Permitted Phases			2			6	8			4		
Detector Phase	5	2	2	1	6	6	3	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0		10.0	10.0	
Minimum Split (s)	15.3	26.3	26.3	15.3	26.3	26.3	10.3	23.3		37.9	37.9	
Total Split (s)	15.3	40.0	40.0	18.0	47.7	47.7	19.0	62.0		38.0	38.0	
Total Split (%)	11.8%	30.8%	30.8%	13.8%	36.7%	36.7%	14.6%	47.7%		29.2%	29.2%	
Yellow Time (s)	3.3	3.7	3.7	3.3	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.0	1.6	1.6	2.0	1.6	1.6	2.0	2.0		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3		5.9	5.9	
Lead/Lag	Lead			Lead			Lead					
Lead-Lag Optimize?	Yes			Yes			Yes					
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	10.5	61.2	61.2	11.4	63.1	63.1	42.6	42.6		20.4	20.4	
Actuated g/C Ratio	0.08	0.47	0.47	0.09	0.49	0.49	0.33	0.33		0.16	0.16	
v/c Ratio	0.48	0.31	0.12	0.52	0.51	0.24	0.57	0.46		0.71	0.28	
Control Delay	64.8	25.3	25.7	69.2	27.9	5.2	38.3	36.1		72.7	1.5	
Queue Delay	0.0	0.0	0.0	0.0	1.4	0.0	0.0	0.0		0.0	0.0	
Total Delay	64.8	25.3	25.7	69.2	29.3	5.2	38.3	36.1		72.7	1.5	
LOS	E	С	С	E	С	Α	D	D		E	Α	
Approach Delay		29.4			29.0			37.2			35.5	
Approach LOS		С			С			D			D	
Queue Length 50th (m)	17.5	48.7	13.1	19.2	78.1	0.0	39.7	42.6		29.2	0.0	
Queue Length 95th (m)	26.2	78.6	31.3	35.3	125.9	13.0	50.5	54.8		45.2	0.0	
Internal Link Dist (m)		141.7			98.6			63.9			477.2	
Turn Bay Length (m)	55.0		75.0	61.0		35.0				30.0		
Base Capacity (vph)	136	1594	635	166	1644	568	357	611		262	562	
Starvation Cap Reductn	0	0	0	0	569	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.48	0.31	0.12	0.46	0.78	0.24	0.57	0.34		0.45	0.23	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 0 (0%), Referenced to	phase 2	EBT and	6:WBT,	Start of G	Green							

Natural Cycle: 105

Control Type: Actuated-Coordinated

Lane Group	Ø9	Ø10	Ø11
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Satd, Flow (prot)			
Flt Permitted			
Satd, Flow (perm)			
Satd Flow (RTOR)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	g	10	11
Permitted Phases	5	10	
Detector Phase			
Switch Dhooo			
Switch Flidse	1.0	1.0	10
Minimum Colit (s)	1.0	1.U	1.U E 0
IVIINIMUM Split (s)	10.0	5.0	5.0
Total Split (s)	10.0	5.0	5.0
Total Split (%)	8%	4%	4%
Yellow Time (s)	2.0	2.0	2.0
All-Red Time (s)	0.0	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes
Recall Mode	None	None	None
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delav			
Total Delay			
105			
Approach Delay			
Approach LOS			
Augua Langth 50th (m)			
Queue Length Obth (III)			
Internal Link Dist (m)			
Turri Bay Length (m)			
Base Capacity (vpn)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summarv			

Lanes, Volumes, Timings 2048 PM Demand Rationalized Main Hospital SPA PEAK GEN 16: Road A/Champagne & Carling 03/20/2023

Maximum v/c Ratio: 0.71	
Intersection Signal Delay: 31.2	Intersection LOS: C
Intersection Capacity Utilization 86.4%	ICU Level of Service E
Analysis Period (min) 15	

Splits and Phases: 16: Road A/Champagne & Carling

	٦	-	$\mathbf{\hat{z}}$	4	+	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			44							
Traffic Volume (vph)	0	824	0	0	1050	0	0	0	0	0	0	0
Future Volume (vph)	0	824	0	0	1050	0	0	0	0	0	0	0
Satd, Flow (prot)	0	3390	0	0	3390	0	0	0	0	0	0	0
Elt Permitted	-		-	-		-	-	-	-	-	-	-
Satd, Flow (perm)	0	3390	0	0	3390	0	0	0	0	0	0	0
Satd Flow (RTOR)	•		•	•		•	•	•	•	•	•	•
Lane Group Flow (vph)	0	824	0	0	1050	0	0	0	0	0	0	0
Turn Type	Ŭ	NA	Ŭ	Ŭ	NA	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	·
Protected Phases		2			6							
Permitted Phases		2			Ū							
Detector Phase		2			6							
Switch Phase		2			U							
Minimum Initial (s)		10.0			10.0							
Minimum Split (s)		31.1			31.1							
Total Split (s)		35.0			35.0							
Total Split (%)		50.0			50.0%							
Vollow Time (a)		30.0% 27			30.0% 27							
All Ded Time (s)		3.7 1.4			3.7 1.4							
All-Red Time (s)		1.4			1.4							
Lost Time Adjust (s)		0.0			0.0							
Total Lost Time (S)		5. I			5. I							
Lead/Lag												
Lead-Lag Optimize?		O Min			O Min							
		C-IVIIN			C-IVIIN							
Act Effect Green (s)		62.0			62.0							
Actuated g/C Ratio		0.89			0.89							
V/c Ratio		0.27			0.35							
Control Delay		4.7			3.4							
Queue Delay		0.0			0.0							
Total Delay		4./			3.4							
LOS		A			A							
Approach Delay		4.7			3.4							
Approach LOS		A			A							
Queue Length 50th (m)		0.0			0.0							
Queue Length 95th (m)		57.4			m69.1							
Internal Link Dist (m)		98.6			92.8			53.0			60.9	
Turn Bay Length (m)												
Base Capacity (vph)		3002			3002							
Starvation Cap Reductn		0			32							
Spillback Cap Reductn		16			0							
Storage Cap Reductn		0			0							
Reduced v/c Ratio		0.28			0.35							
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 0 (0%), Referenced to	phase 2	:EBT and	6:WBT, S	Start of G	reen							
Natural Cycle: 70												
Control Type: Actuated-Coord	dinated											

Lane Group	Ø4	Ø8
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd, Flow (perm)		
Satd, Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	4	8
Permitted Phases	•	Ū
Detector Phase		
Switch Phase		
Minimum Initial (s)	10	10
Minimum Split (s)	35.6	35.6
Total Split (s)	35.0	35.0
Total Split (%)	50%	50%
Yellow Time (s)	3.0	30
All-Red Time (s)	3.6	3.6
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
Lead Lag Optimize?		
Recall Mode	None	None
Act Effet Green (s)	NONE	NONE
Actuated a/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
LUU Approach Dolou		
Approach LOS		
Approach LOS		
Queue Length O5th (m)		
Queue Length 95th (M)		
Turn Day Longth (m)		
Turn Bay Length (m)		
Base Capacity (vpn)		
Starvation Cap Reductin		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced V/C Ratio		
Intersection Summary		

Maximum v/c Ratio: 0.35 Intersection Signal Delay: 4.0

Intersection Capacity Utilization 34.9%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 17: Carling & Trillium MUP

→ø2 (R)	Å ₿ _{Ø4}	
35 s	35 s	
← Ø6 (R)	#A ₂₈	
35 s	35 s	

Lanes, Volumes, Timings 18: Preston & Carling

	٦	-	\rightarrow	-	-	•	1	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	^	1	5	^	1	ሻ	A		ሻ	4Î	
Traffic Volume (vph)	143	506	176	308	734	65	264	397	206	106	290	60
Future Volume (vph)	143	506	176	308	734	65	264	397	206	106	290	60
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	1695	3093	0	1695	1699	0
Flt Permitted	0.950			0.950			0.148			0.424		
Satd. Flow (perm)	1600	3390	1517	1632	3390	1243	255	3093	0	724	1699	0
Satd. Flow (RTOR)						179					7	
Lane Group Flow (vph)	143	506	176	308	734	65	264	603	0	106	350	0
Turn Type	Prot	NA	custom	Prot	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases	5	92	93	1	6		3	8			4	
Permitted Phases						6	8			4		
Detector Phase	5	92	93	1	6	6	3	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0			5.0	10.0	10.0	5.0	10.0		10.0	10.0	
Minimum Split (s)	11.2			11.2	25.0	25.0	11.9	38.9		38.9	38.9	
Total Split (s)	20.2			37.0	47.1	47.1	23.8	61.7		38.9	38.9	
Total Split (%)	14.4%			26.4%	33.6%	33.6%	17.0%	44.1%		27.8%	27.8%	
Yellow Time (s)	3.7			3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5			2.5	2.3	2.3	3.6	3.6		3.6	3.6	
Lost Time Adjust (s)	0.0			0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.2			6.2	6.0	6.0	6.9	6.9		6.9	6.9	
Lead/Lag	Lead			Lead			Lead					
Lead-Lag Optimize?	Yes			Yes			Yes					
Recall Mode	None			None	C-Min	C-Min	None	None		None	None	
Act Effct Green (s)	13.7	35.5	28.8	28.5	44.7	44.7	58.6	53.8		30.8	30.8	
Actuated g/C Ratio	0.10	0.25	0.21	0.20	0.32	0.32	0.42	0.38		0.22	0.22	
v/c Ratio	0.87	0.59	0.57	0.90	0.68	0.13	0.94	0.51		0.67	0.93	
Control Delay	103.1	46.1	61.1	82.1	46.3	0.5	80.7	14.4		71.0	82.9	
Queue Delay	0.0	0.4	1.9	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	103.1	46.5	63.0	82.1	46.3	0.5	80.7	14.4		71.0	82.9	
LOS	F	D	E	F	D	Α	F	В		E	F	
Approach Delay		59.8			53.6			34.6			80.1	
Approach LOS		E			D			С			F	
Queue Length 50th (m)	39.6	68.1	44.5	82.0	96.6	0.0	33.8	21.3		26.8	93.0	
Queue Length 95th (m)	#79.3	79.1	76.1	#127.9	119.7	0.0	#103.8	30.5		#51.9	#147.2	
Internal Link Dist (m)		92.8			165.9			145.6			55.2	
Turn Bay Length (m)	70.0		90.0	120.0		95.0				35.0		
Base Capacity (vph)	169	851	311	372	1081	518	280	1210		165	393	
Starvation Cap Reductn	0	79	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	50	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.85	0.66	0.67	0.83	0.68	0.13	0.94	0.50		0.64	0.89	
Intersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 140												
Offset: 6 (4%), Referenced t	o phase 2:	EBT and	d 6:WBT,	Start of G	Green							
Natural Cycle: 120												

Control Type: Actuated-Coordinated

Lane Group	Ø2	Ø9	Ø10	Ø11	Ø12
Lane Configurations					
Traffic Volume (vph)					
Future Volume (vph)					
Satd. Flow (prot)					
Flt Permitted					
Satd. Flow (perm)					
Satd. Flow (RTOR)					
Lane Group Flow (vph)					
Turn Type					
Protected Phases	2	9	10	11	12
Permitted Phases					
Detector Phase					
Switch Phase					
Minimum Initial (s)	10.0	1.0	1.0	1.0	1.0
Minimum Split (s)	26.0	5.3	5.0	5.0	5.0
Total Split (s)	29.0	6.3	5.0	5.0	6.0
Total Split (%)	21%	5%	4%	4%	4%
Yellow Time (s)	20	20	20	20	20
All-Red Time (s)	0.0	2.3	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	2.0	0.0	0.0	0.0
Total Lost Time (s)					
Lead/Lag	Lag		Laq	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	
Recall Mode	C-Min	Min	None	None	None
Act Effet Green (s)		141111	None	None	None
Actuated g/C Ratio					
v/c Ratio					
Control Delay					
Queue Delay					
Total Delay					
Annroach Delay					
Approach LOS					
Oueue Length 50th (m)					
Queue Length 95th (m)					
Internal Link Dist (m)					
Turn Bay Length (m)					
Rase Canacity (vnh)					
Starvation Can Reductn					
Snillback Can Reducto					
Storage Can Reductn					
Reduced v/c Ratio					
Intersection Summarv					

Maximum v/c Ratio: 0.94	
Intersection Signal Delay: 53.8	Intersection LOS: D
Intersection Capacity Utilization 94.7%	ICU Level of Service F
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be long	jer.
Queue shown is maximum after two cycles.	
Splits and Phases: 18: Preston & Carling	

€ø1	• -•v	02 (R)	29 % 0 3	A 041 04	
37 s	29 s	6 <mark>.3</mark> s	23.8 s	5 s 38.9 s	
	* Ø10 Ø6 (R		4 Ø12 Ø8		
20.2 s	5s <mark>4</mark> 7.1s		6 s 61.7 s		

	≯	-	←	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	5	**	٨	1	3	1
Traffic Volume (voh)	192	759	699	104	244	250
Future Volume (vph)	192	759	699	104	244	250
Satd, Flow (prot)	1695	3390	1784	1517	1695	1517
Flt Permitted	0 206	0000	1104	1017	0.950	1011
Satd Flow (perm)	368	3300	178/	1161	1665	1200
Satd Flow (PTOP)	500	0000	1704	30	1005	1203
Lane Group Flow (woh)	100	750	600	104	244	250
	192	159	099	Dorm	Z44 Dorm	Dorm
Protected Phases		NA 0	NA C	Fellil	Fellil	Fellil
Protected Phases	5	2	Ö	6	A	Α
Permilled Phases	2	•	C C	0	4	4
Detector Phase	5	2	6	6	4	4
Switch Phase		10.0	10.0	10.0	100	100
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	10.9	29.7	29.7	29.7	39.0	39.0
Total Split (s)	23.0	90.0	67.0	67.0	40.0	40.0
Total Split (%)	17.7%	69.2%	51.5%	51.5%	30.8%	30.8%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.3	3.3
All-Red Time (s)	2.2	2.0	2.0	2.0	2.7	2.7
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.9	5.7	5.7	5.7	6.0	6.0
Lead/Lag	Lead		Lao	Lao		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	None
Act Effct Green (s)	88.5	88.7	71.3	71.3	29.6	29.6
Actuated g/C Ratio	0.68	0.68	0.55	0.55	0.23	0.23
v/c Ratio	0.00	0.00	0.00	0.00	0.20	0.20
Control Delay	13.6	0.00	20.0	11 5	53.04	17 5
Quouo Dolay	13.0	9.0	29.0	0.0	0.0	C.11
Total Delay	12.0	0.0	20.0	0.0	0.0	0.0 17 E
Total Delay	13.0	9.5	29.0	11.5	53.0	17.5
	В	A	C	В	D	В
Approach Delay		10.4	26.7		35.0	
Approach LOS		В	C		D	
Queue Length 50th (m)	17.8	42.0	135.6	8.1	54.9	12.1
Queue Length 95th (m)	27.7	52.4	202.3	19.7	82.4	39.3
Internal Link Dist (m)		100.4	299.3		220.7	
Turn Bay Length (m)	50.0			30.0		30.0
Base Capacity (vph)	425	2312	978	654	435	456
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0 45	0.33	0.71	0.16	0.56	0.55
	0.10	0.00	5.11	5.10	0.00	0.00
Cycle Length: 130						
Actuated Cycle Length: 120	1					
Actuated Cycle Length: 130	J a a al 4 c - s lo				1 - (0	_
Offset: 110 (85%), Referen	ced to phas	se 2:EBT	L and 6:V	VBT, Star	t of Gree	n
Natural Cycle: 90						
Control Type: Actuated-Coo	ordinated					

Maximum v/c Ratio: 0.71	
Intersection Signal Delay: 21.6	Intersection LOS: C
Intersection Capacity Utilization 91.4%	ICU Level of Service F
Analysis Period (min) 15	

	٭	-	\mathbf{r}	4	+	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	र्भ	1				ሻሻ	el el			tβ	
Traffic Volume (vph)	503	92	410	0	0	0	454	676	18	0	1021	265
Future Volume (vph)	503	92	410	0	0	0	454	676	18	0	1021	265
Satd. Flow (prot)	1610	1644	1517	0	0	0	3288	1767	0	0	3237	0
Flt Permitted	0.950	0.970					0.950					
Satd. Flow (perm)	1511	1580	1415	0	0	0	3236	1767	0	0	3237	0
Satd. Flow (RTOR)			110					2			26	
Lane Group Flow (vph)	347	248	410	0	0	0	454	694	0	0	1286	0
Turn Type	Perm	NA	pm+ov				Prot	NA			NA	
Protected Phases		4	5				5	2			6	
Permitted Phases	4		4									
Detector Phase	4	4	5				5	2			6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0				10.0	10.0			10.0	
Minimum Split (s)	31.0	31.0	16.0				16.0	25.1			33.0	
Total Split (s)	47.0	47.0	29.0				29.0	93.0			64.0	
Total Split (%)	32.0%	32.0%	19.7%				19.7%	63.3%			43.5%	
Yellow Time (s)	3.3	3.3	3.3				3.3	3.3			3.3	
All-Red Time (s)	2.7	2.7	2.7				2.7	2.7			2.7	
Lost Time Adjust (s)	0.0	0.0	0.0				0.0	0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0				6.0	6.0			6.0	
Lead/Lag			Lead				Lead				Lag	
Lead-Lag Optimize?			Yes				Yes				Yes	
Recall Mode	None	None	None				None	C-Min			C-Min	
Act Effct Green (s)	37.2	37.2	60.1				23.0	90.7			61.8	
Actuated g/C Ratio	0.25	0.25	0.41				0.16	0.62			0.42	
v/c Ratio	0.91	0.62	0.62				0.88	0.64			0.94	
Control Delay	80.8	55.4	25.5				80.1	21.8			53.6	
Queue Delay	0.0	0.0	0.0				0.0	0.0			0.0	
Total Delay	80.8	55.4	25.5				80.1	21.8			53.6	
LOS	F	E	С				F	С			D	
Approach Delay		52.0						44.9			53.6	
Approach LOS		D						D			D	
Queue Length 50th (m)	101.3	66.2	59.7				66.8	126.9			192.5	
Queue Length 95th (m)	#151.4	95.5	90.8				#95.5	172.8			#243.8	
Internal Link Dist (m)		74.7			115.0			394.4			328.4	
Turn Bay Length (m)	40.0						50.0					
Base Capacity (vph)	421	440	664				524	1091			1374	
Starvation Cap Reductn	0	0	0				0	0			0	
Spillback Cap Reductn	0	0	0				0	0			0	
Storage Cap Reductn	0	0	0				0	0			0	
Reduced v/c Ratio	0.82	0.56	0.62				0.87	0.64			0.94	
Intersection Summary												
Actuated Cycle Longth: 147	7											
Offect: 0 (0%) Deferenced	to phone of		A COT C	Start of Cr								
Unset. 0 (0 %), Referenced	to phase 2		10.001, 3		een							

Natural Cycle: 100 Control Type: Actuated-Coordinated

Parsons

Lane Group	Ø10
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Satd. Flow (RTOR)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	10
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	1.0
Minimum Split (s)	7.0
Total Split (s)	7.0
Total Split (%)	5%
Yellow Time (s)	2.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Recall Mode	Min
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	
Maximum v/c Ratio: 0.94	
---	------------------------
Intersection Signal Delay: 50.2	Intersection LOS: D
Intersection Capacity Utilization 91.9%	ICU Level of Service F
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lon	iger.
Queue shown is maximum after two cycles.	

Splits and Phases: 21: Bronson & Carling/Glebe

Ø2 (R)		۸	p10-04
93 s		7 s	47 s
\$ Ø5	Ø6 (R)		
29 s	64s		

Lanes, Volumes, Timings 22: Parkdale & 417 WB on/off

2048 PM Demand Rationalized Main Hospital SPA PEAK GEN 03/20/2023

	≯	-	\rightarrow	-	+	•	1	†	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	4		۲	1			ef 👘	
Traffic Volume (vph)	0	0	0	217	8	416	147	450	0	0	531	191
Future Volume (vph)	0	0	0	217	8	416	147	450	0	0	531	191
Satd. Flow (prot)	0	0	0	1695	1465	0	1695	1784	0	0	1687	0
Flt Permitted				0.950			0.250					
Satd. Flow (perm)	0	0	0	1695	1465	0	446	1784	0	0	1687	0
Satd. Flow (RTOR)					402						28	
Lane Group Flow (vph)	0	0	0	217	424	0	147	450	0	0	722	0
Turn Type				Perm	NA		pm+pt	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8			2					
Detector Phase				8	8		5	2			6	
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	
Minimum Split (s)				29.0	29.0		10.3	27.3			25.1	
Total Split (s)				29.0	29.0		11.0	71.0			60.0	
Total Split (%)				29.0%	29.0%		11.0%	71.0%			60.0%	
Yellow Time (s)				3.3	3.3		3.0	3.0			3.0	
All-Red Time (s)				2.2	2.2		2.2	3.3			3.3	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				5.5	5.5		5.2	6.3			6.3	
Lead/Lag							Lag				Lead	
Lead-Lag Optimize?							Yes				Yes	
Recall Mode				None	None		None	C-Min			C-Min	
Act Effct Green (s)				17.9	17.9		71.4	70.3			56.7	
Actuated g/C Ratio				0.18	0.18		0.71	0.70			0.57	
v/c Ratio				0.71	0.72		0.35	0.36			0.75	
Control Delay				51.3	12.0		7.7	4.9			22.9	
Queue Delay				0.0	0.0		2.6	1.3			1.3	
Total Delay				51.3	12.0		10.3	6.2			24.2	
LOS				D	В		В	А			С	
Approach Delay					25.3			7.2			24.2	
Approach LOS					С			Α			С	
Queue Length 50th (m)				39.9	3.6		6.5	22.3			99.7	
Queue Length 95th (m)				60.1	31.0		m9.3	39.9			153.9	
Internal Link Dist (m)		157.5			140.3			45.3			171.5	
Turn Bay Length (m)												
Base Capacity (vph)				398	651		422	1253			980	
Starvation Cap Reductn				0	0		178	572			0	
Spillback Cap Reductn				0	0		0	0			106	
Storage Cap Reductn				0	0		0	0			0	
Reduced v/c Ratio				0.55	0.65		0.60	0.66			0.83	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 39 (39%), Referenced	to phase	2:NBTL	and 6:SE	3 F, Start o	of Green							
Natural Cycle: 80												
Control Type: Actuated-Coord	inated											

Maximum v/c Ratio: 0.75 Intersection Signal Delay: 19.4

Intersection Capacity Utilization 117.6%

Intersection LOS: B ICU Level of Service H

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 22: Parkdale & 417 WB on/off

	٦	-	\mathbf{r}	1	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્સ	1					A1⊅		5	•	
Traffic Volume (vph)	295	Ö	147	0	0	0	0	244	306	410	248	0
Future Volume (vph)	295	0	147	0	0	0	0	244	306	410	248	0
Satd. Flow (prot)	0	1695	1517	0	0	0	0	2947	0	1695	1784	0
Flt Permitted		0.950								0.349		
Satd, Flow (perm)	0	1695	1482	0	0	0	0	2947	0	610	1784	0
Satd, Flow (RTOR)			147					306				
Lane Group Flow (vph)	0	295	147	0	0	0	0	550	0	410	248	0
Turn Type	Perm	NA	Perm	-	-	-	-	NA	-	pm+pt	NA	-
Protected Phases		4						2		1	6	
Permitted Phases	4	•	4					_		6	•	
Detector Phase	4	4	4					2		1	6	
Switch Phase		•	•					-		•	Ŭ	
Minimum Initial (s)	10.0	10.0	10.0					10.0		50	10.0	
Minimum Snlit (s)	25.1	25.1	25.1					25.1		10.3	25.1	
Total Split (s)	30.0	30.0	30.0					38.0		32.0	70.0	
Total Split (%)	30.0%	30.0%	30.0%					38.0%		32.0%	70.0%	
Vellow Time (s)	30.070	30.070	33					3.0		3.0	3.0	
	2.6	2.6	2.6					2.8		23	2.8	
Lost Time Adjust (s)	2.0	2.0	2.0					2.0		2.5	2.0	
Total Lost Time (s)		5.0	0.0 5.0					5.8		0.0 5 3	5.8	
		5.5	5.5					5.0		Load	5.0	
Leau/Lay								Lay		Voc		
	Nono	Nono	Mono					C Min		Nono	C Min	
Act Effet Green (s)	NONE	22.5	22.5					12.8		66.3	65.8	
Actuated a/C Patia		0.22	0.22					42.0		00.5	0.00	
No Patio		0.22	0.22					0.43		0.00	0.00	
		50.1	0.00					11.0		17.6	10.21	
Outrio Delay		0.0	0.9					0.1		7.0	10.0	
Queue Delay		0.0 E0.1	0.0					11 1		7.9	10.7	
		1.00	0.9					II.I D		25.5	IZ.1	
LUS Annraach Dalau		25 Z	A					D		U	D 20.7	
Approach LOS		ა <u>ე</u> , 1						II.I D			20.7	
		52 D	0.0							11 1	00.4	
Queue Length 50th (m)		53.0 76.0	12.0					10.1		41.4	ZZ. 1	
Queue Length 95th (m)		10.2	13.0		145.0			30.5		13.5	11144.Z	
Internal LINK DISt (m)		109.0	75.0		145.0			90.1			45.3	
Turn Bay Length (m)		400	/ 5.0					4405		005	4400	
Base Capacity (vpn)		430	400					1400		090	704	
Starvation Cap Reductin		0	0					254		240	791	
Spillback Cap Reductin		0	0					30		0	0	
Storage Cap Reductin		0	0 20					0.45		0	0	
Reduced V/C Ratio		0.69	0.30					0.45		0.90	0.61	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 29 (29%), Reference	d to phase	e 2:NBT a	and 6:SBT	L, Start o	t Green							
Natural Cycle: 65												
Control Type: Actuated-Coo	rdinated											

Maximum v/c Ratio: 0.78 Intersection Signal Delay: 21.5

Intersection Capacity Utilization 117.6%

Intersection LOS: C ICU Level of Service H

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 23: Parkdale & 417 EB on/off

Ø1	Ø2 (R)	₽ 04	
32 s	38 s	30 s	
Ø6 (R)			
70 s			

	≯	-	\rightarrow	1	+	*	1	†	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			\$			4	
Traffic Volume (vph)	72	8	7	0	7	134	5	383	7	77	342	68
Future Volume (vph)	72	8	7	0	7	134	5	383	7	77	342	68
Satd. Flow (prot)	0	1683	0	0	1491	0	0	1776	0	0	1722	0
Flt Permitted		0.707						0.995			0.885	
Satd. Flow (perm)	0	1236	0	0	1491	0	0	1769	0	0	1529	0
Satd. Flow (RTOR)		7			134			3			25	
Lane Group Flow (vph)	0	87	0	0	141	0	0	395	0	0	487	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	1.0	1.0		1.0	1.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	18.0	18.0		18.0	18.0		25.1	25.1		25.1	25.1	
Total Split (s)	18.0	18.0		18.0	18.0		37.0	37.0		37.0	37.0	
Total Split (%)	32.7%	32.7%		32.7%	32.7%		67.3%	67.3%		67.3%	67.3%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	1.0	0.0		1.0	0.0		2.0	0.0		2.0	0.0	
Total Lost Time (s)		4.0			4.0			5.6			5.6	
Lead/Lag		1.0			1.0			0.0			0.0	
Lead-Lag Optimize?												
Recall Mode	Ped	Ped		Ped	Ped		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)	1 00	14.0		1 00	14.0			31.4			31.4	
Actuated g/C Ratio		0.25			0.25			0.57			0.57	
v/c Ratio		0.20			0.29			0.39			0.55	
Control Delay		18.1			61			79			9.9	
		0.0			0.0			0.0			0.0	
Total Delay		18.1			6.0			79			10.3	
		R			Δ			Δ			10.0 B	
Approach Delay		18.1			61			79			10.3	
Approach LOS		R			Δ			Δ			10.0 B	
Queue Length 50th (m)		63			0.5			18.8			24.7	
Queue Length 95th (m)		15.9			11.0			33.0			46.2	
Internal Link Dist (m)		221.3			335.0			289.1			90.1	
Turn Bay Length (m)		221.0			000.0			200.1			00.1	
Base Capacity (vph)		319			479			1011			883	
Starvation Can Reductn		0			0			0			96	
Spillback Cap Reductn		0			0			0 0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.27			0.29			0.39			0.62	
		0.21			0.20			0.00			0.02	
Cycle Length: 55												
Actuated Cycle Length: 55												
Offect: 26 (17%) Deferences	to phace		and 6.00	RTI Start	of Green							
Natural Cycle: 15		2.ND1L										
Control Type: Actuated-Coor	dinated											

Maximum v/c Ratio: 0.55	
Intersection Signal Delay: 9.5	Intersection LOS: A
Intersection Capacity Utilization 89.4%	ICU Level of Service E
Analysis Period (min) 15	

Splits and Phases: 24: Parkdale & Sherwood

σ 2 (R)	→ _{Ø4}	
37 s	18 s	
Ø6 (R)	4 Ø8	
37 s	18 s	

	∕	-	\rightarrow	-	-	•	1	†	1	•	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		۲	f,			\$			\$	
Traffic Volume (vph)	27	29	9	7	33	20	3	231	7	38	240	10
Future Volume (vph)	27	29	9	7	33	20	3	231	7	38	240	10
Satd. Flow (prot)	0	1695	0	1695	1628	0	0	1771	0	0	1760	0
Flt Permitted		0.841		0.807				0.997			0.939	
Satd. Flow (perm)	0	1418	0	1353	1628	0	0	1767	0	0	1655	0
Satd. Flow (RTOR)		7			20			4			5	
Lane Group Flow (vph)	0	65	0	7	53	0	0	241	0	0	288	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	19.4	19.4		19.4	19.4		31.8	31.8		31.8	31.8	
Total Split (s)	20.0	20.0		20.0	20.0		75.0	75.0		75.0	75.0	
Total Split (%)	21.1%	21.1%		21.1%	21.1%		78.9%	78.9%		78.9%	78.9%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.8	2.8		2.8	2.8	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)		5.4		5.4	5.4			5.8			5.8	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)		12.4		12.4	12.4			75.6			75.6	
Actuated g/C Ratio		0.13		0.13	0.13			0.80			0.80	
v/c Ratio		0.34		0.04	0.23			0.17			0.22	
Control Delay		38.7		35.6	27.8			3.6			3.9	
Queue Delay		0.0		0.0	0.0			0.0			0.0	
Total Delay		38.7		35.6	27.8			3.6			3.9	
LOS		D		D	С			А			А	
Approach Delay		38.7			28.7			3.6			3.9	
Approach LOS		D			С			А			А	
Queue Length 50th (m)		9.6		1.1	5.3			11.1			13.9	
Queue Length 95th (m)		21.7		5.0	15.8			18.0			22.1	
Internal Link Dist (m)		220.6			228.6			278.4			289.1	
Turn Bay Length (m)				40.0								
Base Capacity (vph)		223		207	267			1407			1318	
Starvation Cap Reductn		0		0	0			0			0	
Spillback Cap Reductn		0		0	0			0			0	
Storage Cap Reductn		0		0	0			0			0	
Reduced v/c Ratio		0.29		0.03	0.20			0.17			0.22	
Intersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95												
Offset: 40 (42%), Reference	ed to phase	e 2:NBTL	and 6:SE	BTL, Starl	t of Green							
Natural Cycle: 55												
Control Type: Actuated-Coc	ordinated											

Parsons

Maximum v/c Ratio: 0.34	
Intersection Signal Delay: 9.5	Intersection LOS: A
Intersection Capacity Utilization 60.2%	ICU Level of Service B
Analysis Period (min) 15	

Splits and Phases: 25: Parkdale & Ruskin

Ø2 (R)	<u>_</u>	
75 s	20 s	
Ø6 (R)	₩ Ø8	
75 s	20 s	

Lanes, Volumes, Timings
30: Prince of Wales & Preston2048 PM Demand Rationalized Main Hospital SPA PEAK GEN
03/20/2023

	≯	-	\rightarrow	-	-	•	1	1	1	1	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	†		ኘ	^	1		4			ર્શ	1
Traffic Volume (vph)	614	223	2	3	295	363	4	3	1	260	4	597
Future Volume (vph)	614	223	2	3	295	363	4	3	1	260	4	597
Satd. Flow (prot)	3288	1779	0	1695	1784	1517	0	1683	0	0	1700	1517
Flt Permitted	0.950			0.950				0.831			0.724	
Satd. Flow (perm)	3174	1779	0	1468	1784	1484	0	1305	0	0	1153	1357
Satd. Flow (RTOR)						219						
Lane Group Flow (vph)	614	225	0	3	295	363	0	8	0	0	264	597
Turn Type	Prot	NA		Prot	NA	Free	Perm	NA		custom	NA	custom
Protected Phases	5	2		1	6			8		11	4 11	5
Permitted Phases						Free	8			4		4
Detector Phase	5	2		1	6		8	8		11	4 11	5
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		10.0		5.0
Minimum Split (s)	11.1	27.1		10.3	26.1		24.5	24.5		15.3		11.1
Total Split (s)	52.0	67.0		10.3	30.3		35.7	35.7		22.0		52.0
Total Split (%)	37.1%	47.9%		7.4%	21.6%		25.5%	25.5%		15.7%		37.1%
Yellow Time (s)	3.7	3.7		3.3	3.7		3.3	3.3		3.3		3.7
All-Red Time (s)	2.4	2.4		2.0	2.4		2.2	2.2		2.0		2.4
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0				0.0
Total Lost Time (s)	6.1	6.1		5.3	6.1			5.5				6.1
Lead/Lag				Lead								
Lead-Lag Optimize?				Yes								
Recall Mode	None	C-Min		None	C-Min		None	None		None		None
Act Effct Green (s)	49.3	86.9		5.9	35.4	140.0		15.7			32.1	64.4
Actuated g/C Ratio	0.35	0.62		0.04	0.25	1.00		0.11			0.23	0.46
v/c Ratio	0.53	0.20		0.04	0.65	0.24		0.05			0.80	0.88
Control Delay	35.2	14.5		65.3	56.7	0.4		51.4			61.5	54.2
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0			0.0	1.2
Total Delay	35.2	14.5		65.3	56.7	0.4		51.4			61.5	55.4
LOS	D	В		E	E	А		D			E	E
Approach Delay		29.6			25.8			51.4			57.3	
Approach LOS		С			С			D			E	
Queue Length 50th (m)	58.1	17.0		0.8	72.8	0.0		2.1			77.0	159.6
Queue Length 95th (m)	92.1	49.3		4.1	#137.8	0.0		6.8			m93.9	m131.1
Internal Link Dist (m)		79.9			173.8			12.4			145.6	
Turn Bay Length (m)	45.0			30.0		45.0						
Base Capacity (vph)	1182	1104		71	451	1484		281			449	691
Starvation Cap Reductn	0	0		0	0	0		0			0	20
Spillback Cap Reductn	0	0		0	0	0		0			0	0
Storage Cap Reductn	0	0		0	0	0		0			0	0
Reduced v/c Ratio	0.52	0.20		0.04	0.65	0.24		0.03			0.59	0.89
Intersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 140												
Offset: 105.9 (76%), Referen	nced to ph	ase 2:EB	T and 6:V	VBT, Sta	rt of Gree	n						
Natural Cycle: 100												

Control Type: Actuated-Coordinated

Lane Group	Ø4	Ø9	Ø12
LaneConfigurations			
Traffic Volume (vph)			
Future Volume (vph)			
Satd, Flow (prot)			
Flt Permitted			
Satd, Flow (perm)			
Satd, Flow (RTOR)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	4	9	12
Permitted Phases	•	Ū	
Detector Phase			
Switch Phase			
Minimum Initial (s)	10.0	10	10
Minimum Solit (s)	15.5	5.0	20.0
Total Split (s)	35.7	5.0	22.0
Total Split (%)	26%	۵.0 ۵%	16%
Yellow Time (s)	2070	20	20
All-Red Time (s)	2.0	0.0	0.0
Lost Time Adjust (s)	2.2	0.0	0.0
Total Lost Time (s)			
		Log	
Leau/Lay		Lay	
	Mono	Nono	Nono
Act Effet Creen (e)	NONE	NULLE	NULLE
Actuated a/C Patia			
Notualeu y/C Natio			
v/c rtall0			
Queue Delay			
LUS Annreach Delau			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

Maximum v/c Ratio: 0.88						
Intersection Signal Delay: 38.7	Intersection LOS: D					
Intersection Capacity Utilization 88.4%	ICU Level of Service E					
Analysis Period (min) 15						
# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.						

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 30: Prince of Wales & Preston

🖌 Ø1 🧍 🖉 Ø2 (R)		Ø11	Ø4
10.3 s 5 s 67 s		22 s	35.7 s
₩ _{Ø5}	← ● Ø6 (R)	1. Ø12	1 Ø8
52 s	30.3 s	22 s	35.7 s

Lanes, Volumes, Timings 2048 PM Demand Rationalized Main Hospital SPA PEAK GEN 31: Rochester & 417 WB on/Raymond 03/20/2023

	۶	-	$\mathbf{\hat{z}}$	-	-	•	1	1	1	1	↓	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ĥ		ሻ	•			•	1
Traffic Volume (vph)	0	0	0	120	161	109	191	321	0	0	149	182
Future Volume (vph)	0	0	0	120	161	109	191	321	0	0	149	182
Satd. Flow (prot)	0	0	0	1695	1636	0	1695	1784	0	0	1784	1517
Flt Permitted				0.950			0.548					
Satd. Flow (perm)	0	0	0	1685	1636	0	947	1784	0	0	1784	1414
Satd. Flow (RTOR)					56							182
Lane Group Flow (vph)	0	0	0	120	270	0	191	321	0	0	149	182
Turn Type				Perm	NA		pm+pt	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8			2					6
Detector Phase				8	8		5	2			6	6
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	10.0
Minimum Split (s)				32.0	32.0		10.9	27.3			24.9	24.9
Total Split (s)				32.0	32.0		13.0	38.0			25.0	25.0
Total Split (%)				45.7%	45.7%		18.6%	54.3%			35.7%	35.7%
Yellow Time (s)				3.3	3.3		3.3	3.3			3.3	3.3
All-Red Time (s)				2.4	2.4		2.6	2.6			2.6	2.6
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)				5.7	5.7		5.9	5.9			5.9	5.9
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Recall Mode				None	None		None	C-Min			C-Min	C-Min
Act Effct Green (s)				15.2	15.2		43.2	43.2			28.3	28.3
Actuated g/C Ratio				0.22	0.22		0.62	0.62			0.40	0.40
v/c Ratio				0.33	0.68		0.28	0.29			0.21	0.27
Control Delay				24.2	27.9		12.2	13.0			17.1	4.6
Queue Delay				0.0	0.0		0.0	0.5			0.0	0.0
Total Delay				24.2	27.9		12.2	13.5			17.1	4.6
LOS				С	С		В	В			В	A
Approach Delay					26.8			13.0			10.2	
Approach LOS					С			В			В	
Queue Length 50th (m)				13.4	25.8		14.8	30.4			12.1	0.0
Queue Length 95th (m)				23.2	42.8		34.3	54.7			29.5	13.0
Internal Link Dist (m)		122.0			89.8			72.3			151.7	
Turn Bay Length (m)												35.0
Base Capacity (vph)				633	649		682	1101			721	680
Starvation Cap Reductn				0	0		0	412			0	0
Spillback Cap Reductn				0	0		0	0			0	0
Storage Cap Reductn				0	0		0	0			0	0
Reduced v/c Ratio				0.19	0.42		0.28	0.47			0.21	0.27
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: /0 Offset: 8 (11%) Referenced to	nhase () NRTL a	nd 6:SB	E Start of	Green							
Natural Cycle: 70				, otari u	SIGGI							
Control Type: Actuated-Coord	inated											

Lanes, Volumes, Timings 2048 PM Demand Rationalized Main Hospital SPA PEAK GEN 31: Rochester & 417 WB on/Raymond 03/20/2023

Maximum v/c Ratio: 0.68	
Intersection Signal Delay: 16.6	Intersection LOS: B
Intersection Capacity Utilization 58.3%	ICU Level of Service B
Analysis Period (min) 15	

Lanes, Volumes, Timings 2048 PM Demand Rationalized Main Hospital SPA PEAK GEN 32: Rochester & 417 EB off/Orangeville 03/20/2023

	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	t	۲	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		đ î i						A				
Traffic Volume (vph)	199	218	123	0	0	0	0	308	48	16	232	0
Future Volume (vph)	199	218	123	0	0	0	0	308	48	16	232	0
Satd. Flow (prot)	0	3190	0	0	0	0	0	3306	0	0	3380	0
Flt Permitted		0.982									0.927	
Satd. Flow (perm)	0	3184	0	0	0	0	0	3306	0	0	3140	0
Satd. Flow (RTOR)		55						40				
Lane Group Flow (vph)	0	540	0	0	0	0	0	356	0	0	248	0
Turn Type	Perm	NA						NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4									6		
Detector Phase	4	4						2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0						10.0		10.0	10.0	
Minimum Split (s)	26.0	26.0						25.1		25.1	25.1	
Total Split (s)	26.0	26.0						44.0		44.0	44.0	
Total Split (%)	37.1%	37.1%						62.9%		62.9%	62.9%	
Yellow Time (s)	3.3	3.3						3.3		3.3	3.3	
All-Red Time (s)	2.3	2.3						21		21	21	
Lost Time Adjust (s)	2.0	0.0						0.0			0.0	
Total Lost Time (s)		5.6						5.4			5.4	
Lead/Lag		0.0						0.1			0.1	
Lead-Lag Optimize?												
Recall Mode	None	None						C-Min		C-Min	C-Min	
Act Effct Green (s)		16.1						42.9			42.9	
Actuated g/C Ratio		0.23						0.61			0.61	
v/c Ratio		0.70						0.17			0.13	
Control Delay		26.8						6.0			8.5	
Queue Delav		0.0						0.0			0.0	
Total Delay		26.8						6.0			8.5	
LOS		С						A			A	
Approach Delay		26.8						6.0			8.5	
Approach LOS		С						A			A	
Queue Lenath 50th (m)		30.7						8.1			2.7	
Queue Length 95th (m)		41.5						16.3			27.8	
Internal Link Dist (m)		104.8			107.2			99.1			72.3	
Turn Bay Length (m)												
Base Capacity (vph)		972						2049			1932	
Starvation Cap Reductn		0						0			0	
Spillback Cap Reductn		0						0			0	
Storage Cap Reductn		0						0			0	
Reduced v/c Ratio		0.56						0.17			0.13	
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70		0.1.5-	10.0=									
Offset: 67 (96%), Reference	ed to phase	e 2:NBT a	nd 6:SBT	L, Start o	t Green							
Natural Cycle: 55												
Control Type: Actuated-Coc	ordinated											

Lanes, Volumes, Timings 2048 PM Demand Rationalized Main Hospital SPA PEAK GEN 32: Rochester & 417 EB off/Orangeville 03/20/2023

Maximum v/c Ratio: 0.70	
Intersection Signal Delay: 16.4	Intersection LOS: B
Intersection Capacity Utilization 49.1%	ICU Level of Service A
Analysis Period (min) 15	

Splits and Phases: 32: Rochester & 417 EB off/Orangeville

Lanes, Volumes, Timings2048 PM Demand Rationalized Main Hospital SPA PEAK GEN33: Bronson & Catherine 417 WB on03/20/2023

	۶	-	$\mathbf{\hat{z}}$	1	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ፈቶኬ		ሻ	**			≜ 15-	
Traffic Volume (vph)	0	0	0	792	492	269	269	707	0	0	734	159
Future Volume (vph)	0	0	0	792	492	269	269	707	0	0	734	159
Satd, Flow (prot)	0	0	0	1458	4312	0	1695	3390	0	0	3248	0
Flt Permitted				0.950	0.988		0.116					
Satd. Flow (perm)	0	0	0	1458	4312	0	207	3390	0	0	3248	0
Satd. Flow (RTOR)					110						28	
Lane Group Flow (vph)	0	0	0	539	1014	0	269	707	0	0	893	0
Turn Type				Perm	NA		pm+pt	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8			2					
Detector Phase				8	8		5	2			6	
Switch Phase												
Minimum Initial (s)				10.0	10.0		5.0	10.0			10.0	
Minimum Split (s)				25.9	25.9		11.0	25.1			25.1	
Total Split (s)				42.0	42.0		18.0	53.0			35.0	
Total Split (%)				44.2%	44.2%		18.9%	55.8%			36.8%	
Yellow Time (s)				3.3	3.3		3.3	3.3			3.3	
All-Red Time (s)				2.6	2.6		27	2.8			2.8	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				5.9	5.9		6.0	6.0			6.1	
Lead/Lag				0.0	0.0		Lead	0.1			Lag	
Lead-Lag Optimize?							Yes				Yes	
Recall Mode				None	None		None	C-Min			C-Min	
Act Effct Green (s)				36.3	36.3		46.8	46.7			28.3	
Actuated g/C Ratio				0.38	0.38		0.49	0.49			0.30	
v/c Ratio				0.97	0.59		0.91	0.42			0.90	
Control Delay				61.3	22.4		63.6	23.5			44.7	
Queue Delav				23.7	0.0		0.0	3.3			37.3	
Total Delay				85.0	22.4		63.6	26.8			82.0	
LOS				F	С		E	С			F	
Approach Delay					44.1			37.0			82.0	
Approach LOS					D			D			F	
Queue Length 50th (m)				111.0	50.5		46.8	64.6			79.4	
Queue Length 95th (m)				#187.7	64.7		#81.0	74.7			#114.0	
Internal Link Dist (m)		151.3			165.9			71.3			237.2	
Turn Bay Length (m)												
Base Capacity (vph)				558	1717		294	1673			1007	
Starvation Cap Reductn				0	0		0	843			0	
Spillback Cap Reductn				47	50		0	0			176	
Storage Cap Reductn				0	0		0	0			0	
Reduced v/c Ratio				1.05	0.61		0.91	0.85			1.07	
Intersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95												
Offset: 59 (62%), Reference	d to phase	2:NBTL a	and 6:SE	BT, Start o	of Green							
Natural Cycle: 90												
Control Type: Actuated-Coo	rdinated											

Lanes, Volumes, Timings 2048 PM Demand Rationalized Main Hospital SPA PEAK GEN 33: Bronson & Catherine 417 WB on 03/20/2023

Maximum v/c Ratio: 0.97	
Intersection Signal Delay: 52.0	Intersection LOS: D
Intersection Capacity Utilization 112.0%	ICU Level of Service H
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lon	ger.
Queue shown is maximum after two cycles.	
Splits and Phases: 33: Bronson & Catherine 417 WB on	

Ø2 (R)	•	
53 s		
Ø 5	🛛 🕇 Ø6 (R)	✓ Ø8
18 s	35 s	42 s

	≯	\rightarrow	1	†	ŧ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1		**	* *	
Traffic Volume (vph)	136	387	0	880	1455	0
Future Volume (vph)	136	387	0	880	1455	0
Satd, Flow (prot)	1695	1517	0	3390	3390	0
Flt Permitted	0.950					-
Satd, Flow (perm)	1695	1491	0	3390	3390	0
Satd. Flow (RTOR)		47	-			-
Lane Group Flow (vph)	136	387	0	880	1455	0
Turn Type	Prot	Perm	· ·	NA	NA	•
Protected Phases	4			2	6	
Permitted Phases	•	4		-	v	
Detector Phase	Δ	4		2	6	
Switch Phase		т		2	0	
Minimum Initial (a)	10.0	10.0		10.0	10.0	
Minimum Split (s)	25.1	25.1		2/ 2	2/ 2	
Total Split (s)	20.1	20.1		04.3 65.0	04.0 65.0	
Total Split (S)	30.0	30.0		0.00	05.0	
Total Split (%)	31.0%	31.0%		00.4%	00.4%	
Yellow Time (S)	3.3	3.3		3.3	3.3	
All-Red Lime (s)	2.1	2.1		2.5	2.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.4	5.4		5.8	5.8	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None		C-Min	C-Min	
Act Effct Green (s)	26.4	26.4		57.4	57.4	
Actuated g/C Ratio	0.28	0.28		0.60	0.60	
v/c Ratio	0.29	0.86		0.43	0.71	
Control Delay	28.6	49.0		11.1	10.5	
Queue Delay	0.0	0.0		0.0	2.1	
Total Delay	28.6	49.0		11.1	12.5	
LOS	С	D		В	В	
Approach Delay	43.7			11.1	12.5	
Approach LOS	D			В	В	
Queue Length 50th (m)	18.5	56.5		46.4	76.5	
Queue Length 95th (m)	36.0	#115.6		51.2	m133.7	
Internal Link Dist (m)	81.4	.,		50.7	71.3	
Turn Bay Length (m)	01.4	60.0		00.1	11.0	
Rase Canacity (vnh)	/83	158		2136	2136	
Starvation Can Peducto				2150	505	
Spillback Con Deducto	14	0		05	000	
Storogo Con Doducto	14	0		90	0	
Storage Cap Reductin	0	0.04		0 40	0 00	
Reduced V/C Ratio	0.29	0.84		0.43	0.89	
Intersection Summary						
Cycle Length: 95						
Actuated Cycle Length: 95						
Offset: 91 (96%) Reference	ed to phase	e 2·NRT a	nd 6:SB	T Start o	f Green	
Natural Cycle: 60		• 2.HDF a	na 0.0D	, otari u		
Control Type: Actuated_Coc	ordinated					

Parsons

Maximum v/c Ratio: 0.86						
Intersection Signal Delay: 17.8	Intersection LOS: B					
Intersection Capacity Utilization 112.0%	ICU Level of Service H					
Analysis Period (min) 15						
# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.						
m Volume for 95th percentile queue is metered by upstream s	ignal.					

Splits and Phases: 34: Bronson & 417 EB off

● 1 Ø2 (R)	🕹 ø4
65 s	30 s
Ø6 (R)	
65 s	

2048 PM Demand Rationalized Main Hospital SPA PEAK GEN Lanes, Volumes, Timings 39: 03/20/2023 Prince of Wales & Road B (dual WBT)

(dual WBT)	≯	-	-	•	1	-			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø9		
Lane Configurations	5	•	≜t ≽		5	1			
Traffic Volume (vph)	26	675	810	23	153	50			
Future Volume (vph)	26	675	810	23	153	50			
Satd, Flow (prot)	1695	1784	3373	0	1695	1517			
Flt Permitted	0.293			-	0.950				
Satd, Flow (perm)	523	1784	3373	0	1629	1424			
Satd. Flow (RTOR)				-		50			
Lane Group Flow (vph)	26	675	833	0	153	50			
Turn Type	pm+pt	NA	NA	-	Perm	Perm			
Protected Phases	5	2	6				9		
Permitted Phases	2	_	•		4	4	•		
Detector Phase	5	2	6		4	4			
Switch Phase		-	v						
Minimum Initial (s)	5.0	10.0	10.0		10.0	10.0	1.0		
Minimum Split (s)	10.3	23.3	23.3		23.3	23.3	15.0		
Total Split (s)	12.0	97.0	85.0		28.0	28.0	15.0		
Total Split (%)	8.6%	69.3%	60.7%		20.0%	20.0%	11%		
Yellow Time (s)	3.3	3.3	33		3.3	3.3	20		
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	0.0		
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	0.0		
Total Lost Time (s)	5.3	5.3	5.3		5.3	5.3			
lead/Lag	Lead	0.0	Lag		0.0	0.0			
Lead-Lag Optimize?	Yes		Yes						
Recall Mode	None	C-Min	C-Min		None	None	None		
Act Effct Green (s)	108.1	108.1	101.0		18.3	18.3			
Actuated g/C Ratio	0.77	0.77	0.72		0.13	0.13			
v/c Ratio	0.06	0 49	0.34		0.72	0.22			
Control Delay	6.2	8.9	93		76.4	15.0			
Queue Delay	0.0	0.0	0.0		0.0	0.0			
Total Delay	6.2	8.9	9.3		76.4	15.0			
	A	A	A		F	B			
Approach Delay	,,	8.8	93		613	2			
Approach LOS		0.0 A	۵.۵ ۵		F				
Queue Length 50th (m)	13	52.8	41.8		412	0.0			
Queue Length 95th (m)	6.1	137.7	m101.8		61.7	11.4			
Internal Link Dist (m)	0.1	198.2	95.9		17.7				
Turn Bay Length (m)	45.0	100.2	00.0						
Base Canacity (vnh)	460	1383	2447		269	277			
Starvation Can Reducto	00	000	0		200	0			
Snillback Can Reductn	0	0	0		0	0			
Storage Cap Reducto	0	0	0		0	0			
Reduced v/c Ratio	0.06	0 49	0.34		0.57	0.18			
	0.00	0.40	0.07		0.01	0.10			
Intersection Summary									
Cycle Length: 140	<u>^</u>								
Actuated Cycle Length: 140	0		10145	01 / 01	~				
Offset: 0 (0%), Referenced	to phase 2	::EBTL ar	nd 6:WBT,	Start of (Green				
Natural Cycle: 75									

Control Type: Actuated-Coordinated

Lanes, Volumes, Timings 39: 2048 PM Demand Rationalized Main Hospital SPA PEAK GEN Prince of Wales & Road B 03/20/2023

(dual WBT) Maximum V/c Ratio: 0.72

Intersection Signal Delay: 15.2

Intersection Capacity Utilization 57.0%

Intersection LOS: B ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 39: Prince of Wales & Road B

Lanes, Volumes, Timings 2048 PM Demand Rationalized Main Hospital SPA PEAK GEN Prince of Wales & Road B (single WBT) 04/04/2023

	٦	-	←	•	1	-	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø9
Lane Configurations	5	•	•	1	5	1	
Traffic Volume (vph)	26	675	810	23	153	50	
Future Volume (vph)	26	675	810	23	153	50	
Satd. Flow (prot)	1695	1784	1784	1517	1695	1517	
Flt Permitted	0.242				0.950		
Satd, Flow (perm)	432	1784	1784	1453	1629	1359	
Satd, Flow (RTOR)						50	
Lane Group Flow (vph)	26	675	810	23	153	50	
Turn Type	pm+pt	NA	NA	Perm	Perm	Perm	
Protected Phases	5	2	6				9
Permitted Phases	2			6	4	4	
Detector Phase	5	2	6	6	4	4	
Switch Phase	-		-	-			
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	1.0
Minimum Split (s)	10.3	23.3	23.3	23.3	23.3	23.3	15.0
Total Split (s)	10.3	98.0	87.7	87.7	27.0	27.0	15.0
Total Split (%)	7.4%	70.0%	62.6%	62.6%	19.3%	19.3%	11%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	2.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3	
Lead/Lag	Lead		Lag	Lag			
Lead-Lag Optimize?	Yes		Yes	Yes			
Recall Mode	None	C-Min	C-Min	C-Min	None	None	None
Act Effct Green (s)	108.7	108.7	102.1	102.1	17.7	17.7	
Actuated g/C Ratio	0.78	0.78	0.73	0.73	0.13	0.13	
v/c Ratio	0.07	0.49	0.62	0.02	0.75	0.23	
Control Delay	5.8	8.4	11.5	6.6	80.1	15.9	
Queue Delav	0.0	0.0	0.3	0.0	0.0	0.0	
Total Delay	5.8	8.4	11.8	6.6	80.1	15.9	
LOS	A	A	B	A	F	B	
Approach Delay		8.3	11.6	7.	64.3		
Approach LOS		Α	B		F		
Queue Lenath 50th (m)	1.3	52.8	81.8	2.3	41.2	0.0	
Queue Length 95th (m)	5.6	127.6	m168.5	m2.0	63.5	11.8	
Internal Link Dist (m)	0.0	198.2	95.9		17.7		
Turn Bay Length (m)	45.0			35.0			
Base Capacity (vph)	386	1385	1301	1059	252	252	
Starvation Cap Reductn	0	0	122	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Can Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.07	0 49	0.69	0.02	0.61	0.20	
Internection Organization	0.01	5.10	5.00	0.02	0.01	0.20	
Intersection Summary							
Actuated Cycle Length: 140							
Offect: 38 (27%) Deference	d to phase	2.EDT	and GIM	DT Chart	of Croop		
Natural Cycle: 100	to phase	Z.CDIL	anu 0.771	or, Start	of Green		
Control Type: Actuated Cas	rdinated						
Control Type. Actuated-Coo	numateu						

Parsons

Synchro 10 Report

Lanes, Volumes, Timings 2048 PM Demand Rationalized Main Hospital SPA PEAK GEN Prince of Wales & Road B (single WBT) 04/04/2023

 Maximum v/c Ratio: 0.75
 Intersection Signal Delay: 16.4
 Intersection LOS: B

 Intersection Capacity Utilization 64.5%
 ICU Level of Service C

 Analysis Period (min) 15
 Intersection LOS: B

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 39: Prince of Wales & Road B

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሽ	- 11	- 11	1	۰¥	
Traffic Vol, veh/h	8	517	1204	10	3	10
Future Vol, veh/h	8	517	1204	10	3	10
Conflicting Peds, #/hr	42	0	0	42	4	8
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	25	-	-	20	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	517	1204	10	3	10

Major/Minor	Major1	Ν	/lajor2		Minor2		
Conflicting Flow All	1256	0	-	0	1525	652	
Stage 1	-	-	-	-	1246	-	
Stage 2	-	-	-	-	279	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	550	-	-	-	109	411	
Stage 1	-	-	-	-	234	-	
Stage 2	-	-	-	-	743	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	530	-	-	-	100	394	
Mov Cap-2 Maneuver	-	-	-	-	100	-	
Stage 1	-	-	-	-	222	-	
Stage 2	-	-	-	-	716	-	
Annroach	FR		W/R		SB		
HCM Control Dolay			0		21.2		
HOM CONTO Delay, S	0.2		0		21.2		
					U		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		530	-	-	-	235	
HCM Lane V/C Ratio		0.015	-	-	-	0.055	
HCM Control Delay (s)	11.9	-	-	-	21.2	
HCM Lane LOS		В	-	-	-	С	
HCM 95th %tile Q(veh	ו)	0	-	-	-	0.2	

Intersection						
Int Delay, s/veh	10.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	↑	1		1
Traffic Vol, veh/h	0	872	865	67	0	285
Future Vol, veh/h	0	872	865	67	0	285
Conflicting Peds, #/hr	70	0	0	70	1	5
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	30	-	0
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	872	865	67	0	285

Major/Minor	Major1	1	Major2	Ν	/linor2	
Conflicting Flow All	-	0	-	0	-	940
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.319
Pot Cap-1 Maneuver	0	-	-	-	0	319
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	299
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		79.1	
HCM LOS					F	
Minor Lano/Major Mun	nt	EDT			DIn1	
	ш	EDI	VVDI	WBRC		
Capacity (ven/n)		-	-	-	299	
HCIVI Lane V/C Ratio	`	-	-	-	0.953	
HUM Long LOS)	-	-	-	79.1	
HOM Lane LOS	\	-	-	-		
HCM 95th %tile Q(veh	1)	-	-	-	9.5	

Intersection

Int Delay, s/veh 0.4 EBL WBR NBR Movement EBT EBR WBL WBT NBL NBT SBL SBT SBR **↑** 807 **↔** 0 Lane Configurations Þ ۴ Traffic Vol, veh/h 0 0 854 0 0 54 5 0 31 1 Future Vol, veh/h 0 854 0 0 807 54 1 0 5 0 0 31 Conflicting Peds, #/hr 8 6 6 1 0 0 0 0 0 8 0 1 Stop Stop Stop Sign Control Free Free Free Free Free Free Stop Stop Stop **RT** Channelized None None None None ----_ _ _ _ Storage Length _ _ _ _ _ --_ -_ _ 0 Veh in Median Storage, # -0 -0 _ 0 -0 -_ _ _ Grade, % 0 0 0 0 --------100 Peak Hour Factor 100 100 100 100 100 100 100 100 100 100 100 Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 Mvmt Flow 0 854 0 807 54 0 0 0 31 0 1 5

Major/Minor N	1ajor1		Ν	/lajor2			Minor1		Ν	/linor2			
Conflicting Flow All	-	0	0	-	-	0	1711	1729	860	-	-	843	
Stage 1	-	-	-	-	-	-	860	860	-	-	-	-	
Stage 2	-	-	-	-	-	-	851	869	-	-	-	-	
Critical Hdwy	-	-	-	-	-	-	7.12	6.52	6.22	-	-	6.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	-	3.518	4.018	3.318	-	-	3.318	
Pot Cap-1 Maneuver	0	-	-	0	-	-	71	88	356	0	0	364	
Stage 1	0	-	-	0	-	-	351	373	-	0	0	-	
Stage 2	0	-	-	0	-	-	355	369	-	0	0	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	-	-	-	-	-	-	65	87	354	-	-	361	
Mov Cap-2 Maneuver	-	-	-	-	-	-	65	87	-	-	-	-	
Stage 1	-	-	-	-	-	-	351	371	-	-	-	-	
Stage 2	-	-	-	-	-	-	324	366	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			0			23.3			15.9			
HCM LOS							С			С			
Minor Lane/Major Mvmt	t N	IBLn1	EBT	EBR	WBT	WBR	SBLn1						
Capacity (veh/h)		203	-	-	-	-	361						
HCM Lane V/C Ratio		0.03	-	-	-	-	0.086						
		00.0					450						

HCM Control Delay (s)	23.3	-	-	-	-	15.9	
HCM Lane LOS	С	-	-	-	-	С	
HCM 95th %tile Q(veh)	0.1	-	-	-	-	0.3	

(as unsignalized)

Intersection

Int Delay, s/veh	1.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1	<u>ار ا</u>	•	•	1
Traffic Vol, veh/h	0	124	7	701	818	41
Future Vol, veh/h	0	124	7	701	818	41
Conflicting Peds, #/hr	0	0	10	0	0	10
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	50	-	-	50
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	9	5	29	2	2	20
Mvmt Flow	0	124	7	701	818	41

Major/Minor	Minor2		Major1	Maj	or2		
Conflicting Flow All	-	828	869	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.25	4.39	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.345	2.461	-	-	-	
Pot Cap-1 Maneuver	0	366	672	-	-	-	
Stage 1	0	-	-	-	-	-	
Stage 2	0	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuve	r -	363	666	-	-	-	
Mov Cap-2 Maneuve	r -	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	20	0.1	0
HCM LOS	С		

Vinor Lane/Major Mvmt	NBL	NBT EBLn	I SBT	SBR
Capacity (veh/h)	666	- 36	3 -	-
HCM Lane V/C Ratio	0.011	- 0.34	2 -	-
HCM Control Delay (s)	10.5	- 2) -	-
HCM Lane LOS	В	- () -	-
HCM 95th %tile Q(veh)	0	- 1.	5 -	-

Lanes, Volumes, Timings 2: Prince of Wales & Road E

(as signalized)

(as signalized)	٦	$\mathbf{\hat{z}}$	1	Ť	Ļ	-		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	Ø10	
Lane Configurations	<u>۲</u>	1	<u>۲</u>	•	•	1		
Traffic Volume (vph)	86	38	7	615	818	41		
Future Volume (vph)	86	38	7	615	818	41		
Satd. Flow (prot)	1695	1517	1695	1784	1784	1517		
Flt Permitted	0.950		0.950					
Satd. Flow (perm)	1695	1517	1666	1784	1784	1379		
Satd. Flow (RTOR)								
Lane Group Flow (vph)	86	38	7	615	818	41		
Turn Type	Perm	Perm	Prot	NA	NA	Perm		
Protected Phases			5	2	6		10	
Permitted Phases	4	4				6		
Detector Phase	4	4	5	2	6	6		
Switch Phase								
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0	10.0	1.0	
Minimum Split (s)	23.3	23.3	10.3	23.3	23.3	23.3	10.0	
Total Split (s)	26.0	26.0	10.3	94.0	83.7	83.7	10.0	
Total Split (%)	20.0%	20.0%	7.9%	72.3%	64.4%	64.4%	8%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	2.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.3	5.3	5.3	5.3	5.3	5.3		
Lead/Lag			Lead		Lag	Lag		
Lead-Lag Optimize?			Yes		Yes	Yes		
Recall Mode	None	None	None	Min	Min	Min	None	
Act Effct Green (s)	12.7	12.7	5.8	46.5	45.4	45.4		
Actuated g/C Ratio	0.19	0.19	0.09	0.71	0.69	0.69		
v/c Ratio	0.26	0.13	0.05	0.49	0.66	0.04		
Control Delay	32.2	31.4	40.9	8.1	13.3	6.8		
Queue Delay	0.0	0.0	0.0	0.0	0.1	0.0		
Total Delay	32.2	31.4	40.9	8.1	13.3	6.8		
LOS	С	С	D	А	В	А		
Approach Delay	31.9			8.5	13.0			
Approach LOS	С			А	В			
Queue Length 50th (m)	6.8	3.0	0.6	29.0	46.7	1.3		
Queue Length 95th (m)	34.9	18.7	6.5	89.6	190.6	8.5		
Internal Link Dist (m)	165.3			455.5	63.5			
Turn Bay Length (m)	50.0		50.0			50.0		
Base Capacity (vph)	622	557	150	1683	1653	1278		
Starvation Cap Reductn	0	0	0	0	98	0		
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	0.14	0.07	0.05	0.37	0.53	0.03		
Intersection Summary								
Cycle Length: 130								
Actuated Cycle Length: 65.5								
Natural Cycle: 90								
Control Type: Actuated-Unco	oordinated	1						
Maximum v/c Ratio: 0.66								

Lanes, Volumes, Timings 2: Prince of Wales & Road E (as signalized)

Intersection Signal Delay: 12.7 Intersection Capacity Utilization 62.6% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Splits and Phases: 2: Prince of Wales & Road E

Intersection													
Int Delay, s/veh	7.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4î þ			đ þ			\$			\$		
Traffic Vol, veh/h	0	101	53	77	77	5	58	0	311	0	0	5	
Future Vol, veh/h	0	101	53	77	77	5	58	0	311	0	0	5	
Conflicting Peds, #/hr	10	0	10	10	0	10	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	

otorago Longar													
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	101	53	77	77	5	58	0	311	0	0	5	

Major/Minor	Major1		ľ	Major2			Minor1		Ν	/linor2			
Conflicting Flow All	92	0	0	164	0	0	331	384	87	295	408	51	
Stage 1	-	-	-	-	-	-	138	138	-	244	244	-	
Stage 2	-	-	-	-	-	-	193	246	-	51	164	-	
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32	
Pot Cap-1 Maneuver	1501	-	-	1412	-	-	599	548	954	635	531	1006	
Stage 1	-	-	-	-	-	-	851	781	-	738	703	-	
Stage 2	-	-	-	-	-	-	790	701	-	956	761	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1488	-	-	1400	-	-	565	508	946	404	492	997	
Mov Cap-2 Maneuver	-	-	-	-	-	-	565	508	-	404	492	-	
Stage 1	-	-	-	-	-	-	844	775	-	732	657	-	
Stage 2	-	-	-	-	-	-	740	655	-	642	755	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			3.8			12.4			8.6			
HCM LOS							В			А			
Minor Lano/Major Myn	at N	JDI n1	EDI	EDT	EDD				DIn1				

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR \$	SBLn1	
Capacity (veh/h)	855	1488	-	-	1400	-	-	997	
HCM Lane V/C Ratio	0.432	-	-	-	0.055	-	-	0.005	
HCM Control Delay (s)	12.4	0	-	-	7.7	0.1	-	8.6	
HCM Lane LOS	В	А	-	-	Α	А	-	Α	
HCM 95th %tile Q(veh)	2.2	0	-	-	0.2	-	-	0	

Intersection							
Int Delay, s/veh	7.8						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lana Configurationa	1			*			

Lane Configurations	- ¥		- †	1		-4 †	•
Traffic Vol, veh/h	159	80	24	22	43	41	1
Future Vol, veh/h	159	80	24	22	43	41	I
Conflicting Peds, #/hr	0	0	0	15	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free)
RT Channelized	-	None	-	None	-	None)
Storage Length	0	-	-	0	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	159	80	24	22	43	41	1

Major/Minor	Minor1	Ν	/lajor1	Ν	/lajor2	
Conflicting Flow All	146	39	0	0	61	0
Stage 1	39	-	-	-	-	-
Stage 2	107	-	-	-	-	-
Critical Hdwy	6.63	6.23	-	-	4.13	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.83	-	-	-	-	-
Follow-up Hdwy	3.519	3.319	-	-	2.219	-
Pot Cap-1 Maneuver	839	1032	-	-	1541	-
Stage 1	983	-	-	-	-	-
Stage 2	906	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	804	1019	-	-	1521	-
Mov Cap-2 Maneuver	804	-	-	-	-	-
Stage 1	970	-	-	-	-	-
Stage 2	880	-	-	-	-	-

Approach	WB	NB	SB	
HCM Control Delay, s	10.7	0	3.8	
HCM LOS	В			

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	- 865	1521	-
HCM Lane V/C Ratio	-	- 0.276	0.028	-
HCM Control Delay (s)	-	- 10.7	7.4	0
HCM Lane LOS	-	- B	А	А
HCM 95th %tile Q(veh)	-	- 1.1	0.1	-

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۰¥			-4†	∱ î≽	
Traffic Vol, veh/h	0	4	4	46	200	0
Future Vol, veh/h	0	4	4	46	200	0
Conflicting Peds, #/hr	0	0	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	100	100	100	2	2	100
Mvmt Flow	0	4	4	46	200	0

Major/Minor	Minor2	Ν	1ajor1	Majo	or2		
Conflicting Flow All	236	105	205	0	-	0	
Stage 1	205	-	-	-	-	-	
Stage 2	31	-	-	-	-	-	
Critical Hdwy	8.8	8.9	6.1	-	-	-	
Critical Hdwy Stg 1	7.8	-	-	-	-	-	
Critical Hdwy Stg 2	7.8	-	-	-	-	-	
Follow-up Hdwy	4.5	4.3	3.2	-	-	-	
Pot Cap-1 Maneuver	519	687	869	-	-	-	
Stage 1	582	-	-	-	-	-	
Stage 2	763	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuve	r 512	684	865	-	-	-	
Mov Cap-2 Maneuve	r 512	-	-	-	-	-	
Stage 1	577	-	-	-	-	-	
Stage 2	760	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	10.3	0.7	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBL	NBT E	BLn1	SBT	SBR
Capacity (veh/h)	865	-	684	-	-
HCM Lane V/C Ratio	0.005	-	0.006	-	-
HCM Control Delay (s)	9.2	0	10.3	-	-
HCM Lane LOS	А	А	В	-	-
HCM 95th %tile Q(veh)	0	-	0	-	-

Intersection						
Int Delay, s/veh	5.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	- 1 2			- 4	۰¥	
Traffic Vol, veh/h	0	20	14	0	26	5
Future Vol, veh/h	0	20	14	0	26	5
Conflicting Peds, #/hr	0	10	10	0	10	10
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	20	14	0	26	5

Major/Minor	Major1	l	Major2		Minor1		
Conflicting Flow All	0	0	30	0	58	30	
Stage 1	-	-	-	-	20	-	
Stage 2	-	-	-	-	38	-	
Critical Hdwy	-	-	4.12	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	-	-	2.218	-	3.518	3.318	
Pot Cap-1 Maneuver	-	-	1583	-	949	1044	
Stage 1	-	-	-	-	1003	-	
Stage 2	-	-	-	-	984	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	1570	-	925	1026	
Mov Cap-2 Maneuver	-	-	-	-	925	-	
Stage 1	-	-	-	-	995	-	
Stage 2	-	-	-	-	967	-	
Approach	EB		WB		NB		
HCM Control Delay, s	0		7.3		9		
HCM LOS					А		
Minor Lane/Major Mvr	nt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		940	-	-	1570	-	
HCM Lane V/C Ratio		0.033	-	-	0.009	-	
HCM Control Delay (s)	9	-	-	7.3	0	

HCM Lane LOS A - - A A HCM 95th %tile Q(veh) 0.1 - - 0 -

tersection	0.0
ersection Delay s/veh	0.0
1010000011 Doldy, 3/ Vol1	8.8
tersection LOS	А

EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	4			4			4			4	
27	51	10	2	118	112	1	8	0	63	86	35
27	51	10	2	118	112	1	8	0	63	86	35
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	2	2	2	2	2	2	2	2	2	2	2
27	51	10	2	118	112	1	8	0	63	86	35
0	1	0	0	1	0	0	1	0	0	1	0
EB			WB			NB			SB		
WB			EB			SB			NB		
1			1			1			1		
SB			NB			EB			WB		
1			1			1			1		
NB			SB			WB			EB		
1			1			1			1		
8.3			8.8			8			9.1		
A			А			A			А		
	EBL 27 27 1.00 2 27 0 EB WB 1 SB 1 SB 1 NB 1 8.3 A	EBL EBT 27 51 27 51 27 51 1.00 1.00 2 2 27 51 0 1 EB WB 1 SB 1 NB 1 8.3 A	EBL EBT EBR 27 51 10 27 51 10 27 51 10 1.00 1.00 1.00 2 2 2 27 51 10 0 1 0 EB 10 0 B 1 0 B 1 1 SB 1 1 NB 1 1 8.3 4 1	EBL EBT EBR WBL 27 51 10 2 27 51 10 2 27 51 10 2 1.00 1.00 1.00 1.00 2 2 2 2 27 51 10 2 20 2 2 2 27 51 10 2 0 1 0 0 EB WB EB 1 1 1 1 SB SB NB 1 1 1 NB SB 3 1 1 1 8.3 8.8 3 A A A	EBL EBT EBR WBL WBT 4	EBL EBT EBR WBL WBT WBR 27 51 10 2 118 112 27 51 10 2 118 112 27 51 10 2 118 112 1.00 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 2 27 51 10 2 118 112 1.00 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 2 2 27 51 10 2 118 112 0 0 1 0 0 1 0 0 1 0 EB WB EB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td>EBL EBT EBR WBL WBT WBR NBL 27 51 10 2 118 112 1 27 51 10 2 118 112 1 27 51 10 2 118 112 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2</td><td>EBL EBT EBR WBL WBT WBR NBL NBT 27 51 10 2 118 112 1 8 27 51 10 2 118 112 1 8 27 51 10 2 118 112 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 3</td></td<> <td>EBL EBR WBL WBT WBR NBL NBT NBR 27 51 10 2 118 112 1 8 0 27 51 10 2 118 112 1 8 0 27 51 10 2 118 112 1 8 0 1.00</td> <td>EBLEBTEBRWBLWBTWBRNBLNBTNBRSBL$27$51102118112180632751102118112180631.001.001.002118112180631.001.001.001.001.001.001.001.001.001.00222222222222275110211811218063010010010022221181121806301001001000EBWBEBSBSBNB11111SBNBEBSBWBEBWBEB111NBSBSBWBEBWBEB1111NBSBSBWBSBSBSBSBSB111NBSBSBSBSBSBSBSBSBSB111NBSBSBSBSBSBSBSBSBSBSBSBSBSBSB<!--</td--><td>EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 27 51 10 2 118 112 1 8 0 63 86 27 51 10 2 118 112 1 8 0 63 86 27 51 10 2 118 112 1 8 0 63 86 1.00 1</td></td>	EBL EBT EBR WBL WBT WBR NBL 27 51 10 2 118 112 1 27 51 10 2 118 112 1 27 51 10 2 118 112 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2	EBL EBT EBR WBL WBT WBR NBL NBT 27 51 10 2 118 112 1 8 27 51 10 2 118 112 1 8 27 51 10 2 118 112 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 3	EBL EBR WBL WBT WBR NBL NBT NBR 27 51 10 2 118 112 1 8 0 27 51 10 2 118 112 1 8 0 27 51 10 2 118 112 1 8 0 1.00	EBLEBTEBRWBLWBTWBRNBLNBTNBRSBL 27 51102118112180632751102118112180631.001.001.002118112180631.001.001.001.001.001.001.001.001.001.00222222222222275110211811218063010010010022221181121806301001001000EBWBEBSBSBNB11111SBNBEBSBWBEBWBEB111NBSBSBWBEBWBEB1111NBSBSBWBSBSBSBSBSB111NBSBSBSBSBSBSBSBSBSB111NBSBSBSBSBSBSBSBSBSBSBSBSBSBSB </td <td>EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 27 51 10 2 118 112 1 8 0 63 86 27 51 10 2 118 112 1 8 0 63 86 27 51 10 2 118 112 1 8 0 63 86 1.00 1</td>	EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 27 51 10 2 118 112 1 8 0 63 86 27 51 10 2 118 112 1 8 0 63 86 27 51 10 2 118 112 1 8 0 63 86 1.00 1

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	11%	31%	1%	34%	
Vol Thru, %	89%	58%	51%	47%	
Vol Right, %	0%	11%	48%	19%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	9	88	232	184	
LT Vol	1	27	2	63	
Through Vol	8	51	118	86	
RT Vol	0	10	112	35	
Lane Flow Rate	9	88	232	184	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.012	0.113	0.272	0.235	
Departure Headway (Hd)	4.894	4.639	4.214	4.606	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	730	773	854	780	
Service Time	2.932	2.666	2.233	2.634	
HCM Lane V/C Ratio	0.012	0.114	0.272	0.236	
HCM Control Delay	8	8.3	8.8	9.1	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0	0.4	1.1	0.9	

Intersection	
Intersection Delay, s/veh	8.2
Intersection LOS	А

EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	4			4			4			4	
100	0	30	0	0	26	30	100	0	20	52	52
100	0	30	0	0	26	30	100	0	20	52	52
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	2	2	2	2	2	2	2	2	2	2	2
100	0	30	0	0	26	30	100	0	20	52	52
0	1	0	0	1	0	0	1	0	0	1	0
EB				WB		NB			SB		
WB				EB		SB			NB		
1				1		1			1		
SB				NB		EB			WB		
1				1		1			1		
NB				SB		WB			EB		
1				1		1			1		
8.5				7.2		8.4			8		
А				А		А			А		
	EBL 100 100 1.00 2 100 0 EB WB 1 SB 1 SB 1 NB 1 8.5 A	EBL EBT 100 0 100 0 100 1.00 2 2 100 0 0 1 EB 0 WB 1 SB 1 NB 1 1 8.5 A	EBL EBT EBR 100 0 30 100 0 30 100 0 30 100 1.00 1.00 2 2 2 100 0 30 0 1 0 EB 10 KB NB 1 NB 1 8.5 A	EBL EBT EBR WBL 100 0 30 0 100 0 30 0 100 0 30 0 100 1.00 1.00 1.00 2 2 2 2 100 0 30 0 0 1 0 0 EB WB SB 1 NB 1 8.5	EBL EBT EBR WBL WBT 100 0 30 0 0 100 0 30 0 0 100 0 30 0 0 100 0 30 0 0 100 1.00 1.00 1.00 1.00 2 2 2 2 2 100 0 30 0 0 0 1 0 0 1 0 1 0 0 1 KB KB KB 1 1 1 SB SB SB 1 1 1 8.5 7.2 2 A A A	EBL EBT EBR WBL WBT WBR 100 0 30 0 0 26 100 0 30 0 0 26 100 0 30 0 0 26 100 0 30 0 0 26 1.00 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 100 0 30 0 0 26 100 0 30 0 0 26 2	EBL EBT EBR WBL WBT WBR NBL 100 0 30 0 0 26 30 100 0 30 0 0 26 30 100 0 30 0 0 26 30 100 1.00 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 2 2 100 0 30 0 0 26 30 0 1.00 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 2 2 2 2 2 2 2 30 0	EBL EBT EBR WBL WBT WBR NBL NBT 100 0 30 0 0 26 30 100 100 0 30 0 0 26 30 100 100 0 30 0 0 26 30 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2	EBL EBT EBR WBL WBT WBR NBL NBT NBR 100 0 30 0 0 26 30 100 0 100 0 30 0 0 26 30 100 0 100 0 30 0 0 26 30 100 0 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 30 100 0 0 10 10 10	EBLEBTEBRWBLWBTWBRNBLNBTNBRSBL1000300026301000201000300026301000201000300026301000201.001.001.001.001.001.001.001.001.001.00222222222221000300026301000200100100202010003000263010002001001002020222 <td>EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 100 0 30 0 0 26 30 100 0 20 52 100 0 30 0 0 26 30 100 0 20 52 100 0 30 0 0 26 30 100 0 20 52 1.00<</td>	EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 100 0 30 0 0 26 30 100 0 20 52 100 0 30 0 0 26 30 100 0 20 52 100 0 30 0 0 26 30 100 0 20 52 1.00<

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	23%	77%	0%	16%	
Vol Thru, %	77%	0%	0%	42%	
Vol Right, %	0%	23%	100%	42%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	130	130	26	124	
LT Vol	30	100	0	20	
Through Vol	100	0	0	52	
RT Vol	0	30	26	52	
Lane Flow Rate	130	130	26	124	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.162	0.164	0.029	0.145	
Departure Headway (Hd)	4.473	4.546	4.055	4.221	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	803	790	883	852	
Service Time	2.489	2.564	2.078	2.238	
HCM Lane V/C Ratio	0.162	0.165	0.029	0.146	
HCM Control Delay	8.4	8.5	7.2	8	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.6	0.6	0.1	0.5	
Intersection					
---------------------------	---	--	--		
Intersection Delay, s/veh	8				
Intersection LOS	А				

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	≜t}		ľ	•	Y		
Traffic Vol, veh/h	93	39	45	90	41	62	
Future Vol, veh/h	93	39	45	90	41	62	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	93	39	45	90	41	62	
Number of Lanes	2	0	1	1	1	0	
Approach	EB		WB		NB		
Opposing Approach	WB		EB				
Opposing Lanes	2		2		0		
Conflicting Approach Left			NB		EB		
Conflicting Lanes Left	0		1		2		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		2		
HCM Control Delay	7.8		8.4		7.9		
HCM LOS	А		А		А		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	
Vol Left, %	40%	0%	0%	100%	0%	
Vol Thru, %	0%	100%	44%	0%	100%	
Vol Right, %	60%	0%	56%	0%	0%	
Sign Control	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	103	62	70	45	90	
LT Vol	41	0	0	45	0	
Through Vol	0	62	31	0	90	
RT Vol	62	0	39	0	0	
Lane Flow Rate	103	62	70	45	90	
Geometry Grp	2	7	7	7	7	
Degree of Util (X)	0.123	0.084	0.088	0.066	0.12	
Departure Headway (Hd)	4.282	4.898	4.507	5.391	4.889	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	
Сар	842	736	800	668	738	
Service Time	2.287	2.598	2.207	3.091	2.589	
HCM Lane V/C Ratio	0.122	0.084	0.087	0.067	0.122	
HCM Control Delay	7.9	8	7.6	8.5	8.3	
HCM Lane LOS	А	А	А	А	А	
HCM 95th-tile Q	0.4	0.3	0.3	0.2	0.4	

Appendix L: Summary Queueing Analysis and SimTraffic Outputs

			W	eekday AM Pea	k (PM Peak of	Street) [PM Pe	eak of Generato	r]
Intersectio	n	O an a a lite	2	028 Opening Da	ay	2	048 Full Buildo	ut
intersectio		(meters)	SimTraffic 50 th %	SimTraffic 95 th %	Synchro 95 th %2	SimTraffic 50 th %	SimTraffic 95 th %	Synchro 95 th %
Signaliz	ed Intersectio	ns						
Road A/Champagne /Carling1	WBL	75 m	36 (16) [12]	62 (48) [33]	46 (24) [24]	46 (19) [23]	72 (49) [52]	45 (33) [35]
	WBL	120 m	45 (68) [72]	76 (104) [118]	#89 (m#108) [#138]	57 (70) [59]	94 (105) [96]	#115 (m#103) [#128]
Preston/Carling1	NBL	130 m	50 (48) [55]	95 (84) [96]	#44 (#117) [#103]	46 (49) [46]	87 (86) [78]	#33 (#98) [#96]
	NBTR	130 m	84 (32) [43]	127 (61) [88]	112 (91) [77]	79 (37) [38]	124 (75) [73]	102 (34) [89]
	EBL	75 m	81 (64) [77]	107 (99) [106]	<mark>102</mark> (69) [62]	79 (71) [77]	108 (104) [106]	<mark>80</mark> (73) [72]
Preston/Prince of Wales	SBR	130 m	46 (74) [88]	88 (109) [124]	m134 (m167) [m148]	54 (78) [81]	97 (114) [122]	m148 (m137) [m162]
	SBTL	130 m	40 (83) [41]	71 (122) [76]	m70 (m#118) [m73]	40 (63) [50]	65 (102) [84]	m57 <mark>(m#139)</mark> [m68]
Road B/Prince of	Dual Receiving WBT	190 m 3	21 (23) [22]	48 (52) [49]	69 (m95) [m91]	24 (26) [26]	52 (56) [56]	82 (m118) [m102]
Wales	Single Receiving WBT	190 m	31 (80) [60]	91 (155) [121]	m123 (m197) [m155]	47 (88) [74]	120 (172) [148]	m98 (m196) [m169]

Critical Movements Queue Length Summary from SimTraffic and Synchro Softwares

 Road A/Champagne/Carling and Preston/Carling were both modelled with a time separated bi-directional cycling crossing of the south leg and the addition of an eastbound right-turn lane. This scenario is more conservative than a scenario that assumes unidirectional cross-rides only.

2. m = Volume for 95th percentile queue is metered by upstream signal; # = 95th percentile volume exceeds capacity, queue may be longer

3. 190 meters measured to Carling/Preston. Acknowledged that Navy/RIRO is between, but low implication of spillback to there.

2028 Peak AM SimTraffic Results

Intersection: 10: Carling & Parkdale

Movement	EB	EB	EB	WB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	R	LR
Maximum Queue (m)	62.8	214.6	206.9	64.9	62.5	33.3	226.1
Average Queue (m)	25.7	99.0	91.4	26.8	25.6	8.6	94.0
95th Queue (m)	56.6	230.1	225.5	54.2	55.4	22.6	245.0
Link Distance (m)		225.6	225.6	174.6	174.6		272.5
Upstream Blk Time (%)		25	18				16
Queuing Penalty (veh)		0	0				38
Storage Bay Dist (m)	155.0					80.0	
Storage Blk Time (%)		26			0		
Queuing Penalty (veh)		37			0		

Intersection: 11: Carling & Civic

Movement	EB	EB	EB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	LR
Maximum Queue (m)	25.5	168.0	167.1	39.6	42.9	43.4
Average Queue (m)	5.1	76.6	77.2	16.5	18.3	18.1
95th Queue (m)	17.9	190.8	190.7	34.0	39.2	45.9
Link Distance (m)		174.6	174.6	189.4	189.4	49.6
Upstream Blk Time (%)		29	29			17
Queuing Penalty (veh)		174	175			0
Storage Bay Dist (m)	90.0					
Storage Blk Time (%)		31				
Queuing Penalty (veh)		16				

Intersection: 12: Carling & Melrose

Movement	EB	EB	EB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	LR
Maximum Queue (m)	9.6	175.0	173.4	10.2	9.3	74.2
Average Queue (m)	1.4	71.3	71.4	0.5	0.7	20.1
95th Queue (m)	6.7	219.4	219.2	4.7	5.5	62.7
Link Distance (m)		189.4	189.4	239.5	239.5	211.1
Upstream Blk Time (%)		33	32			
Queuing Penalty (veh)		191	183			
Storage Bay Dist (m)	25.0					
Storage Blk Time (%)		37			0	
Queuing Penalty (veh)		9			0	

Intersection: 13: Maple/Old Irvine & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	SB	
Directions Served	L	Т	Т	R	L	Т	Т	R	LTR	LTR	
Maximum Queue (m)	18.9	225.4	226.8	22.0	27.8	53.2	38.8	2.4	106.5	23.8	
Average Queue (m)	3.2	125.5	128.2	3.1	8.9	20.2	15.5	0.2	38.0	5.2	
95th Queue (m)	14.0	284.4	284.1	14.4	21.9	40.9	33.2	1.4	124.3	21.2	
Link Distance (m)		239.5	239.5			191.1	191.1		166.9	225.8	
Upstream Blk Time (%)		38	38						8		
Queuing Penalty (veh)		217	218						6		
Storage Bay Dist (m)	20.0			15.0	45.0			25.0			
Storage Blk Time (%)	0	54	55	0	0	0	2				
Queuing Penalty (veh)	0	15	27	1	1	0	0				

Intersection: 14: Carling & Bayswater

Movement	EB	EB	WB
Directions Served	Т	Т	Т
Maximum Queue (m)	194.0	189.4	1.8
Average Queue (m)	109.1	97.6	0.1
95th Queue (m)	244.4	245.7	1.3
Link Distance (m)	191.1	191.1	114.2
Upstream Blk Time (%)	44	43	
Queuing Penalty (veh)	226	219	
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 15: Carling & Sherwood

							0.5	00
Movement	EB	EB	EB	WB	WB	WB	SB	SB
Directions Served	L	Т	Т	Т	Т	R	L	R
Maximum Queue (m)	34.7	115.9	101.2	27.4	31.3	16.6	71.6	19.5
Average Queue (m)	34.1	107.1	65.6	10.3	12.9	6.2	34.9	2.6
95th Queue (m)	39.9	139.2	156.0	22.4	27.0	15.0	60.1	13.4
Link Distance (m)		114.2	114.2	143.4	143.4		138.3	
Upstream Blk Time (%)		82	50					
Queuing Penalty (veh)		62	38					
Storage Bay Dist (m)	30.0					90.0		15.0
Storage Blk Time (%)	98	0					42	0
Queuing Penalty (veh)	455	0					2	0

Intersection: 16: Road A/Champagne & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	TR	L	TR
Maximum Queue (m)	35.2	50.3	51.5	35.6	66.8	79.5	66.1	35.5	27.8	30.0	37.2	90.1
Average Queue (m)	5.5	15.4	16.1	7.8	36.2	17.4	19.0	5.5	12.7	13.0	31.4	27.2
95th Queue (m)	19.8	35.1	36.4	23.7	62.3	50.1	50.8	21.1	25.0	26.4	42.0	72.6
Link Distance (m)		143.4	143.4			103.7	103.7		58.9	58.9		481.7
Upstream Blk Time (%)						0	0					
Queuing Penalty (veh)						0	0					
Storage Bay Dist (m)	55.0			75.0	61.0			35.0			30.0	
Storage Blk Time (%)	0	0	0		3	0	4	0			21	0
Queuing Penalty (veh)	1	0	0		11	0	3	0			19	0

Intersection: 17: Carling & Trillium MUP

Movement	EB	EB	WB	WB	
Directions Served	Т	Т	Т	Т	
Maximum Queue (m)	61.4	60.2	78.0	78.3	
Average Queue (m)	22.9	21.0	39.2	40.4	
95th Queue (m)	49.2	47.2	70.4	72.3	
Link Distance (m)	103.7	103.7	93.8	93.8	
Upstream Blk Time (%)	0	0	0	0	
Queuing Penalty (veh)	2	2	0	0	
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 18: Preston & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	Т	TR	L
Maximum Queue (m)	60.7	82.7	73.9	62.8	83.6	58.2	61.0	21.7	98.7	123.8	139.1	42.3
Average Queue (m)	16.7	36.3	29.6	24.5	45.2	31.4	34.3	8.2	50.3	83.9	82.9	37.8
95th Queue (m)	38.2	68.2	62.5	51.6	76.4	51.8	55.4	17.6	94.8	126.5	142.4	52.3
Link Distance (m)		93.8	93.8			165.0	165.0		129.7	129.7	129.7	
Upstream Blk Time (%)		1	1	0					0	1	2	
Queuing Penalty (veh)		7	6	0					0	5	9	
Storage Bay Dist (m)	70.0			90.0	120.0			95.0				35.0
Storage Blk Time (%)		2	1	0								37
Queuing Penalty (veh)		3	3	0								119

Intersection: 18: Preston & Carling

Movement	SB	B57
Directions Served	TR	Т
Maximum Queue (m)	78.9	316.9
Average Queue (m)	69.6	169.3
95th Queue (m)	84.1	411.4
Link Distance (m)	50.0	416.8
Upstream Blk Time (%)	66	12
Queuing Penalty (veh)	0	0
Storage Bay Dist (m)		
Storage Blk Time (%)	50	
Queuing Penalty (veh)	55	

Intersection: 19: Carling & Rochester

Movement	EB	EB	WB	WB	SB
Directions Served	Т	Т	Т	R	R
Maximum Queue (m)	26.2	22.2	11.3	18.6	29.5
Average Queue (m)	4.2	3.8	0.5	1.9	12.2
95th Queue (m)	44.2	43.1	5.8	10.0	22.2
Link Distance (m)	165.0	165.0	104.1		396.1
Upstream Blk Time (%)	2	2			
Queuing Penalty (veh)	10	10			
Storage Bay Dist (m)				30.0	
Storage Blk Time (%)			0	0	
Queuing Penalty (veh)			0	0	

Intersection: 20: Carling & Booth

Movement	EB	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	Т	Т	R	L	R
Maximum Queue (m)	56.4	86.8	73.7	146.6	37.5	107.6	37.5
Average Queue (m)	33.3	32.3	30.8	83.9	20.7	49.5	25.8
95th Queue (m)	56.4	68.1	63.9	147.8	45.2	104.1	46.0
Link Distance (m)		104.1	104.1	302.7		229.2	
Upstream Blk Time (%)		3	2			2	
Queuing Penalty (veh)		15	15			0	
Storage Bay Dist (m)	50.0				30.0		30.0
Storage Blk Time (%)	3	3		32	0	22	2
Queuing Penalty (veh)	16	12		60	2	37	3

Intersection: 21: Bronson & Carling/Glebe

Movement	EB	EB	EB	B1	B1	NB	NB	NB	SB	SB	
Directions Served	L	LT	R	Т	Т	L	L	TR	Т	TR	
Maximum Queue (m)	47.8	99.1	88.2	182.9	164.8	57.4	401.5	407.3	100.2	109.8	
Average Queue (m)	43.2	75.2	42.8	54.8	36.0	55.9	393.0	391.3	62.6	71.8	
95th Queue (m)	55.6	111.9	79.7	195.6	178.1	70.1	405.9	430.6	95.1	106.0	
Link Distance (m)		71.5	71.5	302.7	302.7		390.8	390.8	332.5	332.5	
Upstream Blk Time (%)		37	2	4	3		34	26			
Queuing Penalty (veh)		219	14	21	19		306	234			
Storage Bay Dist (m)	40.0					50.0					
Storage Blk Time (%)	27	54				78	2				
Queuing Penalty (veh)	95	135				223	5				

Intersection: 22: Parkdale & 417 WB on/off

Movement	WB	WB	NB	NB	SB
Directions Served	L	TR	L	Т	TR
Maximum Queue (m)	114.2	127.4	59.4	49.7	196.2
Average Queue (m)	52.0	48.8	30.8	18.9	177.2
95th Queue (m)	101.7	97.8	56.4	40.2	227.0
Link Distance (m)	152.4	152.4	55.6	55.6	183.6
Upstream Blk Time (%)	4	2	2	0	58
Queuing Penalty (veh)	0	0	5	0	0
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 23: Parkdale & 417 EB on/off

Mayamant	ED	ГР	ND	ND	CD	CD.
wovernent	EB	ËB	NB	INB	SB	- SB
Directions Served	LT	R	Т	TR	L	Т
Maximum Queue (m)	98.1	66.7	96.4	37.5	60.7	51.8
Average Queue (m)	40.8	20.1	69.8	35.1	50.4	21.4
95th Queue (m)	81.5	51.1	121.5	45.9	77.2	48.5
Link Distance (m)	121.0		90.9		55.6	55.6
Upstream Blk Time (%)	4		11		15	7
Queuing Penalty (veh)	0		70		52	23
Storage Bay Dist (m)		75.0		30.0		
Storage Blk Time (%)	1	5	1	39		
Queuing Penalty (veh)	1	10	4	57		

Intersection: 24: Parkdale & Sherwood

NA	FD		ND	00
iviovement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	97.1	45.9	98.3	88.8
Average Queue (m)	32.8	16.3	34.4	47.7
95th Queue (m)	87.8	36.0	76.0	85.7
Link Distance (m)	236.5	344.4	294.1	90.9
Upstream Blk Time (%)				8
Queuing Penalty (veh)				34
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 25: Parkdale & Ruskin

Movement	EB	\//R	\//R	NR	CB
INDAGUIGUI	ED	٧٧D	VVD	ND	30
Directions Served	LTR	L	TR	LTR	LTR
Maximum Queue (m)	73.3	15.1	23.6	54.1	178.7
Average Queue (m)	25.6	3.8	10.6	17.3	53.9
95th Queue (m)	94.2	13.7	19.0	41.2	194.9
Link Distance (m)	236.1		243.9	272.5	294.1
Upstream Blk Time (%)	3				9
Queuing Penalty (veh)	0				33
Storage Bay Dist (m)		40.0			
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 27: Bayswater & Sherwood

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	20.5	16.8	7.0	18.8
Average Queue (m)	9.7	4.9	2.1	9.6
95th Queue (m)	17.7	11.1	7.4	15.9
Link Distance (m)	602.2	138.3		93.6
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 29: Navy/Navy Parking Access & Prince of Wales

Movement	EB	WB	NB	SB
Directions Served	TR	LTR	LTR	R
Maximum Queue (m)	96.0	48.7	6.4	8.5
Average Queue (m)	44.3	2.9	0.2	1.3
95th Queue (m)	109.9	25.3	2.5	6.2
Link Distance (m)	92.6	85.9	39.1	34.1
Upstream Blk Time (%)	5	0		
Queuing Penalty (veh)	44	3		
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 30: Prince of Wales & Preston

Movement	EB	EB	EB	WB	WB	NB	SB	SB
Directions Served	L	L	TR	Т	R	LTR	LT	R
Maximum Queue (m)	52.4	92.9	49.4	154.3	52.5	8.4	83.7	104.3
Average Queue (m)	40.2	80.7	14.3	63.2	21.8	0.8	39.7	46.3
95th Queue (m)	67.8	107.3	35.9	131.8	64.2	4.7	70.8	88.2
Link Distance (m)		85.9	85.9	178.4		18.1	129.7	129.7
Upstream Blk Time (%)		18		1		0		0
Queuing Penalty (veh)		86		0		0		0
Storage Bay Dist (m)	45.0				45.0			
Storage Blk Time (%)	3	35		33	2			
Queuing Penalty (veh)	10	131		105	3			

Intersection: 31: Rochester & 417 WB on/Raymond

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	Т	Т	R
Maximum Queue (m)	52.3	48.9	40.4	41.8	35.3	35.2
Average Queue (m)	26.2	22.6	15.5	17.5	14.4	16.2
95th Queue (m)	44.6	39.6	29.3	34.6	28.2	28.7
Link Distance (m)	102.6	102.6	82.9	82.9	166.0	
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						35.0
Storage Blk Time (%)					0	0
Queuing Penalty (veh)					1	0

Intersection: 32: Rochester & 417 EB off/Orangeville

Movement	EB	EB	NB	NB	SB	SB
Directions Served	LT	TR	Т	TR	LT	Т
Maximum Queue (m)	63.9	54.7	30.5	42.1	56.0	40.0
Average Queue (m)	33.4	24.9	9.0	18.5	30.2	5.9
95th Queue (m)	52.7	43.6	22.1	35.4	48.1	22.9
Link Distance (m)	116.5	116.5	101.7	101.7	82.9	82.9
Upstream Blk Time (%)					0	
Queuing Penalty (veh)					0	
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 33: Bronson & Catherine 417 WB on

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	LT	Т	TR	L	Т	Т	Т	TR
Maximum Queue (m)	111.0	106.2	93.1	77.7	85.2	73.4	73.8	86.7	84.5
Average Queue (m)	64.6	67.8	45.9	34.0	51.9	44.9	45.4	48.0	42.8
95th Queue (m)	104.2	103.9	83.0	62.9	87.8	70.5	71.7	94.5	89.6
Link Distance (m)	174.4	174.4	174.4	174.4	81.8	81.8	81.8	236.0	236.0
Upstream Blk Time (%)	2	2	0	0	2	0	0	1	1
Queuing Penalty (veh)	0	0	0	0	11	0	0	0	0
Storage Bay Dist (m)									
Storage Blk Time (%)									
Queuing Penalty (veh)									

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	Т	Т	Т	Т
Maximum Queue (m)	98.8	67.5	67.9	67.5	82.5	81.8
Average Queue (m)	59.5	48.3	35.3	49.0	42.4	39.5
95th Queue (m)	101.2	77.2	69.4	77.6	80.2	79.3
Link Distance (m)	91.1		57.4	57.4	81.8	81.8
Upstream Blk Time (%)	7		3	8	4	3
Queuing Penalty (veh)	0		19	50	19	13
Storage Bay Dist (m)		60.0				
Storage Blk Time (%)	6	7				
Queuing Penalty (veh)	22	23				

Intersection: 35: Bronson & Plymouth/Imperial Chamberlain

Intersection: 36: Bronson & Madawaska/Fifth

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	35.4	82.8	210.7	213.2	86.7	87.1
Average Queue (m)	10.3	34.9	196.4	196.9	36.4	39.0
95th Queue (m)	30.0	69.9	239.5	239.1	74.6	76.7
Link Distance (m)	182.2	118.1	195.0	195.0	390.8	390.8
Upstream Blk Time (%)		2	82	83		
Queuing Penalty (veh)		0	0	0		
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 37: Road L & Road M/Road A

Movement	EB	NB
Directions Served	Т	R
Maximum Queue (m)	2.2	1.4
Average Queue (m)	0.1	0.1
95th Queue (m)	1.3	1.1
Link Distance (m)	34.2	24.1
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 38: Maple & Winding/Road D

Movement	EB	\//R	NR	SB
MOVEMENT	ED	VVD	IND	30
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	33.2	6.6	37.4	20.1
Average Queue (m)	9.0	2.1	10.8	10.0
95th Queue (m)	30.7	6.4	38.3	16.6
Link Distance (m)	183.3	13.9	131.4	166.9
Upstream Blk Time (%)		1	1	
Queuing Penalty (veh)		0	0	
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 39: Prince of Wales & Road B

••						~-	~-
Movement	EB	EB	B86	WB	WB	SB	SB
Directions Served	L	Т	Т	Т	TR	L	R
Maximum Queue (m)	48.7	185.4	20.4	61.2	42.4	21.2	13.5
Average Queue (m)	10.8	60.8	1.6	21.2	12.0	8.8	4.6
95th Queue (m)	33.2	141.2	19.0	47.9	36.9	19.6	12.6
Link Distance (m)		205.7	72.5	92.6		20.9	20.9
Upstream Blk Time (%)		1	1	0		3	0
Queuing Penalty (veh)		14	6	0		1	0
Storage Bay Dist (m)	45.0				35.0		
Storage Blk Time (%)	0	10		2	0		
Queuing Penalty (veh)	0	6		8	1		

Queuing Penalty (veh)

EB	NB	NB	SB
R	L	Т	R
15.2	10.2	43.8	3.8
4.7	1.5	2.2	0.1
12.0	7.0	37.7	2.3
167.0		583.3	
	50.0		50.0
		1	
	EB R 15.2 4.7 12.0 167.0	EB NB R L 15.2 10.2 4.7 1.5 12.0 7.0 167.0 50.0	EB NB NB R L T 15.2 10.2 43.8 4.7 1.5 2.2 12.0 7.0 37.7 167.0 583.3 50.0 1

Intersection: 41: Road B & Road A

Movement	EB	EB	WB	WB	NB
Directions Served	Т	TR	L	Т	LR
Maximum Queue (m)	10.4	19.2	23.1	18.8	15.0
Average Queue (m)	2.4	10.3	9.3	8.6	8.8
95th Queue (m)	9.1	16.6	18.0	16.2	13.5
Link Distance (m)	51.4	51.4	40.4	40.4	45.7
Upstream Blk Time (%)			0		
Queuing Penalty (veh)			0		
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

0

Intersection: 42: A Parking Access & Road A

Max			ND	00
iviovement	EB	WB	NB	SB
Directions Served	TR	LT	LTR	LTR
Maximum Queue (m)	6.5	36.7	21.2	8.5
Average Queue (m)	0.4	6.5	11.3	1.2
95th Queue (m)	3.2	22.5	18.6	6.1
Link Distance (m)	40.4	58.9	36.6	41.4
Upstream Blk Time (%)		0		
Queuing Penalty (veh)		0		
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 43: Road B & B Parking Access

Movement	WB	NB	SB	SB
Directions Served	LR	R	LT	Т
Maximum Queue (m)	16.4	3.5	15.6	0.9
Average Queue (m)	7.2	0.1	2.6	0.0
95th Queue (m)	13.3	1.8	10.3	0.9
Link Distance (m)	32.1	46.2	45.7	45.7
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 44: Road B & Road F

Movement	EB	NB	NB	SB
Directions Served	LR	LT	Т	Т
Maximum Queue (m)	16.1	4.4	1.3	8.9
Average Queue (m)	1.6	0.1	0.0	0.4
95th Queue (m)	9.3	2.5	1.3	4.7
Link Distance (m)	105.3	20.9	20.9	46.2
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 45: Road E & Road D

Movement	EB	NB
Directions Served	TR	LR
Maximum Queue (m)	1.8	8.2
Average Queue (m)	0.1	3.9
95th Queue (m)	1.3	9.6
Link Distance (m)	13.9	199.2
Upstream Blk Time (%)	0	
Queuing Penalty (veh)	0	
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 57: Bend

Movement	NB	NB
Directions Served	Т	
Maximum Queue (m)	1.2	0.7
Average Queue (m)	0.0	0.0
95th Queue (m)	0.9	0.7
Link Distance (m)	50.0	50.0
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 5113

Intersection: 29: Navy/Navy Parking Access & Prince of Wales

Movement	EB	WB	NB	SB
Directions Served	TR	LTR	LTR	R
Maximum Queue (m)	95.8	47.0	5.6	9.9
Average Queue (m)	29.3	2.7	0.4	1.5
95th Queue (m)	88.5	23.5	3.3	6.8
Link Distance (m)	92.6	86.0	39.1	34.1
Upstream Blk Time (%)	2	0		
Queuing Penalty (veh)	15	2		
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 30: Prince of Wales & Preston

Movement	EB	EB	EB	WB	WB	NB	SB	SB
Directions Served	L	L	TR	Т	R	LTR	LT	R
Maximum Queue (m)	52.5	93.1	54.2	138.9	52.5	9.2	84.4	153.7
Average Queue (m)	48.6	76.9	20.9	61.2	21.1	1.0	43.2	77.9
95th Queue (m)	60.7	107.6	44.4	119.8	63.3	5.5	73.2	128.8
Link Distance (m)		86.0	86.0	354.7		18.6	290.7	290.7
Upstream Blk Time (%)		12				0		
Queuing Penalty (veh)		57				0		
Storage Bay Dist (m)	45.0				45.0			
Storage Blk Time (%)	7	28		31	0			
Queuing Penalty (veh)	27	102		100	0			

Intersection: 39: Prince of Wales & Road B

Movement	EB	EB	B86	WB	WB	SB	SB
Directions Served	L	Т	Т	Т	R	L	R
Maximum Queue (m)	51.8	151.4	1.2	82.7	39.3	20.8	13.6
Average Queue (m)	10.5	53.2	0.0	28.2	4.5	7.5	3.7
95th Queue (m)	29.4	114.3	1.2	67.0	21.7	17.5	10.0
Link Distance (m)		204.7	66.1	92.6		20.7	20.7
Upstream Blk Time (%)		0		0		2	0
Queuing Penalty (veh)		1		1		1	0
Storage Bay Dist (m)	45.0				35.0		
Storage Blk Time (%)		7		4	0		
Queuing Penalty (veh)		4		2	0		

Intersection: 40: Prince of Wales & Road E

Movement	EB	NB	SB
Directions Served	R	L	R
Maximum Queue (m)	18.9	11.6	3.0
Average Queue (m)	5.5	1.7	0.1
95th Queue (m)	13.6	7.8	1.9
Link Distance (m)	355.8		
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)		50.0	50.0
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 44: Road B & Road F

EB	NB	SB
LR	LT	Т
16.2	1.5	7.1
1.3	0.0	0.3
8.6	1.4	3.0
105.2	20.7	297.4
	EB LR 16.2 1.3 8.6 105.2	EB NB LR LT 16.2 1.5 1.3 0.0 8.6 1.4 105.2 20.7

Network Summary

Network wide Queuing Penalty: 312

2028 Peak PM of Street SimTraffic Results

Intersection: 10: Carling & Parkdale

Movement	EB	EB	EB	WB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	R	LR
Maximum Queue (m)	54.6	58.5	50.0	163.0	165.7	87.5	84.1
Average Queue (m)	25.4	29.2	19.6	83.1	84.9	23.9	38.3
95th Queue (m)	45.6	53.8	43.5	159.6	163.1	78.7	69.2
Link Distance (m)		316.0	316.0	174.6	174.6		272.5
Upstream Blk Time (%)				0	0		
Queuing Penalty (veh)				2	3		
Storage Bay Dist (m)	155.0					80.0	
Storage Blk Time (%)					10	0	
Queuing Penalty (veh)					10	0	

Intersection: 11: Carling & Civic

Movement	EB	EB	EB	WB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	R	LR
Maximum Queue (m)	20.0	51.2	55.3	115.8	114.3	14.7	27.1
Average Queue (m)	6.4	17.3	14.6	41.3	41.3	0.5	10.5
95th Queue (m)	17.0	41.6	39.0	88.6	89.9	14.5	22.6
Link Distance (m)		174.6	174.6	189.4	189.4		49.6
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (m)	90.0					140.0	
Storage Blk Time (%)					0		
Queuing Penalty (veh)					0		

Intersection: 12: Carling & Melrose

Movement	EB	EB	EB	WB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	R	LR
Maximum Queue (m)	17.4	13.4	19.8	22.2	23.1	2.7	13.0
Average Queue (m)	5.5	1.4	1.4	2.7	2.3	0.1	3.9
95th Queue (m)	14.3	7.3	9.2	13.3	13.3	1.3	10.7
Link Distance (m)		189.4	189.4	239.5	239.5		211.1
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (m)	25.0					20.0	
Storage Blk Time (%)	0				0		
Queuing Penalty (veh)	0				0		

Intersection: 13: Maple/Old Irvine & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	SB	
Directions Served	L	Т	Т	R	L	Т	Т	R	LTR	LTR	
Maximum Queue (m)	27.2	58.8	62.0	22.5	52.2	98.8	90.2	8.6	66.2	20.5	
Average Queue (m)	8.6	24.8	25.8	5.7	10.4	56.1	42.7	0.4	31.1	6.0	
95th Queue (m)	21.2	48.5	52.2	19.6	32.6	92.7	74.3	4.8	54.9	15.7	
Link Distance (m)		239.5	239.5						166.9	225.8	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (m)	20.0			15.0	45.0			25.0			
Storage Blk Time (%)	1	9	13	0	0	10	13	0			
Queuing Penalty (veh)	4	3	7	0	0	6	1	0			

Intersection: 14: Carling & Bayswater

Movement
Directions Served
Maximum Queue (m)
Average Queue (m)
95th Queue (m)
Link Distance (m)
Upstream Blk Time (%)
Queuing Penalty (veh)
Storage Bay Dist (m)
Storage Blk Time (%)
Queuing Penalty (veh)

Intersection: 15: Carling & Sherwood

Movement	EB	EB	EB	WB	WB	WB	SB	SB	
Directions Served	L	Т	Т	Т	Т	R	L	R	
Maximum Queue (m)	36.6	58.7	49.1	87.2	89.9	34.0	83.4	20.5	
Average Queue (m)	17.2	24.2	17.5	27.5	28.0	7.3	38.5	3.8	
95th Queue (m)	32.3	50.3	39.2	63.3	66.2	24.9	72.5	16.0	
Link Distance (m)		114.2	114.2	143.4	143.4		138.3		
Upstream Blk Time (%)							1		
Queuing Penalty (veh)							1		
Storage Bay Dist (m)	30.0					90.0		15.0	
Storage Blk Time (%)	4	4			0	0	52	0	
Queuing Penalty (veh)	12	3			0	0	4	0	

Intersection: 16: Road A/Champagne & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	TR	L	TR
Maximum Queue (m)	59.6	115.3	114.2	53.7	68.2	108.7	110.3	42.5	41.7	51.3	37.3	144.9
Average Queue (m)	25.1	52.6	58.8	12.7	16.0	72.6	78.1	23.8	15.7	20.6	32.8	49.1
95th Queue (m)	52.1	101.1	114.0	49.7	48.3	114.7	118.0	52.3	31.9	40.8	42.9	122.7
Link Distance (m)		143.4	143.4			103.7	103.7		58.9	58.9		481.7
Upstream Blk Time (%)		0	2			2	3		0	1		
Queuing Penalty (veh)		1	10			16	22		0	1		
Storage Bay Dist (m)	55.0			75.0	61.0			35.0			30.0	
Storage Blk Time (%)	0	6	11	0	0	16	31	0			35	1
Queuing Penalty (veh)	1	6	5	0	0	7	46	1			39	2

Intersection: 17: Carling & Trillium MUP

Movement	EB	EB	WB	WB	
Directions Served	Т	Т	Т	Т	
Maximum Queue (m)	111.4	111.1	95.6	97.0	
Average Queue (m)	63.7	77.7	54.8	59.5	
95th Queue (m)	120.2	133.1	89.7	92.5	
Link Distance (m)	103.7	103.7	93.8	93.8	
Upstream Blk Time (%)	2	18	1	1	
Queuing Penalty (veh)	9	83	6	8	
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 18: Preston & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	Т	TR	L
Maximum Queue (m)	77.3	99.3	109.6	93.8	116.1	111.5	117.1	77.2	96.9	82.6	76.8	42.4
Average Queue (m)	36.2	66.2	95.2	89.3	67.9	76.2	83.1	10.3	48.2	32.1	18.1	31.1
95th Queue (m)	73.2	104.4	123.0	102.4	103.5	104.7	110.5	40.7	83.9	61.4	49.5	56.5
Link Distance (m)		93.8	93.8			165.0	165.0		129.7	129.7	129.7	
Upstream Blk Time (%)		2	44	29					0	0	0	
Queuing Penalty (veh)		9	208	0					0	0	1	
Storage Bay Dist (m)	70.0			90.0	120.0			95.0				35.0
Storage Blk Time (%)	1	6	43	42	0	0	4	0				7
Queuing Penalty (veh)	4	8	128	113	1	0	2	0				29

Intersection: 18: Preston & Carling

Movement	SB	B57
Directions Served	TR	Т
Maximum Queue (m)	81.2	416.0
Average Queue (m)	72.3	341.3
95th Queue (m)	76.0	531.3
Link Distance (m)	50.0	416.8
Upstream Blk Time (%)	80	48
Queuing Penalty (veh)	0	0
Storage Bay Dist (m)		
Storage Blk Time (%)	78	
Queuing Penalty (veh)	74	

Intersection: 19: Carling & Rochester

Movement	EB	EB	WB	WB	SB	B66
Directions Served	Т	Т	Т	R	R	Т
Maximum Queue (m)	39.9	36.8	34.1	2.8	69.8	12.0
Average Queue (m)	5.4	4.4	2.3	0.2	30.9	0.4
95th Queue (m)	34.8	31.1	15.2	2.1	60.0	11.8
Link Distance (m)	165.0	165.0	104.1		396.1	101.7
Upstream Blk Time (%)		0				0
Queuing Penalty (veh)		0				0
Storage Bay Dist (m)				30.0		
Storage Blk Time (%)			0			
Queuing Penalty (veh)			0			

Intersection: 20: Carling & Booth

Movement	EB	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	Т	Т	R	L	R
Maximum Queue (m)	57.3	103.4	93.3	221.4	37.5	237.1	37.5
Average Queue (m)	44.4	48.7	41.0	144.5	10.3	164.1	32.8
95th Queue (m)	66.4	102.0	88.3	231.7	33.6	267.0	49.5
Link Distance (m)		104.1	104.1	302.7		229.2	
Upstream Blk Time (%)		4	3			23	
Queuing Penalty (veh)		18	11			0	
Storage Bay Dist (m)	50.0				30.0		30.0
Storage Blk Time (%)	13	10		39	0	58	16
Queuing Penalty (veh)	48	21		35	0	163	42

Intersection: 21: Bronson & Carling/Glebe

Movement	EB	EB	EB	B1	B1	NB	NB	NB	SB	SB	
Directions Served	L	LT	R	Т	Т	L	L	TR	Т	TR	
Maximum Queue (m)	47.9	99.5	94.2	270.8	268.8	57.4	399.2	408.5	310.4	313.4	
Average Queue (m)	46.1	91.8	70.9	167.0	141.1	57.1	393.5	386.4	238.5	246.5	
95th Queue (m)	51.7	104.2	107.0	344.3	350.6	58.4	398.8	439.3	367.8	372.2	
Link Distance (m)		71.5	71.5	302.7	302.7		390.8	390.8	332.5	332.5	
Upstream Blk Time (%)		68	17	7	8		58	37	3	4	
Queuing Penalty (veh)		342	87	37	40		381	244	23	35	
Storage Bay Dist (m)	40.0					50.0					
Storage Blk Time (%)	31	74				85	2				
Queuing Penalty (veh)	97	149				238	5				

Intersection: 22: Parkdale & 417 WB on/off

Movement	WB	WB	NB	NB	SB
Directions Served	L	TR	L	Т	TR
Maximum Queue (m)	109.4	131.8	45.0	57.3	197.1
Average Queue (m)	52.9	62.5	17.8	26.3	188.8
95th Queue (m)	89.2	115.9	34.9	52.7	199.4
Link Distance (m)	152.4	152.4	55.6	55.6	183.6
Upstream Blk Time (%)	0	1	0	0	71
Queuing Penalty (veh)	0	0	0	1	0
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 23: Parkdale & 417 EB on/off

••					0.5	0.5
Movement	EB	EB	NB	NB	SB	SB
Directions Served	LT	R	Т	TR	L	Т
Maximum Queue (m)	127.5	82.5	96.6	37.5	60.9	59.2
Average Queue (m)	65.8	28.6	60.5	35.5	53.9	30.8
95th Queue (m)	111.2	71.9	118.0	42.4	68.8	57.5
Link Distance (m)	121.0		90.9		55.6	55.6
Upstream Blk Time (%)	2		8		15	1
Queuing Penalty (veh)	0		48		63	5
Storage Bay Dist (m)		75.0		30.0		
Storage Blk Time (%)	8	0	0	33		
Queuing Penalty (veh)	14	0	2	45		

Intersection: 24: Parkdale & Sherwood

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	39.9	37.1	94.3	91.4
Average Queue (m)	15.1	16.2	38.9	43.8
95th Queue (m)	30.5	29.9	82.6	79.1
Link Distance (m)	236.5	344.4	294.1	90.9
Upstream Blk Time (%)				1
Queuing Penalty (veh)				5
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 25: Parkdale & Ruskin

Movement	FB	WB	WR	NR	SB
WOVEHICIL	LD	٧٧D	440		50
Directions Served	LTR	L	TR	LTR	LTR
Maximum Queue (m)	29.5	14.5	30.9	45.9	53.0
Average Queue (m)	11.2	4.6	12.4	16.3	22.2
95th Queue (m)	23.2	12.9	24.4	35.9	43.9
Link Distance (m)	236.1		243.9	272.5	294.1
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)		40.0			
Storage Blk Time (%)			0		
Queuing Penalty (veh)			0		

Intersection: 27: Bayswater & Sherwood

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	17.6	25.0	7.1	39.0
Average Queue (m)	7.6	8.8	2.0	16.7
95th Queue (m)	14.9	17.8	7.2	31.1
Link Distance (m)	602.2	138.3		93.6
Upstream Blk Time (%)				0
Queuing Penalty (veh)				0
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 29: Navy/Navy Parking Access & Prince of Wales

Movement	EB	WB	NB	SB	
Directions Served	TR	LTR	LTR	R	
Maximum Queue (m)	72.3	11.6	11.1	18.9	
Average Queue (m)	11.2	0.4	2.7	6.1	
95th Queue (m)	49.1	6.1	9.3	14.7	
Link Distance (m)	92.6	85.9	39.1	34.1	
Upstream Blk Time (%)	0				
Queuing Penalty (veh)	2				
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 30: Prince of Wales & Preston

Movement	EB	EB	EB	WB	WB	WB	NB	SB	SB
Directions Served	L	L	Т	L	Т	R	LTR	LT	R
Maximum Queue (m)	52.4	92.1	57.0	15.4	193.2	52.5	3.9	126.4	116.5
Average Queue (m)	37.9	63.9	24.0	0.9	183.9	46.7	0.7	82.5	73.6
95th Queue (m)	63.5	99.2	47.6	8.4	189.2	73.3	4.0	121.9	108.8
Link Distance (m)		85.9	85.9		178.4		18.1	129.7	129.7
Upstream Blk Time (%)		5			71		0	0	0
Queuing Penalty (veh)		20			0		0	1	1
Storage Bay Dist (m)	45.0			30.0		45.0			
Storage Blk Time (%)	3	24			71	0			
Queuing Penalty (veh)	7	58			304	1			

Intersection: 31: Rochester & 417 WB on/Raymond

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	Т	Т	R
Maximum Queue (m)	53.1	74.2	38.3	72.2	54.3	40.8
Average Queue (m)	25.5	35.4	17.0	29.2	23.1	14.1
95th Queue (m)	44.1	61.9	31.1	52.3	43.3	29.8
Link Distance (m)	102.6	102.6	82.9	82.9	166.0	
Upstream Blk Time (%)		0		0		
Queuing Penalty (veh)		0		0		
Storage Bay Dist (m)						35.0
Storage Blk Time (%)					2	0
Queuing Penalty (veh)					3	0

Intersection: 32: Rochester & 417 EB off/Orangeville

Movement	EB	EB	NB	NB	SB	SB
Directions Served	LT	TR	Т	TR	LT	Т
Maximum Queue (m)	80.2	63.8	33.5	55.9	71.4	56.7
Average Queue (m)	48.2	25.5	11.6	27.7	35.9	9.9
95th Queue (m)	72.9	50.4	25.1	49.9	59.6	32.6
Link Distance (m)	116.5	116.5	101.7	101.7	82.9	82.9
Upstream Blk Time (%)					0	0
Queuing Penalty (veh)					0	0
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 33: Bronson & Catherine 417 WB on

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	LT	Т	TR	L	Т	Т	Т	TR
Maximum Queue (m)	132.1	129.8	109.6	64.0	81.2	62.3	59.8	218.4	216.2
Average Queue (m)	87.8	87.5	64.3	31.2	41.1	35.4	35.0	145.9	142.4
95th Queue (m)	129.0	124.0	104.3	56.7	70.1	56.7	56.5	244.8	239.6
Link Distance (m)	174.4	174.4	174.4	174.4	81.8	81.8	81.8	242.3	242.3
Upstream Blk Time (%)	0	0	0		1			4	4
Queuing Penalty (veh)	0	0	0		3			0	0
Storage Bay Dist (m)									
Storage Blk Time (%)									
Queuing Penalty (veh)									

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	Т	Т	Т	T
Maximum Queue (m)	98.7	67.5	63.2	65.4	87.0	86.8
Average Queue (m)	48.5	53.9	21.3	41.6	62.7	62.5
95th Queue (m)	104.8	78.1	50.3	69.8	95.4	94.5
Link Distance (m)	91.1		57.4	57.4	81.8	81.8
Upstream Blk Time (%)	11		1	3	3	2
Queuing Penalty (veh)	0		3	13	21	18
Storage Bay Dist (m)		60.0				
Storage Blk Time (%)	1	19				
Queuing Penalty (veh)	2	27				

Intersection: 35: Bronson & Plymouth/Imperial Chamberlain

ND	ND	CD	CD	CD
IND	IND	SD	৩০	৩০
LT	TR	L	Т	TR
296.1	308.7	37.3	64.2	62.4
192.4	220.6	26.3	15.6	14.4
324.9	335.3	40.1	55.9	52.8
332.5	332.5		57.4	57.4
0	1		1	2
1	5		13	16
		30.0		
		7	3	
		58	9	
	NB LT 296.1 192.4 324.9 332.5 0 1	NB NB LT TR 296.1 308.7 192.4 220.6 324.9 335.3 332.5 332.5 0 1 1 5	NB NB SB LT TR L 296.1 308.7 37.3 192.4 220.6 26.3 324.9 335.3 40.1 332.5 332.5 0 0 1 - 1 5 - 30.0 7 - 58 - -	NB NB SB SB LT TR L T 296.1 308.7 37.3 64.2 192.4 220.6 26.3 15.6 324.9 335.3 40.1 55.9 332.5 332.5 57.4 1 0 1 1 1 1 5 13 30.0 7 3 58 9

Intersection: 36: Bronson & Madawaska/Fifth

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	93.6	126.8	246.8	248.2	177.2	177.5
Average Queue (m)	31.0	88.4	227.9	228.3	76.2	79.8
95th Queue (m)	88.8	148.1	289.5	288.4	150.8	153.8
Link Distance (m)	182.2	118.1	232.0	232.0	390.8	390.8
Upstream Blk Time (%)	1	40	85	87		
Queuing Penalty (veh)	0	0	0	0		
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 37: Road L & Road M/Road A

Movement	EB	NB
Directions Served	Т	R
Maximum Queue (m)	0.6	0.6
Average Queue (m)	0.0	0.0
95th Queue (m)	0.6	0.6
Link Distance (m)	34.2	24.1
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 38: Maple & Winding/Road D

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	18.7	4.7	19.5	17.1
Average Queue (m)	8.7	1.8	9.2	9.3
95th Queue (m)	14.8	5.4	15.1	14.0
Link Distance (m)	183.3	13.9	131.4	166.9
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 39: Prince of Wales & Road B

Movement	ED	ED	\//D	\//D	CD	CD
wovernent	ED	ËD	VVD	VVD	SD	৩০
Directions Served	L	Т	Т	TR	L	R
Maximum Queue (m)	27.5	85.1	64.3	42.5	22.7	17.1
Average Queue (m)	5.1	34.9	22.8	13.7	15.1	4.8
95th Queue (m)	19.0	66.2	51.7	42.7	25.0	13.2
Link Distance (m)		205.7	92.6		20.9	20.9
Upstream Blk Time (%)					9	0
Queuing Penalty (veh)					5	0
Storage Bay Dist (m)	45.0			35.0		
Storage Blk Time (%)		3	2	0		
Queuing Penalty (veh)		1	10	1		

Intersection: 40: Prince of Wales & Road E

Movement	EB	NB
Directions Served	R	L
Maximum Queue (m)	22.5	10.1
Average Queue (m)	8.5	0.6
95th Queue (m)	17.2	4.8
Link Distance (m)	167.1	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		50.0
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 41: Road B & Road A

Movement	EB	EB	WB	WB	NB
Directions Served	Т	TR	L	Т	LR
Maximum Queue (m)	9.3	17.0	13.0	17.7	17.2
Average Queue (m)	3.0	8.2	5.0	7.6	7.7
95th Queue (m)	10.1	14.6	12.8	15.2	14.8
Link Distance (m)	51.4	51.4	40.4	40.4	45.7
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 42: A Parking Access & Road A

				0.5
Movement	EB	WB	NB	SB
Directions Served	TR	LT	LTR	LTR
Maximum Queue (m)	0.5	11.0	26.3	8.5
Average Queue (m)	0.0	1.0	14.1	1.3
95th Queue (m)	0.5	6.0	22.4	6.4
Link Distance (m)	40.4	58.9	36.6	41.4
Upstream Blk Time (%)			0	
Queuing Penalty (veh)			0	
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 43: Road B & B Parking Access

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (m)	20.7	8.7
Average Queue (m)	9.4	0.3
95th Queue (m)	16.9	3.1
Link Distance (m)	32.1	45.7
Upstream Blk Time (%)	0	
Queuing Penalty (veh)	0	
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 44: Road B & Road F

Movement	EB	NB	SB
Directions Served	LR	LT	Т
Maximum Queue (m)	14.2	2.5	18.8
Average Queue (m)	0.7	0.1	2.7
95th Queue (m)	6.4	2.3	12.5
Link Distance (m)	105.3	20.9	46.2
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 45: Road E & Road D

Movement	EB	WB	NB
Directions Served	TR	LT	LR
Maximum Queue (m)	0.9	1.9	7.1
Average Queue (m)	0.0	0.1	3.1
95th Queue (m)	0.9	1.6	8.7
Link Distance (m)	13.9	131.9	199.2
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty: 3702

Intersection: 29: Navy/Navy Parking Access & Prince of Wales

Movement	EB	WB	NB	SB
Directions Served	TR	LTR	LTR	R
Maximum Queue (m)	68.8	66.0	12.5	20.9
Average Queue (m)	10.4	11.5	2.7	6.3
95th Queue (m)	47.6	43.0	9.5	16.1
Link Distance (m)	92.6	86.0	39.1	34.1
Upstream Blk Time (%)	0	0		0
Queuing Penalty (veh)	2	0		0
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 30: Prince of Wales & Preston

Movement	EB	EB	EB	WB	WB	WB	NB	SB	SB
Directions Served	L	L	Т	L	Т	R	LTR	LT	R
Maximum Queue (m)	52.4	92.2	72.2	12.7	307.8	52.5	6.1	218.3	224.5
Average Queue (m)	45.5	64.2	33.3	0.8	297.7	45.6	1.1	108.8	154.8
95th Queue (m)	61.7	97.6	61.5	6.6	315.9	74.3	5.6	213.7	243.3
Link Distance (m)		86.0	86.0		293.0		18.3	223.9	223.9
Upstream Blk Time (%)		4	0		72		0	6	11
Queuing Penalty (veh)		17	0		0		0	0	0
Storage Bay Dist (m)	45.0			30.0		45.0			
Storage Blk Time (%)	3	19			67	0			
Queuing Penalty (veh)	7	47			289	1			

Intersection: 39: Prince of Wales & Road B

Movement	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	Т	R	L	R
Maximum Queue (m)	19.0	87.0	99.4	38.7	24.4	15.5
Average Queue (m)	4.4	32.5	68.0	2.4	16.4	3.6
95th Queue (m)	14.0	66.6	111.7	16.3	26.7	10.7
Link Distance (m)		204.7	92.6		20.7	20.7
Upstream Blk Time (%)			3		21	0
Queuing Penalty (veh)			25		11	0
Storage Bay Dist (m)	45.0			35.0		
Storage Blk Time (%)		2	13	0		
Queuing Penalty (veh)		0	2	0		

Intersection: 40: Prince of Wales & Road E

Movement	EB	NB
Directions Served	R	L
Maximum Queue (m)	26.0	9.5
Average Queue (m)	8.8	0.7
95th Queue (m)	18.9	4.9
Link Distance (m)	454.1	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		50.0
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 44: Road B & Road F

Movement	EB	NB	SB
Directions Served	LR	LT	Т
Maximum Queue (m)	15.4	2.0	31.4
Average Queue (m)	1.1	0.1	5.9
95th Queue (m)	8.8	2.0	21.1
Link Distance (m)	105.2	20.7	243.1
Upstream Blk Time (%)		0	
Queuing Penalty (veh)		0	
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty: 403

2028 Peak PM of Generator SimTraffic Results

Intersection: 10: Carling & Parkdale

Movement	EB	EB	EB	WB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	R	LR
Maximum Queue (m)	58.0	57.6	47.3	143.2	144.5	87.4	70.4
Average Queue (m)	26.0	26.4	16.4	62.6	64.6	20.7	30.0
95th Queue (m)	48.8	49.7	37.5	123.2	126.0	69.9	57.4
Link Distance (m)		316.0	316.0	174.6	174.6		272.5
Upstream Blk Time (%)				0			
Queuing Penalty (veh)				0			
Storage Bay Dist (m)	155.0					80.0	
Storage Blk Time (%)					7	0	
Queuing Penalty (veh)					8	0	

Intersection: 11: Carling & Civic

Movement	ED	ED	ED	\//D	\//D	\//D	CD
wovernent	ED	ED	ED	VVD	VVD	VVD	30
Directions Served	L	Т	Т	Т	Т	R	LR
Maximum Queue (m)	51.9	34.6	36.8	107.2	101.1	1.6	21.3
Average Queue (m)	22.1	11.4	9.7	43.6	44.8	0.1	8.2
95th Queue (m)	41.5	28.7	27.8	86.9	88.3	1.6	17.9
Link Distance (m)		174.6	174.6	189.4	189.4		49.6
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (m)	90.0					140.0	
Storage Blk Time (%)							
Queuing Penalty (veh)							

Intersection: 12: Carling & Melrose

Movement	EB	EB	EB	WB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	R	LR
Maximum Queue (m)	9.0	10.0	10.8	17.2	17.1	1.7	16.7
Average Queue (m)	1.9	0.6	0.6	1.5	1.3	0.1	4.5
95th Queue (m)	7.6	4.9	4.7	9.1	8.3	1.2	12.2
Link Distance (m)		189.4	189.4	239.5	239.5		211.1
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (m)	25.0					20.0	
Storage Blk Time (%)					0		
Queuing Penalty (veh)					0		
Intersection: 13: Maple/Old Irvine & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	SB	
Directions Served	L	Т	Т	R	L	Т	Т	R	LTR	LTR	
Maximum Queue (m)	24.5	45.1	49.9	22.5	34.8	94.7	79.2	8.4	57.6	13.6	
Average Queue (m)	8.4	15.5	17.1	4.3	5.6	47.2	33.6	0.4	25.4	3.7	
95th Queue (m)	19.3	34.4	39.7	16.2	20.8	80.1	64.0	4.9	47.6	11.3	
Link Distance (m)		239.5	239.5			191.1	191.1		166.9	225.8	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (m)	20.0			15.0	45.0			25.0			
Storage Blk Time (%)	2	4	9	0		7	9				
Queuing Penalty (veh)	4	1	4	0		3	1				

Intersection: 14: Carling & Bayswater

Movement
Directions Served
Maximum Queue (m)
Average Queue (m)
95th Queue (m)
Link Distance (m)
Upstream Blk Time (%)
Queuing Penalty (veh)
Storage Bay Dist (m)
Storage Blk Time (%)
Queuing Penalty (veh)

Intersection: 15: Carling & Sherwood

Movement	EB	EB	EB	WB	WB	WB	SB	SB	
Directions Served	L	Т	Т	Т	Т	R	L	R	
Maximum Queue (m)	35.5	53.8	8.0	57.8	59.1	29.4	58.3	20.0	
Average Queue (m)	35.4	50.3	0.4	17.5	20.1	8.2	29.7	3.6	
95th Queue (m)	36.5	77.8	5.9	43.7	44.9	20.8	52.5	15.5	
Link Distance (m)				143.4	143.4		138.3		
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (m)	30.0					90.0		15.0	
Storage Blk Time (%)	100	0					36	0	
Queuing Penalty (veh)	263	0					3	0	

Intersection: 16: Road A/Champagne & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	TR	L	TR
Maximum Queue (m)	18.1	33.4	30.9	14.3	45.4	100.6	106.4	42.5	44.8	52.4	37.0	75.5
Average Queue (m)	4.1	11.1	10.8	2.4	12.2	47.8	55.3	21.0	19.7	22.1	24.4	20.5
95th Queue (m)	12.6	26.5	26.3	9.8	33.0	89.0	99.3	48.4	37.5	43.7	39.4	50.4
Link Distance (m)		143.4	143.4			103.7	103.7		58.9	58.9		481.7
Upstream Blk Time (%)						0	1			0		
Queuing Penalty (veh)						1	3			0		
Storage Bay Dist (m)	55.0			75.0	61.0			35.0			30.0	
Storage Blk Time (%)						6	19	0			9	1
Queuing Penalty (veh)						3	26	1			13	1

Intersection: 17: Carling & Trillium MUP

Movement	EB	EB	WB	WB
Directions Served	Т	Т	Т	Т
Maximum Queue (m)	49.2	49.5	77.0	85.7
Average Queue (m)	18.2	17.4	31.5	40.4
95th Queue (m)	40.9	39.0	62.1	71.6
Link Distance (m)	103.7	103.7	93.8	93.8
Upstream Blk Time (%)			0	0
Queuing Penalty (veh)			0	0
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 18: Preston & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	Т	TR	L
Maximum Queue (m)	46.1	57.4	49.3	56.8	120.3	119.7	111.1	44.8	101.3	99.2	87.1	42.4
Average Queue (m)	20.1	21.4	18.5	24.3	72.4	62.0	66.2	7.9	54.9	42.9	25.3	35.4
95th Queue (m)	41.6	44.3	39.0	48.2	118.0	111.6	96.9	25.5	96.4	88.2	70.9	54.5
Link Distance (m)		93.8	93.8			165.0	165.0		129.7	129.7	129.7	
Upstream Blk Time (%)		0	0	0		1			0	0	0	
Queuing Penalty (veh)		1	0	0		3			0	1	1	
Storage Bay Dist (m)	70.0			90.0	120.0			95.0				35.0
Storage Blk Time (%)	0	0	0	0	4	0	1	0				18
Queuing Penalty (veh)	0	0	0	0	16	0	1	0				65

Intersection: 18: Preston & Carling

Movement	SB	B57
Directions Served	TR	Т
Maximum Queue (m)	80.3	379.1
Average Queue (m)	71.6	250.4
95th Queue (m)	80.2	492.3
Link Distance (m)	50.0	416.8
Upstream Blk Time (%)	72	22
Queuing Penalty (veh)	0	0
Storage Bay Dist (m)		
Storage Blk Time (%)	68	
Queuing Penalty (veh)	76	

Intersection: 19: Carling & Rochester

		=	=	
EB	EB	WB	WB	SB
Т	Т	Т	R	R
8.3	6.9	32.2	6.8	64.5
0.4	0.3	2.1	0.2	27.8
4.0	3.4	19.2	4.0	54.6
165.0	165.0	104.1		396.1
		0		
		0		
			30.0	
		0		
		0		
	EB T 8.3 0.4 4.0 165.0	EB EB T T 8.3 6.9 0.4 0.3 4.0 3.4 165.0 165.0	EB EB WB T T T 8.3 6.9 32.2 0.4 0.3 2.1 4.0 3.4 19.2 165.0 165.0 104.1 0 0 0 0 0 0 0 0 0	EB EB WB T T T R 8.3 6.9 32.2 6.8 0.4 0.3 2.1 0.2 4.0 3.4 19.2 4.0 165.0 165.0 104.1 0 0 0 30.0 0 0 0 0 0

Intersection: 20: Carling & Booth

Movement	EB	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	Т	Т	R	L	R
Maximum Queue (m)	55.3	61.6	57.7	182.2	37.5	141.4	37.5
Average Queue (m)	22.1	27.3	25.4	94.8	13.2	71.1	33.4
95th Queue (m)	41.4	51.5	48.1	171.0	37.3	125.3	46.3
Link Distance (m)		104.1	104.1	302.7		229.2	
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (m)	50.0				30.0		30.0
Storage Blk Time (%)	1	1		30	0	29	9
Queuing Penalty (veh)	2	2		33	0	73	24

Intersection: 21: Bronson & Carling/Glebe

Movement	EB	EB	EB	B1	B1	NB	NB	NB	SB	SB	
Directions Served	L	LT	R	Т	Т	L	L	TR	Т	TR	
Maximum Queue (m)	47.5	96.3	82.2	68.6	19.6	57.4	397.9	406.6	342.6	345.0	
Average Queue (m)	41.8	67.2	33.9	9.8	0.7	57.1	383.4	369.8	300.9	304.9	
95th Queue (m)	55.6	103.7	63.9	46.8	16.2	58.0	442.9	489.4	401.8	399.9	
Link Distance (m)		71.5	71.5	302.7	302.7		390.8	390.8	332.5	332.5	
Upstream Blk Time (%)		15	1				43	29	14	19	
Queuing Penalty (veh)		72	5				287	196	104	140	
Storage Bay Dist (m)	40.0					50.0					
Storage Blk Time (%)	15	36				84	1				
Queuing Penalty (veh)	47	77				201	3				

Intersection: 22: Parkdale & 417 WB on/off

Movement	WB	WB	NB	NB	SB
Directions Served	L	TR	L	Т	TR
Maximum Queue (m)	73.4	93.8	48.9	52.7	199.2
Average Queue (m)	36.7	43.1	21.5	17.2	171.7
95th Queue (m)	61.6	76.8	40.7	39.1	234.9
Link Distance (m)	152.4	152.4	55.6	55.6	183.6
Upstream Blk Time (%)			0	0	51
Queuing Penalty (veh)			0	1	0
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 23: Parkdale & 417 EB on/off

Ma			ND	ND	00	00
Movement	EB	EB	NB	NB	SB	SB
Directions Served	LT	R	Т	TR	L	Т
Maximum Queue (m)	105.4	77.2	96.5	37.5	61.0	53.4
Average Queue (m)	57.4	19.4	70.5	35.8	55.6	21.8
95th Queue (m)	93.0	51.6	121.1	43.3	68.8	45.7
Link Distance (m)	121.0		90.9		55.6	55.6
Upstream Blk Time (%)	0		11		20	0
Queuing Penalty (veh)	0		66		74	1
Storage Bay Dist (m)		75.0		30.0		
Storage Blk Time (%)	3	0	0	40		
Queuing Penalty (veh)	4	0	0	45		

Intersection: 24: Parkdale & Sherwood

		=		
Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	37.8	32.8	112.4	77.2
Average Queue (m)	14.3	13.2	45.2	40.0
95th Queue (m)	28.8	26.7	106.6	69.0
Link Distance (m)	236.5	344.4	294.1	90.9
Upstream Blk Time (%)				0
Queuing Penalty (veh)				0
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 25: Parkdale & Ruskin

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	L	TR	LTR	LTR
Maximum Queue (m)	28.4	16.6	26.3	53.0	50.2
Average Queue (m)	11.3	4.9	10.3	16.7	22.5
95th Queue (m)	23.9	13.4	20.9	40.2	43.7
Link Distance (m)	236.1		243.9	272.5	294.1
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)		40.0			
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 27: Bayswater & Sherwood

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	16.4	20.0	7.8	21.0
Average Queue (m)	6.8	6.6	1.6	10.6
95th Queue (m)	13.3	14.9	6.5	17.2
Link Distance (m)	602.2	138.3		93.6
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 29: Navy/Navy Parking Access & Prince of Wales

Movement	EB	WB	NB	SB
Directions Served	TR	TR	LTR	R
Maximum Queue (m)	95.4	2.5	8.4	14.8
Average Queue (m)	26.6	0.1	2.1	5.4
95th Queue (m)	81.7	1.9	8.0	13.1
Link Distance (m)	92.6	85.9	39.1	34.1
Upstream Blk Time (%)	1			
Queuing Penalty (veh)	7			
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 30: Prince of Wales & Preston

Movement	EB	EB	EB	WB	WB	WB	NB	SB	SB
Directions Served	L	L	TR	L	Т	R	LTR	LT	R
Maximum Queue (m)	52.4	92.9	48.1	13.5	192.1	52.5	18.2	90.5	128.5
Average Queue (m)	43.0	76.6	18.4	1.2	170.1	45.5	7.0	41.0	87.5
95th Queue (m)	65.2	106.2	39.6	10.1	224.8	74.6	18.4	75.7	123.6
Link Distance (m)		85.9	85.9		178.4		18.1	129.7	129.7
Upstream Blk Time (%)		13			48		20		0
Queuing Penalty (veh)		51			0		0		2
Storage Bay Dist (m)	45.0			30.0		45.0			
Storage Blk Time (%)	4	34			65	0			
Queuing Penalty (veh)	11	98			254	1			

Intersection: 31: Rochester & 417 WB on/Raymond

Movement	W/R	WR	NR	NR	SB	SB
Woverheite	10	VD	ND		50	00
Directions Served	L	TR	L	Т	Т	R
Maximum Queue (m)	35.1	67.4	37.6	59.3	38.2	35.1
Average Queue (m)	17.1	33.0	16.8	27.2	17.0	14.7
95th Queue (m)	31.6	57.1	30.4	50.4	32.1	26.5
Link Distance (m)	102.6	102.6	82.9	82.9	166.0	
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						35.0
Storage Blk Time (%)					1	0
Queuing Penalty (veh)					1	0

Intersection: 32: Rochester & 417 EB off/Orangeville

Movement	EB	EB	NB	NB	SB	SB
Directions Served	LT	TR	Т	TR	LT	Т
Maximum Queue (m)	75.6	59.6	28.2	49.6	48.3	34.8
Average Queue (m)	45.7	23.8	9.8	20.4	22.5	3.9
95th Queue (m)	68.5	49.4	22.0	38.7	40.0	18.6
Link Distance (m)	116.5	116.5	101.7	101.7	82.9	82.9
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 33: Bronson & Catherine 417 WB on

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	LT	Т	TR	L	Т	Т	Т	TR
Maximum Queue (m)	169.6	167.2	146.1	89.6	82.3	62.4	64.4	231.4	231.4
Average Queue (m)	109.3	106.3	80.3	36.5	40.6	40.1	40.7	176.8	173.8
95th Queue (m)	173.2	166.5	141.4	78.0	71.5	60.3	61.6	291.6	289.5
Link Distance (m)	174.4	174.4	174.4	174.4	81.8	81.8	81.8	242.3	242.3
Upstream Blk Time (%)	5	4	1	0	1			26	26
Queuing Penalty (veh)	0	0	0	0	2			0	0
Storage Bay Dist (m)									
Storage Blk Time (%)									
Queuing Penalty (veh)									

Intersection: 34: Bronson & 417 EB off

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	Т	Т	Т	Т
Maximum Queue (m)	101.4	67.5	63.0	65.9	90.7	90.4
Average Queue (m)	70.3	62.1	21.9	43.6	74.1	73.3
95th Queue (m)	127.2	79.2	50.0	71.5	100.1	100.5
Link Distance (m)	91.1		57.4	57.4	81.8	81.8
Upstream Blk Time (%)	33		1	4	7	7
Queuing Penalty (veh)	0		3	17	57	54
Storage Bay Dist (m)		60.0				
Storage Blk Time (%)	0	46				
Queuing Penalty (veh)	1	66				

Intersection: 35: Bronson & Plymouth/Imperial Chamberlain

NB	NB	SB	SB	SB
LT	TR	L	Т	TR
345.1	346.1	37.4	69.2	70.2
285.1	303.5	30.9	41.0	39.9
395.0	394.9	45.5	85.0	85.6
332.5	332.5		57.4	57.4
6	20		6	9
32	112		62	87
		30.0		
		10	16	
		75	45	
	NB LT 345.1 285.1 395.0 332.5 6 32	NB NB LT TR 345.1 346.1 285.1 303.5 395.0 394.9 332.5 332.5 6 20 32 112	NB NB SB LT TR L 345.1 346.1 37.4 285.1 303.5 30.9 395.0 394.9 45.5 332.5 332.5	NB NB SB SB LT TR L T 345.1 346.1 37.4 69.2 285.1 303.5 30.9 41.0 395.0 394.9 45.5 85.0 332.5 332.5 57.4 6 6 20 6 6 32 112 62 30.0 10 16 75 45

Intersection: 36: Bronson & Madawaska/Fifth

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	67.3	107.7	248.0	248.0	132.2	135.3
Average Queue (m)	23.5	56.3	200.0	201.5	56.6	60.0
95th Queue (m)	62.9	112.6	321.4	318.9	116.0	121.8
Link Distance (m)	182.2	118.1	232.0	232.0	390.8	390.8
Upstream Blk Time (%)		8	66	69		
Queuing Penalty (veh)		0	0	0		
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 37: Road L & Road M/Road A

Movement	NB
Directions Served	R
Maximum Queue (m)	0.6
Average Queue (m)	0.0
95th Queue (m)	0.6
Link Distance (m)	24.1
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (m)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 38: Maple & Winding/Road D

Movement	ED	\//D	ND	CD
wovernent	ED	٧٧D	ÍND	30
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	19.0	5.4	19.8	20.7
Average Queue (m)	8.4	2.3	9.6	9.8
95th Queue (m)	14.2	6.1	16.0	16.0
Link Distance (m)	183.3	13.9	131.4	166.9
Upstream Blk Time (%)		0		
Queuing Penalty (veh)		0		
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 39: Prince of Wales & Road B

Movement	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	Т	TR	L	R
Maximum Queue (m)	16.0	81.8	62.8	42.4	22.0	15.4
Average Queue (m)	3.3	34.0	22.0	11.8	15.4	5.1
95th Queue (m)	11.9	65.6	49.3	38.5	25.3	13.2
Link Distance (m)		205.7	92.6		20.9	20.9
Upstream Blk Time (%)			0		10	0
Queuing Penalty (veh)			0		6	0
Storage Bay Dist (m)	45.0			35.0		
Storage Blk Time (%)		3	2	0		
Queuing Penalty (veh)		0	8	1		

Intersection: 40: Prince of Wales & Road E

Movement	ED	ND
wovernent	EB	INB
Directions Served	R	L
Maximum Queue (m)	24.7	10.2
Average Queue (m)	7.5	0.5
95th Queue (m)	16.8	4.4
Link Distance (m)	167.0	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		50.0
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 41: Road B & Road A

Movement	EB	EB	WB	WB	NB
Directions Served	Т	TR	L	Т	LR
Maximum Queue (m)	10.0	17.2	11.9	14.1	16.4
Average Queue (m)	3.7	8.5	4.8	6.7	8.1
95th Queue (m)	11.1	14.6	12.6	14.3	14.3
Link Distance (m)	51.4	51.4	40.4	40.4	45.7
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 42: A Parking Access & Road A

				0.5
Movement	EB	WB	NB	SB
Directions Served	TR	LT	LTR	LTR
Maximum Queue (m)	0.5	9.9	30.3	9.3
Average Queue (m)	0.0	0.8	15.1	1.2
95th Queue (m)	0.5	5.5	24.3	6.1
Link Distance (m)	40.4	58.9	36.6	41.4
Upstream Blk Time (%)			0	
Queuing Penalty (veh)			0	
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 43: Road B & B Parking Access

Movement	WB	NB	SB
Directions Served	LR	R	LT
Maximum Queue (m)	21.7	0.8	7.9
Average Queue (m)	9.6	0.0	0.4
95th Queue (m)	17.4	0.8	3.5
Link Distance (m)	32.1	46.2	45.7
Upstream Blk Time (%)	0		
Queuing Penalty (veh)	0		
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 44: Road B & Road F

Movement	EB	NR	SB
MOVEMENT	ED	ND	30
Directions Served	LR	LT	Т
Maximum Queue (m)	11.5	3.4	20.5
Average Queue (m)	0.8	0.1	2.5
95th Queue (m)	6.4	2.5	11.9
Link Distance (m)	105.3	20.9	46.2
Upstream Blk Time (%)		0	
Queuing Penalty (veh)		0	
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 45: Road E & Road D

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (m)	3.7	8.4
Average Queue (m)	0.2	3.6
95th Queue (m)	2.1	9.3
Link Distance (m)	131.9	199.2
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 3013

Intersection: 29: Navy/Navy Parking Access & Prince of Wales

Movement	EB	WB	NB	SB
Directions Served	TR	TR	LTR	R
Maximum Queue (m)	80.8	45.1	8.0	15.8
Average Queue (m)	12.0	3.9	1.6	5.9
95th Queue (m)	51.0	23.2	6.9	14.3
Link Distance (m)	92.6	86.0	39.1	34.1
Upstream Blk Time (%)	0			
Queuing Penalty (veh)	1			
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 30: Prince of Wales & Preston

Movement	EB	EB	EB	WB	WB	WB	NB	SB	SB
Directions Served	L	L	TR	L	Т	R	LTR	LT	R
Maximum Queue (m)	52.4	92.6	54.4	12.1	314.0	52.5	22.6	124.9	213.2
Average Queue (m)	47.1	70.1	24.3	0.7	216.7	46.4	11.0	51.8	118.0
95th Queue (m)	61.1	101.0	46.1	6.2	364.0	73.5	23.0	95.3	195.8
Link Distance (m)		86.0	86.0		305.2		18.4	281.5	281.5
Upstream Blk Time (%)		5			20		45	0	0
Queuing Penalty (veh)		20			0		0	0	0
Storage Bay Dist (m)	45.0			30.0		45.0			
Storage Blk Time (%)	4	22			62	0			
Queuing Penalty (veh)	10	63			243	1			

Intersection: 39: Prince of Wales & Road B

Movement	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	Т	R	L	R
Maximum Queue (m)	16.8	71.0	98.1	28.7	23.7	15.0
Average Queue (m)	3.9	29.1	55.6	1.9	15.6	3.8
95th Queue (m)	12.8	57.3	97.3	13.5	25.8	10.9
Link Distance (m)		204.7	92.6		20.7	20.7
Upstream Blk Time (%)			1		18	0
Queuing Penalty (veh)			7		11	0
Storage Bay Dist (m)	45.0			35.0		
Storage Blk Time (%)		2	10	0		
Queuing Penalty (veh)		0	2	0		

Intersection: 40: Prince of Wales & Road E

Movement	EB	NB	SB
Directions Served	R	L	R
Maximum Queue (m)	21.7	11.7	0.7
Average Queue (m)	7.7	0.7	0.0
95th Queue (m)	16.4	5.3	0.7
Link Distance (m)	362.3		
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)		50.0	50.0
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 44: Road B & Road F

Movement	EB	NB	SB
Directions Served	LR	LT	Т
Maximum Queue (m)	15.3	6.6	32.4
Average Queue (m)	1.2	0.2	6.1
95th Queue (m)	8.0	3.4	23.3
Link Distance (m)	105.2	20.7	232.0
Upstream Blk Time (%)		0	
Queuing Penalty (veh)		0	
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty: 356

2048 Peak AM SimTraffic Results

03/20/2023

Intersection: 10: Carling & Parkdale

Movement	ГD	ГD	ГР				CD.
wovernent	ED	ED	ED	VVD	VVD	VVD	30
Directions Served	L	Т	Т	Т	Т	R	LR
Maximum Queue (m)	82.3	230.1	227.3	54.9	56.2	23.4	267.7
Average Queue (m)	20.0	119.3	112.7	22.9	22.1	7.8	119.8
95th Queue (m)	55.0	261.0	258.3	46.5	48.0	18.7	288.7
Link Distance (m)		225.6	225.6	174.6	174.6		272.5
Upstream Blk Time (%)		35	30				24
Queuing Penalty (veh)		0	0				58
Storage Bay Dist (m)	155.0					80.0	
Storage Blk Time (%)		37			0		
Queuing Penalty (veh)		41			0		

Intersection: 11: Carling & Civic

						0.0
Movement	EB	EB	EB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	LR
Maximum Queue (m)	23.8	176.6	176.2	37.0	41.9	47.5
Average Queue (m)	3.4	92.5	93.0	15.8	17.6	20.3
95th Queue (m)	15.6	214.2	213.6	32.2	37.5	50.0
Link Distance (m)		174.6	174.6	189.4	189.4	49.6
Upstream Blk Time (%)		41	40			20
Queuing Penalty (veh)		234	231			0
Storage Bay Dist (m)	90.0					
Storage Blk Time (%)		43				
Queuing Penalty (veh)		16				

Intersection: 12: Carling & Melrose

Movement	EB	EB	EB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	LR
Maximum Queue (m)	11.4	192.3	192.1	11.5	10.0	92.1
Average Queue (m)	1.1	92.5	92.4	0.6	0.6	27.3
95th Queue (m)	6.7	245.3	245.5	5.4	5.1	86.3
Link Distance (m)		189.4	189.4	239.5	239.5	211.1
Upstream Blk Time (%)		45	45			
Queuing Penalty (veh)		250	251			
Storage Bay Dist (m)	25.0					
Storage Blk Time (%)		48			0	
Queuing Penalty (veh)		9			0	

Intersection: 13: Maple/Old Irvine & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	LTR	LTR
Maximum Queue (m)	22.2	241.7	241.8	20.9	32.0	44.3	40.0	2.9	156.7	36.8
Average Queue (m)	2.4	149.1	150.7	2.7	10.3	19.1	13.8	0.2	56.3	10.0
95th Queue (m)	11.1	309.6	308.8	13.4	24.8	37.0	31.5	1.5	160.5	34.4
Link Distance (m)		239.5	239.5			191.1	191.1		166.9	225.8
Upstream Blk Time (%)		49	49						16	
Queuing Penalty (veh)		280	280						13	
Storage Bay Dist (m)	20.0			15.0	45.0			25.0		
Storage Blk Time (%)	0	64	64	0	0	0	2			
Queuing Penalty (veh)	1	17	33	0	0	0	0			

Intersection: 14: Carling & Bayswater

Movement	EB	EB	WB	WB
Directions Served	Т	Т	Т	Т
Maximum Queue (m)	194.4	194.0	8.5	11.3
Average Queue (m)	126.2	117.4	1.5	1.6
95th Queue (m)	262.2	263.9	13.2	15.2
Link Distance (m)	191.1	191.1	114.2	114.2
Upstream Blk Time (%)	55	55		
Queuing Penalty (veh)	282	279		
Storage Bay Dist (m)				
Storage Blk Time (%)				2
Queuing Penalty (veh)				0

Intersection: 15: Carling & Sherwood

							0.5	00
Movement	EB	EB	EB	WB	WB	WB	SB	SB
Directions Served	L	Т	Т	Т	Т	R	L	R
Maximum Queue (m)	35.4	116.2	93.7	30.2	37.0	19.0	71.0	20.6
Average Queue (m)	35.1	108.1	56.9	10.6	14.2	6.5	36.7	2.7
95th Queue (m)	38.3	136.3	146.6	24.4	29.3	16.1	62.7	13.3
Link Distance (m)		114.2	114.2	143.4	143.4		138.3	
Upstream Blk Time (%)		81	44					
Queuing Penalty (veh)		82	44					
Storage Bay Dist (m)	30.0					90.0		15.0
Storage Blk Time (%)	100	0					44	0
Queuing Penalty (veh)	464	0					2	0

Intersection: 16: Road A/Champagne & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	TR	L	TR
Maximum Queue (m)	26.3	52.0	51.4	48.7	68.3	106.7	97.5	36.7	40.2	42.6	37.2	84.7
Average Queue (m)	5.0	15.5	16.9	11.9	45.7	25.3	22.2	4.7	17.8	19.6	31.9	27.1
95th Queue (m)	16.5	38.1	38.1	32.7	72.4	78.9	63.0	19.4	33.6	36.1	41.3	69.7
Link Distance (m)		143.4	143.4			103.7	103.7		58.9	58.9		481.7
Upstream Blk Time (%)						1	0					
Queuing Penalty (veh)						4	0					
Storage Bay Dist (m)	55.0			75.0	61.0			35.0			30.0	
Storage Blk Time (%)		0	0	0	8	0	4	0			21	0
Queuing Penalty (veh)		0	0	0	25	1	2	0			19	0

Intersection: 17: Carling & Trillium MUP

Movement	EB	EB	WB	WB
Directions Served	Т	Т	Т	Т
Maximum Queue (m)	52.3	50.7	80.9	85.5
Average Queue (m)	21.2	20.5	41.3	40.6
95th Queue (m)	43.2	42.4	73.9	77.3
Link Distance (m)	103.7	103.7	93.8	93.8
Upstream Blk Time (%)			0	0
Queuing Penalty (veh)			0	0
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 18: Preston & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	Т	TR	L
Maximum Queue (m)	44.6	74.1	70.1	63.1	101.9	72.1	67.0	22.1	94.6	126.1	134.7	42.4
Average Queue (m)	15.7	37.4	30.5	24.5	57.2	34.2	35.1	8.2	45.5	78.5	72.4	36.1
95th Queue (m)	34.5	65.3	59.8	51.6	94.0	59.3	58.2	17.3	86.7	120.2	123.7	53.5
Link Distance (m)		93.8	93.8			165.0	165.0		129.7	129.7	129.7	
Upstream Blk Time (%)		0	0	0						0	0	
Queuing Penalty (veh)		0	0	0						1	2	
Storage Bay Dist (m)	70.0			90.0	120.0			95.0				35.0
Storage Blk Time (%)		1	0	0	0							27
Queuing Penalty (veh)		1	0	0	1							83

Intersection: 18: Preston & Carling

Movement	SB	B57
Directions Served	TR	Т
Maximum Queue (m)	77.1	221.6
Average Queue (m)	66.7	114.5
95th Queue (m)	86.4	324.6
Link Distance (m)	50.0	416.8
Upstream Blk Time (%)	54	5
Queuing Penalty (veh)	0	0
Storage Bay Dist (m)		
Storage Blk Time (%)	49	
Queuing Penalty (veh)	52	

Intersection: 19: Carling & Rochester

					0.0
Movement	EB	EB	WB	WB	SB
Directions Served	Т	Т	Т	R	R
Maximum Queue (m)	28.9	19.9	17.1	16.9	27.8
Average Queue (m)	3.2	2.0	0.8	1.4	13.2
95th Queue (m)	24.6	17.9	7.9	8.5	22.6
Link Distance (m)	165.0	165.0	104.1		396.1
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)				30.0	
Storage Blk Time (%)			0		
Queuing Penalty (veh)			0		

Intersection: 20: Carling & Booth

Movement	EB	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	Т	Т	R	L	R
Maximum Queue (m)	57.3	99.6	86.1	183.6	37.5	155.9	37.5
Average Queue (m)	39.8	45.0	39.1	100.9	21.9	77.9	28.4
95th Queue (m)	64.5	94.9	82.4	176.8	47.1	188.8	48.5
Link Distance (m)		104.1	104.1	302.7		229.2	
Upstream Blk Time (%)		2	1			11	
Queuing Penalty (veh)		14	6			0	
Storage Bay Dist (m)	50.0				30.0		30.0
Storage Blk Time (%)	6	9		39	0	34	4
Queuing Penalty (veh)	30	31		68	1	60	7

Intersection: 21: Bronson & Carling/Glebe

Movement	EB	EB	EB	B1	B1	NB	NB	NB	SB	SB	
Directions Served	L	LT	R	Т	Т	L	L	TR	Т	TR	
Maximum Queue (m)	47.4	101.2	90.5	218.9	195.2	57.4	402.4	409.5	109.1	123.8	
Average Queue (m)	46.3	89.9	44.0	148.4	120.8	57.3	390.1	388.5	66.4	78.1	
95th Queue (m)	51.0	109.6	81.9	345.5	349.0	57.6	430.4	455.8	98.3	110.8	
Link Distance (m)		71.5	71.5	302.7	302.7		390.8	390.8	332.5	332.5	
Upstream Blk Time (%)		64	3	10	8		33	23			
Queuing Penalty (veh)		369	20	60	48		282	190			
Storage Bay Dist (m)	40.0					50.0					
Storage Blk Time (%)	40	71				80	2				
Queuing Penalty (veh)	141	184				214	4				

Intersection: 22: Parkdale & 417 WB on/off

WB	WB	NB	NB	SB
L	TR	L	Т	TR
109.1	92.7	57.5	54.7	193.0
48.2	44.2	30.6	21.6	121.2
104.2	91.5	54.4	43.7	215.2
152.4	152.4	55.6	55.6	183.6
6	4	2	0	20
0	0	4	1	0
	WB L 109.1 48.2 104.2 152.4 6 0	WB WB L TR 109.1 92.7 48.2 44.2 104.2 91.5 152.4 152.4 6 4 0 0	WB WB NB L TR L 109.1 92.7 57.5 48.2 44.2 30.6 104.2 91.5 54.4 152.4 152.4 55.6 6 4 2 0 0 4	WB WB NB NB L TR L T 109.1 92.7 57.5 54.7 48.2 44.2 30.6 21.6 104.2 91.5 54.4 43.7 152.4 152.4 55.6 55.6 6 4 2 0 0 0 4 1

Intersection: 23: Parkdale & 417 EB on/off

Ma	FD			ND	00	00
Movement	EB	EB	NB	NB	SB	SB
Directions Served	LT	R	Т	TR	L	Т
Maximum Queue (m)	100.6	68.3	94.4	37.5	60.8	50.0
Average Queue (m)	43.7	21.8	51.9	33.1	44.2	20.1
95th Queue (m)	92.0	58.2	106.1	46.6	74.8	48.1
Link Distance (m)	121.0		90.9		55.6	55.6
Upstream Blk Time (%)	8		3		8	11
Queuing Penalty (veh)	0		18		26	34
Storage Bay Dist (m)		75.0		30.0		
Storage Blk Time (%)	0	9	1	26		
Queuing Penalty (veh)	1	19	4	37		

Intersection: 24: Parkdale & Sherwood

Movement	FB	WB	NB	SB
Directions Served				
Directions Served	LIR	LIK	LIK	LIK
Maximum Queue (m)	76.7	29.4	64.5	86.0
Average Queue (m)	21.5	13.4	25.1	46.9
95th Queue (m)	60.9	23.6	52.4	85.8
Link Distance (m)	236.5	344.4	294.1	90.9
Upstream Blk Time (%)				12
Queuing Penalty (veh)				50
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 25: Parkdale & Ruskin

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	L	TR	LTR	LTR
Maximum Queue (m)	104.4	13.2	22.6	54.3	222.7
Average Queue (m)	27.8	2.9	9.9	16.3	69.4
95th Queue (m)	92.6	10.9	19.5	39.4	237.0
Link Distance (m)	236.1		243.9	272.5	294.1
Upstream Blk Time (%)	0				13
Queuing Penalty (veh)	0				44
Storage Bay Dist (m)		40.0			
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 27: Bayswater & Sherwood

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	21.8	16.1	7.0	20.0
Average Queue (m)	10.3	5.2	1.9	10.1
95th Queue (m)	18.7	11.8	7.1	16.6
Link Distance (m)	602.2	138.3		93.6
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 29: Navy/Navy Parking Access & Prince of Wales

Movement	ED	\//D	ND	CD
wovernent	ED	٧٧D	IND	SD
Directions Served	TR	LTR	LTR	R
Maximum Queue (m)	95.5	45.2	7.5	8.5
Average Queue (m)	37.9	3.1	0.4	1.8
95th Queue (m)	100.9	23.6	3.6	7.4
Link Distance (m)	92.6	85.9	39.1	34.1
Upstream Blk Time (%)	3	0		
Queuing Penalty (veh)	29	0		
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 30: Prince of Wales & Preston

Movement	EB	EB	EB	WB	WB	NB	SB	SB
Directions Served	L	L	TR	Т	R	LTR	LT	R
Maximum Queue (m)	52.4	93.0	44.6	142.3	52.5	6.9	71.7	115.8
Average Queue (m)	40.2	79.0	13.3	56.6	19.9	0.5	39.6	53.7
95th Queue (m)	68.4	107.8	32.8	114.8	61.7	3.5	64.7	96.8
Link Distance (m)		85.9	85.9	178.4		18.1	129.7	129.7
Upstream Blk Time (%)		14		0				0
Queuing Penalty (veh)		67		0				0
Storage Bay Dist (m)	45.0				45.0			
Storage Blk Time (%)	2	33		30	1			
Queuing Penalty (veh)	8	118		89	1			

Intersection: 31: Rochester & 417 WB on/Raymond

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	Т	Т	R
Maximum Queue (m)	51.4	51.1	31.7	50.7	33.6	33.9
Average Queue (m)	26.5	21.9	13.9	18.6	14.3	15.3
95th Queue (m)	43.6	39.9	25.8	37.0	28.1	27.1
Link Distance (m)	102.6	102.6	82.9	82.9	166.0	
Upstream Blk Time (%)				0		
Queuing Penalty (veh)				0		
Storage Bay Dist (m)						35.0
Storage Blk Time (%)					0	0
Queuing Penalty (veh)					0	0

Intersection: 32: Rochester & 417 EB off/Orangeville

Movement	EB	EB	NB	NB	SB	SB
Directions Served	LT	TR	Т	TR	LT	Т
Maximum Queue (m)	61.1	53.1	30.7	46.7	51.5	34.8
Average Queue (m)	33.5	24.7	10.5	19.5	29.4	6.3
95th Queue (m)	52.7	43.0	23.4	37.8	47.7	22.2
Link Distance (m)	116.5	116.5	101.7	101.7	82.9	82.9
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 33: Bronson & Catherine 417 WB on

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	LT	Т	TR	L	Т	Т	Т	TR
Maximum Queue (m)	96.0	109.0	90.8	64.1	84.1	68.1	69.1	69.4	67.9
Average Queue (m)	61.2	68.3	47.5	31.1	54.2	45.0	45.2	42.4	37.6
95th Queue (m)	88.2	94.3	79.1	53.9	85.6	65.1	66.0	62.2	60.2
Link Distance (m)	174.4	174.4	174.4	174.4	81.8	81.8	81.8	236.0	236.0
Upstream Blk Time (%)					1				
Queuing Penalty (veh)					7				
Storage Bay Dist (m)									
Storage Blk Time (%)									
Queuing Penalty (veh)									

Intersection: 34: Bronson & 417 EB off

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	Т	Т	Т	Т
Maximum Queue (m)	95.7	67.5	66.7	68.5	80.7	78.6
Average Queue (m)	52.7	45.6	33.9	50.4	36.4	33.9
95th Queue (m)	92.4	76.4	65.0	73.8	71.3	70.0
Link Distance (m)	91.1		57.4	57.4	81.8	81.8
Upstream Blk Time (%)	2		2	7	0	0
Queuing Penalty (veh)	0		15	44	1	1
Storage Bay Dist (m)		60.0				
Storage Blk Time (%)	5	3				
Queuing Penalty (veh)	17	9				

Intersection: 35: Bronson & Plymouth/Imperial Chamberlain

Intersection: 36: Bronson & Madawaska/Fifth

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	38.8	93.1	211.4	210.8	82.8	86.2
Average Queue (m)	11.0	35.7	192.3	192.3	35.1	37.6
95th Queue (m)	30.8	71.6	247.8	247.8	71.9	75.0
Link Distance (m)	182.2	118.1	195.0	195.0	390.8	390.8
Upstream Blk Time (%)		0	78	79		
Queuing Penalty (veh)		0	0	0		
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 37: Road L & Road M/Road A

Maxamant	FD	ND
wovernent	EB	INB
Directions Served	Т	R
Maximum Queue (m)	1.5	4.3
Average Queue (m)	0.1	0.1
95th Queue (m)	1.2	2.1
Link Distance (m)	34.2	24.1
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 38: Maple & Winding/Road D

	50		ND	0.0
Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	63.8	8.4	51.2	21.3
Average Queue (m)	13.7	2.2	12.6	10.8
95th Queue (m)	51.3	8.1	42.7	17.7
Link Distance (m)	183.3	13.9	131.4	166.9
Upstream Blk Time (%)		5	0	
Queuing Penalty (veh)		1	0	
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 39: Prince of Wales & Road B

NA	50		DOC			00	00
Novement	EB	EB	886	VVB	WB	SB	SB
Directions Served	L	Т	Т	Т	TR	L	R
Maximum Queue (m)	48.7	176.5	9.5	78.4	42.5	22.2	16.3
Average Queue (m)	13.2	58.7	0.3	23.6	14.4	12.5	6.2
95th Queue (m)	35.9	135.9	6.9	52.1	40.5	23.4	14.2
Link Distance (m)		205.7	72.5	92.6		20.9	20.9
Upstream Blk Time (%)		0		0		5	0
Queuing Penalty (veh)		4		1		2	0
Storage Bay Dist (m)	45.0				35.0		
Storage Blk Time (%)	0	9		3	0		
Queuing Penalty (veh)	0	6		10	1		

Intersection: 40: Prince of Wales & Road E

Movement	EB	NB	SB
Directions Served	R	L	R
Maximum Queue (m)	19.4	12.9	4.5
Average Queue (m)	6.8	2.0	0.2
95th Queue (m)	14.6	8.7	2.7
Link Distance (m)	167.0		
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)		50.0	50.0
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 41: Road B & Road A

Movement	EB	EB	WB	WB	NB
Directions Served	Т	TR	L	Т	LR
Maximum Queue (m)	10.0	23.5	24.6	18.8	19.6
Average Queue (m)	3.5	11.8	11.7	9.8	9.8
95th Queue (m)	10.8	18.8	20.4	16.4	15.6
Link Distance (m)	51.4	51.4	40.4	40.4	45.7
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 42: A Parking Access & Road A

Movement	EB	WB	NB	SB
Directions Served	TR	LT	LTR	LTR
Maximum Queue (m)	8.8	49.5	29.1	8.4
Average Queue (m)	0.9	12.6	14.4	1.1
95th Queue (m)	4.7	34.3	23.8	5.8
Link Distance (m)	40.4	58.9	36.6	41.4
Upstream Blk Time (%)		0	0	
Queuing Penalty (veh)		0	0	
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 43: Road B & B Parking Access

N /			00
iviovement	VVB	NB	SB
Directions Served	LR	R	LT
Maximum Queue (m)	20.0	4.2	17.9
Average Queue (m)	8.4	0.1	3.9
95th Queue (m)	15.3	1.8	12.9
Link Distance (m)	32.1	46.2	45.7
Upstream Blk Time (%)	0		
Queuing Penalty (veh)	0		
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 44: Road B & Road F

Mariant		ND	00
iviovement	EB	NB	SB
Directions Served	LR	LT	Т
Maximum Queue (m)	16.5	6.5	12.3
Average Queue (m)	1.5	0.2	0.9
95th Queue (m)	9.1	3.3	6.4
Link Distance (m)	105.3	20.9	46.2
Upstream Blk Time (%)		0	
Queuing Penalty (veh)		0	
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 45: Road E & Road D

Movement	EB	WB	NB
Directions Served	TR	LT	LR
Maximum Queue (m)	0.9	2.7	10.2
Average Queue (m)	0.1	0.1	4.2
95th Queue (m)	1.1	1.8	9.9
Link Distance (m)	13.9	131.9	199.2
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty: 5589

Intersection: 29: Navy/Navy Parking Access & Prince of Wales

Movement	EB	WB	NB	SB
Directions Served	TR	LTR	LTR	R
Maximum Queue (m)	88.3	64.1	5.5	10.6
Average Queue (m)	17.9	5.9	0.3	2.0
95th Queue (m)	68.1	36.2	2.6	8.3
Link Distance (m)	92.6	86.0	39.1	34.1
Upstream Blk Time (%)	1	0		
Queuing Penalty (veh)	6	4		
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 30: Prince of Wales & Preston

Movement	FR	FR	FR	W/R	W/R	NR	SB	SB
							00	
Directions Served	L	L	IR	I	R	LIR	LI	R
Maximum Queue (m)	52.4	92.6	58.1	131.6	52.5	7.8	100.9	189.6
Average Queue (m)	45.0	67.0	21.7	62.4	23.9	0.9	44.2	93.3
95th Queue (m)	64.2	104.2	47.8	115.4	66.7	4.9	86.6	166.3
Link Distance (m)		86.0	86.0	354.7		18.6	290.7	290.7
Upstream Blk Time (%)		6	0			0	0	0
Queuing Penalty (veh)		26	0			0	0	0
Storage Bay Dist (m)	45.0				45.0			
Storage Blk Time (%)	4	18		34	0			
Queuing Penalty (veh)	14	66		101	0			

Intersection: 39: Prince of Wales & Road B

Movement	EB	EB	WB	WB	SB	SB
Directions Served	L	 T	 T	R	L	R
Maximum Queue (m)	45.6	112.0	96.2	42.2	21.9	14.4
Average Queue (m)	12.2	44.9	40.9	8.0	11.2	4.7
95th Queue (m)	31.6	88.5	83.6	30.5	22.3	11.2
Link Distance (m)		204.7	92.6		20.7	20.7
Upstream Blk Time (%)			1		5	0
Queuing Penalty (veh)			4		3	0
Storage Bay Dist (m)	45.0			35.0		
Storage Blk Time (%)		5	7	0		
Queuing Penalty (veh)		4	5	0		

Intersection: 40: Prince of Wales & Road E

Movement	EB	NB	SB	SB
Directions Served	R	L	Т	R
Maximum Queue (m)	20.0	12.7	1.8	9.1
Average Queue (m)	7.6	2.7	0.1	0.4
95th Queue (m)	16.1	9.6	1.8	3.9
Link Distance (m)	355.8		66.1	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)		50.0		50.0
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 44: Road B & Road F

Movement	EB	NB	SB
Directions Served	LR	LT	Т
Maximum Queue (m)	17.7	3.1	12.2
Average Queue (m)	1.6	0.1	1.2
95th Queue (m)	9.5	2.6	7.1
Link Distance (m)	105.2	20.7	297.4
Upstream Blk Time (%)		0	
Queuing Penalty (veh)		0	
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty: 233

2048 Peak PM of Street SimTraffic Results

Intersection: 10: Carling & Parkdale

M	FD						00
Movement	EB	EB	EB	WB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	R	LR
Maximum Queue (m)	51.1	59.7	53.3	163.8	164.9	87.5	73.6
Average Queue (m)	24.6	25.2	17.2	71.3	74.7	22.5	33.9
95th Queue (m)	44.7	51.3	41.3	141.0	146.3	74.8	62.9
Link Distance (m)		316.0	316.0	174.6	174.6		272.5
Upstream Blk Time (%)				0	0		
Queuing Penalty (veh)				1	2		
Storage Bay Dist (m)	155.0					80.0	
Storage Blk Time (%)					8	0	
Queuing Penalty (veh)					9	0	

Intersection: 11: Carling & Civic

Movement	EB	EB	EB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	LR
Maximum Queue (m)	17.8	52.1	52.3	102.4	103.7	25.4
Average Queue (m)	5.6	14.5	12.3	38.6	38.9	8.0
95th Queue (m)	14.8	37.3	35.0	81.8	84.6	19.3
Link Distance (m)		174.6	174.6	189.4	189.4	49.6
Upstream Blk Time (%)						0
Queuing Penalty (veh)						0
Storage Bay Dist (m)	90.0					
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 12: Carling & Melrose

Movement	EB	EB	EB	WB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	R	LR
Maximum Queue (m)	16.3	10.8	16.5	22.8	25.4	4.0	11.5
Average Queue (m)	4.9	1.0	1.1	2.3	2.2	0.1	3.0
95th Queue (m)	13.6	6.1	8.0	12.7	13.0	2.9	9.3
Link Distance (m)		189.4	189.4	239.5	239.5		211.1
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (m)	25.0					20.0	
Storage Blk Time (%)	0				0		
Queuing Penalty (veh)	0				0		

Intersection: 13: Maple/Old Irvine & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	SB	
Directions Served	L	Т	Т	R	L	Т	Т	R	LTR	LTR	
Maximum Queue (m)	26.3	60.9	62.5	22.5	46.9	94.1	74.9	20.3	69.7	15.8	
Average Queue (m)	8.2	22.0	23.3	6.3	10.7	49.5	37.1	1.0	32.4	5.6	
95th Queue (m)	20.2	45.8	50.1	20.1	32.2	84.1	67.1	9.4	56.6	13.9	
Link Distance (m)		239.5	239.5			191.1	191.1		166.9	225.8	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (m)	20.0			15.0	45.0			25.0			
Storage Blk Time (%)	2	8	13	0	0	8	11	0			
Queuing Penalty (veh)	5	3	7	0	0	4	1	0			

Intersection: 14: Carling & Bayswater

Movement	EB	EB
Directions Served	Т	Т
Maximum Queue (m)	22.3	14.2
Average Queue (m)	7.0	3.8
95th Queue (m)	34.0	24.4
Link Distance (m)	191.1	191.1
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 15: Carling & Sherwood

Movement	EB	EB	EB	WB	WB	WB	SB	SB	
Directions Served	L	Т	Т	Т	Т	R	L	R	
Maximum Queue (m)	35.4	109.6	46.3	68.6	73.1	34.0	63.3	19.5	
Average Queue (m)	35.4	93.1	21.8	21.1	21.5	7.1	29.7	3.2	
95th Queue (m)	36.1	121.6	90.8	47.6	49.9	22.6	52.4	14.3	
Link Distance (m)		114.2	114.2	143.4	143.4		138.3		
Upstream Blk Time (%)		27	11						
Queuing Penalty (veh)		4	2						
Storage Bay Dist (m)	30.0					90.0		15.0	
Storage Blk Time (%)	100				0	0	38	0	
Queuing Penalty (veh)	318				0	0	3	0	

Intersection: 16: Road A/Champagne & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	TR	L	TR
Maximum Queue (m)	18.1	30.4	35.8	16.9	68.3	107.7	108.7	42.5	51.0	60.3	37.3	89.0
Average Queue (m)	4.6	10.1	12.7	3.4	19.0	65.2	71.0	20.6	24.7	29.9	30.8	29.4
95th Queue (m)	13.9	24.1	28.9	11.7	48.8	112.7	116.7	49.2	44.3	54.3	42.9	73.0
Link Distance (m)		143.4	143.4			103.7	103.7		58.9	58.9		481.7
Upstream Blk Time (%)						2	2		0	1		
Queuing Penalty (veh)						11	16		0	1		
Storage Bay Dist (m)	55.0			75.0	61.0			35.0			30.0	
Storage Blk Time (%)						12	26	0			21	0
Queuing Penalty (veh)						8	40	1			20	0

Intersection: 17: Carling & Trillium MUP

Movement	EB	EB	WB	WB
Directions Served	Т	Т	Т	Т
Maximum Queue (m)	56.2	61.1	89.9	91.1
Average Queue (m)	18.7	22.1	46.2	51.5
95th Queue (m)	46.2	49.7	82.4	85.6
Link Distance (m)	103.7	103.7	93.8	93.8
Upstream Blk Time (%)			0	1
Queuing Penalty (veh)			3	5
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 18: Preston & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	Т	TR	L
Maximum Queue (m)	41.3	56.6	55.1	65.9	115.3	102.8	104.6	23.9	93.0	94.5	76.3	42.4
Average Queue (m)	16.0	27.1	23.0	36.9	69.9	59.0	68.4	5.9	48.7	36.8	25.4	33.2
95th Queue (m)	32.8	50.1	45.6	61.7	104.8	89.1	97.3	17.9	86.4	75.0	63.1	55.8
Link Distance (m)		93.8	93.8			165.0	165.0		129.7	129.7	129.7	
Upstream Blk Time (%)									0	0	0	
Queuing Penalty (veh)									0	0	1	
Storage Bay Dist (m)	70.0			90.0	120.0			95.0				35.0
Storage Blk Time (%)		0			0		1					11
Queuing Penalty (veh)		0			1		1					40

Intersection: 18: Preston & Carling

Movement	SB	B57
Directions Served	TR	Т
Maximum Queue (m)	77.7	345.6
Average Queue (m)	71.4	214.6
95th Queue (m)	77.8	456.1
Link Distance (m)	50.0	416.8
Upstream Blk Time (%)	71	16
Queuing Penalty (veh)	0	0
Storage Bay Dist (m)		
Storage Blk Time (%)	70	
Queuing Penalty (veh)	64	

Intersection: 19: Carling & Rochester

EB	EB	WB	WB	SB	B66
Т	Т	Т	R	R	Т
15.4	7.0	25.1	3.6	80.5	11.0
0.7	0.3	1.8	0.1	31.9	0.4
6.1	3.2	11.8	2.0	63.5	10.8
165.0	165.0	104.1		396.1	101.7
					0
					0
			30.0		
		0			
		0			
	EB T 15.4 0.7 6.1 165.0	EB EB T T 15.4 7.0 0.7 0.3 6.1 3.2 165.0 165.0	EB EB WB T T T 15.4 7.0 25.1 0.7 0.3 1.8 6.1 3.2 11.8 165.0 165.0 104.1 0 0 0	EB EB WB WB T T T R 15.4 7.0 25.1 3.6 0.7 0.3 1.8 0.1 6.1 3.2 11.8 2.0 165.0 165.0 104.1 30.0 0 0 0 0	EB EB WB WB SB T T T R R 15.4 7.0 25.1 3.6 80.5 0.7 0.3 1.8 0.1 31.9 6.1 3.2 11.8 2.0 63.5 165.0 165.0 104.1 396.1 30.0 0 0

Intersection: 20: Carling & Booth

Movement	EB	EB	EB	WB	WB	SB	SB
Directions Served	L	 T	 T	Т	R	L	R
Maximum Queue (m)	56.1	77.2	66.3	223.2	37.5	218.7	37.5
Average Queue (m)	31.2	29.5	26.4	143.6	10.2	127.7	34.5
95th Queue (m)	54.5	63.1	55.0	221.6	34.2	227.3	45.9
Link Distance (m)		104.1	104.1	302.7		229.2	
Upstream Blk Time (%)		0				6	
Queuing Penalty (veh)		0				0	
Storage Bay Dist (m)	50.0				30.0		30.0
Storage Blk Time (%)	1	2		41	0	42	20
Queuing Penalty (veh)	6	4		35	0	114	52

Intersection: 21: Bronson & Carling/Glebe

Movement	EB	EB	EB	B1	B1	NB	NB	NB	SB	SB	
Directions Served	L	LT	R	Т	Т	L	L	TR	Т	TR	
Maximum Queue (m)	47.5	100.9	88.6	125.5	67.9	57.4	398.6	407.5	302.9	303.7	
Average Queue (m)	44.5	79.1	43.4	44.0	15.9	57.1	393.6	391.0	214.5	223.6	
95th Queue (m)	54.5	111.9	79.2	145.9	101.0	58.1	399.6	419.0	352.3	354.9	
Link Distance (m)		71.5	71.5	302.7	302.7		390.8	390.8	332.5	332.5	
Upstream Blk Time (%)		34	3				58	40	4	5	
Queuing Penalty (veh)		175	15				364	247	27	40	
Storage Bay Dist (m)	40.0					50.0					
Storage Blk Time (%)	23	54				84	2				
Queuing Penalty (veh)	76	125				225	5				

Intersection: 22: Parkdale & 417 WB on/off

Movement	WB	WB	NB	NB	SB
Directions Served	L	TR	L	Т	TR
Maximum Queue (m)	105.6	127.6	49.5	60.5	193.8
Average Queue (m)	45.9	57.6	22.5	28.1	152.2
95th Queue (m)	81.0	106.8	42.0	57.2	239.5
Link Distance (m)	152.4	152.4	55.6	55.6	183.6
Upstream Blk Time (%)	0	0	0	2	37
Queuing Penalty (veh)	0	0	0	5	0
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 23: Parkdale & 417 EB on/off

Movement	EB	EB	NB	NB	SB	SB
Directions Served	LT	R	Т	TR	L	Т
Maximum Queue (m)	117.2	77.7	95.6	37.5	60.8	57.0
Average Queue (m)	60.7	25.3	54.8	34.1	53.2	31.0
95th Queue (m)	104.5	65.4	113.4	44.0	68.7	56.0
Link Distance (m)	121.0		90.9		55.6	55.6
Upstream Blk Time (%)	1		4		11	1
Queuing Penalty (veh)	0		28		46	3
Storage Bay Dist (m)		75.0		30.0		
Storage Blk Time (%)	5	0	0	28		
Queuing Penalty (veh)	9	0	1	39		

Intersection: 24: Parkdale & Sherwood

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	31.8	32.2	80.7	86.4
Average Queue (m)	13.6	14.8	31.2	40.6
95th Queue (m)	26.9	26.7	62.5	73.3
Link Distance (m)	236.5	344.4	294.1	90.9
Upstream Blk Time (%)				1
Queuing Penalty (veh)				4
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 25: Parkdale & Ruskin

Movement	FR	W/R	W/R	NR	SB
wovernent	ED	٧٧D	VVD	ND	30
Directions Served	LTR	L	TR	LTR	LTR
Maximum Queue (m)	29.6	10.2	29.0	46.6	46.9
Average Queue (m)	11.3	2.0	11.7	16.3	21.0
95th Queue (m)	23.0	8.0	23.1	36.2	40.8
Link Distance (m)	236.1		243.9	272.5	294.1
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)		40.0			
Storage Blk Time (%)			0		
Queuing Penalty (veh)			0		

Intersection: 27: Bayswater & Sherwood

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	20.4	19.4	7.1	37.3
Average Queue (m)	8.0	6.4	1.5	15.9
95th Queue (m)	15.9	14.1	6.2	27.6
Link Distance (m)	602.2	138.3		93.6
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 29: Navy/Navy Parking Access & Prince of Wales

Movement	EB	WB	NB	SB
Directions Served	TR	LTR	LTR	R
Maximum Queue (m)	89.2	32.1	10.6	22.9
Average Queue (m)	17.8	1.5	2.5	7.0
95th Queue (m)	66.7	17.0	8.7	15.9
Link Distance (m)	92.6	85.9	39.1	34.1
Upstream Blk Time (%)	0	0		0
Queuing Penalty (veh)	3	1		0
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 30: Prince of Wales & Preston

Movement	EB	EB	EB	WB	WB	WB	NB	SB	SB
Directions Served	L	L	Т	L	Т	R	LTR	LT	R
Maximum Queue (m)	52.4	92.5	61.3	4.0	192.6	52.5	5.2	117.9	122.8
Average Queue (m)	40.3	70.8	24.1	0.3	183.9	45.5	1.9	62.8	78.3
95th Queue (m)	64.7	103.5	48.3	2.3	191.4	74.5	9.9	102.1	114.0
Link Distance (m)		85.9	85.9		178.4		18.1	129.7	129.7
Upstream Blk Time (%)		8			69		9	0	0
Queuing Penalty (veh)		35			0		0	0	1
Storage Bay Dist (m)	45.0			30.0		45.0			
Storage Blk Time (%)	3	28			69	1			
Queuing Penalty (veh)	7	74			278	3			
Intersection: 31: Rochester & 417 WB on/Raymond

			ND		0.0	0.0
Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	Т	Т	R
Maximum Queue (m)	57.7	75.7	41.2	57.2	52.8	37.3
Average Queue (m)	26.2	34.3	18.7	28.2	20.6	13.2
95th Queue (m)	44.9	58.8	33.3	48.6	39.6	27.7
Link Distance (m)	102.6	102.6	82.9	82.9	166.0	
Upstream Blk Time (%)		0				
Queuing Penalty (veh)		0				
Storage Bay Dist (m)						35.0
Storage Blk Time (%)					2	0
Queuing Penalty (veh)					2	0

Intersection: 32: Rochester & 417 EB off/Orangeville

Movement	EB	EB	NB	NB	SB	SB
Directions Served	LT	TR	Т	TR	LT	Т
Maximum Queue (m)	82.1	61.2	29.0	55.5	68.2	63.6
Average Queue (m)	49.1	26.4	11.0	25.4	33.7	10.0
95th Queue (m)	72.3	51.4	23.5	46.5	56.1	35.5
Link Distance (m)	116.5	116.5	101.7	101.7	82.9	82.9
Upstream Blk Time (%)					0	0
Queuing Penalty (veh)					0	0
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 33: Bronson & Catherine 417 WB on

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	LT	Т	TR	L	Т	Т	Т	TR
Maximum Queue (m)	139.7	132.6	114.4	68.2	70.3	58.8	56.8	169.0	167.6
Average Queue (m)	86.4	87.6	65.1	29.9	34.6	31.5	31.1	101.4	99.0
95th Queue (m)	135.7	132.1	116.3	69.5	60.7	53.4	53.1	186.8	184.8
Link Distance (m)	174.4	174.4	174.4	174.4	81.8	81.8	81.8	242.3	242.3
Upstream Blk Time (%)	2	2	1	0	0			3	4
Queuing Penalty (veh)	0	0	0	0	1			0	0
Storage Bay Dist (m)									
Storage Blk Time (%)									
Queuing Penalty (veh)									

Intersection: 34: Bronson & 417 EB off

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	Т	Т	Т	Т
Maximum Queue (m)	96.9	67.5	58.1	64.7	88.3	90.9
Average Queue (m)	39.0	49.6	19.5	38.2	65.4	63.6
95th Queue (m)	89.6	74.4	45.4	66.0	96.7	95.8
Link Distance (m)	91.1		57.4	57.4	81.8	81.8
Upstream Blk Time (%)	6		0	2	3	3
Queuing Penalty (veh)	0		2	11	23	22
Storage Bay Dist (m)		60.0				
Storage Blk Time (%)	0	12				
Queuing Penalty (veh)	0	17				

Intersection: 35: Bronson & Plymouth/Imperial Chamberlain

			~-	
NB	NB	SB	SB	SB
LT	TR	L	Т	TR
319.9	327.3	37.2	58.9	54.5
223.0	250.8	25.2	15.1	14.5
341.0	354.0	40.6	56.7	56.0
332.5	332.5		57.4	57.4
1	2		1	2
4	12		13	21
		30.0		
		6	5	
		43	12	
	NB LT 319.9 223.0 341.0 332.5 1 4	NB NB LT TR 319.9 327.3 223.0 250.8 341.0 354.0 332.5 332.5 1 2 4 12	NB NB SB LT TR L 319.9 327.3 37.2 223.0 250.8 25.2 341.0 354.0 40.6 332.5 332.5 1 2 4 12 30.0 6 43 43	NB NB SB SB LT TR L T 319.9 327.3 37.2 58.9 223.0 250.8 25.2 15.1 341.0 354.0 40.6 56.7 332.5 332.5 57.4 1 2 1 4 12 13 30.0 6 5 43 12 12

Intersection: 36: Bronson & Madawaska/Fifth

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	72.7	127.7	246.4	247.5	150.1	153.4
Average Queue (m)	26.8	92.8	224.7	224.7	67.4	72.8
95th Queue (m)	67.7	151.9	291.6	291.0	129.8	137.3
Link Distance (m)	182.2	118.1	232.0	232.0	390.8	390.8
Upstream Blk Time (%)		47	81	84		
Queuing Penalty (veh)		0	0	0		
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 37: Road L & Road M/Road A

Movement	NB
Directions Served	R
Maximum Queue (m)	5.4
Average Queue (m)	0.2
95th Queue (m)	2.6
Link Distance (m)	24.1
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (m)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 38: Maple & Winding/Road D

				~~
Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	17.7	5.2	16.9	17.6
Average Queue (m)	8.9	2.0	9.0	9.8
95th Queue (m)	14.9	5.8	14.7	15.0
Link Distance (m)	183.3	13.9	131.4	166.9
Upstream Blk Time (%)		0		
Queuing Penalty (veh)		0		
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 39: Prince of Wales & Road B

Movement	ED	ED	\\/D	\\/D	CD	CD
wovernent	ED	ËD	VVD	VVD	30	১০
Directions Served	L	Т	Т	TR	L	R
Maximum Queue (m)	32.0	106.4	69.3	42.5	22.8	15.9
Average Queue (m)	6.5	40.6	26.0	14.1	18.8	6.9
95th Queue (m)	19.9	81.6	55.7	42.1	26.2	14.5
Link Distance (m)		205.7	92.6		20.9	20.9
Upstream Blk Time (%)			0		19	0
Queuing Penalty (veh)			1		16	0
Storage Bay Dist (m)	45.0			35.0		
Storage Blk Time (%)		4	3	0		
Queuing Penalty (veh)		1	13	2		

Intersection: 40: Prince of Wales & Road E

Movement	EB	NB	SB
Directions Served	R	L	R
Maximum Queue (m)	34.5	16.8	0.7
Average Queue (m)	12.9	1.8	0.0
95th Queue (m)	25.5	9.5	0.7
Link Distance (m)	167.1		
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)		50.0	50.0
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 41: Road B & Road A

Movement	EB	EB	WB	WB	NB
Directions Served	Т	TR	L	Т	LR
Maximum Queue (m)	11.4	22.3	15.6	18.6	19.1
Average Queue (m)	4.4	9.9	6.2	8.3	9.5
95th Queue (m)	12.3	17.2	14.4	15.5	14.8
Link Distance (m)	51.4	51.4	40.4	40.4	45.7
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 42: A Parking Access & Road A

Movement	EB	WB	NB	SB
Directions Served	TR	LT	LTR	LTR
Maximum Queue (m)	2.1	14.2	40.4	8.4
Average Queue (m)	0.1	1.9	19.9	1.3
95th Queue (m)	1.3	8.6	32.4	6.3
Link Distance (m)	40.4	58.9	36.6	41.4
Upstream Blk Time (%)			0	
Queuing Penalty (veh)			0	
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 43: Road B & B Parking Access

N /		00
Novement	VVB	SB
Directions Served	LR	LT
Maximum Queue (m)	27.0	6.4
Average Queue (m)	13.1	0.7
95th Queue (m)	23.2	4.8
Link Distance (m)	32.1	45.7
Upstream Blk Time (%)	0	
Queuing Penalty (veh)	0	
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 44: Road B & Road F

Movement	EB	NB	SB
Directions Served	LR	LT	Т
Maximum Queue (m)	20.0	6.5	35.7
Average Queue (m)	2.2	0.3	7.5
95th Queue (m)	11.6	4.1	24.0
Link Distance (m)	105.3	20.9	46.2
Upstream Blk Time (%)		0	0
Queuing Penalty (veh)		0	0
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 45: Road E & Road D

Movement	EB	WB	NB
Directions Served	TR	LT	LR
Maximum Queue (m)	0.8	4.4	7.6
Average Queue (m)	0.0	0.2	3.8
95th Queue (m)	0.8	2.2	9.3
Link Distance (m)	13.9	131.9	199.2
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			
orage Blk Time (%) ueuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty: 2835

Intersection: 29: Navy/Navy Parking Access & Prince of Wales

Movement	EB	WB	NB	SB
Directions Served	TR	LTR	LTR	R
Maximum Queue (m)	84.6	74.6	11.4	24.2
Average Queue (m)	16.8	16.7	2.4	7.4
95th Queue (m)	65.2	56.6	8.8	17.6
Link Distance (m)	92.6	86.0	39.1	34.1
Upstream Blk Time (%)	1	0		0
Queuing Penalty (veh)	6	0		0
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 30: Prince of Wales & Preston

Movement	EB	EB	EB	WB	WB	WB	NB	SB	SB
Directions Served	L	L	Т	L	Т	R	LTR	LT	R
Maximum Queue (m)	52.4	92.5	66.4	21.4	381.5	52.5	6.8	171.6	251.8
Average Queue (m)	46.3	69.7	30.4	1.2	359.9	43.4	2.0	80.3	142.3
95th Queue (m)	61.6	103.7	55.9	10.0	430.0	75.8	8.5	139.4	249.3
Link Distance (m)		86.0	86.0		365.4		18.4	368.9	368.9
Upstream Blk Time (%)		7			70		2		
Queuing Penalty (veh)		31			0		0		
Storage Bay Dist (m)	45.0			30.0		45.0			
Storage Blk Time (%)	3	23		0	67	0			
Queuing Penalty (veh)	9	60		0	273	1			

Intersection: 39: Prince of Wales & Road B

Movement	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	Т	R	L	R
Maximum Queue (m)	45.4	100.4	100.3	36.2	25.2	18.5
Average Queue (m)	6.8	38.1	71.5	3.2	19.4	5.7
95th Queue (m)	22.5	80.4	115.2	19.1	26.9	14.1
Link Distance (m)		204.7	92.6		20.7	20.7
Upstream Blk Time (%)			4		35	0
Queuing Penalty (veh)			35		30	0
Storage Bay Dist (m)	45.0			35.0		
Storage Blk Time (%)		4	15	0		
Queuing Penalty (veh)		1	3	0		

Intersection: 40: Prince of Wales & Road E

Movement	EB	NB	SB	SB
Directions Served	R	L	Т	R
Maximum Queue (m)	43.0	17.7	2.9	1.6
Average Queue (m)	15.5	2.2	0.1	0.1
95th Queue (m)	31.6	10.4	1.8	1.1
Link Distance (m)	349.3		67.6	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)		50.0		50.0
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 44: Road B & Road F

Network Summary

Network wide Queuing Penalty: 450

2048 Peak PM of Generator SimTraffic Results

Movement	EB	EB	EB	WB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	R	LR
Maximum Queue (m)	50.4	56.6	42.0	135.1	139.3	80.4	60.1
Average Queue (m)	22.2	23.9	13.6	58.9	61.7	17.3	23.5
95th Queue (m)	39.8	48.0	33.1	116.2	122.0	59.1	45.3
Link Distance (m)		316.0	316.0	174.6	174.6		272.5
Upstream Blk Time (%)				0	0		
Queuing Penalty (veh)				0	0		
Storage Bay Dist (m)	155.0					80.0	
Storage Blk Time (%)					5	0	
Queuing Penalty (veh)					6	0	

Intersection: 11: Carling & Civic

Movement	EB	EB	EB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	LR
Maximum Queue (m)	43.7	41.6	42.0	99.1	104.1	16.4
Average Queue (m)	17.6	10.9	9.3	37.1	38.0	6.0
95th Queue (m)	35.2	31.0	29.9	77.1	80.7	14.4
Link Distance (m)		174.6	174.6	189.4	189.4	49.6
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)	90.0					
Storage Blk Time (%)					0	
Queuing Penalty (veh)					0	

Intersection: 12: Carling & Melrose

Movement	EB	EB	EB	WB	WB	WB	SB
Directions Served	L	Т	Т	Т	Т	R	LR
Maximum Queue (m)	8.9	5.5	7.0	19.0	17.1	1.6	9.0
Average Queue (m)	1.4	0.3	0.3	1.2	1.1	0.1	2.6
95th Queue (m)	6.5	3.0	3.2	8.9	8.4	1.1	8.4
Link Distance (m)		189.4	189.4	239.5	239.5		211.1
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (m)	25.0					20.0	
Storage Blk Time (%)					0		
Queuing Penalty (veh)					0		

Intersection: 13: Maple/Old Irvine & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	SB	
Directions Served	L	Т	Т	R	L	Т	Т	R	LTR	LTR	
Maximum Queue (m)	25.6	39.5	47.9	21.8	48.0	91.9	73.5	23.0	50.7	16.4	
Average Queue (m)	8.5	16.0	17.2	4.8	6.6	46.7	36.6	1.3	23.9	4.5	
95th Queue (m)	19.7	33.7	39.0	16.9	25.3	78.7	65.8	10.7	43.7	12.7	
Link Distance (m)		239.5	239.5			191.1	191.1		166.9	225.8	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (m)	20.0			15.0	45.0			25.0			
Storage Blk Time (%)	2	4	9	0		7	11	0			
Queuing Penalty (veh)	5	2	4	0		3	1	0			

Intersection: 14: Carling & Bayswater

Movement	WB
Directions Served	Т
Maximum Queue (m)	0.9
Average Queue (m)	0.0
95th Queue (m)	0.9
Link Distance (m)	114.2
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (m)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 15: Carling & Sherwood

Movement	EB	EB	EB	WB	WB	WB	SB	SB	
Directions Served	L	Т	Т	Т	Т	R	L	R	
Maximum Queue (m)	30.0	47.0	31.8	61.3	58.4	29.0	70.7	22.0	
Average Queue (m)	11.7	17.0	11.4	20.8	23.0	9.1	33.3	4.4	
95th Queue (m)	25.5	35.9	26.1	44.0	45.6	20.5	58.1	17.2	
Link Distance (m)				143.4	143.4		138.3		
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (m)	30.0					90.0		15.0	
Storage Blk Time (%)	1	1					47	0	
Queuing Penalty (veh)	2	1					4	0	

Intersection: 16: Road A/Champagne & Carling

Mayamant	FD	FD	FD	FD						ND	CD	CD
wovernent	ED	ED	ED	ED	VVD	VVD	VVD	VVD	IND	IND	30	্য
Directions Served	L	Т	Т	R	L	Т	Т	R	L	TR	L	TR
Maximum Queue (m)	57.2	78.3	67.2	39.6	65.4	106.2	109.9	42.5	59.8	62.3	37.0	57.2
Average Queue (m)	15.9	39.5	34.0	13.8	22.6	55.7	63.9	24.7	31.5	34.8	24.2	17.1
95th Queue (m)	37.2	68.3	58.0	31.4	52.4	99.8	109.3	52.1	55.3	60.4	39.1	40.2
Link Distance (m)		143.4	143.4			103.7	103.7		58.9	58.9		481.7
Upstream Blk Time (%)						1	2		1	2		
Queuing Penalty (veh)						4	10		2	3		
Storage Bay Dist (m)	55.0			75.0	61.0			35.0			30.0	
Storage Blk Time (%)		2	0	0	0	9	28	0			9	0
Queuing Penalty (veh)		2	0	0	0	7	39	1			12	0

Intersection: 17: Carling & Trillium MUP

Movement	EB	EB	WB	WB
Directions Served	Т	Т	Т	Т
Maximum Queue (m)	79.6	77.1	60.0	67.5
Average Queue (m)	37.9	36.3	26.8	34.1
95th Queue (m)	72.0	67.8	51.8	60.2
Link Distance (m)	103.7	103.7	93.8	93.8
Upstream Blk Time (%)	0			
Queuing Penalty (veh)	0			
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 18: Preston & Carling

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	Т	TR	L
Maximum Queue (m)	73.6	90.8	89.3	80.3	108.0	91.7	94.1	36.5	87.9	88.4	81.6	42.4
Average Queue (m)	44.1	48.6	43.3	49.5	58.7	50.1	60.0	7.9	46.2	38.0	24.6	36.3
95th Queue (m)	74.8	86.3	80.2	77.9	96.2	80.3	88.6	23.3	77.9	73.1	62.4	54.1
Link Distance (m)		93.8	93.8			165.0	165.0		129.7	129.7	129.7	
Upstream Blk Time (%)		1	1	0						0	1	
Queuing Penalty (veh)		4	4	0						0	2	
Storage Bay Dist (m)	70.0			90.0	120.0			95.0				35.0
Storage Blk Time (%)	3	4	1	1	0		0	0				28
Queuing Penalty (veh)	7	5	2	1	1		0	0				100

Intersection: 18: Preston & Carling

Movement	SB	B57
Directions Served	TR	Т
Maximum Queue (m)	79.8	382.6
Average Queue (m)	71.8	248.1
95th Queue (m)	79.0	480.4
Link Distance (m)	50.0	416.8
Upstream Blk Time (%)	74	20
Queuing Penalty (veh)	0	0
Storage Bay Dist (m)		
Storage Blk Time (%)	63	
Queuing Penalty (veh)	67	

Intersection: 19: Carling & Rochester

Movement	EB	EB	WB	WB	SB
Directions Served	Т	Т	Т	R	R
Maximum Queue (m)	103.9	96.6	22.0	8.0	59.4
Average Queue (m)	31.3	26.8	1.1	0.4	26.7
95th Queue (m)	118.3	109.3	8.7	4.5	49.3
Link Distance (m)	165.0	165.0	104.1		396.1
Upstream Blk Time (%)	1	2			
Queuing Penalty (veh)	6	6			
Storage Bay Dist (m)				30.0	
Storage Blk Time (%)			0	0	
Queuing Penalty (veh)			0	0	

Intersection: 20: Carling & Booth

Movement	EB	EB	EB	WB	WB	SB	SB
Directions Served	L	 T	 T	Т	R	L	R
Maximum Queue (m)	57.4	112.2	106.5	152.6	37.5	214.1	37.5
Average Queue (m)	42.9	69.4	63.5	80.2	13.9	137.1	29.4
95th Queue (m)	70.7	128.7	122.8	146.7	38.3	269.6	51.9
Link Distance (m)		104.1	104.1	302.7		229.2	
Upstream Blk Time (%)		17	11			29	
Queuing Penalty (veh)		76	50			0	
Storage Bay Dist (m)	50.0				30.0		30.0
Storage Blk Time (%)	3	35		28	0	52	10
Queuing Penalty (veh)	11	67		29	1	130	24

Intersection: 21: Bronson & Carling/Glebe

Movement	EB	EB	EB	B1	B1	NB	NB	NB	SB	SB	
Directions Served	L	LT	R	Т	Т	L	L	TR	Т	TR	
Maximum Queue (m)	47.4	102.2	93.1	311.6	310.7	57.4	399.9	406.1	321.6	327.3	
Average Queue (m)	46.7	93.8	49.3	245.9	225.0	57.2	388.9	380.4	245.0	251.3	
95th Queue (m)	49.5	99.4	92.4	389.6	418.7	58.0	424.1	474.3	387.7	389.3	
Link Distance (m)		71.5	71.5	302.7	302.7		390.8	390.8	332.5	332.5	
Upstream Blk Time (%)		72	7	25	19		55	38	6	8	
Queuing Penalty (veh)		359	36	126	96		350	241	45	58	
Storage Bay Dist (m)	40.0					50.0					
Storage Blk Time (%)	41	74				88	2				
Queuing Penalty (veh)	140	187				199	4				

Intersection: 22: Parkdale & 417 WB on/off

Movement	WB	WB	NB	NB	SB
Directions Served	L	TR	L	Т	TR
Maximum Queue (m)	76.8	95.5	56.5	56.3	196.0
Average Queue (m)	39.7	41.5	29.0	23.3	148.3
95th Queue (m)	66.5	76.0	51.1	48.5	230.8
Link Distance (m)	152.4	152.4	55.6	55.6	183.6
Upstream Blk Time (%)			1	1	29
Queuing Penalty (veh)			4	2	0
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 23: Parkdale & 417 EB on/off

					0.5	0.5
Movement	EB	EB	NB	NB	SB	SB
Directions Served	LT	R	Т	TR	L	Т
Maximum Queue (m)	105.0	71.5	95.8	37.5	60.7	51.2
Average Queue (m)	52.3	16.8	59.1	35.0	52.8	18.6
95th Queue (m)	85.9	43.2	113.5	43.5	70.3	40.9
Link Distance (m)	121.0		90.9		55.6	55.6
Upstream Blk Time (%)	0		6		14	0
Queuing Penalty (veh)	0		34		53	1
Storage Bay Dist (m)		75.0		30.0		
Storage Blk Time (%)	2	0	0	31		
Queuing Penalty (veh)	3	0	1	38		

Intersection: 24: Parkdale & Sherwood

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	33.2	39.0	77.2	77.3
Average Queue (m)	14.1	16.2	30.9	39.5
95th Queue (m)	28.5	31.0	61.1	68.2
Link Distance (m)	236.5	344.4	294.1	90.9
Upstream Blk Time (%)				0
Queuing Penalty (veh)				0
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 25: Parkdale & Ruskin

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	L	TR	LTR	LTR
Maximum Queue (m)	30.9	10.1	25.3	50.8	53.6
Average Queue (m)	12.1	1.5	9.0	17.0	21.4
95th Queue (m)	25.0	6.9	20.1	38.5	44.3
Link Distance (m)	236.1		243.9	272.5	294.1
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)		40.0			
Storage Blk Time (%)			0		
Queuing Penalty (veh)			0		

Intersection: 27: Bayswater & Sherwood

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	17.6	19.3	7.0	22.2
Average Queue (m)	7.2	7.8	1.9	10.9
95th Queue (m)	14.1	16.1	6.9	18.5
Link Distance (m)	602.2	138.3		93.6
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 29: Navy/Navy Parking Access & Prince of Wales

Movement	EB	WB	NB	SB
Directions Served	TR	TR	LTR	R
Maximum Queue (m)	95.9	2.9	10.6	19.3
Average Queue (m)	31.1	0.2	1.9	6.6
95th Queue (m)	92.3	2.7	8.3	15.6
Link Distance (m)	92.6	85.9	39.1	34.1
Upstream Blk Time (%)	2			
Queuing Penalty (veh)	17			
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 30: Prince of Wales & Preston

Movement	EB	EB	EB	WB	WB	WB	NB	SB	SB
Directions Served	L	L	TR	L	Т	R	LTR	LT	R
Maximum Queue (m)	52.4	92.9	51.5	24.4	189.5	52.5	17.8	95.7	125.3
Average Queue (m)	42.6	77.0	19.1	1.5	166.0	44.3	5.9	50.3	80.7
95th Queue (m)	65.4	106.3	41.2	11.6	229.7	75.2	17.3	83.5	121.8
Link Distance (m)		85.9	85.9		178.4		18.1	129.7	129.7
Upstream Blk Time (%)		14			50		17		1
Queuing Penalty (veh)		60			0		0		3
Storage Bay Dist (m)	45.0			30.0		45.0			
Storage Blk Time (%)	3	33			66	1			
Queuing Penalty (veh)	9	101			241	1			

Intersection: 31: Rochester & 417 WB on/Raymond

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	Т	Т	R
Maximum Queue (m)	41.5	67.4	38.9	55.7	43.6	36.9
Average Queue (m)	17.9	31.7	17.2	24.4	16.4	14.8
95th Queue (m)	32.2	54.1	31.4	44.1	33.2	27.4
Link Distance (m)	102.6	102.6	82.9	82.9	166.0	
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						35.0
Storage Blk Time (%)					0	0
Queuing Penalty (veh)					1	0

Intersection: 32: Rochester & 417 EB off/Orangeville

Movement	EB	EB	NB	NB	SB	SB
Directions Served	LT	TR	Т	TR	LT	Т
Maximum Queue (m)	80.5	59.2	29.6	48.3	48.0	24.7
Average Queue (m)	43.2	20.9	9.6	20.0	22.7	3.0
95th Queue (m)	67.0	44.3	22.6	38.6	41.4	13.8
Link Distance (m)	116.5	116.5	101.7	101.7	82.9	82.9
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 33: Bronson & Catherine 417 WB on

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	LT	Т	TR	L	Т	Т	Т	TR
Maximum Queue (m)	151.2	144.0	125.1	71.1	67.8	58.8	57.2	175.8	171.7
Average Queue (m)	91.0	91.3	68.1	31.4	34.4	33.7	33.4	98.4	95.7
95th Queue (m)	144.4	140.8	122.0	63.2	59.6	55.1	54.5	179.3	174.6
Link Distance (m)	174.4	174.4	174.4	174.4	81.8	81.8	81.8	242.3	242.3
Upstream Blk Time (%)	1	1	0		0			1	1
Queuing Penalty (veh)	0	0	0		0			0	0
Storage Bay Dist (m)									
Storage Blk Time (%)									
Queuing Penalty (veh)									

Intersection: 34: Bronson & 417 EB off

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	Т	Т	Т	Т
Maximum Queue (m)	100.5	67.5	62.1	66.3	90.0	88.2
Average Queue (m)	50.2	55.4	20.4	39.6	66.8	64.9
95th Queue (m)	108.8	78.6	48.2	69.0	98.3	96.9
Link Distance (m)	91.1		57.4	57.4	81.8	81.8
Upstream Blk Time (%)	11		0	3	4	4
Queuing Penalty (veh)	0		2	13	29	27
Storage Bay Dist (m)		60.0				
Storage Blk Time (%)	0	21				
Queuing Penalty (veh)	1	29				

Intersection: 35: Bronson & Plymouth/Imperial Chamberlain

		~-		
NB	NB	SB	SB	SB
LT	TR	L	Т	TR
348.8	347.8	37.3	61.6	56.2
309.7	324.4	26.7	20.5	19.5
379.5	376.2	41.9	65.9	64.0
332.5	332.5		57.4	57.4
7	26		3	3
41	155		25	32
		30.0		
		6	7	
		47	17	
	NB LT 348.8 309.7 379.5 332.5 7 41	NB NB LT TR 348.8 347.8 309.7 324.4 379.5 376.2 332.5 332.5 7 26 41 155	NB NB SB LT TR L 348.8 347.8 37.3 309.7 324.4 26.7 379.5 376.2 41.9 332.5 332.5 7 7 26 30.0 6 47	NB NB SB SB LT TR L T 348.8 347.8 37.3 61.6 309.7 324.4 26.7 20.5 379.5 376.2 41.9 65.9 332.5 332.5 57.4 7 26 3 41 155 25 30.0 6 7 6 7 47 17

Intersection: 36: Bronson & Madawaska/Fifth

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	109.6	120.9	246.2	247.4	134.2	139.4
Average Queue (m)	38.9	73.9	206.0	207.0	55.7	59.6
95th Queue (m)	107.3	139.6	318.4	316.7	114.8	123.1
Link Distance (m)	182.2	118.1	232.0	232.0	390.8	390.8
Upstream Blk Time (%)	1	21	73	75		
Queuing Penalty (veh)	0	0	0	0		
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 37: Road L & Road M/Road A

Movement	NB
Directions Served	R
Maximum Queue (m)	1.5
Average Queue (m)	0.0
95th Queue (m)	1.4
Link Distance (m)	24.1
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (m)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 38: Maple & Winding/Road D

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (m)	17.4	8.1	17.6	19.0
Average Queue (m)	8.2	2.7	9.3	9.9
95th Queue (m)	13.5	7.0	15.0	15.2
Link Distance (m)	183.3	13.9	131.4	166.9
Upstream Blk Time (%)		0		
Queuing Penalty (veh)		0		
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 39: Prince of Wales & Road B

			14/5		0.5	0.0
Movement	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	Т	TR	L	R
Maximum Queue (m)	40.5	131.0	66.5	42.5	23.2	18.5
Average Queue (m)	5.4	42.6	26.2	13.8	19.7	7.1
95th Queue (m)	20.4	91.6	56.1	42.4	26.2	15.3
Link Distance (m)		205.7	92.6		20.9	20.9
Upstream Blk Time (%)			0		26	0
Queuing Penalty (veh)			1		26	0
Storage Bay Dist (m)	45.0			35.0		
Storage Blk Time (%)	0	6	3	0		
Queuing Penalty (veh)	0	2	12	1		

Intersection: 40: Prince of Wales & Road E

Movement	EB	NB	SB	SB	B86
Directions Served	R	L	Т	R	Т
Maximum Queue (m)	34.7	15.0	2.2	3.6	13.2
Average Queue (m)	13.9	1.3	0.1	0.1	0.4
95th Queue (m)	27.7	7.7	1.3	2.2	13.0
Link Distance (m)	167.0		72.5		205.7
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)		50.0		50.0	
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 41: Road B & Road A

Movement	EB	EB	WB	WB	NB
Directions Served	Т	TR	L	Т	LR
Maximum Queue (m)	12.4	21.4	15.5	19.8	18.8
Average Queue (m)	5.7	10.5	7.3	9.8	10.0
95th Queue (m)	13.3	16.8	14.5	16.0	15.0
Link Distance (m)	51.4	51.4	40.4	40.4	45.7
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 42: A Parking Access & Road A

Mayramant		FD		ND	CD
wovernent	EB	EB	٧٧B	INB	SB
Directions Served	LT	TR	LT	LTR	LTR
Maximum Queue (m)	2.3	6.9	20.7	43.9	8.5
Average Queue (m)	0.1	0.4	4.0	24.1	1.5
95th Queue (m)	1.6	3.4	13.6	39.8	6.7
Link Distance (m)	40.4	40.4	58.9	36.6	41.4
Upstream Blk Time (%)				2	
Queuing Penalty (veh)				0	
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 43: Road B & B Parking Access

Movement	WB	NB	SB
Directions Served	LR	R	LT
Maximum Queue (m)	30.1	1.5	10.3
Average Queue (m)	13.7	0.0	0.8
95th Queue (m)	23.7	1.1	5.5
Link Distance (m)	32.1	46.2	45.7
Upstream Blk Time (%)	0		
Queuing Penalty (veh)	0		
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 44: Road B & Road F

Movement	EB	NB	SB
Directions Served	LR	LT	Т
Maximum Queue (m)	17.4	9.3	37.6
Average Queue (m)	2.2	0.5	11.2
95th Queue (m)	11.2	5.1	31.0
Link Distance (m)	105.3	20.9	46.2
Upstream Blk Time (%)		0	0
Queuing Penalty (veh)		0	0
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 45: Road E & Road D

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (m)	4.6	11.8
Average Queue (m)	0.2	4.4
95th Queue (m)	2.3	10.5
Link Distance (m)	131.9	199.2
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 3572

Intersection: 29: Navy/Navy Parking Access & Prince of Wales

Movement	EB	WB	NB	SB
Directions Served	TR	TR	LTR	R
Maximum Queue (m)	91.9	67.3	9.4	20.3
Average Queue (m)	24.8	8.9	1.7	7.2
95th Queue (m)	76.7	39.1	7.2	16.9
Link Distance (m)	92.6	86.0	39.1	34.1
Upstream Blk Time (%)	1	0		0
Queuing Penalty (veh)	8	0		0
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 30: Prince of Wales & Preston

							ND	0.0	00
Movement	EB	EB	EB	WB	WB	WB	NB	SB	SB
Directions Served	L	L	TR	L	Т	R	LTR	LT	R
Maximum Queue (m)	52.4	93.2	60.9	16.1	291.0	52.5	20.7	112.7	203.2
Average Queue (m)	49.1	76.4	26.8	0.9	169.1	42.5	9.9	49.6	110.6
95th Queue (m)	59.9	105.7	50.1	8.2	316.5	76.0	21.8	90.9	186.0
Link Distance (m)		86.0	86.0		305.2		18.4	281.5	281.5
Upstream Blk Time (%)		10			11		38	0	0
Queuing Penalty (veh)		43			0		0	0	0
Storage Bay Dist (m)	45.0			30.0		45.0			
Storage Blk Time (%)	4	26			58	0			
Queuing Penalty (veh)	13	81			211	1			

Intersection: 39: Prince of Wales & Road B

Movement	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	Т	R	L	R
Maximum Queue (m)	28.0	100.3	100.0	38.8	25.0	21.3
Average Queue (m)	5.9	39.3	64.7	3.3	19.9	6.2
95th Queue (m)	19.3	79.9	109.2	19.2	25.9	15.3
Link Distance (m)		204.7	92.6		20.7	20.7
Upstream Blk Time (%)			3		40	0
Queuing Penalty (veh)			22		40	0
Storage Bay Dist (m)	45.0			35.0		
Storage Blk Time (%)		5	13	0		
Queuing Penalty (veh)		1	3	0		

Intersection: 40: Prince of Wales & Road E

Movement	FB	NB	SB
			00
Directions Served	R	L	R
Maximum Queue (m)	36.0	12.2	1.3
Average Queue (m)	15.7	1.6	0.0
95th Queue (m)	30.0	8.0	0.9
Link Distance (m)	362.3		
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)		50.0	50.0
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 44: Road B & Road F

Movement	EB	NB	SB
Directions Served	LR	LT	Т
Maximum Queue (m)	21.5	9.5	51.9
Average Queue (m)	3.2	0.3	18.1
95th Queue (m)	14.1	4.0	43.3
Link Distance (m)	105.2	20.7	232.0
Upstream Blk Time (%)		0	
Queuing Penalty (veh)		0	
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty: 423

Appendix M: Original TIA and Mobility Study (July 2021) Conclusions and Recommendations

Appendix M: Original TIA and Mobility Study (July 2021) Conclusions and Recommendations

The follow discussion outlines key findings and recommendations of the *TIA and Mobility Study (July 2021)* in black text with updated findings or recommendations in blue text where applicable.

Existing & Future Background Conditions

- 1. The Ottawa Hospital (TOH) is replacing the aging Civic Campus located at 1053 Carling Avenue with a New Civic Development. The future site is located to the southwest of the intersection of Carling Avenue and Preston Street, west of Prince of Wales Drive, and on lands to the north and east of the Central Experimental Farm. At this location, the new site will have strong ties to transit, served by Light Rail Transit (LRT) via a rapid transit station on the Trillium Line, and bus transit priority lanes with bus stops along Carling Avenue. The site is also located near the heart of the City, and as such is served with strong arterial roads and active transportation infrastructure. No change.
- 2. The estimated mode shares at the existing Civic Campus are: 85% auto-driver and 15% non-auto driver (e.g. transit, walk and cycling), which reflects the lack of high-quality active transportation and transit facilities in the surrounding network. The existing mode share estimates for the existing Civic Campus in the *TIA Mobility Study* are now considered conservative, due to changes in travel behaviour caused by the COVID-19 pandemic. A culture shift towards working from home and flexible schedules has already taken hold. A comprehensive *Transportation Demand Management (TDM) Strategy Report has been prepared* which completed an employee survey. A summary of the existing employee mode share findings is included in **Section 3.1.2**, with detailed results found within the TDM Strategy Report.
- 3. The future site is located directly adjacent to the Dow's Lake LRT Station, which is currently being upgraded as part of the City's Stage 2 LRT expansion initiative. The Trillium Line expansion is expected to be completed by 2022. There is an opportunity to provide connectivity between the hospital project and Dow's Lake Station, and in turn connect to the City's overall rapid transit system. The latest available data suggests that the Trillium LRT Line expansion will be operational by Fall 2023.
- 4. Carling Avenue adjacent to both the existing and future hospital sites is anticipated to be upgraded into a transit priority corridor by the Opening Day (2028) horizon year. The modifications include the conversion of two general purpose travel lanes to bus lanes and the addition of bus stops and cycle tracks that will serve the hospital site and the surrounding community. No change.
- 5. The Carling Avenue Transit Priority design includes additional active transportation infrastructure that will further enhance the active transportation experience. The Trillium Pathway, opened in 2016, also provides an important connection to the site. Of note, there was a notable cyclist and pedestrian collision pattern at the Preston/Carling intersection from 2014 to 2018. No change.
- 6. Existing MMLOS analysis for road segments and intersections shows poor pedestrian and cyclist performance, and in the case of the pedestrian scores, this is largely due to the length of the crossings of major roads. No change.
- 7. Overall, the majority of study area intersections in existing conditions operated within City recommended guideline (LOS E or better), with the exception of the following major arterial to arterial intersections:
 - Preston/Carling
 - Bronson/Carling,
 - Preston/Prince of Wales, and
 - Catherine/Bronson.

No change. Although time has passed since the *TIA* and *Mobility Study* (*July* 2021), the City provided pre-COVID-19 traffic counts are still being used as they reflect a more conservative approach to the analysis (i.e. pre-work from home/hybrid conditions). The same existing volumes and roadway network has been used.

- 8. Overall, the majority of study area intersections in 2028 and 2048 background conditions operated within City recommended guideline (LOS E or better), with the exception of the following major arterial to arterial intersections:
 - Preston/Carling,
 - Booth/Carling,
 - Bronson/Carling,
 - Preston/Prince of Wales, and
 - Catherine/Bronson

Negligible change. The background volumes accounted for new other area developments that increased traffic volumes in the study area, but this was balanced by adjustments existing Civic Campus traffic volume and distribution estimates based on new Streetlight data. Therefore, the overall change in background volumes was nominal.

Proposed Development

- 9. The assumed phasing of the New Civic Development is:
 - Opening Day 2028, which anticipates approximately 2.4M ft² of hospital use, 6,600 FTE employees and 765 beds;

The latest site statistics propose approximately 2.7M ft² of hospital uses, 5,000 full time employees (FTE) and 640 beds by 2028.

 Full Buildout 2048, which includes the full hospital expansion and all ancillary facilities, including the Carling Village development site and the UOHI building (totaling approximately 5.0M ft²), 10,500 FTE employees, and 1,250 beds.

The latest site statistics propose approximately 4.9M ft² of hospital and hospital related uses, 9,960 full time employees (FTE) and 1,140 beds by 2048.

- 10. A total of approximately 3,100 parking spaces (number is subject to change) will be provided on-site. All existing off-site (satellite) parking leases will be discontinued by Opening Day (2028). Please refer to Section 4.2. The total minimum number of parking is still approximately 3,100. There is additional proposed parking which is reserved for snow storage during winter and emergency surge event tents. These additional parking spaces will not be available at all times and will have flexible functions as needed/available.
- 11. The target mode shares for the New Civic Development are:
 - Opening Day: 50% auto-driver, 15% auto-passenger, 30% transit, 5% active transportation

• Full Buildout: 35% auto-driver, 12% auto-passenger, 45% transit, 8% active transportation These targets represent all campus users (staff, visitors etc.), but it is recognized there will be variability in the mode shares between each user group (e.g. employees will have a lower auto-driver component, while patients/visitors will have a higher auto-driver component). The aggregated mode share targets for all trips at the NCD have not changed significantly since the *TIA* and *Mobility Study (July 2021)*, which were developed through research of other institutions in North America, City of Ottawa policies and approaches, and vetted by City staff.

The active mode shares have changed by a few base percentage points in response to new data from the employee mode share survey. The overall driver mode share has not changed.

The TIA Addendum #2 provides further breakdown of the mode share for each type of staff based on anticipated staff schedules, and for visitors based on parking activity data. All information was provided by TOH.

In addition, TOH prepared a *Transportation Demand Management (TDM)* Strategy Report which determined the achievability of these mode share targets and developed a comprehensive plan to help ensure TOH reach these goals.

- 12. At Opening Day (2028), the New Civic Development is estimated to generate approximately:
 - 110 to 100 active transportation trips during the commuter peak hours;
 - 600 to 700 transit trips during the commuter peak hours; and
 - 1,000 to 1,100 personal vehicle trips during the commuter peak hours.

At Full Buildout (2048), the New Civic Development is estimated to generate approximately:

- 250 to 300 active transportation trips during the commuter peak hours;
- 1,600 to 1,800 transit trips during the commuter peak hours; and
- 1,200 to 1,350 personal vehicle trips during the commuter peak hours.

The updated trip generation results by mode for 2028 were:

- 80 to 130 active transportation trips during the peak hours;
- 340 to 660 transit trips during the peak hours; and
- 520 to 840 personal vehicle trips during the peak hours.

The updated trip generation results by mode for 2048 were:

- 280 to 340 active transportation trips during the peak hours;
- 1,200 to 1,680 transit trips during the peak hours; and
- 880 to 1,190 personal vehicle trips during the peak hours.

The notable reduction in vehicle trips from the *TIA and Mobility Study (July 2021)* reflect the reduction in forecasted number of employees, as well as anticipated staff shift schedules which show a sizeable proportion of staff arriving/departing outside the traditional peak hour period.

Future Combined Network Conditions

- 13. TOH is proposing high quality active transportation connections throughout the campus that connect to existing and planned pedestrian, cycling and transit networks. However, future MMLOS for road segments and intersections will have difficulty meeting minimum targets for pedestrian and cyclist performance. Although improvements to active transportation have been proposed since the *TIA and Mobility Study (July 2021)*, no changes to MMLOS have occurred due to governing factors such as number of vehicles on adjacent street or lanes required to cross. For further details on changes to active transportation facilities since the *TIA and Mobility Study (July 2021)*, please refer to **Section 4.1**.
- 14. The implementation of the Carling Avenue Transit Priority measures will diminish existing vehicular capacity within the Carling Avenue corridor in favour of a more balanced transportation system that includes higher-performing active transportation and transit facilities. No change.
- 15. The evaluation of the road network performance showed that the addition of New Civic Development traffic at Opening Day 2028 and Full Buildout 2048, did not increase the number of poorly performing intersections compared to the future Background conditions with the exception of Parkdale/ WB 417.
 - Preston/Carling,
 - Booth/Carling,
 - Bronson/Carling,
 - Preston/Prince of Wales, and
 - Catherine/Bronson

Parkdale/ WB 417 was on the edge of the acceptable intersection performance threshold in Background conditions, and the addition of New Civic Development traffic reduced performance by only 1%. Overall, the change in overall congestion would be negligible.

This conclusion represented a scenario without demand rationalizations. The TIA Addendum #2 did not revisit this analysis. This decision was made when it was found the updates to the trip generation assumptions with background volumes was generally lower than traffic volumes forecasted in the *TIA and Mobility Study (July 2021)*. Therefore, the results for 2028 and 2048 conditions if demand rationalization reductions were not added are still anticipated to perform similarly or better than previously stated in the *TIA and Mobility Study (July 2021)*.

The New Civic Development [internal] access intersections were all shown to operate well in both future horizons. No change.

- 16. If City-wide sustainable policies and initiatives as outlined in the New Official Plan and supporting transit infrastructure such as the Carling Avenue Transit Priority Corridor are taken into consideration (by applying Background traffic volume reductions), the number of poorly performing intersections would be reduced to:
 - Preston/Carling

The updated trip generation and background volumes along with demand rationalization identified within this TIA Addendum #2 that the only intersection with a critical movement operating poorly is Rochester/Carling, and overall, all signalized intersections are anticipated to operate at LoS 'E' or better.

- 17. It is acknowledged that the addition of an eastbound right turn-lane at Preston/Carling would resolve the suboptimal intersection performance and enable a time separated phase for cyclists across the south crossride. However, this modification would increase the pedestrian crossing distance at an already excessively long crosswalk (due to the planned median bus lanes), and also would have landscaping and property implications on the south side of Carling Avenue. This conclusion is still accurate; however, it will be a decision to be made by the City of Ottawa as part of the Carling Avenue Transit Priority Project.
- 18. The future New Civic Development access intersections have been designed to accommodate projected vehicular queues where possible considering the locational constraints, but some spillback may occur at times during the critical peak hour when the adjacent arterial network is at its most congested state. These intersection design requirements will be confirmed during the Site Plan Control process for subsequent phases. Please refer to Section 4.4 of this report for the updated intersection design descriptions and Section 4.9 for updated operational and queuing results. Overall, all access intersections are expected to have adequate capacity to accommodate future NCD traffic. It is important to note that discussions are ongoing with NCC and City of Ottawa regarding the intersection designs which may yield further refinements.
- 19. The above results are contingent on TOH achieving ambitious target mode shares for employees and visitors: approximately 50% auto-drivers at Opening Day 2028, and approximately 35% auto-drivers at Full Buildout 2048. No change.

Supporting Strategies

- 20. To help achieve the target mode shares at the Opening Day and Full Buildout horizons, TOH has an opportunity to prioritize the development of a comprehensive Transportation Demand Management (TDM) Strategy/Plan (separate to this document and following the approval of the Master Site Plan) to reduce the project's long-term reliance on the automobile, and in turn reduce parking requirements. TDM Checklists highlight recommended TDM measures for TOH to consider, which will be confirmed incrementally during the development approval process. A preliminary TDM framework is included in this report, and key elements of this framework include:
 - Programming: provide a team and budget for TDM coordination
 - Community and Promotion: inform, engage through campaigns, provide tools and award
 - Partnerships: engage with local associations, OC Transpo, car/bike/van pooling, etc.

- Policy and Infrastructure: measures to incentivize active transportation such as monthly transit pass discounts, aggressively priced staff parking passes, shower and storage facilities for cyclists, real-time transit information and key locations, emergency ride home program, etc.
- Monitoring: complete regular surveys and studies to continually upgrade and retrofit TDM strategies

TOH has prepared a comprehensive *Transportation Demand Management (TDM)* Strategy Report that includes a recommended plan to help TOH achieve future mode share targets and manage parking demand in the future.

- 21. TOH intends to invest heavily in active transportation infrastructure at the New Civic Development, based on the proposed AT Plan, to leverage the proximity of the future site to high-quality facilities in the surrounding network. A list of the prominent elements of the AT Plan include: "The Highline", which is an elevated and sheltered pedestrian connection between Dow's Lake Station and the main Hospital building, Bi-directional cycling facilities around and through the site, ample bicycle parking, secondary pathway connections, and sidewalks that permeate throughout the site. In addition to the stated improvements to AT facilities in the above comment, new facilities have been proposed since the *TIA and Mobility Study (July 2021)*. For a detailed description, please refer to **Section 4.1.** Some of the additional proposed active facilities include additional cross-rides at Prince of Wales Drive/Preston Street and Prince of Wales Drive/Road B. New cycle-track and sidewalk facilities are proposed on the south side of Road A between Road B and the front entrance, along with new bike parking facilities directly in front of the main door. Additional bike parking has been proposed on the west entrance to the hospital (backside) which is accessed via a new MUP on Road D. A new pathway called "Woodland Path" will connect Road D sidewalk facilities to the Road A facilities. There are ongoing discussions with NCC and the City of Ottawa for additional facilities as the intersection designs progress through design approvals.
- 22. TOH acknowledges the impact the New Civic Development will have on existing AT facilities, such as the pathway across the Queen Juliana Park and the Trillium Pathway.
 - To replace the Queen Juliana Park pathway, cycle tracks have been proposed on both sides of Carling Avenue west of Champagne. The internal roads around the parking garage will also have a bi-directional cycling facility connecting Carling to Prince of Wales.
 - The Trillium Pathway will be redirected to a bi-directional cycle facility on the south side of Carling and the west side of Preston back to its current destination in the form of a bi-directional cross-ride at the Preston/Prince of Wales intersection

New details have emerged regarding the types of facilities and timing proposed. The *TIA Addendum #1* (*Oct 2021*) for the SPC for the parking garage identified the redirected Trillium Pathway which would follow the southern side of Carling Avenue from the existing Trillium Pathway to Preston Street and follow the west side of Preston Street to Prince of Wales Drive. Within the *TIA Addendum #1* (*Oct 2021*), the pathway was broken down into two distinct segments. The segment on Carling Avenue was identified to be built as an interim MUP until the Carling Avenue Transit Priority Project is built (estimated for 2028 similar to opening day for the NCD). The interim MUP would then be converted into a new bi-directional cycle-track with separate sidewalks. The second segment stretches from Carling Avenue to Prince of Wales Drive following the west side of Preston Street, proposed to be built to full buildout during the construction of the parking garage.

Since the writing of the *TIA Addendum #1 (Oct 2021)*, the interim MUP has been increased in width to a minimum width of 3m with a full buildout of 3.5m sidewalks with more than 2m boulevard separation and 3m bi-directional cycle-track. The full buildout segment bordering Preston Street was also increased in width from 3m bi-directional cycle-tracks to 3.5m and 3m sidewalks with boulevards exceeding 2m. Lastly, an interim cycle facility is proposed along the south side of Carling Avenue between Road A and Sherwood Drive. Note that no connection from Sherwood Drive to Road A is proposed for this phase of the NCD, as the facility would cross via Phase 5 (Research Building) which is currently reserved as staging

zone for construction and will begin its own construction following completion of this phase 3-4 construction. A future connection between Sherwood Drive to Road A will be explored within the following NCD phase.

- 23. To support these AT infrastructure initiatives, the signal timing plans at signalized intersections along the New Civic Development frontage will be enhanced to improve pedestrian and cycling operations. No change.
- 24. TOH will meet the require bylaw requirements for bicycle parking. The location and distribution of bicycle parking spaces will be confirmed at the Site Plan Control stage for the various development phases. Of note, TOH has made a design decision that cyclists are not to be accommodated at the main hospital front-door entrance in an effort to minimize potential bicycle/vehicle conflicts. Where feasible, opportunities for indoor and/or covered parking can be explored. The latest site plan proposes a cycle-track connection on the south side of Road A from the Road A/Road B intersection to the front door of the hospital. TOH proposes new bike parking facilities directly in front of the main hospital door. Additionally, a new MUP is proposed on Road D connecting to the newly proposed bike parking near the west entrance. The latest bike parking numbers have been discussed in **Section 4.2**, with a total of 630 bike parking spaces proposed for phase 3-4 of the NCD. Future NCD phases are not limited to adding more bike parking if demand exists.
- 25. The hospital site's location within 600-meter walk to high frequency LRT Trillium Line and Dow's Lake Station makes it a prime candidate for a transit-oriented development. The additional proposed Carling BRT lanes functions as a supplementary transit service. It is expected the capacity of both services will accommodate future transit ridership at the New Civic Development. The transit demand and capacity will be reassessed during the Site Plan Control process for subsequent phases. New data from OC Transpo was used to determine transit demand and capacity. Please refer to Section 4.7.
- 26. To leverage transit use, the New Civic Development is proposing an AT Plan that provides direct connections to surrounding transit service. A featured element is the Highline connection to Dow's Lake station. TOH is also pursuing a potential extension of the Dow's Lake Station platform to the south side of Carling Avenue, and discussion are ongoing. Additionally, the transit incentives/strategies within the TDM Plan will be a critical element to leverage the proximity of future infrastructure and service, to maximize its use. In addition to the above, the City of Ottawa is planning an Environmental Assessment (EA) to investigate a future connection between Dow's Lake Station and the NCD across Carling Avenue. Within this EA, the option of adding a MUP bridge crossing over the Trillium Line Corridor is also being explored. TOH has also prepared a *Transportation Demand Management (TDM) Strategy* which developed a comprehensive plan to help achieve future mode share targets, including transit incentives and potential measures to encourage ridership. TOH will also investigate future transit shuttle opportunities between Dow's Lake Station, the front door, and other potential destinations, to further encourage transit use and enhance passenger mobility on-campus.
- 27. TOH understands the importance of identifying the most appropriate locations for the blue 'H' marker along the approaches to the Hospital including Hwy 417. These decisions will be made independent of this study; however, this study has identified the Rochester EB off ramp and the Bronson WB off ramp as possible locations for these markers. If selected, these potential routes would follow the City's arterial and major collector road system, and corresponding decisions would need approval by the Ontario Ministry of Transportation (MTO) on Hwy 417 and the City of Ottawa for the installation of all required trailblazing markers on municipal roads. The accompanying *Neighbourhood Traffic Management Strategy Report* has recommended TOH investigate opportunities immediately to relocate 'H' signs away from the Parkdale Avenue interchange to other interchanges such as Carling Avenue and Rochester Street.
- 28. The access and circulation needs for ambulances and emergency transports have been considered in the Master Site Plan. As a result, the access points for ambulances and emergency transports were segregated from public and staff access points where possible, to minimize potential conflicts and operational impacts of these essential vehicles. No change.

- 29. TOH recognizes that the New Civic Development may have traffic implications to nearby communities and neighbourhoods. Therefore, considerable effort was taken to identify vulnerable streets during the design process to help mitigate potential traffic infiltration.
 - Sherwood Drive: The Sherwood/Carling intersection is ruled out as a primary Carling Avenue access point to the New Civic Development. This will help disincentivize traffic infiltration along Sherwood. Of note, the City of Ottawa is currently updating the Sherwood Traffic Calming Study, and this may lead to other speed management measures along this street. No change.
 - Champagne Avenue: The northbound through movements exiting the future New Civic Development at Carling/Champagne will be prohibited and physical measures such as the inclusion of a channelized turn island departing the site are proposed. Vehicles must turn left or right on to Carling Avenue when exiting the campus. Champagne Avenue will no longer have a channelized turn island.
 - Maple Drive: The New Civic Development intends to regulate access to Maple Drive from the internal site access to discourage/prohibit public and staff movements. This will greatly reduce the traffic volumes on Maple Drive from the New Civic Development and help maximize the travel time and reliability of ambulance movements along the emergency route. TOH is also preparing a *Neighbourhood Traffic Management Strategy* with measures to help discourage speeding and traffic infiltration in vicinity of the NCD, including Maple Drive.
 - Dow's Lake Community: It is acknowledged that Lakeside Avenue provides direct access for eastbound traffic from Queen Elizabeth Driveway to Bronson and may experience slightly higher traffic volumes at times during peak commuter periods when the adjacent arterial network is most likely to be congested. For the remaining local streets, existing area traffic management measures (such as turn prohibitions and time of day restrictions) will still be enforced that will help limit traffic infiltration. Additional measures may be explored in consultation with the City Area Traffic Management group if traffic infiltration is observed in the future. As previously noted, TOH is preparing a Neighbourhood Traffic Management Strategy that includes a comprehensive plan to address potential traffic implications to surrounding communities when the NCD is operational.
- 30. Current parking demand projections suggest the proposed approximately 3,100 parking space supply is appropriate to the context, but parking availability pressures could be experienced if historic travel trends exhibited at the exiting Civic Hospital persist into the future. To address this healthy tension between parking supply and demand, TOH should endeavor through its TDM Plan, to reduce personal vehicle use by staff and visitors as much as possible to avoid this outcome. Leveraging the proximity to the area's existing and proposed rapid transit system, the bus transit infrastructure, and the active transportation networks will be important aspects of this strategy. TOH prepared a *Transportation Demand Management (TDM) Strategy Report* which developed a comprehensive plan to help achieve future mode share targets to ensure the proposed parking supply is sufficient. Note that the total <u>minimum</u> number of parking is still approximately 3,100. There is additional proposed parking which is reserved for snow storage during winter and emergency surge event tents. These additional parking spaces will not be available at all times and will have flexible functions as needed/available. Refer to **Section 4.2** for further details.
- 31. TOH will also develop a comprehensive Parking Management Strategy (separate to this report) prior to implementation of Phases 2 and 3 of the New Civic Development to identify potential parking implications and provide mitigation options, building off the preliminary ideas described in this report. TOH will then be prepared to respond quickly to parking supply shortages and the implications if they arise. TOH has prepared an *Off-site Parking Strategy Report* to accompany this application.
- 32. TOH acknowledges the requirement from the National Capital Commission (NCC) to provide approximately 200 public parking spaces within the New Civic Development to offset the loss of parking across from Dow's Lake Pavilion. There is expected to be ample supply within the parking garage to meet

this requirement in evenings and weekends. TOH and the NCC are in the process of coming to an agreement as to how these visitor parking requirements and tour bus parking will be provided. TOH has reserved 200 parking spaces within the parking garage structure for NCC use.