Environmental Noise Control Study Proposed Residential Development 56 Capilano Drive Ottawa, Ontario **Prepared for CSV Architects** # **Table of Contents** | | | PAGE | |-----|---|------| | 1.0 | Introduction | 1 | | 2.0 | Proposed Development | 1 | | 3.0 | Methodology and Noise Assessment Criteria | 2 | | 4.0 | Analysis | 6 | | 5.0 | Results | 8 | | 6.0 | Discussion and Recommendations | 9 | | 6.1 | Outdoor Living Areas | 9 | | 6.2 | Indoor Living Areas and Ventilation | 9 | | 7.0 | Summary of Findings | 11 | | 8.0 | Statement of Limitations | 12 | # **Appendices** | Appendix 1 | Table 8 - Summary of Reception Points and Geometry Drawing PG6606-1 - Site Plan Drawing PG6606-2 - Receptor Location Plan Drawing PG6606-3 - Site Geometry (Townhouses) Drawing PG6606-3A - Site Geometry - REC 1-1 and REC 1-2 Drawing PG6606-3B - Site Geometry - REC 2-1 and REC 2-2 Drawing PG6606-3C - Site Geometry - REC 3-1 and REC 3-2 Drawing PG6606-3D - Site Geometry - REC 4 Drawing PG6606-3E - Site Geometry - REC 5 Drawing PG6606-4 - Site Geometry - REC 6-1 and REC 6-4 Drawing PG6606-4A - Site Geometry - REC 7-1 and REC 7-4 Drawing PG6606-4C - Site Geometry - REC 8-1 and REC 8-4 | |------------|--| | | Drawing PG6606-4B - Site Geometry - REC 7-1 and REC 7-4 Drawing PG6606-4C - Site Geometry - REC 8-1 and REC 8-4 Drawing PG6606-4D - Site Geometry - REC 9 Drawing PG6606-5 - Site Geometry (Amenity Area) Drawing PG6606-5A - Site Geometry - REC 10 | | Appendix 2 | STAMSON Results | #### 1.0 Introduction Paterson Group (Paterson) was commissioned by CSV Architects to conduct an environmental noise control study for the proposed residential development to be located at 56 Capilano Drive, in the City of Ottawa. The objective of the current study is to: - ➤ Determine the primary noise sources impacting the site and compare the projected sound levels to guidelines set out by the Ministry of Environment and Climate Change (MOECC) and the City of Ottawa. - ➤ Review the projected noise levels and offer recommendations regarding warning classes, construction materials or alternative sound barriers. The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes acoustical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report. This study has been conducted according to City of Ottawa document - Engineering Noise Control Guidelines (ENCG), dated January 2016, and the Ontario Ministry of the Environment Guideline NPC-300. # 2.0 Proposed Development It is understood that the proposed development will consist of a two (2) storey townhouses with one basement level at the northern part of the site, and a four (4) storey apartment building with one basement level at the southern part of the site. It is anticipated that the townhouses will consist of 4 units and the apartment building will consist of 54 units. The townhouses will rise 6 metres above grade and the apartment building will rise 13 metres above grade. Associated walkways, driveways, parking areas, and landscaped areas are further anticipated. Outdoor living areas – rear yards at the townhouses, rooftop terrace at the apartment building, and at-grade amenity area are identified on the proposed site plan. # 3.0 Methodology and Noise Assessment Criteria The City of Ottawa outlines three (3) sources of environmental noise that must be analyzed separately: - Surface Transportation Noise - Stationary Noise - new noise-sensitive development applications (noise receptors) in proximity to existing or approved stationary sources of noise, and - new stationary sources of noise (noise generating) in proximity to existing or approved noise-sensitive developments - Aircraft Noise #### **Surface Transportation Noise** Surface roadway traffic noise, equivalent to sound level energy L_{eq} , provides a measure of the time varying noise level over a period of time. For roadways, the L_{eq} is commonly calculated on the basis of 16-hour (L_{eq16}) daytime (07:00-23:00) and 8-hour (L_{eq8}) nighttime (23:00-7:00) split to assess its impact on residential, commercial and institutional buildings. The City of Ottawa's Official Plan dictates that the influence area must contain any of following conditions to classify as a surface transportation noise source for a subject site: - Within 100 m of the right-of-way of an existing or proposed arterial, collector or major collector road; a light rail transit corridor; bus rapid transit, or transit priority corridor - Within 250 m of the right-of-way for an existing or proposed highway or secondary rail line - Within 300 m from the right of way of a proposed or existing rail corridor or a secondary main railway line - ➤ Within 500 m of an existing 400 series provincial highway, freeway or principle main railway line. The Environmental Noise Guidelines for Stationary and Transportation Sources – NPC-300 outlines the limitations of noise levels in relation to the location of the receptors. These can be found in the following tables: | Table 1 – Noise Level Limit for Outdoor Living Areas | | | | | | | | | |--|---|--|--|--|--|--|--|--| | Time Period | L _{eq} Level
(dBA) | | | | | | | | | Daytime, 7:00-23:00 | 55 | | | | | | | | | Standard taken from Table 2.2a; Sound and Rail | d Level Limit for Outdoor Living Areas – Road | | | | | | | | | Table 2 – Noise Level Limits for Indoor Living Areas | | | | | | | | | | |--|-------------------------|--------------------------------|------|--|--|--|--|--|--| | Type of Space | Time Period | L _{eq} Level
(dBA) | | | | | | | | | Type of opace | Time Teriou | Road | Rail | | | | | | | | General offices, reception areas, retail stores, etc. | Daytime
7:00-23:00 | 50 | 45 | | | | | | | | Theatres, places of worship, libraries, individual or semi-private offices, conference rooms, reading rooms, etc. | Daytime
7:00-23:00 | 45 | 40 | | | | | | | | Living/dining/den areas of residences , hospitals, nursing/retirement homes, schools, day-care centres | Daytime
7:00-23:00 | 45 | 40 | | | | | | | | Living/dining/den areas of residences , hospitals, nursing/retirement homes etc. (except schools or day-care centres) | Nighttime
23:00-7:00 | 45 | 40 | | | | | | | | Sleeping quarters of hotels/motels | Nighttime
23:00-7:00 | 45 | 40 | | | | | | | | Sleeping quarters of residences , hospitals, nursing/retirement homes, etc. | Nighttime
23:00-7:00 | 40 | 35 | | | | | | | Standards taken from Table 2.2b, Sound Level Limit for Indoor Living Areas – Road and Rail and Table 2.2c, Supplementary Sound Level Limits for Indoor Spaces – Road and Rail Predicted noise levels at the pane of window dictate the action required to achieve recommended noise levels. It is noted in ENCG that the limits outlined in Table 2 are for the noise levels on the interior of the window glass pane. An open window is considered to provide a 10 dBA noise reduction, while a standard closed window is capable to provide a minimum 20 dBA noise reduction. The noise level limits of residential building are 45 dBA daytime and 40 dBA nighttime. Therefore, where noise levels exceed 55 dBA daytime and 50 dBA nighttime, the ventilation for the building should consider the provision for central air conditioning. Where noise levels exceed 65 dBA daytime and 60 dBA nighttime, central air conditioning will be required, and the building components will require higher levels of sound attenuation. When the noise levels are equal to or less than the specified criteria, no noise attenuation (control) measures are required. When the exceedance of the recommended noise level limits is between 1 dBA and 5 dBA for outdoor living areas (55 dBA < Leq \leq 60 dBA), the proposed development can be completed with no noise control measures incorporated into the site, but the prospective purchasers / tenants should be made aware by suitable Warning Clauses. When the exceedance of recommended noise level limits is more than 5 dBA for outdoor living areas (Leq > 60 dBA), noise control measures are required to reduce Leq to below 60 dBA and as close as 55 dBA as it is technically and economically feasible. Noise attenuation (control) measures include any or all of the following: - Noise attenuation barrier - Provisions for the installation of central air conditioning - Central air conditioning - Architectural components designed to provide additional acoustic insulation In addition to the implementation of noise attenuation features, if required, the following Warning Clauses may be recommended to advise the prospective purchasers / tenants of affected units of potential environmental noise problem: | Leq
(dBA) | Warning
Clause | Description | |---------------------------------------|-----------------------------
---| | 55 dBA < L _{eq(16)} ≤ 60 dBA | Warning
Clause
Type A | "Purchasers/tenants are advised that sound levels due to increasing road traffic (rail traffic) (air traffic) may occasionally interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Municipality and the Ministry of the Environment." | | 60 dBA < L _{eq(16)} | Warning
Clause
Type B | "Purchasers/tenants are advised that despite the inclusion of noise control features in the development and within the building units, sound levels due to increasing road traffic (rail traffic) (air traffic) may on occasions interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Municipality and the Ministry of the Environment." | Stationary and Transportation Sources - NPC-300 | Table 4 – Warning Clauses for Indoor Living Areas | | | | | | | | |---|-----------------------------|--|--|--|--|--|--| | Leq
(dBA) | Warning
Clause | Description | | | | | | | $55 \text{ dBA} < L_{eq(16)} \le 65 \text{ dBA}$
$50 \text{ dBA} < L_{eq(8)} \le 60 \text{ dBA}$ | Warning
Clause
Type C | "This dwelling unit has been designed with the provision for adding central air conditioning at the occupant's discretion. Installation of central air conditioning by the occupant in low and medium density developments will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment." | | | | | | | 65 dBA < L _{eq(16)} Warning Clause Type D | | "This dwelling unit has been supplied with a central air conditioning system which will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment." | | | | | | | Clauses taken from section C8 Warning Clauses; Environmental Noise Guidelines for
Stationary and Transportation Sources - NPC-300 | | | | | | | | # **Stationary Noise** Stationary noise sources include sources or facilities that are fixed or mobile and can cause a combination of sound and vibration levels emitted beyond the property line. These sources may include commercial air conditioner units, generators and fans. Facilities that may contribute to stationary noise may include car washes, snow disposal sites, transit stations and manufacturing facilities. The subject site is not in proximity to existing or approved stationary sources of noise. Therefore, a stationary noise analysis will not be required. #### **Aircraft / Airport Noise** The subject site is not located within the Airport Vicinity Development Zone. Therefore this project will not require an aircraft/airport noise analysis. No warning clauses regarding aircraft or airport noise will be required. # 4.0 Analysis #### **Surface Transportation Noise** The subject development is bordered to the north by Capilano Drive followed by residential dwellings, Kerry Crescent, and Gilbey Drive, to the east by parking area, residential dwellings, and Birchwood Drive, to the south by parking area and recreational building, and to the west by parking areas and commercial buildings. Capilano Drive, Kerry Crescent, Gilbey Drive and Birchwood Drive are identified within the 100 m radius of proposed development. Based on the City of Ottawa's Official Plan, Schedule E, Capilano Drive is considered a 2-lane urban collector road (2-UCU). Other roads within the 100 m radius of the proposed development are not classified as either arterial, collector or major collector roads and therefore are not included in this study. The major source of traffic noise is due to the Capilano Drive north of the proposed development. All noise sources are presented in Drawing PG6606-3 - Site Geometry located in Appendix 1. The noise levels from road traffic are provided by the City of Ottawa, taking into consideration the right-of-way width and the implied roadway classification. It is understood that these values represent the maximum allowable capacity of the proposed roadways. The parameters to be used for sound level predictions can be found below. | Table 5 – Traffic and Road Parameters | | | | | | | | | | | | |---|---------------------------|-----------------|--------------------------|-------------------------|----------------------|---------------------|--|--|--|--|--| | Segment | Roadway
Classification | AADT
Veh/Day | Speed
Limit
(km/h) | Day/Night
Split
% | Medium
Truck
% | Heavy
Truck
% | | | | | | | Capilano Drive 2-UCU | | 8000 | 40 | 92/8 | 7 | 5 | | | | | | | Data obtained from the City of Ottawa document ENCG | | | | | | | | | | | | Three (3) levels of reception points at townhouses, three (3) levels of reception points at the apartment building, and one (1) level of receptor point at the at-grade amenity area at the middle portion of the site were selected for this analysis. The following elevations were selected from the heights provided on the survey plan for the subject buildings. | Table 6 – Elevations of Reception Points | | | | | | | | | | | |--|--|---------------------|---------------------------------|--|--|--|--|--|--|--| | Floor Number | Elevation at
Centre of
Window
(m) | Floor Use | Daytime / Nighttime
Analysis | | | | | | | | | Townhouses: | | | | | | | | | | | | First Floor | 1.5 | Living Area/Bedroom | Daytime / Nighttime | | | | | | | | | Second Floor | Second Floor 4.5 | | Daytime / Nighttime | | | | | | | | | Rear Yard | Rear Yard 1.5 | | Outdoor Living Area | | | | | | | | | Apartment Building: | | | | | | | | | | | | First Floor | 1.5 | Living Area/Bedroom | Daytime / Nighttime | | | | | | | | | Fourth Floor | 11.0 | Living Area/Bedroom | Daytime / Nighttime | | | | | | | | | Rooftop Terrace 14.5 | | | Outdoor Living Area | | | | | | | | | At-Grade Amenity Area: | | | | | | | | | | | | Amenity Area | 1.5 | | Outdoor Living Area | | | | | | | | For this analysis, a reception point was taken at the centre of each floor, at the first floor and top floor. Outdoor living areas consisting of rear yards are identified at the townhouses. Additional outdoor living areas were identified as a rooftop terrace at the apartment building and an at-grade amenity area at the middle portion of the site. Two receptors (REC 4 and REC 5) were selected in the centre of rear yards of townhouses at an elevation of 1.5 m. One receptor (REC 9) was selected in the centre of rooftop terrace of apartment building at an elevation of 14.5 m. One receptor (REC 10) was selected in the centre of at-grade amenity area at the middle portion of the site at an elevation of 1.5 m. Reception points are detailed on Drawing PG6606-2 - Receptor Locations presented in Appendix 1. All horizontal distances have been measured from the reception point to the edge of the right-of-way. The roadway was analyzed where it intersected the 100 m buffer zone, which is reflected in the local angles described in Paterson Drawings PG6606-3A to 3E, PG6606-4A to 4D, PG6606-5A - Site Geometry in Appendix 1. The subject site is generally levelled and at grade with the neighbouring roads within the 100 m radius. Table 8 - Summary of Reception Points and Geometry, located in Appendix 1, provides a summary of the points of reception and their geometry with respect to the noise sources. The analysis is completed so that no effects of sound reflection off of the building facade are considered, as stipulated by the ENGC. The analysis was completed using STAMSON version 5.04, a computer program which uses the road and rail traffic noise prediction methods using ORNAMENT (Ontario Road Noise Analysis Method for Environment and Transportation) and STEAM (Sound from Trains Environment Analysis Method), publications from the Ontario Ministry of Environment and Energy. ## 5.0 Results #### **Surface Transportation Noise** The primary descriptors are the 16-hour daytime (7:00-23:00) and the 8-hour nighttime (23:00-7:00) equivalent sound levels, $L_{eq(16)}$ and $L_{eq(8)}$ for City roads. The exterior noise levels due to roadway traffic sources were analyzed with the STAMSON version 5.04 software at all reception points. The input and output data of the STAMSON modeling can be found in Appendix 2, and the summary of the results can be found in Table 7. | Table 7: Exte | Table 7: Exterior Noise Levels due to Roadway Traffic Sources | | | | | | | | | | | |--------------------|---|---|---|--|--|--|--|--|--|--|--| | Reception
Point | Height Above
Grade
(m) | Receptor Location | Daytime
L
_{eq(16)}
(dBA) | Nighttime
L _{eq(8)}
(dBA) | | | | | | | | | Townhouses | | | | | | | | | | | | | REC 1-1 | 1.5 | Northern Elevation, 1st Floor | 62 | 55 | | | | | | | | | REC 1-2 | 4.5 | Northern Elevation, 2nd Floor | 63 | 55 | | | | | | | | | REC 2-1 | 1.5 | Western Elevation, 1st Floor | 59 | 52 | | | | | | | | | REC 2-2 | 4.5 | Western Elevation, 2nd Floor | 60 | 52 | | | | | | | | | REC 3-1 | 1.5 | Eastern Elevation, 1st Floor | 59 | 52 | | | | | | | | | REC 3-2 | 4.5 | Eastern Elevation, 2nd Floor | 60 | 52 | | | | | | | | | REC 4 | 1.5 | Rear Yard - West | 50 | | | | | | | | | | REC 5 | 1.5 | Rear Yard - East | 50 | | | | | | | | | | Apartment Bu | | | | | | | | | | | | | REC 6-1 | 1.5 | Northern Elevation, 1st Floor | 55 | 47 | | | | | | | | | REC 6-4 | 11.0 | Northern Elevation, 4th Floor | 57 | 49 | | | | | | | | | REC 7-1 | 1.5 | Western Elevation, 1st Floor | 48 | 41 | | | | | | | | | REC 7-4 | 11.0 | Western Elevation, 4th Floor | 50 | 42 | | | | | | | | | REC 8-1 | 1.5 | Eastern Elevation, 1st Floor | 49 | 42 | | | | | | | | | REC 8-4 | 11.0 | Eastern Elevation, 4th Floor | 51 | 43 | | | | | | | | | REC 9 | 14.5 | Rooftop Terrace | 50 | | | | | | | | | | At-Grade Am | enity Area | | • | | | | | | | | | | REC 10 | 1.5 | At-Grade Amenity Area (After Townhouses Construction) | 52 | | | | | | | | | ### 6.0 Discussion and Recommendations ## 6.1 Outdoor Living Areas Outdoor living areas – rear yards at the townhouses, rooftop terrace at the apartment building, and at-grade amenity area at the middle portion of the site are anticipated at the proposed development. Two receptors (REC 4 and REC 5) were selected in the centre of rear yards of townhouses at an elevation of 1.5 m. One receptor (REC 9) was selected in the centre of rooftop terrace of apartment building at an elevation of 14.5 m. One receptor (REC 10) was selected in the centre of atgrade amenity area at an elevation of 1.5 m. It is assumed that the rear yards will only be utilized as outdoor living areas provided that the proposed townhouses are constructed. Utilizing the exteriors of proposed townhouses as noise barriers, the proposed Leq(16) at the rear yards will be 50 dBA, which are below the 55 dBA threshold value specified by the ENCG. Therefore, no further noise attenuation measures are required. It is assumed that the rooftop terrace will only be utilized as outdoor living area provided that the proposed apartment building is constructed. Utilizing the exteriors of proposed apartment building as noise barriers, the proposed Leq(16) at the rooftop terrace will be 50 dBA, which is below the 55 dBA threshold value specified by the ENCG. Therefore, no further noise attenuation measures are required. It is assumed that the at-grade amenity area will only be utilized as outdoor living area provided that the proposed buildings are constructed. Utilizing the exteriors of proposed townhouses as noise barriers, the proposed Leq(16) at the at-grade amenity area will be 52 dBA, which is below the 55 dBA threshold value specified by the ENCG. Therefore, no further noise attenuation measures are required. ## 6.2 Indoor Living Areas and Ventilation The results of the STAMSON modeling indicate that the noise levels at proposed townhouses will range between 59 dBA and 63 dBA during the daytime period (07:00-23:00) and between 52 dBA and 55 dBA during the nighttime period (23:00-07:00). The anticipated noise levels on the northern, western, and eastern elevations of townhouses will exceed the limit for the exterior of the pane of glass (55 dBA) specified by the ENCG. Therefore, all townhouse units should be designed with the provision of a central air conditioning unit, along with the warning clause Type C, as outlined in Table 3. The results of the STAMSON modeling indicate that the noise levels at proposed apartment building will range between 48 dBA and 57 dBA during the daytime period (07:00-23:00) and between 41 dBA and 49 dBA during the nighttime period (23:00-07:00). The anticipated noise level on the northern elevation of apartment building will exceed the limit for the exterior of the pane of glass (55 dBA) specified by the ENCG. Therefore, the units on the northern elevation of apartment building should be designed with the provision of a central air conditioning unit, along with the warning clause Type C, as outlined in Table 3. It is also noted that the results of STAMSON modeling indicate that the noise levels at the townhouses and the apartment building will be below 65 dBA, and therefore standard building materials are acceptable to provide adequate soundproofing. # 7.0 Summary of Findings The subject site is located at 56 Capilano Drive, in the City of Ottawa. It is understood that the proposed development will consist of two (2) storey townhouses with one level of basement at the northern part of the site, and a four (4) storey apartment building with one level of basement at the southern part of the site. The townhouses will rise 6 metres above grade and the apartment building will rise 13 metres above grade. There is one major source of surface transportation noise to the proposed development: Capilano Drive. Outdoor living areas – rear yards at the townhouses, rooftop terrace at the apartment building, and at-grade amenity area are identified at the proposed development. Utilizing the exteriors of townhouses and apartment building as noise barriers, the results of STAMSON modeling indicate that the noise levels at the rear yards of townhouses, the rooftop terrace of apartment building, and the amenity area at the middle portion of site are expected to be below the 55 dBA threshold value specified by the ENCG. Therefore, no further noise attenuation measures are required. Several reception points were selected for the surface transportation noise analysis, consisting of the centre of first level and top level. The results of STAMSON modeling indicate that the noise levels on the northern, western, and eastern elevations of proposed townhouses, and the northern elevation of proposed apartment building, are expected to exceed the 55 dBA threshold specified by the ENCG. Therefore, design with the provision for a central air conditioning unit, along with a warning clause Type C, will be required for all townhouse units and the units on the northern elevation of the apartment building. It is also noted that the modeling indicates that the noise levels at proposed townhouses and apartment building are below 65 dBA, and therefore standard building materials are acceptable to provide adequate soundproofing. ### 8.0 Statement of Limitations The recommendations made in this report are in accordance with our present understanding of the project. Our recommendations should be reviewed when the project drawings and specifications are complete. The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than CSV Architects or their agent(s) is not authorized without review by this firm for the applicability of our recommendations to the altered use of the report. Paterson Group Inc. Yolanda Tang, M.A.Sc Yolanda Yang March 3, 2023 March 3, 2023 S. A. BOISVENUE 100176631 Phoylyce of Ontiffe Stephanie A. Boisvenue, P.Eng. #### **Report Distribution:** - ☐ CSV Architects (email copy) - ☐ Paterson Group (1 copy) # **APPENDIX 1** Table 8 - Summary of Reception Points and Geometry **Drawing PG6606-1 - Site Plan** **Drawing PG6606-2 - Receptor Location Plan** **Drawing PG6606-3 - Site Geometry (Townhouses)** Drawing PG6606-3A - Site Geometry - REC 1-1 and REC 1-2 Drawing PG6606-3B - Site Geometry - REC 2-1 and REC 2-2 Drawing PG6606-3C - Site Geometry - REC 3-1 and REC 3-2 Drawing PG6606-3D - Site Geometry - REC 4 Drawing PG6606-3E - Site Geometry - REC 5 **Drawing PG6606-4 - Site Geometry (Apartment Building)** Drawing PG6606-4A - Site Geometry - REC 6-1 and REC 6-4 Drawing PG6606-4B - Site Geometry - REC 7-1 and REC 7-4 Drawing PG6606-4C - Site Geometry - REC 8-1 and REC 8-4 Drawing PG6606-4D - Site Geometry - REC 9 **Drawing PG6606-5 - Site Geometry (Amenity Area)** Drawing PG6606-5A - Site Geometry - REC 10 Table 8 - Summary of Reception Points and Geometry 56 Capilano Drive | 2 | | Capilano Drive | | | | | | | | | | | | | |-----------------------|---|------------------|-------------------|-----------------|--------------|----------------------|--------------------------|----------------|---------------|-------------------------|---------------|----|----|---------------| | Point of
Reception | Location | Leq Day
(dBA) | Horizontal
(m) | Vertical
(m) | Total
(m) | Local Angle (degree) | Number of Rows of Houses | Density
(%) | | \sim | \gg | >> | | | | REC 1-1 | Townhouses, Northern Elevation, 1st Floor | 62 | 15 | 1.5 | 15.1 | -90, 88 | n/a | n/a | >> | \times | >< | >< | >< | >< | | REC 1-2 | Townhouses, Northern Elevation, 2nd Floor | 63 | 15 | 4.5 | 15.7 | -90, 88 | n/a | n/a | \times | > < | >< | | | \rightarrow | | REC 2-1 | Townhouses, Western Elevation, 1st Floor | 59 | 15 | 1.5 | 15.1 | -88, 0 | n/a | n/a | | $\overline{}$ | | | | | | REC 2-2 | Townhouses, Western Elevation, 2nd Floor | 60 | 15 | 4.5 | 15.7 | -88, 0 | n/a | n/a | \times | \times | >< | | | \rightarrow | | REC 3-1 | Townhouses, Eastern Elevation, 1st Floor | 59 | 15 | 1.5 | 15.1 | 0, 84 | n/a | n/a | | \supset | $\overline{}$ | | | | | REC 3-2 | Townhouses, Eastern Elevation, 2nd Floor | 60 | 15 | 4.5 | 15.7 | 0, 84 | n/a | n/a | | $\overline{\mathbf{X}}$ | | | | | | REC 4 | Townhouse (West) - Rear Yard | 50 | 18 | 1.5 | 18.1 | -84, -63 | n/a | n/a | | | | | | | | REC 5 | Townhouse (East) - Rear Yard | 50 | 18 | 1.5 | 18.1 | 61, 79 | n/a | n/a | $\overline{}$ | \times | > | | | | | REC 6-1 | Apartment Building, Northern Elevation, 1st Floor | 55 | 40 | 1.5 | 40.0 | -74, 70 |
n/a | n/a | | $\overline{}$ | | | | | | REC 6-4 | Apartment Building, Northern Elevation, 4th Floor | 57 | 40 | 11.0 | 41.5 | -74, 70 | n/a | n/a | | \times | $\overline{}$ | | | | | REC 7-1 | Apartment Building, Western Elevation, 1st Floor | 48 | 50 | 1.5 | 50.0 | -66, 0 | 1 | 40 | X | | $\overline{}$ | | | | | REC 7-4 | Apartment Building, Western Elevation, 4th Floor | 50 | 50 | 11 | 51.2 | -66, 0 | 1 | 40 | | | | | | | | REC 8-1 | Apartment Building, Eastern Elevation, 1st Floor | 49 | 50 | 1.5 | 50.0 | 0, 61 | 1 | 20 | X | \times | \times | | | | | REC 8-4 | Apartment Building, Eastern Elevation, 4th Floor | 51 | 50 | 11 | 51.2 | 0, 61 | 1 | 20 | | > | | | | | | REC 9 | Apartment Building - Rooftop Terrace | 50 | 50 | 14.5 | 52.1 | -70, 66 | n/a | n/a | | | | | | | | REC 10 | At-Grade Amenity Area | 52 | 30 | 1.5 | 1.5 | -80, -20 | 1 | 20 | | \ge | | | | | | | , to stage, unemer, rued | 32 | | 1.5 | 1.5 | 64, 75 | n/a | n/a | >< | > < | > < | >< | | | # **APPENDIX 2** **STAMSON RESULTS** STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 10:37:52 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec11.te Time Period: Day/Night 16/8 hours Description: Receptor Point 1-1 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) _____ Angle1 Angle2 : -90.00 deg 88.00 deg Wood depth : 0 No of house rows : 0 / 0 Surface : -(No woods.) 0 / 0 1 (Absorptive ground surface) Receiver source distance : 15.00 / 15.00 m Receiver height : 1.50 / 1.50 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00 Results segment # 1: Capilano Dr (day) _____ Source height = 1.50 m ROAD (0.00 + 62.49 + 0.00) = 62.49 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -90 88 0.66 63.96 0.00 0.00 -1.46 0.00 0.00 0.00 62.49 Segment Leq: 62.49 dBA Total Leq All Segments: 62.49 dBA Results segment # 1: Capilano Dr (night) Source height = 1.50 m ROAD (0.00 + 54.90 + 0.00) = 54.90 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 88 0.66 56.36 0.00 0.00 -1.46 0.00 0.00 54.90 Segment Leq: 54.90 dBA Total Leq All Segments: 54.90 dBA ♠ TOTAL Leq FROM ALL SOURCES (DAY): 62.49 (NIGHT): 54.90 **^** ♠ STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 10:39:37 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec12.te Time Period: Day/Night 16/8 hours Description: Receptor Point 1-2 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) _____ Angle1 Angle2 : -90.00 deg 88.00 deg Wood depth Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 1 (Absorptive ground surface) Receiver source distance : 15.00 / 15.00 m Receiver height : 4.50 / 4.50 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00 Results segment # 1: Capilano Dr (day) _____ Source height = 1.50 m ROAD (0.00 + 62.65 + 0.00) = 62.65 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -90 88 0.57 63.96 0.00 0.00 -1.31 0.00 0.00 0.00 62.65 Segment Leq: 62.65 dBA ``` Total Leq All Segments: 62.65 dBA ``` ♠ Results segment # 1: Capilano Dr (night) Source height = 1.50 m ROAD (0.00 + 55.05 + 0.00) = 55.05 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 88 0.57 56.36 0.00 0.00 -1.31 0.00 0.00 0.00 55.05 Segment Leq: 55.05 dBA Total Leq All Segments: 55.05 dBA ♠ TOTAL Leq FROM ALL SOURCES (DAY): 62.65 (NIGHT): 55.05 ♠ ♠ STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 11:09:16 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec21.te Time Period: Day/Night 16/8 hours Description: Receptor Point 2-1 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) Angle1 Angle2 : -88.00 deg 0.00 deg Wood depth : 0 No of house rows : 0 / 0 Surface (No woods.) 0 / 0 1 (Absorptive ground surface) Receiver source distance : 15.00 / 15.00 m Receiver height : 1.50 / 1.50 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00 Results segment # 1: Capilano Dr (day) _____ Source height = 1.50 m ROAD (0.00 + 59.48 + 0.00) = 59.48 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -88 0 0.66 63.96 0.00 0.00 -4.48 0.00 0.00 0.00 59.48 Segment Leq: 59.48 dBA TOTAL Leq FROM ALL SOURCES (DAY): 59.48 (NIGHT): 51.89 STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 11:10:35 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec22.te Time Period: Day/Night 16/8 hours Description: Receptor Point 2-2 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) Angle1 Angle2 : -88.00 deg 0.00 deg Wood depth : 0 No of house rows : 0 / 0 Surface : -(No woods.) 0 / 0 1 (Absorptive ground surface) Receiver source distance : 15.00 / 15.00 m Receiver height : 4.50 / 4.50 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00 Results segment # 1: Capilano Dr (day) _____ Source height = 1.50 m ROAD (0.00 + 59.63 + 0.00) = 59.63 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -88 0 0.57 63.96 0.00 0.00 -4.33 0.00 0.00 0.00 59.63 Segment Leq: 59.63 dBA ``` Total Leq All Segments: 59.63 dBA ``` **^** Results segment # 1: Capilano Dr (night) Source height = 1.50 m Segment Leq: 52.04 dBA Total Leq All Segments: 52.04 dBA ♠ TOTAL Leq FROM ALL SOURCES (DAY): 59.63 (NIGHT): 52.04 **^** ♠ STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 11:15:13 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec31.te Time Period: Day/Night 16/8 hours Description: Receptor Point 3-1 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) _____ Angle1 Angle2 : 0.00 deg 84.00 deg Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 1 (Absorptive ground surface) Receiver source distance : 15.00 / 15.00 m Receiver height : 1.50 / 1.50 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00 Results segment # 1: Capilano Dr (day) _____ Source height = 1.50 m ROAD (0.00 + 59.43 + 0.00) = 59.43 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ----- 0 84 0.66 63.96 0.00 0.00 -4.52 0.00 0.00 0.00 59.43 Segment Leq: 59.43 dBA ``` Total Leq All Segments: 59.43 dBA Results segment # 1: Capilano Dr (night) Source height = 1.50 m ROAD (0.00 + 51.84 + 0.00) = 51.84 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq 0 84 0.66 56.36 0.00 0.00 -4.52 0.00 0.00 0.00 51.84 Segment Leq : 51.84 dBA Total Leq All Segments: 51.84 dBA ``` TOTAL Leq FROM ALL SOURCES (DAY): 59.43 (NIGHT): 51.84 STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 11:15:48 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec32.te Time Period: Day/Night 16/8 hours Description: Receptor Point 3-2 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) %
of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) _____ Angle1 Angle2 : 0.00 deg 84.00 deg Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 1 (Absorptive ground surface) Receiver source distance : 15.00 / 15.00 m Receiver height : 4.50 / 4.50 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00 Results segment # 1: Capilano Dr (day) _____ Source height = 1.50 m ROAD (0.00 + 59.57 + 0.00) = 59.57 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ----- 0 84 0.57 63.96 0.00 0.00 -4.38 0.00 0.00 0.00 59.57 Segment Leq: 59.57 dBA 0 84 0.57 56.36 0.00 0.00 -4.38 0.00 0.00 0.00 51.98 Segment Leq: 51.98 dBA Total Leq All Segments: 51.98 dBA ♠ TOTAL Leq FROM ALL SOURCES (DAY): 59.57 (NIGHT): 51.98 STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 11:25:56 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec4.te Time Period: Day/Night 16/8 hours Description: Receptor Point 4 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) Angle1 Angle2 : -84.00 deg -63.00 deg woou depth : 0 No of house rows : 0 / 0 Surface (No woods.) 0 / 0 1 (Absorptive ground surface) Receiver source distance : 18.00 / 18.00 m Receiver height : 1.50 / 1.50 m : Topography 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Capilano Dr (day) _____ Source height = 1.50 m ROAD (0.00 + 49.62 + 0.00) = 49.62 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -84 -63 0.66 63.96 0.00 -1.31 -13.02 0.00 0.00 0.00 49.62 Segment Leq: 49.62 dBA TOTAL Leq FROM ALL SOURCES (DAY): 49.62 (NIGHT): 42.03 STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 11:28:47 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec5.te Time Period: Day/Night 16/8 hours Description: Receptor Point 5 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) _____ Angle1 Angle2 : 61.00 deg 79.00 deg Wood depth : 0 No of house rows : 0 / 0 Surface : 1 (No woods.) (Absorptive ground surface) Receiver source distance : 18.00 / 18.00 m Receiver height : 1.50 / 1.50 m : Topography 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Capilano Dr (day) _____ Source height = 1.50 m ROAD (0.00 + 49.52 + 0.00) = 49.52 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ----- 61 79 0.66 63.96 0.00 -1.31 -13.12 0.00 0.00 0.00 49.52 Segment Leq: 49.52 dBA ``` Total Leq All Segments: 49.52 dBA Results segment # 1: Capilano Dr (night) Source height = 1.50 m ROAD (0.00 + 41.93 + 0.00) = 41.93 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq 61 79 0.66 56.36 0.00 -1.31 -13.12 0.00 0.00 0.00 41.93 Segment Leq : 41.93 dBA Total Leq All Segments: 41.93 dBA ``` (NIGHT): 41.93 TOTAL Leq FROM ALL SOURCES (DAY): 49.52 STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 11:46:31 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec61.te Time Period: Day/Night 16/8 hours Description: Receptor Point 6-1 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) _____ Angle1 Angle2 : -74.00 deg 70.00 deg Wood depth : 0 No of house rows : 0 / 0 Surface : -(No woods.) 0 / 0 1 (Absorptive ground surface) Receiver source distance : 40.00 / 40.00 m Receiver height : 1.50 / 1.50 m : Topography 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Capilano Dr (day) _____ Source height = 1.50 m ROAD (0.00 + 55.07 + 0.00) = 55.07 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -74 70 0.66 63.96 0.00 -7.07 -1.81 0.00 0.00 0.00 55.07 Segment Leq: 55.07 dBA ``` Total Leq All Segments: 55.07 dBA Results segment # 1: Capilano Dr (night) Source height = 1.50 m ROAD (0.00 + 47.48 + 0.00) = 47.48 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -74 70 0.66 56.36 0.00 -7.07 -1.81 0.00 0.00 0.00 47.48 Segment Leq : 47.48 dBA Total Leq All Segments: 47.48 dBA ``` TOTAL Leq FROM ALL SOURCES (DAY): 55.07 (NIGHT): 47.48 • STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 11:48:11 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec64.te Time Period: Day/Night 16/8 hours Description: Receptor Point 6-4 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) _____ Angle1 Angle2 : -74.00 deg 70.00 deg woou depth : 0 No of house rows : 0 / 0 Surface (No woods.) 0 / 0 1 (Absorptive ground surface) Receiver source distance : 40.00 / 40.00 m Receiver height : 11.00 / 11.00 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00 Results segment # 1: Capilano Dr (day) _____ Source height = 1.50 m ROAD (0.00 + 56.63 + 0.00) = 56.63 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -74 70 0.38 63.96 0.00 -5.86 -1.47 0.00 0.00 0.00 56.63 Segment Leq: 56.63 dBA (NIGHT): 49.03 STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 11:50:58 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec71.te Time Period: Day/Night 16/8 hours Description: Receptor Point 7-1 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) _____ Angle1 Angle2 : -66.00 deg 0.00 deg Wood depth : 0 (No woods.) No of house rows : 1 / 1 House density : 40 % Surface : 1 (Absorptive ground surface) Receiver source distance : 50.00 / 50.00 m Receiver height : 1.50 / 1.50 m : 1 (Flat/gentle slope; no barrier) Topography : 0.00 Reference angle Results segment # 1: Capilano Dr (day) Source height = 1.50 m ROAD (0.00 + 48.19 + 0.00) = 48.19 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -66 0 0.66 63.96 0.00 -8.68 -5.05 0.00 -2.03 0.00 48.19 Segment Leq: 48.19 dBA (NIGHT): 40.60 TOTAL Leq FROM ALL SOURCES (DAY): 48.19 STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 11:59:06 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec74.te Time Period: Day/Night 16/8 hours Description: Receptor Point 7-4 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) _____ Angle1 Angle2 : -66.00 deg 0.00 deg Wood depth : 0 (No woods.) No of house rows : 1 / 1 House density : 40 % Surface : 1 (Absorptive ground surface) Receiver source distance : 50.00 / 50.00 m Receiver height : 11.00 / 11.00 m : 1 (Flat/gentle slope; no barrier) Topography : 0.00 Reference angle Results segment # 1: Capilano Dr (day) Source height = 1.50 m ROAD (0.00 + 49.97 + 0.00) = 49.97 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -66 0 0.38 63.96 0.00 -7.19 -4.76 0.00 -2.03 0.00 49.97 Segment Leq: 49.97 dBA ``` Total Leq All Segments: 49.97 dBA Results segment # 1: Capilano Dr (night) Source height = 1.50 m ROAD (0.00 + 42.37 + 0.00) = 42.37 dBA Angle1 Angle2
Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -66 0 0.38 56.36 0.00 -7.19 -4.76 0.00 -2.03 0.00 42.37 Segment Leq : 42.37 dBA Total Leq All Segments: 42.37 dBA ``` TOTAL Leq FROM ALL SOURCES (DAY): 49.97 (NIGHT): 42.37 **↑** lack STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 12:01:31 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec81.te Time Period: Day/Night 16/8 hours Description: Receptor Point 8-1 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) _____ Angle1 Angle2 : 0.00 deg 61.00 deg 0 (No woods.) Wood depth : 0 No of house rows : 1 / 1 House density : 20 % Surface : 1 (Absorptive ground surface) Receiver source distance : 50.00 / 50.00 m Receiver height : 1.50 / 1.50 m : 1 (Flat/gentle slope; no barrier) Topography : 0.00 Reference angle Results segment # 1: Capilano Dr (day) Source height = 1.50 m ROAD (0.00 + 49.09 + 0.00) = 49.09 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -----0 61 0.66 63.96 0.00 -8.68 -5.28 0.00 -0.90 0.00 49.09 Segment Leq: 49.09 dBA ``` Total Leq All Segments: 49.09 dBA Results segment # 1: Capilano Dr (night) Source height = 1.50 m ROAD (0.00 + 41.50 + 0.00) = 41.50 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq 0 61 0.66 56.36 0.00 -8.68 -5.28 0.00 -0.90 0.00 41.50 Segment Leq : 41.50 dBA Total Leq All Segments: 41.50 dBA TOTAL Leq FROM ALL SOURCES (DAY): 49.09 (NIGHT): 41.50 ``` STAMSON 5.0 NORMAL REPORT Date: 01-03-2023 12:24:58 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec84.te Time Period: Day/Night 16/8 hours Description: Receptor Point 8-4 Road data, segment # 1: Capilano Dr (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) _____ Angle1 Angle2 : 0.00 deg 61.00 deg No of house rows : 1 / 1 House density : 20 % Surface : 1 / 1 (Absorptive ground surface) Receiver source distance : 50.00 / 50.00 m Receiver height : 11.00 / 11.00 m : 1 (Flat/gentle slope; no barrier) Topography : 0.00 Reference angle Results segment # 1: Capilano Dr (day) Source height = 1.50 m ROAD (0.00 + 50.83 + 0.00) = 50.83 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ----- 0 61 0.38 63.96 0.00 -7.19 -5.04 0.00 -0.90 0.00 50.83 Segment Leq: 50.83 dBA ``` Total Leq All Segments: 50.83 dBA Results segment # 1: Capilano Dr (night) Source height = 1.50 m ROAD (0.00 + 43.23 + 0.00) = 43.23 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq 0 61 0.38 56.36 0.00 -7.19 -5.04 0.00 -0.90 0.00 43.23 Segment Leq : 43.23 dBA Total Leq All Segments: 43.23 dBA ``` (NIGHT): 43.23 lack TOTAL Leq FROM ALL SOURCES (DAY): 50.83 NORMAL REPORT STAMSON 5.0 Date: 01-03-2023 12:33:17 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec9.te Time Period: Day/Night 16/8 hours Description: Receptor Point 9 Road data, segment # 1: Capilano Dr (day/night) ----- Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Capilano Dr (day/night) Angle1 Angle2 : -70.00 deg 66.00 deg Wood depth 0 (No woods.) No of house rows : 0 / 0 (Absorptive ground surface) Surface 1 Receiver source distance : 50.00 / 50.00 m Receiver height : 14.50 / 14.50 m : (Flat/gentle slope; with barrier) Topography 2 : -70.00 deg : 13.00 m Barrier angle1 Angle2 : 66.00 deg Barrier height Barrier receiver distance : 10.00 / 10.00 m Source elevation : 96.00 m Receiver elevation : 96.00 m Barrier elevation : 96.00 m : 0.00 Reference angle Results segment # 1: Capilano Dr (day) Source height = 1.50 m Barrier height for grazing incidence _____ ``` Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) ----- 1.50 ! 14.50 ! 11.90 ! 107.90 ROAD (0.00 + 50.19 + 0.00) = 50.19 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -70 66 0.00 63.96 0.00 -5.23 -1.22 0.00 0.00 -7.32 50.19 Segment Leq: 50.19 dBA Total Leq All Segments: 50.19 dBA Results segment # 1: Capilano Dr (night) ______ Source height = 1.50 m Barrier height for grazing incidence Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) ----- 1.50 ! 14.50 ! 11.90 ! 107.90 ROAD (0.00 + 42.60 + 0.00) = 42.60 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -70 66 0.00 56.36 0.00 -5.23 -1.22 0.00 0.00 -7.32 42.60 ______ Segment Leq: 42.60 dBA Total Leq All Segments: 42.60 dBA TOTAL Leg FROM ALL SOURCES (DAY): 50.19 (NIGHT): 42.60 ``` NORMAL REPORT STAMSON 5.0 Date: 01-03-2023 12:42:27 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec10.te Time Period: Day/Night 16/8 hours Description: Receptor Point 10 Road data, segment # 1: CapilanoDr A (day/night) ----- Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: CapilanoDr A (day/night) ----- Angle2 : -80.00 deg -20.00 deg Angle1 Wood depth : 0 (No woods.) No of house rows : House density : Surface : 1 / 1 20 % 1 (Absorptive ground surface) Receiver source distance : 30.00 / 30.00 m Receiver height : 1.50 / 1.50 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00 Road data, segment # 2: CapilanoDr B (day/night) ----- Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 ``` Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 2: CapilanoDr B (day/night) ----- Angle1 Angle2 : 64.00 deg 75.00 deg Wood depth : 0 (No woods (No woods.) 0 / 0 No of house rows : 1 (Absorptive ground surface) Surface Receiver source distance : 30.00 / 30.00 m Receiver height : 1.50 / 1.50 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00 Results segment # 1: CapilanoDr A (day) _____ Source height = 1.50 m ROAD (0.00 + 51.81 + 0.00) = 51.81 \text{ dBA} Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -80 -20 0.66 63.96 0.00 -5.00 -6.25 0.00 -0.90 0.00 51.81 ______ Segment Leq: 51.81 dBA Results segment # 2: CapilanoDr B (day) _____ Source height = 1.50 m ROAD (0.00 + 43.80 + 0.00) = 43.80 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ 64 75 0.66 63.96 0.00 -5.00 -15.16 0.00 0.00 0.00 43.80 Segment Leq: 43.80 dBA Total Leq All Segments: 52.45 dBA Results segment # 1: CapilanoDr A (night) ______ ``` ``` Source height = 1.50 m ROAD (0.00 + 44.22 + 0.00) = 44.22 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -80 -20 0.66 56.36 0.00 -5.00 -6.25 0.00 -0.90 0.00 44.22 Segment Leq: 44.22 dBA Results segment # 2: CapilanoDr B (night) _____ Source height = 1.50 m ROAD (0.00 + 36.20 + 0.00) = 36.20 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ 64 75 0.66 56.36 0.00 -5.00 -15.16 0.00 0.00 0.00 36.20 ______ Segment Leq: 36.20 dBA Total Leq All Segments: 44.86 dBA TOTAL Leq FROM ALL SOURCES (DAY): 52.45 (NIGHT): 44.86 ```