265 Centrum Boulevard Transportation Impact Assessment

Step 1 Screening Report
Step 2 Scoping Report
Step 3 Forecasting Report
Step 4 Strategy Report

Prepared for:

Bayview Orleans Inc. 108 Chestnut Street Toronto ON M5G 1R3

Prepared by:

6 Plaza Court Ottawa, ON K2H 7W1

March 2023

PN: 2023-013

Table of Contents

L		Screening	
2		Existing and Planned Conditions	
	2.1	Proposed Development	
	2.2	Existing Conditions	3
	2.2	.2.1 Area Road Network	3
	2.2	.2.2 Existing Intersections	3
	2.2	.2.3 Existing Driveways	4
	2.2	.2.4 Cycling and Pedestrian Facilities	
	2.2	.2.5 Existing Transit	7
	2.2	.2.6 Existing Area Traffic Management Measures	8
	2.2	.2.7 Existing Peak Hour Travel Demand	8
	2.2	.2.8 Collision Analysis	10
	2.3	Planned Conditions	
	2.3	.3.1 Changes to the Area Transportation Network	
	2.3	.3.2 Other Study Area Developments	12
3		Study Area and Periods	13
	3.1	Study Area	13
	3.2	Time Periods	
	3.3	Horizon Years	13
1		Exemption Review	13
	4.1	TIA Stepped Process	14
5		Development-Generated Travel Demand	14
	5.1	Mode Shares	14
	5.2	Trip Generation	
	5.3	Trip Distribution	
	5.4	Trip Assignment	17
ŝ		Background Network Travel Demands	19
	6.1	Transportation Network Plans	19
	6.2	Background Growth	19
	6.3	Other Developments	19
7		Demand Rationalization	19
	7.1	2028 Future Background Operations	19
	7.2	2033 Future Background Operations	21
	7.3	2028 Future Total Operations	22
	7.4	2033 Future Total Operations	24
	7.5	Modal Share Sensitivity and Demand Rationalization Conclusions	26
3		Development Design	26
	8.1	Design for Sustainable Modes	26
	8.2	Circulation and Access	27
9		Parking	27
	9.1	Parking Supply	27
1()	Boundary Street Design	27

11	Access Intersections Design	27
11.1	Location and Design of Access	27
11.2	Intersection Control	28
11.3	Access Intersection Design	28
11	3.1 Future Access Intersection Operations	28
11	3.2 Access Intersection MMLOS	28
11	3.3 Recommended Design Elements	28
12	Transportation Demand Management	28
12.1	Context for TDM	28
12.2	Need and Opportunity	28
12.3	TDM Program	28
13	Neighbourhood Traffic Management	29
14	Transit	29
14.1	Route Capacity	29
14.2	Transit Priority	29
15	Network Concept	29
16	Network Intersection Design	30
16.1	Network Intersection Control	30
16.2	Network Intersection Design	30
16	5.2.1 2028 & 2033 Future Total Network Intersection Operations	30
16	5.2.2 Network Intersection MMLOS	30
16	5.2.3 Recommended Design Elements	30
17	Summary of Improvements Indicated and Modifications Options	31
18	Conclusion	34
List o	of Figures	
Figure :	1: Area Context Plan	1
•	2: Concept Plan	
•	3: Existing Driveways	
_	4: Study Area Pedestrian Facilities	
	5: Study Area Cycling Facilities	
_	6: Existing Pedestrian Volumes	
_	7: Existing Cyclist Volumes	
•	8: Existing Study Area Transit Service	
-	9: Existing Study Area Transit Stops	
_	10: Existing Traffic Counts	
_	11: Study Area Collision Records	
	12: New Site Generation Auto Volumes	
_	13: Pass-by Auto Volumes	
_	14: 2028 Future Background Volumes	
_	15: 2033 Future Background Volumes	
_	16: 2028 Future Total Volumes	
-	17: 2033 Future Total Volumes	
inguit.	17. 2000 Tatale Total Volumes	23

Table of Tables

Table 1: Intersection Count Date	8
Table 2: Existing Intersection Operations	g
Table 3: Study Area Collision Summary, 2016-2020	10
Table 4: Summary of Collision Locations, 2016-2020	11
Table 5: St Joseph Boulevard at Prestone Drive Collision Summary	12
Table 6: Exemption Review	14
Table 7: TRANS Trip Generation Manual Recommended Mode Shares – Orleans	15
Table 8: Proposed Development Mode Shares	15
Table 9: Trip Generation Person Trip Rates	15
Table 10: Total Person Trip Generation	16
Table 11: Internal Capture Rates	16
Table 12: Trip Generation by Mode	16
Table 13: OD Survey Distribution – Orleans	17
Table 14: Trip Assignment	17
Table 15: TRANS Regional Model Projections – Study Area Growth Rates	19
Table 16: Recommended Area Growth Rates	19
Table 17: 2028 Future Background Intersection Operations	20
Table 18: 2033 Future Background Intersection Operations	22
Table 19: 2028 Future Total Intersection Operations	23
Table 20: 2033 Future Total Intersection Operations	25
Table 21: Boundary Street MMLOS Analysis	27
Table 22: Trip Generation by Transit Mode	29
Table 23: Forecasted Site-Generated Transit Ridership	29
Table 24: Study Area Intersection MMLOS Analysis	30

List of Appendices

Appendix A – TIA Screening Form and Certification Form

Appendix B – Turning Movement Count Data

Appendix C – Synchro Intersection Worksheets – Existing Conditions

Appendix D – Collision Data

Appendix E - TRANS Plot

Appendix F – Background Volumes

Appendix G – Synchro Intersection Worksheets – 2028 Future Background Conditions

Appendix H – Synchro Intersection Worksheets – 2033 Future Background Conditions

Appendix I – Synchro Intersection Worksheets – 2028 Future Total Conditions

Appendix J – Synchro Intersection Worksheets – 2033 Future Total Conditions

Appendix K – MMLOS Analysis

Appendix L – TDM Checklist

1 Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for the TIA Study PM. As shown in the Screening Form, a TIA is required including the Design Review component and the Network Impact Component. This study has been prepared to support a zoning bylaw amendment and site plan applications.

2 Existing and Planned Conditions

2.1 Proposed Development

The development site is located at 265 Centrum Boulevard within the Mixed-Use Centre Zone (MC14[1520] S152). The existing site was a YMCA, now closed, and it will be replaced with three towers, two residential towers including 764 units, and one mix-used tower including 363 residential units, 8,970 sq. ft retail space, and 31,570 sq. ft office space. The site plan proposes a total of 516 vehicle parking spaces and 1254 bicycle parking spaces. The preliminary accesses are proposed to include three along Brisebois Crescent, and the existing two accesses on Brisebois Crescent will be removed. Build-out is anticipated to occur in a single phase by 2028. Figure 1 illustrates the study area context. Figure 2 illustrates the proposed concept plan.

Figure 1: Area Context Plan

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: January 31, 2023

Figure 2: Concept Plan

2.2 Existing Conditions

2.2.1 Area Road Network

Place d'Orleans Drive: Place d'Orleans Drive is a City of Ottawa arterial road with a four-lane cross-section. The posted speed limit is 60km/h. Sidewalks are present on both sides of the road. The City-protected right of way is 37.5 metres within the study area. Place d'Orleans Drive is a designated truck route.

St Joseph Boulevard: St Joseph Boulevard is a City of Ottawa arterial road with a divided, four-lane cross-section. The posted speed limit is 50km/h west of Prestone Drive and 60km/h east of Prestone Drive. Sidewalks are present on both sides of the road. The City protected right-of-way is 32.0 metres from Gabriel Street to 130 m west of Duford Drive and 37.5 metres east to Trim Road. St Joseph Boulevard is a designated truck route.

Centrum Boulevard: Centrum Boulevard is a City of Ottawa collector road with a two-lane cross-section. The posted speed limit is 40km/h. Sidewalks and angle parking are provided on both sides of the road. The existing right of way is 26.0 metres within the study area.

Prestone Drive: Prestone Drive is a City of Ottawa collector road with a divided four-lane cross-section north of St Joseph Boulevard, and a major collector road south of St Joseph Boulevard with an undivided two-lane crosssection. The posted speed limit is 40km/h. Sidewalks are present on both sides of the road. Within the study area, the existing right of way is 24.5 metres north of St Joseph Boulevard and 26.0 metres south of St Joseph Boulevard.

Brisebois Crescent: Brisebois Crescent is a City of Ottawa local road with a two-lane cross-section. The unposted speed limit is assumed to be 50km/h. Sidewalks are present on one side of the road, and perpendicular parking is provided on the south side of the road. The existing right of way is 18.0 metres within the study area.

2.2.2 Existing Intersections

The existing key area intersections within 400 metres of the site have been summarized below:

Drive

Centrum Boulevard at Place d'Orleans The intersection of Centrum Boulevard at Place d'Orleans Drive is a signalized intersection. The northbound and southbound approaches each consist of a shared left-turn/through lane and a shared through/right-turn lane. The eastbound approach consists of an auxiliary left-turn lane, a through lane, and an auxiliary channelized right-turn lane, and the westbound approach consists of a left-turn lane and a shared through/channelized right-turn lane. No turn restrictions were noted.

Centrum Boulevard Brisebois at Crescent West

The intersection of Centrum Boulevard at Brisebois Crescent West is an unsignalized intersection with stop control on the minor approaches of Brisebois Crescent West. All approaches consist of a shared all-movements lane. No turn restrictions were noted.

Centrum Boulevard at Prestone Drive

The intersection of Centrum Boulevard at Prestone Drive is an unsignalized T-intersection with all-way stop control. The northbound approach consists of a left-turn lane and a right-turn lane. The eastbound approach consists of a shared through/right-turn lane, and the westbound approach consists of a shared left-turn/through lane. No turn restrictions were noted.

Centrum Boulevard Brisebois Crescent East

The intersection of Centrum Boulevard at Brisebois Crescent East is an unsignalized T-intersection with stop control on the minor

approach of Brisebois Crescent East. All approaches consist of a shared all-movements lane. No turn restrictions were noted.

St Joseph Boulevard at Prestone Drive

The intersection of St Joseph Boulevard at Prestone Drive is a signalized intersection. The northbound approach consists of an auxiliary left-turn lane and a shared through/channelized right-turn lane, and the southbound approach consists of a left-turn lane and a shared through/channelized right-turn lane. The eastbound and westbound approaches each consist of an auxiliary left-turn lane, two through lanes, and an auxiliary channelized right-turn lane. No turn restrictions were noted.

2.2.3 Existing Driveways

Within 200 metres of the site accesses, three driveways to an office, three driveways to an art school, and one driveway to a library are on Brisebois Crescent. One driveway to a retail plaza, one to a parking lot, three to condominiums, and one to townhouses are present on Centrum Boulevard. On Prestone Drive, one driveway to a retail plaza and one to a parking lot are present. Figure 3 illustrates the existing driveways.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: January 31, 2023

2.2.4 Cycling and Pedestrian Facilities

Figure 4 illustrates the pedestrian facilities in the study area and Figure 5 illustrates the cycling facilities.

Sidewalks are provided on both sides of Place d'Orleans Drive, St Joseph Boulevard, Centrum Boulevard, and Prestone Drive. Sidewalks are also provided on one side of Brisebois Crescent.

No existing cycling facility is within the study area. St Joseph Boulevard is a cross-town bikeway, and Place d'Orleans Drive and Prestone Drive south of St Joseph Boulevard are local routes.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: January 31, 2023

Pedestrian and cyclist volumes included in study area intersection counts, presented in Section 2.2.7, have been compiled and are illustrated in Figure 6 and Figure 7, respectively. The intersection of Centrum Boulevard at

Prestone Drive and Centrum Boulevard at Brisebois Crescent East do not have data available, and it will be collected.

Figure 6: Existing Pedestrian Volumes

2.2.5 Existing Transit

Figure 8 illustrates the transit system map in the study area and Figure 9 illustrates nearby transit stops and stations. All transit information is from January 31, 2023, and is included for general information purposes and context to the surrounding area.

Within the study area, routes #33, #35, #37, #232, and #302 travel along Centrum Boulevard and Prestone Drive, and routes #37, #131, and #234 travel along Place d'Orleans Drive. The frequency of these routes within proximity of the proposed site based on January 31, 2023 service levels are:

- Route # 33 30-minute service all day
- Route # 35 30-minute service all day
- Route # 37 30-minute service all day until 8:00 PM
- Route # 232 30-minute service in the peak period/direction
- Route # 302 One bus in the peak period/direction
- Route # 131 30-minute service all day, 1-hr service after 9:00 PM
- Route # 234 30-minute service in the peak period/direction

Place d'Orléans station is located within 800 metres from the site. The bus station serves bus routes #33, #35, #37, #38, #39, #131, #221, #232, #234, #236, #302, #639, and #678.

Place d'Orleans station will be converted to accommodate LRT, and the future Place d'Orleans station is located within 800 metres from the site. The completion of the future Place d'Orleans station is anticipated by the end of 2024. Future Orleans Town Centre LRT is noted to be located within 400 metres from the site, however, the timeline is unknown.

Source: http://www.octranspo.com/ Accessed: January 31, 2023

Figure 9: Existing Study Area Transit Stops

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: March 23, 2023

2.2.6 Existing Area Traffic Management Measures

An on-road messaging of maximum speed limit of 40 km/h is present on Prestone Drive.

Existing Peak Hour Travel Demand

Existing turning movement counts were acquired from the City of Ottawa and The Traffic Specialist for the existing study area key intersections. The intersection of Centrum Boulevard at Prestone Drive and Centrum Boulevard at Brisebois Crescent East do not have data available, and it will be collected. Table 1 summarizes the intersection count dates.

Intersection Source **Count Date** Centrum Boulevard at Place d'Orleans Drive Thursday, January 31, 2019 City of Ottawa Centrum Boulevard at Brisebois Crescent West Thursday, 12 March, 2020 The Traffic Specialist Tuesday, February 14, 2023 The Traffic Specialist Centrum Boulevard at Prestone Drive Centrum Boulevard at Brisebois Crescent East Wednesday, February 08, 2023 The Traffic Specialist St Joseph Boulevard at Prestone Drive Tuesday, March 20, 2018 City of Ottawa

Table 1: Intersection Count Date

Figure 10 illustrates the existing traffic counts and Table 2 summarizes the existing intersection operations. The level of service for signalized intersections is based on volume to capacity ratio (v/c) calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection, and average delay for unsignalized intersections. Detailed turning movement count data is included in Appendix B and the Synchro worksheets are provided in Appendix C.

Briseboi 19(42) 42(130) 110(108) 13(37) 0(0) 1(7) 1 3(3) ← 124(117) _ 1(0) _ 32(45) 18(18) 39(53) 1(0) - 2(1) 22(41) 26(39) Centrum Centrum 25(94) 24(23) 80(177) 10(8) 10(8) 20(39) 41(108) 1 1 11(8) <u>1</u>19(48) <u>1</u> 7 7 30(56) 1(8) 0(0) 0(7) 67(102) 52(65) 144(153) 40(220) 36(37) 55(72) 12(26) 26(75) 40(130) 103(106) 666(447) 2(10) 7(26) 165(755) 40(116) 1 ┑╽┌

Figure 10: Existing Traffic Counts

Table 2: Existing Intersection Operations

Interception	Lane	AM Peak Hour				PM Peak Hour			
Intersection	Laile	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)
	EBL	Α	0.11	20.2	7.8	Α	0.49	38.4	25.9
	EBT	Α	0.09	19.6	8.5	Α	0.21	29.7	16.1
Centrum Boulevard	EBR	Α	0.14	7.6	6.1	Α	0.54	8.5	15.7
at Place d'Orleans	WBL	Α	0.09	19.7	7.0	Α	0.22	30.4	13.3
Drive	WBT/R	Α	0.11	19.4	9.1	Α	0.17	28.9	13.8
Signalized	NB	Α	0.14	4.8	15.3	Α	0.22	5.2	18.7
	SB	Α	0.12	5.4	11.6	Α	0.20	5.4	17.4
	Overall	Α	0.15	8.0	-	Α	0.26	12.2	-
Cambridge Basiles and	EB	Α	0.02	7.6	0.8	Α	0.02	7.6	0.8
Centrum Boulevard at Brisebois	WB	Α	0.00	7.5	0.0	Α	0.00	7.7	0.0
	NB	Α	0.00	9.9	0.0	В	0.03	11.0	0.8
Crescent West Unsignalized	SB	Α	0.02	9.2	0.8	Α	0.06	9.9	1.5
Onsignanzea	Overall	Α	-	1.3	-	Α	-	2.0	-
	EB	Α	0.07	7.2	1.5	Α	0.18	7.8	4.5
Centrum Boulevard	WB	Α	0.08	7.8	1.5	Α	0.10	8.1	2.3
at Prestone Drive	NBL	Α	0.09	8.7	2.3	Α	0.13	9.3	3.0
Unsignalized	NBR	Α	0.05	7.0	0.8	Α	0.05	7.3	1.5
	Overall	Α	-	7.7	-	Α	-	8.1	-
Centrum Boulevard	EB	Α	0.01	7.4	0.0	Α	0.01	7.3	0.0
at Brisebois		-	-	-	-	-	-	-	
Crescent East	SB	Α	0.01	8.6	0.0	Α	0.02	8.6	0.8
Unsignalized	Overall	Α	-	2.0	-	Α	-	1.7	-

Intersection	1	AM Peak Hour			PM Peak Hour				
	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)
	EBL	Α	0.05	11.9	2.6	Α	0.05	6.7	5.3
St Joseph Boulevard at	EBT	Α	0.17	12.2	11.3	Α	0.39	7.5	48.6
	EBR	Α	0.09	4.7	4.7	Α	0.13	1.9	6.5
	WBL	Α	0.01	11.0	1.1	Α	0.03	6.9	2.8
	WBT	В	0.67	18.0	44.4	Α	0.23	6.4	26.7
Prestone Drive	WBR	Α	0.21	3.9	7.4	Α	0.12	1.9	6.2
	NBL	Α	0.16	11.3	14.1	Α	0.28	26.7	16.5
Signalized	NBT/R	Α	0.08	9.6	9.0	Α	0.13	19.2	10.4
	SBL	Α	0.08	10.7	8.2	Α	0.59	36.1	33.2
	SBT/R	Α	0.07	8.3	6.8	Α	0.35	22.2	22.5
	Overall	Α	0.38	14.1	-	Α	0.43	10.3	-

Notes: Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 0.90 Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both the AM and PM peak hours, the study area intersections operate well. No capacity issues are noted.

2.2.8 Collision Analysis

Collision data have been acquired from the City of Ottawa open data website (data.ottawa.ca) for five years prior to the commencement of this TIA for the surrounding study area road network. Table 3 summarizes the collision types and conditions in the study area, Figure 11 illustrates the intersections and segments analyzed, and Table 4 summarizes the total collisions for each of these locations. Collision data are included in Appendix D.

Table 3: Study Area Collision Summary, 2016-2020

		Number	%
Total C	Collisions	32	100%
ar	Fatality	0	0%
Classification	Non-Fatal Injury	8	25%
	Property Damage Only	24	75%
	Approaching	1	3%
	Angle	13	41%
Initial Impact Type	Rear end	4	13%
Initial Impact Type	Sideswipe	2	6%
	Turning Movement	6	19%
	SMV Other	6	19%
	Dry	21	66%
Road Surface Condition	Wet	3	9%
Road Surface Condition	Loose Snow	6	19%
	Packed Snow	2	6%
Pedestrian Involved		3	9%
Cyclists Involved		0	0%

Table 4: Summary of Collision Locations, 2016-2020

	Number	%
Intersections / Segments	32	100%
St. Joseph Blvd @ Prestone Dr	11	34%
Place D'orleans Dr btwn Centrum Blvd & St. Joseph Blvd	7	22%
Place D'orleans @ Centrum Blvd/Place D'orleans	6	19%
Centrum Blvd btwn Place D'orleans Dr & Prestone Dr	5	16%
Centrum Blvd @ Prestone Dr	2	6%
Place D'orleans Dr btwn Turn Lane & Centrum Blvd	1	3%

Within the study area, the intersection of St Joseph Boulevard at Prestone Drive is noted to have experienced higher collisions than other locations. Table 5 summarizes the collision types and conditions for the location.

Table 5: St Joseph Boulevard at Prestone Drive Collision Summary

		Number	%
Total (Collisions	11	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	4	36%
	Property Damage Only	7	64%
	Angle	4	36%
Initial Impact Tune	Rear end	2	18%
Initial Impact Type	Turning Movement	3	27%
	SMV Other	2	18%
	Dry	7	64%
Road Surface Condition	Wet	2	18%
	Loose Snow	2	18%
Pedestrian Involved	Pedestrian Involved		9%
Cyclists Involved		0	0%

The St Joseph Boulevard at Prestone Drive intersection had a total of eleven collisions during the 2016-2020 time period, with seven involving property damage only and the remaining four having non-fatal injuries. The collision types are most represented by angle with four collisions, followed by three turning movement collisions, and the remaining collisions split between the rear end and SMV (other). The majority of the collisions (7 of 11) occurred during 2017 and 2018 when there was resurfacing operations occurred through the intersection, which is assumed to be the cause of the elevated collision rate during these two years. Weather conditions do not affect collisions at this location. No further examination is required as part of this study.

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network

Within the Official Plan, the ultimate transit network diagram shows the O-train along Regional Road 174, with a station located at Place d'Orleans connecting to the existing park and ride/station, and a future station north of the site, currently called 'Orleans Town Centre'. This station is unfunded and will not be considered within this study.

Place d'Orleans station, which is located approximately 800 metres from the site, is identified as one of the east extension stations in the Stage 2 Light Rail Transit (LRT) project and will be converted to accommodate LRT. The completion of the east extension is anticipated by the end of 2024.

The extension of Centrum Boulevard to Vieux Silo Street has been identified in the Orleans Corridor Secondary Plan. No property has been acquired and will not be included within this study.

2.3.2 Other Study Area Developments

280 Eric Czapnik Way

The proposed development application includes a site plan application to include two apartment buildings for a total of 72 dwellings. No TIA is expected to be warranted for this development.

3277 St Joseph Boulevard

The proposed development application includes a site plan application to include two apartment buildings for a total of 274 dwellings. The development is predicted to generate 58 new AM and 60 new PM two-way peak-hour auto trips. The anticipated build-out horizon is 2024. (Novatech, 2021)

3459 & 3479 St Joseph Boulevard

The proposed development application includes a zoning by-law amendment to allow 326 apartment units. The development is predicted to generate 141 new AM and 179 new PM two-way peak-hour auto trips. The build-out horizon is assumed to be 2023. (Novatech, 2021)

360 Kennedy Lane East

The proposed development application includes a zoning by-law amendment and site plan application to include 81 residential dwelling units. No TIA is expected to be warranted for this development.

3 Study Area and Periods

3.1 Study Area

The study area will include the intersections of:

- Centrum Boulevard at:
 - Place d'Orleans Drive
 - Brisebois Crescent West
 - o Prestone Drive
 - o Brisebois Crescent East
- St Joseph Boulevard at:
 - o Prestone Drive

The boundary road will be Brisebois Crescent and Centrum Boulevard, and the SL-45 screenline is located to the west of the Place d'Orleans Mall. The screenline will not be assessed as part of this study.

While within 1 km of the site, other development sites in the area have excluded the intersections along Place d'Orleans Drive at Champlain Street and the Place d'Orleans at Highway 174 offramp. The Place d'Orleans Drive and Highway 174 on-ramp intersection has been reviewed in other area studies and operates well during existing conditions and future projections. This is similar to the existing conditions intersections examined within Section 2.2.7. Therefore, these intersections have been excluded from the scope of this study going forward. If undue impacts are noted at the intersections in proximity to the site, such as Place d'Orleans Drive or Prestone Drive at St Laurent Boulevard, these intersections may be re-incorporated into the study.

3.2 Time Periods

As the proposed development is composed mainly of residential units, the AM and PM peak hours will be examined.

3.3 Horizon Years

The anticipated build-out year is 2028. As a result, the full build-out plus five years horizon year is 2033.

4 Exemption Review

Table 6 summarizes the exemptions for this TIA.

Table 6: Exemption Review

Module	Element	Explanation	Exempt/Required
Design Review Compo	nent		
4.1 Development	4.1.2 Circulation and Access	Only required for site plans	Required
Design	4.1.3 New Street Networks	Only required for plans of subdivision	Exempt
	4.2.1 Parking Supply	Only required for site plans	Required
4.2 Parking	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Exempt
Network Impact Comp	onent		
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	Required
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Required
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of equivalent volume permitted by established zoning	Required

4.1 TIA Stepped Process

The removal of the existing YMCA site, and transit-oriented design of the subject site confirmed by the City of Ottawa during the pre-consultation meeting and notes, the expected increase in area trips will be much lower than a typical site on redevelopment land. No operational constraints are noted at the area intersections for the existing conditions, all movements at LOS A or B. Due to the above factors, future Steps 3 and 4 are combined into a single submission.

5 Development-Generated Travel Demand

5.1 Mode Shares

Examining the mode shares recommended in the TRANS Trip Generation Manual (2020) for the subject district, derived from the most recent National Capital Region Origin-Destination survey (OD Survey), the existing average district mode shares by land use for Orleans have been summarized in Table 7.

Table 7. TDANC	Trin Congration	Manual Recomme	ndad Mada Charas	Orloans
Table 7: TRANS	Trib Generation	ivianuai kecomme	naea ivioae Snares	– Orieans

Tuescal BA and a	Multi-Unit	(High-Rise)	Commercia	l Generator	Employment Generator
Travel Mode	AM	PM	AM	PM	AM and PM
Auto Driver	54%	61%	77%	71%	71%
Auto Passenger	7%	13%	14%	20%	7%
Transit	29%	21%	3%	2%	13%
Cycling	0%	0%	0%	1%	1%
Walking	10%	6%	6%	5%	8%
Total	100%	100%	100%	100%	100%

It is noted that the future Place d'Orleans LRT station will be located approximately 800 metres from the site, and completion is anticipated by the end of 2024. In addition, transit-oriented design of the subject site is confirmed by the City of Ottawa during the pre-consultation meeting and notes. A 15% shift to transit mode from the auto mode for residential land use and a 10% percent shift to transit mode from the auto mode for commercial and office land use are proposed. The modified mode share targets are summarized in Table 8.

Table 8: Proposed Development Mode Shares

Tuescal Manda	Multi-Unit	(High-Rise)	Commercia	al Generator	Employment Generator	
Travel Mode	AM	PM	AM	PM	AM and PM	
Auto Driver	39%	46%	67%	61%	61%	
Auto Passenger	7%	13%	14%	20%	7%	
Transit	44%	36%	13%	12%	23%	
Cycling	0%	0%	0%	1%	1%	
Walking	10%	6%	6%	5%	8%	
Total	100%	100%	100%	100%	100%	

5.2 Trip Generation

This TIA has been prepared using the vehicle and person trip rates for the residential dwellings using the TRANS Trip Generation Manual (2020) and the vehicle trip rates and derived person trip rates for commercial components from the ITE Trip Generation Manual 11th Edition (2021) using the City-prescribed conversion factor of 1.28. Table 9 summarizes the person trip rates for the proposed residential land uses for each peak period and the person trip rates for the non-residential land uses by peak hour.

Table 9: Trip Generation Person Trip Rates

	Land Use	Peak	Peak I	Period	Peak Hour		
Land Use	Code		Vehicle Trip Rate	Person Trip Rates	Vehicle Trip Rate	Person Trip Rates	
Multi Unit (Uiah Bisa)	221 & 222	AM	-	0.80	-	-	
Multi-Unit (High-Rise)	(TRANS)	PM	-	0.90	-		
Conoral Office Building	710	AM	-	-	1.52	1.95	
General Office Building	(ITE)	PM	-	-	1.44	1.84	
Strip Retail Plaza (<40k)	822	AM	-	-	2.36	3.02	
	(ITE)	PM	-	-	6.59	8.44	

Using the above person trip rates, the total person trip generation has been estimated. Table 10 summarizes the total person trip generation for the residential land uses and for the non-residential land uses.

Table 10: Total Person Trip Generation

Lond Hoo	l luite	Į.	AM Peak Perio	d	PM Peak Period			
Land Use	Units	In	Out	Total	In	Out	Total	
Multi-Unit (High- Rise)	1,127	280	622	902	588	426	1014	
	Units /		AM Peak Hour	•	PM Peak Hour			
Land Use	GFA	In	Out	Total	In	Out	Total	
General Office	31,570		7	62	10	48	58	
Building	sq. ft	55	/					
Strip Retail Plaza	8,970	16	10	26	27	39	76	
(<40k)	sq. ft	16			37			

Internal capture rates from the ITE Trip Generation Handbook 3rd Edition have been assigned to the development's retail and office components for mixed-use developments. The rates summarized in Table 11 represent the percentage of trips to/from retail and office use based on the residential component.

Table 11: Internal Capture Rates

Londillo	Α	М	PM		
Land Use	In	Out	In	Out	
Residential to/from Shopping Centre	17%	14%	10%	26%	
Residential to/from Office	3%	1%	57%	2%	

Pass-by reductions applied to the retail trip generation at a rate of 40% have been included using the recommended value presented in the ITE Trip Generation Manual 11th Edition (2021) for the most similar land use with a recommended rate, "Retail (40k – 150k sq. ft.)".

Using the above mode share targets for the LRT area, the internal capture and pass-by rates, and the person trip rates, the person trips by mode have been projected. Trip generation by peak hour has been forecasted using the prescribed peak period conversion factors presented in the TRANS Trip Generation Manual (2020) for the residential component. Table 12 summarizes the residential trip generation and the non-residential trip generation by mode and peak hour.

Table 12: Trip Generation by Mode

		Į.	AM Peak F	lour		PM Peak Hour				
7	Fravel Mode	Mode Share	In	Out	Total	Mode Share	In	Out	Total	
	Auto Driver	39%	52	117	169	46%	119	86	205	
ie (e)	Auto Passenger	7%	10	21	31	13%	33	24	58	
그 뜻	Transit	44%	68	151	219	36%	100	72	172	
Multi-Unit (High-Rise)	Cycling	0%	0	0	0	0%	0	0	0	
ΣΞ	Walking	10%	16	36	52	6%	18	14	32	
	Total	100%	146	325	471	100%	270	196	466	
	Auto Driver	61%	32	4	36	61%	2	29	31	
9	Auto Passenger	7%	4	0	4	7%	0	3	3	
General Office Building	Transit	23%	12	2	14	23%	1	11	12	
neral Off Building	Cycling	1%	1	0	1	1%	0	0	0	
ner Bu	Walking	8%	4	1	5	8%	0	4	4	
Ge	Internal Capture	varies	-2	0	-2	varies	-6	-1	-7	
	Total	100%	53	7	60	100%	3	47	50	

		Δ	M Peak H	lour		P	M Peak H	lour	
	Travel Mode	Mode Share	In	Out	Total	Mode Share	In	Out	Total
<u>×</u>	Auto Driver	67%	3	2	5	61%	7	5	12
(<40k)	Auto Passenger	14%	2	1	3	20%	7	7	14
) ez	Transit	13%	2	1	3	12%	4	4	8
Plaza	Cycling	0%	0	0	0	1%	0	0	0
	Walking	6%	1	1	2	5%	2	2	4
Strip Retail	Internal Capture	varies	-2	-1	-3	varies	-2	-6	-8
<u>ë</u>	Pass-by	40%	-6	-4	-10	40%	-15	-16	-31
Str	Total	100%	8	5	13	100%	20	18	38
	Auto Driver	-	87	123	210	-	128	120	248
	Auto Passenger	-	16	22	38	-	40	34	74
	Transit	-	82	154	236	-	105	87	192
Total	Cycling	-	1	0	1	-	0	0	0
P	Walking	-	21	38	59	-	20	20	40
	Internal Capture	varies	-4	-1	-5	varies	-8	-7	-15
	Pass-by	varies	-6	-4	-10	varies	-15	-16	-31
	Total	100%	207	337	544	100%	293	261	554

As shown above, a total of 210 AM and 248 PM new peak hour two-way vehicle trips are projected as a result of the proposed development.

5.3 Trip Distribution

To understand the travel patterns of the subject development, the OD Survey has been reviewed to determine the travel for the residential component, and these patterns were applied based on the build-out of Orleans Table 13 below summarizes the distributions.

Table 13: OD Survey Distribution – Orleans

To/From	Residential % of Trips
North	5%
South	30%
East	25%
West	40%
Total	100%

5.4 Trip Assignment

Using the distribution outlined above, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the study area road network. Table 14 summarizes the proportional assignment to the study area roadways. Figure 12 illustrates the new site-generated volumes, and Figure 13 illustrates the pass-by volumes.

Table 14: Trip Assignment

To/From	Via
North	3% St Joseph (E)
North	2% Place d'Orleans (N)
C	20% Prestone Drive (S)
South	10% Place d'Orleans (S)
East	25% St Joseph (E)
West	40% St Joseph (W)
Total	100%

← 18(18) _ 18(18) 42(61) Brisebois Brisebois **1** ↑ 86(107) 0(0) 41(40) Place d'Orleans 45(67) 41(40) 46(44) 18(18) 18(18) ı ı Access #2 Access #3 Access #1 64(62) 0(0) 0(0) 59(58) 0(0) 0(0) **1** 2(2) **1** 0(0) ← ⁰⁽⁰⁾
59(58) **1** 0(0) 12(12) ٦ 4 0(0) **—** 0(0) Centrum ⁰⁽⁰⁾ → Centrum 1 ↑ ↑ 1 ↑ ↑ 1 4 0(0) 45(67) 42(61) 0(0) → 35(51) 0(0) ---42(61) 0(0) 9(13) 0(0) 0(0) 0000 0(0) 0(0) 25(24) 34(34) **1** 24(36) ← 0(0) 0(0) J | L, $0(0) \xrightarrow{\bullet} 0$ $0(0) \xrightarrow{\bullet} 0$ 1 | 1 0(0) 17(26) 0(0)

Figure 12: New Site Generation Auto Volumes

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3. The Place d'Orleans station Light Rail Transit (LRT) project is the only confirmed project within the study horizons and has been included.

6.2 Background Growth

A review of the background projections from the City's TRANS Regional Model for the 2011 and 2031 horizons was completed to determine the background growth for each of the study area roadways. The background TRANS model growth rates are summarized in Table 15 and the TRANS model plots are provided in Appendix E.

	Tuble 15: TRANS	Regional Model P	rojections – studj	Area Growth Rate	25		
Chunch	TRANS	Rate	2011 to	Existing	Existing to 2031		
Street	Eastbound	Westbound	Eastbound	Westbound	Eastbound	Westbound	
Centrum Blvd	0.21%	0.34%	7.74%	-6.68%	-10.10%	11.89%	
St Joseph Blvd	0.17%	3.06%	7.71%	3.27%	-10.17%	2.74%	
	Northbound	Southbound	Northbound	Southbound	Northbound	Southbound	
Prestone Dr	-0.46%	-0.53%	-8.12%	0.97%	12.25%	-2.73%	
Place d'Orleans Dr	3.71%	-0.24%	4.08%	23.91%	3.15%	-27.94%	

Table 15: TRANS Regional Model Projections – Study Area Growth Rates

A comparison of the TRANS volumes and the existing volumes, the eastbound movement along Centrum Boulevard and the southbound moment along Place d'Orleans Drive were underestimated and development has not progressed linearly. Table 16 summarizes the recommended growth rates to be considered within the study area.

Street	AM Pe	ak Hour	PM Peak Hour			
Street	Eastbound	Westbound	Eastbound	Westbound		
Centrum Blvd	0.25%	0.25%	0.25%	0.25%		
St Joseph Blvd	0.25%	2.00%	2.00%	0.25%		
	Northbound	Southbound	Northbound	Southbound		
Prestone Dr	-	-	-	-		
Place d'Orleans Dr	2.00%	-	-	2.00%		

Table 16: Recommended Area Growth Rates

6.3 Other Developments

The background developments explicitly considered in the background conditions (Section 6.2) include:

- 3277 St Joseph Boulevard
- 3459 & 3479 St Joseph Boulevard

The background development volumes within the study area have been provided in Appendix F.

7 Demand Rationalization

7.1 2028 Future Background Operations

Figure 14 illustrates the 2028 background volumes and Table 17 summarizes the 2028 background intersection operations. The level of service for signalized intersections is based on v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection, and average delay for unsignalized intersections. The synchro worksheets for the 2028 future background horizon are provided in Appendix G.

Place d'Orleans Brisebois 19(42) 42(144) 110(108) 13(37) 0(0) 1(7) _ 3(3) 1(0) 126(118) 32(46) 18(18) 1(0) . 2(1) 22(41) 26(39) 39(53) Centrum Centrum 24(23) 81(179) 10(8) 20(39) ┑╽┌ 25(94) ጎ ሶ 41(108) 30(57) 52(65) 159(153) 67(102) 0(0) 0(7) 36(37) 55(72) 40(220) 103(106) 771(476) 2(10) 7(26) 177(861) \rightarrow 40(116) 1 5(9) 46(28) 81(57)

Figure 14: 2028 Future Background Volumes

Table 17: 2028 Future Background Intersection Operations

Intersection	Lane		AM Pe	ak Hour			PM Pe	ak Hour	
intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)
	EBL	Α	0.10	20.0	7.2	Α	0.45	37.3	23.7
	EBT	Α	0.08	19.5	8.0	Α	0.20	29.7	15.2
Centrum Boulevard	EBR	Α	0.13	7.0	5.5	Α	0.52	8.6	15.1
at Place d'Orleans	WBL	Α	0.08	19.6	6.5	Α	0.20	30.2	12.3
Drive	WBT/R	Α	0.09	19.2	8.4	Α	0.16	29.0	13.0
Signalized	NB	Α	0.14	4.8	14.7	Α	0.19	4.9	16.6
	SB	Α	0.10	5.4	10.6	Α	0.18	5.2	16.4
	Overall	Α	0.14	7.8	-	Α	0.23	11.9	-
Centrum Boulevard	EB	Α	0.02	7.5	0.8	Α	0.02	7.6	0.8
at Brisebois	WB	Α	0.00	7.4	0.0	Α	0.00	7.7	0.0
Crescent West	NB	Α	0.00	9.9	0.0	В	0.02	10.7	0.8
Unsignalized	SB	Α	0.02	9.1	0.0	Α	0.06	9.7	1.5
Onsignanzea	Overall	Α	-	1.3	-	Α	-	2.0	-
	EB	Α	0.07	7.1	1.5	Α	0.16	7.6	4.5
Centrum Boulevard	WB	Α	0.07	7.7	1.5	Α	0.09	8.0	2.3
at Prestone Drive	NBL	Α	0.08	8.5	2.3	Α	0.11	9.1	3.0
Unsignalized	NBR	Α	0.04	7.0	0.8	Α	0.04	7.2	0.8
	Overall	Α	-	7.6	-	Α	-	8.0	-
Centrum Boulevard	EB	Α	0.01	7.3	0.0	Α	0.01	7.3	0.0
at Brisebois	WB	-	-	-	-	-	-	-	-
Crescent East	SB	Α	0.01	8.6	0.0	Α	0.02	8.5	0.0
Unsignalized	Overall	Α	-	2.0	-	Α	-	1.7	-

luta usa ati a u	Lama		AM Pe	ak Hour		PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
	EBL	Α	0.04	11.6	2.4	Α	0.05	6.5	4.9	
	EBT	Α	0.16	12.0	11.0	Α	0.40	7.4	50.2	
	EBR	Α	0.08	4.6	4.3	Α	0.12	1.9	6.2	
Ch Ionamh	WBL	Α	0.01	10.5	1.1	Α	0.03	6.7	2.7	
St Joseph Boulevard at	WBT	В	0.68	18.2	46.5	Α	0.22	6.2	25.5	
Prestone Drive	WBR	Α	0.19	3.9	7.0	Α	0.11	1.9	6.0	
Signalized	NBL	Α	0.15	11.5	13.1	Α	0.25	26.4	15.2	
Signuitzeu	NBT/R	Α	0.07	9.9	8.5	Α	0.12	19.3	9.7	
	SBL	Α	0.08	10.9	7.7	Α	0.54	34.5	30.2	
	SBT/R	Α	0.07	8.6	6.4	Α	0.32	21.7	20.5	
	Overall	Α	0.38	14.5	-	Α	0.43	9.8	-	

Saturation flow rate of 1800 veh/h/lane Notes:

Queue is measured in metres Peak Hour Factor = 1.00

Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both peak hours, the study area intersections operate similar to the existing condition. No capacity issues are noted.

7.2 2033 Future Background Operations

Figure 15 illustrates the 2033 background volumes and Table 18 summarizes the 2033 background intersection operations. The level of service for signalized intersections is based on v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection, and average delay for unsignalized intersections. The synchro worksheets for the 2033 future background horizon are provided in Appendix H.

Figure 15: 2033 Future Background Volumes

Table 18: 2033 Future Background Intersection Operations

			AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)
	EBL	Α	0.10	20.0	7.2	Α	0.45	37.3	23.7
	EBT	Α	0.09	19.5	8.2	Α	0.20	29.8	15.2
Centrum Boulevard	EBR	Α	0.13	7.0	5.5	Α	0.52	8.6	15.1
at Place d'Orleans	WBL	Α	0.08	19.6	6.5	Α	0.20	30.3	12.3
Drive	WBT/R	Α	0.10	19.2	8.6	Α	0.16	29.0	13.0
Signalized	NB	Α	0.14	4.9	15.8	Α	0.19	4.9	16.6
	SB	Α	0.11	5.4	10.6	Α	0.19	5.3	17.3
	Overall	Α	0.15	7.8	-	Α	0.24	11.8	-
Caratana B. I. I.	EB	Α	0.02	7.5	0.8	Α	0.02	7.6	0.8
Centrum Boulevard at Brisebois	WB	Α	0.00	7.4	0.0	Α	0.00	7.7	0.0
Crescent West	NB	Α	0.00	9.9	0.0	В	0.02	10.7	0.8
Unsignalized	SB	Α	0.02	9.2	0.0	Α	0.06	9.7	1.5
Onsignanzea	Overall	Α	-	1.3	-	Α	-	1.9	-
	EB	Α	0.07	7.1	1.5	Α	0.16	7.6	4.5
Centrum Boulevard	WB	Α	0.07	7.7	1.5	Α	0.09	8.0	2.3
at Prestone Drive	NBL	Α	0.08	8.6	2.3	Α	0.11	9.1	3.0
Unsignalized	NBR	Α	0.04	7.0	0.8	Α	0.04	7.2	0.8
	Overall	Α	-	7.7	-	Α	-	8.0	-
Centrum Boulevard	EB	Α	0.01	7.4	0.0	Α	0.01	7.3	0.0
at Brisebois	WB	-	-	-	-	-	-	-	-
Crescent East	SB	Α	0.01	8.6	0.0	Α	0.02	8.5	0.0
Unsignalized	Overall	Α	-	2.0	-	Α	-	1.7	-
	EBL	Α	0.05	11.4	2.4	Α	0.05	6.5	4.9
	EBT	Α	0.15	11.6	11.0	Α	0.44	7.8	56.7
	EBR	Α	0.08	4.3	4.3	Α	0.12	1.9	6.2
	WBL	Α	0.01	10.5	1.1	Α	0.03	6.8	2.7
St Joseph	WBT	С	0.71	18.5	52.0	Α	0.22	6.2	25.8
Boulevard at Prestone Drive	WBR	Α	0.18	3.6	6.9	Α	0.11	1.9	6.0
Signalized	NBL	Α	0.15	12.3	14.0	Α	0.25	26.4	15.2
Signunzeu	NBT/R	Α	0.07	10.6	9.1	Α	0.12	19.3	9.7
	SBL	Α	0.08	11.8	8.2	Α	0.54	34.5	30.2
	SBT/R	Α	0.07	9.2	6.8	Α	0.32	21.7	20.5
	Overall	Α	0.41	15.0	-	Α	0.46	9.9	-

Notes: Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 1.00 Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both peak hours, the study area intersections operate similar to the existing condition. No capacity issues are noted.

7.3 2028 Future Total Operations

Figure 16 illustrates the 2028 total volumes and Table 19 summarizes the 2028 total intersection operations. The level of service for signalized intersections is based on v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection The synchro worksheets for the 2028 total horizon are provided in Appendix I.

18(18) **←** 18(18) Brisebois Brisebois 90(122) 43(44) T 18(18) 47(78) Place d'Orleans 41(40) 48(55) ı ı ı 19(42) 42(143) 112(112) Access #3 78(102) 0(0) 2(15) Access #2 Access #1 67(79) 0(0) 4(11) **4(4)** 1(0) 26(39) **←** 126(118) __ 18(18) 101(116) ا لہ 34(54) 2(1) Centrum Centrum **25(94)** 1 1 r 70(93) **1** 81(179) **-1** ↑ ↑ 20(39) 56(74) <u>1</u>9(49) <u>1</u> 42(116) 65(108) 40(220) 62(80) 158(151) 67(102) 81(103) 56(80) 0(0) 0(7) 15(31) 51(99) 75(172) 130(147) 768(471) 8(34) **1**76(853) **1** 40(116)

Figure 16: 2028 Future Total Volumes

Table 19: 2028 Future Total Intersection Operations

Interception	Lana		AM Pe	ak Hour		PM Peak Hour					
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s) 38.1 33.3 8.5 32.0 31.5 4.6 5.3 14.1 7.7 7.7 12.3 10.5 4.0 9.4 7.9 8.0 8.8 8.5	Q (95 th)		
	EBL	Α	0.11	20.2	7.2	Α	0.47	38.1	23.9		
	EBT	Α	0.18	21.0	14.1	Α	0.37	33.3	25.3		
Centrum Boulevard	EBR	Α	0.13	7.0	5.5	Α	0.52	8.5	15.1		
at Place d'Orleans	WBL	Α	0.14	20.6	8.9	Α	0.27	32.0	15.2		
Drive	WBT/R	Α	0.24	21.0	16.9	Α	0.33	31.5	23.1		
Signalized	NB	Α	0.15	5.2	14.8	Α	0.20	4.6	16.3		
	SB	Α	0.12	6.0	10.7	Α	0.19	5.3	16.6		
	Overall	Α	0.18	10.1	-	Α	0.24	14.1	-		
Combining Boulevand	EB	Α	0.05	7.6	1.5	Α	0.07	7.7	1.5		
Centrum Boulevard at Brisebois	WB	Α	0.00	7.4	0.0	Α	0.00	7.7	0.0		
Crescent West	NB	Α	0.00	9.9	0.0	В	0.03	12.3	0.8		
Unsignalized	SB	Α	0.09	9.4	2.3	В	0.15	10.5	3.8		
Onsignanzea	Overall	Α	-	3.5	-	Α	-	4.0	-		
	EB	Α	0.09	8.8	2.3	Α	0.13	9.4	3.0		
Centrum Boulevard at Prestone Drive	WB	Α	0.10	7.4	2.3	Α	0.13	7.9	3.0		
	NBL	Α	0.07	7.4	1.5	Α	0.18	8.0	4.5		
Unsignalized	NBR	Α	0.15	8.3	3.8	Α	0.18	8.8	4.5		
	Overall	Α	-	8.0	-	Α	-	8.5	-		

luka ya a aki a ya	Lana		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	7.4 - 8.8 5.2 7.1 8.1 2.0 7.2 6.8 1.8 25.5 21.3 39.5 23.6 11.5 - 9.3 4.6	Q (95 th)
Centrum Boulevard at Brisebois	EB	Α	0.04	7.4	0.8	Α	0.05	7.4	0.8
	WB	-	-	-	-	-	-	-	-
Crescent East	SB	Α	0.07	8.9	1.5	Α	0.08	8.8	1.5
Unsignalized	Overall	Α	-	6.0	-	Α	-	5.2	-
	EBL	Α	0.05	11.8	2.7	Α	0.06	7.1	6.0
	EBT	Α	0.16	12.0	10.9	Α	0.40	8.1	49.5
	EBR	Α	0.08	4.6	4.3	Α	0.12	2.0	6.2
6	WBL	Α	0.01	10.5	1.1	Α	0.03	7.2	2.7
St Joseph	WBT	В	0.68	18.1	46.4	Α	0.22	6.8	25.2
Boulevard at	WBR	Α	0.23	3.8	7.8	Α	0.15	1.8	6.9
Prestone Drive	NBL	Α	0.15	11.5	13.2	Α	0.24	25.5	15.2
Signalized	NBT/R	Α	0.09	10.1	10.7	Α	0.19	21.3	14.9
	SBL	Α	0.15	11.5	12.5	В	0.67	39.5	39.8
	SBT/R	Α	0.11	9.3	9.9	Α	0.38	23.6	26.2
	Overall	Α	0.38	14.1	-	Α	0.47	11.5	-
	EB	-	-	-	-	-	-	-	-
Access #1 at	WB	-	-	-	-	-	-	-	-
Brisebois Crescent	NB	Α	0.09	9.1	2.3	Α	0.10	7.4 - 8.8 5.2 7.1 8.1 2.0 7.2 6.8 1.8 25.5 21.3 39.5 23.6 11.5 - 9.3 4.6	2.3
Unsignalized	Overall	Α	-	5.3	-	Α	-		-
Access #2 at	EB								
Brisebois Crescent	WB			Low volume	s do not reti	urn operat	ional resul	ts.	
Unsignalized	Overall							7.4 - 8.8 5.2 7.1 8.1 2.0 7.2 6.8 1.8 25.5 21.3 39.5 23.6 11.5 - 9.3 4.6 ts.	
A #2 -+	EB	-	-	-	-	-	-	-	-
Access #3 at Brisebois Crescent	WB	Α	0.03	7.5	0.8	Α	0.05	7.6	0.8
Unsignalized	NB	Α	0.04	9.2	0.8	Α	0.05	9.4	1.5
Unsignalized	Overall	Α	-	4.0	-	Α	-	3.9	-

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Peak Hour Factor = 1.00

Notes:

Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both peak hours, the study area intersections operate similar to the 2028 future background condition. No capacity issues are noted.

7.4 2033 Future Total Operations

Figure 17 illustrates the 2033 total volumes and Table 20 summarizes the 2033 total intersection operations. The level of service for signalized intersections is based on v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2033 future total horizon are provided in Appendix J.

← 0(0) 45(66) **18(18)** Brisebois Brisebois 43(44) 47(78) Place d'Orleans · 41(40) · 48(55) 21(23) 18(18) ı I ı 19(42) 42(157) 112(112) Access #2 Access #3 78(102) 0(0) 2(15) Access #1 67(79) 0(0) 4(4) 4(11) 127(1) 18(18) 101(116) 82(94) 127(120) 1(0) __ 1(0) __ 27(40) __ Centrum ↓↓↓ **ا** لہ 34(54) Centrum 25(94) 1 4 70(93) ኀ↑୯ 56(74) <u>1</u>9(49) <u>1</u> 82(181) 62(80) 175(151) 67(102) 0(0) 0(7) 81(103) 56(80) 40(220) 10(8) 15(31) 51(99) 75(172) 130(147) 845(476) 2(10) 8(34) 178(939) 40(116) ┑╽┍ 5(9) 63(54) 81(57)

Figure 17: 2033 Future Total Volumes

Table 20: 2033 Future Total Intersection Operations

Intersection	lana		AM Pe	ak Hour		PM Peak Hour					
intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	38.2 33.4 8.5 32.1 31.6 4.6 5.4 14.0 7.8 7.7 12.3 10.5 4.0 8.0 8.8 9.4 7.9 8.5	Q (95 th)		
	EBL	Α	0.11	20.2	7.2	Α	0.47	38.2	23.9		
	EBT	Α	0.19	21.0	14.1	Α	0.37	33.4	25.3		
Centrum Boulevard	EBR	Α	0.13	7.0	5.5	Α	0.52	8.5	15.1		
at Place d'Orleans	WBL	Α	0.14	20.6	8.9	Α	0.27	32.1	15.2		
Drive	WBT/R	Α	0.25	21.0	17.0	Α	0.34	31.6	23.1		
Signalized	NB	Α	0.16	5.3	15.8	Α	0.20	4.6	16.3		
	SB	Α	0.12	6.0	10.7	Α	0.19	5.4	17.5		
	Overall	Α	0.19	10.1	-	Α	0.24	14.0	-		
Cambridge Davidson	EB	Α	0.05	7.6	1.5	Α	0.07	7.8	1.5		
Centrum Boulevard	WB	Α	0.00	7.4	0.0	Α	0.00	7.7	0.0		
at Brisebois Crescent West	NB	Α	0.00	9.9	0.0	В	0.03	12.3	0.8		
Unsignalized	SB	Α	0.09	9.4	2.3	В	0.15	10.5	3.8		
Olisighulizeu	Overall	Α	-	3.5	-	Α	-	4.0	-		
	EB	Α	0.07	7.4	1.5	Α	0.18	8.0	4.5		
Centrum Boulevard at Prestone Drive	WB	Α	0.15	8.3	3.8	Α	0.18	8.8	4.5		
	NBL	Α	0.09	8.8	2.3	Α	0.13	9.4	3.0		
Unsignalized	NBR	Α	0.10	7.4	2.3	Α	0.13	7.9	3.0		
	Overall	Α	-	8.0	-	Α	-	8.5	-		

Intersection	1		AM Pe	ak Hour			PM Pe	ak Hour	
intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	7.4 - 8.8 5.2 7.1 8.5 2.0 7.3 6.8 1.8 25.5 21.3 39.5 23.6 11.5 - 9.3 4.6	Q (95 th)
Centrum Boulevard	EB	Α	0.04	7.4	0.8	Α	0.05	7.4	0.8
at Brisebois	WB	-	-	-	-	-	-	-	-
Crescent East	SB	Α	0.07	8.9	1.5	Α	0.08	8.8	1.5
Unsignalized	Overall	Α	-	5.9	-	Α	-	5.2	-
	EBL	Α	0.05	11.6	2.7	Α	0.06	7.1	6.0
	EBT	Α	0.15	11.6	10.9	Α	0.44	8.5	56.1
	EBR	Α	0.08	4.3	4.3	Α	0.12	2.0	6.2
	WBL	Α	0.00	10.5	1.1	Α	0.03	7.3	2.7
St Joseph	WBT	В	0.70	18.3	51.7	Α	0.23	6.8	25.5
Boulevard at	WBR	Α	0.22	3.6	7.7	Α	0.15	1.8	6.9
Prestone Drive	NBL	Α	0.16	12.4	14.0	Α	0.24	25.5	15.2
Signalized	NBT/R	Α	0.09	11.0	11.3	Α	0.19		14.9
	SBL	Α	0.15	12.4	13.3	В	0.67	39.5	39.8
	SBT/R	Α	0.12	10.0	10.4	Α	0.38	23.6	26.2
	Overall	Α	0.41	14.5	-	Α	0.50	11.5	-
	EB	-	-	-	-	-	-	-	-
Access #1 at	WB	-	-	-	-	-	-	-	-
Brisebois Crescent	NB	Α	0.09	9.1	2.3	Α	0.10	9.3	2.3
Unsignalized	Overall	Α	-	5.3	-	Α	-	4.6	-
Access #2 at	EB								
Brisebois Crescent	WB			Low volume	s do not reti	urn operat	ional resul	ts.	
Unsignalized	Overall							7.4 - 8.8 5.2 7.1 8.5 2.0 7.3 6.8 1.8 25.5 21.3 39.5 23.6 11.5 - 9.3 4.6 tts.	
	EB	-	-	-	-	-	-	-	-
Access #3 at	WB	Α	0.03	7.5	0.8	Α	0.05	7.6	0.8
Brisebois Crescent	NB	Α	0.04	9.2	0.8	Α	0.05	9.4	1.5
Unsignalized	Overall	Α	-	4.0	-	Α	-	3.9	-

Notes: Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Peak Hour Factor = 1.00

Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both peak hours, the study area intersections operate similar to the 2033 future background condition. No capacity issues are noted.

7.5 Modal Share Sensitivity and Demand Rationalization Conclusions

During both peak hours, the study area intersections operate well, and no demand rationalization is required for this TIA.

The network intersection exemptions noted in Section 3.1 are validated in the low impact the development on intersections in close proximity to the site.

8 Development Design

8.1 Design for Sustainable Modes

The proposed development includes two residential towers and a mixed-use tower. The bicycle parking spaces are proposed as accessing the parking garage ramp. The site plan proposes a total of 1,254 bicycle parking spaces with 1,194 bicycle indoor parking spaces and 60 exterior bicycle parking spaces. Hard surface connections are provided between building entrances and a 2.0-meter-wide concrete sidewalk will be provided along the frontage of Brisebois Crescent. Local bus stops are located within 400 metres of the site entrances at Centrum Boulevard and Prestone Drive. Place d'Orléans station is approximately one kilometre walking distance from the site.

8.2 Circulation and Access

The proposed development will remove two existing accesses on Brisebois Crescent and propose three accesses on Brisebois Crescent. Access #1 will be a two-way access with a connection to the underground parking levels, and a one-way loop will form the inbound Access #2 and outbound Access #3. The one-way loop will permit temporary parking for deliveries, ubers, etc. and internal loading zones will be provided for each building for garbage collection and move-in truck operations. Two-way operation is permitted to the loading zone for Tower A from the one-way loop.

9 Parking

9.1 Parking Supply

The site proposes a total of 516 vehicle parking spaces. A total of 1254 bicycle parking spaces are proposed with 1,194 spaces provided indoor and 60 spaces provided exterior.

From the zoning by-law, the minimum vehicle parking provision for office is 70 parking spaces and for retail is 90 parking spaces. There are no minimum vehicle parking requirements for the residential units.

The site proposes a total of 21 accessible parking spaces, and it meets the requirement of 16 accessible parking spaces for office and retails.

The site meets the minimum vehicle parking, bicycle parking, and accessible parking requirements.

10 Boundary Street Design

Table 21 summarizes the MMLOS analysis for the boundary streets of Brisebois Crescent and Centrum Boulevard. The existing and future conditions for both streets will be the same and are considered in one row. The boundary street analysis is based on the land-use of the "General Urban Area". The MMLOS worksheets have been provided in Appendix K.

			, 00, 000 ,,,,		,			
Sagment	Pedestrian LOS		Bicycle LOS		Transit LOS		Truck LOS	
Segment	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS N/A	Target
Brisebois Crescent (Existing)	F	В	D	D	N/A	N/A	N/A	N/A
Brisebois Crescent (Future)	С	В	D	D	N/A	N/A	N/A	N/A
Centrum Boulevard	В	В	В	D	N/A	N/A	N/A	N/A

Table 21: Boundary Street MMLOS Analysis

The pedestrian LOS will not be met along the segment of Brisebois Crescent. A 2.0-meter-wide sidewalk will be provided along the boundary street of Brisebois Crescent, and it will improve the PLOS from F to C. To meet the theoretical pedestrian LOS targets, the boulevards would need to be at least 0.5 metres or the operating speed would need to be less than 50 km/h along boundary street of Brisebois Crescent.

Brisebois Crescent will have sidewalks on both sides of the roadway and will meet local road standards for the cross-section. No further improvements are required to meet the PLOS targets, although the City may look at reducing the speed limit to help improve the PLOS results (e.g. 40 km/h would become PLOS B).

11 Access Intersections Design

11.1 Location and Design of Access

The development proposed three accesses to Brisebois Crescent and is in compliance with the private approach bylaw for number and operation of the permitted accesses. The Access #1 is a two-way access with a 6.7 metre

width and connects to the ground level parking and underground garage. The Access #2 and Access #3 are one-way access are 6.0 metres wide, operating as an one-way loop, inbound on Access #2 and outbound on Access #3. The throat length for each access meets the private approach bylaw requirements.

11.2 Intersection Control

Based upon the projected volumes, Accesses #1 and #3 will have stop-control each on the minor approach and Access #2 will have no control as it is inbound only.

11.3 Access Intersection Design

11.3.1 Future Access Intersection Operations

The operations are noted in Section 7.4 and no mitigation is required for the development.

11.3.2 Access Intersection MMLOS

All accesses are unsignalized and do not require MMLOS review.

11.3.3 Recommended Design Elements

The Brisebois Crescent frontage will be formalized to a local road standard with the perpendicular parking being removed and replaced by a 2.0-meter-wide sidewalk and grass boulevard. The sidewalk will tie into the existing sidewalk at the corner of Brisebois Crescent as it bends towards Centrum Boulevard. The proposed accesses will be constructed to comply with the City standard SC7.1.

12 Transportation Demand Management

12.1 Context for TDM

The subject site has been assumed to rely predominantly on auto driver and transit mode shares due to the conversion of the Place d'Orleans LRT station. The convenience of the transit station should provide the opportunity to reach the forecast transit mode share.

12.2 Need and Opportunity

The subject site has been assumed to rely predominantly on auto and transit travel, and those assumptions have been carried through the analysis. As the unmodified district mode shares have been applied, risks to other network users from failing to meet mode share targets are low.

12.3 TDM Program

The "suite of post occupancy TDM measures" has been summarized in the TDM checklists for the residential land uses. The checklist is provided in Appendix L. Transit-oriented design of the subject site is confirmed by the City of Ottawa during the pre-consultation meeting, and the key TDM measures recommended include:

- Designate an internal coordinator, or contract with an external coordinator
- Display local area maps with walking/cycling access routes and key destinations at major entrances
- Display relevant transit schedules and route maps at entrances
- Provide online links to OC Transpo and STO information
- Provide a dedicated ridematching portal at OttawaRideMatch.com
- Provide a multimodal travel option information package to new/relocating employees, students, and new residents
- Unbundle parking costs from lease rates at multi-tenant sites, purchase or rental costs
- Offer personalized trip planning to new/relocating employees

13 Neighbourhood Traffic Management

The proposed development will connect to the arterial network via Brisebois Crescent (a local road), Centrum Boulevard (a collector road), and Prestone Drive (a collector road). The TIA guidelines have outlined thresholds for two-way traffic on local and collector roads and have been found to be too low for the purposes of this analysis. City Staff have noted that these thresholds are under review and will be updated in the future.

In general, Brisebois Crescent is anticipated to convey between 105 to 153 vehicles during the peak hours, Centrum Boulevard will range between 137 to 336 vehicles west of Prestone Drive and 28 to 252 vehicles east of Prestone Drive during the peak hours. Prestone Drive is anticipated to convey between 280 to 415 vehicles north of St. Joseph Boulevard during the peak hours. No changes to the roadway classifications or proposed road network are required to support the site.

14 Transit

14.1 Route Capacity

In Section 5.1 the trip generation by mode was estimated, including an estimate of the number of transit trips that will be generated by the proposed development. Table 22 summarizes the transit trip generation.

Table 22: Trip Generation by Transit Mode

Tuescal NA and a	Mada Chana	А	M Peak Hou	ır	P	M Peak Hoւ	ır
Travel Mode	Mode Share	In	Out	Total	In	Out	Total
Transit	varies	82	154	236	105	87	192

The proposed development is anticipated to generate an additional 236 AM and 192 PM peak hour two-way transit trips. From the trip distribution found in section 5.3, these values can be further broken down. Table 23 summarizes forecasted site-generated transit ridership trips by direction and the equivalent bus loads.

Table 23: Forecasted Site-Generated Transit Ridership

Divoction	Direction AM Peak Hou	ak Hour	PM Pe	ak Hour	Comico Turo	Approximate Equivalent Peak
Direction	In	Out	In	Out	Service Type	Hour/Direction Bus Loads
North	4	8	5	4	Bus	Negligible
South	25	46	32	26	Bus	Half of a standard bus
East	21	39	26	22	Bus, LRT	Half of a standard bus
West	32	61	42	35	Bus, LRT	A standard bus

14.2 Transit Priority

Examining the study area intersection delays, negligible impacts are noted on the transit movements at the study area intersections. No change in transit LOS is noted throughout the study area. No specific transit priority measures were considered as part of this development.

15 Network Concept

The background and forecasted site trips do not exceed the anticipated lane capacities on the boundary road network. The transit modal share is likely to be achieved and the site has negligible impact on the road network. No future network changes are required to support the subject development.

16 Network Intersection Design

16.1 Network Intersection Control

No change to the existing signalized control is recommended for the network intersections.

16.2 Network Intersection Design

16.2.1 2028 & 2033 Future Total Network Intersection Operations

The operations are noted in Section 7.4 and no mitigation of conditions is required for the subject site traffic.

16.2.2 Network Intersection MMLOS

Table 24 summarizes the MMLOS analysis for the network intersections of Centrum Boulevard at Place d'Orleans Drive and St Joseph Boulevard at Prestone Drive. The existing and future conditions for both intersections will be the same and are considered in one row. The intersection analysis is based on the land-use of the "Mixed Use Centre" for existing condition and "Within 600m of a rapid transit station" for future conditions. The MMLOS worksheets have been provided in Appendix K.

Table 24: Study Area Intersection MMLOS Analysis

	Pedes	Pedestrian LOS		Bicycle LOS		Transit LOS		Truck LOS		Auto LOS	
Intersection	PLOS	Target (Ex/Fu)	BLOS	Target (Ex/Fu)	TLOS	Target (Ex/Fu)	TrLOS	Target (Ex/Fu)	ALOS	Target (Ex/Fu)	
Centrum Boulevard at Place d'Orleans Drive	F	C/A	F	A/A	N/A	N/A	N/A	N/A	А	D/D	
St Joseph Boulevard at Prestone Drive	F	C/A	F	В/В	N/A	N/A	N/A	N/A	А	D/D	

The pedestrian LOS targets will not be met at the study area intersections. As typical for arterial roads, the crossing distance does not permit the targets to be met. To meet pedestrian LOS targets, the maximum crossing distance on all pedestrian crossings would need to be reduced to three lane-widths.

Pedestrian delay LOS is not considered in the PLOS calculation as it is not a suitable metric for the assessment of pedestrian LOS as formulated. This exclusion is consistent with City direction since 2015, and no alternative methodology has been provided for its assessment.

The bicycle LOS targets will not be met at the study area intersections, and two-stage left turns or left-turn boxes would be required to meet LOS targets on all below-target approaches.

The City of Ottawa will be responsible for exploring options to address the area PLOS and BLOS deficiencies, given they are arterial road intersections and may require greater network improvements beyond the localized intersection upgrades.

16.2.3 Recommended Design Elements

No study area intersection design elements are proposed as part of this study.

17 Summary of Improvements Indicated and Modifications Options

The following summarizes the analysis and results presented in this TIA report:

Proposed Site and Screening

- The proposed site includes 1,127 residential units, 8,970 sq. ft retail space, and 31,570 sq. ft office space
- The preliminary accesses are proposed to include three along Brisebois Crescent, and the existing two
 accesses on Brisebois Crescent will be removed
- The development is proposed to be completed as a single phase by 2028
- The Trip Generation and safety triggers were met for the TIA Screening

Existing Conditions

- Place d'Orleans Drive and St Joseph Boulevard are arterial roads, and Centrum Boulevard and Prestone
 Drive are collector roads in the study area
- Sidewalks are provided on both sides of Place d'Orleans Drive, St Joseph Boulevard, Centrum Boulevard, and Prestone Drive, and one side of Brisebois Crescent
- St Joseph Boulevard is a cross-town bikeway, and Place d'Orleans Drive and Prestone Drive south of St Joseph Boulevard are local routes
- Within the study area, the intersection of St Joseph Boulevard at Prestone Drive is noted to have experienced higher collisions than other locations (11 of 32)
- The majority of the collisions (7 of 11) occurred during 2017 and 2018 at the intersection of St Joseph Boulevard at Prestone Drive when there was resurfacing operations occurred through the intersection, which is assumed to be the cause of the elevated collision rate during these two years

Development Generated Travel Demand

- A 15% shift to transit mode from the auto mode for residential land use and a 10% shift to transit mode from the auto mode for commercial land use are proposed because of the conversion of the future Place d'Orleans LRT station and being design priority area with good access to transit
- The proposed development is forecasted to produce 544 two-way people trips during the AM peak hour and 554 two-way people trips during the PM peak hour
- Of the forecasted people trips, 210 two-way trips will be vehicle trips during the AM peak hour and 248 two-way trips will be vehicle trips during the PM peak hour
- Of the forecasted trips, 5 % are anticipated to travel north, 30% to the south, 25% to the east, and 40 % to the west

Background Conditions

- The background developments were explicitly included in the background conditions, along with background growths per annum applied along the mainline directions/volumes on Centrum Boulevard, St Joseph Boulevard, and Place d'Orleans Drive
- The study area intersections at the 2028 and 2033 background conditions will operate similar to the existing conditions
- Place d'Orleans station, which is located approximately 800 metres from the site, will be converted to accommodate LRT by the end of 2024

Development Design

- The site plan proposes a total of 1,254 bicycle parking spaces with 1,194 bicycle indoor parking spaces and 60 exterior bicycle parking spaces
- Hard surface connections are provided between building entrances and a 2.0m wide concrete sidewalk will be provided along the frontage of Brisebois Crescent
- Local bus stops are located within 400 metres of the site entrances and the Place d'Orléans station is approximately one kilometre walking distance from the site
- Access #1 will be a two-way access with a connection to the underground parking levels, and a one-way loop will form the inbound Access #2 and outbound Access #3
- The one-way loop will permit temporary parking for deliveries, ubers, etc. and internal loading zones will be provided for each building for garbage collection and move-in truck operations
- Two-way operation is permitted to the loading zone for Tower A from the one-way loop

Parking

- The site plan proposes a total of 516 vehicle parking spaces
- A total of 1,254 bicycle parking spaces are proposed with 1,194 spaces provided indoor and 60 spaces provided exterior
- The site proposes a total of 21 accessible parking spaces
- The site meets the minimum vehicle parking, bicycle parking, and accessible parking requirements
- There are no minimum vehicle parking requirements for the residential units

Boundary Street Design

- The pedestrian LOS will not be met along the segment of Brisebois Crescent, and at least 0.5 metres of boulevards or less than 50 km/h of operating speed would need to meet the target
- A 2.0-meter-wide sidewalk will be provided along the boundary road of Brisebois Crescent, and it will improve the PLOS from F to C
- No further improvements are required to meet the PLOS targets, although the City may look at reducing the speed limit to help improve the PLOS results

Access Intersections Design

- The Access #1 is a two-way access with a 6.7 metre width and connects to the ground level parking and underground garage
- The Access #2 and Access #3 are one-way access are 6.0 metres wide, operating as an one-way loop, inbound on Access #2 and outbound on Access #3
- The throat length for each access meets the private approach bylaw requirements
- Accesses #1 and #3 will have stop-control each on the minor approach and Access #2 will have no control
 as it is inbound only
- The Brisebois Crescent frontage will be formalized to a local road standard with the perpendicular parking being removed and replaced by a 2.0-meter-wide sidewalk and grass boulevard

TDM

- Supportive TDM measures to be included within the proposed development should include:
 - o Designate an internal coordinator, or contract with an external coordinator

- Display local area maps with walking/cycling access routes and key destinations at major entrances
- Display relevant transit schedules and route maps at entrances
- o Provide online links to OC Transpo and STO information
- o Provide a dedicated ridematching portal at OttawaRideMatch.com
- Provide a multimodal travel option information package to new/relocating employees, students, and new residents
- o Unbundle parking costs from lease rates at multi-tenant sites, purchase or rental costs
- Offer personalized trip planning to new/relocating employees

NTM

- The proposed development will connect to the arterial network via Brisebois Crescent (a local road), Centrum Boulevard (a collector road), and Prestone Drive (a collector road)
- No changes to the roadway classifications or proposed road network are required to support the site

Transit

- The forecasted transit trips will include 236 two-way trips during the AM peak and 192 two-way trips during the PM peak
- Peak hour increases in transit ridership resulting from the site equate to half of a standard bus load southerly and easterly of the site, a standard bus load westerly of the site, and negligible impact northerly of the site
- Negligible impacts are noted on the transit movements at the study area intersections
- No specific transit priority measures were considered as part of this development

Network Concept

- The transit modal share is likely to be achieved and the site has negligible impact on the road network
- No future network changes are required to support the subject development

Network Intersection Design

- No change to the existing signalized control is recommended for the network intersections
- Generally, the network intersections will operate similar to the background conditions
- The pedestrian LOS targets will not be met at the study area intersections, and the maximum crossing distance on all pedestrian crossings are required to be reduced to three lane-widths
- The bicycle LOS targets will not be met at the study area intersections, and two-stage left turns or leftturn boxes would be required to meet LOS targets on all below-target approaches
- The City of Ottawa will be responsible for exploring options to address the area PLOS and BLOS
 deficiencies, given they are arterial road intersections and may require greater network improvements
 beyond the localized intersection upgrades

18 Conclusion

It is recommended that, from a transportation perspective, the proposed development applications proceed.

Prepared By:

Yu-Chu Chen, EIT

Transportation Engineering-Intern

Reviewed By:

A. J. HARTE
100149314

March 24, 2023

Andrew Harte, P.Eng.

Senior Transportation Engineer

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2017 TIA Guidelines Step 1 - Screening Form Date: 23-Mar-23
Project Number: 2023-013
Project Reference: 265 Centrum

1.1 Description of Proposed Development	
Municipal Address	265 Centrum Boulevard
Description of Location	Existing YMCA site. Bounded by Centrum Boulevard to the south, Brisebois Crescent to the north and east, and the Shenkman Arts Centre to the west
Land Use Classification	Mixed-Use Centre Zone (MC14[1520] S152)
Development Size	Three (3) towers with a total of 1,127 residential units, 8,970 sq. ft retail space, and 31,570 sq. ft office space
Accesses	Three accesses on Brisebois Crescent
Phase of Development	Single
Buildout Year	2028
TIA Requirement	Full TIA Required

1.2 Trip Generation Trigger	
Land Use Type	Townhomes or apartments
Development Size	1093 Units
Trip Generation Trigger	Yes

1.3 Location Triggers		
Does the development propose a new driveway to a boundary street that is		
designated as part of the City's Transit Priority, Rapid Transit or Spine	No	
Bicycle Networks?		
Is the development in a Design Priority Area (DPA) or Transit-oriented	No	Heart of Orleans BIA
Development (TOD) zone?	No	Heart of Orleans BIA
Location Trigger	No	

1.4. Safety Triggers		
Are posted speed limits on a boundary street 80 km/hr or greater?	No	
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?	Yes	Brisebois curvature. It's a local with low volumes. No issue.
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?	No	
Is the proposed driveway within auxiliary lanes of an intersection?	No	
Does the proposed driveway make use of an existing median break that serves an existing site?	No	
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?	No	
Does the development include a drive-thru facility?	No	
Safety Trigger	Yes	

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{\text{appropriate field(s)}}$] is either transportation engineering $\sqrt{\text{or}}$ or transportation planning \square .
- License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at Ottawa (City)	this 20 day of September	, 2018
Name:	Andrew Harte	
Ivame.	(Please Print)	
Professional Title:	Professional Engineer	
Signature	of Individual certifier that s/he meets the above four criteria	

Office Contact Information (Please Print)
Address: 6 Plaza Court
City / Postal Code: Ottawa / K2H 7W1
Telephone / Extension: (613) 697-3797
E-Mail Address: Andrew.Harte@CGHTransportation.com

Appendix B

Turning Movement Counts

Turning Movement Count - Study Results

PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS

Survey Date: Thursday, January 31, 2019 WO No: 38321 Start Time: 07:00 Device: Miovision

Full Study Diagram

Start Time: 07:00

Transportation Services - Traffic Services

Turning Movement Count - Study Results

PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS

Survey Date: Thursday, January 31, 2019 WO No: 38321

Full Study Peak Hour Diagram

Device:

Miovision

December 11, 2019 December 11, 2019 Page 1 of 8 Page 2 of 8

Turning Movement Count - Peak Hour Diagram

PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS

 Survey Date:
 Thursday, January 31, 2019
 WO No:
 38321

 Start Time:
 07:00
 Device:
 Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS

 Survey Date:
 Thursday, January 31, 2019
 WO No:
 38321

 Start Time:
 07:00
 Device:
 Miovision

Comments

Turning Movement Count - Peak Hour Diagram

PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS

 Survey Date:
 Thursday, January 31, 2019
 WO No:
 38321

 Start Time:
 07:00
 Device:
 Miovision

Comments

2019-Dec-11 Page 3 of 3

Transportation Services - Traffic Services

Turning Movement Count - Study Results

PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS

 Survey Date:
 Thursday, January 31, 2019
 WO No:
 38321

 Start Time:
 07:00
 Device:
 Miovision

Full Study Summary (8 HR Standard)

Survey Date: Thursday, January 31, 2019 Total Observed U-Turns AADT Factor

Eastbound: 1 Westbound: 3

1.39

								Lucibouii			*****	.boui.iu							
		Р	LACE	D'OR	LEAN	S			_ (CENT	RUM E	BLVD/	PLACE	D'OR	LEANS	s sc	E		
	No	rthbou	nd		So	uthbou	ınd			Е	astbou	und		W	/estbou				
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gran Tota
07:00 08:00	38	182	24	244	35	47	7	89	333	4	6	15	25	12	5	0	17	42	37
08:00 09:00	54	183	55	292	88	47	11	146	438	16	11	23	50	12	19	0	31	81	51
09:00 10:00	67	144	52	263	110	42	19	171	434	24	30	40	94	22	32	1	55	149	58
11:30 12:30	117	120	65	302	84	55	31	170	472	55	53	106	214	36	38	0	74	288	76
12:30 13:30	97	105	48	250	94	60	26	180	430	74	54	103	231	29	48	1	78	309	73
15:00 16:00	75	129	62	266	130	111	36	277	543	87	61	167	315	34	45	0	79	394	93
16:00 17:00	108	156	60	324	114	128	46	288	612	81	53	202	336	43	47	1	91	427	103
17:00 18:00	94	144	77	315	120	109	36	265	580	95	49	226	370	25	28	1	54	424	100
Sub Total	650	1163	443	2256	775	599	212	1586	3842	436	317	882	1635	213	262	4	479	2114	595
U Turns				0				2	2				1				3	4	6
Total	650	1163	443	2256	775	599	212	1588	3844	436	317	882	1636	213	262	4	482	2118	5962
EQ 12Hr	903	1617	616	3136	1077	833	295	2207	5343	606	441	1226	2274	296	364	6	670	2944	8287
Note: These	values a	re calcu	lated by	y multipl	ying the	totals b	y the a	ppropriate	expans	ion fact	or.			1.39					
AVG 12Hr	903	1617	616	3136	1077	833	295	2207	5343	606	441	1226	2274	296	364	6	670	2944	8287
Note: These	volumes	are calc	culated	by multi	plying th	ne Equiv	alent 1	2 hr. total	s by the	AADT	factor.			1					
AVG 24Hr	1184	2118	807	4108	1411	1091	386	2892	7000	794	577	1606	2979	388	477	7	878	3857	1085
Note: These	volumes	are calc	culated	by multi	plying th	ne Avera	ige Dai	ly 12 hr. t	otals by	12 to 2	4 expan	sion fac	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

December 11, 2019 Page 3 of 8

Turning Movement Count - Study Results

PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS

 Survey Date:
 Thursday, January 31, 2019
 WO No:
 38321

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute Increments

PLACE D'ORLEANS CENTRUM BLVD/PLACE
D'ORLEANS SC E

	N	orthbou	ınd		Sc	uthbou	nd		Eastbound					Westbound					
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	8	45	4	57	7	7	0	16	136	0	0	5	5	4	2	0	6	136	84
07:15 07:30	11	56	5	72	10	15	3	28	173	0	1	2	3	0	1	0	1	173	104
07:30 07:45	9	38	4	51	4	11	1	16	126	1	2	5	8	4	1	0	6	126	81
07:45 08:00	10	43	11	64	14	14	3	31	162	3	3	3	9	4	1	0	5	162	109
08:00 08:15	14	59	9	82	16	15	4	35	197	3	1	3	7	0	0	0	0	197	124
08:15 08:30	8	41	11	60	18	15	1	34	164	2	6	10	18	2	8	0	10	164	122
08:30 08:45	14	40	20	74	31	8	2	41	175	3	3	5	11	4	2	0	6	175	132
08:45 09:00	18	43	15	76	23	9	4	36	183	8	1	5	14	6	9	0	15	183	141
09:00 09:15	21	35	12	68	22	11	5	38	168	5	3	6	14	5	2	0	7	168	127
09:15 09:30	18	38	11	67	32	10	3	45	183	8	4	8	21	6	8	1	15	183	148
09:30 09:45	16	39	18	73	21	13	5	39	187	5	10	12	27	6	4	0	10	187	149
09:45 10:00	12	32	11	55	35	8	6	49	169	6	13	14	33	5	18	0	23	169	160
11:30 11:45	25	28	17	70	21	10	5	36	187	12	9	26	47	5	5	0	11	187	164
11:45 12:00	28	30	17	75	22	11	12	45	206	12	16	26	54	7	11	0	18	206	192
12:00 12:15	40	30	12	82	16	19	7	42	227	16	9	28	53	10	15	0	25	227	202
12:15 12:30	24	32	19	75	25	15	7	47	224	15	19	26	60	14	7	0	21	224	203
12:30 12:45	28	36	14	78	22	14	12	48	227	16	17	22	55	12	10	1	23	227	204
12:45 13:00	28	23	10	61	32	13	8	53	202	19	13	27	59	6	13	0	19	202	192
13:00 13:15	17	23	15	55	18	17	2	37	179	21	11	22	54	4	14	0	18	179	164
13:15 13:30	24	23	9	56	22	16	4	42	194	18	13	32	63	7	11	0	18	194	179
15:00 15:15	14	27	13	54	35	24	10	69	238	25	16	35	76	4	13	0	17	238	216
15:15 15:30	24	51	21	96	38	24	11	73	315	19	12	45	76	7	9	0	16	315	261
15:30 15:45	16	28	10	54	28	35	8	71	263	23	14	43	80	9	13	0	22	263	227
15:45 16:00	21	23	18	62	29	28	7	64	255	20	19	44	83	14	10	0	24	255	233
16:00 16:15	29	31	13	73	33	31	14	78	284	16	13	43	72	11	6	1	18	284	241
16:15 16:30	26	46	19	91	23	24	14	61	297	19	17	48	84	8	11	0	19	297	255
16:30 16:45	30	40	15	85	32	34	11	77	319	19	11	48	78	16	14	0	31	319	271
16:45 17:00	23	39	13	75	26	39	7	72	323	27	12	63	102	8	16	0	24	323	273
17:00 17:15	23	28	18	69	27	33	10	70	298	29	16	61	106	8	4	0	12	298	257
17:15 17:30	20	49	22	91	22	25	9	56	303	26	8	54	88	2	7	0	9	303	244
17:30 17:45	23	36	17	76	26	25	8	59	283	24	12	56	92	7	11	0	18	283	245
17:45 18:00	28	31	20	79	45	26	9	80	296	16	13	55	84	8	6	1	15	296	258
Total:	650	1163	443	2256	775	599	212	1588	7143	436	317	882	1636	213	262	4	482	7143	5,962

Note: U-Turns are included in Totals.

Transportation Services - Traffic Services

Turning Movement Count - Study Results

PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS

 Survey Date:
 Thursday, January 31, 2019
 WO No:
 38321

 Start Time:
 07:00
 Device:
 Miovision

DI ACE DIODI FANO

Full Study Cyclist Volume

	PL	ACE D'ORLEA	NS	CENTRUM B			
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
7:15 07:30	0	0	0	0	0	0	0
7:30 07:45	0	0	0	0	0	0	0
7:45 08:00	1	0	0 1		0 0		1
08:00 08:15	0	0	0	0	0	0	0
8:15 08:30	0	0	0	0	0	0	0
8:30 08:45	0	0	0	0	0	0	0
8:45 09:00	0	0	0	0	0	0	0
9:00 09:15	0	0	0	0	0	0	0
9:15 09:30	0	0	0	0	0	0	0
9:30 09:45	0	0	0	0	0	0	0
9:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
1:45 12:00	0	0	0	0	0	0	0
2:00 12:15	0	0	0	0	0	0	0
2:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	0	0	0
6:30 16:45	0	0	0	0	0	0	0
6:45 17:00	0	0	0	0	0	0	0
7:00 17:15	0	0	0	0	0	0	0
7:15 17:30	0	0	0	0	0	0	0
7:30 17:45	45 0 0 0		0	0	0	0	0
7:45 18:00	:00 0 0 0		0	0	0	0	0
Total	1	0	1	0	0	0	1

December 11, 2019 Page 4 of 8 December 11, 2019 Page 5 of 8

Turning Movement Count - Study Results

PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS

 Survey Date:
 Thursday, January 31, 2019
 WO No:
 38321

 Start Time:
 07:00
 Device:
 Miovision

Full Study Pedestrian Volume

PLACE D'ORLEANS

CENTRUM BLVD/PLACE D'ORLEANS SC E

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	2	2	0	0	0	2
07:30 07:45	2	1	3	0	0	0	3
07:45 08:00	1	3	4	0	0	0	4
08:00 08:15	2	0	2	0	0	0	2
08:15 08:30	1	2	3	0	0	0	3
08:30 08:45	2	2	4	0	1	1	5
08:45 09:00	2	4	6	0	0	0	6
09:00 09:15	1	2	3	1	0	1	4
09:15 09:30	0	1	1	0	0	0	1
09:30 09:45	2	4	6	0	0	0	6
09:45 10:00	4	1	5	0	0	0	5
11:30 11:45	4	3	7	2	2	4	11
11:45 12:00	4	0	4	0	0	0	4
12:00 12:15	3	3	6	1	0	1	7
12:15 12:30	5	3	8	1	1	2	10
12:30 12:45	7	3	10	0	0	0	10
12:45 13:00	5	0	5	3	0	3	8
13:00 13:15	8	0	8	0	0	0	8
13:15 13:30	4	1	5	0	0	0	5
15:00 15:15	4	4	8	0	1	1	9
15:15 15:30	5	8	13	0	1	1	14
15:30 15:45	5	7	12	0	0	0	12
15:45 16:00	11	6	17	1	0	1	18
16:00 16:15	10	0	10	0	0	0	10
16:15 16:30	5	7	12	0	2	2	14
16:30 16:45	2	3	5	0	3	3	8
16:45 17:00	3	0	3	2	0	2	5
17:00 17:15	2	4	6	2	0	2	8
17:15 17:30	1	6	7	0	1	1	8
17:30 17:45	4	3	7	1	0	1	8
17:45 18:00	4	0	4	1	0	1	5
Total	113	83	196	15	12	27	223

Transportation Services - Traffic Services

Turning Movement Count - Study Results

PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS

 Survey Date:
 Thursday, January 31, 2019
 WO No:
 38321

 Start Time:
 07:00
 Device:
 Miovision

Full Study Heavy Vehicles

PLACE D'ORLEANS CENTRUM BLVD/PLACE

	D'ORLEANS SC E																		
	N	orthbo	und		Sc	outhbou	ınd			Е	astbour	nd		We	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	2	0	2	2	0	0	4	6	0	0	0	0	0	0	0	2	2	4
07:15 07:30	2	5	0	9	2	2	0	9	18	0	0	0	2	0	0	0	2	4	11
07:30 07:45	0	1	0	2	2	1	0	5	7	1	1	0	2	0	0	0	5	7	7
07:45 08:00	0	4	0	5	1	1	0	6	11	0	0	0	0	0	0	0	1	1	6
08:00 08:15	0	3	0	4	2	1	0	6	10	0	0	0	0	0	0	0	2	2	6
08:15 08:30	0	3	0	5	4	1	0	8	13	0	0	1	1	0	0	0	4	5	9
08:30 08:45	0	2	0	2	2	0	0	4	6	0	0	0	0	0	0	0	2	2	4
08:45 09:00	0	4	0	4	2	0	0	6	10	0	0	0	0	0	0	0	2	2	6
09:00 09:15	0	2	0	3	3	0	0	6	9	1	0	1	2	0	0	0	3	5	7
09:15 09:30	0	3	0	5	0	1	1	5	10	0	0	1	2	0	0	0	0	2	6
09:30 09:45	0	0	0	1	1	1	0	2	3	0	0	0	0	0	0	0	1	1	2
09:45 10:00	1	1	0	5	1	2	0	5	10	1	0	1	4	0	1	0	2	6	8
11:30 11:45	1	1	1	4	1	1	0	3	7	0	1	0	2	0	0	0	3	5	6
11:45 12:00	0	1	0	3	0	1	1	4	7	1	0	1	3	0	0	0	0	3	5
12:00 12:15	1	1	0	2	1	0	0	2	4	0	0	0	1	0	0	0	1	2	3
12:15 12:30	0	1	1	7	1	3	0	6	13	1	1	2	4	0	0	0	3	7	10
12:30 12:45	0	1	1	5	1	0	0	4	9	2	1	1	4	2	0	0	5	9	9
12:45 13:00	0	0	0	2	0	1	0	2	4	1	1	0	2	1	0	0	2	4	4
13:00 13:15	0	0	1	1	1	0	0	2	3	1	0	0	1	0	0	0	2	3	3
13:15 13:30	0	1	1	5	1	1	0	3	8	0	0	1	1	1	0	0	3	4	6
15:00 15:15	0	0	0	0	2	0	0	2	2	0	0	0	0	0	0	0	2	2	2
15:15 15:30	0	3	0	5	1	2	1	7	12	0	0	0	1	0	0	0	1	2	7
15:30 15:45	0	2	0	3	2	1	0	5	8	0	1	0	2	0	1	0	4	6	7
15:45 16:00	0	1	0	4	2	2	0	5	9	0	0	1	1	0	0	0	2	3	6
16:00 16:15	0	5	0	5	2	0	0	7	12	0	0	0	0	0	0	0	2	2	7
16:15 16:30	0	3	0	6	0	3	0	6	12	0	0	0	0	0	0	0	0	0	6
16:30 16:45	0	0	0	0	2	0	0	2	2	0	0	0	0	0	0	0	2	2	2
16:45 17:00	0	3	0	6	1	3	1	8	14	0	0	0	1	0	0	0	1	2	8
17:00 17:15	0	2	0	3	1	1	0	4	7	0	0	0	0	0	0	0	1	1	4
17:15 17:30	0	0	0	1	1	1	0	2	3	0	0	0	0	0	0	0	1	1	2
17:30 17:45	1	1	0	3	2	1	0	4	7	0	0	0	2	0	1	0	3	5	6
17:45 18:00	0	1	0	3	0	2	0	3	6	0	0	0	0	0	0	0	0	0	3
Total: None	6	57	5	115	44	33	4	147	262	9	6	10	38	4	3	0	64	102	182

December 11, 2019 Page 6 of 8 December 11, 2019 Page 7 of 8

17:45

18:00 Total

Transportation Services - Traffic Services

Turning Movement Count - Study Results

PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS

 Survey Date:
 Thursday, January 31, 2019
 WO No:
 38321

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute U-Turn Total

PLACE D'ORLEANS CENTRUM BLVD/PLACE D'ORLEANS SC E Northbound Southbound **Time Period** Total U-Turn Total U-Turn Total U-Turn Total U-Turn Total 07:00 07:15 07:15 07:30 0 0 07:30 07:45 07:45 08:00 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 0 09:15 09:00 09:15 09:30 09:30 09:45 0 09:45 10:00 0 0 11:30 11:45 11:45 12:00 12:00 12:15 12:30 12:30 12:45 13:00 12:45 13:00 13:15 0 13:15 13:30 0 15:00 15:15 15:30 0 0 0 15:30 15:45 0 0 0 15:45 16:00 16:15 16:00 0 16:15 16:30 16:30 17:00 16:45 17:00 17:15 17:15 17:30 Ω Ω 17:30 17:45 0 0 0

 December 11, 2019
 Page 8 of 8
 Printed on: 3/19/2020

Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

Automobiles, Taxis, Light Trucks, Vans, SUV's, Motorcycles, Heavy Trucks, Buses, and School Buses

Flow Diagrams: AM PM Peak

Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count Heavy Vehicle Summary Flow Diagram

	С	entr	um	Blv	d.	Centrum Blvd.						Driveway						Brisebois Cr. (W)				
		Eas	tbou	ınd		Westbound						Northbound						Southbound				
Time Period	LT ST RT UT S. Tot						ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	G.Tot.	
0700-0800	0	8	0	0	8	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	9	
0800-0900	0	12	0	0	12	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	14	
0900-1000	0	4	0	0	4	0	4	0	0	4	0	0	1	0	1	0	0	0	0	0	9	
1130-1230	0	6	0	0	6	0	5	0	0	5	0	0	0	0	0	0	0	0	0	0	11	
1230-1330	0	4	0	0	4	0	4	0	0	4	0	0	0	0	0	0	0	0	0	0	8	
1500-1600	0	5	0	0	5	0	6	0	0	6	0	0	0	0	0	0	0	0	0	0	11	
1600-1700	0	7	0	0	7	0	9	0	0	9	0	0	0	0	0	0	0	0	0	0	16	
1700-1800	0	5	0	0	5	0	5	0	0	5	0	0	0	0	0	0	0	0	0	0	10	
Totals	0	51	0	0	51	0	36	0	0	36	0	0	1	0	1	0	0	0	0	0	88	

Prepared by: thetrafficspecialist@gmail.com

Comments:

Printed on: 3/19/2020

OC Transpo buses and school buses comprise the majority of the heavy vehicle traffic.

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram

NOT the number of individual pedestrians crossing.

For example, some pedestrians will cross one approach, then another to reach their destination. Accordingly, one pedestrian crossing two approaches will be recorded as two crossings.

Brisebois Crescent (West) & Centrum Boulevard Orléans, ON Thursday, 12 March 2020 **Pedestrian** 0700-1000, 1130-1330 & 1500-1800 Crossings Brisebois Cr. (W) Hour Survey City of Ottawa Ward ▶ 1 100 Centrum Blvd. Grand Total Pedestrian Crossings Note The values in the summary table below and the flow diagram represent the number of pedestrian crossings 119

Time Deviced	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Time Period	Centrum Blvd.	Centrum Blvd.	Total	Driveway	Brisebois Cr. (W)	Total	Total
0700-0800	1	2	3	8	3	11	14
0800-0900	0	0	0	11	8	19	19
0900-1000	0	3	3	9	8	17	20
1130-1230	1	0	1	16	13	29	30
1230-1330	1	2	3	16	7	23	26
1500-1600	2	6	8	22	30	52	60
1600-1700	2	1	3	14	18	32	35
1700-1800	0	3	3	23	13	36	39
Totals	7	17	24	119	100	219	243

Driveway

Comments

OC Transpo buses and school buses comprise the majority of the heavy vehicle traffic.

Printed on: 3/19/2020 Prepared by: thetrafficspecialist@gmail.com Summary: Pedestrian Crossings Summary: Heavy Vehicles

Turning Movement Count Bicycle Summary Flow Diagram

		Cen	trum E	ilvd.			Cen	trum E	ilvd.			D	rivewa	ay			Brise	bois C	r. (W)		
		Ea	stbou	nd			We	estbou	nd			No	rthbou	ınd			Soi	uthbou	ınd		
Time Period	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	G.Tot.
0700-0800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0800-0900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0900-1000	0	0	0	0	0	0	0	٥	0	0	0	_ 0	0	0	0	0	0	0	0	0	0
1130-1230	0	0	0	0	0	0	0		No	bicyc	es	0	0	0	0	0	0	0	0	0	0
1230-1330	0	0	0	0	0	0	0			serve		0	0	0	0	0	0	0	0	0	0
1500-1600	0	0	0	0	0	0	0	-				0	0	0	0	0	0	0	0	0	0
1600-1700	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1700-1800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Totals	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Comments:

Printed on: 3/19/2020

OC Transpo buses and school buses comprise the majority of the heavy vehicle traffic.

Turning Movement Count Summary Report AADT and Expansion Factors

Automobiles, Taxis, Light Trucks, Vans, SUV's, Motorcycles, Heavy Trucks, Buses, and School Buses

Orléans, ON

Survey Da	ite:	Thurs	sday,	12 M	larch 2	2020						Star	t Time	e:		0700			AAD	T Fa	ctor:		1.0
Weather All	M:	Cloud	y -2° (0		Su	rvey	Dura	tion:	8	Hrs.	Surv	ey Ho	ours:		0700-	-1000	, 1130)-133	0 & 1	500-1	800	
Weather PM	/ 1:	Partly	Cloud	dy +19	, C							Surv	eyor(s):		T. Ca	rmod	у					
	(enti	rum	Blv	d.	(enti	um	Blv	d.			Dr	ivew	<i>l</i> ay		Br	iseb	ois	Cr. ((W)		
		Ea	stboı	ınd	- '		We	stbo	und				No	rthbo	und	- '		Sou	ıthbo	und			
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0700-0800	30	28	0	0	58	0	56	6	0	62	120	0	1	0	0	1	2	0	19	0	21	22	142
0800-0900	29	66	10	1	106	2	95	2	0	99	205	1	0	1	0	2	0	1	23	0	24	26	231
0900-1000	24	80	10	0	114	2	124	3	0	129	243	0	0	1	0	1	1	0	13	0	14	15	258
1130-1230	16	105	11	2	134	0	90	4	0	94	228	8	0	3	0	11	1	0	38	0	39	50	278
1230-1330	31	122	16	0	169	0	123	5	0	128	297	2	0	2	0	4	1	1	23	0	25	29	326
1500-1600	23	155	8	1	187	1	113	1	0	115	302	5	0	5	0	10	3	0	28	0	31	41	343
1600-1700	16			0	177	0	94	8	0	102	279	9	0	7	0	16	7	1	38	0	46		341
1700-1800	28	166	7	1	202	1	87	2	1	91	293	1	0	0	0	1	1	0	27	0	28	29	322
Totals	197	881	64	5	1147	6	782	31	1	820	1967	26	1	19	0	46	16	3	209	0	228	274	2241

Equivalent 12 & 24-hour Vehicle Volumes including the Annual Average Daily Traffic (AADT) Factor
Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

	Ec	quivalent	12-hou	r vehi	cle volu	mes.	These	volume	s are	calculat	ed by m	ultiplyir	g the 8	-hour	totals by	the 8	⇒ 12 e	xpansi					
Equ. 12 Hr	274	1225	89	7	1594	8	1087	43	1	1140	2734	36	1	26	0	64	22	4	291	0	317	381	3115
		Average	daily 1	2-hou	ır vehicl	e vol	umes.	These vo	olume	es are ca	alculated	l by mu	ltiplying	the e	quivale	nt 12-h	our tot	als by	the AA	DT fac	tor of:	1.0	

24-Hour AADT. These volumes are calculated by multiplying the average daily 12-hour vehicle volumes by the 12 \$\infty\$24 expansion factor of 1.31

AADT 24 Hr 359 1604 117 9 2089 11 1424 56 2 1493 3582 47 2 35 0 84 29 5 381 0 415 499 4081

AADT and expansion factors provided by the City of Ottawa

AM Peak Ho	ur Fa	ctor =	•	0.7	'9									High	est H	ourly	Vehicle	e Volu	ıme E	Betwe	en 07	00h &	1000h
AM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	G.TOT
0900-1000	24	80	10	0	114	2	124	3	0	129	243	0	0	1	0	1	1	0	13	0	14	15	258
OFF Peak H	our Fa	actor	•	0.9	11									High	est H	ourly	Vehicle	e Volu	ıme E	Betwe	en 11	30h &	1330h
OFF Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	G.T01
1215-1315	27	128	15	- 1	171	0	116	6	0	122	293	3	0	1	0	4	1	1	29	0	31	35	328
PM Peak Ho	ur Fac	ctor =	\	0.7	8									High	est H	ourly	Vehicle	e Volu	ıme E	Betwe	en 15	00h &	1800h
PM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	G.TOT
1515-1615	22	177	8	1	208	1	117	3	0	121	329	7	0	8	0	15	7	0	37	0	44	59	388

Comments:

OC Transpo buses and school buses comprise the majority of the heavy vehicle traffic.

Brisebois Crescent (West) & Centrum Boulevard

Notes:

- 1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.
- 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Prepared by: thetrafficspecialist@gmail.com Summary: Bicycles Printed on: 3/19/2020 Prepared by: thetrafficspecialist@gmail.com Summary: All Vehicles

Turning Movement Count - Study Results

PRESTONE DR @ ST. JOSEPH BLVD

Survey Date: Tuesday, March 20, 2018 WO No: 37614 Start Time: 07:00 Device: Miovision

Full Study Diagram

Transportation Services - Traffic Services

Turning Movement Count - Study Results

PRESTONE DR @ ST. JOSEPH BLVD

Survey Date: Tuesday, March 20, 2018 WO No: 37614 Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram

December 11, 2019 December 11, 2019 Page 2 of 8 Page 1 of 8

Turning Movement Count - Peak Hour Diagram

PRESTONE DR @ ST. JOSEPH BLVD

 Survey Date:
 Tuesday, March 20, 2018
 WO No:
 37614

 Start Time:
 07:00
 Device:
 Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram PRESTONE DR @ ST. JOSEPH BLVD

 Survey Date:
 Tuesday, March 20, 2018
 WO No:
 37614

 Start Time:
 07:00
 Device:
 Miovision

Comments

Turning Movement Count - Peak Hour Diagram

PRESTONE DR @ ST. JOSEPH BLVD

Survey Date: Tuesday, March 20, 2018 WO No: 37614 Start Time: 07:00 Device: Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Study Results

PRESTONE DR @ ST. JOSEPH BLVD

Survey Date: Tuesday, March 20, 2018 WO No: 37614 Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Tuesday, March 20, 2018 **Total Observed U-Turns AADT Factor** 1.39

Eastbound: Westbound:

			PRE	STON	E DR							ST. J	OSEP	H BLVI	D				
	Nor	thbou	nd		So	uthbou	ınd			Е	astbou	und		V	/estbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	101	45	4	150	40	14	16	70	220	6	126	26	158	1	676	83	760	918	1138
08:00 09:00	69	46	5	120	38	32	14	84	204	9	187	33	229	2	573	130	705	934	1138
09:00 10:00	55	36	7	98	50	27	20	97	195	10	232	34	276	3	437	104	544	820	1015
11:30 12:30	55	31	7	93	110	35	28	173	266	2	401	77	480	7	442	104	553	1033	1299
12:30 13:30	55	17	13	85	91	28	25	144	229	22	422	54	498	3	463	107	573	1071	1300
15:00 16:00	42	30	6	78	118	48	22	188	266	23	562	111	696	7	441	92	540	1236	1502
16:00 17:00	44	29	4	77	157	71	24	252	329	16	712	127	855	10	416	111	537	1392	1721
17:00 18:00	56	33	12	101	123	64	21	208	309	24	716	115	855	7	461	111	579	1434	1743
Sub Total	477	267	58	802	727	319	170	1216	2018	112	3358	577	4047	40	3909	842	4791	8838	10856
U Turns				0				0	0				0				4	4	4
Total	477	267	58	802	727	319	170	1216	2018	112	3358	577	4047	40	3909	842	4795	8842	10860
EQ 12Hr	663	371	81	1115	1011	443	236	1690	2805	156	4668	802	5625	56	5434	1170	6665	12290	15095
Note: These v	alues ar	e calcul	lated by	y multipl	ying the	totals b	y the a	opropriat	e expans	ion fac	tor.			1.39					
AVG 12Hr	663	371	81	1115	1011	443	236	1690	2805	156	4668	802	5625	56	5434	1170	6665	12290	15095
Note: These v	olumes	are calc	ulated	by multi	plying th	ne Equiv	alent 1	2 hr. tota	ls by the	AADT	factor.			1					
AVG 24Hr	869	486	106	1460	1324	581	310	2214	3674	204	6115	1051	7369	73	7118	1533	8731	16100	19774
Note: These v	olumes	are calc	ulated	by multi	plying th	ne Avera	ige Dai	y 12 hr.	totals by	12 to 2	4 expan	sion fac	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

2019-Dec-11 Page 3 of 3 December 11, 2019 Page 3 of 8

Turning Movement Count - Study Results

PRESTONE DR @ ST. JOSEPH BLVD

 Survey Date:
 Tuesday, March 20, 2018
 WO No:
 37614

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute Increments

PRESTONE DR ST. JOSEPH BLVD

	N	orthbou	und		Sc	uthbou	nd			E	astbour	nd		We	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	29	12	1	42	6	7	5	18	96	1	21	4	26	0	162	12	174	96	260
07:15 07:30	29	12	1	42	7	1	5	13	93	1	25	5	31	0	158	19	177	93	263
07:30 07:45	25	10	1	36	16	4	3	23	102	2	28	7	37	1	169	19	189	102	285
07:45 08:00	18	11	1	30	11	2	3	16	104	2	52	10	64	0	187	33	220	104	330
08:00 08:15	20	8	0	28	6	8	3	17	101	2	46	13	61	1	167	24	192	101	298
08:15 08:30	18	17	3	38	7	12	3	22	127	1	39	10	50	0	143	27	170	127	280
08:30 08:45	19	8	2	29	9	6	5	20	108	2	46	3	51	0	132	40	172	108	272
08:45 09:00	12	13	0	25	16	6	3	25	120	4	56	7	67	1	131	39	171	120	288
09:00 09:15	18	12	2	32	13	11	5	29	131	3	62	10	75	2	119	32	154	131	290
09:15 09:30	10	11	2	23	17	3	5	25	85	3	61	4	68	1	103	15	119	85	235
09:30 09:45	11	8	0	19	9	8	7	24	102	2	54	10	66	0	111	31	142	102	251
09:45 10:00	16	5	3	24	11	5	3	19	91	2	55	10	67	0	104	26	130	91	240
11:30 11:45	14	13	1	28	23	7	6	36	121	0	113	11	124	3	110	23	136	121	324
11:45 12:00	18	6	2	26	30	11	5	46	147	2	83	27	112	1	117	28	146	147	330
12:00 12:15	11	5	3	19	23	10	9	42	121	0	90	18	108	3	106	24	133	121	302
12:15 12:30	12	7	1	20	34	7	8	49	133	0	115	21	136	0	109	29	138	133	343
12:30 12:45	11	1	4	16	18	8	4	30	110	7	102	14	123	2	122	32	156	110	325
12:45 13:00	15	6	4	25	27	8	6	41	123	4	110	14	128	1	128	24	153	123	347
13:00 13:15	12	5	2	19	26	7	5	38	115	7	106	17	130	0	100	22	122	115	309
13:15 13:30	17	5	3	25	20	5	10	35	112	4	104	9	117	0	113	29	142	112	319
15:00 15:15	9	9	1	19	30	7	6	43	131	3	139	27	169	1	112	22	135	131	366
15:15 15:30	10	8	0	18	28	10	8	46	139	8	124	25	157	3	132	21	156	139	377
15:30 15:45	14	8	3	25	28	13	5	46	155	3	139	30	172	1	113	29	143	155	386
15:45 16:00	9	5	2	16	32	18	3	53	152	9	160	29	198	2	84	20	107	152	374
16:00 16:15	11	10	1	22	53	22	6	81	203	3	171	30	204	1	112	34	147	203	454
16:15 16:30	11	6	3	20	34	12	6	52	149	3	184	36	223	3	96	17	116	149	411
16:30 16:45	10	9	0	19	39	14	5	58	160	3	164	30	197	3	111	24	139	160	413
16:45 17:00	12	4	0	16	31	23	7	61	181	7	193	31	231	3	97	36	136	181	444
17:00 17:15	12	7	3	22	36	18	8	62	175	4	214	37	255	1	135	24	160	175	499
17:15 17:30	12	9	4	25	36	11	6	53	157	8	181	25	214	3	110	23	137	157	429
17:30 17:45	21	8	2	31	27	23	5	55	172	7	167	23	197	2	105	23	130	172	413
17:45 18:00	11	9	3	23	24	12	2	38	159	5	154	30	189	1	111	41	153	159	403
Total:	477	267	58	802	727	319	170	1216	4175	112	3358	577	4047	40	3909	842	4795	4175	10,860

Note: U-Turns are included in Totals.

Transportation Services - Traffic Services

Turning Movement Count - Study Results

PRESTONE DR @ ST. JOSEPH BLVD

 Survey Date:
 Tuesday, March 20, 2018
 WO No:
 37614

 Start Time:
 07:00
 Device:
 Miovision

Full Study Cyclist Volume

		PRESTONE DE	2	;	ST. JOSEPH BI	.VD	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	1	1	1
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	1	1	2	2
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	1	1	0	0	0	1
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	1	1	1
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	1	0	1	1
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	1	0	1	0	0	0	1
17:30 17:45	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	0
Total	1	1	2	2	3	5	7

 December 11, 2019
 Page 4 of 8
 December 11, 2019
 Page 5 of 8

Turning Movement Count - Study Results

PRESTONE DR @ ST. JOSEPH BLVD

 Survey Date:
 Tuesday, March 20, 2018
 WO No:
 37614

 Start Time:
 07:00
 Device:
 Miovision

CD Approach

Full Study Pedestrian Volume

PRESTONE DR ST. JOSEPH BLVD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	2	2	0	0	0	2
07:15 07:30	0	0	0	0	1	1	1
07:30 07:45	0	0	0	1	0	1	1
07:45 08:00	0	0	0	0	2	2	2
08:00 08:15	0	0	0	0	0	0	0
8:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	1	1	1
8:45 09:00	0	1	1	0	0	0	1
9:00 09:15	0	2	2	0	0	0	2
9:15 09:30	0	0	0	0	0	0	0
9:30 09:45	0	0	0	0	1	1	1
9:45 10:00	0	0	0	0	0	0	0
1:30 11:45	0	0	0	2	0	2	2
1:45 12:00	2	1	3	2	0	2	5
2:00 12:15	0	1	1	0	1	1	2
2:15 12:30	0	0	0	1	0	1	1
12:30 12:45	4	1	5	3	1	4	9
12:45 13:00	0	2	2	1	2	3	5
3:00 13:15	1	2	3	2	0	2	5
13:15 13:30	0	1	1	0	0	0	1
5:00 15:15	2	2	4	1	1	2	6
15:15 15:30	0	3	3	3	0	3	6
5:30 15:45	1	4	5	2	2	4	9
5:45 16:00	0	2	2	0	1	1	3
6:00 16:15	0	2	2	2	2	4	6
16:15 16:30	0	1	1	2	2	4	5
16:30 16:45	3	0	3	3	1	4	7
6:45 17:00	1	0	1	1	0	1	2
7:00 17:15	0	0	0	0	0	0	0
7:15 17:30	1	1	2	4	1	5	7
7:30 17:45	1	0	1	1	0	1	2
17:45 18:00	0	2	2	3	1	4	6
Total	16	30	46	34	20	54	100

Transportation Services - Traffic Services

Turning Movement Count - Study Results

PRESTONE DR @ ST. JOSEPH BLVD

 Survey Date:
 Tuesday, March 20, 2018
 WO No:
 37614

 Start Time:
 07:00
 Device:
 Miovision

Full Study Heavy Vehicles

PRESTONE DR ST. JOSEPH BLVD

			IILL									,,,,,							
	N	orthbo	und		So	outhbou	ınd			Е	astbour	nd		W	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	1	0	0	5	0	3	0	3	8	0	1	1	3	0	0	0	1	4	6
07:15 07:30	1	0	0	1	2	0	0	2	3	0	0	0	3	0	2	0	4	7	5
07:30 07:45	0	0	0	3	0	2	0	4	7	0	0	1	5	0	4	2	6	11	9
07:45 08:00	1	0	0	2	1	0	0	1	3	0	1	1	3	0	0	0	2	5	4
08:00 08:15	1	1	0	7	0	4	1	9	16	0	0	1	4	0	1	3	4	8	12
08:15 08:30	1	1	0	7	2	4	0	7	14	0	2	1	5	0	1	0	5	10	12
08:30 08:45	1	0	0	3	0	2	0	3	6	0	3	0	6	0	2	1	6	12	9
08:45 09:00	0	2	0	2	3	0	0	6	8	0	2	0	4	0	2	1	8	12	10
09:00 09:15	0	0	0	2	1	2	0	3	5	0	0	0	1	0	1	0	2	3	4
09:15 09:30	0	1	0	1	1	0	0	2	3	0	1	0	2	0	1	0	3	5	4
09:30 09:45	0	0	0	1	0	1	0	2	3	0	1	0	2	0	1	1	3	5	4
09:45 10:00	0	1	0	1	1	0	0	2	3	0	5	0	7	0	2	0	8	15	9
11:30 11:45	0	0	0	1	0	1	0	1	2	0	3	0	3	0	0	0	3	6	4
11:45 12:00	0	0	0	0	1	0	0	3	3	0	1	0	3	0	2	2	6	9	6
12:00 12:15	0	0	0	1	1	1	0	2	3	0	3	0	7	0	4	0	8	15	9
12:15 12:30	0	1	0	1	0	0	0	1	2	0	3	0	4	0	1	0	4	8	5
12:30 12:45	0	0	0	1	0	1	0	3	4	1	0	0	4	0	3	1	4	8	6
12:45 13:00	0	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0	2	3	2
13:00 13:15	0	1	0	2	2	1	0	4	6	0	1	0	3	0	2	0	5	8	7
13:15 13:30	1	1	0	3	0	1	0	4	7	0	0	0	1	0	0	2	2	3	5
15:00 15:15	1	0	0	3	0	2	0	3	6	1	0	0	2	0	0	0	0	2	4
15:15 15:30	0	3	0	5	2	1	0	8	13	0	1	1	6	0	4	2	9	15	14
15:30 15:45	0	0	0	2	0	2	0	2	4	0	2	0	3	0	1	0	3	6	5
15:45 16:00	0	3	0	5	0	2	0	6	11	0	2	0	2	0	0	1	3	5	8
16:00 16:15	1	1	0	5	0	2	0	4	9	0	0	1	2	0	0	1	1	3	6
16:15 16:30	0	1	0	2	0	1	0	2	4	0	1	0	1	0	0	0	1	2	3
16:30 16:45	0	0	0	1	0	1	0	2	3	0	0	0	0	0	0	1	1	1	2
16:45 17:00	0	1	0	3	0	2	0	4	7	0	1	0	1	0	0	1	2	3	5
17:00 17:15	0	1	0	4	0	3	0	4	8	0	0	0	2	0	2	0	2	4	6
17:15 17:30	0	1	0	1	0	0	0	2	3	0	0	0	1	0	1	1	2	3	3
17:30 17:45	0	0	0	3	0	3	0	3	6	0	1	0	2	0	1	0	2	4	5
17:45 18:00	0	1	0	1	0	0	0	2	3	0	0	0	0	0	0	1	1	1	2
Total: None	9	21	0	79	18	42	1	105	184	2	35	7	93	0	39	21	113	206	195

December 11, 2019 Page 6 of 8 December 11, 2019 Page 7 of 8

Total

Transportation Services - Traffic Services

Turning Movement Count - Study Results

PRESTONE DR @ ST. JOSEPH BLVD

 Survey Date:
 Tuesday, March 20, 2018
 WO No:
 37614

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute U-Turn Total PRESTONE DR ST. JOSEPH BLVD

Northbound Southbound Eastbound Westbound Time Period Total **U-Turn Total U-Turn Total U-Turn Total U-Turn Total** 07:00 07:15 07:15 07:30 0 0 0 07:30 07:45 0 07:45 08:00 08:00 08:15 08:30 08:45 08:45 09:00 09:00 09:15 09:15 09:30 09:30 09:45 0 09:45 10:00 0 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:15 13:15 13:30 0 15:00 15:15 15:30 15:45 15:30 0 0 15:45 16:00 16:00 16:15 0 0 16:15 16:30 16:45 17:00 17:15 17:15 17:30 17:30 17:45 0 0

December 11, 2019 Page 8 of 8

Appendix C

Synchro Intersection Worksheets – Existing Conditions

Lanes, Volumes, Timings
1: Place d'Orleans & Centrum

AM Peak Hour Existing

	۶	→	•	•	←	*	\blacktriangleleft	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻ	†	7	7	ĵ,			414			414	
Traffic Volume (vph)	25	30	40	22	32	1	67	144	52	110	42	19
Future Volume (vph)	25	30	40	22	32	1	67	144	52	110	42	1
Satd. Flow (prot)	1566	1745	1401	1658	1721	0	0	3141	0	0	3025	
Flt Permitted	0.733			0.736				0.840			0.682	
Satd. Flow (perm)	1200	1745	1375	1277	1721	0	0	2672	0	0	2129	
Satd. Flow (RTOR)			44		1			57			21	
Lane Group Flow (vph)	28	33	44	24	37	0	0	292	0	0	190	(
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0		36.0	36.0		36.0	36.0	
Total Split (s)	32.0	32.0	32.0	32.0	32.0		43.0	43.0		43.0	43.0	
Total Split (%)	42.7%	42.7%	42.7%	42.7%	42.7%		57.3%	57.3%		57.3%	57.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7		2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		Max	Max		Max	Max	
Act Effct Green (s)	12.6	12.6	12.6	12.6	12.6			46.3			46.3	
Actuated g/C Ratio	0.20	0.20	0.20	0.20	0.20			0.75			0.75	
v/c Ratio	0.11	0.09	0.14	0.09	0.11			0.14			0.12	
Control Delay	20.2	19.6	7.6	19.7	19.4			4.8			5.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay	20.2	19.6	7.6	19.7	19.4			4.8			5.4	
_OS	C	В	A	В	В			A			A	
Approach Delay		14.7	- / \		19.5			4.8			5.4	
Approach LOS		В			В			Α.			A	
Queue Length 50th (m)	2.6	3.1	0.0	2.2	3.4			4.5			3.2	
Queue Length 95th (m)	7.8	8.5	6.1	7.0	9.1			15.3			11.6	
nternal Link Dist (m)	7.0	55.7	0.1	7.0	119.8			103.0			90.8	
Turn Bay Length (m)	52.0	00.1	20.0		110.0			100.0			00.0	
Base Capacity (vph)	510	743	610	543	733			2020			1603	
Starvation Cap Reductn	0	0	0	0	0			0			0	
Spillback Cap Reductn	0	0	0	0	0			0			0	
Storage Cap Reductn	0	0	0	0	0			0			0	
Reduced v/c Ratio	0.05	0.04	0.07	0.04	0.05			0.14			0.12	
	0.00	0.04	0.01	0.04	0.00			0.14			0.12	
ntersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 61.6												
Natural Cycle: 70												
Control Type: Actuated-Unco	ordinated	l										
Maximum v/c Ratio: 0.14												

Scenario 1 265 Centrum Blvd 11:59 pm 01/31/2023 Existing

Synchro 11 Report Page 1 Lanes, Volumes, Timings
1: Place d'Orleans & Centrum

AM Peak Hour Existing

Intersection Signal Delay: 8.0 Intersection LOS: A Intersection Capacity Utilization 59.6% ICU Level of Service B Analysis Period (min) 15

Splits and Phases: 1: Place d'Orleans & Centrum

Intersection												
Int Delay, s/veh	1.3			•								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	24	80	10	2	124	3	0	0	1	1	0	13
Future Vol, veh/h	24	80	10	2	124	3	0	0	1	1	0	13
Conflicting Peds, #/hr	8	0	9	9	0	8	0	0	3	3	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	5	2	2	3	2	2	2	100	2	2	2
Mvmt Flow	27	89	11	2	138	3	0	0	1	1	0	14
Major/Minor N	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	149	0	0	109	0	0	309	311	107	304	315	148
Stage 1	-	-	-	-	-	-	158	158	-	152	152	-
Stage 2		-	-	-			151	153		152	163	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	7.2	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	4.2	3.518	4.018	3.318
Pot Cap-1 Maneuver	1432	-	-	1481	-	-	643	604	736	648	601	899
Stage 1	-	-	-	-	-	-	844	767	-	850	772	-
Stage 2	-	-	-		-	-	851	771	-	850	763	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1423	-	-	1471	-	-	618	583	729	631	581	893
Mov Cap-2 Maneuver	-	-	-	-	-	-	618	583	-	631	581	-
Stage 1	-	-	-	-	-	-	821	746	-	828	767	-
Stage 2	-	-	-	-	-	-	836	766	-	830	742	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.6			0.1			9.9			9.2		
HCM LOS							Α			Α		
Minor Lane/Major Mvm	t	NBLn1	EBL	EBT EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		729	1423		1471	-	-	867				
HCM Lane V/C Ratio		0.002	0.019		0.002	-	-	0.018				
HCM Control Delay (s)		9.9	7.6	0 -	7.5	0	-	9.2				
HCM Lane LOS		Α	Α	Α -	Α	Α	-	Α				
LICAL OF the Of tile Of cole		٥	0.4		٥			0.4				

0 0.1 - - 0 - - 0.1

Intersection						
Intersection Delay, s/veh	7.7					
Intersection LOS	Α					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f,			લી	*	7
Traffic Vol, veh/h	20	41	39	18	55	36
Future Vol. veh/h	20	41	39	18	55	36
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	5	17	2	6.90	7	2
Mymt Flow	22	46	43	20	61	40
Number of Lanes	1	0	0	1	1	40
		U		'		'
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		2		1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	2		0		1	
HCM Control Delay	7.2		7.8		8	
HCM LOS	Α		Α		Α	
Lane		NBLn1	NBLn2	FRI n1	WBLn1	
Vol Left. %		100%	0%	0%	68%	
Vol Thru, %		0%	0%	33%	32%	
		0%	100%	67%	32% 0%	
Vol Right, %						
Sign Control		Stop	Stop	Stop	Stop	
Traffic Vol by Lane		55	36	61	57	
LT Vol		55	0	0	39	
Through Vol		0	0	20	18	
RT Vol		0	36	41	0	
Lane Flow Rate		61	40	68	63	
Geometry Grp		7	7	2	2	
Degree of Util (X)		0.091	0.045	0.074	0.076	
Departure Headway (Hd)		5.345	4.058	3.906	4.295	
Convergence, Y/N		Yes	Yes	Yes	Yes	
Cap		666	874	922	820	
Service Time		3.111	1.823	1.906	2.394	
HCM Lane V/C Ratio		0.092	0.046	0.074	0.077	
HCM Control Delay		8.7	7	7.2	7.8	
HCM Lane LOS		Α	Α	Α	Α	
HCM 95th-tile Q		0.3	0.1	0.2	0.2	

HCM 95th %tile Q(veh)

Intersection						
Int Delay, s/veh	2					
	ED:	EDZ	MOT	MDD	OD	ODE
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	Þ		Y	
Traffic Vol, veh/h	11	19	26	1	0	5
Future Vol, veh/h	11	19	26	1	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	9	2	2	2	2	20
Mymt Flow	12	21	29	1	0	6
	12		20		0	0
Major/Minor	Major1	N	Major2		Minor2	
Conflicting Flow All	30	0	-	0	75	30
Stage 1	-	-	-	-	30	-
Stage 2	-	-		-	45	-
Critical Hdwy	4.19		_	_	6.42	6.4
Critical Hdwy Stg 1	-			-	5.42	-
Critical Hdwy Stg 2					5.42	-
Follow-up Hdwy	2.281		- 1		3.518	3.48
Pot Cap-1 Maneuver	1539				928	995
Stage 1	-	-	-	-	993	-
Stage 2	-	-	-	-	977	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1539	-	-	-	921	995
Mov Cap-2 Maneuver	-	-	-	-	921	-
Stage 1	-	-	-	-	985	-
Stage 2	-	-		-	977	-
Olugo Z					011	
Approach	EB		WB		SB	
HCM Control Delay, s	2.7		0		8.6	
HCM LOS					Α	
Minor Lane/Major Mvm		EBL	EBT	WBT	WBR:	CDI »1
	IL				WBR	
Capacity (veh/h)		1539	-	-	-	995
HCM Lane V/C Ratio		0.008	-	-		0.006
HCM Control Delay (s)		7.4	0	-	-	8.6
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0	-	-	-	0

	•	\rightarrow	*	1	•	•	1	Ť		-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, A	^	7	J.	^	7	ሻ	î»		7	f	
Traffic Volume (vph)	7	165	40	2	666	103	81	46	5	40	26	12
Future Volume (vph)	7	165	40	2	666	103	81	46	5	40	26	12
Satd. Flow (prot)	1658	3316	1375	1658	3316	1441	1626	1685	0	1566	1314	0
Flt Permitted	0.288			0.636			0.730			0.720		
Satd. Flow (perm)	503	3316	1375	1110	3316	1423	1248	1685	0	1184	1314	0
Satd. Flow (RTOR)			44			114		6			13	
Lane Group Flow (vph)	8	183	44	2	740	114	90	57	0	44	42	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7	23.7	23.7	23.7	23.7	29.0	29.0		29.0	29.0	
Total Split (s)	51.0	51.0	51.0	51.0	51.0	51.0	29.0	29.0		29.0	29.0	
Total Split (%)	63.8%	63.8%	63.8%	63.8%	63.8%	63.8%	36.3%	36.3%		36.3%	36.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.4	2.4	2.4	2.4	2.4	2.4	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	6.0	6.0		6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None	None	Max	Max		Max	Max	
Act Effct Green (s)	17.5	17.5	17.5	17.5	17.5	17.5	23.1	23.1		23.1	23.1	
Actuated g/C Ratio	0.33	0.33	0.33	0.33	0.33	0.33	0.44	0.44		0.44	0.44	
v/c Ratio	0.05	0.17	0.09	0.01	0.67	0.21	0.16	0.08		0.08	0.07	
Control Delay	11.9	12.2	4.7	11.0	18.0	3.9	11.3	9.6		10.7	8.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	11.9	12.2	4.7	11.0	18.0	3.9	11.3	9.6		10.7	8.3	
LOS	В	В	Α	В	В	Α	В	Α		В	Α	
Approach Delay		10.8			16.1			10.6			9.5	
Approach LOS		В			В			В			A	
Queue Length 50th (m)	0.5	6.2	0.0	0.1	30.3	0.0	4.7	2.6		2.2	1.4	
Queue Length 95th (m)	2.6	11.3	4.7	1.1	44.4	7.4	14.1	9.0		8.2	6.8	
Internal Link Dist (m)		163.5			149.6			92.4		0.2	92.1	
Turn Bay Length (m)	50.0	100.0	105.0	62.5	1 10.0	120.0	47.5	02.1			02.1	
Base Capacity (vph)	437	2883	1201	965	2883	1252	550	747		522	587	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.02	0.06	0.04	0.00	0.26	0.09	0.16	0.08		0.08	0.07	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 52.4												
Natural Cycle: 55												
Control Type: Actuated-Unco	oordinated											

Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.67

Lanes, Volumes, Timings 5: Prestone & St Joseph

AM Peak Hour Existing

Intersection Signal Delay: 14.1 Intersection Capacity Utilization 50.3% Intersection LOS: B ICU Level of Service A Analysis Period (min) 15

Splits and Phases: 5: Prestone & St Joseph

Lanes, Volumes, Timings 1: Place d'Orleans & Centrum PM Peak Hour Existing

	*	→	•	•	←	*	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑	7	ች	^			414			414	
Traffic Volume (vph)	94	56	220	41	45	0	102	153	65	108	130	42
Future Volume (vph)	94	56	220	41	45	0	102	153	65	108	130	42
Satd. Flow (prot)	1658	1745	1483	1658	1745	0	0	3104	0	0	3100	0
Flt Permitted	0.724			0.717				0.751			0.711	
Satd. Flow (perm)	1247	1745	1448	1237	1745	0	0	2366	0	0	2243	0
Satd. Flow (RTOR)			244					59			38	
Lane Group Flow (vph)	104	62	244	46	50	0	0	355	0	0	311	0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0		36.0	36.0		36.0	36.0	
Total Split (s)	32.0	32.0	32.0	32.0	32.0		53.0	53.0		53.0	53.0	
Total Split (%)	37.6%	37.6%	37.6%	37.6%	37.6%		62.4%	62.4%		62.4%	62.4%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7		2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)	14.4	14.4	14.4	14.4	14.4			58.6			58.6	
Actuated g/C Ratio	0.17	0.17	0.17	0.17	0.17			0.69			0.69	
v/c Ratio	0.49	0.21	0.54	0.22	0.17			0.22			0.20	
Control Delay	38.4	29.7	8.5	30.4	28.9			5.2			5.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay	38.4	29.7	8.5	30.4	28.9			5.2			5.4	
LOS	D	С	Α	С	С			Α			Α	
Approach Delay	_	19.3			29.6			5.2			5.4	
Approach LOS		В			С			A			A	
Queue Length 50th (m)	16.0	9.0	0.0	6.7	7.3			6.9			6.3	
Queue Length 95th (m)	25.9	16.1	15.7	13.3	13.8			18.7			17.4	
Internal Link Dist (m)		55.7			119.8			103.0			90.8	
Turn Bay Length (m)	52.0		20.0									
Base Capacity (vph)	381	533	612	378	533			1648			1557	
Starvation Cap Reductn	0	0	0	0	0			0			0	
Spillback Cap Reductn	0	0	0	0	0			0			0	
Storage Cap Reductn	0	0	0	0	0			0			0	
Reduced v/c Ratio	0.27	0.12	0.40	0.12	0.09			0.22			0.20	
Intersection Summary												
Cycle Length: 85												
Actuated Cycle Length: 85												
Offset: 0 (0%), Referenced	to phase 2	NBTL an	d 6:SBTL	, Start of	Green							
Natural Cycle: 70												
Control Type: Actuated-Cod	ordinated											

Lanes, Volumes, Timings 1: Place d'Orleans & Centrum

Maximum v/c Ratio: 0.54

PM Peak Hour Existing

Intersection Signal Delay: 12.2 Intersection LOS: B Intersection Capacity Utilization 80.0% Analysis Period (min) 15 ICU Level of Service D

Splits and Phases: 1: Place d'Orleans & Centrum **↑** Ø2 (R) **₹**Ø8 Ø6 (R)

HCM 2010 TWSC 2: Centrum & Brisebois W

Intersection												
Int Delay, s/veh	2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LUL	4	LDIN	WOL	4	WDIX	INDL	सी	NUIN	ODL	4	ODIN
Traffic Vol, veh/h	23	177	8	1	117	3	7	0	8	7	0	37
Future Vol. veh/h	23	177	8	1	117	3	7	0	8	7	0	37
Conflicting Peds, #/hr	23	0	19	19	0	23	3	0	6	6	0	3
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-		-	-		-			-	-		-
Veh in Median Storage	e.# -	0	_	_	0	_		0	-	-	0	-
Grade. %	-, "	0	-	_	0			0	-		0	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	3	2	2	5	2	2	2	2	2	2	2
Mymt Flow	26	197	9	1	130	3	8	0	9	8	0	41
				•					_			
Major/Minor	Major1			Major2			Minor1			Minor2		
	156	0	0	225	0	0	430	431	227	421	434	158
Conflicting Flow All Stage 1	100	-	-	225	-	-	273	273	221	157	157	100
Stage 2		- 1			- 1		157	158		264	277	-
	4.12	-		4.12	-		7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Critical Hdwy Stg 1	4.12			4.12			6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2							6.12	5.52		6.12	5.52	
follow-up Hdwy	2.218			2.218			3.518	4.018	3.318	3.518	4.018	3.318
ot Cap-1 Maneuver	1424			1344			535	517	812	543	515	887
Stage 1	1424			1044			733	684	012	845	768	007
Stage 2				_			845	767		741	681	_
latoon blocked. %	_			_			070	101	_	171	001	_
Mov Cap-1 Maneuver	1399	_		1324	_		493	489	796	516	487	869
Mov Cap-2 Maneuver	-			.52-			493	489	-	516	487	-
Stage 1	-	-	-	-	-	-	707	659	-	813	753	-
Stage 2	-		-	-			802	752	-	714	656	
Ingraach	EB			WB			NB			SB		
Approach												
HCM Control Delay, s	0.8			0.1			11 B			9.9		
HCM LOS							В			Α		
Minor Lane/Major Mvn	nt	NBLn1	EBL	EBT EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		619	1399		1324	-	-	784				
HCM Lane V/C Ratio		0.027	0.018		0.001	-	-	0.062				
				•								

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1	
Capacity (veh/h)	619	1399	-	-	1324	-	- 784	
HCM Lane V/C Ratio	0.027	0.018	-	-	0.001	-	- 0.062	
HCM Control Delay (s)	11	7.6	0	-	7.7	0	- 9.9	
HCM Lane LOS	В	Α	Α	-	Α	Α	- A	
HCM 95th %tile Q(veh)	0.1	0.1	-	-	0	-	- 0.2	

PM Peak Hour

Existing

Intersection						
Int Delay, s/veh	1.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	4	1>	71011	₩.	ODIT
Traffic Vol, veh/h	8	48	39	0	0	16
Future Vol. veh/h	8	48	39	0	0	16
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	riee -		riee -	None	Stop -	None
Storage Length		NOTICE -		NOHE -	0	NOHE -
Veh in Median Storage		0	0		0	-
Grade. %	9,# -	0	0		0	
	90		90	-	90	90
Peak Hour Factor		90		90		
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	9	53	43	0	0	18
Major/Minor	Major1	N	Major2	- 1	Minor2	
Conflicting Flow All	43	0	-	0	114	43
Stage 1	-	-	-	-	43	-
Stage 2	-		-		71	
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-			5.42	-
Critical Hdwy Stg 2	-		_		5.42	
Follow-up Hdwy	2.218				3.518	
Pot Cap-1 Maneuver	1566				882	1027
Stage 1	1300		- 1		979	1027
	_	-			979	
Stage 2	-	-	-	-	952	-
Platoon blocked, %	4500	-	-	-	077	400=
Mov Cap-1 Maneuver		-	-	-	877	1027
Mov Cap-2 Maneuver	-	-	-	-	877	-
Stage 1	-	-	-	-	973	-
Stage 2	-	-	-	-	952	-
Approach	EB		WB		SB	
HCM Control Delay, s	1		0		8.6	
HCM LOS			0		0.0 A	
I IOIVI LUO					А	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1566	-	-	-	1027
HCM Lane V/C Ratio		0.006	-		-	0.017
HCM Control Delay (s)		7.3	0	-	-	8.6
HCM Lane LOS		Α.	A			Α.
HCM 95th %tile Q(veh	1)	0				0.1
HOW SOUL WHIE Q(VEH	1	U	_	-	-	U. I

Lanes, Volumes, Timings 5: Prestone & St Joseph

PM Peak Hour Existing

	•	-	7	1	-	*	4	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	ሻ	^	7	7	^	7	7	ĵ.		ሻ	1>	
Traffic Volume (vph)	26	755	116	10	447	106	57	28	9	130	75	2
Future Volume (vph)	26	755	116	10	447	106	57	28	9	130	75	2
Satd. Flow (prot)	1658	3316	1483	1658	3316	1483	1658	1570	0	1658	1567	
Flt Permitted	0.470			0.317			0.685			0.730		
Satd. Flow (perm)	820	3316	1444	552	3316	1464	1189	1570	0	1273	1567	
Satd. Flow (RTOR)			129			118		10			22	
Lane Group Flow (vph)	29	839	129	11	497	118	63	41	0	144	112	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Vlinimum Split (s)	23.7	23.7	23.7	23.7	23.7	23.7	29.0	29.0		29.0	29.0	
Total Split (s)	51.0	51.0	51.0	51.0	51.0	51.0	29.0	29.0		29.0	29.0	
Total Split (%)	63.8%	63.8%	63.8%	63.8%	63.8%	63.8%	36.3%	36.3%		36.3%	36.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.4	2.4	2.4	2.4	2.4	2.4	2.7	2.7		2.7	2.7	
_ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	6.0	6.0		6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	Max	Max	Max	Max	Max	Max	None	None		None	None	
Act Effct Green (s)	48.3	48.3	48.3	48.3	48.3	48.3	14.4	14.4		14.4	14.4	
Actuated g/C Ratio	0.65	0.65	0.65	0.65	0.65	0.65	0.19	0.19		0.19	0.19	
v/c Ratio	0.05	0.39	0.13	0.03	0.23	0.12	0.28	0.13		0.59	0.35	
Control Delay	6.7	7.5	1.9	6.9	6.4	1.9	26.7	19.2		36.1	22.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	6.7	7.5	1.9	6.9	6.4	1.9	26.7	19.2		36.1	22.2	
_OS	Α	Α	Α	Α	Α	Α	С	В		D	С	
Approach Delay		6.8			5.6			23.7			30.0	
Approach LOS		Α			Α			С			С	
Queue Length 50th (m)	1.2	23.3	0.0	0.5	12.1	0.0	7.2	3.4		17.5	10.3	
Queue Length 95th (m)	5.3	48.6	6.5	2.8	26.7	6.2	16.5	10.4		33.2	22.5	
nternal Link Dist (m)		163.5			149.6			92.4			92.1	
Turn Bay Length (m)	50.0		105.0	62.5		120.0	47.5					
Base Capacity (vph)	531	2150	981	357	2150	990	369	494		395	502	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.05	0.39	0.13	0.03	0.23	0.12	0.17	0.08		0.36	0.22	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 74.4												
Natural Cycle: 55												
Control Type: Actuated-Unco	ordinated											

Scenario 1 265 Centrum Blvd 11:59 pm 01/31/2023 Existing

Maximum v/c Ratio: 0.59

Synchro 11 Report Page 9 Lanes, Volumes, Timings 5: Prestone & St Joseph

PM Peak Hour Existing

Intersection Signal Delay: 10.3 Intersection LOS: B
Intersection Capacity Utilization 48.1% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 5: Prestone & St Joseph

Appendix D

Collision Data

Accident Date	Accident Year	Accident Time	Location	Environment Condition		Traffic Control	Traffic Control Condition	Classification Of Accident	Initial Impact Type	Road Surface Condition	# Vehicles	# Motorcycles	# Bicycles	# Pedestrians
1/13/2016	2016	14:50	CENTRUM BLVD @ PRESTONE DR (0012922)	03 - Snow	01 - Daylight	02 - Stop sign	01 - Functioning	02 - Non-fatal injury	07 - SMV other	03 - Loose snow	1	0	0	1
2/2/2019	2019	10:11	CENTRUM BLVD @ PRESTONE DR (0012922)	03 - Snow	01 - Daylight	02 - Stop sign	01 - Functioning	03 - P.D. only	03 - Rear end	05 - Packed snow	2	0	0	0
3/10/2016	2016	15:18	CENTRUM BLVD btwn PLACE D'ORLEANS DR & PRESTONE DR (3ZASZB)	01 - Clear	01 - Daylight	10 - No control	0	03 - P.D. only	04 - Sideswipe	01 - Dry	2	0	0	0
10/10/2018	2018	12:22	CENTRUM BLVD btwn PLACE D'ORLEANS DR & PRESTONE DR (3ZASZB)	01 - Clear	01 - Daylight	10 - No control	0	02 - Non-fatal injury	07 - SMV other	01 - Dry	1	0	0	0
11/12/2019	2019	10:30	CENTRUM BLVD btwn PLACE D'ORLEANS DR & PRESTONE DR (3ZASZB)	03 - Snow	01 - Daylight	10 - No control	0	03 - P.D. only	02 - Angle	03 - Loose snow	2	0	0	0
12/4/2019	2019	11:46	CENTRUM BLVD btwn PLACE D'ORLEANS DR & PRESTONE DR (3ZASZB)	04 - Freezing Rain	01 - Daylight	10 - No control	0	03 - P.D. only	02 - Angle	03 - Loose snow	2	0	0	0
2/5/2020	2020	9:35	CENTRUM BLVD btwn PLACE D'ORLEANS DR & PRESTONE DR (3ZASZB)	01 - Clear	01 - Daylight	10 - No control	0	03 - P.D. only	01 - Approaching	01 - Dry	2	0	0	0
4/6/2016	2016	18:25	PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS (0004167)	03 - Snow	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	03 - Rear end	03 - Loose snow	2	0	0	0
5/31/2016	2016	11:42	PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS (0004167)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	07 - SMV other	01 - Dry	1	0	0	1
9/28/2018	2018	11:54	PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS (0004167)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	02 - Angle	01 - Dry	2	0	0	0
3/27/2018	2018	12:30	PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS (0004167)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	05 - Turning movement	01 - Dry	2	0	0	0
1/15/2018	2018	11:58	PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS (0004167)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	02 - Angle	05 - Packed snow	2	0	0	0
1/31/2019	2019	13:44	PLACE D'ORLEANS @ CENTRUM BLVD/PLACE D'ORLEANS (0004167)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	02 - Angle	01 - Dry	2	0	0	0
8/29/2016	2016	12:11	PLACE D'ORLEANS DR btwn TURN LANE & CENTRUM BLVD (3ZBPK4)	01 - Clear	01 - Daylight	10 - No control	0	03 - P.D. only	04 - Sideswipe	01 - Dry	2	0	0	0
8/30/2016	2016	21:55	PLACE D'ORLEANS DR btwn CENTRUM BLVD & ST. JOSEPH BLVD (3ZA2FM)	01 - Clear	07 - Dark	10 - No control	0	02 - Non-fatal injury	05 - Turning movement	01 - Dry	2	1	0	0
1/28/2017	2017	18:36	PLACE D'ORLEANS DR btwn CENTRUM BLVD & ST. JOSEPH BLVD (3ZA2FM)	01 - Clear	07 - Dark	10 - No control	0	03 - P.D. only	05 - Turning movement	02 - Wet	2	0	0	0
11/1/2018	2018	7:11	PLACE D'ORLEANS DR btwn CENTRUM BLVD & ST. JOSEPH BLVD (3ZA2FM)	07 - Fog, mist, smoke, dust	03 - Dawn	10 - No control	0	02 - Non-fatal injury	07 - SMV other	01 - Dry	1	0	0	0
3/25/2018	2018	23:11	PLACE D'ORLEANS DR btwn CENTRUM BLVD & ST. JOSEPH BLVD (3ZA2FM)	01 - Clear	07 - Dark	10 - No control	0	03 - P.D. only	02 - Angle	01 - Dry	2	0	0	0
5/29/2018	2018	14:39	PLACE D'ORLEANS DR btwn CENTRUM BLVD & ST. JOSEPH BLVD (3ZA2FM)	01 - Clear	01 - Daylight	10 - No control	0	03 - P.D. only	02 - Angle	01 - Dry	2	0	0	0
10/23/2019	2019	16:36	PLACE D'ORLEANS DR btwn CENTRUM BLVD & ST. JOSEPH BLVD (3ZA2FM)	01 - Clear	01 - Daylight	10 - No control	0	03 - P.D. only	02 - Angle	01 - Dry	2	0	0	0
4/22/2020	2020	10:10	PLACE D'ORLEANS DR btwn CENTRUM BLVD & ST. JOSEPH BLVD (3ZA2FM)	01 - Clear	01 - Daylight	10 - No control	0	03 - P.D. only	02 - Angle	01 - Dry	2	0	0	0
3/13/2016	2016	14:12	PRESTONE DR @ ST. JOSEPH BLVD (0003551)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	02 - Angle	02 - Wet	2	0	0	0
4/23/2017	2017	13:57	PRESTONE DR @ ST. JOSEPH BLVD (0003551)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	02 - Non-fatal injury	02 - Angle	01 - Dry	2	0	0	0
6/24/2017	2017	11:00	PRESTONE DR @ ST. JOSEPH BLVD (0003551)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	02 - Non-fatal injury	05 - Turning movement	01 - Dry	2	0	0	0
10/25/2018	2018	19:15	PRESTONE DR @ ST. JOSEPH BLVD (0003551)	01 - Clear	07 - Dark	01 - Traffic signal	01 - Functioning	03 - P.D. only	03 - Rear end	01 - Dry	2	0	0	0
7/31/2018	2018	7:50	PRESTONE DR @ ST. JOSEPH BLVD (0003551)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	03 - Rear end	01 - Dry	2	0	0	0
8/21/2018	2018	16:00	PRESTONE DR @ ST. JOSEPH BLVD (0003551)	02 - Rain	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	05 - Turning movement	02 - Wet	2	0	0	0
8/28/2018	2018	16:56	PRESTONE DR @ ST. JOSEPH BLVD (0003551)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	05 - Turning movement	01 - Dry	2	0	0	0
1/23/2019	2019	12:18	PRESTONE DR @ ST. JOSEPH BLVD (0003551)	03 - Snow	01 - Daylight	01 - Traffic signal	01 - Functioning	02 - Non-fatal injury	02 - Angle	03 - Loose snow	2	0	0	0
1/27/2019	2019	5:30	PRESTONE DR @ ST. JOSEPH BLVD (0003551)	03 - Snow	07 - Dark	01 - Traffic signal	01 - Functioning	03 - P.D. only	07 - SMV other	03 - Loose snow	1	0	0	0
2/19/2019	2019	10:34	PRESTONE DR @ ST. JOSEPH BLVD (0003551)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	03 - P.D. only	02 - Angle	01 - Dry	2	0	0	0
1/17/2020	2020	9:13	PRESTONE DR @ ST. JOSEPH BLVD (0003551)	01 - Clear	01 - Daylight	01 - Traffic signal	01 - Functioning	02 - Non-fatal injury	07 - SMV other	01 - Dry	1	0	0	1

Appendix E

TRANS Plot

Appendix F

Background Volumes

Transportation Impact Assessment 3459 & 3479 St Joseph Blvd Transportation Impact Assessment 3277 St. Joseph Boulevard

Figure 5: Assignment of Site Trips

Figure 5: Site-Generated Traffic Volumes

Novatech Page 13

Novatech Page 17

Appendix G

Synchro Intersection Worksheets – 2028 Future Background Conditions

AM Peak Hour 2028 Future Background

						-	-				
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ሻ	†	7	Ĭ	ĵ,			413			413	
25	30	40	22	32	1	67	159	52	110	42	
25	30	40	22	32	1	67	159	52	110	42	
1566	1745	1401	1658	1719	0	0	3149	0	0	3025	
0.736			0.738				0.853			0.695	
1205	1745	1375	1280	1719	0	0	2718	0	0	2170	
		44		1			52			19	
25	30	40	22	33	0	0	278	0	0	171	
Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
	4			8			2			6	
4		4	8			2			6		
4	4	4	8	8		2	2		6	6	
10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
31.0	31.0	31.0	31.0	31.0		36.0	36.0		36.0	36.0	
32.0	32.0	32.0	32.0	32.0		43.0	43.0		43.0	43.0	
42.7%	42.7%	42.7%	42.7%	42.7%		57.3%	57.3%		57.3%	57.3%	
3.3	3.3	3.3	3.3	3.3		3.3	3.3		3.3	3.3	
2.7	2.7	2.7	2.7	2.7		2.7	2.7		2.7	2.7	
	0.0	0.0		0.0			0.0			0.0	
6.0	6.0	6.0	6.0	6.0			6.0			6.0	
None	None	None	None	None		Max	Max		Max	Max	
12.6	12.6	12.6	12.6	12.6			46.3			46.3	
0.20	0.20	0.20	0.20	0.20			0.75			0.75	
0.10	0.08	0.13	0.08	0.09			0.14			0.10	
20.0	19.5	7.0	19.6	19.2			4.8			5.4	
В	В	A	В	В			A			Α	
2.3		0.0	2.0	3.0							
		5.5		8.4							
										90.8	
52.0		20.0									
	743		545	732			2053			1634	
		0.0	0.0	0			0				
		0	0	0			0				
0	0	0	0	0			0			0	
0.05	0.04	0.07	0.04	0.05			0.14			0.10	
ordinated											
	255 1566 0.736 1205 25 Perm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	None None 12.6 12.5	None None 12.6	None	None	Total Part	None None None None Max 10.0 10.0 10.0 10.0 10.0 10.7 1.0 1.0 10.0 10.0 10.0 1.73 1.2 1.0 1.7 0 0 0 0.736 0.738 1.7 0	None None None None Max Max None None None None Max Max 25 30 40 22 32 1 67 159 1566 1745 1401 1658 1719 0 0 3149 0.736 0.738 0 0 2718 1205 1745 1375 1280 1719 0 0 278 Perm NA Perm Perm NA 2 2 2 2 2 2 2 2 2 2 2 2	The color of the	Nome A T Nome Nome A A A 22 32 1 67 159 52 110 25 30 40 22 32 1 67 159 52 110 1566 1745 1401 1658 1719 0 0 3149 0 0 0.736 0.738 0.853 0 0 2718 0 0 1205 1745 1375 1280 1719 0 0 2718 0 0 4 4 1 52 30 40 22 33 0 0 278 0 0 Perm NA Perm Perm NA Na 2 6 4 4 4 8 8	T

Scenario 1 265 Centrum Blvd 11:59 pm 01/31/2023 2028 Future Background

Synchro 11 Report Page 1 Lanes, Volumes, Timings
1: Place d'Orleans & Centrum

AM Peak Hour 2028 Future Background

Intersection Signal Delay: 7.8 Intersection LOS: A Intersection Capacity Utilization 59.7% ICU Level of Service B
Analysis Period (min) 15

Splits and Phases: 1: Place d'Orleans & Centrum

Intersection												
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			44			4			4	
Traffic Vol. veh/h	24	81	10	2	126	3	0	0	1	1	0	13
Future Vol. veh/h	24	81	10	2	126	3	0	0	1	1	0	13
Conflicting Peds, #/hr	8	0	9	9	0	8	0	0	3	3	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-		0	-	-	0	-	-	0	-
Grade, %	-,	0			0		-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	5	2	2	3	2	2	2	100	2	2	2
Mvmt Flow	24	81	10	2	126	3	0	0	1	1	0	13
			. 0	_	0							
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	137	0	0	100	0	0	281	284	98	278	288	136
Stage 1	-	-	-	-	-	-	143	143	-	140	140	-
Stage 2				-	-		138	141		138	148	
Critical Hdwy	4.12		-	4.12	_		7.12	6.52	7.2	7.12	6.52	6.22
Critical Hdwy Stg 1	-		-	-	-		6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	_	-	-	_	_	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218			2.218		-		4.018	4.2		4.018	3.318
Pot Cap-1 Maneuver	1447	-	-	1493	-	-	671	625	746	674	622	913
Stage 1	-			-			860	779	-	863	781	-
Stage 2	-	-			_	-	865	780	-	865	775	-
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver	1438	-	-	1483	-	-	648	605	739	658	602	907
Mov Cap-2 Maneuver	-	-	-		-	-	648	605	-	658	602	-
Stage 1	-	-	-		-	-	839	760	-	842	776	-
Stage 2	-	-	-		-	-	852	775	-	846	756	-
y .												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.6			0.1			9.9			9.1		
HCM LOS							A			Α		
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		739	1438		1483	-	-	883				
HCM Lane V/C Ratio		0.001	0.017		0.001			0.016				
HCM Control Delay (s))	9.9	7.5	0 -	7.4	0	-	9.1				
HCM Lane LOS		Α.	Α.	A -	A	A		A				
HCM 95th %tile Q(veh)	0	0.1		0	-		0				
00til 70tilo Q(V611	,	0	0.1		0			- 0				

Intersection						
Intersection Delay, s/veh	7.6					
Intersection LOS	7.0 A					
IIILEISECLIOII LOS						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f)			ની	ሻ	7
Traffic Vol, veh/h	20	41	39	18	55	36
Future Vol, veh/h	20	41	39	18	55	36
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	5	17	2	6	7	2
Mvmt Flow	20	41	39	18	55	36
Number of Lanes	1	0	0	1	1	1
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		2		1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	2		0		1	
HCM Control Delay	7.1		7.7		7.9	
HCM LOS	Α		Α		A	
Lane		NBLn1	NBLn2	EBLn1	WBLn1	
Vol Left, %		100%	0%	0%	68%	
Vol Thru, %		0%	0%	33%	32%	
		0%	100%	67%	32% 0%	
Vol Right, %						
Sign Control		Stop 55	Stop 36	Stop 61	Stop 57	
Traffic Vol by Lane LT Vol		55	0	0	39	
Through Vol		0	0	20	18	
RT Vol		0	36	41	0	
		55		61	57	
Lane Flow Rate		55	36 7	2	5/	
Geometry Grp				_	_	
Degree of Util (X)		0.081	0.04	0.064	0.068	
Departure Headway (Hd)		5.324	4.037	3.78	4.273	
Convergence, Y/N		Yes	Yes	Yes	Yes	
Cap		670	881	931	827	
Service Time		3.076	1.789	1.871	2.357	
HCM Lane V/C Ratio		0.082	0.041	0.066	0.069	
HCM Control Delay		8.5	7	7.1	7.7	
HCM Lane LOS		A	A	A	A	
HCM 95th-tile Q		0.3	0.1	0.2	0.2	

Intersection						
Int Delay, s/veh	2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1>		W	
Traffic Vol, veh/h	11	19	26	1	0	5
Future Vol. veh/h	11	19	26	1	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	riee -	None	riee -		Stop -	None
		None -		None -	- 0	None -
Storage Length			0		-	
Veh in Median Storage,		0	_	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	9	2	2	2	2	20
Mvmt Flow	11	19	26	1	0	5
Matau/Mara	A = 1 = = A		4-:0		M:0	
	/ajor1		Major2		Minor2	0.5
Conflicting Flow All	27	0	-	0	68	27
Stage 1	-	-	-	-	27	-
Stage 2	-	-	-	-	41	-
Critical Hdwy	4.19	-	-	-	6.42	6.4
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	_	5.42	-
	2.281	-			3.518	3.48
Pot Cap-1 Maneuver	1543	-		-	937	999
Stage 1	1070		- 1		996	-
	-		-			
Stage 2	-	-	-	-	981	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1543	-	-	-	930	999
Mov Cap-2 Maneuver	-	-	-	-	930	-
Stage 1	-	-	-	-	989	-
Stage 2	-	-	-	-	981	-
			14.05		0.5	
Approach	EB		WB		SB	
HCM Control Delay, s	2.7		0		8.6	
HCM LOS					Α	
		EDI	EDE	MIDT	WDD	ODI C
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1543	-	-	-	999
HCM Lane V/C Ratio		0.007	-	-	-	0.005
HCM Control Delay (s)		7.3	0	-	-	8.6
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)		0	_		_	0

	*	-	•	•	←	*	4	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	^	7	ሻ	f a		ሻ	f)	
Traffic Volume (vph)	7	177	40	2	771	103	81	46	5	40	26	12
Future Volume (vph)	7	177	40	2	771	103	81	46	5	40	26	12
Satd. Flow (prot)	1658	3316	1375	1658	3316	1441	1626	1687	0	1566	1314	0
Flt Permitted	0.272			0.640			0.732			0.724		
Satd. Flow (perm)	475	3316	1375	1117	3316	1423	1252	1687	0	1191	1314	0
Satd. Flow (RTOR)			41			103		5			12	
Lane Group Flow (vph)	7	177	40	2	771	103	81	51	0	40	38	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7	23.7	23.7	23.7	23.7	29.0	29.0		29.0	29.0	
Total Split (s)	51.0	51.0	51.0	51.0	51.0	51.0	29.0	29.0		29.0	29.0	
Total Split (%)	63.8%	63.8%	63.8%	63.8%	63.8%	63.8%	36.3%	36.3%		36.3%	36.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.4	2.4	2.4	2.4	2.4	2.4	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	6.0	6.0		6.0	6.0	
Lead/Lag		• • • • • • • • • • • • • • • • • • • •	•	• • • • • • • • • • • • • • • • • • • •		***						
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None	None	Max	Max		Max	Max	
Act Effct Green (s)	18.1	18.1	18.1	18.1	18.1	18.1	23.1	23.1		23.1	23.1	
Actuated g/C Ratio	0.34	0.34	0.34	0.34	0.34	0.34	0.44	0.44		0.44	0.44	
v/c Ratio	0.04	0.16	0.08	0.01	0.68	0.19	0.15	0.07		0.08	0.07	
Control Delay	11.6	12.0	4.6	10.5	18.2	3.9	11.5	9.9		10.9	8.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	11.6	12.0	4.6	10.5	18.2	3.9	11.5	9.9		10.9	8.6	
LOS	В	В	A	В	В	A	В	Α.		В	A	
Approach Delay		10.7	,,		16.5	,,		10.8			9.8	
Approach LOS		В			В			В			3.0 A	
Queue Length 50th (m)	0.4	6.0	0.0	0.1	32.1	0.0	4.3	2.3		2.1	1.3	
Queue Length 95th (m)	2.4	11.0	4.3	1.1	46.5	7.0	13.1	8.5		7.7	6.4	
Internal Link Dist (m)	2.7	163.5	7.0	1.1	149.6	1.0	10.1	92.4		1.1	92.1	
Turn Bay Length (m)	50.0	100.0	105.0	62.5	143.0	120.0	47.5	JZ. T			JZ. I	
Base Capacity (vph)	408	2850	1187	960	2850	1237	546	739		519	580	
Starvation Cap Reductn	0	2030	0	0	2030	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductin	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.02	0.06	0.03	0.00	0.27	0.08	0.15	0.07		0.08	0.07	
	0.02	0.00	0.03	0.00	0.21	0.00	0.15	0.07		0.00	0.07	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 53												
Natural Cycle: 55												
Control Type: Actuated-Und	coordinated											
Maximum v/c Ratio: 0.68												

AM Peak Hour 2028 Future Background

Intersection Signal Delay: 14.5
Intersection Capacity Utilization 51.4% Intersection LOS: B ICU Level of Service A Analysis Period (min) 15

Splits and Phases: 5: Prestone & St Joseph

Lanes, Volumes, Timings 1: Place d'Orleans & Centrum

PM Peak Hour 2028 Future Background

	•	→	•	1	←	*	4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1	7	ች	₽			414			414	
Traffic Volume (vph)	94	57	220	41	46	0	102	153	65	108	144	42
Future Volume (vph)	94	57	220	41	46	0	102	153	65	108	144	42
Satd. Flow (prot)	1658	1745	1483	1658	1745	0	0	3104	0	0	3109	C
Flt Permitted	0.727			0.720		_		0.762	_	_	0.734	
Satd. Flow (perm)	1252	1745	1448	1242	1745	0	0	2401	0	0	2320	0
Satd. Flow (RTOR)			220			-		60	-	-	35	
Lane Group Flow (vph)	94	57	220	41	46	0	0	320	0	0	294	(
Turn Type	Perm	NA	Perm	Perm	NA	_	Perm	NA	_	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4	•	4	8	-		2	_		6	-	
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0		36.0	36.0		36.0	36.0	
Total Split (s)	32.0	32.0	32.0	32.0	32.0		53.0	53.0		53.0	53.0	
Total Split (%)	37.6%	37.6%	37.6%	37.6%	37.6%		62.4%	62.4%		62.4%	62.4%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7		2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)	14.1	14.1	14.1	14.1	14.1			58.9			58.9	
Actuated g/C Ratio	0.17	0.17	0.17	0.17	0.17			0.69			0.69	
v/c Ratio	0.45	0.20	0.52	0.20	0.16			0.19			0.18	
Control Delay	37.3	29.7	8.6	30.2	29.0			4.9			5.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay	37.3	29.7	8.6	30.2	29.0			4.9			5.2	
LOS	D	С	Α	С	С			A			Α	
Approach Delay		19.1			29.6			4.9			5.2	
Approach LOS		В			С			A			Α	
Queue Length 50th (m)	14.4	8.4	0.0	6.0	6.7			5.7			5.7	
Queue Length 95th (m)	23.7	15.2	15.1	12.3	13.0			16.6			16.4	
Internal Link Dist (m)		55.7			119.8			103.0			90.8	
Turn Bay Length (m)	52.0		20.0									
Base Capacity (vph)	382	533	595	379	533			1681			1617	
Starvation Cap Reductn	0	0	0	0	0			0			0	
Spillback Cap Reductn	0	0	0	0	0			0			0	
Storage Cap Reductn	0	0	0	0	0			0			0	
Reduced v/c Ratio	0.25	0.11	0.37	0.11	0.09			0.19			0.18	
Intersection Summary												
Cycle Length: 85												
Actuated Cycle Length: 85 Offset: 0 (0%), Referenced	to phase 2	NRTI an	d 6-CRTI	Start of	Green							
Natural Cycle: 70	to priase 2	IND I L dil	u U.ODIL	, Jian Ol	GIEEII							
Control Type: Actuated-Cod	ordinated											

Control Type: Actuated-Coordinated

PM Peak Hour 2028 Future Background

Maximum v/c Ratio: 0.52	
Intersection Signal Delay: 11.9	Intersection LOS: B
Intersection Capacity Utilization 80.0%	ICU Level of Service D
Analysis Period (min) 15	

Splits and Phases: 1: Place d'Orleans & Centrum

22 (R)

32 5

32 5

38 8

HCM 2010 TWSC 2: Centrum & Brisebois W PM Peak Hour 2028 Future Background

Intersection												
Int Delay, s/veh	2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			ર્ન			ની	
Traffic Vol, veh/h	23	179	8	1	118	3	7	0	8	7	0	37
Future Vol. veh/h	23	179	8	1	118	3	7	0	8	7	0	37
Conflicting Peds, #/hr	23	0	19	19	0	23	3	0	6	6	0	3
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-		-	-	-	-	-
Veh in Median Storage	e.# -	0	-	-	0	-	-	0	-	-	0	-
Grade. %	-, "	0			0			0			0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	3	2	2	5	2	2	2	2	2	2	2
Mymt Flow	23	179	8	1	118	3	7	0	8	7	0	37
						_		_	_			-
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	144	0	0	206	0	0	391	394	208	384	397	146
Stage 1	-	-	-		-	-	248	248	-	145	145	-
Stage 2	-	-	-	-	-	-	143	146	-	239	252	-
Critical Hdwy	4.12	-	-	4.12	_	_	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-		6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218			3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1438	-	-	1365	-	-	568	542	832	574	540	901
Stage 1	-	-	-	-	-		756	701	-	858	777	-
Stage 2	-	-	-	-	-	-	860	776	-	764	698	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1412	-	-	1345	-	-	527	514	816	548	512	883
Mov Cap-2 Maneuver	-	-	-	-	-	-	527	514	-	548	512	-
Stage 1	-	-	-	-	-	-	732	678	-	827	762	-
Stage 2	-	-	-	-	-	-	821	761	-	739	675	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.8			0.1			10.7			9.7		
HCM LOS							В			Α		
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		650	1412		1345	-	-	805				
HCM Lane V/C Ratio		0.023	0.016		0.001	-	-	0.055				

Intersection						
Int Delay, s/veh	1.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	EDL	4	WB1	WDR	SDL W	ODK
Traffic Vol. veh/h	8	4 9	39	0	0	16
Future Vol. veh/h	8	49	39	0	0	16
Conflicting Peds, #/hr	0	-0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		Stop -	None
Storage Length		-		110116	0	INUITE
Veh in Median Storage		0	0		0	
Grade. %		0	0		0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	8	49	39	0	0	16
IVIVITIL FIOW	0	49	39	U	U	10
	Major1		Major2		Minor2	
Conflicting Flow All	39	0	-	0	104	39
Stage 1	-	-	-	-	39	-
Stage 2	-	-	-	-	65	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1571	-	-	-	894	1033
Stage 1	-	-			983	-
Stage 2	-	-	-		958	
Platoon blocked, %			-		-000	
Mov Cap-1 Maneuver	1571	-	-		890	1033
Mov Cap-2 Maneuver	-				890	-
Stage 1					978	
Stage 2					958	
Glaye 2					300	
Approach	EB		WB		SB	
HCM Control Delay, s	1		0		8.5	
HCM LOS					Α	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WRR	SBLn1
Capacity (veh/h)	IL.	1571	EDI	וטייי	WDK -	1033
						0.015
HCM Cantrol Dalay (a)		0.005 7.3	-	-		8.5
HCM Control Delay (s)			0	-	-	
HCM Lane LOS		A	Α	-	-	A
HCM 95th %tile Q(veh)	0	-	-	-	0

PM Peak Hour 2028 Future Background

		-	*	•	•	_	7	T		-	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	ሻ	^	7	ሻ	^	7	7	ĵ.		ሻ	1>	
Traffic Volume (vph)	26	861	116	10	476	106	57	28	9	130	75	2
Future Volume (vph)	26	861	116	10	476	106	57	28	9	130	75	- :
Satd. Flow (prot)	1658	3316	1483	1658	3316	1483	1658	1572	0	1658	1567	
Flt Permitted	0.480			0.309			0.692			0.733		
Satd. Flow (perm)	837	3316	1444	538	3316	1464	1201	1572	0	1278	1567	
Satd. Flow (RTOR)			116			106		9			22	
Lane Group Flow (vph)	26	861	116	10	476	106	57	37	0	130	101	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7	23.7	23.7	23.7	23.7	29.0	29.0		29.0	29.0	
Total Split (s)	51.0	51.0	51.0	51.0	51.0	51.0	29.0	29.0		29.0	29.0	
Total Split (%)	63.8%	63.8%	63.8%	63.8%	63.8%	63.8%	36.3%	36.3%		36.3%	36.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.4	2.4	2.4	2.4	2.4	2.4	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	6.0	6.0		6.0	6.0	
Lead/Lag		• • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •							
Lead-Lag Optimize?												
Recall Mode	Max	Max	Max	Max	Max	Max	None	None		None	None	
Act Effct Green (s)	48.3	48.3	48.3	48.3	48.3	48.3	13.9	13.9		13.9	13.9	
Actuated g/C Ratio	0.65	0.65	0.65	0.65	0.65	0.65	0.19	0.19		0.19	0.19	
v/c Ratio	0.05	0.40	0.12	0.03	0.22	0.11	0.25	0.12		0.54	0.32	
Control Delay	6.5	7.4	1.9	6.7	6.2	1.9	26.4	19.3		34.5	21.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	6.5	7.4	1.9	6.7	6.2	1.9	26.4	19.3		34.5	21.7	
LOS	A	A	A	A	A	A	C	В		C	C	
Approach Delay	- / (6.7	- /\	- /\	5.5	- /		23.6		Ŭ	28.9	
Approach LOS		A			A			C			C	
Queue Length 50th (m)	1.0	23.1	0.0	0.4	11.1	0.0	6.5	3.1		15.6	9.0	
Queue Length 95th (m)	4.9	50.2	6.2	2.7	25.5	6.0	15.2	9.7		30.2	20.5	
Internal Link Dist (m)	1.0	163.5	0.2	2.7	149.6	0.0	10.2	92.4		00.2	92.1	
Turn Bay Length (m)	50.0	100.0	105.0	62.5	140.0	120.0	47.5	0Z.4			02.1	
Base Capacity (vph)	546	2165	983	351	2165	992	375	498		399	505	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.05	0.40	0.12	0.03	0.22	0.11	0.15	0.07		0.33	0.20	
	0.00	0.40	0.12	0.03	0.22	0.11	0.13	0.07		0.55	0.20	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 74												
Natural Cycle: 55												
Control Type: Actuated-Unco Maximum v/c Ratio: 0.54	ordinated											

Scenario 1 265 Centrum Blvd 11:59 pm 01/31/2023 2028 Future Background

Synchro 11 Report Page 9 Lanes, Volumes, Timings 5: Prestone & St Joseph

PM Peak Hour 2028 Future Background

Intersection Signal Delay: 9.8 Intersection LOS: A Intersection Capacity Utilization 50.0% ICU Level of Service A Analysis Period (min) 15

Splits and Phases: 5: Prestone & St Joseph

Appendix H

Synchro Intersection Worksheets – 2033 Future Background Conditions

AM Peak Hour 2033 Future Background

	_	\rightarrow	•	•	_	_	1	T		-	¥	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	ሻ	ĥ			414			414	
Traffic Volume (vph)	25	31	40	22	33	1	67	176	52	110	42	19
Future Volume (vph)	25	31	40	22	33	1	67	176	52	110	42	19
Satd. Flow (prot)	1566	1745	1401	1658	1721	0	0	3157	0	0	3025	0
Flt Permitted	0.735			0.737				0.857			0.690	
Satd. Flow (perm)	1203	1745	1375	1278	1721	0	0	2735	0	0	2154	0
Satd. Flow (RTOR)			44		1			48			19	
Lane Group Flow (vph)	25	31	40	22	34	0	0	295	0	0	171	0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0		36.0	36.0		36.0	36.0	
Total Split (s)	32.0	32.0	32.0	32.0	32.0		43.0	43.0		43.0	43.0	
Total Split (%)	42.7%	42.7%	42.7%	42.7%	42.7%		57.3%	57.3%		57.3%	57.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7		2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0			6.0			6.0	
Lead/Lag	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		Max	Max		Max	Max	
Act Effct Green (s)	12.6	12.6	12.6	12.6	12.6			46.3			46.3	
Actuated g/C Ratio	0.20	0.20	0.20	0.20	0.20			0.75			0.75	
v/c Ratio	0.10	0.09	0.13	0.08	0.10			0.14			0.11	
Control Delay	20.0	19.5	7.0	19.6	19.2			4.9			5.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay	20.0	19.5	7.0	19.6	19.2			4.9			5.4	
LOS	В	В	A	В	B			A			A	
Approach Delay		14.4	- '		19.4			4.9			5.4	
Approach LOS		В			В			Α.			A	
Queue Length 50th (m)	2.3	2.9	0.0	2.0	3.1			4.8			2.8	
Queue Length 95th (m)	7.2	8.2	5.5	6.5	8.6			15.8			10.6	
Internal Link Dist (m)	7.2	55.7	0.0	0.0	119.8			103.0			90.8	
Turn Bay Length (m)	52.0	00.1	20.0		110.0			100.0			00.0	
Base Capacity (vph)	512	743	610	544	733			2065			1622	
Starvation Cap Reductn	0	0	0.0	0	0			0			0	
Spillback Cap Reductn	0	0	0	0	0			0			0	
Storage Cap Reductn	0	0	0	0	0			0			0	
Reduced v/c Ratio	0.05	0.04	0.07	0.04	0.05			0.14			0.11	
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 61.6												
Natural Cycle: 70												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 0.14												

Scenario 1 265 Centrum Blvd 11:59 pm 01/31/2023 2033 Future Background

Synchro 11 Report Page 1 Lanes, Volumes, Timings
1: Place d'Orleans & Centrum

AM Peak Hour 2033 Future Background

Intersection Signal Delay: 7.8 Intersection LOS: A Intersection Capacity Utilization 60.2% ICU Level of Service B
Analysis Period (min) 15

Splits and Phases: 1: Place d'Orleans & Centrum

Intersection												
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4			44			44	
Traffic Vol. veh/h	24		10	2	127	3	0	0	1	1	0	13
Future Vol. veh/h	24	82	10	2	127	3	0	0	1	1	0	13
Conflicting Peds, #/hr	8	0	9	9	0	8	0	0	3	3	0	0
Sian Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	5	2	2	3	2	2	2	100	2	2	2
Mvmt Flow	24	82	10	2	127	3	0	0	1	1	0	13
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	138	0	0	101	0	0	283	286	99	280	290	137
Stage 1	-	-	-	-	-	-	144	144	-	141	141	-
Stage 2	-		-	-			139	142	-	139	149	
Critical Hdwv	4.12	-	-	4.12	-		7.12	6.52	7.2	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-			6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	4.2	3.518	4.018	3.318
Pot Cap-1 Maneuver	1446	-	-	1491	-	-	669	623	745	672	620	911
Stage 1	-	-	-	-	-	-	859	778	-	862	780	-
Stage 2	-	-	-	-	-	-	864	779	-	864	774	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1437	-	-	1481	-	-	646	603	738	656	600	905
Mov Cap-2 Maneuver	-	-	-	-	-	-	646	603	-	656	600	-
Stage 1	-	-	-	-	-	-	838	759	-	841	775	-
Stage 2	-	-	-	-	-	-	851	774	-	845	755	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.6			0.1			9.9			9.2		
HCM LOS							Α			Α		
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		738	1437		1481	-	-	881				
HCM Lane V/C Ratio		0.001	0.017					0.016				
HCM Control Delay (s)		9.9	7.5	0 -	7.4	0	-	9.2				
HCM Lane LOS		Α	Α	Α -	Α	Α	-	Α				
HCM 95th %tile Q(veh)	0	0.1		0	-	-	0				
4(101)	,											

Movement	Intersection						
Movement		7.7					
Movement							
Lane Configurations							
Traffic Vol, veh/h	Movement	EBT	EBR	WBL	WBT		
Future Vol, veh/h 21 41 39 18 55 36 Peak Hour Factor 1.00	Lane Configurations	ĵ,			ર્ન	7	7
Peak Hour Factor 1.00	Traffic Vol, veh/h		41	39		55	36
Heavy Vehicles, % 5	Future Vol, veh/h	21	41	39	18	55	36
Mvmt Flow 21 41 39 18 55 36 Number of Lanes 1 0 0 1 1 1 Approach EB WB NB Opposing Approach WB EB Opposing Lanes 1 1 0 Conflicting Approach Left NB EB Conflicting Approach Right NB WB Conflicting Lanes Right 2 0 1 HCM Control Delay 7.1 7.7 8 HCM Control Delay 7.1 7.7 8 HCM LOS A A A Lane NBLn1 NBLn2 EBLn1 WBLn1 Vol Left, % 100% 0% 0% 68% Vol Thru, % 0% 0% 34% 32% Vol Right, % 0% 0% 34% 32% Vol Right, % 0% 100% 66% 0% Sign Control Stop Stop	Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Number of Lanes 1 0 0 1 1 1 Approach EB WB NB Opposing Approach WB EB Opposing Lanes 1 1 0 Conflicting Approach Left NB EB Conflicting Lanes Left 0 2 1 Conflicting Lanes Right 2 0 1 HCM Control Delay 7.1 7.7 8 HCM LOS A A A A A A A HCM LOS A B EBLn1 WBLn1 HCM LOS A A A A Lane NBLn1 NBLn2 EBLn1 WBLn1 Lane NBLn1 NBLn2 EBLn1 WBLn1 Vol Thru, % 0	Heavy Vehicles, %	5	17		6		
Approach EB WB NB Opposing Approach WB EB Opposing Lanes 1 1 0 Conflicting Approach Left 0 2 1 Conflicting Lanes Left 0 2 1 Conflicting Approach Right NB WB Conflicting Approach Right 2 0 1 HCM Control Delay 7.1 7.7 8 HCM Control Delay 7.1 7.7 8 HCM LOS A A A A A A A A A Vol Leght, % 100% 0% 0% 68% Vol Thru, % 0% 100% 66% 0% Vol Right, % 0% 100% 66% 0% Sign Control Stop Stop Stop Stop Stop Traffic Vol by Lane 55 36 62 57 LT TVol 55 0 0 39 </td <td>Mvmt Flow</td> <td>21</td> <td>41</td> <td>39</td> <td>18</td> <td>55</td> <td>36</td>	Mvmt Flow	21	41	39	18	55	36
Opposing Approach WB EB Opposing Lanes 1 1 0 Conflicting Approach Left 0 2 1 Conflicting Lanes Left 0 2 1 Conflicting Lanes Right NB WB Conflicting Lanes Right 2 0 1 HCM Control Delay 7.1 7.7 8 HCM LOS A A A A Lane NBLn1 NBLn2 EBLn1 WBLn1 Vol Left, % 100% 0% 0% 68% Vol Trun, % 0% 0% 34% 32% Vol Right, % 0% 100% 66% 0% Vol Right, % 0% 100% 66% 0% Sign Control Stop Stop Stop Stop Traffic Vol by Lane 55 36 62 57 Traffic Vol by Lane 55 36 62 57 Trough Vol 0 0 2	Number of Lanes	1	0	0	1	1	1
Opposing Lanes 1 1 0 Conflicting Approach Left NB EB Conflicting Approach Right NB WB Conflicting Approach Right NB WB Conflicting Approach Right 2 0 1 HCM Control Delay 7.1 7.7 8 HCM Control Delay 7.1 7.7 8 HCM LOS A A A A Lane NBLn1 NBLn2 EBLn1 WBLn1 Vol Left, % 100% 0% 0% 68% Vol Tinnu, % 0% 100% 66% 0% Vol Right, % 0% 100% 66% 0% Sign Control Stop Stop Stop Stop Traffic Vol by Lane 55 36 62 57 LT Vol 55 0 0 39 Through Vol 0 0 21 18 RT Vol 0 36 41 0 1	Approach			WB		NB	
Conflicting Approach Left	Opposing Approach	WB		EB			
Conflicting Lanes Left	Opposing Lanes	1				0	
Conflicting Approach Right NB WB Conflicting Lanes Right 2 0 1 HCM Control Delay 7.1 7.7 8 HCM LOS A A A A A A A HCM LOS A A A A A A A A A A A A A A A **Coll Time* **No Lone** **No Lone**	Conflicting Approach Left			NB		EB	
Conflicting Lanes Right 2 0 1 HCM Control Delay 7.1 7.7 8 HCM LOS A A A Lane NBLn1 NBLn2 EBLn1 WBLn1 Vol Left, % 100% 0% 0% 68% Vol Trinu, % 0% 0% 34% 32% Vol Right, % 0% 100% 66% 0% Sign Control Stop Stop Stop Stop Traffic Vol by Lane 55 36 62 57 LT Vol 55 0 0 39 Through Vol 0 0 21 18 RT Vol 0 36 41 0 Lane Flow Rate 55 36 62 57 Geometry Grp 7 7 2 2 Degree of Util (X) 0.081 0.04 0.065 0.068 Departure Headway (Hd) 5.326 4.039 3.787 4.274	Conflicting Lanes Left	0		2		1	
Conflicting Lanes Right 2 0 1 HCM Control Delay 7.1 7.7 8 HCM LOS A A A Lane NBLn1 NBLn2 EBLn1 WBLn1 Vol Left, % 100% 0% 0% 68% Vol Trinu, % 0% 0% 0% 34% 32% Vol Right, % 0% 0% 50% 50p 50p Stop Stop <t< td=""><td>Conflicting Approach Right</td><td>NB</td><td></td><td></td><td></td><td>WB</td><td></td></t<>	Conflicting Approach Right	NB				WB	
HCM Control Delay		2		0		1	
Lane NBLn1 NBLn2 EBLn1 WBLn1 Vol Left, % 100% 0% 0% 68% Vol Trun, % 0% 0% 34% 32% Vol Right, % 0% 100% 66% 0% Sign Control Stop Stop Stop Stop Traffic Vol by Lane 55 36 62 57 LT Vol 55 0 0 39 Through Vol 0 0 21 18 RT Vol 0 36 41 0 Lane Flow Rate 55 36 62 57 Geometry Grp 7 7 2 2 Degree of Util (X) 0.081 0.04 0.065 0.068 Departure Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078	HCM Control Delay	7.1		7.7		8	
Vol Left, % 100% 0% 0% 68% Vol Thru, % 0% 0% 34% 32% Vol Right, % 0% 100% 66% 0% Sign Control Stop Stop Stop Stop Traffic Vol by Lane 55 36 62 57 LT Vol 0 0 0 21 18 RT Vol 0 36 41 0 Lane Flow Rate 55 36 62 57 Geometry Grp 7 7 2 2 Degree of Util (X) 0.081 0.04 0.065 0.068 Departure Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069	HCM LOS	Α		Α		Α	
Vol Left, % 100% 0% 0% 68% Vol Thru, % 0% 0% 34% 32% Vol Right, % 0% 100% 66% 0% Sign Control Stop Stop Stop Stop Traffic Vol by Lane 55 36 62 57 LT Vol 0 0 0 21 18 RT Vol 0 36 41 0 Lane Flow Rate 55 36 62 57 Geometry Grp 7 7 2 2 Degree of Util (X) 0.081 0.04 0.065 0.068 Departure Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069							
Vol Thru, % 0% 0% 34% 32% Vol Right, % 0% 100% 66% 0% Sign Control Stop Stop Stop Stop Traffic Vol by Lane 55 36 62 57 LT Vol 55 0 0 39 Through Vol 0 0 21 18 RT Vol 0 36 41 0 Lane Flow Rate 55 36 62 57 Geometry Grp 7 7 2 2 Degree of Util (X) 0.081 0.04 0.065 0.068 Departure Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Lane LOS	Lane		NBLn1	NBLn2	EBLn1	WBLn1	
Vol Right, % 0% 100% 66% 0% Sign Control Stop Stop Stop Stop Traffic Vol by Lane 55 36 62 57 LT Vol 55 0 0 39 Through Vol 0 0 21 18 RT Vol 0 36 41 0 Lane Flow Rate 55 36 62 57 Geometry Grp 7 7 2 2 Degrature Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A	Vol Left, %		100%				
Sign Control Stop Stop Stop Stop Traffic Vol by Lane 55 36 62 57 LT Vol 55 0 0 39 Through Vol 0 0 21 18 RT Vol 0 36 41 0 Lane Flow Rate 55 36 62 57 Geometry Grp 7 7 2 2 Degree of Util (X) 0.081 0.04 0.065 0.068 Departure Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A A	Vol Thru, %		0%	0%	34%	32%	
Traffic Vol by Lane 55 36 62 57 LT Vol 55 0 0 39 Through Vol 0 0 21 18 RT Vol 0 36 41 0 Lane Flow Rate 55 36 62 57 Geometry Grp 7 7 2 2 Degree of Util (X) 0.081 0.04 0.065 0.068 Departure Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A A	Vol Right, %		0%	100%	66%	0%	
LT Vol 55 0 0 39 Through Vol 0 0 21 18 RT Vol 0 36 41 0 Lane Flow Rate 55 36 62 57 Geometry Grp 7 7 2 2 Degree of Util (X) 0.081 0.04 0.065 0.068 Departure Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A	Sign Control		Stop	Stop	Stop	Stop	
Through Vol 0 0 21 18 RT Vol 0 36 41 0	Traffic Vol by Lane			36	62		
RT Vol 0 36 41 0 Lane Flow Rate 55 36 62 57 Geometry Grp 7 7 2 2 Degree of Util (X) 0.081 0.04 0.065 0.068 Departure Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A A	LT Vol		55	0		39	
Lane Flow Rate 55 36 62 57 Geometry Grp 7 7 2 2 Degree of Util (X) 0.081 0.04 0.065 0.068 Departure Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A A	Through Vol		0			18	
Geometry Grp 7 7 2 2 Degree of Util (X) 0.081 0.04 0.065 0.068 Departure Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A A	RT Vol		0	36	41		
Degree of Util (X) 0.081 0.04 0.065 0.068 Departure Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A A	Lane Flow Rate		55	36	62	57	
Departure Headway (Hd) 5.326 4.039 3.787 4.274 Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A A	Geometry Grp		7	7	2	2	
Convergence, Y/N Yes Yes Yes Yes Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A A	Degree of Util (X)		0.081	0.04	0.065		
Cap 670 881 929 827 Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A A	Departure Headway (Hd)		5.326	4.039	3.787	4.274	
Service Time 3.078 1.791 1.877 2.358 HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A A	Convergence, Y/N		Yes	Yes	Yes	Yes	
HCM Lane V/C Ratio 0.082 0.041 0.067 0.069 HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A A	Сар		670	881	929	827	
HCM Control Delay 8.6 7 7.1 7.7 HCM Lane LOS A A A A	Service Time		3.078				
HCM Lane LOS A A A A	HCM Lane V/C Ratio		0.082	0.041	0.067	0.069	
	HCM Control Delay		8.6	7	7.1	7.7	
HCM 95th-tile Q 0.3 0.1 0.2 0.2	HCM Land LOS			٨	٨	Λ.	
	I IOW Lane LOS		A		A	A	

Interception						
Intersection	2					
Int Delay, s/veh	2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	ĥ		W	
Traffic Vol, veh/h	11	19	27	1	0	5
Future Vol. veh/h	11	19	27	1	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-		-	0	-
Veh in Median Storage		0	0		0	-
Grade. %	z, π =	0	0		0	
Peak Hour Factor		100		100		100
	100		100		100	
Heavy Vehicles, %	9	2	2	2	2	20
Mvmt Flow	11	19	27	1	0	5
Major/Minor	Major1	ı	Major2	1	Minor2	
Conflicting Flow All	28	0	-	0	69	28
		U		-	28	-
Stage 1	-	-	-			
Stage 2	-	-	-	-	41	-
Critical Hdwy	4.19	-	-	-	6.42	6.4
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.281	-	-	-	3.518	3.48
Pot Cap-1 Maneuver	1541	-	-	-	936	998
Stage 1	-	-	-	-	995	-
Stage 2		-	_	_	981	_
Platoon blocked, %					501	
Mov Cap-1 Maneuver	1541				929	998
		-				
Mov Cap-2 Maneuver	-	-	-	-	929	-
Stage 1	-	-	-	-	988	-
Stage 2	-	-	-	-	981	-
Approach	EB		WB		SB	
	2.7		0		8.6	
HCM Control Delay, s	2.1		U			
HCM LOS					Α	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SRI n1
Capacity (veh/h)		1541	-	-	-	998
		0.007				0.005
HCM Lane V/C Ratio		7.4	-	-		8.6
HCM Control Delay (s))		0	-	-	
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0	-	-	-	0

	•	→	*	•	+	4	4	†	1	-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	7	^	7	ሻ	1>		*	4	
Traffic Volume (vph)	7	179	40	2	848	103	81	46	5	40	26	12
Future Volume (vph)	7	179	40	2	848	103	81	46	5	40	26	12
Satd. Flow (prot)	1658	3316	1375	1658	3316	1441	1626	1687	0	1566	1314	0
Flt Permitted	0.234			0.639			0.732			0.724		
Satd. Flow (perm)	408	3316	1375	1115	3316	1423	1252	1687	0	1191	1314	0
Satd. Flow (RTOR)			41			103		5			12	
Lane Group Flow (vph)	7	179	40	2	848	103	81	51	0	40	38	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7	23.7	23.7	23.7	23.7	29.0	29.0		29.0	29.0	
Total Split (s)	51.0	51.0	51.0	51.0	51.0	51.0	29.0	29.0		29.0	29.0	
Total Split (%)	63.8%	63.8%	63.8%	63.8%	63.8%	63.8%	36.3%	36.3%		36.3%	36.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.4	2.4	2.4	2.4	2.4	2.4	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	6.0	6.0		6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None	None	Max	Max		Max	Max	
Act Effct Green (s)	19.6	19.6	19.6	19.6	19.6	19.6	23.2	23.2		23.2	23.2	
Actuated g/C Ratio	0.36	0.36	0.36	0.36	0.36	0.36	0.42	0.42		0.42	0.42	
v/c Ratio	0.05	0.15	0.08	0.01	0.71	0.18	0.15	0.07		0.08	0.07	
Control Delay	11.4	11.6	4.3	10.5	18.5	3.6	12.3	10.6		11.8	9.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	11.4	11.6	4.3	10.5	18.5	3.6	12.3	10.6		11.8	9.2	
LOS	В	В	Α	В	В	Α	В	В		В	Α	
Approach Delay		10.3			16.9			11.7			10.5	
Approach LOS		В			В			В			В	
Queue Length 50th (m)	0.4	6.0	0.0	0.1	36.4	0.0	4.6	2.5		2.2	1.4	
Queue Length 95th (m)	2.4	11.0	4.3	1.1	52.0	6.9	14.0	9.1		8.2	6.8	
Internal Link Dist (m)		163.5			149.6			92.4			92.1	
Turn Bay Length (m)	50.0		105.0	62.5		120.0	47.5					
Base Capacity (vph)	341	2772	1156	932	2772	1206	531	718		505	564	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.02	0.06	0.03	0.00	0.31	0.09	0.15	0.07		0.08	0.07	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 54.	6											
Natural Cycle: 55												
Control Type: Actuated-Und	coordinated											
Maximum v/c Ratio: 0.71												

AM Peak Hour 2033 Future Background

Intersection Signal Delay: 15.0	Intersection LOS: B
Intersection Capacity Utilization 53.7%	ICU Level of Service A
Analysis Period (min) 15	

Splits and Phases: 5: Prestone & St Joseph

♣ _{Ø2}	₩ 04
51 s	29 s
₩ Ø6	₫ 08
51 s	29 s

Lanes, Volumes, Timings
1: Place d'Orleans & Centrum

PM Peak Hour 2033 Future Background

Lane Group		•	-	•	•	←	*	4	†	1	-	Į.	1
Lane Configurations	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Traffic Volume (vph) 94 57 220 41 46 0 102 153 65 108 158 158 Satd. Flow (prot) 1658 1745 1483 1658 1745 0 0 3104 0 0 3115 Fit Permitted 0.727 0.720 0.758 0.740 Satd. Flow (prot) 1658 1745 1483 1658 1745 0 0 2388 0 0 2341 Satd. Flow (perm) 1252 1745 1448 1242 1745 0 0 2388 0 0 2341 Satd. Flow (perm) 1252 1745 1448 1242 1745 0 0 2388 0 0 2341 Satd. Flow (perm) 1252 1745 1448 1242 1745 0 0 2388 0 0 2341 Satd. Flow (perm) 1252 1745 1448 1242 1745 0 0 2388 0 0 2341 Satd. Flow (Prot) 1252 1745 1448 1242 1745 0 0 2388 0 0 0 338 Satd. Flow (Prot) 1252 1745 1448 1242 1745 0 0 320 0 0 308 Satd. Flow (Prot) 1252 1745 1448 1242 1745 0 0 320 0 0 308 Satd. Flow (Prot) 1252 1745 1448 1242 1745 0 0 2388 0 0 0 0 308 Satd. Flow (Prot) 1252 1745 1448 1242 1745 0 0 2388 0 0 2341 Satd. Flow (Prot) 1252 1745 1448 1242 1745 0 0 0 320 0 0 308 Satd. Flow (Prot) 1252 1745 1448 1242 1745 0 0 0 320 0 0 308 Satd. Flow (Prot) 1252 1745 1448 1242 1745 0 0 0 320 0 0 308 Satd. Flow (Prot) 1252 1745 1448 1242 1745 0 0 0 320 0 0 308 Satd. Flow (Prot) 1252 1745 1448 1242 1745 0 0 0 320 0 0 308 Satd. Flow (Prot) 1252 1745 1448 1242 1745 0 0 0 320 0 0 308 Satd. Flow (Prot) 1252 1745 1448 144 1 8 8 8 2 2 6 6 6 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	Lane Configurations	*	A	7	*	î,			412			412	
Future Volume (vph)		94					0	102		65	108		4
Satid. Flow (prop)		94								65			4
Fit Permitted 0.727 0.720 0.758 0.740 Satd. Flow (perm) 1252 1745 1448 1242 1745 0 0 2388 0 0 2341 Satd. Flow (PTOR) 220 60 0 330 Lane Group Flow (vph) 94 57 220 41 46 0 0 320 0 0 308 Turn Type Perm NA Perm NA Perm NA Perm NA Protected Phases 4 4 8 8 2 66 Demitted Phases 4 4 4 8 8 2 2 6 6 Detector Phase 4 4 8 8 2 2 6 6 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.		1658	1745	1483	1658	1745	0	0	3104	0	0	3115	(
Satd. Flow (RTOR) Satd. Flow (RTOR) 1													
Satd. Flow (RTOR) Satd. Flow (RTOR) 94 57 220 41 46 0 0 320 0 0 308 Lane Group Flow (vph) 94 57 220 41 46 0 0 320 0 0 308 Permitted Phases 4 4 8 8 2 2 6 6 Permitted Phases 4 4 4 8 8 8 2 2 2 6 6 Switch Phase Winimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	Satd. Flow (perm)	1252	1745	1448	1242	1745	0	0	2388	0	0	2341	
Lane Group Flow (vph) Perm NA Perm Perm NA Per				220					60			33	
Turn Type		94	57	220	41	46	0	0	320	0	0	308	
Protected Phases	Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Permitted Phases	Protected Phases		4			8			2			6	
Switch Phase Minimum Initial (s)		4		4	8			2			6		
Minimum Initial (s) 10.0 36.0 </td <td>Detector Phase</td> <td>4</td> <td>4</td> <td>4</td> <td>8</td> <td>8</td> <td></td> <td>2</td> <td>2</td> <td></td> <td>6</td> <td>6</td> <td></td>	Detector Phase	4	4	4	8	8		2	2		6	6	
Minimum Split (s) 31.0 32.0 33.0 33.3 <td>Switch Phase</td> <td></td>	Switch Phase												
Total Split (s) 32.0 32.0 32.0 32.0 32.0 53.0 53.0 53.0 53.0 53.0 53.0 Total Split (%) 37.6% 37.6% 37.6% 37.6% 37.6% 37.6% 62.4% 62.	Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Total Split (%) 37.6% 37.6% 37.6% 37.6% 37.6% 62.4% 62	Minimum Split (s)	31.0	31.0	31.0	31.0	31.0		36.0	36.0		36.0	36.0	
Yellow Time (s)	Total Split (s)	32.0	32.0	32.0	32.0	32.0		53.0	53.0		53.0	53.0	
All-Red Time (s) 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	Total Split (%)	37.6%	37.6%	37.6%	37.6%	37.6%		62.4%	62.4%		62.4%	62.4%	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.3	3.3		3.3	3.3	
Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	All-Red Time (s)	2.7	2.7	2.7	2.7	2.7		2.7	2.7		2.7	2.7	
Lead/Lag Lead-Lag Optimize? Recall Mode None None None C-Max C-Max </td <td>Lost Time Adjust (s)</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td>	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Lead-Lag Optimize? Recall Mode None None None None None None C-Max C-Max <td>Total Lost Time (s)</td> <td>6.0</td> <td>6.0</td> <td>6.0</td> <td>6.0</td> <td>6.0</td> <td></td> <td></td> <td>6.0</td> <td></td> <td></td> <td>6.0</td> <td></td>	Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0			6.0			6.0	
Recall Mode None None None None None C-Max C-Max <t< td=""><td>Lead/Lag</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Lead/Lag												
Act Effct Green (s)	Lead-Lag Optimize?												
Actuated g/C Ratio 0.17 0.17 0.17 0.17 0.69 0.69 V/c Ratio 0.45 0.20 0.52 0.20 0.16 0.19 0.19 Control Delay 37.3 29.8 8.6 30.3 29.0 4.9 5.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 37.3 29.8 8.6 30.3 29.0 4.9 5.3 LOS D C A C C A A A Approach Delay 19.1 29.6 4.9 5.3 Approach LOS B C A A A Queue Length 50th (m) 14.4 8.4 0.0 6.0 6.7 5.7 6.1 Queue Length 95th (m) 23.7 15.2 15.1 12.3 13.0 16.6 17.3 Internal Link Dist (m) 55.7 119.8 103.0 90.8 T	Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	
v/c Ratio 0.45 0.20 0.52 0.20 0.16 0.19 0.19 Control Delay 37.3 29.8 8.6 30.3 29.0 4.9 5.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 37.3 29.8 8.6 30.3 29.0 4.9 5.3 LOS D C A C C A A Approach LOS B C A A A A Queue Length 50th (m) 14.4 8.4 0.0 6.0 6.7 5.7 6.1 Queue Length 50th (m) 13.7 15.2 15.1 12.3 13.0 16.6 17.3 Internal Link Dist (m) 55.7 119.8 103.0 90.8 Turn Bay Length (m) 52.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	Act Effct Green (s)	14.1	14.1	14.1	14.1	14.1			58.9			58.9	
Control Delay 37.3 29.8 8.6 30.3 29.0 4.9 5.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 37.3 29.8 8.6 30.3 29.0 4.9 5.3 LOS D C A C C A A A Approach Delay 19.1 29.6 4.9 5.3 Approach LOS B C A C C A A A Approach LOS B C A A A A Queue Length 50th (m) 14.4 8.4 0.0 6.0 6.7 5.7 6.1 Queue Length 95th (m) 23.7 15.2 15.1 12.3 13.0 16.6 17.3 Internal Link Dist (m) 55.7 119.8 103.0 90.8 Turn Bay Length (m) 52.0 20.0 Base Capacity (vph) 382 533 595 379 533 1672 1631 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 Reduced Vic Ratio 0.25 0.11 0.37 0.11 0.09 0.19 Cycle Length: 85 Actuated Cycle Length: 85	Actuated g/C Ratio	0.17	0.17	0.17	0.17	0.17			0.69			0.69	
Queue Delay 0.0 4.9 5.3 3.2 4.9 5.3 A A A A A A A A A A A A A A A A A A A													
Total Delay 37.3 29.8 8.6 30.3 29.0 4.9 5.3 LOS D C A C C A A Approach Delay 19.1 29.6 4.9 5.3 Approach LOS B C A A A Queue Length 50th (m) 14.4 8.4 0.0 6.0 6.7 5.7 6.1 Queue Length 50th (m) 23.7 15.2 15.1 12.3 13.0 16.6 17.3 Internal Link Dist (m) 55.7 119.8 103.0 90.8 Turn Bay Length (m) 52.0 20.0	Control Delay	37.3	29.8	8.6	30.3	29.0			4.9				
LOS D C A C C A A A A A A A A A A A A A A A													
Approach Delay 19.1 29.6 4.9 5.3 Approach LOS B C A A Queue Length 50th (m) 14.4 8.4 0.0 6.0 6.7 5.7 6.1 Queue Length 95th (m) 23.7 15.2 15.1 12.3 13.0 16.6 17.3 Internal Link Dist (m) 52.0 20.0 8 103.0 90.8 Turn Bay Length (m) 52.0 20.0 8 103.0 90.8 Sase Capacity (vph) 382 533 595 379 533 1672 1631 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0													
Approach LOS B C A A A Queue Length 50th (m) 14.4 8.4 0.0 6.0 6.7 5.7 6.1 Queue Length 95th (m) 23.7 15.2 15.1 12.3 13.0 16.6 17.3 Internal Link Dist (m) 55.7 119.8 103.0 90.8 Turn Bay Length (m) 52.0 20.0 Base Capacity (vph) 382 533 595 379 533 1672 1631 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		D		Α	С								
Queue Length 50th (m) 14.4 8.4 0.0 6.0 6.7 5.7 6.1 Queue Length 95th (m) 23.7 15.2 15.1 12.3 13.0 16.6 17.3 Internal Link Disk (m) 55.7 119.8 103.0 90.8 Turn Bay Length (m) 52.0 20.0 20.0 Base Capacity (vph) 382 533 595 379 533 1672 1631 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storrage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.25 0.11 0.37 0.11 0.09 0.19 0.19 0.19 Intersection Summary Cycle Length: 85 Actuated Cycle Length: 85													
Queue Length 95th (m) 23.7 15.2 15.1 12.3 13.0 16.6 17.3 Internal Link Dist (m) 55.7 119.8 103.0 90.8 Turn Bay Length (m) 52.0 20.0 Base Capacity (vph) 382 533 595 379 533 1672 1631 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0.25 0.11 0.37 0.11 0.09 0.19 0.19 Intersection Summary Cycle Length: 85 4													
Internal Link Dist (m)													
Turn Bay Length (m) 52.0 20.0 Base Capacity (vph) 382 533 595 379 533 1672 1631 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.25 0.11 0.37 0.11 0.09 0.19 Intersection Summary Cycle Length: 85 Actuated Cycle Length: 85		23.7		15.1	12.3								
Base Capacity (vph) 382 533 595 379 533 1672 1631 Starvation Cap Reducth 0 0 0 0 0 0 0 0 0 Spillback Cap Reducth 0 0 0 0 0 0 0 0 0 0 Spillback Cap Reducth 0 0 0 0 0 0 0 0 0 0 0 0 Spillback Cap Reducth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			55.7			119.8			103.0			90.8	
Starvation Cap Reductn 0													
Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.25 0.11 0.37 0.11 0.09 0.19 0.19 Intersection Summary Cycle Length: 85 Actuated Cycle Length: 85													
Storage Cap Reductn													
Reduced v/c Ratio 0.25 0.11 0.37 0.11 0.09 0.19 0.19 Intersection Summary Cycle Length: 85 Actuated Cycle Length: 85			-						-				
Intersection Summary Cycle Length: 85 Actuated Cycle Length: 85					-				-				
Cycle Length: 85 Actuated Cycle Length: 85	Reduced v/c Ratio	0.25	0.11	0.37	0.11	0.09			0.19			0.19	
Actuated Cycle Length: 85	Intersection Summary												
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green		to phase 2	NBTL an	d 6:SBTL	, Start of	Green							
Natural Cycle: 70	Natural Cycle: 70												

Control Type: Actuated-Coordinated

PM Peak Hour 2033 Future Background

Maximum v/c Ratio: 0.52		
Intersection Signal Delay: 11.8	Intersection LOS: B	
Intersection Capacity Utilization 80.0%	ICU Level of Service D	
Analysis Period (min) 15		

Splits and Phases: 1: Place d'Orleans & Centrum 1 Ø2 (R) Ø6 (R)

HCM 2010 TWSC 2: Centrum & Brisebois W

PM Peak Hour 2033 Future Background

Intersection												
Int Delay, s/veh	1.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LUL	4	LDIX	WDL	4	WDIT	HUL	4	HUIT	ODL	4	ODIT
Traffic Vol, veh/h	23	181	8	1	120	3	7	0	8	7	0	37
Future Vol. veh/h	23	181	8	1	120	3	7	0	8	7	0	37
Conflicting Peds, #/hr	23	0	19	19	0	23	3	0	6	6	0	3
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-		-	-	-	-			-			-
Veh in Median Storage	.# -	0	-		0	-	-	0		-	0	-
Grade, %	-	0			0			0			0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	3	2	2	5	2	2	2	2	2	2	2
Mvmt Flow	23	181	8	1	120	3	7	0	8	7	0	37
Major/Minor I	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	146	0	0	208	0	0	395	398	210	388	401	148
Stage 1	-	-	-	-	-	-	250	250	-	147	147	-
Stage 2	-	-	-	-	-	-	145	148	-	241	254	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1436	-	-	1363	-	-	565	540	830	571	538	899
Stage 1	-	-	-	-	-	-	754	700	-	856	775	-
Stage 2	-	-	-	-	-	-	858	775	-	762	697	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1410	-	-	1343	-	-	524	512	814	545	511	881
Mov Cap-2 Maneuver	-	-	-	-	-	-	524	512	-	545	511	-
Stage 1	-	-	-	-	-	-	730	677	-	825	760	-
Stage 2	-	-	-	-	-	-	819	760	-	737	674	-
	-									-		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.8			0.1			10.7			9.7		
HCM LOS							В			Α		
Minor Lane/Major Mvm	nt l	NBLn1	EBL	EBT EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		647	1410		1343	-	-	802				
HCM Lane V/C Ratio		0.023	0.016		0.001	-	-	0.055				
HCM Control Delay (s)		10.7	7.6	0 -	7.7	Λ	_	9.7				

•						
Intersection						
Intersection Delay, s/veh	8					
Intersection LOS	A					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u> </u>	LDIX	TTDL	4	NDE.	7
Traffic Vol, veh/h	40	108	53	원 18	72	37
Future Vol. veh/h	40	108	53	18	72	37
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	6	2	2	11	2
Mymt Flow	40	108	53	18	72	37
Number of Lanes	1	0	0	1	1	1
		0				
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		2		1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	2		0		1	
HCM Control Delay	7.6		8		8.5	
HCM LOS	Α		Α		Α	
Lane		NBLn1	NBLn2	EBLn1	WBLn1	
Vol Left, %		100%	0%	0%	75%	
Vol Thru, %		0%	0%	27%	25%	
Vol Right, %		0%	100%	73%	0%	
Sign Control		Stop	Stop	Stop	Stop	
Traffic Vol by Lane		72	37	148	71	
LT Vol		72	0	0	53	
Through Vol		0	0	40	18	
RT Vol		0	37	108	0	
Lane Flow Rate		72	37	148	71	
Geometry Grp		7	7	2	2	
Degree of Util (X)		0.113	0.043	0.159	0.089	
Departure Headway (Hd)		5.667	4.209	3.863	4.513	
Convergence, Y/N		Yes	Yes	Yes	Yes	
Сар		636	836	932	797	
Service Time		3.367	2.008	1.869	2.522	
HCM Lane V/C Ratio		0.113	0.044	0.159	0.089	
HCM Control Delay		9.1	7.2	7.6	8	
I low control belay		0				
HCM Lane LOS		A 0.4	A 0.1	A 0.6	A 0.3	

Lane Configurations ↑ ↑ ↑ Traffic Vol, veh/h 8 49 40 0 0 16 Future Vol, veh/h 8 49 40 0 0 16 Conflicting Peds, #/hr 0							
Int Delay, s/veh	Interpostina						
Movement		17					
Lane Configurations	iiii Delay, S/veri						
Traffic Vol, veh/h Future Future Free Free Free Free Free Free Free F	Movement	EBL		WBT	WBR		SBR
Future Vol, veh/h Conflicting Peds, #/hr Sign Control Free Free Free Free Free Free Free Fre	Lane Configurations		र्स	ĵ.		N/	
Conflicting Peds, #/hr O O O O O O O O O	Traffic Vol, veh/h	8	49	40	0	0	16
Sign Control Free RTCE Free RTCE Free RTCE Free RTCE Stop Stop Stop Storage Length Stop None None <td>Future Vol, veh/h</td> <td>8</td> <td>49</td> <td>40</td> <td>0</td> <td>0</td> <td>16</td>	Future Vol, veh/h	8	49	40	0	0	16
RT Channelized - None - None - None Storage Length - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	Conflicting Peds, #/hr	0	0	0	0	0	0
Storage Length	Sign Control	Free	Free	Free	Free	Stop	Stop
Veh in Median Storage, # 0 0 - 0 16 Major/Minor Major Major Minor Minor 0 - 0 16 Major/Minor Major Major Minor 0 - 0 16 Major/Minor Major Major Minor 0 0 16 Major/Minor Mal 4 0 - 0 105 40 Stage 1 - - - 6 65 - - - - - - - - - - - - <td>RT Channelized</td> <td>-</td> <td>None</td> <td>-</td> <td>None</td> <td>-</td> <td>None</td>	RT Channelized	-	None	-	None	-	None
Grade, % - 0 0 0 - 0 - 0 - Peak Hour Factor 100 100 100 100 100 100 100 Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Storage Length	-	-	-	-	0	-
Grade, % - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 100 100 100 100 100 100 100 100 100 100 40 - 0 105 40 - 1 40 - 0 105 40 - 10 40 - 10 40 - 10 40 - 10 105 40 - 10 40 - - 40 - - 40 - - 40 - - 40 - - 40 - - 40 - - 40 - - 40 - - - 66 - 2 - - 66 - 2 - - -	Veh in Median Storage	e.# -	0	0	-	0	-
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 Mvmt Flow	Grade, %		0	0	-	0	
Mwnt Flow 8 49 40 0 0 16 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 40 0 0 105 40 Stage 1 - - - 40 - Stage 2 - - - 65 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Follow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1570 - - 893 1031 Stage 1 - - - 982 - Platoon blocked, % - - - 889 1031 Mov Cap-1 Maneuver 1570 - - 889 1031 Mov Cap-2 Maneuver 1570 - - 889 - Stage 2 - - -	Peak Hour Factor	100	100	100	100	100	100
Mwnt Flow 8 49 40 0 0 16 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 40 0 0 0 105 40 Stage 1 - - - 40 - 65 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Follow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1570 - - 893 1031 Stage 1 - - - 982 - Platoon blocked, % - - - 889 1031 Mov Cap-1 Maneuver 1570 - - 889 1 Mov Cap-2 Maneuver 1570 - - 889 - Stage 1 - - - 977 - Stage 2	Heavy Vehicles, %	2	2	2	2	2	2
Major/Minor Major1 Major2 Minor2 Conflicting Flow All 40 0 - 0 105 40 Stage 1 - - - 40 - - 65 - - 665 - - - 665 - - - 642 6.22 - - 6.42 6.22 - - 6.42 6.22 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - - 893 1031 982 - - - - - - - - - - - - - - - - - - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Conflicting Flow All 40 0 - 0 105 40 Stage 1 - - - 40 - - 40 - - 40 - - 40 - - 40 - - - 40 - - - 65 - - - 65 - - 642 6.22 - - 6.42 6.22 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 893 1031 982 - - 893 1031 982 -<			.0				
Conflicting Flow All 40 0 - 0 105 40 Stage 1 - - - 40 - - 40 - - 40 - - 40 - - 40 - - - 40 - - - 65 - - - 65 - - 642 6.22 - - 6.42 6.22 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 893 1031 982 - - 893 1031 982 -<							
Stage 1				Major2			
Stage 2							
Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Follow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1570 - - 893 1031 Stage 1 - - - 958 - Platoon blocked, % - - - - Mov Cap-1 Maneuver 1570 - - 889 1031 Mov Cap-2 Maneuver - - - - 889 1 Mov Cap-2 Maneuver - - - 889 1 Stage 1 - - - 977 - Stage 2 - - - 977 - Approach EB WB SB HCM Control Delay, s 1 0 8.5		-	-	-	-		-
Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Follow-up Hdwy 2.218 - - 3.518 3.188 Pot Cap-1 Maneuver 1570 - - 893 1031 Stage 1 - - - 982 - Platoon blocked, % - - - Mov Cap-1 Maneuver 1570 - - 889 1031 Mov Cap-2 Maneuver - - 889 - Stage 1 - - - 977 - Stage 2 - - - 958 - Approach EB WB SB HCM Control Delay, s 1 0 8.5 HCM Lone ViC Ratio 0.005 - - 1031 HCM Control Delay (s) 7.3 0 - 8.5 HCM Control Delay (s) 7.3 0 - 8.5 HCM Control Delay (s) 7.3 0 - 8.5	Stage 2	-	-	-	-	65	-
Critical Hdwy Stg 2 5.42 - Follow-up Hdwy 2.218 3.518 3.318 Pot Cap-1 Maneuver 1570 893 1031 Stage 1 982 - 958 Stage 2 958 Stage 2 889 1031 Mov Cap-2 Maneuver 1570 889 1031 Mov Cap-2 Maneuver 1570 889 1031 Mov Cap-2 Maneuver 889 - 958 Stage 2	Critical Hdwy	4.12	-	-	-	6.42	6.22
Follow-up Hdwy 2.218 - 3.518 3.318 POt Cap-1 Maneuver 1570 - 893 1031 Stage 1 - 982 - 958 - 958 Platoon blocked, % - 889 1031 Mov Cap-1 Maneuver 1570 - 889 1031 Mov Cap-1 Maneuver 1570 - 889 1031 Mov Cap-2 Maneuver - 889 - 889 - 958 - 889 1031 Stage 2 - 9 70 7 889 1031 Mov Cap-2 Maneuver - 958 8 9 1031 Mov Cap-2 Maneuver - 958 958 - 958 958 958 958 Approach EB WB SB HCM Control Delay, s 1 0 8.5 HCM LOS	Critical Hdwy Stg 1	-	-	-	-	5.42	-
Pot Cap-1 Maneuver	Critical Hdwy Stg 2	-	-	-	-	5.42	-
Stage 1	Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Stage 2	Pot Cap-1 Maneuver	1570	-	-	-	893	1031
Stage 2	Stage 1	-	-	-	-	982	-
Platoon blocked, %		-	-		_		_
Mov Cap-1 Maneuver 1570 - - 889 1031 Mov Cap-2 Maneuver - - - 889 - Stage 1 - - - 977 - Stage 2 - - - 958 - Approach EB WB SB HCM Control Delay, s 1 0 8.5 HCM LOS A A Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1570 1031 HCM Lane V/C Ratio 0.005 0.016 HCM Control Delay (s) 7.3 0 - 8.5 HCM Control Delay (s) 7.3 0 - 8.5 HCM Lane LOS A A - A - A - A - A - A - A -			-		-	000	
Mov Cap-2 Maneuver - - - 889 - Stage 1 - - - 977 - Stage 2 - - - 958 - Approach EB WB SB HCM Control Delay, s 1 0 8.5 HCM LOS A A Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1570 - - 1031 HCM Lane V/C Ratio 0.005 - - 0.016 HCM Cantrol Delay (s) 7.3 0 - 8.5 HCM Lane LOS A A - A		1570	-		-	889	1031
Stage 1 - - - 977 - Stage 2 - - - 958 - Approach EB WB SB HCM Control Delay, s 1 0 8.5 HCM LOS A A - 1 Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (velv/h) 1570 - - 1031 HCM Lane V/C Ratio 0.005 - - 0.016 HCM Control Delay (s) 7.3 0 - 8.5 HCM Lane LOS A A - A			_				
Stage 2							
Approach EB WB SB			-				
HCM Control Delay, s	Stage 2	-	-	-	-	958	-
HCM Control Delay, s							
HCM LOS	Approach	EB		WB		SB	
Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1570 - - 1031 HCM Lane V/C Ratio 0.005 - - 0.016 HCM Control Delay (s) 7.3 0 - 8.5 HCM Lane LOS A A - - A	HCM Control Delay, s	1		0		8.5	
Capacity (veh/h) 1570 - - 1031 HCM Lane V/C Ratio 0.005 - - 0.016 HCM Control Delay (s) 7.3 0 - 8.5 HCM Lane LOS A A - - A	HCM LOS					Α	
Capacity (veh/h) 1570 - - 1031 HCM Lane V/C Ratio 0.005 - - 0.016 HCM Control Delay (s) 7.3 0 - 8.5 HCM Lane LOS A A - - A							
Capacity (veh/h) 1570 - - 1031 HCM Lane V/C Ratio 0.005 - - 0.016 HCM Control Delay (s) 7.3 0 - 8.5 HCM Lane LOS A A - - A	Mineral and Maries Marie	-4	EDI	EDT	WDT	MDD	ODI 4
HCM Lane V/C Ratio 0.005 - - - 0.016 HCM Control Delay (s) 7.3 0 - - 8.5 HCM Lane LOS A A - - A		nt					
HCM Control Delay (s) 7.3 0 - - 8.5 HCM Lane LOS A A - - A							
HCM Lane LOS A A A							
)					
HCM 95th %tile Q(veh) 0 0							
` '	HCM 95th %tile Q(veh	1)	0	-	-	-	0

PM Peak Hour 2033 Future Background

	*	-	•	•	-	*	4	†	1	-	. ↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	ሻ	^	7	ሻ	^	7	7	ĵ.		ሻ	f)	
Traffic Volume (vph)	26	947	116	10	481	106	57	28	9	130	75	2
Future Volume (vph)	26	947	116	10	481	106	57	28	9	130	75	:
Satd. Flow (prot)	1658	3316	1483	1658	3316	1483	1658	1572	0	1658	1567	
Flt Permitted	0.477			0.276			0.692			0.733		
Satd. Flow (perm)	832	3316	1444	481	3316	1464	1201	1572	0	1278	1567	
Satd. Flow (RTOR)			116			106		9			22	
Lane Group Flow (vph)	26	947	116	10	481	106	57	37	0	130	101	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	-	Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2	_	2	6		6	8	•		4	•	
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase	_	_	_	U	Ū	•	0	U		-	7	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7	23.7	23.7	23.7	23.7	29.0	29.0		29.0	29.0	
Total Split (s)	51.0	51.0	51.0	51.0	51.0	51.0	29.0	29.0		29.0	29.0	
Total Split (%)	63.8%	63.8%	63.8%	63.8%	63.8%	63.8%	36.3%	36.3%		36.3%	36.3%	
	3.3	3.3	3.3	3.3	3.3	3.3	3.3	30.3%		3.3	30.3%	
Yellow Time (s)		2.4		2.4			2.7	2.7		2.7	2.7	
All-Red Time (s)	2.4		2.4		2.4	2.4						
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	6.0	6.0		6.0	6.0	
_ead/Lag												
_ead-Lag Optimize?												
Recall Mode	Max	Max	Max	Max	Max	Max	None	None		None	None	
Act Effct Green (s)	48.3	48.3	48.3	48.3	48.3	48.3	13.9	13.9		13.9	13.9	
Actuated g/C Ratio	0.65	0.65	0.65	0.65	0.65	0.65	0.19	0.19		0.19	0.19	
//c Ratio	0.05	0.44	0.12	0.03	0.22	0.11	0.25	0.12		0.54	0.32	
Control Delay	6.5	7.8	1.9	6.8	6.2	1.9	26.4	19.3		34.5	21.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	6.5	7.8	1.9	6.8	6.2	1.9	26.4	19.3		34.5	21.7	
LOS	Α	Α	Α	Α	Α	Α	С	В		С	С	
Approach Delay		7.1			5.5			23.6			28.9	
Approach LOS		Α			Α			С			С	
Queue Length 50th (m)	1.0	26.3	0.0	0.4	11.2	0.0	6.5	3.1		15.6	9.0	
Queue Length 95th (m)	4.9	56.7	6.2	2.7	25.8	6.0	15.2	9.7		30.2	20.5	
nternal Link Dist (m)		163.5			149.6			92.4			92.1	
Turn Bay Length (m)	50.0		105.0	62.5		120.0	47.5					
Base Capacity (vph)	543	2165	983	314	2165	992	375	498		399	505	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.05	0.44	0.12	0.03	0.22	0.11	0.15	0.07		0.33	0.20	
ntersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 74												
Natural Cycle: 55								_				
Control Type: Actuated-Unc	oordinated											

Scenario 1 265 Centrum Blvd 11:59 pm 01/31/2023 2033 Future Background

Maximum v/c Ratio: 0.54

Synchro 11 Report Page 9 Lanes, Volumes, Timings 5: Prestone & St Joseph

PM Peak Hour 2033 Future Background

Intersection Signal Delay: 9.9 Intersection LOS: A Intersection Capacity Utilization 52.5% ICU Level of Service A Analysis Period (min) 15

Splits and Phases: 5: Prestone & St Joseph

Appendix I

Synchro Intersection Worksheets – 2028 Future Total Conditions

AM Peak Hour 2028 Future Total

		\rightarrow	7	•	_	_	1	T		-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	ሻ	1	7	ሻ	ĵ,			414			414	
Traffic Volume (vph)	25	65	40	34	81	4	67	158	62	112	42	1
Future Volume (vph)	25	65	40	34	81	4	67	158	62	112	42	1
Satd. Flow (prot)	1566	1745	1401	1658	1715	0	0	3137	0	0	3029	
Flt Permitted	0.702			0.715				0.854			0.688	
Satd. Flow (perm)	1150	1745	1375	1241	1715	0	0	2711	0	0	2151	
Satd. Flow (RTOR)			44		4			62			19	
Lane Group Flow (vph)	25	65	40	34	85	0	0	287	0	0	173	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0		36.0	36.0		36.0	36.0	
Total Split (s)	32.0	32.0	32.0	32.0	32.0		43.0	43.0		43.0	43.0	
Total Split (%)	42.7%	42.7%	42.7%	42.7%	42.7%		57.3%	57.3%		57.3%	57.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7		2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		Max	Max		Max	Max	
Act Effct Green (s)	12.6	12.6	12.6	12.6	12.6			42.1			42.1	
Actuated q/C Ratio	0.20	0.20	0.20	0.20	0.20			0.68			0.68	
v/c Ratio	0.11	0.18	0.13	0.14	0.24			0.15			0.12	
Control Delay	20.2	21.0	7.0	20.6	21.0			5.2			6.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay	20.2	21.0	7.0	20.6	21.0			5.2			6.0	
LOS	С	С	Α	С	С			Α			Α	
Approach Delay		16.5			20.9			5.2			6.0	
Approach LOS		В			С			Α			A	
Queue Length 50th (m)	2.3	6.1	0.0	3.2	7.7			4.3			2.9	
Queue Length 95th (m)	7.2	14.1	5.5	8.9	16.9			14.8			10.7	
Internal Link Dist (m)		55.7			119.8			103.0			90.8	
Turn Bay Length (m)	52.0		20.0									
Base Capacity (vph)	485	737	606	524	727			1857			1464	
Starvation Cap Reductn	0	0	0	0	0			0			0	
Spillback Cap Reductn	0	0	0	0	0			0			0	
Storage Cap Reductn	0	0	0	0	0			0			0	
Reduced v/c Ratio	0.05	0.09	0.07	0.06	0.12			0.15			0.12	
Intersection Summary												
Cycle Length: 75												
Actuated Cycle Length: 62.1	1											
Natural Cycle: 70												
Control Type: Actuated-Unc	coordinated											
Maximum v/c Ratio: 0.24												

Scenario 1 265 Centrum Blvd 11:59 pm 01/31/2023 2028 Future Total

Synchro 11 Report Page 1 Lanes, Volumes, Timings
1: Place d'Orleans & Centrum

AM Peak Hour 2028 Future Total

Intersection Signal Delay: 10.1 Intersection LOS: B
Intersection Capacity Utilization 60.3% ICU Level of Service B
Analysis Period (min) 15

Splits and Phases: 1: Place d'Orleans & Centrum

Intersection												
Int Delay, s/veh	3.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	70	81	10	2	126	4	0	0	1	2	0	78
Future Vol, veh/h	70	81	10	2	126	4	0	0	1	2	0	78
Conflicting Peds, #/hr	8	0	9	9	0	8	0	0	3	3	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e.# -	0	-	-	0	-	-	0	-	-	0	
Grade, %	-	0	-	-	0	-	-	0			0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	5	2	2	3	2	2	2	100	2	2	2
Mymt Flow	70	81	10	2	126	4	0	0	1	2	0	78
				_	0					_		
Major/Minor	Major1		_	Major2	_		Minor1			Minor2		_
Conflicting Flow All	138	0	0	100	0	0	406	377	98	370	380	136
Stage 1	100	-	-	100	-	-	235	235	-	140	140	100
Stage 2			_				171	142		230	240	
Critical Hdwy	4.12	_		4.12			7.12	6.52	7.2	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12			4.12		- :	6.12	5.52	1.2	6.12	5.52	0.22
Critical Hdwy Stg 2							6.12	5.52		6.12	5.52	
Follow-up Hdwy	2.218			2.218				4.018			4.018	2 210
Pot Cap-1 Maneuver	1446			1493			555	555	746	587	552	913
Stage 1	1440			1433		-	768	710	740	863	781	313
Stage 1	-						831	779		773	707	
Platoon blocked, %							001	119	-	113	101	
Mov Cap-1 Maneuver	1437	-	-	1483	-	-	484	519	739	558	517	907
Mov Cap-1 Maneuver	1437	- :		1403		- :	484	519	739	558	517	907
Stage 1	-	-	-	-	-	-	723	669	-	814	776	
Stage 2							759	774		731	666	
Stage 2	-		-	-		-	759	114	-	/31	000	-
Anarook	EB			WB			NB			SB		
Approach												
HCM Control Delay, s	3.3			0.1			9.9			9.4		
HCM LOS							Α			Α		
					14 ID	III DE						
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT EBR	WBL	WBT		SBLn1				
Capacity (veh/h)		739	1437		1483	-	-	893				
HCM Lane V/C Ratio		0.001	0.049		0.001	-	-	0.09				
HCM Control Delay (s)		9.9	7.6	0 -	7.4	0	-	9.4				
HCM Lane LOS		Α	Α	Α -	Α	Α	-	Α				
HCM 95th %tile Q(veh)	0	0.2		0	-	-	0.3				

Intersection						
Intersection Delay, s/veh	8					
Intersection LOS	Α					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			ર્ન	ሻ	7
Traffic Vol, veh/h	20	42	101	18	56	81
Future Vol, veh/h	20	42	101	18	56	81
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	5	17	2	6	7	2
Mvmt Flow	20	42	101	18	56	81
Number of Lanes	1	0	0	1	1	1
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		2		1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	2		0		1	
HCM Control Delay	7.4		8.3		8	
HCM LOS	Α		Α		Α	
Lane		NBLn1	NBLn2	EBLn1	WBLn1	
Vol Left, %		100%	0%	0%	85%	
Vol Thru, %						
		0%	0%	32%	15%	
Vol Right, %		0% 0%	0% 100%	32% 68%		
Vol Right, % Sign Control				68% Stop	15%	
		0%	100%	68%	15% 0%	
Sign Control Traffic Vol by Lane LT Vol		0% Stop	100% Stop	68% Stop	15% 0% Stop	
Sign Control Traffic Vol by Lane		0% Stop 56	100% Stop 81 0	68% Stop 62 0 20	15% 0% Stop 119	
Sign Control Traffic Vol by Lane LT Vol		0% Stop 56 56	100% Stop 81	68% Stop 62 0	15% 0% Stop 119	
Sign Control Traffic Vol by Lane LT Vol Through Vol		0% Stop 56 56	100% Stop 81 0	68% Stop 62 0 20	15% 0% Stop 119 101 18	
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		0% Stop 56 56 0	100% Stop 81 0 0	68% Stop 62 0 20 42	15% 0% Stop 119 101 18	
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		0% Stop 56 56 0 0	100% Stop 81 0 0 81 81	68% Stop 62 0 20 42 62	15% 0% Stop 119 101 18 0	
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		0% Stop 56 56 0 0 56 7	100% Stop 81 0 0 81 81 7	68% Stop 62 0 20 42 62 2	15% 0% Stop 119 101 18 0 119 2	
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		0% Stop 56 56 0 0 56 7 0.086	100% Stop 81 0 0 81 81 7 0.096	68% Stop 62 0 20 42 62 2 0.07	15% 0% Stop 119 101 18 0 119 2 0.149	
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		0% Stop 56 56 0 0 56 7 0.086 5.544	100% Stop 81 0 0 81 81 7 0.096	68% Stop 62 0 20 42 62 2 0.07 4.04	15% 0% Stop 119 101 18 0 119 2 0.149 4.497	
Sign Control Traffic Vol by Lane LT Vol Trhrough Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		0% Stop 56 56 0 0 56 7 0.086 5.544 Yes	100% Stop 81 0 0 81 81 7 0.096 4.254 Yes	68% Stop 62 0 20 42 62 2 0.07 4.04 Yes	15% 0% Stop 119 101 18 0 119 2 0.149 4.497 Yes	
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		0% Stop 56 56 0 0 56 7 0.086 5.544 Yes 650	100% Stop 81 0 0 81 81 7 0.096 4.254 Yes 847	68% Stop 62 0 20 42 62 2 0.07 4.04 Yes 890	15% 0% Stop 119 101 18 0 119 2 0.149 4.497 Yes 801	
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		0% Stop 56 56 0 0 56 7 0.086 5.544 Yes 650 3.244	100% Stop 81 0 0 81 81 7 0.096 4.254 Yes 847 1.954	68% Stop 62 0 20 42 62 2 0.07 4.04 Yes 890 2.051	15% 0% Stop 119 101 18 0 119 2 0.149 4.497 Yes 801 2.507	
Sign Control Traffic Vol by Lane LT Vol Trhrough Vol RT Vol Lane Flow Rate Geometry Grp Degree of Ufil (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		0% Stop 56 56 0 0 56 7 0.086 5.544 Yes 650 3.244 0.086	100% Stop 81 0 0 81 81 7 0.096 4.254 Yes 847 1.954 0.096	68% Stop 62 0 20 42 62 2 0.07 4.04 Yes 890 2.051	15% 0% Stop 119 101 18 0 119 2 0.149 4.497 Yes 801 2.507 0.149	
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		0% Stop 56 0 0 56 7 0.086 5.544 Yes 650 3.244 0.086 8.8	100% Stop 81 0 0 81 81 7 0.096 4.254 Yes 847 1.954 0.096 7.4	68% Stop 62 0 20 42 62 2 0.07 4.04 Yes 890 2.051 0.07 7.4	15% 0% Stop 119 101 18 0 119 2 0.149 4.497 Yes 801 2.507 0.149 8.3	

Intersection						
Int Delay, s/veh	6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1→		W	
Traffic Vol, veh/h	56	19	26	1	0	67
Future Vol, veh/h	56	19	26	1	0	67
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	.# -	0	0	-	0	-
Grade, %	-	0	0	-	0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	9	2	2	2	2	20
Mymt Flow	56	19	26	1	0	67
	-			•		
	Major1		Major2		Minor2	
Conflicting Flow All	27	0	-	0	158	27
Stage 1	-	-	-	-	27	-
Stage 2	-	-	-	-	131	-
Critical Hdwy	4.19	-	-	-	6.42	6.4
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.281	-	-	-		3.48
Pot Cap-1 Maneuver	1543	-	-	-	833	999
Stage 1	-	-	-	-	996	-
Stage 2	-	-	-	-	895	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1543	-	-	-	802	999
Mov Cap-2 Maneuver	-	-	-	-	802	-
Stage 1	-	-	-	-	959	-
Stage 2	-	-	-	-	895	-
Approach	EB		WB		SB	
	5.5		0		8.9	
HCM Control Delay, s HCM LOS	5.5		U		8.9 A	
HCW LOS					А	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1543	-	-	-	999
HCM Lane V/C Ratio		0.036	-	-	-	0.067
HCM Control Delay (s)		7.4	0	-	-	8.9
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh))	0.1	-	-	-	0.2

	•	-	*	1	←	•	1	†	1	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	^	7	ች	f >		ሻ	1>	
Traffic Volume (vph)	8	176	40	2	768	130	81	63	5	75	51	15
Future Volume (vph)	8	176	40	2	768	130	81	63	5	75	51	15
Satd. Flow (prot)	1658	3316	1375	1658	3316	1441	1626	1693	0	1566	1307	0
Flt Permitted	0.273			0.641			0.714			0.713		
Satd. Flow (perm)	476	3316	1375	1119	3316	1423	1221	1693	0	1173	1307	0
Satd. Flow (RTOR)			41			130		5			15	
Lane Group Flow (vph)	8	176	40	2	768	130	81	68	0	75	66	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7	23.7	23.7	23.7	23.7	29.0	29.0		29.0	29.0	
Total Split (s)	51.0	51.0	51.0	51.0	51.0	51.0	29.0	29.0		29.0	29.0	
Total Split (%)	63.8%	63.8%	63.8%	63.8%	63.8%	63.8%	36.3%	36.3%		36.3%	36.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.4	2.4	2.4	2.4	2.4	2.4	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	6.0	6.0		6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None	None	Max	Max		Max	Max	
Act Effct Green (s)	18.1	18.1	18.1	18.1	18.1	18.1	23.1	23.1		23.1	23.1	
Actuated g/C Ratio	0.34	0.34	0.34	0.34	0.34	0.34	0.44	0.44		0.44	0.44	
v/c Ratio	0.05	0.16	0.08	0.01	0.68	0.23	0.15	0.09		0.15	0.11	
Control Delay	11.8	12.0	4.6	10.5	18.1	3.8	11.5	10.1		11.5	9.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	11.8	12.0	4.6	10.5	18.1	3.8	11.5	10.1		11.5	9.3	
LOS	В	В	Α	В	В	Α	В	В		В	Α	
Approach Delay		10.7			16.0			10.9			10.5	
Approach LOS		В			В			В			В	
Queue Length 50th (m)	0.5	5.9	0.0	0.1	31.8	0.0	4.3	3.2		4.0	2.6	
Queue Length 95th (m)	2.7	10.9	4.3	1.1	46.4	7.8	13.2	10.7		12.5	9.9	
Internal Link Dist (m)		163.5			149.6			92.4			92.1	
Turn Bay Length (m)	50.0		105.0	62.5		120.0	47.5					
Base Capacity (vph)	409	2852	1188	962	2852	1242	533	742		512	579	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.02	0.06	0.03	0.00	0.27	0.10	0.15	0.09		0.15	0.11	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 53												
Natural Cycle: 55												
Control Type: Actuated-Unco	oordinated											

Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.68

Intersection Signal Delay: 14.1
Intersection Capacity Utilization 51.3%

Analysis Period (min) 15

AM Peak Hour 2028 Future Total

Intersection LOS: B
ICU Level of Service A

Splits and Phases: 5: Prestone & St Joseph

HCM 2010 TWSC 6: Access #1 & Brisebois

Intersection						
Int Delay, s/veh	5.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations					W	
Traffic Vol, veh/h	47	0	0	18	48	41
Future Vol. veh/h	47	0	0	18	48	41
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	Stop -	
Storage Length		NOTIE		NOITE	0	NOHE -
Veh in Median Storage				0	0	
Grade. %	0			0	0	
Peak Hour Factor	100	100		100	100	100
			100			
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	47	0	0	18	48	41
Major/Minor	Major1	N	Major2		Minor1	
Conflicting Flow All	0	-	-	-	65	47
Stage 1	-		_		47	-
Stage 2					18	
Critical Hdwy					6.42	6.22
Critical Hdwy Stg 1					5.42	0.22
			-	-	5.42	
Critical Hdwy Stg 2	-	-	-	-		-
Follow-up Hdwy	-	-	-	-	3.518	
Pot Cap-1 Maneuver	-	0	0	-	941	1022
Stage 1	-	0	0	-	975	-
Stage 2	-	0	0	-	1005	-
Platoon blocked, %	-			-		
Mov Cap-1 Maneuver	-	-	-	-	941	1022
Mov Cap-2 Maneuver	-	-	-	-	941	-
Stage 1	-	-	-	-	975	-
Stage 2						
Olugo 2					1000	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		9.1	
HCM LOS					Α	
Minor Long (Mariant)		UDL - 4	EDT	MOT		
Minor Lane/Major Mvm	it l	NBLn1	EBT	WBT		
Capacity (veh/h)		977	-	-		
HCM Lane V/C Ratio		0.091	-	-		
HCM Control Delay (s)		9.1	-	-		
HCM Lane LOS		Α	-	-		
LIONA OF the OVERLE OVERLE	1	0.0				

0.3 - -

HCM 95th %tile Q(veh)

AM Peak Hour

2028 Future Total

	-	\rightarrow	•	←	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>			ની		
Traffic Volume (vph)	90	0	0	18	0	0
Future Volume (vph)	90	0	0	18	0	0
Satd. Flow (prot)	1745	0	0	1745	0	0
Flt Permitted						
Satd. Flow (perm)	1745	0	0	1745	0	0
Lane Group Flow (vph)	90	0	0	18	0	0
Sign Control	Free			Free	Free	
Intersection Summary						
Control Type: Unsignalize	ed					
Intersection Capacity Util	ization 8.3%			IC	U Level c	f Service /
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	4					
		EDD	MDi	MDT	ND	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	47	45	ર્ન	Y	04
Traffic Vol, veh/h	43	47	45	0	18	21
Future Vol, veh/h	43	47	45	0	18	21
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	43	47	45	0	18	21
Major/Minor Ma	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	90	0		67
	-		90	-	157	- 07
Stage 1		-			67	
Stage 2	-	-		-	90	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1505	-	834	997
Stage 1	-	-	-	-	956	-
Stage 2	-	-	-	-	934	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1505	-	809	997
Mov Cap-2 Maneuver	-	-	-	-	809	-
Stage 1	-	-	_	-	956	-
Stage 2		-	-	-	906	-
olago L					000	
			WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		7.5		9.2	
HCM LOS					Α	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		900	-	LDIX	1505	
HCM Lane V/C Ratio		0.043				
		9.2			7.5	0
HCM Control Delay (s)			-	-		
HCM Lane LOS		A	-	-	A	Α
HCM 95th %tile Q(veh)		0.1	-	-	0.1	-

PM Peak Hour 2028 Future Total

	•	\rightarrow	*	1	-	•	1	- ↑	1	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	↑	7	*	ħ			र्सी के			414	
Traffic Volume (vph)	94	108	220	54	94	4	102	151	80	112	143	4
Future Volume (vph)	94	108	220	54	94	4	102	151	80	112	143	4
Satd. Flow (prot)	1658	1745	1483	1658	1733	0	0	3087	0	0	3106	
Flt Permitted	0.694			0.687				0.766			0.725	
Satd. Flow (perm)	1196	1745	1448	1186	1733	0	0	2398	0	0	2292	
Satd. Flow (RTOR)			220		3			80			35	
Lane Group Flow (vph)	94	108	220	54	98	0	0	333	0	0	297	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0		36.0	36.0		36.0	36.0	
Total Split (s)	32.0	32.0	32.0	32.0	32.0		53.0	53.0		53.0	53.0	
Total Split (%)	37.6%	37.6%	37.6%	37.6%	37.6%		62.4%	62.4%		62.4%	62.4%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7		2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)	14.3	14.3	14.3	14.3	14.3			58.7			58.7	
Actuated g/C Ratio	0.17	0.17	0.17	0.17	0.17			0.69			0.69	
v/c Ratio	0.47	0.37	0.52	0.27	0.33			0.20			0.19	
Control Delay	38.1	33.3	8.5	32.0	31.5			4.6			5.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay	38.1	33.3	8.5	32.0	31.5			4.6			5.3	
LOS	D	С	Α	С	С			Α			Α	
Approach Delay		21.4			31.7			4.6			5.3	
Approach LOS		С			С			Α			Α	
Queue Length 50th (m)	14.4	16.3	0.0	8.0	14.2			5.6			5.9	
Queue Length 95th (m)	23.9	25.3	15.1	15.2	23.1			16.3			16.6	
Internal Link Dist (m)		55.7			119.8			103.0			90.8	
Turn Bay Length (m)	52.0		20.0									
Base Capacity (vph)	365	533	595	362	532			1681			1594	
Starvation Cap Reductn	0	0	0	0	0			0			0	
Spillback Cap Reductn	0	0	0	0	0			0			0	
Storage Cap Reductn	0	0	0	0	0			0			0	
Reduced v/c Ratio	0.26	0.20	0.37	0.15	0.18			0.20			0.19	
Intersection Summary												
Cycle Length: 85												
Actuated Cycle Length: 85												
Offset: 0 (0%), Referenced	to phase 2	:NBTL an	d 6:SBTL	, Start of	Green							
Natural Cycle: 70												

Scenario 1 265 Centrum Blvd 11:59 pm 01/31/2023 2028 Future Total

Control Type: Actuated-Coordinated

Synchro 11 Report Page 1

Lanes, Volumes, Timings 1: Place d'Orleans & Centrum

₩Ø6 (R)

PM Peak Hour 2028 Future Total

Maximum v/c Ratio: 0.52 Intersection Signal Delay: 14.1 Intersection LOS: B
Intersection Capacity Utilization 80.0% ICU Level of Service D
Analysis Period (min) 15

Splits and Phases: 1: Place d'Orleans & Centrum

Int Delay, s/veh 4 Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations													
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR	Intersection												
Lane Configurations 1	Int Delay, s/veh	4											
Traffic Vol, veh/h 93 179 8 1 118 11 7 0 8 15 0 102 Future Vol, veh/h 93 179 8 1 118 11 7 0 8 15 0 102 Conflicting Peds, #/hr 23 0 19 19 9 23 3 0 6 6 0 3 Sign Control Free Free Free Free Free Free Free Fre	Movement	EBL		EBR	WBL		WBR	NBL		NBR	SBL		SBR
Future Vol, veh'lh 93 179 8 1 118 11 7 0 8 15 0 102 Conflicting Peds, #hr 23 0 19 19 0 23 3 0 6 6 6 0 3 Sign Control Free Free Free Free Free Free Free Fre	Lane Configurations		4			4			र्स			ની	
Conflicting Peds, #/hr 23 0 19 19 0 23 3 0 6 6 0 0 3	Traffic Vol, veh/h	93	179		1	118	11		0		15	0	102
Sign Control Free Stop Stop Stop Stop Storage Storage Length	Future Vol, veh/h	93	179	8	1	118	11		0	8	15	0	102
RT Channelized - None -	Conflicting Peds, #/hr	23	0	19	19	0	23	3	0	6	6	0	3
Storage Length	Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
Veh in Median Storage, # - 0	RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Grade, % - 0 0 0 0 - 0 - 0 - 0 - 0	Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Peak Hour Factor 100 100 100 100 100 100 100 100 100 10	Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Heavy Vehicles, %	Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Major/Minor Major1 Major2 Minor1 Minor2	Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Major/Minor Major1 Major2 Minor1 Minor2	Heavy Vehicles, %	2	3	2	2	5	2	2	2	2	2	2	2
Major/Minor Major1 Major2 Minor1 Minor2	Mvmt Flow	93	179	8	1	118	11	7	0	8	15	0	102
Conflicting Flow All								·					
Conflicting Flow All	Major/Minor I	Major1			Major2			Minor1			Minor2		
Stage 1			0	0		0			542	208	528	541	150
Stage 2				-	-	-							-
Critical Howy 4.12 4.12 7.12 6.52 6.22 7.12 6.52 6.22 Critical Howy Stg 1 6.12 5.52 - 6.12 5.52 - 6.12 5.52 Critical Howy Stg 1 6.12 5.52 - 6.12 5.52 - 6.12 5.52 Follow-up Howy 2.218 2.18 - 3.518 4.018 3.318 3.518 4.018 3.318 7.518 4.018 3.318 3.518 4.018 3.518 4.018		-		-									
Critical Hdwy Stg 1		4 12	_	-	4 12	_				6 22			6 22
Critical Hdwy Stg 2 6.12 5.52 6.12 5.52 Follow-up Hdwy 2.218 2.218 3.518 4.018 3.318 3.518 4.018 3.318 Pot Cap-1 Maneuver 1429 1365 434 447 832 461 448 896 Stage 1 636 609 - 854 774 - Stage 2 822 770 - 643 606 - Platoon blocked, % 822 770 - 643 606 - Platoon blocked, % 355 400 816 421 401 878 Mov Cap-1 Maneuver 1403 1345 355 400 816 421 401 878 Mov Cap-2 Maneuver 580 555 - 776 759 - Stage 2 580 555 - 776 759 - Stage 2 124 755 - 587 553					7.12								0.22
Follow-up Hdwy 2.218 - 2.218 - 3.518 4.018 3.318 3.518 4.018 3.318 Pot Cap-1 Maneuver 1429 - 1365 - 434 447 832 461 448 896 Stage 1 636 609 - 854 774 - 812 812 82 770 - 643 606 - 822 770 - 822 770 - 8		_	_	-		_				_			
Pot Cap-1 Maneuver 1429 1365 434 447 832 461 448 896 Stage 1 636 609 - 854 774 - Stage 2 822 770 - 643 606 - Record of Stage 2 822 770 - 643 606 - Record of Stage 2 852 770 - 643 606 - Record of Stage 2 855 400 816 421 401 878 Record of Stage 1 355 400 816 421 401 878 Record of Stage 1 580 555 - 776 759 - Stage 2 724 755 - 587 553 - Record of Stage 2 724 755 - 587 553 - Record of Stage 2 724 755 - 587 553 - Record of Stage 2 724 755 - 587 553 - Record of Stage 2 724 755 - 587 553 - Record of Stage 2 724 755 - 587 553 - Record of Stage 2 724 755 - 587 553 - Record of Stage 2 724 755 - 587 553 - Record of Stage 2 724 755 776 759		2 218	_	_	2 218	_	_						3 318
Stage 1 - - - 636 609 - 854 774 - Stage 2 - - - - 822 770 - 643 606 - Platoon blocked, % -<				-									
Stage 2													-
Platoon blocked, %					_	_							_
Mov Cap-1 Maneuver 1403 - 1345 - 355 400 816 421 401 878 Mov Cap-2 Maneuver - - - - - 355 400 - 421 401 - Stage 1 - - - - - 580 555 - 776 759 - Stage 2 - - - - 724 755 - 587 553 - Approach EB WB NB SB - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ULZ</td> <td>110</td> <td></td> <td>UTU</td> <td>000</td> <td></td>								ULZ	110		UTU	000	
Mov Cap-2 Maneuver - - - - 355 400 - 421 401 - Stage 1 - - - 580 555 - 776 759 - SS - 776 759 - 580 555 - 776 759 - 580 553 - 772 755 - 587 553 - Approach EB WB NB NB SB -		1403			13/15			355	400	816	421	401	878
Stage 1 - - - - 580 555 - 776 759 - Stage 2 - - - - - 724 755 - 587 553 - Approach EB WB NB SB -					- 1040								310
Stage 2													
Approach EB WB NB SB													
HCM Control Delay, s 2.6 0.1 12.3 10.5 HCM LOS B B B Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 508 1403 - 1345 - 771 HCM Lane V/C Ratio 0.03 0.066 - 0.001 - 0.152 HCM Control Delay (s) 12.3 7.7 0 - 7.7 0 - 10.5 HCM Lane LOS B A A - A A - B	Otage 2	_						124	700		301	555	
HCM Control Delay, s 2.6 0.1 12.3 10.5 HCM LOS B B B Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 508 1403 - 1345 - 771 HCM Lane V/C Ratio 0.03 0.066 - 0.001 - 0.152 HCM Control Delay (s) 12.3 7.7 0 - 7.7 0 - 10.5 HCM Lane LOS B A A - A A - B	Annroach	FR			WR			NR			SB		
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1													
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 508 1403 - - 1345 - - 771 HCM Lane V/C Ratio 0.03 0.066 - - 0.001 - - 0.152 HCM Control Delay (s) 12.3 7.7 0 - 7.7 0 - 10.5 HCM Lane LOS B A A - A A - B		2.0			0.1								
Capacity (veh/h) 508 1403 - - 1345 - - 771 HCM Lane V/C Ratio 0.03 0.066 - - 0.001 - - 0.152 HCM Control Delay (s) 12.3 7.7 0 - 7.7 0 - 10.5 HCM Lane LOS B A A - A A - B	TIGWI E03							D			D		
Capacity (veh/h) 508 1403 - - 1345 - - 771 HCM Lane V/C Ratio 0.03 0.066 - - 0.001 - - 0.152 HCM Control Delay (s) 12.3 7.7 0 - 7.7 0 - 10.5 HCM Lane LOS B A A - A A - B	Minor Lano/Major Mym	. 1	VIDI n1	EDI	EDT EDD	WRI	WRT	WRD	CDI n1				
HCM Lane V/C Ratio 0.03 0.066 0.001 0.152 HCM Control Delay (s) 12.3 7.7 0 - 7.7 0 - 10.5 HCM Lane LOS B A A - A A - B		it I											
HCM Control Delay (s) 12.3 7.7 0 - 7.7 0 - 10.5 HCM Lane LOS B A A - A A - B													
HCM Lane LOS B A A - A A - B													
HUM 95th %tile Q(ven) 0.1 0.2 0 0.5					Α -		А	-					
	HUM 95th %tile Q(veh)		0.1	0.2		0	-	-	0.5				

Intersection						
Intersection Delay, s/veh	8.5					
Intersection LOS	A					
	- / (
Movement	EDT	EDD	WBL	WDT	NBL	NDD
Movement	EBT	EBR	WRL	WBT		NBR
Lane Configurations	1	440	440	4	7	400
Traffic Vol, veh/h	39	116	116	18	80	103
Future Vol, veh/h	39	116	116	18	80	103
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	6	2	2	11	2
Mvmt Flow	39	116	116	18	80	103
Number of Lanes	1	0	0	1	1	1
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		2		1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	2		0		1	
HCM Control Delay	8		8.8		8.6	
HCM LOS	Α		Α		Α	
Lane		NBLn1	NBLn2	EBLn1	WBLn1	
Vol Left, %		100%	0%	0%	87%	
Vol Thru, %		0%	0%	25%	13%	
Vol Right, %		0%	100%	75%	0%	
Sign Control		Stop	Stop	Stop	Stop	
Traffic Vol by Lane		80	103	155	134	
LT Vol		80	0	0	116	
Through Vol		0	0	39	18	
RT Vol		0	103	116	0	
Lane Flow Rate		80	103	155	134	
Geometry Grp		7	7	2	2	
Degree of Util (X)		0.13	0.128	0.176	0.176	
Departure Headway (Hd)		5.833	4.472	4.098	4.722	
Convergence, Y/N		Yes	Yes	Yes	Yes	
Сар		615	801	877	761	
Service Time		3.56	2.2	2.118	2.744	
HCM Lane V/C Ratio		0.13	0.129	0.177	0.176	
HCM Control Delay		9.4	7.9	8	8.8	
HCM Lane LOS		Α	Α	A	А	
HCM 95th-tile Q		0.4	0.4	0.6	0.6	

Intersection						
Int Delay, s/veh	5.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1→		W	
Traffic Vol, veh/h	74	49	39	0	0	79
Future Vol, veh/h	74	49	39	0	0	79
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	74	49	39	0	0	79
Major/Minor	Major1	ı	Major2		Minor2	
Conflicting Flow All	39	0	viajoiz	0	236	39
Stage 1	39	U		-	39	39
Stage 2		- :	- 1		197	
Critical Hdwy	4.12				6.42	6.22
Critical Hdwy Stg 1	4.12		- 1		5.42	0.22
Critical Hdwy Stg 2	-				5.42	_
Follow-up Hdwy	2.218		-		3.518	
Pot Cap-1 Maneuver	1571			-	752	1033
Stage 1	-				983	-
Stage 2	_				836	_
Platoon blocked, %	_		-		000	_
Mov Cap-1 Maneuver	1571	_		_	716	1033
Mov Cap-1 Maneuver	10/1				716	1000
Stage 1			- 1		936	
Stage 2		- :			836	
Stage 2					000	
Approach	EB		WB		SB	
HCM Control Delay, s	4.5		0		8.8	
HCM LOS					Α	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR	SRI n1
Capacity (veh/h)		1571	-	-	-	1033
HCM Lane V/C Ratio		0.047				0.076
HCM Control Delay (s)		7.4	0			8.8
HCM Lane LOS		A	A			A
HCM 95th %tile Q(veh)	١	0.1	-			0.2
Hom Jour June Q(Veri		0.1				0.2

	•	\rightarrow	*	•	-	*	1	1		-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	, A	^	7	J.	^	7	ሻ	ĵ»		7	î»	
Traffic Volume (vph)	34	853	116	10	471	147	57	54	9	172	99	31
Future Volume (vph)	34	853	116	10	471	147	57	54	9	172	99	31
Satd. Flow (prot)	1658	3316	1483	1658	3316	1483	1658	1585	0	1658	1570	(
FIt Permitted	0.482			0.308			0.674			0.716		
Satd. Flow (perm)	841	3316	1444	537	3316	1464	1170	1585	0	1248	1570	(
Satd. Flow (RTOR)			116			147		9			20	
Lane Group Flow (vph)	34	853	116	10	471	147	57	63	0	172	130	(
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7	23.7	23.7	23.7	23.7	29.0	29.0		29.0	29.0	
Total Split (s)	51.0	51.0	51.0	51.0	51.0	51.0	29.0	29.0		29.0	29.0	
Total Split (%)	63.8%	63.8%	63.8%	63.8%	63.8%	63.8%	36.3%	36.3%		36.3%	36.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.4	2.4	2.4	2.4	2.4	2.4	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	6.0	6.0		6.0	6.0	
Lead/Lag	0.1	0.7	0.7	0.1	0.1	0.7	0.0	0.0		0.0	0.0	
Lead-Lag Optimize?												
Recall Mode	Max	Max	Max	Max	Max	Max	None	None		None	None	
Act Effct Green (s)	48.1	48.1	48.1	48.1	48.1	48.1	15.6	15.6		15.6	15.6	
Actuated g/C Ratio	0.64	0.64	0.64	0.64	0.64	0.64	0.21	0.21		0.21	0.21	
v/c Ratio	0.04	0.40	0.04	0.04	0.04	0.04	0.21	0.19		0.21	0.21	
Control Delay	7.1	8.1	2.0	7.2	6.8	1.8	25.5	21.3		39.5	23.6	
,	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Queue Delay Total Delay	7.1	8.1	2.0	7.2	6.8	1.8	25.5	21.3		39.5	23.6	
LOS	7.1 A	Α	2.0 A	7.2 A	0.0 A	1.0 A	23.5 C	21.3 C		39.5 D	23.0 C	
	А	7.4	А	А	5.7	А	U	23.3		U	32.7	
Approach Delay		7.4 A			5. <i>1</i>			23.3 C			32.7 C	
Approach LOS	1.6	26.4	0.0	0.4	12.6	0.0	G E	6.0		01 E	12.7	
Queue Length 50th (m)	1.6		0.0	0.4		0.0	6.5			21.5		
Queue Length 95th (m)	6.0	49.5	6.2	2.7	25.2	6.9	15.2	14.9		39.8	26.2 92.1	
Internal Link Dist (m)	50.0	163.5	405.0	00.5	149.6	400.0	47.5	92.4			92.1	
Turn Bay Length (m)	50.0	0110	105.0	62.5	0110	120.0	47.5	101		000	101	
Base Capacity (vph)	536	2113	962	342	2113	986	358	491		382	494	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.06	0.40	0.12	0.03	0.22	0.15	0.16	0.13		0.45	0.26	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 75.	4											
Natural Cycle: 55												
Control Type: Actuated-Und	coordinated											
Maximum v/c Ratio: 0.67												

Synchro 11 Report Page 8

Intersection Signal Delay: 11.5
Intersection Capacity Utilization 63.3%

Analysis Period (min) 15

PM Peak Hour 2028 Future Total

Intersection LOS: B
ICU Level of Service B

Splits and Phases: 5: Prestone & St Joseph

opino ana i nacco. Oti roctono a ot occopi.		
♣ ø2	↓ Ø4	
51s	29 s	
★ Ø6	↑ø8	
51 s	29 s	

HCM 2010 TWSC 6: Access #1 & Brisebois PM Peak Hour 2028 Future Total

Intersection						
Int Delay, s/veh	4.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u>EBI</u>	EDR	WDL	WD1	INDL W	NDI
Traffic Vol, veh/h	T	0	0	T	'1' 55	40
Future Vol. veh/h	78	0	0	18	55	40
Conflicting Peds, #/hr	0	0	0	0	0	40
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	1100	None	-	None	Stop -	None
Storage Length		-		-	0	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0			0	0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	78	0	0	18	55	40
Major/Minor I	Major1		Major2		Minor1	
Conflicting Flow All	0		viajui 2 -	-	96	78
Stage 1	-	-		-	78	70
Stage 2					18	
Critical Hdwy					6.42	6.22
Critical Hdwy Stg 1		-			5.42	0.22
Critical Hdwy Stg 2					5.42	
Follow-up Hdwy						3 318
Pot Cap-1 Maneuver	-	0	0	-	903	983
Stage 1	-	0	0		945	-
Stage 2	-	0	0		1005	-
Platoon blocked, %	-			-		
Mov Cap-1 Maneuver	-	-	-	-	903	983
Mov Cap-2 Maneuver	-	-	-	-	903	-
Stage 1	-	-	-	-	945	-
Stage 2	-	-	-	-	1005	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		9.3	
HCM LOS	U		U		9.5 A	
ITCIVI LOS					A	
Minor Lane/Major Mvm	it I	NBLn1	EBT	WBT		
Capacity (veh/h)		935	-	-		
HCM Lane V/C Ratio		0.102	-	-		
HCM Control Delay (s)		9.3	-	-		
HCM Lane LOS		Α	-	-		
HOMOTH WITH OF IN		0.0				

0.3 - -

HCM 2010 TWSC

8: Access #3 & Brisebois

	-	*	•	←	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			ની		
Traffic Volume (vph)	122	0	0	18	0	0
Future Volume (vph)	122	0	0	18	0	0
Satd. Flow (prot)	1745	0	0	1745	0	0
Flt Permitted						
Satd. Flow (perm)	1745	0	0	1745	0	0
Lane Group Flow (vph)	122	0	0	18	0	0
Sign Control	Free			Free	Free	
Intersection Summary						
Control Type: Unsignalized	1					
Intersection Capacity Utiliz	ation 10.1%			IC	U Level o	f Service A
Analysis Period (min) 15						

lata as a stira						
Intersection	2.0					
Int Delay, s/veh	3.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>			ર્ન	W	
Traffic Vol, veh/h	44	78	66	0	18	23
Future Vol., veh/h	44	78	66	0	18	23
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storag	e.# 0		-	0	0	-
Grade. %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	44	78	66	0	18	23
		. •				
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	122	0	215	83
Stage 1	-	-	-	-	83	-
Stage 2	-	-	-	-	132	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-		
Pot Cap-1 Maneuver	-	-	1465	-	773	976
Stage 1	-	-	-	-	940	-
Stage 2	-	-	-	-	894	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1465	-	738	976
Mov Cap-2 Maneuver	-	-	-	-	738	-
Stage 1	-	-	-	-	940	-
Stage 2		-		-	854	-
Annuagh	EB		WD		ND	
Approach			WB		NB	
HCM Control Delay, s	0		7.6		9.4	
HCM LOS					Α	
Minor Lane/Major Mvr	nt l	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		855	-	-	1465	-
HCM Lane V/C Ratio		0.048			0.045	
HCM Control Delay (s)	9.4	-	-	7.6	0
HCM Lane LOS	,	Α.			A	A
Luno Loo					- ^	/1

0.2 - - 0.1 -

Appendix J

Synchro Intersection Worksheets – 2033 Future Total Conditions

AM Peak Hour 2033 Future Total

	•	\rightarrow	7	•	-	•	1	†	1	-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	*	f _a			414			414	
Traffic Volume (vph)	25	66	40	34	82	4	67	175	62	112	42	19
Future Volume (vph)	25	66	40	34	82	4	67	175	62	112	42	19
Satd, Flow (prot)	1566	1745	1401	1658	1715	0	0	3142	0	0	3029	0
Flt Permitted	0.701			0.714				0.858			0.683	
Satd. Flow (perm)	1148	1745	1375	1239	1715	0	0	2725	0	0	2135	0
Satd. Flow (RTOR)			44		4			60			19	
Lane Group Flow (vph)	25	66	40	34	86	0	0	304	0	0	173	0
Turn Type	Perm	NA	Perm	Perm	NA	_	Perm	NA	_	Perm	NA	_
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8			2			6	-	
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase				-	-		=	=		-	-	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0		36.0	36.0		36.0	36.0	
Total Split (s)	32.0	32.0	32.0	32.0	32.0		43.0	43.0		43.0	43.0	
Total Split (%)	42.7%	42.7%	42.7%	42.7%	42.7%		57.3%	57.3%		57.3%	57.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7		2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		2.1	0.0		2.1	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0			6.0			6.0	
Lead/Lag	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		Max	Max		Max	Max	
Act Effct Green (s)	12.6	12.6	12.6	12.6	12.6		IVICIA	42.0		IVIGA	42.0	
Actuated g/C Ratio	0.20	0.20	0.20	0.20	0.20			0.68			0.68	
v/c Ratio	0.20	0.19	0.20	0.20	0.25			0.16			0.00	
Control Delay	20.2	21.0	7.0	20.6	21.0			5.3			6.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay	20.2	21.0	7.0	20.6	21.0			5.3			6.0	
LOS	20.2 C	Z1.0	7.0 A	20.0 C	Z1.0			J.5			Α	
Approach Delay	U	16.6		U	20.9			5.3			6.0	
Approach LOS		10.0 B			20.9 C			3.3 A			0.0 A	
Queue Length 50th (m)	2.3	6.2	0.0	3.2	7.8			4.7			2.9	
Queue Length 95th (m)	7.2	14.1	5.5	8.9	17.0			15.8			10.7	
Internal Link Dist (m)	1.2	55.7	5.5	0.9	119.8			103.0			90.8	
Turn Bay Length (m)	52.0	55.7	20.0		119.0			103.0			90.0	
Base Capacity (vph)	485	737	606	524	727			1866			1452	
Starvation Cap Reductn	400	0	000	0	0			1000			1452	
Spillback Cap Reductn	0	0	0	0	0			0			0	
Storage Cap Reductin	0	0	0	0	0			0			0	
Reduced v/c Ratio	0.05	0.09	0.07	0.06	0.12			0.16			0.12	
Reduced V/C Ralio	0.05	0.09	0.07	0.00	0.12			0.10			0.12	
Intersection Summary						_		_	_			
Cycle Length: 75												
Actuated Cycle Length: 62												
Natural Cycle: 70												
Control Type: Actuated-Unco	oordinated											
Maximum v/c Ratio: 0.25												

Scenario 1 265 Centrum Blvd 11:59 pm 01/31/2023 2033 Future Total

Synchro 11 Report Page 1

Lanes, Volumes, Timings 1: Place d'Orleans & Centrum

AM Peak Hour 2033 Future Total

Intersection Signal Delay: 10.1 Intersection LOS: B
Intersection Capacity Utilization 60.8% ICU Level of Service B
Analysis Period (min) 15

Splits and Phases: 1: Place d'Orleans & Centrum

Intersection												
Int Delay, s/veh	3.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	70	82	10	2	127	4	0	0	1	2	0	78
Future Vol. veh/h	70	82	10	2	127	4	0	0	1	2	0	78
Conflicting Peds, #/hr	8	0	9	9	0	8	0	0	3	3	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	.# -	0	-	-	0		-	0	-		0	-
Grade, %	-	0	-	-	0			0			0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	5	2	2	3	2	2	2	100	2	2	2
Mymt Flow	70	82	10	2	127	4	0	0	1	2	0	78
				_						_		
Major/Minor I	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	139	0	0	101	0	0	408	379	99	372	382	137
Stage 1	-	-	-	-	-	-	236	236	-	141	141	-
Stage 2			-				172	143		231	241	
Critical Hdwy	4.12		_	4.12			7.12	6.52	7.2	7.12	6.52	6.22
Critical Hdwy Stg 1	7.12		-	4.12			6.12	5.52	- 1.2	6.12	5.52	0.22
Critical Hdwy Stg 2			_	-			6.12	5.52		6.12	5.52	-
Follow-up Hdwy	2.218		-	2.218			3.518	4.018	4.2	3.518	4.018	3.318
Pot Cap-1 Maneuver	1445	-	-	1491	-		554	553	745	585	551	911
Stage 1			-	-			767	710	-	862	780	-
Stage 2	-	_	-	_	_	-	830	779	-	772	706	-
Platoon blocked, %			-			-						
Mov Cap-1 Maneuver	1436	-	-	1481	-	-	483	518	738	556	516	905
Mov Cap-2 Maneuver	-	-	-	-	-	-	483	518	-	556	516	-
Stage 1	-	-	-	-	-	-	723	669	-	813	775	-
Stage 2	-	-	-	-	-	-	758	774	-	730	665	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	3.3			0.1			9.9			9.4		
HCM LOS	0.0			0.1			9.9 A			9.4 A		
TIOW LOO												
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT EBR	WBL	WBT	WRP	SBLn1				
Capacity (veh/h)	it.	738	1436		1481	WDI -	WDK -	891				
HCM Lane V/C Ratio		0.001	0.049		0.001	- 1		0.09				
HCM Control Delay (s)		9.9	7.6	0 -	7.4	0	-	9.4				
HCM Lane LOS		9.9 A	7.0 A	A -	7.4 A	A		9.4 A				
HCM 95th %tile Q(veh)	١	A 0	0.2	А -	A 0	А	-	0.3				
HOW SOUL WHIE Q(VEI))	U	0.2		U	-		0.3				

Intersection						
Intersection Delay, s/veh	8					
Intersection LOS	A					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Movement Lane Configurations	163 16	EBR	WDL	₩D1	NDL	NDR.
Traffic Vol., veh/h	21	42	101	식 18	56	81
Future Vol. veh/h	21	42	101	18	56	81
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	5	1.00	1.00	6	7.00	2
Mymt Flow	21	42	101	18	56	81
Number of Lanes	1	0	0	10	1	1
		U		'		'
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		2		1	
Conflicting Approach Right	NB				WB	
Conflicting Lanes Right	2		0		1	
HCM Control Delay	7.4		8.3		8	
HCM LOS	Α		Α		Α	
Lane		NBLn1	NBLn2	EBLn1	WBLn1	
Vol Left, %		100%	0%	0%	85%	
Vol Thru, %		0%	0%	33%	15%	
Vol Right, %		0%	100%	67%	0%	
Sign Control		Stop	Stop	Stop	Stop	
Traffic Vol by Lane		56	81	63	119	
LT Vol		56	0	0	101	
Through Vol		0	0	21	18	
RT Vol		0	81	42	0	
Lane Flow Rate		56	81	63	119	
Geometry Grp		7	7	2	2	
Degree of Util (X)		0.086	0.096	0.071	0.149	
Departure Headway (Hd)		5.546	4.256	4.047	4.498	
Convergence, Y/N		Yes	Yes	Yes	Yes	
Сар		650	847	888	801	
Service Time		3.246	1.956	2.058	2.507	
HCM Lane V/C Ratio		0.086	0.096	0.071	0.149	
HCM Control Delay		8.8	7.4	7.4	8.3	
HCM Lane LOS		Α	Α	Α	Α	
HCM 95th-tile Q		0.3	0.3	0.2	0.5	
		0.5	0.5	0.2	0.5	

Intersection						
Int Delay, s/veh	5.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	€Î	WD1 1 →	MDIX	SDL.	ODI
Traffic Vol, veh/h	56	4	27	1	T	67
Future Vol. veh/h	56	19	27	1	0	67
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	riee -	None	riee -	None	Stop -	None
Storage Length	- 1	None -	-	None	0	None -
		0	0		0	- 1
Veh in Median Storage				-		
Grade, %	400	0	0	400	0	400
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	9	2	2	2	2	20
Mvmt Flow	56	19	27	1	0	67
Major/Minor	Major1	ı	Major2		Minor2	
Conflicting Flow All	28	0	viajui 2 -	0	159	28
Stage 1	28	-	-	-	28	28
					131	- 1
Stage 2		_	-	-		
Critical Hdwy	4.19	-	-	-	6.42	6.4
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.281	-	-	-	0.0.0	3.48
Pot Cap-1 Maneuver	1541	-	-	-	832	998
Stage 1	-	-	-	-	995	-
Stage 2	-	-	-	-	895	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1541	-	-	-	801	998
Mov Cap-2 Maneuver	-	-	-	-	801	-
Stage 1	-	-	-	-	958	-
Stage 2		-	-	-	895	-
			VA/ID		0.5	
Approach	EB		WB		SB	
HCM Control Delay, s	5.5		0		8.9	
HCM LOS					Α	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SRI n1
Capacity (veh/h)		1541	LDI	-	WDIX -	998
HCM Lane V/C Ratio		0.036				0.067
		7.4	0	-	-	8.9
HCM Control Delay (s)						
HCM Lane LOS		A	Α	-	-	A
HCM 95th %tile Q(veh)	0.1	-	-	-	0.2

	•	-	•	•	←	*	4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ች	^	7	ች	₽		ች	4	
Traffic Volume (vph)	8	178	40	2	845	130	81	63	5	75	51	15
Future Volume (vph)	8	178	40	2	845	130	81	63	5	75	51	15
Satd. Flow (prot)	1658	3316	1375	1658	3316	1441	1626	1693	0	1566	1307	0
Flt Permitted	0.237			0.640			0.714			0.713		
Satd. Flow (perm)	414	3316	1375	1117	3316	1423	1221	1693	0	1173	1307	0
Satd. Flow (RTOR)			41			130		5			15	
Lane Group Flow (vph)	8	178	40	2	845	130	81	68	0	75	66	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7	23.7	23.7	23.7	23.7	29.0	29.0		29.0	29.0	
Total Split (s)	51.0	51.0	51.0	51.0	51.0	51.0	29.0	29.0		29.0	29.0	
Total Split (%)	63.8%	63.8%	63.8%	63.8%	63.8%	63.8%	36.3%	36.3%		36.3%	36.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.4	2.4	2.4	2.4	2.4	2.4	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	6.0	6.0		6.0	6.0	
Lead/Lag	***	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•	• • • • • • • • • • • • • • • • • • • •						
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None	None	Max	Max		Max	Max	
Act Effct Green (s)	19.8	19.8	19.8	19.8	19.8	19.8	23.1	23.1		23.1	23.1	
Actuated g/C Ratio	0.36	0.36	0.36	0.36	0.36	0.36	0.42	0.42		0.42	0.42	
v/c Ratio	0.05	0.15	0.08	0.00	0.70	0.22	0.16	0.09		0.15	0.12	
Control Delay	11.6	11.6	4.3	10.5	18.3	3.6	12.4	11.0		12.4	10.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	11.6	11.6	4.3	10.5	18.3	3.6	12.4	11.0		12.4	10.0	
LOS	В	В	A	В	В	A	В	В		В	В	
Approach Delay	_	10.3		_	16.3		_	11.8			11.3	
Approach LOS		В			В			В			В	
Queue Length 50th (m)	0.5	6.0	0.0	0.1	36.2	0.0	4.8	3.6		4.4	2.9	
Queue Length 95th (m)	2.7	10.9	4.3	1.1	51.7	7.7	14.0	11.3		13.3	10.4	
Internal Link Dist (m)		163.5			149.6			92.4		10.0	92.1	
Turn Bay Length (m)	50.0	100.0	105.0	62.5	1 10.0	120.0	47.5	02.1			02.1	
Base Capacity (vph)	345	2763	1152	930	2763	1207	516	719		496	561	
Starvation Cap Reductn	0	0	0	0	0	0	0.0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.02	0.06	0.03	0.00	0.31	0.11	0.16	0.09		0.15	0.12	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 54.	7											
Natural Cycle: 55												
Control Type: Actuated-Und	coordinated											
Maximum v/c Ratio: 0.70												

Maximum v/c Ratio: 0.70

Lanes, Volumes, Timings 5: Prestone & St Joseph

AM Peak Hour 2033 Future Total

Intersection Signal Delay: 14.5 Intersection LOS: B
Intersection Capacity Utilization 53.6% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 5: Prestone & St Joseph

opino ana i nacco. Oti roctono a ot occopi.		
♣ ø2	↓ Ø4	
51s	29 s	
★ Ø6	↑ø8	
51 s	29 s	

HCM 2010 TWSC AM Peak Hour 6: Access #1 & Brisebois 2033 Future Total

Interception						
Intersection	F 2					
Int Delay, s/veh	5.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	*			1	W	
Traffic Vol, veh/h	47	0	0	18	48	41
Future Vol, veh/h	47	0	0	18	48	41
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	_	None	_	None	-	None
Storage Length	-	-		-	0	-
Veh in Median Storage	e.# 0	_	-	0	0	_
Grade, %	0			0	0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	47	0	0	18	48	41
MINITE FIOW	41	U	U	10	40	41
Major/Minor	Major1	- 1	Major2	- 1	Minor1	
Conflicting Flow All	0	-	-	-	65	47
Stage 1	-	-	-	-	47	-
Stage 2	-	-	-	-	18	-
Critical Hdwy	-	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	_
Follow-up Hdwy	-	-	-	-	3.518	3 318
Pot Cap-1 Maneuver	_	0	0	_	941	1022
Stage 1		0	0		975	-
Stage 2		0	0	-	1005	_
Platoon blocked, %		U	U		1005	_
Mov Cap-1 Maneuver		-	_		941	1022
					941	
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-	-	-	975	-
Stage 2	-	-	-	-	1005	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		9.1	
HCM LOS	·				A	
					,,	
Minor Lane/Major Mvn	nt	NBLn1	EBT	WBT		
Capacity (veh/h)		977	-	-		
HCM Lane V/C Ratio		0.091	-	-		
HCM Control Delay (s))	9.1	-	-		
LICM Lang LOC		Λ.				

Α

- -

HCM Lane LOS

HCM 2010 TWSC

8: Access #3 & Brisebois

	-	\rightarrow	•	•	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>			ની		
Traffic Volume (vph)	90	0	0	18	0	0
Future Volume (vph)	90	0	0	18	0	0
Satd. Flow (prot)	1745	0	0	1745	0	0
Flt Permitted						
Satd. Flow (perm)	1745	0	0	1745	0	0
Lane Group Flow (vph)	90	0	0	18	0	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalize	d					
Intersection Capacity Utiliz	zation 8.3%			IC	U Level o	f Service A
Analysis Period (min) 15						

latana atian						
Intersection Int Delay, s/veh	4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			ની	Y	
Traffic Vol, veh/h	43	47	45	0	18	21
Future Vol, veh/h	43	47	45	0	18	21
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-		0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	43	47	45	0	18	21
					W 4	
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	90	0	157	67
Stage 1	-	-	-	-	67	-
Stage 2	-	-	-	-	90	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1505	-	834	997
Stage 1	-	-	-	-	956	-
Stage 2	-	-	-	-	934	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1505	-	809	997
Mov Cap-2 Maneuver	-	-	-	-	809	-
Stage 1	-	-	-	-	956	-
Stage 2		-	-	-	906	-
			MD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		7.5		9.2	
HCM LOS					Α	
Minor Lane/Major Mvn	nt 1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		900			1505	-
HCM Lane V/C Ratio		0.043			0.03	
HCM Control Delay (s	١	9.2			7.5	0
HCM Lane LOS		9.2 A			7.5 A	A
I IOW LANE LUS		А	-	-	А	А

0.1 - - 0.1 -

PM Peak Hour 2033 Future Total

	•	-	*	•	-	•	1	Ť		-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ĭ	†	7	7	ĵ,			413			413	
Traffic Volume (vph)	94	108	220	54	94	4	102	151	80	112	157	42
Future Volume (vph)	94	108	220	54	94	4	102	151	80	112	157	42
Satd. Flow (prot)	1658	1745	1483	1658	1733	0	0	3087	0	0	3112	0
Flt Permitted	0.694			0.687				0.761			0.730	
Satd. Flow (perm)	1196	1745	1448	1186	1733	0	0	2382	0	0	2309	0
Satd. Flow (RTOR)			220		3			80			33	
Lane Group Flow (vph)	94	108	220	54	98	0	0	333	0	_ 0	311	0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4		_	8		_	2		_	6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase	40.0	40.0	40.0	40.0	40.0		40.0	40.0		40.0	40.0	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0		36.0	36.0		36.0	36.0	
Total Split (s)	32.0	32.0	32.0	32.0	32.0		53.0	53.0		53.0	53.0	
Total Split (%)	37.6%	37.6%	37.6%	37.6%	37.6%		62.4%	62.4%		62.4%	62.4%	
Yellow Time (s)	3.3 2.7	3.3	3.3	3.3	3.3 2.7		3.3	3.3 2.7		3.3 2.7	3.3	
All-Red Time (s)	0.0	2.7	2.7 0.0	2.7	0.0		2.7	0.0		2.1	2.7 0.0	
Lost Time Adjust (s)	6.0	0.0 6.0	6.0	0.0 6.0	6.0			6.0			6.0	
Total Lost Time (s)	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Lead/Lag												
Lead-Lag Optimize? Recall Mode	None	None	None	None	None		C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)	14.3	14.3	14.3	14.3	14.3		U-IVIAX	58.7		U-IVIAX	58.7	
Actuated g/C Ratio	0.17	0.17	0.17	0.17	0.17			0.69			0.69	
v/c Ratio	0.17	0.17	0.52	0.17	0.33			0.20			0.19	
Control Delay	38.1	33.3	8.5	32.0	31.5			4.6			5.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay	38.1	33.3	8.5	32.0	31.5			4.6			5.4	
LOS	D	С	A	С	С			Α			A	
Approach Delay		21.4			31.7			4.6			5.4	
Approach LOS		С			С			A			A	
Queue Length 50th (m)	14.4	16.3	0.0	8.0	14.2			5.6			6.3	
Queue Length 95th (m)	23.9	25.3	15.1	15.2	23.1			16.3			17.5	
Internal Link Dist (m)		55.7			119.8			103.0			90.8	
Turn Bay Length (m)	52.0		20.0									
Base Capacity (vph)	365	533	595	362	532			1670			1605	
Starvation Cap Reductn	0	0	0	0	0			0			0	
Spillback Cap Reductn	0	0	0	0	0			0			0	
Storage Cap Reductn	0	0	0	0	0			0			0	
Reduced v/c Ratio	0.26	0.20	0.37	0.15	0.18			0.20			0.19	
Intersection Summary												
Cycle Length: 85												
Actuated Cycle Length: 85												
Offset: 0 (0%), Referenced t	o phase 2:	:NBTL an	d 6:SBTL	, Start of	Green							
Natural Cycle: 70												

Scenario 1 265 Centrum Blvd 11:59 pm 01/31/2023 2033 Future Total

Control Type: Actuated-Coordinated

Synchro 11 Report Page 1 Lanes, Volumes, Timings
1: Place d'Orleans & Centrum

₩Ø6 (R)

PM Peak Hour 2033 Future Total

Maximum v/c Ratio: 0.52
Intersection Signal Delay: 14.0
Intersection LOS: B
Intersection Capacity Utilization 80.0%
Analysis Period (min) 15

Splits and Phases: 1: Place d'Orleans & Centrum

Intersection												
Int Delay, s/veh	4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			લી	
Traffic Vol. veh/h	93	181	8	1	120	11	7	0	8	15	0	102
Future Vol. veh/h	93	181	8	1	120	11	7	0	8	15	0	102
Conflicting Peds, #/hr	23	0	19	19	0	23	3	0	6	6	0	3
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length			-	-		-			-			-
Veh in Median Storage	.# -	0	-	-	0	-	-	0	-	-	0	-
Grade. %	-	0	-		0			0	-		0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	3	2	2	5	2	2	2	2	2	2	2
Mymt Flow	93	181	8	1	120	11	7	0	8	15	0	102
					0							
Major/Minor N	Major1		_	Major2			Minor1			Minor2		_
Conflicting Flow All	154	0	0	208	0	0	572	546	210	532	545	152
Stage 1	104	-	-	200	-	-	390	390	210	151	151	102
Stage 2							182	156		381	394	
Critical Hdwy	4.12		_	4.12			7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12		-	7.12			6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2				_			6.12	5.52		6.12	5.52	
Follow-up Hdwy	2.218		-	2.218			3.518	4.018	3.318		4.018	3 318
Pot Cap-1 Maneuver	1426	-	-	1363	-	-	431	445	830	458	446	894
Stage 1	-		-	-			634	608		851	772	-
Stage 2	_	_	_	-	_	_	820	769	-	641	605	-
Platoon blocked. %							0_0			0.1	-000	
Mov Cap-1 Maneuver	1401	-	-	1343	-	-	353	398	814	418	399	876
Mov Cap-2 Maneuver	-			-			353	398	-	418	399	-
Stage 1	-	-	-		-	-	578	554	-	774	757	-
Stage 2	-		-		-	-	722	754	-	585	552	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.6			0.1			12.3			10.5		
HCM LOS	2.0			0.1			12.3 B			В		
Minor Lane/Major Mvm	t I	NBLn1	EBL	EBT EBR	WBL	WBT	WRP	SBLn1				
Capacity (veh/h)		506	1401		1343	-	WDIX:	768				
HCM Lane V/C Ratio			0.066		0.001			0.152				
HCM Control Delay (s)		12.3	7.8	0 -	7.7	0		10.5				
HCM Lane LOS		12.3 B	7.0 A	A -	Α.	A	- 1	10.5 B				
HCM 95th %tile Q(veh)		0.1	0.2	Λ -	0	A		0.5				
TION SOUT /oute Q(VeII)		0.1	0.2		U	-		0.5				

Intersection						
Intersection Delay, s/veh	8.5					
Intersection LOS	Α.					
	7.					
Manager	EDT	EDC	MD	MOT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f)			ની	*5	7
Traffic Vol, veh/h	40	116	116	18	80	103
Future Vol, veh/h	40	116	116	18	80	103
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	6	2	2	11	2
Mvmt Flow	40	116	116	18	80	103
Number of Lanes	1	0	0	1	1	1
Approach	EB		WB		NB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left			NB		EB	
Conflicting Lanes Left	0		2		1	
Conflicting Approach Right	NB		_		WB	
Conflicting Lanes Right	2		0		1	
HCM Control Delay	8		8.8		8.6	
HCM LOS	A		Α		A	
	,,				- 7,	
Lane		NBLn1	NBLn2	EBLn1	WBLn1	
Vol Left. %		100%	0%	0%	87%	
Vol Thru. %		0%	0%	26%	13%	
Vol Right, %		0%	100%	74%	0%	
Sign Control		Stop	Stop	Stop	Stop	
Traffic Vol by Lane		80	103	156	134	
LT Vol		80	0	0	116	
Through Vol		00	0	40	18	
RT Vol		0	103	116	0	
Lane Flow Rate		80	103	156	134	
Geometry Grp		7	7	2	134	
Degree of Util (X)		0.13	0.128	0.178	0.176	
Departure Headway (Hd)		5.834	4.474	4.101	4.723	
Convergence, Y/N		5.834 Yes	4.474 Yes	4.101 Yes	4.723 Yes	
Cap		615	801	875	761	
Service Time			2.204	2.121	2.746	
HCM Lane V/C Ratio		3.564		0.178	0.176	
DUVI Lane V/C Ratio		0.42				
		0.13	0.129			
HCM Control Delay		9.4	7.9	8	8.8	

Intersection						
Int Delay, s/veh	5.2					
		EDT	MIDT	MDE	007	000
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	ß		¥	
Traffic Vol, veh/h	74	49	40	0	0	79
Future Vol, veh/h	74	49	40	0	0	79
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	74	49	40	0	0	79
	Major1		Major2		Minor2	
Conflicting Flow All	40	0	-	0	237	40
Stage 1	-	-	-	-	40	-
Stage 2	-	-	-	-	197	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1570	-	-	-	751	1031
Stage 1					982	-
Stage 2					836	
Platoon blocked. %		- 1	- 1		030	-
Mov Cap-1 Maneuver	1570				715	1031
Mov Cap-2 Maneuver	-	-	-	-	715	-
Stage 1	-	-	-	-	935	-
Stage 2	-	-	-	-	836	-
Approach	EB		WB		SB	
HCM Control Delay, s	4.5		0		8.8	
HCM LOS	4.5		U		0.0 A	
TIOW LOS						
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1570	-	-		1031
HCM Lane V/C Ratio		0.047		-		0.077
HCM Control Delay (s)		7.4	0	_		8.8
HCM Lane LOS		A	A	-		A
HCM 95th %tile Q(veh)		0.1	-			0.2
How sour while Q(ven)		0.1	-	-	-	0.2

	×	-	•	•	←	*	4	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ች	^	7	ሻ	î,		ች	1>	
Traffic Volume (vph)	34	939	116	10	476	147	57	54	9	172	99	31
Future Volume (vph)	34	939	116	10	476	147	57	54	9	172	99	31
Satd. Flow (prot)	1658	3316	1483	1658	3316	1483	1658	1585	0	1658	1570	0
Flt Permitted	0.480			0.275			0.674			0.716		
Satd. Flow (perm)	837	3316	1444	479	3316	1464	1170	1585	0	1248	1570	0
Satd. Flow (RTOR)			116			147		9			20	
Lane Group Flow (vph)	34	939	116	10	476	147	57	63	0	172	130	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	-	Perm	NA	-
Protected Phases		2			6			8			4	
Permitted Phases	2	_	2	6		6	8	•		4		
Detector Phase	2	2	2	6	6	6	8	8		4	4	
Switch Phase	_	-	_	Ū	Ū	·	·	ŭ				
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	23.7	23.7	23.7	23.7	23.7	23.7	29.0	29.0		29.0	29.0	
Total Split (s)	51.0	51.0	51.0	51.0	51.0	51.0	29.0	29.0		29.0	29.0	
Total Split (%)	63.8%	63.8%	63.8%	63.8%	63.8%	63.8%	36.3%	36.3%		36.3%	36.3%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.4	2.4	2.4	2.4	2.4	2.4	2.7	2.7		2.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	6.0	6.0		6.0	6.0	
Lead/Lag	5.1	5.1	5.1	5.1	5.1	5.7	0.0	0.0		0.0	0.0	
Lead-Lag Optimize?												
Recall Mode	Max	Max	Max	Max	Max	Max	None	None		None	None	
Act Effct Green (s)	48.1	48.1	48.1	48.1	48.1	48.1	15.6	15.6		15.6	15.6	
Actuated g/C Ratio	0.64	0.64	0.64	0.64	0.64	0.64	0.21	0.21		0.21	0.21	
v/c Ratio	0.04	0.44	0.04	0.04	0.04	0.04	0.21	0.19		0.21	0.21	
Control Delay	7.1	8.5	2.0	7.3	6.8	1.8	25.5	21.3		39.5	23.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	7.1	8.5	2.0	7.3	6.8	1.8	25.5	21.3		39.5	23.6	
LOS	Α.Ι	0.5 A	2.0 A	7.5 A	Α.	Α.	23.3 C	Z1.3		39.3 D	23.0 C	
Approach Delay	A	7.8	А	А	5.7	A	C	23.3		U	32.7	
Approach LOS		7.0 A			3.7 A			23.3 C			32.7 C	
Queue Length 50th (m)	1.6	30.2	0.0	0.4	12.7	0.0	6.5	6.0		21.5	12.7	
Queue Length 95th (m)	6.0	56.1	6.2	2.7	25.5	6.9	15.2	14.9		39.8	26.2	
Internal Link Dist (m)	0.0	163.5	0.2	2.1	149.6	0.9	13.2	92.4		39.0	92.1	
Turn Bay Length (m)	50.0	100.0	105.0	62.5	143.0	120.0	47.5	32.4			32.1	
Base Capacity (vph)	533	2113	962	305	2113	986	358	491		382	494	
Starvation Cap Reductn	0	2113	0	0	0	900	0	491		0	494	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductin	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.06	0.44	0.12	0.03	0.23	0.15	0.16	0.13		0.45	0.26	
Reduced V/C Rallo	0.06	0.44	0.12	0.03	0.23	0.15	0.16	0.13		0.45	0.20	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 75.4												
Natural Cycle: 55												
Control Type: Actuated-Unco	ordinated											

Maximum v/c Ratio: 0.67

Lanes, Volumes, Timings 5: Prestone & St Joseph

Intersection Signal Delay: 11.5
Intersection Capacity Utilization 63.3%

Analysis Period (min) 15

PM Peak Hour 2033 Future Total

Intersection LOS: B ICU Level of Service B

Splits and Phases: 5: Prestone & St Joseph

HCM 2010 TWSC 6: Access #1 & Brisebois

lata as a sti a a						
Intersection	4.0					
Int Delay, s/veh	4.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑			1	N/	
Traffic Vol, veh/h	78	0	0	18	55	40
Future Vol, veh/h	78	0	0	18	55	40
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	78	0	0	18	55	40
Major/Minor N	/lajor1	1	Major2		Minor1	
Conflicting Flow All	0	-	_	-	96	78
Stage 1	-	-	-	-	78	-
Stage 2		-	-	-	18	
Critical Hdwy	-	-	-	-	6.42	6.22
Critical Hdwy Stg 1		-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	-	0	0	-	903	983
Stage 1	-	0	0	-	945	-
Stage 2	-	0	0	-	1005	-
Platoon blocked, %	-			-		
Mov Cap-1 Maneuver	-	-	-	-	903	983
Mov Cap-2 Maneuver		-	-	-	903	
Stage 1	-	-	-	-	945	-
Stage 2		-	-	-	1005	
A	ED		WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		9.3	
HCM LOS					Α	
Minor Lane/Major Mvmt	t I	NBLn1	EBT	WBT		
Capacity (veh/h)		935	-	-		
HCM Lane V/C Ratio		0.102	-	-		
HCM Control Delay (s)		9.3	-	-		
HCM Lane LOS		Α	-	-		
HOMOSH WITH OV IN		0.0				

HCM 95th %tile Q(veh)

0.3 - -

PM Peak Hour

2033 Future Total

HCM 2010 TWSC

8: Access #3 & Brisebois

	-	\rightarrow	•	—	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4î			ર્ન		
Traffic Volume (vph)	122	0	0	18	0	0
Future Volume (vph)	122	0	0	18	0	0
Satd. Flow (prot)	1745	0	0	1745	0	0
Flt Permitted						
Satd. Flow (perm)	1745	0	0	1745	0	0
Lane Group Flow (vph)	122	0	0	18	0	0
Sign Control	Free			Free	Free	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utili:			IC	U Level c	of Service A	
Analysis Period (min) 15						

Internation						
Intersection	2.0					
Int Delay, s/veh	3.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			ની	Y	
Traffic Vol, veh/h	44	78	66	0	18	23
Future Vol, veh/h	44	78	66	0	18	23
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	44	78	66	0	18	23
Major/Minor I	Major1		Major2		Minor1	
Conflicting Flow All	0	0	122	0	215	83
Stage 1	-	-	122	-	83	- 03
Stage 2	- 1	- 1			132	
	-		4.12		6.42	6.22
Critical Hdwy		-		-	5.42	0.22
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218		3.518	3.318
Pot Cap-1 Maneuver	-	-	1465	-	773	976
Stage 1	-	-	-	-	940	-
Stage 2	-	-	-	-	894	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1465	-	738	976
Mov Cap-2 Maneuver	-	-	-	-	738	-
Stage 1	-	-	-	-	940	-
Stage 2	-	-	-	-	854	-
Approach	EB		WB		NB	
	0		7.6		9.4	
HCM Control Delay, s HCM LOS	U		7.0		9.4 A	
HCW LOS					А	
Minor Lane/Major Mvm	t l	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		855	-	-	1465	-
HCM Lane V/C Ratio		0.048	-	-	0.045	-
HCM Control Delay (s)		9.4	-	-	7.6	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.2	-	-	0.1	-

Appendix K

MMLOS Analysis

Multi-Modal Level of Service - Intersections Form

Consultant	CGH Transportation Inc.	Project	265 Centrum Boulevard
Scenario	Existing/Future	Date	3/24/2023
Comments			

	INTERSECTIONS	0	Davidavand at	Diagonal Contractor	Duite	04	laasah Basilassa		.t
	Crossing Side		um Boulevard at				loseph Boulevar		
	Lanes	NORTH 8	7 7	EAST 7	WEST 8	NORTH 10+	SOUTH 10+	EAST 10+	WEST 10+
	Median				No Median - 2.4 m		No Median - 2.4 m		
	Conflicting Left Turns	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed
	Ped Signal Leading Interval?	No	No	No	No	No	No	No	No
ian	Right Turn Channel	Conv'tl without Receiving Lane	Conv'tl without Receiving Lane	No Channel	No Channel	Conventional with Receiving Lane	Conv'tl without Receiving Lane	Conv'tl without Receiving Lane	Conv'tl without Receiving Lane
str	Corner Radius	5-10m	5-10m	10-15m	15-25m	15-25m	15-25m	15-25m	15-25m
Pedestrian	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings
-	PETSI Score	-7	9	4	-14	-46	-43	-43	-43
	Ped. Exposure to Traffic LoS	F	F	F	F	#N/A	#N/A	#N/A	#N/A
	Cycle Length	75	75	85	85	80	80	80	80
	Effective Walk Time	29	29	11	11	7	7	34	34
	Average Pedestrian Delay	14	14	32	32	33	33	13	13
	Pedestrian Delay LoS	В	В	D	D	D	D	В	В
	Level of Service	F	F	F	F	#N/A	#N/A	#N/A	#N/A
	Level of Service	F				#N/A			
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Bicycle Lane Arrangement on Approach	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic
	Right Turn Lane Configuration				≤ 50 m	≤ 50 m	≤ 50 m	> 50 m	> 50 m
	Right Turning Speed				≤ 25 km/h	>25 km/h	>25 km/h	>25 km/h	>25 km/h
0	Cyclist relative to RT motorists	#N/A	#N/A	#N/A	D	E	E	F	F
ទី	Separated or Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic
Bicycle	Left Turn Approach	One lane crossed	One lane crossed	One lane crossed	≥ 2 lanes crossed	One lane crossed	One lane crossed	≥ 2 lanes crossed	≥ 2 lanes crossed
	Operating Speed	≥ 60 km/h	≥ 60 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	≥ 60 km/h	> 50 to < 60 km/h
	Left Turning Cyclist	F	F	D	E	D	D	F	F
	Level of Service	#N/A	#N/A	#N/A	Е	Е	Е	F	F
	Level of Service		#N	I/A		F			
æ	Average Signal Delay								
Transit		-	-	-	-	-	-	-	-
_ra La	Level of Service			-				-	
	Effective Corner Radius								
×	Number of Receiving Lanes on Departure from Intersection								
Truck		-	-	-	-	-	-	-	-
	Level of Service							-	
Auto	Level of Service Volume to Capacity Ratio			-				-	

Multi-Modal Level of Service - Segments Form

Consultant	CGH Transportation Inc.	Project	265 Centrum Boulevard
Scenario	Existing/Future	Date	3/24/2023
Comments			

SEGMENTS			Brisebois Crescent (Ex)	Centrum Boulevard	Brisebois Crescent (Fu)
OLOMEIT I	_		1	2	3
	Sidewalk Width Boulevard Width		no sidewalk n/a	≥ 2 m < 0.5	≥ 2 m < 0.5
	Avg Daily Curb Lane Traffic Volume		≤ 3000	≤ 3000	≤ 3000
Pedestrian	Operating Speed On-Street Parking		> 50 to 60 km/h yes	> 30 to 50 km/h yes	> 50 to 60 km/h yes
st	Exposure to Traffic PLoS	-	F	В	С
ğ	Effective Sidewalk Width				
A A	Pedestrian Volume				
	Crowding PLoS			-	-
	Level of Service		-	-	-
	Type of Cycling Facility		Mixed Traffic	Mixed Traffic	Mixed Traffic
	Number of Travel Lanes		≤ 2 (no centreline)	≤ 2 (no centreline)	≤ 2 (no centreline)
	Operating Speed		≥ 50 to 60 km/h	>40 to <50 km/h	≥ 50 to 60 km/h
	# of Lanes & Operating Speed LoS		D	В	D
Bicycle	Bike Lane (+ Parking Lane) Width				
Š	Bike Lane Width LoS	D	-	-	-
適	Bike Lane Blockages				
	Blockage LoS		-	-	-
	Median Refuge Width (no median = < 1.8 m)		< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge
	No. of Lanes at Unsignalized Crossing Sidestreet Operating Speed		≤ 3 lanes	≤ 3 lanes	≤ 3 lanes
	Unsignalized Crossing - Lowest LoS		>50 to 60 km/h	>40 to 50 km/h	>50 to 60 km/h
	Offsignanzed Orossing - Lowest 200				
	Level of Service		D	В	D
##	Facility Type				
Fransit	Friction or Ratio Transit:Posted Speed	_			
Tra	Level of Service		-	-	-
	Truck Lane Width				
충	Travel Lanes per Direction				
Truck	Level of Service	-	-	-	-

Appendix L

TDM Checklist

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

	Legend
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance
*	The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	1.1.1	Designate an internal coordinator, or contract with an external coordinator	\square
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	
	2.2	Bicycle skills training	
		Commuter travel	
BETTER	2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	
BASIC	3.1.2	Provide online links to OC Transpo and STO information	
BETTER	3.1.3	Provide real-time arrival information display at entrances	
	3.2	Transit fare incentives	
		Commuter travel	
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	
BETTER ★	3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	
	_	Visitor travel	
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	
	3.4	Private transit service	
		Commuter travel	
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for feetivals, concerts games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	4.	RIDESHARING	
	4.1	Ridematching service	
		Commuter travel	
BASIC	★ 4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com	\square
	4.2	Carpool parking price incentives	
		Commuter travel	
BETTER	4.2.1	Provide discounts on parking costs for registered carpools	
	4.3	Vanpool service	
		Commuter travel	
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters	
	5.	CARSHARING & BIKESHARING	
	5.1	Bikeshare stations & memberships	
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors	
		Commuter travel	
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel	
	5.2	Carshare vehicles & memberships	
		Commuter travel	
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants	
BETTER	5.2.2	Provide employees with carshare memberships for local business travel	
	6.	PARKING	
	6.1	Priced parking	
		Commuter travel	
BASIC	★ 6.1.1	Charge for long-term parking (daily, weekly, monthly)	
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites	☑
		Visitor travel	

6.1.3 Charge for short-term parking (hourly)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS	
	7.1	Multimodal travel information	
		Commuter travel	
BASIC ★	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	
		Visitor travel	
BETTER ★	7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	
	7.2	Personalized trip planning	
		Commuter travel	
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees	
	7.3	Promotions	
		Commuter travel	
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	
	8.	OTHER INCENTIVES & AMENITIES	
	8.1	Emergency ride home	
		Commuter travel	
BETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters	
	8.2	Alternative work arrangements	
		Commuter travel	
BASIC ★	8.2.1	Encourage flexible work hours	
BETTER	8.2.2	Encourage compressed workweeks	
BETTER ★	8.2.3	Encourage telework	
	8.3	Local business travel options	
		Commuter travel	
BASIC *	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work	
	8.4	Commuter incentives	
		Commuter travel	
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance	
	8.5	On-site amenities	
		Commuter travel	
BETTER	8.5.1	Provide on-site amenities/services to minimize mid-day or mid-commute errands	

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

	Legend
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance
*	The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC *	1.1.1	Designate an internal coordinator, or contract with an external coordinator	\square
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3.2	Transit fare incentives	
BASIC	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
	3.3	Enhanced public transit service	
BETTER #	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (multi-family)	
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC	5.1.1	Unbundle parking cost from purchase price (condominium)	
BASIC	5.1.2	Unbundle parking cost from monthly rent (multi-family)	

Version 1.0 (30 June 2017)

TDM measures: Residential developments		measures: Residential developments	Check if proposed & add descriptions
	6.	TDM MARKETING & COMMUNICATIONS	
	6.1	Multimodal travel information	
BASIC *	6.1.1	Provide a multimodal travel option information package to new residents	
	6.2	Personalized trip planning	
BETTER ★	6.2.1	Offer personalized trip planning to new residents	

TDM-Supportive Development Design and Infrastructure Checklist: Non-Residential Developments (office, institutional, retail or industrial)

Legend

The Official Plan or Zoning By-law provides related guidance that must be followed

BASIC

The measure is generally feasible and effective, and in most cases would benefit the development and its users

The measure could maximize support for users of sustainable modes, and optimize development performance

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	\boxtimes
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	upportive design & infrastructure measures: Non-residential developments	add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	⋈
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non- residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

	TDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	

TDM-Supportive Development Design and Infrastructure Checklist: Residential Developments (multi-family or condominium)

Legend		
RI	EQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed
	BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
E	BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance

	TDM-supportive design & infrastructure measures: Residential developments		Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	\square
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	\square
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multifamily residential developments	
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area	

	TDM-supportive design & infrastructure measures: Check to a add descriptions **Residential developments** or plan/drawing		
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice verse)	