

 Tel.
 +1 877 559 6718

 Fax
 :
 780 814 5533

 Email :
 info@designworkseng.com

Wateridge Village Municipal Servicing and Stormwater Management Feasibility Study Report

Prepared by: Design Works Engineering Ltd. Prepared for: WestUrban Developments DW Project Number: 2021630 Date: January 11, 2023 Revision: 1

 Tel.
 :
 +1 877 559 6718

 Fax
 :
 780 814 5533

 Email :
 info@designworkseng.com

Table of Contents

1.	Intro	oduction3
	1.1	Existing Conditions
	1.2	Proposed Development5
	1.3	Permit and Approval Requirements5
	1.4	Geotechnical Consideration
2	Refe	erences6
3	Wat	er Distribution6
	3.1	Water Servicing Criteria
	3.2	Proposed Water Servicing7
4	Sani	tary Sewer8
	4.1	Design Criteria
	4.2	Proposed Sanitary Sewer Servicing9
	4.3	Sanitary Capacity Analysis9
5	Stor	mwater Management
	5.1	Stormwater Management Design Criteria10
	5.2	Peak Storm Flow Rates11
	5.3	Existing Drainage Conditions11
	5.4	Proposed Stormwater Design11
	5.5	Low Impact Development (LID) Practices
6	Eros	ion and Sediment Control15
7	Con	clusion16

 Tel.
 :
 +1 877 559 6718

 Fax
 :
 780 814 5533

 Email :
 info@designworkseng.com

List of Tables

Table 1-1: Proposed Development Surface Breakdown	5
Table 3-1: Summary of Water Demand	8
Table 3-2: Available Fire Flow at Hydrants	8
Table 4-1: Wastewater Flow per Design Brief	9
Table 5-1: Proposed Development Surface Breakdown	12
Table 5-2: Post-Development Surface Type Breakdown and Runoff Coefficients	12
Table 5-3: Required Stormwater Storage Volume	13

List of Appendices

Appendix A – Domestic and Fire Water Demand Calculation Sheets

- Appendix B Sanitary System Calculation Sheets
- Appendix C Stormwater Calculation Sheets

1. Introduction

Design Works Engineering Ltd. has been retained by WestUrban Developments Ltd. to prepare a Site Servicing and Stormwater Management report for their residential project located at 1050 Tawadina Road, Wateridge Village, Ottawa, Ontario as shown in Figure 1. The site is encompassed by Tawadina Road to the North, Michael Stoqua Street to the East, a future development and Hemlock Road to the South, and Barielle Snow Street to the West. Presently, the site is vacant and located on the former CFB Rockcliffe air base site. The surrounding roads and underground services for the site have been constructed. The land has been zoned for a Mid-Rise Mixed Use.

The proposed development consists of the construction two 9-storey residential buildings with one level of underground parkade. The buildings located northwest and southeast are labelled as Building A and Building B respectively. Building A and Building B consist of 144 units and 110 units respectively, offering a total of 146 1-bedroom units and 108 2-bedroom units. This equates to an estimated occupancy of 432. This Municipal Servicing and Stormwater Management Feasibility Study Report shall identify and analyze the impact of the proposed development to municipal storm, sanitary, and water services available for the site.

This report shall be an analysis of the following:

- Analyze the impact of the proposed development to existing municipal infrastructure systems.
- Identify City of Ottawa criteria with respect to storm, sanitary and water servicing including the stormwater management criteria for the development of the site.
- Estimate the storm, sanitary, and water demands of the proposed development.
- Investigate the capacity of the existing municipal watermains and sewers.
- Provide recommendation and description of stormwater management strategy for the site with respect to quantity control, quality control, and water balance.
- Provide a site servicing strategy for the site.

Figure 1 – Site Location

1.1 Existing Conditions

The proposed development site is identified as Parcel 1 of Block 11 within Phase 2B of the Wateridge development. The site is approximately 0.7179 ha in area and is presently vacant. The site is relatively flat and consists of grassland and granular surface. The site presently does not have any service connections. A summary of the existing sewer and water services encompassing the site are shown below.

Tawadina Road

- 400 mm diameter watermain
- 750 mm diameter storm sewer
- 250 mm diameter sanitary sewer

Barielle Snow Street

- 200 mm diameter watermain
- 525 mm diameter storm sewer
- 250 mm diameter sanitary sewer

Michael Stoqua Street

- 200 mm diameter watermain
- 375 mm diameter storm sewer
- 250 mm diameter sanitary sewer

1.2 Proposed Development

The proposed development consists of the construction of two 9-storey residential buildings. The buildings include a shared underground parkade consisting of 217 stalls. The buildings are separated by a walkway from the southwest to northeast direction. Building A is a 144 unit, 9-storey apartment building with a gross floor area of 11,318 m². Building B is a 110 unit, 9-storey apartment building with a gross floor area of 8,853 m². Vehicular access to the proposed building underground parkade will be provided via entrances located on Tawadina Road. Refer to the table below for detailed breakdown of the proposed site condition.

Proposed Land Use	Area (ha)
Asphalt / Concrete	0.1733
Building	0.3392
Unit Pavers	0.0455
Landscaping	0.1601
Total Site Area:	0.7179

Table 1-1: Proposed Development Surface Breakdown

1.3 Permit and Approval Requirements

The proposed development shall conform to all requirements set out by the Ontario Water Resources Act (OWRA) for both stormwater and sewage discharge.

Environmental Compliance Approval (ECA) requirements shall be discussed in subsequent submissions following discussion with the City of Ottawa.

The City of Ottawa must approve all engineering drawings and reports for the site plan control application prior to issuance of site plan control.

1.4 Geotechnical Consideration

A Geotechnical Investigation Report entitled *Proposed Mixed-Use Development Phase 2A & 2B* was prepared by Alston Associates, dated February 5, 2019, detailing geotechnical recommendations for the mixed-use development of Wateridge Village (Phase 2A and 2B). Following this investigation, a Geotechnical Investigation was prepared by Englobe Corp., dated October 11th, 2022, detailing geotechnical requirements for the subject site. The proposed design is compliant with the requirements set out in the forementioned reports.

2 References

The following technical design guidelines and standards were considered for site servicing design:

- City of Ottawa Sewer Design Guidelines, October 2012
- City of Ottawa Design Guidelines Water Distribution, July 2010
- City of Ottawa Servicing Study Guidelines for Development Applications, November 2009
- Former CFB Rockcliffe Master Servicing Study, Revised June 2020
- Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing Memorandum, April 2022
- Geotechnical Investigation Report Proposed Mixed-Use Development Phase 2A & 2B, Alston Associates, February 2019
- Geotechnical Investigation, Englobe Corp., October 11th, 2022
- Toronto and Region Conservation Authority (TRCA) & Credit Valley Conservation (CVC) Low Impact Development Stormwater Management Planning and Design Guide, 2010
- Ministry of Environment, Conservation and Park (MECP) Guidelines for the Design of Water Systems, 2008
- MECP Guidelines for the Design of Sanitary Sewage Systems, 2008
- MECP Stormwater Planning and Design Manual, 2003
- MTO Drainage Design Manual, 1997
- Ontario Building Code, 2010

3 Water Distribution

3.1 Water Servicing Criteria

The City of Ottawa's Design Guidelines – Water Distribution (2010) and Fire Underwriters Survey (FUS, 2020) guidelines were used to analyze the water demand from the proposed development.

The criteria are summarized as follows:

- Water demand used for watermain size selection should be sufficient to satisfy the greater of maximum day demand plus fire flow or peak hour demand
- Minimum pipe size of 150 mm

- Minimum pipe cover of 2 m
- Average domestic water demands of 280 liters per capita per day
- Peaking Factor, Maximum Residential Day Demand of 2.5
- Peaking Factor, Maximum Residential Hour Demand of 5.5
- A unit density for 1-bedroom and 2-bedroom of 1.4 PPU and 2.1 PPU, respectively
- A minimum pressure of 140 kPa (20 psi)
- A maximum residual pressure of 552 kPa
- An operating pressure under maximum daily flow of 345 552 kPa
- A minimum pressure during maximum hourly flow of 276 kPa (40 psi)
- For service area with a demand above 50,000 L/day, a minimum 2 feeds is to be provided to avoid service disruption

3.2 Proposed Water Servicing

The proposed development consists of 146 one-bedroom units and 108 two-bedroom units, equating to an estimated occupancy of 432. Two new 200 mm diameter connections will be installed to service both buildings, one connecting to the existing 400 mm diameter watermain on Tawadina Road and another connecting to the existing 200 mm diameter watermain on Michael Stoqua Street. The new connection will require a valve at the property line and a detector check valve inside the proposed mechanical room. The exact location, pressure and size of the connection shall be confirmed with the mechanical engineer during detailed design.

The site is surrounded by four existing fire hydrants, one located on Barielle Snow Street, two on Tawadina Road, and one on Michael Stoqua Street. The hydrants are spaced less than 90 m apart, meeting the requirement of Table 4.9 of the City of Ottawa - Design Guidelines – Water Distribution, July 2010.

Based on the City of Ottawa - Design Guidelines – Water Distribution, the required average daily demand is 1.40 L/s, the required maximum day demand is 3.50 L/s, and the peak hour demand is 7.70 L/s. Calculations for fire flows using the Fire Underwriters Survey (FUS) indicate a maximum required fire flow of approximately 316.67 L/s (19,000 L/min or 5,019.28 US GPM) for Building A and approximately 250.00 L/s (15,000 L/min or 3,962.59 US GPM) for Building B, based on a non-combustible construction with a sprinkler system designed to NFPA. Since the fire flow calculation for the Building A yields a higher demand, the required fire flow for Building A will be used in subsequent calculations. Refer to Appendix A for detailed water demand calculations.

As per Section 4.1, the water demand for the proposed development is the greater of maximum day demand plus fire flow or peak hour demand. Therefore, the maximum day demand plus fire flow demand (3.50 L/s + 316.67 L/s = 320.17 L/s = 19,210 L/min = 5,075 US GPM) is the governing requirement. Refer to Table 3-1 for the summarized water demand requirement.

According to the Master Servicing Study completed by IBI dated June 2020, Nodes N046 and N048 as shown in *Appendix C – Water Distribution System: Hydraulic Modeling Results* indicates the hydrant closest to the proposed connections for the site. The available fire flow for these two hydrants is also tabulated in the report. The available flow for nodes N046 and N048 at 20 psi is 26,690 L/min and 27,290 L/min as shown in Table 3-2, which is greater than the required domestic and fire demand of 19,210 L/min. Therefore, adequate water supply and pressure are available to serve the proposed development.

Table 3-1: Summary of Water Demand

Design Parameter	Demand (L/s)
Average Day	1.40
Maximum Day	3.50
Peak Hour	7.70
Fire Flow Building A	316.67
Fire Flow Building B	250.00
Total Water Demand*	320.17

*Total Water Demand calculated as the fire flow (higher of the two buildings) + maximum day flow (total of two buildings)

Table 3-2: Available Fire Flow at Hydrants

Street Name	Available Fire Flow at 20 Psi (L/min)	Required Fire Flow (L/min)	
Tawadina Road (N046)	26,690	19,000	
Tawadina Road (N048)	26,290		

Moreover, based on the Block 11 – Parcel 1 Site Plan Submission Technical Memorandum prepared by IBI group dated November 23, 2022, the basic day pressures range from 551.6 kPa to 555.0 kPa on Tawadina Road; the peak hour pressures range between 498.8 kPa and 508.1 kPa; and the fire flows available during maximum day demand range between 462.6 L/s and 850.5 L/s. Since the peak hour pressure exceed 276 kPa as per City's criteria and the available fire flow exceeds the required fire flow rate of 320.17 L/s, the water distribution system surrounding the proposed development is adequate to support the proposed development.

4 Sanitary Sewer

4.1 Design Criteria

The City of Ottawa - Sewer Design Guidelines (2012) was used to analyze the sanitary demand from the proposed development. The City's criteria are summarized as follows:

• A unit density for 1-bedroom and 2-bedroom of 1.4 PPU and 2.1 PPU respectively.

- Average wastewater flow for residential occupancy of 280 liters per capita per day.
- Peaking factor for domestic wastewater flow is calculated by the Harmon Equation of [M = 1+ (14/(4+(P/1000)^{0.5}) *K].
- A minimum and maximum value of Harmon's peaking factor of 2.0 and 4.0, respectively.
- A Harmon correction factor of 0.8 for residential developments.
- A dry weather, wet weather, and a total infiltration rate of 0.05 L/s/ha, 0.28 L/s/ha, and 0.33 L/s/ha respectively.
- Sanitary sewers were sized using Manning's Equation of [Q=(1/n)*A*R^{2/3}S^{1/2}].
- Minimum Full Flow Velocity and Maximum Full Flow Velocity of 0.6 m/s and 3.0 m/s respectively.
- A minimum pipe size of 200 mm (150 mm for building service connections).

4.2 Proposed Sanitary Sewer Servicing

The proposed sanitary sewer connection is proposed to tie-in to the 250 mm sanitary sewer on Tawadina Road. The proposed sewer service shall be a 150 mm pipe at a 1% slope flowing at 15.9% capacity, which shall discharge via a sanitary control manhole at the property line. The proposed sanitary sewer service connection shall tie-in to the existing 250 mm sanitary sewer on Tawadina Road via a proposed manhole.

The estimated total peak sanitary flow for the proposed development is 5.00 L/s. Sanitary flow calculations for the pre-development and proposed development are shown in Appendix B.

Design Parameter	Value
Estimated Average Dry Weather Flow (L/s)	0.04
Estimated Peak Dry Weather Flow (L/s)	0.20
Estimated Peak Wet Weather Flow (L/s)	0.24
Harmon's Peaking Factor	3.4
Total Domestic Wastewater Flow (L/s)	4.77
Total Design Wastewater Flow (L/S)	5.00

Table 4-1: Wastewater Flow per Design Brief

4.3 Sanitary Capacity Analysis

The proposed development will result in an increase in sanitary flow to the 250 mm sanitary sewer along Tawadina Road and the downstream 250 mm sanitary sewer located on Barrielle Snow Street.

Based on the Master Servicing Study completed by IBI dated June 2020, MH312A shown in Figure 5.1 of Appendix D – Wastewater Collection System: Supporting Information is located directly downstream of the proposed development. Based on the Sanitary Sewer Design Sheets provided in Appendix D –

Wastewater Collection System: Supporting Information, MH312A has an available capacity of 10.91 L/s. As such, the available capacity of the existing sanitary sewer is sufficient to accommodate the additional wastewater flow of 5.00 L/s from the proposed development.

An updated analysis was completed by IBI Group to determine the ability of the existing sanitary sewer system to accommodate the proposed development and the results are included in the Block 11 – Parcel 1 Site Plan Submission Technical Memorandum dated November 23, 2022. Based on the analysis, the wastewater flows in the Tawadina Road sewer from MH303A to MH304A is 7.96 L/s, with a spare capacity of 23.06 L/s. The sewer downstream of the Tawadina Road sewer, along Barielle Snow Street, from MH304A to MH308A has a wastewater flow of 26.80 L/s, with a spare capacity of 12.93 L/s. As such, it is IBI Group's opinion that the existing sanitary sewers in Tawadina Road and Barielle Snow Street can accommodate the sanitary flow from the proposed development.

5 Stormwater Management

5.1 Stormwater Management Design Criteria

To ensure that the proposed development does not introduce excess flow into existing stormwater management infrastructure, the proposed development shall control stormwater discharge to be less than or equal to the allowable release rate as stated by the Master Servicing Study completed by IBI dated June 2020 and the subsequent Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing Memorandum dated April 2022. The stormwater management system proposed shall conform to both the quality and quantity control requirements. The subsequent sections provide estimates of the pre-development and post-development storm runoff volume and details of the proposed stormwater management system.

The stormwater management (SWM) plan for the proposed development shall conform the criterion and/or guidelines from the City of Ottawa Sewer Design Guidelines and MECP for the Design of Water Systems. A summary of the stormwater management criteria applied for this development is provided as follows:

- Water Quality Control: Provide long-term average removal of 80% of Total Suspended Solids (TSS).
- Design storm event of 1-in-2-year, 1-in-5-year, and 1-in-100-year storm shall be considered.
- Overland flow shall have a safe route for flows greater than 100-year storm events.
- A time of concentration and inlet time of 10 minutes were considered for calculations.
- A 25% growth factor is added to runoff coefficient for 100-year storm.
- A minimum pipe velocity 0.8 m/s.
- A maximum pipe velocity of 3.0 m/s.

5.2 Peak Storm Flow Rates

Peak flow rate can be calculated using the following equations:

Rational Formula:	Q = 2.78 CiA (L/s)
Where:	C = runoff coefficient;
	i = rainfall intensity (mm/hour); and
	A = site area (ha).
IDF Curve Equation:	$i = \left[\frac{A}{Td + C^B}\right]$
Where:	A, B, C = regression constants for each return period;
	Td = Time of duration (min)

5.3 Existing Drainage Conditions

Based on the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing Memorandum dated April 2022, minor storm runoff from Parcel 1 of Block 11 has been designed to drain to Barielle Snow Street, with major flow tipping to Barielle Snow Street at Hemlock Road. Based on the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing Memorandum, the minor system capture by MH309 on Barielle Snow Street is limited to 195 L/s between 5- and 100-year design storm event and the required on-site storage is 43 m³ up to the 100-year design storm event. Based on the Pre-Application Consultation Meeting Notes dated July 21, 2022, when underground storage is used, the City of Ottawa require that an average release rate equal to 50% of the peak allowable rate shall be applied to estimate the required volume. As such, the allowable release rate is limited to 97.5 L/s.

The site is graded southeast direction towards Barielle Snow Street with a mild slope less than 5% consisting of granular and grass surface.

5.4 Proposed Stormwater Design

The proposed development is split into three sub-catchments. Sub-Catchment 1 (SC#1) consist of the area outside of Building 1's façade facing Barielle Snow Street and Tawadina Road, west of the proposed underground parkade entrance; Sub-Catchment 2 (SC#2) consist of the area outside of Building 1's façade facing Tawadina Road, east of the proposed underground parkade entrance, and area outside of Building 2's building façade. These two sub-catchments cannot be controlled and shall flow away from the proposed building and be directed to the surrounding municipal right-of-way. Stormwater runoff from these two sub-catchments will be captured by catchbasins along the surrounding municipal right-of-way.

Sub-Catchment 3 (SC#3) consists of the remaining of the proposed development site, consisting of the two proposed buildings, the central courtyard and the proposed surface parking. To ensure that the total peak runoff does not exceed the allowable release rate of the site, Sub-Catchment 3 shall be

overcontrolled. Stormwater will be stored in the proposed cistern located in the underground parkade and release to the storm sewer along Barielle Snow Street via a control orifice.

The proposed development proposes five area drains at the center of the property that shall flow into the cistern located in the underground parkade for water quantity control. The overland flow shall be designed to inlet into the proposed area drains while ensuring ponding is below 0.3 m of the Building Finished Floor Elevation (FFE). Runoff produced by the roof shall be conveyed via roof drains into the infiltration chamber located at the southwest corner of the site for infiltration, erosion, and water quality LID Design Target. A breakdown of the surface conditions of the proposed development is presented in Table 5-1.

A 300 mm storm sewer is proposed at a 2% slope to connect into the existing MH309 on Barielle Snow Street, which is connected to the 525 mm diameter storm sewer flowing south along Barielle Snow Street.

Refer to the table below for detailed breakdown of the proposed site condition. The proposed site has a composite runoff coefficient of 0.76 and 0.85 for a 100-year storm. The stormwater management calculations, catchments, and plan are shown in Appendix C.

Surface Type	Area (ha)	С	C (100-year)
Asphalt / Concrete	0.1733	0.90	1.00
Building	0.3392	0.90	1.00
Landscaping	0.1601	0.25	0.31
Pavers	0.0455	0.90	1.00
Total	0.7179	0.76	0.85

Table 5-1: Proposed Development Surface Breakdown

The peak runoff for a 100-year storm for SC#1, SC#2, and SC#3 is 20.97 L/s, 30.92 L/s, and 249.63 L/s respectively. A summary of the surface breakdown for each catchment is shown in Table 5-2.

Table E 2.	Doct Douald	nmont Surfa	o Tuno	Drockdown	and	Dupoff	Coofficients
TUDIE J-Z.	FUSI-DEVEIL	φπιεπι σάι juc	e rype	DIEUKUUWII	unu	Nullojj	COEJJICIEIIIS

Surface Tune	Total Site Area		SC#1		SC#2		SC#3	
Surface Type	Area (ha)	С	Area (ha)	С	Area (ha)	С	Area (ha)	С
Asphalt/ Concrete	0.1733	0.90	0.0370	0.90	0.0463	0.90	0.0900	0.90
Building	0.3392	0.90	-	-	-	-	0.3392	0.90
Landscaping	0.1601	0.25	0.0169	0.25	0.0515	0.25	0.0917	0.25
Pavers	0.0455	0.90	-	-	-	-	0.0455	0.90
Total	0.7179	0.76	0.0539	0.70	0.0978	0.56	0.5563	0.79

Based on the allowable discharge rate, the stormwater storage requirements for Sub-Catchment SC#3 at different storm events are summarized in Table 5-3. This storage shall be stored and controlled via the proposed cistern and orifice pipe located in the underground parkade.

	Return Period					
	5-year	10-year	50-year	100-year		
Required Storage Volume SC#3 (m ³)	44.83	59.79	95.79	134.24		

Although the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing Memorandum dated April 2022 identified a required on-site storage of 43 m³ for the 100-year design storm event, since the above calculation indicated a higher on-site storage requirement of 134.24 m³, the higher value of 134.24 m³ will be used for the stormwater storage requirements. Detail regarding the cistern and the orifice control will be provided in subsequent submissions.

The major system flow has been designed to be directed towards Barielle Snow Street, which shall flow south towards Hemlock Road. The major system flow from Hemlock Road will flow west onto Codd's Road then ultimately flow into the existing Park Dry Pond located south as shown in Appendix C.

5.5 Low Impact Development (LID) Practices

LID measures are proposed in accordance with the Wateridge Phase 2B LID Developer's Checklist as shown in Appendix D. The LID Design Target for Infiltration and Erosion is 4 mm applied over the full catchment area of 0.7179 ha; and the LID Design Target for Water Quality is a minimum of 15 mm applied over contributing impervious area. Based on the total site area of 0.7179 ha, the runoff volume from a 4 mm rainfall event over the entire catchment area equates to 28.72 m³; Based on the impervious area of 0.5579 ha, the runoff volume from a 15 mm rainfall event over the impervious area of the site equates to 83.68 m³.

Various LID lot-level controls were investigated to determine the suitability of the design for the proposed development as follows:

• **Green Roof:** Green roofs consist of a thin layer of vegetation and growing medium installed on top of a conventional flat roof, which can provide water balance and water quality benefit. According to Table 4.1: Low Impact Development (LID) Suitability Matrix by Land-Use in the Wateridge Phase 2B LID Developer's Checklist, green roofs for low and medium rise mixed use developments are poorly suited for this type of proposed development. Additionally, the installation of a green roof will incur significant cost to the proposed development as well as costs associated with long term maintenance and operation of the green roof. For these reasons, a green roof is not proposed for the development.

- **Bioretention:** Bioretention is a vegetated stormwater practice that can capture, temporarily store, and treats stormwater runoff by passing it through engineered filter media. Although the bioretention cell can provide filtration for water quality treatment, since the underground parking garage will occupy the entirely of the proposed development area, infiltration of filtered water into native soils is not feasible. Therefore, the use of bioretention in the central courtyard to provide infiltration and erosion control is also not suitable for the proposed development.
- Rainwater Harvesting: Rainwater harvesting is a practice to intercept, divert, and store rainfall runoff to the proposed cistern for future use. According to Table 4.1: Low Impact Development (LID) Suitability Matrix by Land-Use in the Wateridge Phase 2B LID Developer's Checklist, rainwater harvesting is identified as a "Poor Suitability" LID lot-level control for this type of development. The installation of this system will incur significant cost to the development. Therefore, the use of rainwater harvesting is also not suitable for the proposed development.
- Infiltration Chamber: Infiltration chambers work exclusively to infiltrate stormwater into native soil. An infiltration chamber is proposed at the southwest corner of the proposed development. To prevent damage to building foundation, infiltration chambers are required to be setback by 4m away from the building foundation or, if 4m cannot be accommodated, to include an impermeable barrier proximal to the building side of the infiltration system. Moreover, based on the TRCA/CVC LID Stormwater Management Planning and Design Guide, the impervious drainage area to the area of infiltration system should be between 5:1 and 20:1. As such, based on the impervious area of 0.5579 ha, the area of the proposed infiltration system should be between 1115.7 m² and 278.9 m².

Since the underground parking garage will occupy almost the entirely of the proposed development area in order to comply with the off-street parking regulation required by the City of Ottawa, it is not possible to provide 4m setback from the building foundation while providing the required footprint for the infiltration system. As such, waterproofing of the building foundation will be required. Based on project of similar nature in the vicinity of the proposed development, it is expected that the proposed development will require waterproofing with a thickness of approximately 1m. As such, the proposed infiltration system is designed to set back 2m away from the building foundation to allow for proper separation away from the waterproofing layer. Based on the above, it is expected that the proposed infiltration chamber will provide a minimum storage requirement of 83.68 m³ with a footprint of approximately 288 m². Further design detail of the proposed infiltration chamber and the proposed developments hydrogeological condition will be provided in subsequent submissions.

• **Downspout Disconnection:** Downspout disconnection involves redirection of flow from downspouts to a pervious area in order to prevent stormwater from directly entering the drainage system or flowing across an impervious surface. The proposed development will install rainwater leaders directly into the proposed cistern to prevent water from flowing across

impervious surface. Water will be controlled within the proposed cistern to provide quantity control.

• **Permeable Pavements:** Permeable pavements can be used as an alternative to traditional impervious pavement for low traffic surface for infiltration into the underlying soil. However, since the underground parking garage will occupy the entirety of the proposed development area in order to comply with the City of Ottawa off-street parking requirements, water will not be able to infiltrate into native soil. Therefore, the use of permeable pavements is not suitable for the proposed development.

6 Erosion and Sediment Control

During construction, several control measures will be implemented to prevent the sediment suspended in storm runoff from discharging onto the adjacent private properties, roadways, and into the underground storm and sanitary system.

The measures to be used include silt fencing around the perimeter of the site, catch basin inlet protection via filter fabric, and mud mats. The following is a summary of the control measures that must be implemented during construction:

- Silt Fencing to be installed along all property lines where flow is exiting the construction site and surrounding soil stockpiles.
- Inlet socks shall be used as Catch Basin Inlet Protection for all catch basins installed on site and adjacent streets during construction.
- All exposed soil shall be stabilized with seed or mulch as soon as possible.
- No construction activity is to be done outside of the area enclosed by silt fences.
- All construction vehicles are to enter and exit the property at a designated location where mud mats are installed.
- All control measures are to be inspected weekly, after every storm event, and after any snowmelt event and should maintained within 24 hours of discovery of damage or major accumulation.

7 Conclusion

The report has been completed with the intention of being included in an overall package for Site Plan Control Application submission for the proposed development. This report should not be used for any other unauthorized uses. If any discrepancies or issues arise, please contact the undersigned.

Dorothy Poon, P. Eng. Civil Project Manager | Engineer C: <u>647 996 8208</u> E: <u>dorothyp@designworkseng.com</u> Design Works Engineering Ltd.

Grande Prairie | Edmonton | Toronto

 Tel.
 +1 877 559 6718

 Fax
 :
 780 814 5533

 Email :
 info@designworkseng.com

Appendix A

Domestic and Fire Water Demand Calculation Sheets

	Summary			
	Prepared:	B.B.	Page No.	A-01
	Checked:	D.P.		
Project: 1050 Tawadina Road, Waterigde	Proj. #	2021630		
Village, Ottawa	Date:	Oct 24, 22		

Fire Flow Building A

F =	19000	L/min
=	316.67	L/s
=	5019.28	US GPM

Fire Flow Building B

F =	15000	L/min
=	250.00	L/s
=	3962.59	US GPM

Domestic Flow Building 1/2

Maximum Daily Domestic Demand =	302400	L/min
=	3.50	L/s
=	55.48	US GPM

Total Water Demand

Total Demand Flow	=	320.17	L/s
	Ш	19210.00	L/min
	Π	5074.76	US GPM

* Largest Fire Flow From Both Buildings Dictated Total Water Demand

	Fire Flow Calculations			
	Prepared:	B.B	Page No.	A-02
··· _ · ·	Checked:	D.P.		
Project: 1050 Tawadina Road, Waterigde	Proj. #	2021630		
Village, Ottawa	Date:	Oct 24, 22		

Building A

Type of Construction:

Non-Combustible

C= 0.8

Building Area

	Area (m ²)
For Construction Coefficient Less than 1.0	
Adjacent Floor Below	19395.0
Largest Floor	21080
Adjacent Floor Above	21057
Floor Area	31193
Total Number of Storey	9
Total GFA Above Ground	115719

Fire Flow (F1)

Fire Flow Formula, F=	220 x C x (A ^{0.5})	
=	31084.31	L/min
Round to nearest 1000 L/min =	31000	L/min

Type of Occupancy (F2)

Type of Occupancy =	Non-Combustible	
Adjustment Percentage =	-25%	
Occupancy Adjustment =	-7750	L/min
F2 =	23250	L/min

Sprinkler Adjustment (F3)

Automatic Sprinkler =	Yes	
Adjustment Percentage =	-40%	
Occupancy Adjustment =	-9300	L/min
F3 =	13950	L/min

Fire Separation (F4)

Separation Charge	Charge (%)	Separation (m)		Separation (m)		Separation Range		
North	0%	N/A		N/A		N/A		>30 m
South	20%	6.208		6.208		3.1 - 10 m		
East	0%	N/A		>30 m				
West	0%	N/A		>30 m				
Total Separation Charge =	20%							
=	4650	L/min						

Total Fire Water Demand

Total Fire Water Demand =	18600	L/min
Round to nearest 1000 L/min =	19000	L/min
=	316.67	L/s
=	5019.28	US GPM

	Fire Flow Calculations			
	Prepared:	B.B	Page No.	A-03
··· _ · ·	Checked:	D.P.		
Project: 1050 Tawadina Road, Waterigde	Proj. #	2021630		
Village, Ottawa	Date:	Oct 24, 22		

Building B

Type of Construction:

Non-Combustible

C= 0.8

Building Area

	Area (m ²)
For Construction Coefficient Less	than 1.0
Adjacent Floor Below	13633.0
Largest Floor	13633
Adjacent Floor Above	12639
Floor Area	20201
Total Number of Storey	9
Total GFA Above Ground	86124

Fire Flow (F1)

Fire Flow Formula, F=	220 x C x (A ^{0.5})	
=	25014.92	L/min
Round to nearest 1000 L/min =	25000	L/min

Type of Occupancy (F2)

Type of Occupancy =	Non-Combustible	
Adjustment Percentage =	-25%	
Occupancy Adjustment =	-6250	L/min
F2 =	18750	L/min

Sprinkler Adjustment (F3)

Automatic Sprinkler =	Yes	
Adjustment Percentage =	-40%	
Occupancy Adjustment =	-7500	L/min
F3 =	11250	L/min

Fire Separation (F4)

Separation Charge	Charge (%)	Separation (m)		Separation (m)		Separation Range
North	20%	6.2		6.2		3.1 - 10 m
South	0%	N/A		N/A		>30 m
East	0%	N/A		>30 m		
West	0%	N/A		>30 m		
Total Separation Charge =	20%					
=	3750	L/min				

Total Fire Water Demand

Total Fire Water Demand =	15000	L/min
Round to nearest 1000 L/min =	15000	L/min
=	250.00	L/s
=	3962.59	US GPM

	Domestic Water Demand			
	Prepared:	B.B	Page No.	A-04
··· _ · ·	Checked:	D.P.		
Project: 1050 Tawadina Road, Waterigde	Proj. #	2022104		
Village, Ottawa	Date:	Oct 24, 22		

Fire Flow

Total GFA =	115719	m ²
Total Population =	432	persons
Average Day Consumption =	280	L/cap/day

Peaking Factor

Max Day =	2.5
Peak Hour =	5.5

Total Water Demand

Average Domestic Water Demand =	120960	L/day
=	1.40	L/s
=	22.19	US GPM
Maximum Day Domestic Water Demand =	302400	L/day
=	3.50	L/s
=	55.48	US GPM
Peak Hour Domestic Water Demand =	665280	L/day
=	7.70	L/s
=	122.05	US GPM

BSDY & MXDY Analysis with MRPS at Max. Discharge HGL = 147m

	BSDY		MXDY		
ID	Max Pressure (psi)	Min Pressure (psi)	Max Pressure (psi)	Min Pressure (psi)	
N001	62.99	55.65	62.98	56.39	
N002	72.31	64.97	72.31	65.71	
N003	82.44	75.08	82.43	75.82	
N004	84.74	77.37	84.74	78.11	
N005	84.90	77.53	84.90	78.27	
N006	83.19	75.82	83.19	76.56	
N007	83.19	75.82	83.19	76.55	
N008	82.60	75.23	82.60	75.96	
N009	83.18	75.81	83.18	76.55	
N010	81.92	74.55	81.92	75.29	
N011	81.21	73.84	81.21	74.58	
N012	81.21	73.85	81.21	74.58	
N013	81.93	74.56	81.93	75.30	
N014	79.65	72.29	79.65	73.03	
N015	78.06	70.72	78.06	71.46	
N016	76.52	69.17	76.52	69.91	
N017	75.83	68.46	75.83	69.20	
N018	75.66	68.29	75.66	69.03	
N019	76.21	68.83	76.20	69.57	
N020	77.39	70.01	77.39	70.75	
N021	77.85	70.47	77.85	71.21	
N022	78.92	71.55	78.92	72.28	
N023	80.58	73.20	80.58	73.94	
N024	82.20	74.82	82.20	75.56	
N025	82.28	74 90	82.27	75.63	
N026	83.14	75.76	83.14	76.50	
N027	84 13	76.76	84 13	77.49	
N028	83.52	76.14	83.51	76.87	
N029	83.61	76.23	83.60	76.96	
N030	84 36	76.98	84.36	77.72	
N031	84.15	76.70	84.15	77.51	
N032	84 17	76.79	84 17	77.53	
N033	84.68	77.30	84.68	78.04	
N034	75.97	68,60	75.97	69.34	
N035	76.77	60.00	76.77	70.13	
N036	76.70	69.43	76.81	70.10	
N037	76.88	69.50	76.88	70.24	
N038	76.00	69.09	76.00	69.83	
N039	70.47	67.07	77.31	70.67	
N040	77.85	70.47	77.85	70.07	
	77.00	70.47	77.00	71.21	
	70.20	70.02	78.09	71.50	
	78.07	70.85	78.07	71.40	
	20.22 20.52	70.00	20.22 20.52	71.00	
N044	70 70	70.14	70.52	73.00	
NO46	82.48	75.04	82.48	75.00	
	02.40	73.10	02.40 Q1 00	75.04	
	01.77	74.01	01.77 01.07	75.00	
	01.0/ 20.02	74.47	01.0/ 82.02	75.20	
11047	02.03	/ 4.00	02.03	/ 0.00	

ID	Static Demand	Static Pressure	Static Head (m)	Fire-Flow Demand	Residual Pressure	Available Flow at Hydrant	Available Flow Pressure
	(LDIII)	(psi)		(Lbiii)	(bsi)	(Lpm)	(psi)
N043	0.20	78.2	147.0	13,000	56.9	24,887	20
N044	0.20	80.5	147.0	13,000	58.2	24,323	20
N045	0.20	79.7	147.0	13,000	58.3	25,466	20
N046	0.20	82.5	147.0	13,000	61.1	26,690	20
N047	0.20	82.0	147.0	13,000	53.4	19,004	20
N048	0.20	81.9	147.0	13,000	60.4	26,290	20
N049	0.20	82.0	147.0	13,000	60.5	26,368	20
N050	0.20	81.4	147.0	13,000	52.9	18,940	20
N051	0.20	82.1	147.0	13,000	60.6	26,315	20
N052	0.17	80.6	147.0	13,000	59.2	25,799	20
N053	0.17	82.8	147.0	13,000	61.4	26,838	20
N054	0.20	80.0	147.0	13,000	56.8	22,758	20
N055	0.20	80.1	147.0	13,000	49.1	18,127	20
N056	0.20	81.6	147.0	13,000	59.1	24,553	20
N057	0.20	86.8	147.0	13,000	64.2	26,500	20
N058	0.20	85.1	147.0	13,000	62.0	25,281	20
N059	0.20	79.6	147.0	13,000	39.9	15,951	20
N060	0.20	82.8	147.0	13,000	54.5	19,377	20
N061	0.20	82.3	147.0	13,000	58.8	23,498	20
N062	0.20	80.8	147.0	13,000	51.9	18,751	20
N063	0.20	83.7	147.0	13,000	43.5	16,420	20
N064	0.17	83.8	147.0	13,000	60.6	24,487	20
N065	0.17	84.1	147.0	13,000	61.4	25,452	20
N066	0.17	84.2	147.0	13,000	60.7	24,282	20
N067	0.17	82.5	147.0	13,000	44.8	16,782	20
N068	0.17	86.3	147.0	13,000	42.0	15,966	20
N069	0.17	87.4	147.0	13,000	43.6	16,196	20
N070	0.17	83.1	147.0	13,000	43.8	16,519	20
N071	0.17	85.8	147.0	13,000	61.5	24,009	20
N072	0.17	83.9	147.0	13,000	59.8	23,443	20
N073	0.17	88.3	147.0	13,000	63.7	24,562	20
N074	0.17	90.1	147.0	13,000	62.9	22,377	20
N075	0.17	90.4	147.0	13,000	47.0	16,638	20
N076	0.17	89.9	147.0	13,000	62.6	22,252	20
N077	0.17	88.0	147.0	13,000	61.8	22,691	20
N078	0.05	88.1	147.0	13,000	63.0	24,005	20
N079	0.05	87.3	147.0	13,000	63.0	24,596	20
N080	0.05	86.1	147.0	13,000	62.4	24,832	20
N081	0.05	85.5	147.0	13,000	62.8	25,988	20
N082	0.05	85.6	147.0	13,000	61.0	23,529	20
N083	0.05	85.6	147.0	13,000	60.8	23,337	20
N084	0.05	86.9	147.0	13,000	62.1	23,782	20
N085	0.05	87.7	147.0	13,000	62.6	23,773	20

 Tel.
 +1 877 559 6718

 Fax
 :
 780 814 5533

 Email :
 info@designworkseng.com

Appendix B

Sanitary System Calculation Sheets

	Land Use			
	Prepared:	D.P.	Page No.	C-01
	Checked:	H.B.		
Project: 1050 Tawadina Road	Proj. #	2021630		
Waterigde Village, Ottawa	Date:	Jan 11, 23]	

EXISTING CONDITIONS:

Existing Land Use	Area (ha)
Total Site Area:	0.7179
PROPOSED DEVELOPMENT:	
Proposed Land Use	Area (ha)
<u>To</u>	tal Site Area
Asphalt / Concrete Building Pavers Landscaping	0.1733 0.3392 0.0455 0.1601
Total Site Area	0.7179
<u>Sub-</u> Asphalt / Concrete Landscaping Sub-Catchment #1 Area	Catchment #1 0.0370 0.0169 0.0539
<u>Sub-</u>	Catchment #2
Asphalt / Concrete Landscaping	0.0463 0.0515
Sub-Catchment #2 Area	0.0978
<u>Sub-</u>	Catchment #3
Asphalt / Concrete Building Landscaping Pavers Sub-Catchment #3 Area	0.0900 0.3392 0.0917 0.0455 0.5663

	Composite "C" Calculation			
	Prepared:	D.P.	Page No.	C-02
	Checked:	H.B.		
Project: 1050 Tawadina Road	Proj. #	2021630		
Waterigde Village, Ottawa	Date:	11-Jan-23		

Pre-Development Composite Runoff Coefficient "C"

	Area (ha)	С
Total Site Area:	0.7179	0.80
*The runoff coefficient for th	nis site development is ba	sed on Storm
Drainage Area Plan by	/IBI Group, September 10	0th, 2019

Post-Development Composite Runoff Coefficient "C"

<u>Sı</u>	<u>ub-Catchment #1</u>		
Location	Area (ha)	С	C (100-yr)
Asphalt / Concrete	0.0370	0.90	1.00
Landscaping	0.0169	0.25	0.3125
Sub-Catchment #1 Area	0.0539	0.70	0.78
Imperviousness Percent:		68.7	
Si	ub-Catchment #2		
 Location	Area (ha)	С	C (100-yr)
Asphalt / Concrete	0.0463	0.90	1.00
Landscaping	0.0515	0.25	0.3125
Sub-Catchment #2 Area	0.0978	0.56	0.64
Imperviousness Percent:		47.3	
S	ub-Catchment #3		
Location	Area (ha)	С	C (100-yr)
Asphalt / Concrete	0.0900	0.90	1.00
Building	0.3392	0.90	1.00
Landscaping	0.0917	0.25	0.3125
Pavers	0.0455	0.90	1.00
Sub-Catchment #3 Area	0.5663	0.79	0.89
Imperviousness Percent:		83.8	
	Total Site Area		
Location	Area (ha)	С	C (100-yr)
Asphalt / Concrete	0.1733	0.90	1.00
Building	0.3392	0.90	1.00
Landscaping	0.1601	0.25	0.3125
Pavers	0.0455	0.90	1.00
Total Site Area	0.7179	0.76	0.85
Imperviousness Percent:		77.7	

	Pre-Development Peak Flow Rates Calculation			
	Prepared:	D.P.	Page No.	C-03
	Checked:	H.B.		
Project: 1050 Tawadina Road	Proj. #	2021630		
Waterigde Village, Ottawa	Date:	11-Jan-23		

Rational Formulae: Q = 2.78 CIA (L/s)

Site Area:	0.7179 ha
Time of Concentration:	10 minutes
Runoff Coefficient :	0.80 Pre-development condition

Rainfall Inte	ensity: intensity = $\left[\frac{A}{(Td+C)^B}\right]$	(City of Ott	tawa Design Gu	idelines Sewer	s)
	Return Period:	5-year	10-year	50-year	100-year
	Rainfall Intensity (mm/hr):	104.19	122.14	161.47	178.56

Pre-Development Peak Flow Rate (L/s):

Return Period:	5-year	10-year	50-year	100-year
Total Site Peak Flow Rate (L/s):	166.36	195.01	257.81	285.09

Based on Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing Memorandum: Allowable discharge rate into municipal storm sewer: 195 L/s

Since underground storage will be used for the proposed development, the City of Ottawa requires that an average release rate equal to 50% of the peak allowable rate shall be applied to estimate the required volume.

Actual allowable discharge rate into municipal storm sewer:

97.5 L/s

Since the stormwater from the Sub-Catchments #1 and #2 cannot be controlled due to site constraints, the stormwater discharge from the rest of the site will be overcontrolled, i.e. allowable discharge flow rates from the remaining sub-catchments areas:

Sub-Calchment #5 (overcontrolled).	30.23 L/S
Sub-Catchments #1 and #2 (100-year storm):	41.27 L/s

Overcontrolled discharge rate into municipal storm sewer: 56.23 L/s

Required Storm Service Connection:

Diameter:	300 mm
Slope:	2.00 %
Service Connection Capacity:	136.76 L/s
Percentage Full Flow:	41.11 %

	Post-Development Peak Flow Rates Calculation (Uncontrolled)			
	Prepared:	D.P.	Page No.	C-04
· · · · · · · · · · · · · · · · · · ·	Checked:	H.B.		
Project: 1050 Tawadina Road	Proj. #	2021630		
Waterigde Village, Ottawa	Date:	11-Jan-23		

Rational Formulae: Q = 2.78 CIA (L/s)

Total Site Area:	0.7179 ha
Runoff Coefficient :	0.76 Post-development
Time of Concentration:	10 minutes
Sub-Catchment #1 Area:	0.0539 ha
Runoff Coefficient :	0.70 Post-development
Runoff Coefficient (100-Year):	0.78 Post-development
Sub-Catchment #2 Area:	0.0978 ha
Runoff Coefficient :	0.56 Post-development
Runoff Coefficient (100-Year):	0.64 Post-development
Sub-Catchment #3 Area:	0.5663 ha
Runoff Coefficient :	0.79 Post-development
Runoff Coefficient (100-Year):	0.89 Post-development

Rainfall Intensity: $intensity = \left[\frac{A}{(Td + d)}\right]$		(City of Ott	awa Design Gu	idelines Sewer	s)
	Return Period:	5-year	10-year	50-year	100-year
	Rainfall Intensity (mm/hr):	104.19	122.14	161.47	178.56

Post-Development Peak Flow Rate (L/s):

Return Period:	5-year	10-year	50-year	100-year
Sub-Catchment #1 Peak Flow Rate (L/s):	10.86	12.73	16.83	20.97
Sub-Catchment #2 Peak Flow Rate (L/s):	15.77	18.49	24.45	30.92
Sub-Catchment #3 Peak Flow Rate (L/s):	130.27	152.71	201.88	249.63

	LID Design Target				
	Prepared:	D.P.	Page No.	C-05	
	Checked:	H.B.			
Project: 1050 Tawadina Road	Proj. #	2021630			
Waterigde Village, Ottawa	Date:	11-Jan-23			

Based on City of Ottawa's Engineering - LID Developers Checklist, the LID Design Target required for Infiltration and Erosion Control shall be provided through lot-level and conveyance controls and shall infiltrate an equivalent volume of a 4 mm event applied to the full catchment area.

Site Area:	0.7179 ha
Runoff Coefficient :	0.76 Post-development site conditions

Runoff volume from 4mm rainfall event on site:

 $V = 0.718 \times 10 \times 4$ = 28.72 m³

Based on City of Ottawa's Engineering - LID Developers Checklist, the LID Design Target required for Water Quality Control shall be provided through lot-level and conveyance controls and shall treat the runoff from a 15mm event through filtration, detention, evapotranspiration, dentention, and release and infiltration for contributing impervious area.

Impervious Area: 0.5579 ha

Runoff volume from 15mm rainfall event on site:

 $V = 0.558 \times 10 \times 15$ =83.68 m³

Since the water quality target shall include the required water balance (infiltration) target, the total LID Design Targets for the proposed development is equal to 83.68 m3.

Per the TRCA/CVC LID Planning and Design Guide (2010), Wiki Document, the impervious drainare area to the areas of each infiltration system shall be between 5:1 and 20:1.

Infiltration System Area (5:1):	=1115.7	m ²
Infiltration System Area (20:1):	=278.93	m^2

Based on the Yuri Mendez Engineering Subsurface Investigation Report for 1000 and 1050 Tawadina Road (June 2022), the rate of infiltration, percolation and permeability are as follows:

Pemeability Rate:		=1 x 10 ⁻⁵	cm/s
Percolation Rate:		=40	min/cm
Infiltration Rate:		=30	mm/hr
(Applying a Safety Factor o	f 2.5)	=12	mm/hr
Infiltration Chamber:			
Total Storage Volume:		=83.68	m ³
Footprint of Infiltration Pit:		=288.00	m ²
Drawdown Time Required	:		
83.68 m3 / 288.00m2 / (12	2mm / 1000)	=24.2	hour

	Required Storage Calculation - SC#3 (5-Year Storm)				
	Prepared:	D.P.	Page No.	C-06	
	Checked:	H.B.			
Project: 1050 Tawadina Road	Proj. #	2021630			
Waterigde Village, Ottawa	Date:	11-Jan-23			

Sub-Catchment #3 Drainage Area (ha) = 0.5663 Sub-Catchment #3 Composite C = 0.79 Allowable Release Rate from SC#3 = 56.23 ha

L/s Return Period = 5 Year

Site storage Requirement:

Time	Rainfall Intensity	Peak Flow	Storm Runoff Volume (m ³)	Release Rate	Release Flow Volume (m ³)	Required Storage Volume (m ³)
(minutes)	(11111/111)	(L/S)	(111)	(L/S)	(111)	(11)
10	104.19	130.36	78.22	56.23	33.74	44.48
12	94.70	118.48	85.31	56.23	40.48	44.83
14	86.93	108.77	91.37	56.23	47.23	44.14
16	80.46	100.67	96.64	56.23	53.98	42.66
18	74.97	93.80	101.31	56.23	60.72	40.59
20	70.25	87.90	105.48	56.23	67.47	38.01
22	66.15	82.76	109.24	56.23	74.22	35.02
24	62.54	78.25	112.68	56.23	80.97	31.71
26	59.35	74.25	115.83	56.23	87.71	28.12
28	56.49	70.68	118.75	56.23	94.46	24.29
30	53.93	67.47	121.45	56.23	101.21	20.24
32	51.61	64.57	123.98	56.23	107.95	16.03
34	49.50	61.94	126.35	56.23	114.70	11.65
36	47.58	59.53	128.58	56.23	121.45	7.13
38	45.81	57.32	130.68	56.23	128.20	2.48
40	44.18	55.28	132.68	56.23	134.94	-2.26
42	42.68	53.40	134.57	56.23	141.69	-7.12
44	41.29	51.66	136.38	56.23	148.44	-12.06
46	39.99	50.04	138.10	56.23	155.18	-17.08
48	38.78	48.53	139.75	56.23	161.93	-22.18

Required Storage Volume = 44.83 m³

	Required Storage Calculation - SC#3 (10-Year Storm)				
	Prepared:	D.P.	Page No.	C-07	
	Checked:	H.B.			
Project: 1050 Tawadina Road	Proj. #	2021630			
Waterigde Village, Ottawa	Date:	11-Jan-23			

Sub-Catchment #3 Drainage Area (ha) = 0.5663 Sub-Catchment #3 Composite C = 0.79 ha

Allowable Release Rate from SC#3 = 56.23 L/s Return Period = 10 Year

Site storage Requirement:

Time	Rainfall Intensity (mm/br)	Peak Flow	Storm Runoff Volume (m ³)	Release Rate	Release Flow Volume (m ³)	Required Storage Volume (m ³)
(minutes)	(11111/11)	(L/3)	(111)	(L/3)	(111)	(111)
10	122.14	152.82	91.69	56.23	33.74	57.95
12	110.96	138.83	99.96	56.23	40.48	59.48
14	101.82	127.40	107.02	56.23	47.23	59.79
16	94.21	117.87	113.16	56.23	53.98	59.18
18	87.76	109.80	118.58	56.23	60.72	57.86
20	82.21	102.86	123.43	56.23	67.47	55.96
22	77.39	96.83	127.81	56.23	74.22	53.59
24	73.15	91.53	131.80	56.23	80.97	50.83
26	69.40	86.84	135.46	56.23	87.71	47.75
28	66.05	82.65	138.85	56.23	94.46	44.39
30	63.05	78.88	141.99	56.23	101.21	40.78
32	60.33	75.48	144.92	56.23	107.95	36.97
34	57.85	72.39	147.67	56.23	114.70	32.97
36	55.60	69.56	150.25	56.23	121.45	28.80
38	53.53	66.97	152.69	56.23	128.20	24.49
40	51.62	64.59	155.01	56.23	134.94	20.07
42	49.86	62.38	157.20	56.23	141.69	15.51
44	48.23	60.34	159.29	56.23	148.44	10.85
46	46.71	58.44	161.29	56.23	155.18	6.11
48	45.29	56.67	163.20	56.23	161.93	1.27

Required Storage Volume = 59.79 m³

	Requir	ed Storage ((50-Yea)	Calculation • Storm)	- SC#3
	Prepared:	D.P.	Page No.	C-08
	Checked:	H.B.		
Project: 1050 Tawadina Road	Proj. #	2021630		
Waterigde Village, Ottawa	Date:	11-Jan-23		

ha

Sub-Catchment #3 Drainage Area (ha) = 0.5663 Sub-Catchment #3 Composite C = 0.79

Allowable Release Rate from SC#3 = 56.23 L/s Return Period = 50 Year

Site storage Requirement:

Time	Rainfall Intensity	Peak Flow	Storm Runoff Volume	Release Rate	Release Flow Volume	Required Storage Volume
(minutes)	(11111/111)	(L/S)	(111)	(L/S)	(111)	(11)
10	161.47	202.03	121.22	56.23	33.74	87.48
12	146.62	183.44	132.08	56.23	40.48	91.60
14	134.49	168.27	141.35	56.23	47.23	94.12
16	124.39	155.63	149.40	56.23	53.98	95.42
18	115.83	144.92	156.51	56.23	60.72	95.79
20	108.47	135.72	162.86	56.23	67.47	95.39
22	102.08	127.72	168.59	56.23	74.22	94.37
24	96.47	120.70	173.80	56.23	80.97	92.83
26	91.50	114.48	178.59	56.23	87.71	90.88
28	87.06	108.93	183.00	56.23	94.46	88.54
30	83.08	103.94	187.10	56.23	101.21	85.89
32	79.47	99.44	190.92	56.23	107.95	82.97
34	76.20	95.34	194.50	56.23	114.70	79.80
36	73.22	91.61	197.87	56.23	121.45	76.42
38	70.48	88.18	201.05	56.23	128.20	72.85
40	67.95	85.02	204.05	56.23	134.94	69.11
42	65.62	82.11	206.91	56.23	141.69	65.22
44	63.46	79.41	209.63	56.23	148.44	61.19
46	61.46	76.89	212.22	56.23	155.18	57.04
48	59.58	74.55	214.70	56.23	161.93	52.77

Required Storage Volume = 95.79 m³

	Require	ed Storage ((100-Yea	Calculation r Storm)	- SC#3
	Prepared:	D.P.	Page No.	C-09
	Checked:	H.B.		
Project: 1050 Tawadina Road	Proj. #	2021630		
Waterigde Village, Ottawa	Date:	11-Jan-23		

Sub-Catchment #3 Drainage Area (ha) = 0.5663 Sub-Catchment #3 Composite C = 0.89 Allowable Release Rate from SC#3 = 56.23 ha

L/s Return Period = 100 Year

Site storage Requirement:

Time	Rainfall Intensity	Peak Flow	Storm Runoff Volume	Release Rate	Release Flow Volume	Required Storage Volume
(minutes)	(mm/hr)	(L/s)	(m³)	(L/s)	(m³)	(m³)
10	178.56	249.81	149.89	56.23	33.74	116.15
12	162.13	226.83	163.32	56.23	40.48	122.84
14	148.72	208.07	174.78	56.23	47.23	127.55
16	137.55	192.44	184.74	56.23	53.98	130.76
18	128.08	179.19	193.53	56.23	60.72	132.81
20	119.95	167.82	201.38	56.23	67.47	133.91
22	112.88	157.93	208.46	56.23	74.22	134.24
24	106.68	149.25	214.91	56.23	80.97	133.94
26	101.18	141.56	220.83	56.23	87.71	133.12
28	96.27	134.69	226.28	56.23	94.46	131.82
30	91.87	128.53	231.35	56.23	101.21	130.14
32	87.89	122.96	236.08	56.23	107.95	128.13
34	84.27	117.89	240.50	56.23	114.70	125.80
36	80.96	113.27	244.67	56.23	121.45	123.22
38	77.93	109.03	248.60	56.23	128.20	120.40
40	75.15	105.13	252.32	56.23	134.94	117.38
42	72.57	101.53	255.85	56.23	141.69	114.16
44	70.18	98.19	259.21	56.23	148.44	110.77
46	67.96	95.08	262.42	56.23	155.18	107.24
48	65.89	92.18	265.49	56.23	161.93	103.56

Required Storage Volume = 134.24 m³

EGEND: Torm sener Nater ine Period Direction Torm Manhole Rea drawn Atch basin Ourle Catch basin Reich Drawn Penschaton			[P: 647 660 7117 Suite 2345 1 Ade Toronto, O info@designv www.designv DESIGN WORKS 6	F: 647 660 : N M5C 2V9 vorkseng.cor vorkseng.cor vorkseng.cor vorkseng.cor	*KS 7117 East n
ANTRY WANHOLE AITER HORANT AITER VALVE 0 BOD 0 BOD 0 BOD 0 BOD 0 BOD 0 BOD 0 BOD E HITMIG MALE ANTRO CONSTRUCTION LIMIT CONSTRUCTION LIMIT CONSTRUCTION LIMIT CONSTRUCTION LIMIT CONSTRUCTION LIMIT ABBEL LEGEND:		●	THESE D OF D REPR WRITTE THIS UNLESS IS ELEVA CITY OF	COPPRIGH RAWINGS AND DESIGN ESIGN WORKS ENGINED SOUCED IN ANY WAY ON DUCED IN ANY WAY ON IN PERMISSION OF DES NO DRAWING IS NOT TO BI IT IS SIGNED AND SEAL SUED FOR CONSTRUCT DO NOT SCALE BENCI TIONS SHOWN ARE GEC OTTAWA VERTICAL BEN	RESERVED ARE THE EXCLU: REING LTD. AND I RFORM WITHOU' IGN WORK'S ENG TES E USED FOR CON ED, AND FOR CON ION IN THE TABL THIS DRAWING. HIARK METIC AND ARE CHMARK NO. 39	SIVE PROPERTY MAY NOT BE THE DIRECT INEERING LTD. STRUCTION MOS HAVE BEEN E BELOW REFERRED TO 5 (01919680138),
V = 107 0 0402 0 = 1001 0400 100 = 0008E CADH MOR 00 = 0008E CADH MOR 0 = 4008E 100 = 400 MBR 100	overland flow direction		IT IS THE WITH TH APPROV ENVIROI PROPOS GROUNI WATER COMPLY REQUIR AND/OR AND CLI DEWATE	ERESPONSIBILITY OF TI DAT ERESPONSIBILITY OF T ESEWER USE BYLAW MALSIPERMITS FROM TO WINETAL MONITORING WINETAL TO MUNICIPI COURSES. THE APPLICA WATER INTO MUNICIPI PERMITS FROM THE MI MATE WITH RESPECT T RING.	HE APPLICANT T AND OBTAIN ALL RONTO WATER - & PROTECTION I RMANENT DISCH LL SEWER SYSTE BILE PROVINCIA G INECESSARY A NISTRY OF THE E O ANY PROPOSE PARTY, INCLUD	D COMPLY INIT FOR ANY ARGING OF MS AND PONSIBLE FOR PPROVALS INVIRONMENT D
1860 ha	AREA OF CATCHMENT SUB-CATCHMENT RL CATCHMENT AREA BO	NOFF COEFFICIENT INDARY	APPLIC/ THAN OI ANY OR APPLIC/ REQUIR TO EASI SUCH AI APPLIC/	NT OR ANY SUBSEQUE E CONDONIUM CORI ALL OF THIS DEVELOP TION THAT RESULTS II E LEGAL ASSURANCES MENTS, WITH RESPECT SSURANCES WILL BE D ATION FOR CONDOMINI	INT OWNER, APP OPRATION ENCO MENT OR MAKE / A LAND DIVISIO INCLUDING BUT I TO THE APPRO TTERMINED AT T JM APPROVAL.	LY FOR MORE MPASSING IN N, STAFF MAY NOT LIMITED VED SERVICES. HE TIME OF
			REVISION No. 1	IS Comment ISSUED FOR CLC SUB	MISSION	Date 2022-10-21
			SEAL			
			CLIENT	West	Urban	
			PROJECT	1050 TAWA	dina roa	D
			PROJECT	1050 TAWA OTTAWA, (IDETAILS R: DOROTHY POON	DINA ROAD DN K1K 4E4 I, P.ENG.	
			DRAWN E DESIGN E PROJECT DATE: SCALE: DRAWING	3Y: B.B 3Y: B.B TNo: 2021630 OCTOBER 2022 1:250 5 TTLE		
			DRAWING	PRE-DEVE DRAINA NO. RE 1	ELOPMENT GE PLAN	SHEET 1 2

	P: 647 660 7117 F: 647 660 71 Oronto, ON M5J 2V1 Info@designworkseng.com www.designworkseng.com COPYRIGHT 2020 DESIGN WORKS ENGINET.D. COPYRIGHT RESERVED	KS ing 17 d Place)				
◆	THESE DRAWINGS AND DESIGN ARE THE EXCLUSIVE PROPERTY OF DESIGN WORKS ENGINEERING LTD. AND MAY NOT BE REPRODUCED IN ANY WAY OR FORM WITHOUT THE DIRECT WRITTEN PERMISSION OF DESIGN WORKS ENGINEERING LTD. NOTES					
	INIS DRAWINIG IS NOT 10 BE USED FOR CONST UNLESS IT IS SIGNED AND SEALED , AND DRAWINGS ISSUED FOR CONSTRUCTION IN THE TABLE B DO NOT SCALE THIS DRAWING.	HAVE BEEN ELOW				
<u>ND:</u> : : Rosa	BENCHMARK ELEVATIONS SHOWN ARE GEODETIC AND ARE REI CITY OF OTTAWA VERTICAL BENCHMARK NO. 396 (0 HAVING AN ELEVATION OF 95.06 METRES (CGVD28 DATUM).	ERRED TO 1919680138), GEODETIC				
X BRMX OVERLAND FLOW DIRECTION	BE ADVISED THAT SHOULD ANY PARTY, INCLUDING THE APPLICANT OR ANY SUBSEQUENT OWNER, APPLY FOR MORE THAN ONE CONDOMINUM CORPORATION ENCOMPASSING APPLICATOR THAT RESULTS IN A LAND DIVISION, STAFF MAY REQUIRE LEGAL ASSURANCES, INCLUDING BUT NOT LIMITED TO EASEMENTS, WITH RESPECT TO THE APPROVED SERVICES. SUCH ASSURANCES WILL BE DETERMINED AT THE TIME OF APPLICATION FOR CONDOMINUM APPROVAD.					
AREA OF CATCHMENT SUB-CATCHMENT RUNOFF COEFFICIENT CATCHMENT AREA BOUNDARY						
	REVISIONS No. Comment	Date				
	ISSUED FOR CLC SUBMISSION ISSUED FOR CLC SUBMISSION	2022-10-25 2023-01-11				
	SEAL					
	WestUrban Developments Ltd.					
	project 1050 TAWADINA ROAD					
	1050 TAWADINA ROAD OTTAWA, ON K1K 4E4					
	PROJECT DETAILS ENGINEER: DOROTHY POON, P.ENG.					
	CHECKED BY: D.P. DRAWN BY: B.B					
	DESIGN BY: B.B. PROJECT No.: 2021630					
	DATE: OCTOBER 2022 SCALE:					
	DRAWING TITLE POST-DEVELOPMENT DRAINAGE PLAN					
		SHEET 2				
	FIGURE 2	2				

 Tel.
 :
 +1 877 559 6718

 Fax
 :
 780 814 5533

 Email :
 info@designworkseng.com

Appendix B

Sanitary System Calculation Sheets

	Sanita	ary Demand	(Post-Deve	lopment)
	Prepared:	B.B.	Page No.	B-01
··· _ · ·	Checked:	D.P.		
Project: 1050 Tawadina Road, Waterigde	Proj. #	20216340		
Village, Ottawa	Date:	Oct 24, 22]	

Total Site Area: 0.7188 ha

Population Estimates:

Housing Type	PPU	# of units	Population
Single Family	3.4	0	0
Semi-detached	2.7	0	0
Townhouse	2.7	0	0
Duplex	2.3	0	0
Triplex	3.7	0	0
Bachelor	1.4	0	0
1 Bedroom	1.4	146	204.4
2 Bedroom	2.1	108	226.8
3 Bedroom	3.1	0	0
Average Apt	1.8	0	0
Total		254	432

Harmon Peaking Factor:	PF=	1+14/(4+(P/	/1000) ^{0.5})*K
		3.40	
Average Wastewater Flow:		280	L/cap/day
Total Domestic Wastewater Flow:		4.77	L/s
Dry Weather Infiltration Allowance (0.05 L/s/ha):	0.04	
Wet Weather Infiltration Allowance (0.28 L/s/ha	a):	0.20	
Total Infiltration Allowance (0.33 L/s/ha):		0.24	L/s
Design Flow:		5.00	L/s
Sonitory Sonvice Connection			
		0.010	
Mannings n:		0.013	
Pipe Size:		200	mm
Pipe Slope:		1.00	%
Full Flow Capacity:		32.80	L/s
Percentage Full:		15.26	%

		IBI Group
Ι	ΒI	400-333 Preston Street Ottawa, Ontario K1S 5N4

	LOCATION					LINIT TYPES		RESIDENTI.	AL POPU		ΡΕΔΚ	ΡΕΔΚ			ARE	ICI AREAS		Р	ΕΔΚ		AREA (Ha)	ALLOWANCE	FLOW/	TOTAL FLOW	CAPACITY	LENGTH	PROP	OSED SEWER D	VELOCITY	۵۷۵	II ABI F
STREET	AREA ID	FROM	то	SF	SD	TH/F TH/S	APT	(Ha)	IND	СЛМ	FACTOR	FLOW	INSTIT	UTIONAL	COMM	VERCIAL	INDUSTRIAL	FL	OW I	PARKS	IND	CUM	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(full)	CAP	ACITY
PHASE	1 - CODD'S ROAD SH		IVIN	1								(L/S)	IND	CUIVI	IND	COIM		/ (1	_/S)										(11/5)	L/S	(76)
								1								1															1
Major Collector	100A	MH100A	MH (52)				500	3.81	900.0	900.0	3.83	13.96									3.81	3.81	1.07	15.03	84.38	48.00	250	1.85	1.665	69.36	82.19
Major Collector	105 4	MH (52)	MH105A			41		0.77	04.2	900.0	3.83	13.96								0.65	1.42	3.81	1.07	15.03	84.38	37.62	250	1.85	1.665	69.36	82.19
Major Collector	105A	MH (54)	MH (54)			41		0.77	94.3	994.3	3.80	15.31								0.65	1.42	5.23	1.46	16.78	62.04	50.36	250	1.00	1.224	45.26	72.96
Major Collector		MH (55)	MH108A						0.0	994.3	3.80	15.31										5.23	1.46	16.78	43.87	76.71	250	0.50	0.866	27.09	61.76
Major Collector	COM2	MH126A MH (379)	MH (379) MH1204			+ +							-		2.03	2.03		1	.76		2.03	2.03	0.57	2.33	60.47 60.47	85.08	250	0.95	1.193	58.14	96.15
Major Collector	COM1	MH120A	MH (402)												2.44	4.47		3	.88		2.44	4.47	1.25	5.13	43.87	91.89	250	0.50	0.866	38.74	88.30
Major Collector		MH (402)	MH108A													4.47		3	.88			4.47	1.25	5.13	43.87	70.26	250	0.50	0.866	38.74	88.30
	1084	MH108A	MH (275)					1 3 2	0.0	00/ 20	3.80	15 21				4.47		2	99		1 2 2	11.02	2.00	22.28	54.08	80.08	250	0.76	1.067	21.91	58.91
	1004	MH (375)	MH (376)					1.52	0.0	994.3	3.80	15.31				4.47		3	.88		1.52	11.02	3.09	22.28	54.08	37.59	250	0.76	1.067	31.81	58.81
		MH (376)	MH114A						0.0	994.3	3.80	15.31				4.47		3	.88			11.02	3.09	22.28	54.08	118.80	250	0.76	1.067	31.81	58.81
	FXT1	Ev	MH114A	-				5 5 3	1574.0	1574.0	3.66	23.36									5 5 3	5 53	1 55	24 91						<u> </u>	+
	LATI	LA	WITT14A					5.55	1374.0	1374.0	5.00	23.30									3.33	3.33	1.55	24.91						<u> </u>	
		MH125A	MH (405)			33			89.1	89.1	4.00	1.44				0.00		0	.00			0.00	0.00	1.44	44.30	72.00	250	0.51	0.874	42.86	96.74
		MH (405)	MH114A				-		0.0	89.1	4.00	1.44				0.00		0	.00			0.00	0.00	1.44	44.30	105.98	250	0.51	0.874	42.86	96.74
	114A	MH114A	MH (65)			95		1.72	218.5	2786.8	3.47	39.17				4.47		3	.88		1.72	18.27	5.12	48.16	71.33	69.47	300	0.50	0.978	23.17	32.48
		MH (65)	MH (66)						0.0	2786.8	3.47	39.17				4.47		3	.88			18.27	5.12	48.16	71.33	81.98	300	0.50	0.978	23.17	32.48
		MH (66) MH (67)	MH (67) MH1134					+	0.0	2786.8	3.47	39.17		<u> </u>		4.47 4.47		3	.88 88			18.27 18.27	5.12 5.12	48.16	71.33	24.65	300	0.50	0.978	23.17	32.48
		MH113A	MH119A						0.0	2786.8	3.47	39.17				4.47		3	.88			18.27	5.12	48.16	71.33	52.12	300	0.50	0.978	23.17	32.48
		MH119A	MH130A						0.0	2786.8	3.47	39.17				4.47		3	.88			18.27	5.12	48.16	71.33	72.19	300	0.50	0.978	23.17	32.48
		MH120A					-		0.0	0.0	4.00	0.00	E E E	5 5 5				4	02				1 55	6 27	E0 0C	101 10	250	0.00	1 162	E2 49	90.17
	125A	MH120A MH125A	MH123A MH130A			253		3.09	581.9	581.9	3.94	9.29	5.55	5.55				4	.82		3.09	8.64	2.42	16.52	58.86	176.08	250	0.90	1.162	42.33	71.93
																															1
	163A	MH163A	MH (381)			42		0.75	96.6	96.6	4.00	1.57									0.75	0.75	0.21	1.78	35.64	87.43	250	0.33	0.703	33.86	95.02
		10111 (301)	WITTSOA						0.0	50.0	4.00	1.57										0.75	0.21	1.78	55.04	/1.8/	230	0.55	0.705	55.80	55.02
		MH130A	MH135A						0.0	3465.3	3.39	47.57		5.55		4.47		8	.70			27.66	7.74	64.01	100.18	88.80	375	0.30	0.879	36.18	36.11
	1644	MUIGAA	MU (202)			41		0.06	04.2	04.2	4.00	1 5 2									0.06	0.06	0.27	1 90	25.64	97 77	250	0.22	0 702	22.04	04.06
	104A	MH (383)	MH135A			41		0.90	0.0	94.3	4.00	1.53									0.90	0.96	0.27	1.80	35.64	71.78	250	0.33	0.703	33.84	94.96
	135A	MH135A MH140A	MH140A MH (61)	-			191	1.76	343.8	3903.4	3.34	52.86		5.55		4.47		8	.70		1.76	30.38	8.51 8.51	70.06	100.18	107.95	375	0.30	0.879	30.12	30.07
		MH (61)	MH150A						0.0	3903.4	3.34	52.86		5.55		4.47		8	.70			30.38	8.51	70.06	100.18	76.66	375	0.30	0.879	30.12	30.07
Codd's Road	142A	MH142A MH (45)	MH (45) MH (46)																	6.81	6.81	6.81	1.91	1.91	75.98	87.81	250	1.50	1.500	74.07	97.49
Codd's Road		MH (46)	MH (47)																			6.81	1.91	1.91	33.98	61.03	250	0.30	0.671	32.07	94.39
Codd's Road		MH (47)	MH150A				_															6.81	1.91	1.91	33.98	55.07	250	0.30	0.671	32.07	94.39
	301A	MH301A	MH160A			110		1.87	253.0	253.0	4.00	4 10									1 87	1 87	0.52	4 62	35.64	155.83	250	0.33	0 703	31.02	87.03
		MH160A	MH161A			110		1107	0.0	253.0	4.00	4.10									1.07	1.87	0.52	4.62	70.74	78.00	250	1.30	1.396	66.11	93.46
	2024	14112024	MUACAA			70		4.25	464.0	464.0	1.00	2.64									4.25	4.25	0.25	2.00	50.02	455.04	250	0.65	0.007	47.00	04.00
	302A	MH302A	MH161A			70		1.25	161.0	161.0	4.00	2.61									1.25	1.25	0.35	2.96	50.02	155.84	250	0.65	0.987	47.06	94.08
Main Street		MH161A	MH163A					1	0.0	414.0	4.00	6.71			ļ						0.00	3.12	0.87	7.58	78.47	78.12	250	1.60	1.549	70.89	90.34
	2144	MUD14A	MU2004			25	_	0.52	90 F	00 F	4.00	1.20		ł	ł		<u> </u>				0.52	0.53	0.15	1 45	75.00	75.01	250	1.50	1 500	74.52	08.00
	314A 314A	MH308A	MH163A	1		35		0.53	0.0	80.5	4.00	1.30		<u> </u>	1					0.71	0.53	1.24	0.15	1.45	75.98	80.05	250	1.50	1.500	74.53	98.09
					1			1																							
Main Street		MH163A	MH164A	-	-				0.0	494.5	3.98	7.97					<u>├</u>				0.00	4.36	1.22	9.19	78.47	88.92	250	1.60	1.549	69.29	88.29
	311A	MH311A	MH164A			84		1.41	193.2	193.2	4.00	3.13									1.41	1.41	0.39	3.53	65.07	155.87	250	1.10	1.284	61.54	94.58
																														F	
Main Street		MH164A	MH165A						0.0	687.7	3.90	10.86					<u> </u>				0.00	5.77	1.62	12.48	58.86	107.96	250	0.90	1.162	46.38	78.80
	205A	MH205A	MH (7)				510	4.39	918.0	918.0	3.82	14.22								5.93	10.32	10.32	2.89	17.11	50.02	80.40	250	0.65	0.987	32.91	65.79
		MH (7)	MH326A						0.0	918.0	3.82	14.22										10.32	2.89	17.11	36.70	51.99	250	0.35	0.724	19.59	53.39
	3264	MH3234	MH (10)	+			274	1 77	403.2	403.2	4.00	6.53	-	ł	+	1					1.77	1,77	0.50	7,03	50.02	29.23	250	0.65	0.987	42 99	85.95
	5207	MH (10)	MH (9)				-47		0.0	403.2	4.00	6.53									±.//	1.77	0.50	7.03	50.02	37.86	250	0.65	0.987	42.99	85.95
		MH (9)	MH326A						0.0	403.2	4.00	6.53										1.77	0.50	7.03	50.02	36.84	250	0.65	0.987	42.99	85.95
	312A	MH326A	MH312A		+		171	1.55	307.8	1629.0	3.65	24.11		+	+						1.55	13.64	3.82	27.93	43.87	150.87	250	0.50	0.866	15.94	36.34
									23/10		2.000													2.199				2.00	2.000		
	312A	MH312A	MH165A		1		190	1.69	342.0	1971.0	3.59	28.67		<u> </u>							1.69	15.33	4.29	32.96	43.87	155.81	250	0.50	0.866	10.91	24.86
Main Street	165A	MH165A	MH155A						0.0	2658.7	3.49	37.55								0.60	0.60	21.70	6.08	43.63	63.80	151.90	300	0.40	0.874	20.18	31.62
					1																					22.50					
Codd's Road	201A	MH201A	MH155A		1		214	1.32	385.2	385.2	4.00	6.24		<u> </u>	1.23	1.23					2.55	2.55	0.71	6.96	79.69	157.08	250	1.65	1.573	72.73	91.27
L		1	1	1	1		1	1		1				1		1												I	I	<u> </u>	<u> </u>

SANITARY SEWER DESIGN SHEET

PROJECT: FORMER CFB ROCKCLIFFE LOCATION: CITY OF OTTAWA CLIENT: CANADA LANDS COMPANY

 Tel.
 :
 +1 877 559 6718

 Fax
 :
 780 814 5533

 Email :
 info@designworkseng.com

Appendix C Stormwater Calculation Sheets

 Tel.
 :
 +1 877 559 6718

 Fax
 :
 780 814 5533

 Email :
 info@designworkseng.com

Appendix D Supporting Documents

May 13th, 2018 Ref No. 65578.1

То:	Jean Lachance, Canada Lands Company (CLC)
From:	Chris Denich, M.Sc., Aquafor Beech Ltd., Meaghan Dustin, E.I.T., Aquafor Beech Ltd.
Re:	Wateridge Phase 2B Developer's Checklist

1.0 Phase 2B

Wateridge Village Phase 2B includes 12 development blocks located between Codd's Road and Wanaki Road to the west and east, and Tawadina Road and Hemlock Road to the north and south. The land-use within this block includes semi-detached singles, townhouse blocks, low-rise residential, mid-rise residential, mid-rise mixed-use, and parks.

As part of the Wateridge Village low impact development (LID) Demonstration project, this phase will include stormwater management treatment strategies that maximize pervious surfaces and increase infiltration and groundwater recharge through a combination of lot-level (source), conveyance and end-of-pipe stormwater management controls.

The following sections outline the stormwater criteria the developer is required to meet with the implementation of LID measures. The testing requirements necessary for design and implementation are also described. Finally, LIDs recommended to be incorporated within Phase 2B are summarized.

2.0 SWM Criteria

All LID measures implemented in Phase 2B of the Wateridge Village development shall be designed to achieve the infiltration, erosion, and water quality design targets summarized in **Table 2.1**. These targets represent minimum volumes to achieve water balance (infiltration), water quality, and erosion controls.

All landscaped areas (turf or garden) will require Topsoil Amendments per Option 1 or Option 2; these options are outlined in **Appendix B**.

Table 2.1 LID Design Targets

LID Design Targets									
Infiltration*	Erosion*	Water Quality†							
LID Infiltration target = 4mm	LID Erosion Control Target = 4mm	Min. Target = 15mm							
Maintain groundwater recharge per the existing conditions water budget. Groundwater recharge includes hydrological connection and linkages to wetlands, woodlots, streams and other natural features.	LID lot-level and conveyance controls shall match the existing conditions water balance through the application of the infiltration targets in order to reduce or eliminate the effects of hydro-modification	The minimum water quality event for LID lot-level and conveyance controls for the Former CFB Rockcliffe shall be the 15mm event. LID controls shall treat the runoff from a 15mm event through filtration, detention, evapotranspiration, detention and release and infiltration. Drainage areas which achieve the minimum 15mm water quality target shall be required to discharge to another LID in the treatment train and or an end-of-pipe pond to achieve the full enhanced level of control per the MOE SWMPD.							
LID lot-level and conveyance controls shall infiltrate an equivalent volume a 4mm event applied to the full catchment area.	form the contributing drainage area. As such the infiltration targets shall be considered the erosion control targets for LID controls.	Enhanced Target = 25mm To achieve the enhanced level of control, per the MSS, the target water quality event for LID lot-level and conveyance controls shall be the 25mm event. LID controls shall treat the runoff from a 25mm event through filtration, detention, evapotranspiration, detention and release and infiltration. Drainage areas which achieve the enhanced water quality target do not require treatment in an end- of-pipe facility.							

*<u>Catchment Based Target</u> – target applied over the full catchment area

[†]<u>Contributing Impervious Area Target</u> – applied to the directly contributing impervious area to the LID control and should focus on the "treatment" of the required event through a combination of filtration, storage and release, evaporation and infiltration. Note: the water quality target shall include the required water balance (infiltration) targets i.e. water quality treatment = 15mm water quality event – 4mm infiltration/erosion target.

3.0 Testing Requirements

The implementation of LIDs requires a geotechnical assessment (including groundwater monitoring) and infiltration tests to determine the in-situ conditions prior to design.

3.1 Geotechnical Assessment

A soils report will be required to accompany the design of all infiltration facilities to ensure adequate soil permeability and depth to the seasonally high water table. This report should include:

- Borehole information, including soil stratigraphy, composition, grain-size and chemical analysis (additional testing may be required for individual LID techniques per the requirement of the Low Impact Development Stormwater Management Planning and Design Guide, Version 1.0 (TRCA/CVC - 2010); number of boreholes can range from 2 to greater than 20 based on size of facility and site specific conditions. Boreholes should be extended a minimum of 1.5m below the proposed invert of the proposed LID facility.
- Geotechnical assessment will generally include:
 - o particle size distribution (ASTM D422 and D2217),
 - Stratigraphy, Piezometer(s) and Standpipes –to determine seasonally high (March April or Late fall before snowfall) groundwater elevation information per O.Reg 389/09 natural moisture content (ASTM D2216),
 - o plasticity characteristics (ASTM D4318),
 - o soil strength assessment (CBR and Soaked CBR) for permeable pavement designs.

The scope of the geotechnical assessment shall be determined based on the need to confirm that the following conditions are not present. The following conditions are considered unsuitable or may increase facility failure rate for infiltration based controls.

- 1. Slopes ≥20% and contributing catchment area slopes ≥15%;
- 2. Seasonally-high water table elevations that are within 1.0-0.60 metre of the bottom of proposed infiltration based facilities;
- 3. Bedrock within 1 metre of the bottom of the proposed infiltration facility;
- 4. Wetlands and associated hydric soils;
- 5. Proposed Land uses that are classified as potential "hot spots";
- 6. Drinking water wells within 30 metres; and
- 7. Karst topography.

It is not anticipated that conditions 1, 6 or 7 above will be of concern.

3.2 Infiltration Testing

For design purposes, the preferred approach to measure field saturated hydraulic conductivity (Kfs) at a subject site include:

- Guelph Permeameter
- Double Ring Infiltrometers (constant head)
- Single ring (constant head pressure)

At least one (1) test will be required at 2 soil depths for each 450m² footprint surface area at each location. **Note: Infiltration rates derived from borehole analysis, T-test, slug or other generalized test shall not be accepted for design purposes.** All infiltration testing should be completed per Appendix C of the TRCA/CVC LID Planning and Design Guide (2010). Based on in-situ soil testing of previous phases, it is May 13th, 2018 Ref No. 65578.1

anticipated that the soils tested in Phase 2B will have a field saturated hydraulic conductivity below 15mm/hr and therefore will require the installation of a underdrain per the TRCA/CVC LID Stormwater Planning and Design Guide (2010).

4.0 Recommended LID Types

The Draft Wateridge Village Phases 2B - Master Concept Plan (Appendix A) displays the proposed landuse in Phase 2B; including: low & medium rise residential and mixed-use, parks, and municipal ROW. Error! Reference source not found. summarizes suitable LID measures by each land use.

Table 4.1 Low Impact Development (LID) Suitability Matrix by Land-Use

			Phase 2B P	roposed La	nd-Uses	
		Low & Medium Rise Residential	Low and Medium Rise Mixed-Use	Schools & Parks	Municipal ROW	
	Assumed Lot Coverage	50-60%	80-100%	10-30%	n/a	
		LID Type				
Lot-Level	Green Roofs			n/a	n/a	
Controls	Bioretention					
	Rainwater Harvesting			n/a	n/a	
	Soakaways, Trenches & Chambers				n/a	
	Downspout Disconnection			n/a	n/a	
	Soil Amendments				n/a	
	Permeable Pavements				See Conveyance Controls	
	Infiltration Basins	n/a	n/a		n/a	
Conveyance	Vegetated/Grass Swales	n/a	n/a			
Controls	Bioswales/Biofilters	n/a	n/a			
	Perforated Pipes	n/a	n/a			
	Permeable Pavements	n/a	n/a			
*A	*Assumed lot coverage indicates percentage of development with hard surface land cover					

In areas where infiltration is not possible, i.e. over underground parking structures, runoff can be collected using ditch inlets, catch basins, or eavestroughs for roof surfaces and conveyed via pipe to an infiltration system or end-of-pipe facility.

Based on the land-use proposed in the Master Concept Plan for Phase 2B, the following LIDs can be implemented in Phase 2B:

- Soakaways, Trenches & Chambers
- Downspout Disconnection
- Soil Amendments
- Bioretention

May 13th, 2018 Ref No. 65578.1

- Infiltration Basins
- Bioswales/Biofilters
- Permeable Pavements
- Vegetated/Grass Swales
- Perforated Pipe

Relevant resources detailing the constraints, implementation, construction, and monitoring of all suitable LID measures are included in **Appendix C**. These resources also include the Stormwater Management Planning and Design Manual, background groundwater information, permitting requirements, and monitoring and costing information.

Appendix A: Draft Wateridge Village Phases 2B - Master Concept Plan

nber of loors	Building Height	Commercial Floor Area (sq.m.)	Total Residential Units
4	16		24
4	16		24
4	16		24
4	16		24
4	16		24
8, & 9			
2-3	11		6
2-3	11		24
2-3	11		50
	L	L	
8	24	1,527	96
6	18		60
4	12		24
4	12		48
6	18	615	25
6	18	1,134	45
4	12	808	21
4	12		48
6	18		60
8	24	1,539	116
Master C	oncept Plan Total	5,623	743
	CDP Estimate		696

Appendix B: Topsoil Amendment Options

OPTION 1 On-Site Soil Amendment - Default Ratio 3:1 All Building Types

Materials

- Amend existing site topsoil using 3:1 ratio by volume (3 parts existing topsoil, 1 part amendment material)
- Amendment Material: organic matter primarily leaf, yard and bark waste compost of 20-30% by <u>dry weight</u> as determined by Loss-on-Ignition (LOI) and a pH of 6.0 to 8.0
- No uncomposted manure or other organic materials, sphagnum peat or organic amendments that contain sphagnum peat

Placement and Amendments

- 1. Remove existing topsoil and preserve on-site.
- Rip native subsoil (decompaction) using the teeth of an excavator or bobcat bucket or equivalent to a depth of 100-200mm. Rip using a perpendicular pattern (See Detail No.1) ensuring full site coverage. No ripping within tree protection areas (See Detail No.2) or within 3m of building foundations (See Detail No.3).
- 3. Amend existing site topsoil to meet post construction soil amendment requirements using 3:1 ratio by volume (topsoil : amendment material).
- 4. Two (2) methods for amending the existing soils in place are acceptable:
 - Method No.1 Layer and Incorporate (Detail No.4)
 - Apply 100mm of existing site topsoil followed by 50mm of amendment material and incorporate/mix amended material.
 - ii. Lightly roll or smooth using the back of the machinery bucket.
 - iii. Repeat i. and ii.
 - Adjust layer quantities to ensure a settled amended topsoil depth of 300m and compliance with site grading. Placement should account for 10% settlement.

Method No.2 - Mechanical or Bucket Mix

- i. Successively add, mix and pile one (1) unit of amendment material with three (3) units of existing site topsoil.
- ii. Thoroughly mix.
- iii. Repeat i. and ii to ensure thorough mixing until required volume is achieved.
- iv. Place 150mm of amended topsoil, lightly roll or smooth using the back of the machinery bucket.
- v. Repeat iv.
- vi. Adjust layer quantities to ensure a settled amended topsoil depth of 300m and compliance with site grading.

Amended topsoil should be wetted after application, allowed to settle for a minimum of one (1) week and grades adjusted as required prior to installation of turf.

-IMPORTANT-

supporting documentation certifying the proper installation and placement of amended

Documentation Requirements As part of verification, the owners shall produce delivery tickets, receipts and specifications detailing the delivery address, quantities and product description and sources for verification by City inspectors. Delivery address is to be listed and must correspond to the property/site being inspected. Site without proper documentation may be subject to additional verification procedures including laboratory testing at the expense of the owner. The owner's engineer shall provide a duly notarized letter with all

Consultant Verification/Inspection

soil.

Verification may occur after the minimum one (1) week settlement period. Verification is suggested prior to turf placement. Non-compliant sites shall be rectified at the expense of the owner.

At random, the Developer's consultant shall dig at least one (1) test hole to verify amended topsoil depth and uncompacted soil depths. Requirements:

- Amended topsoil layer shall be easily dug using only the inspector's weight or cored without other mechanical assistance.
- 2. The amended topsoil layer shall be darker in color than the unamended- ripped subsoil and particles of organic matter should be easily visible.
- 3. Measured amended topsoil depths shall be deemed to be in conformance based on the following:
 - Using a common garden spade, the measured depth of amended topsoil shall be equal to the required 300mm depth (±25mm)
 - Using a small diameter coring unit, the measured core depth of amended topsoil shall be equal to the required 300mm depth (±50mm)

Soil Amendment Requirements for Wateridge Village Phase 2B - For Development Requiring a Building Permit Only

Detail No.1 - Perpendicular Native Soil Ripping Pattern

Detail No.3 - No native soil ripping within 3.0m of Building Foundation (Amendment Only)

Detail No.4 Amendment Method No. 1

City of Ottawa May 13, 2019

OPTION 2 On-Site Soil Amendment Import and Replace Topsoil with Amendment Material All Building Types and Parks

Materials

 Amendment material shall be obtained from a Compost Quality Assurance (CQA) licensed and OMOE/ CCME approved facility and shall comply with the Category "A" compost designation. The amendment material must contain:

 Organic matter primarily leaf, yard and bark waste compost of 8-15% by dry weight as determined by Loss-on-Ignition (LOI) and a pH of 6.0 to 8.0.
 No uncomposted manure or other organic materials, sphagnum peat or organic amendments that contain sphagnum peat.

Placement and Amendments

- 1. Remove existing topsoil and dispose off-site in accordance with OPSS 206 and OPSS 180, O. Reg. 153/06, the Environmental Protection Act or municipal by-laws and policies, whichever supersedes.
- Rip native subsoil (decompaction) using the teeth of an excavator or bobcat bucket or equivalent to a native subsoil at depth of 100-200mm. Rip using a perpendicular pattern (See Detail No.1) ensuring full site coverage. No ripping within tree protection areas (See Detail No.2) or within 3m of building foundations (See Detail No.3).
- 3. Import pre-mixed amended topsoil (300mm depth of coverage required).
- Place imported pre-mixed amended topsoil in 150mm lifts, lightly roll or smooth using machinery bucket and repeat. Adjust layer quantities to ensure a settled amended topsoil depth of 300mm and compliance with site grading. (See Detail No.4).

Amended topsoil should be wetted after application, allowed to settle for a minimum of one (1) week and grades adjusted as required prior to installation of turf.

-IMPORTANT-

Documentation Requirements

As part of verification, the owners shall produce delivery tickets, receipts and specifications detailing the delivery address, quantities and product description and sources for verification by City inspectors. Delivery address is to be listed and must correspond to the property/site being inspected. Sites without proper documentation may be subject to additional verification procedures including laboratory testing at the expense of the owner. The owner's engineer shall provide a duly notarized letter with all supporting documentation certifying the proper installation and placement of amended soil.

Consultant Verification/Inspection

Verification may occur after the minimum one (1) week settlement period. Verification is suggested prior to turf placement. Non-compliant sites shall be rectified at the expense of the owner

At random, the Developer's consultant shall dig at least one (1) test hole to verify amended topsoil depth and uncompacted soil depths. Requirements:

- Amended topsoil layer shall be easily dug using only the inspector's weight or cored without other mechanical assistance.
- 2. The amended topsoil layer shall be darker in color than the unamended- ripped subsoil and particles of organic matter should be easily visible.
- 3. Measured amended topsoil depths shall be deemed to be in conformance based on the following:
 - Using a common garden spade, the measured depth of amended topsoil shall be equal to the required 300mm depth (±25mm)
 - Using a small diameter coring unit, the measured core depth of amended topsoil shall be equal to the required 300mm depth (±50mm)

Detail No.1 - Perpendicular Native Soil Ripping Pattern

Detail No.2 - No Native Soil Ripping within Tree Protection Areas or Amendment

Detail No.3 - No Native Soil Ripping within 3.0m of Building Foundation (Amendment Only)

Detail No.4 Placement and Compaction Lifts for Amended Topsoil

Soil Amendment Requirements for Wateridge Village Phase 2B - For Development Requiring a Building Permit Only

City of Ottawa May 13, 2019 May 13th, 2018 Ref No. 65578.1

Appendix C: Resource Directory

Resource Directory

Provincial Manual	Stormwater Management Planning and Design Manual (MOE, 2003) https://www.ontario.ca/document/stormwater- management-planning-and-design-manual-0	Stormwater Management Planning and Design Manual March 2003
Interpretation Bulletin	Interpretation Bulletin Ontario Ministry of Environment and Climate Change Expectation Re: Stormwater Management (MOE, 2015) http://www.raincommunitysolutions.ca/wp- content/uploads/2015/07/MOECC-interpretation- bulletin-re-stormwater-management.pdf	<section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header>
Planning and Design Guide	Low Impact Development Stormwater Management Planning and Design Guide (TRCA/CVC, 2101, Version 1.0) <u>http://sustainabletechnologies.ca/wp/wp- content/uploads/2013/01/LID-SWM-Guide-v1.0_2010_1_no- appendices.pdf</u>	<image/> <image/> <image/> <image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image/><text><text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
Planning Guide	Grey to Green Enhanced Stormwater Management Master Planning: Guide to Optimizing Municipal Infrastructure Assets and Reducing Risk (CVC) <u>http://www.creditvalleyca.ca/wp-</u> content/uploads/2016/01/ORGuide.pdf	

May 13th, 2018 Ref No. 65578.1

		Ce du Distinci e d'Autore de Stormwater De la Distinci e d'Autore de Stormwater Enhanced Stormwater Master Planning
Planning & Design Fact Sheets	Low Impact Development Stormwater Management Planning and Design Guide, including Fact Sheets: <u>http://www.creditvalleyca.ca/low-impact-development/low-impact-development-support/stormwater-management-lid-guidance-documents/low-impact-development-stormwater-management-planning-and-design-guide/</u>	
Construction Guide	Construction Guide for Low Impact Development (CVC, 2012, Version 1.0) http://www.creditvalleyca.ca/wp-content/uploads/2013/03/CVC- LID-Construction-Guide-Book.pdf	<image/> <section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header>
Landscape Design Guide	Landscape Design Guide for Low Impact Development (CVC – Version 1.0) http://www.creditvalleyca.ca/low-impact-development/low-impact- development-support/stormwater-management-lid-guidance- documents/andscape-design-guide-for-low-impact-development- version-1-0-june-2010/	APPENDIX B LANDSCAPE DESIGN GUIDE FOR LOW IMPACT DEVELOPMENT VERSION 1.0 June 301

Roads Retrofit Design Guide	Low Impact Development Road Retrofits: Optimizing Your Infrastructure through Low Impact Development (CVC) http://www.creditvalleyca.ca/wp-content/uploads/2014/08/Grey-to- Green-Road-ROW-Retrofits-Complete 1.pdf	Control Control <t< th=""></t<>
Business & Multi- Res. Retrofit Design Guide	Grey to Green Business & Multi- Residential Retrofits: Optimizing Your Infrastructure through Low Impact Development (CVC) http://www.creditvalleyca.ca/wp-content/uploads/2015/01/Grey-to- Green-Business-and-Multiresidential-Guide1.pdf	Crey to Creen Business Re Multi-Residential Retrofts: Damage Ver Baser - Jie Brogeli Low I-pact Development Business and Multi-Residential
Residential Retrofit Design Guide	Low Impact Development Residential Retrofits: Engaging Residents to Adopt Low Impact Development in their Properties (CVC) http://www.creditvalleyca.ca/wp-content/uploads/2015/01/Grey-to- <u>Green-Residential-Guide1.pdf</u>	
Public Lands Retrofit Design Guide	Grey to Green Public Lands Retrofits: Optimizing Your Infrastructure through Low Impact Development (CVC) <u>http://www.creditvalleyca.ca/wp-content/uploads/2015/01/Grey-to-Green-Pulic-Lands-Guide.pdf</u>	Creye to Creeen Public Lands Reterofits Public Lands

Maintenance Guide	Low Impact Development Stormwater Management Practice Inspection and Maintenance Guide (TRCA/ STEP, 2016, Version 1.0) http://www.sustainabletechnologies.ca/wp/home/urban-runoff- green-infrastructure/low-impact-development/low-impact- development-stormwater-practice-inspection-and-maintenance- guide/	LOW IMPACT DEVELOPMENT STORWARTER MARAGEMENT FRACTICE IMPECTION AND MAINTENAICE GUIDE
Life Cycle Costs Report	Assessment of Life Cycle Costs for Low Impact Development Stormwater Management Practices (TRCA, UofT, 2013) http://www.sustainabletechnologies.ca/wp/wp- content/uploads/2013/06/LID-LCC-final-2013.pdf	<image/>
Costing Tool	Low Impact Development Life Cycle Costing Tool (STEP) http://www.sustainabletechnologies.ca/wp/home/urban-runoff- green-infrastructure/low-impact-development/low-impact- development-life-cycle-costs/	Low Impact Development Costing Tool Please select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets Image: Plane select an LID practice to open costing sheets <t< th=""></t<>

	Guide to Applying for an Environmental Compliance	
Approval Guide	Approval <u>https://www.ontario.ca/document/guide-applying-environmental-compliance-approval</u>	Guide to Applying for an Environmental Compliance Approval
ECA Submission Checklist	Checklist for Technical Requirements for Complete Environmental Compliance Approval Submission https://www.ontario.ca/document/checklist-technical-requirements- complete-environmental-compliance-approval-submission	Checklist for Technical Requirements for a Complete Environmental Compliance Approval Submission
Groundwater	Simulation of Groundwater Mounding Beneath	<i>₽</i> onaro XIICCC
Mounding Analysis	Hypothetical Stormwater Infiltration Basins	Proposed in composition with the New Joney Department of Environmental Protection
, , .	USGS	Simulation of Groundvater Mounding Beneath Hypothetical Stormwater Infiltration Basins
	https://pubs.usgs.gov/sir/2010/5102/	
	Spreadsheet <u>Hantush_USGS_SIR_2010-5102-1110.xlsm</u>	The second
		Scientific Investigations Report 2010-5102 183 Department of the Manifer 183 Department of the Manifer

Monitoring Guide	CVC Stormwater Management and Low Impact Development Monitoring and Performance Assessment Guide (2015, V1.0) <u>http://www.creditvalleyca.ca/wp- content/uploads/2016/06/Monitoring_Guide_Final.pdf</u>	<image/> <section-header><section-header></section-header></section-header>
Planning Level Modelling Tool (Class A)	LID Treatment Train Tool (LID TTT) <u>http://www.sustainabletechnologies.ca/wp/low-impact-development-treatment-train-tool/</u>	
LID Performance Resources	Sustainable Technologies Evaluation Program available https://wiki.sustainabletechnologies.ca/wiki/Main_Page Page LID BMP monitoring plans, technical reports and case studies http://www.creditvalleyca.ca/low-impact-development/lid-maintenance-monitoring/ International Stormwater BMP Database http://www.bmpdatabase.org/index.htm.	

Other Resources and Reports	
Sustainable Technologies Evaluation Program	
(STEP): www.sustainabletechnologies.ca/	Statisticke Technologies Samplowants Samplowants (Balance Control (Control
 Resources, Studies and Reports Green Infrastructure Map Stormwater Infiltration in Cold Climates Review (2009) Stormwater Management and Watercourse Impacts: The Need for a Water Balance Approach Preserving and Restoring Healthy Soil: Best Practices for Urban Construction LID Discussion Paper Urban Water Balance LID "Barrier Buster" fact sheet series 	<image/>
Features Studies and Resources:	terre et la constante industria de la constante de la constante de la constant
8. Bioretention and Rain Gardens	
9. Green Roots	

Soakaways, Infiltration Trenches and Chambers	
11. Permeable Pavement	
12. Swales and Roadside Ditches	
13. Perforated Pipe Systems	
14. Rainwater Harvesting	
15. Residential Stormwater Landscaping	
16. Water Balance for the Protection of Natural Features	

IBI GROUP 400–333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

Technical Memorandum

To/Attention	Mary Jarvis - Canada Lands Company	Date	November 23, 2022
From	Jim Moffatt – IBI Group	Project No	118863-2.0
cc	Krisendat Sewgoolam - Canada Lands Company Meghan Black - IBI Group Anton Chetrar - IBI Group		
Subject	Block 11 - Parcel 1 Site Plan Submission Wateridge Village Phase 2B		

Introduction

This technical memorandum has been prepared for Canada Lands Company and includes a review of the proposed site plan for Parcel 1 at Block 11 in Phase 2B of the Wateridge Village community. The review is based on the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing prepared by IBI Group dated April 26, 2022, also included in **Appendix A**.

Figure 1, in the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing, shows the location site plan for Parcel 1 at Block 11 for which DesignWorks Engineering is seeking approvals. Parcel 1 in Block 11 is surrounded by Tawadina Street to the north, Bareille-Snow Street to the west, Parcel 2 to the south and Michael Stoqua Street to the east. The plan consists of two 9-storey residential buildings with one level of underground parking.

The DesignWorks Engineering site plan shows different storm and sanitary servicing outlets than the ones provided by the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing dated April 26, 2022. This memorandum will outline the impacts on wastewater disposal and a review of the water supply and low impact development for the proposed development. In terms of management of stormwater, the proposed design was compared to the aforementioned April 2022 IBI memo.

Sanitary Servicing

As stated previously, our review will be based on the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing prepared by IBI Group dated April 26, 2022.

In the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing, Parcel 1 in Block 11 is proposed to outlet into the sanitary sewer system on Barreille-Snow Street, north of MH308A. On the site plan submitted by DesignWorks Engineering for parcel, the sanitary sewer is proposed to outlet on Tawadina Street, west of MH304A.

An analysis of the ability of the existing sanitary sewer system in Tawadina Street to accommodate the flows from Parcel 1 in Block 11 was also completed. This analysis is included on the updated sanitary sewer spreadsheet included in **Appendix B**. The updated spreadsheet was based not only on the current City of Ottawa wastewater criteria, which came into effect in 2018 but also on the proposed site plan as submitted by DesignWorks Engineering. The following **Table 1** provides a review of the impacts of this change and the ability of the sanitary sewers to accept and convey any changes in flows.

Mary Jarvis - November 23, 2022

Street Location		Original	Plan	Fi	nal DesignW	Sewer Design			
	Units Total Pop		Flows(I/s)	Units TotalPopn		Flows(I/s)	Size(mm)	Spare Capacity(I/s)	
								Flow	%
<u>Tawadina</u> MH303A – MH304A	0	83.7	3.07	240	515.7	7.96	250	23.06	74.33
<u>Bareille-Snow</u> MH304A – MH308A	140	1964.7	24.33	0	2238.3	26.80	250	12.93	32.54

Table 1: Sanitary Flow vs Sewer Capacity Analysis

The updated analysis includes the existing sewer system highlighted on the Phase 2B design sheet. It is noted that the proposed site plan has new population of 432.0 people. This shows an increase of 273.6 people from the results of the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing. The new calculated wastewater flows in the Tawadina Road sewer from MH303A to MH304A from Parcel 1 is 7.96 I/s. This shows a wastewater flow increase of 4.89 I/s as a result of re-directing wastewater flow of Parcels 1 from Barreille-Snow Street to Tawadina Road. The spare capacity of that sewer is 23.06 I/s. The capacity of the sanitary sewer in Barreille-Snow Street was analyzed as well. The wastewater flow between MH304A and MH308A is 26.80 I/s. This shows an increase of 2.47 I/s in wastewater flow with an available capacity of 12.93 I/s. For reference, a highlighted copy of the Phase 2B sanitary sewer design sheet is included in **Appendix B**.

The impact of re-directing wastewater flows from Parcel 1 in Block 11 to the Tawadina Road sanitary sewer has been completed. Based on the analysis noted above, the existing wastewater system in Wateridge Village Phase 2B has sufficient available capacity to carry the re-directed flows from Parcel 1 in Block 11. It is therefore concluded that the existing sanitary sewers in Tawadina Road, Bareille-Snow Street adjacent to the subject property can accommodate the re-direction of flows from Parcel 1 in Block 11.

Stormwater Servicing

The stormwater servicing is not consistent with the servicing presented in the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing prepared by IBI Group dated April 26, 2022. For example, the minor storm connection proposed by DesignWorks Engineering is to Tawadina Road to the north, while it was concluded in the IBI memo that the connection is to be to Bareille-Snow Street to the west. IBI cannot at this time comment on the implication of such a change. It should be noted that in addition to minor system connectivity, the April 2022 memo also outlined major system connectivity as well as minor and major system requirements.

Mary Jarvis - November 23, 2022

Water Servicing

The objective of this evaluation is to review the water distribution of the submitted site plan by DesignWorks Engineering. A watermain model for the site plan area was included in the phase 2B Design Brief. For reference, the modeling results for Phase 2B are included in **Appendix C**.

The site plan shows a new 200mm diameter watermain connection at the existing 400mm watermain on Tawadina Road. This connection is expected to service both buildings on the site plan. The water design criteria used in calculating the water demands and system pressures for the site plan in Block 11 submitted by DesignWorks Engineering is based on the latest City of Ottawa Water Distribution Guidelines. It is also confirmed that the fire flow demand was calculated on the latest Fire Underwriters Survey (FUS) 2020.

The Wateridge Phase 2B figure shows four nodes around the subject site (I14, I16, I18 and I20). The basic day pressures range from 551.6 kPa to 555.0 kPa on Tawadina Road. The City of Ottawa criteria for pressure reduction during basic day demand is 552 kPa. Therefore, based on our analysis the building along Tawadina Road will not require pressure reducing valves on internal plumbing. The peak hour pressures range between 498.8 kPa and 508.1 kPa. The City criteria is that peak hour pressures must exceed 276 kPa so there is no issue with this criterial. The fire flows available during maximum day demand range between 462.6 l/s and 850.5 l/s which greatly exceeds the required fire flow rate of 320.17 l/s for the proposed buildings on the site plan.

The results of the average day demand for the site shows a demand of 1.4 L/s or 120,960 L/day. The City of Ottawa requires that a minimum 2 feeds be provided to a service area with a demand above 50,000 L/day, to avoid service disruptions. Therefore, an additional watermain connection to service the site is required.

Low Impact Development

A review of the proposed site plan, located at Wateridge Village Phase 2B – Block 11, low impact development (LID) requirements was completed and included in **Appendix D**.

Conclusion

In summary, a review of the proposed site plan for which DesignWorks Engineering is seeking approvals was completed. In terms of wastewater disposal impacts, although the proposed sanitary servicing outlet is not consistent the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing, we can conclude that the existing sanitary sewer in Tawadina Road can accommodate the re-direction of flows from Parcel 1 in Block 11. Based on the analysis above of the water distribution, an additional watermain connection is required at the proposed site plan to meet City of Ottawa Design Guidelines.

In terms of management of stormwater, the stormwater servicing is not consistent with the servicing presented in the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing prepared by IBI Group dated April 26, 2022. Therefore, IBI cannot at this time comment on the implication of such a change.

IBI GROUP MEMORANDUM

Mary Jarvis - November 23, 2022

We trust our conclusions are satisfactory for your purposes. We are, of course, available to review and discuss the information contained within this document.

Regards,

IBI GROUP

Gd Maffett

Jim Moffatt, P. Eng. Associate

J:\118863_Wtridge2A2B\5.2 Reports\5.2.2 Civil\5.2.2 Civil\5.2.2 Severs\2022-11 Block 11 Site Plan Review\CTM-118863_Jarvis_Technical Memo-2022-11-23.docx\2022-11-23.ym

IBI GROUP MEMORANDUM

Mary Jarvis - November 23, 2022

APPENDIX A

Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing

IBI GROUP 400–333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

Memorandum

To/Attention	John Bernier, City of Ottawa Shawn Wessel, City of Ottawa	Date	April 26, 2022
From	Meghan Black Jim Moffatt	Project No	118863-5.3.1.5
cc	Mary Jarvis, Canada Lands Company		
Subject	Assessment of Revised Block 11 and Servicing	d 12 Storm and	d Sanitary

1. Background

Blocks 11 and 12 are located within Phase 2B of the Wateridge development and are indicated in **Figure 1**. The municipal servicing of the two blocks was addressed in, "Design Brief, Wateridge Village at Rockcliffe Phase 2B," prepared by IBI Group in April 2019. Subsequent to the approval of the Phase 2B detailed design, Canada Lands Company has sub-divided the subject blocks into five parcels for development. The parcels, identified as Parcels 1-5, are being considered for purchase by various parties. IBI has been engaged to assess the impact of this change on adjacent existing storm and sanitary sewers. Enclosed **Figure 1** depicts Blocks 11 and 12 and the respective five parcels.

2. Stormwater Management

2.1 Objective

The objective of the evaluation is to assess the impact on the dual drainage system of discretizing Blocks 11 and 12 into Parcels 1-5 and the associated impacts to the storm servicing. The detailed design of Parcels 1-5 will be carried out by others.

2.2 Dual Drainage Design

Per the Phase 2B design brief, minor storm runoff from Block 11 (identified as drainage area B309) drains to Bareille-Snow Street, with major flow tipping to Bareille-Snow Street at Hemlock Road. Minor flow from Block 12 (identified as drainage area B340) drains to Codd's Road with major flow draining to Hemlock Road. The minor system restriction for the two development blocks corresponds to between the 5 and 100 year storm event, and no on-site storage was proposed. The storm drainage area plan (Drawing 750) from the Phase 2B submission is enclosed in **Appendix A** for reference. With the proposed adjustments to the storm servicing for the sub-divided or discretized parcels, minor system capture and on-site storage has been re-assessed.

2.3 Hydrological Analysis

Hydrological analysis of the dual drainage system of the subject site has been conducted using DDSWMM, consistent with the simulations completed for the Phase 2B design brief.

2.3.1 Storm and Design Parameters

The following storms and design parameters have been used in the evaluation. The main hydrological parameters are summarized in **Table 2.1**, with a comparison of what was included in the Phase 2B evaluation.

- **Design Storms:** The subject site has been evaluated with the following storms, consistent with the Phase 2B evaluation:
 - 5 and 100 year 3 hour Chicago storm events, and associated stress test; applied for the evaluation of the trunk storm sewers;
 - 100 year 24 hour SCS Type II storm event, applied for the evaluation of the trunk storm sewers;
 - July 1979, August 1988, August 1996 historical storms per the OSDG.
- Area and Imperviousness: Block 11 (identified as drainage area B309) and Block 12 (identified as drainage area B340) have been discretized into Parcels 1 through 5. An imperviousness value of 86% has been applied to the parcels, consistent with the values applied for B309 and B340 in the Phase 2B design brief.
- Infiltration: Infiltration losses were selected to be consistent with the OSDG. The Horton values are as follows: $f_0 = 76.2 \text{ mm/h}$, $f_c = 13.2 \text{ mm/h}$, $k = 0.00115 \text{ s}^{-1}$.
- Subcatchment Width: The catchment width for the parcels was based on 225 m/ha.
- **Slope:** The ground slope was based upon the average slope for both impervious and pervious area. Generally, the slope is approximately 2% (0.02 m/m). This assumes a slope of approximately 1% for impervious or road surfaces and 3% for pervious surfaces (lot grading).
- Initial Abstraction (Detention Storage): Detention storage depths of 1.5 mm and 4.67 mm were used for impervious and pervious areas, respectively. These values are consistent with the OSDG.
- **Manning's roughness:** Manning's roughness coefficients of 0.013 and 0.25 were used for impervious and pervious areas, respectively.
- **Baseflow:** No baseflow components were assumed for any of the areas contributing runoff to the minor system within the DDSWMM model.
- **Minor System Capture:** The minor system capture for the parcels ranges from the 5 year to the 100 year, with three parcels capturing between the 5 and 100 year simulated flow.
- **Major System Storage and Routing:** In order to continue to satisfy City design guidelines, on-site storage has been introduced on four of the parcels, as noted below.

A summary of parameters and minor system and on-site storage is presented in the following tables. A summary from the Phase 2B detailed design is included to facilitate review. Refer to

Figure 2 for the overall storm sewer network and to Figure 3 for a depiction of the minor and major system connectivity for the five parcels.

Table 2.1 Hydrological Parameters

	Phase 2B Design Brief						Current Evaluation								
Block	Drainage Area ID	Area (ha)	Major System: D/S Segment ID	Minor System: MH ID	IMP Ratio	Segment Length (m)	Sub- catchment Width (m)	Parcel	Drainage Area ID	Area (ha)	Major System: D/S Segment ID	Minor System: MH ID	IMP Ratio	Segment Length (m)	Sub- catchment Width (m)
11	B300	1 24	S308A on	MH309 on	0.86	135.1	270.2	1	B309_1	0.72	S308 on Bareille- Snow	MH309 on Bareille- Snow	0.86	81	162
11 B309	0309	1.24	Bareille- Snow	Bareille- Snow	0.00	135.1	210.2	2	B309_2	0.52	S308A on Bareille- Snow	MH310 on Michael Stoqua	0.86	58.5	117
				MU20E				3	B340_3	0.34	S308A on Bareille- Snow	MH308 on Bareille- Snow	0.86	38.25	76.5
12	B340	1.24	S207 on Hemlock	on Codd's	0.86	173.1	346.3	4	B340_4	0.53	S308 on Bareille- Snow	MH309 on Bareille- Snow	0.86	59.63	119.25
				Noau				5	B340_5	0.37	S340 on Codd's	MH305 on Codd's Road	0.86	41.63	83.25

Table 2.2 Minor System Restriction and On-site Storage

Phase 2B Design Brief						Current Evaluation							
Disala		Minor S	Minor System Capture			_ ·	Minor	System Capture	Major System				
Вюск	Drainage Area ID	Simulated Flow (I/s)	Corresponding Design Storm	Site Storage (cu-m)	Parcel	Area ID	Simulated Flow (I/s)	Corresponding Design Storm	Required On- Site Storage (cu-m)	Comment			
11	P200	270	Between 5 and 100	Nono	1	B309_1	<mark>195</mark>	Between 5 and 100 year	<mark>43</mark>	Control up to the 100 year event			
	11 B309	570		NOTE	2	B309_2	105	5 year	64	Control up to the 100 year event			
						3	B340_3	95	Between 5 and 100 year	18	Control up to the 100 year event		
12 B340	B340 366	6 Between 5 and 100	None	4	B340_4	150	Between 5 and 100 year	21	Control up to the 100 year event				
					5	B340_5	139	100 year	None	N/A			

2.4 Results of Hydrological Modeling

2.4.1 Minor System

The minor system hydrographs generated by the hydrological model were exported to the hydraulic model for analysis, discussed in **Section 2.5**.

2.4.2 Major System

Due to the adjustment in major system connectivity, the major system has been reassessed. Refer to drainage areas on Drawing 750 from the Phase 2B submission in **Appendix A**.

2.4.2.1 Street Segment Storage

The available and utilized street sag storage is summarized in the below table for street segments in affected by the revised storm servicing of Parcels 1-5.

Table 2.3 Summary of On-site Street Storage (Available and Utilized) During Target Minor System Design Storm in Vicinity of Parcels 1-5

Street	Drainage Area ID	Minor System Design Storm	Available Static Storage (cu-m)	Total Storage Utilized During Minor System Design Storm (cu-m)	Overflow During Minor System Design Storm (I/s)	
Michael Stocqua	S310A	5	61.39	0	0	
Bareille-Snow	S308A	5	40.38	0	0	
Hemlock	S176C	5	1.14	0	0	

The results indicate that there is no ponding on the street segments during the minor system design storm.

2.4.2.2 Velocity x Depth

According to the City of Ottawa Sewer Design Guidelines (October 2012), the maximum depth of flow should not exceed 350 mm and the product of velocity and depth on all the street segments should not exceed 0.6 m^2 /s during the 100 year storm event.

The cascading overflow is the flow exiting a drainage area when maximum minor system inflow and maximum available ponding has been utilized. To determine velocity of the cascading overflow, a SWMHYMO file was created (118863VD.dat).

To determine velocity of the cascading overflow at critical locations, SWMHYMO was used. The ROW sections were entered into the model with the appropriate longitudinal slopes to obtain the maximum velocity of flow using the Route Channel routine. The overflow is obtained from the respective DDSWMM output file and is noted in the footnotes of the below tables.

To determine depth of the cascading overflow, the *Calculation Sheet: Overflow From Typical Road Ponding Area* provided at the February 2014 Technical Bulletin ISDTB-2014-01 was used. The

exception to this is where the road is on grade in which case the depths were obtained from the SWMHYMO model.

The results are presented in **Table 2.4** and **Table 2.5** and the supporting calculations are included in **Appendix A**.

Street	Drainage Area ID	Dummy Segment ID	Overflow (I/s) ¹	Velocity (m/s)²	Max. Static Ponding Depth (m)	Depth of Dynamic Flow (m) ³	Max. Depth (Static + Dynamic) (m)	Velocity x Depth (m²/s)
Michael Stoqua	S311A	N/A	49	0.73	N/A	0.04	0.04	0.03
Michael Stoqua	S310A	D14	0	0	0.29	0	0.29	0
Bareille-Snow	S309	N/A	43	0.50	N/A	0.05	0.05	0.03
Bareille-Snow	S308	N/A	65	0.84	N/A	0.05	0.05	0.04
Bareille-Snow	S308A	D18	26	0.47	0.26	0.05	0.31	0.03
Codd's	S340	N/A	50	0.88	N/A	0.04	0.04	0.04
Codd's	S231	N/A	100	0.62	N/A	0.07	0.07	0.04
Hemlock	S205C	N/A	37	0.48	N/A	0.05	0.05	0.02
Hemlock	S207	N/A	61	0.55	N/A	0.06	0.06	0.03

Table 2.4 Summary of Cascading Flow during the 100 year 3 hour Chicago storm

(1) Overflow from DDSWMM output 118863-3CHI100.out

(2) Velocity from SWMHYMO output 118863VD.out

(3) Depth of the cascading overflow was determined from the Calculation Sheet: Overflow From Typical Road Ponding Area provided in the February 2014 Technical Bulletin ISDTB-2014-01. For those areas which have a continuous road grade (or no dummy segment), the depth was taken from SWMHYMO VxD simulation.

Table 2.5 Summary of Cascading Flow during the 100 year 3 hour Chicago storm + 20%

Street	Drainage Area ID	Dummy Segment ID	Overflow (I/s) ¹	Velocity (m/s) ²	Max. Static Ponding Depth (m)	Depth of Dynamic Flow (m) ³	Max. Depth (Static + Dynamic) (m)	Velocity x Depth (m²/s)
Michael Stoqua	S311A	N/A	66	0.79	N/A	0.05	0.05	0.04
Michael Stoqua	S310A	D14	33	0.61	0.29	0.06	0.35	0.04
Bareille-Snow	S309	N/A	71	0.57	N/A	0.06	0.06	0.03
Bareille-Snow	S308	N/A	216	1.15	N/A	0.08	0.08	0.09
Bareille-Snow	S308A	D18	268	1.29	0.26	0.13	0.39	0.17
Codd's	S340	N/A	98	1.04	N/A	0.05	0.05	0.06
Codd's	S231	N/A	165	0.71	N/A	0.08	0.08	0.06
Hemlock	S205C	N/A	46	0.51	N/A	0.05	0.05	0.03
Street	Drainage Area ID	Dummy Segment ID	Overflow (I/s) ¹	Velocity (m/s)²	Max. Static Ponding Depth (m)	Depth of Dynamic Flow (m) ³	Max. Depth (Static + Dynamic) (m)	Velocity x Depth (m²/s)
---------	---------------------	------------------------	--------------------------------	--------------------	--	--	---	-------------------------------
Hemlock	S207	N/A	89	0.60	N/A	0.07	0.07	0.04

(1) Overflow from DDSWMM output 118863-3CHI120.out

(2) Velocity from SWMHYMO output 118863VD.out

(3) Depth of the cascading overflow was determined from the Calculation Sheet: Overflow From Typical Road Ponding Area provided in the February 2014 Technical Bulletin ISDTB-2014-01. For those areas which have a continuous road grade (or no dummy segment), the depth was taken from SWMHYMO VxD simulation.

During the 100 year 3 hour Chicago storm, the summation of depth of ponding and depth of cascading flow for all street segments is less than the City guideline of 0.35 m. The product of depth and velocity is also less than the City guideline of 0.6 m^2/s .

During the sensitivity analysis applying the 100 year 3 hour Chicago storm increased by 20%, the summation of depth of ponding and depth of cascading flow for all street segments is less than the City guideline of 0.35 m, with the exception of S308A, noted in the above table in bold red type. At all locations, the product of depth and velocity is less than the City guideline of 0.6 m²/s.

These results are consistent with those of the Phase 2B detailed design. It should be noted that major flow from the above-noted affected areas is at or below that accounted for in the Phase 2B model.

The area at which total depth of ponding and cascading flow exceeds 0.35 m during the stress test is noted in the below table with the critical adjacent property elevation.

Drainage Area ID	Low Point Elevation (m)	Max. Depth (Static + Dynamic) (m)	(1) Corresponding Elevation (m)	(2) Adjacent Property Line (m)	Difference (2) – (1)
S308A	88.74	0.39	89.13	89.01	-0.12

Table 2.6 Critical	Ponding Locations	during the Stress	Test and Adjacent	Property Elevations
	J			

The corresponding stress test ponding elevation is greater than the adjacent block grading at the boulevard. At the detailed design stage of the blocks, house openings must be greater than the ponding elevation.

2.5 Storm Hydraulic Grade Line Analysis

The hydraulic grade line (HGL) was evaluated using the XPSWMM hydraulic model. The existing overall model for the Wateridge site, most recently revised as part of the Phase 4 submission (December 2021), was revised to include the revised servicing of Parcels 1-5.

XPSWMM simulations were conducted for the 100 year 3 hour Chicago storm to ensure that the HGL is at least 0.3 m below the underside of footing elevations. A sensitivity analysis was also performed using the 100 year Chicago storm with a 20% increase in intensity to ensure that there is no severe flooding to properties. Hydraulic grade line elevations along the existing downstream Phase 1A trunk storm sewer and relevant Phase 2B storm sewers are presented in the below table for these storms, along with a comparison of underside of footing (USF) elevations. Results

for the overall development area are presented in the enclosed **Appendix A**, including for the three historical storms per OSDG. Refer to **Figure 1** for the location of storm maintenance holes.

мн ір	Street	Proposed	LISE (m)	100 year 3 h	our Chicago	100 year 3 h + 2	our Chicago 20%
	Slieet	Elev. (m)	03i (iii)	HGL (m)	USF – HGL (m)	HGL (m)	USF – HGL (m)
MH194	Top of the escarpment	82.05	N/A	80.47	N/A	80.55	N/A
MH193	OSHEDINAA	84.68	82.68	81.12	1.56	81.28	1.40
MH192	OSHEDINAA	84.99	82.99	81.46	1.53	81.64	1.35
MH191	OSHEDINAA	85.76	83.76	81.72	2.04	81.93	1.83
MH190	OSHEDINAA	86.36	84.36	81.96	2.40	82.19	2.17
MH180	OSHEDINAA	86.96	84.96	82.27	2.69	82.77	2.19
MH178	HEMLOCK	89.00	86.60	83.41	3.19	83.47	3.13
MH176	HEMLOCK	88.03	85.63	83.77	1.86	83.85	1.78
MH231	CODD'S	89.81	87.41	85.61	1.79	85.64	1.77
MH305	CODD'S	91.00	88.60	86.54	2.06	86.56	2.04
MH207	HEMLOCK	88.53	86.13	84.65	1.48	84.65	1.48
MH206	HEMLOCK	89.10	86.70	85.65	1.05	85.65	1.05
MH308	BAREILLE- SNOW	89.68	87.28	86.88	0.40	86.69	0.59
MH309	BAREILLE- SNOW	90.15	87.75	87.44	0.31	87.08	0.67
MH205	HEMLOCK	89.35	86.95	85.86	1.09	85.88	1.07
MH310	MICHAEL STOCQUA	90.04	87.64	87.28	0.36	87.42	0.22
MH311	MICHAEL STOCQUA	90.69	88.29	87.44	0.85	87.56	0.73

Table 2.7 Storm Hydraulic Grade Line – Phase 1A Trunk and Relevant Phase 2B Storm Sewers

Along the Phase 1A trunk and Phase 2B storm sewers presented above, a minimum 0.3 m clearance between the USF and HGL is maintained during the 100 year 3 hour Chicago storm and the HGL elevations remain below USF elevations during the sensitivity analysis. This is also true for the results for the remainder of the development area for additional storm simulations (enclosed in **Appendix A**).

2.6 Conclusion

The storm servicing of Blocks 11 and 12 was addressed during the detailed design of Phase 2B. The purpose of this evaluation is to assess the impact on the dual drainage system of discretizing Blocks 11 and 12 into Parcels 1-5 and the associated revisions to the storm servicing. The proposed minor and major connectivity of the five parcels is presented on **Figure 3** and minor system capture and required on-site storage is summarized in **Table 2.2**.

In terms of major flow, the depth and velocity of flow on streets adjacent to the five parcels was evaluated. City guidelines with respect to ponding during the minor system design storm, as well as maximum depth and velocity of flow are maintained. Major flow from the adjacent street segments is at or below that accounted for in the Phase 2B model.

With respect to minor flow, the hydraulic grade line evaluation was updated with the revised inflow hydrographs from the five parcels. Results indicate that a minimum 0.3 m clearance between the USF and HGL is maintained during the 100 year 3 hour Chicago storm and the HGL elevations remain below USF elevations during the sensitivity analysis.

It is therefore concluded that the proposed storm servicing to support Parcels 1-5 can be accommodated by the existing storm infrastructure.

3. Wastewater Outlet

3.1 Objective

The objective of this evaluation is to assess the impact on the existing wastewater system by the sub-division of Blocks 11 and 12 into five parcels. **Figure 4** shows the location of the subject site and the existing sanitary sewers which will be impacted by this change.

3.2 Existing Conditions

Development of Phase 2B included the construction of sanitary sewers in Codd's Road from MH231A to the MH340A and Bareille-Snow Street from BLK308A to MH304A. The sanitary sewer on Codd's Road was designed to capture wastewater flows from Block 12 and the sanitary sewer on Bareille-Snow Street was designed to capture wastewater flows from Block 11. The Bareille-Snow sewer outlets to a sanitary sewer in Hemlock Road. The latter sewer was designed in 2017, using the City's wastewater flow criteria in effect at that time and predicted a flow of 28.49 l/s tributary from the Bareille-Snow sewer. The Bareille-Snow sanitary sewer was designed in 2019 based on flow calculation criteria in effect at that time and predicted a slightly less flow of 25.17 l/s. A highlighted copy of the Phase 2B sanitary sewer design sheet is included in **Appendix B**. The spreadsheet has been highlighted to indicate the immediate downstream sewers on Codd's Road and Bareille-Snow Street. The flow calculations in the Phase 2B spreadsheet were based on the City of Ottawa's wastewater criteria in effect of that time (2019) and the block population densities noted in the Master Servicing Study.

3.3 Proposed Condition

Because of the sub-division of Blocks 11 and 12 into five parcels, less wastewater flow is now proposed to outlet to the Codd's Road sanitary sewer. The Phase 2B sewer designed assumed all Block 12 would outlet to that sewer but now only parcel 5 is proposed to outlet in that direction. No further analysis is therefore needed for the Codd's Road sewer.

Parcels 3 and 4, which represent the balance of Block 12, are now proposed to outlet to the existing sanitary sewer in Bareille-Snow Street and not the Codd's Road sewer. There is no

proposed change to the wastewater outlet for parcels 1 and 2. The Phase 2B design assumed all Block 11 would outlet to the Bareille-Snow sewer. Consequently, the expected wastewater flows to the latter pipe will likely increase.

An analysis of the ability of the existing sanitary sewer system in Bareille-Snow Street to accommodate the flows from both Block 11 and 12 was completed. This analysis is included on the updated sanitary sewer spreadsheet included in **Appendix B**. The updated spreadsheet was based not only on the current City of Ottawa wastewater criteria, which came into effect in 2018 but also on the most current concept plans for the various parcels which are also included in **Appendix B**. The updated analysis includes the existing sewer system highlighted on the Phase 2B design sheet.

Based on the updated analysis, the calculated wastewater flows tributary to the Hemlock Road sewer from Bareille-Snow Street is 30.31 l/s. This shows a wastewater flow increase of 1.82 l/s as a result of re-directing wastewater flows from parcels 3 and 4 in Block 12. The capacity of that sewer is 88.83 l/s. The Phase 1B design of the sanitary sewer in Hemlock Road between Bareille-Snow Street and Codd's Road indicated a spare capacity in that sewer of about 58 l/s. For reference, a highlighted copy of the Phase 1B sanitary sewer design sheet is included in **Appendix B**.

3.4 Conclusion

The impact of re-directing wastewater flows from Block 12 to the Bareille-Snow Street sanitary sewer has been completed. Based on the analysis noted above, the existing wastewater system in Wateridge Village Phase 1B and 2B has sufficient available capacity to carry the re-directed flows from Block 12. It is therefore concluded that the existing sanitary sewers in Bareille-Snow Street, Codd's Road and Hemlock Road adjacent to the subject property can accommodate the re-direction of flows from Block 12.

Appendix A Supporting Storm Information

Summary of Model Files

DDSWMM:

5 year 3 hour Chicago: 118863-3CHI5.DAT 100 year 3 hour Chicago: 118863-3CHI100.DAT 100 year 3 hour Chicago + 20%: 118863-3CHI120.DAT

100 year 24 hour SCS Type II: 118863-24SCS100.DAT 100 year 24 hour SCS Type II + 20%: 118863-24SCS120.DAT

July 1979: 118863-JUL79.DAT August 1988: 118863-AUG88.DAT August 1996: 118863-Aug96.DAT

SWMHYMO VxD:

118863VD.dat

XPSWMM:

5 year 3 hour Chicago: 118863-3CHI5_BLK1112_V08_2022-03-15.XP 100 year 3 hour Chicago: 118863-3CHI100_BLK1112_V08_2022-02-28.XP 100 year 3 hour Chicago + 20%: 118863-3CHI120_BLK1112_V08_2022-02-28.XP

100 year 24 hour SCS Type II: 118863-24SCS100_BLK1112_V08_2022-03-15.XP 100 year 24 hour SCS Type II + 20%: 118863-24SCS120_BLK1112_V08_2022-03-15.XP

July 1979: 118863-JUL1979_BLK1112_V08_2022-03-15.XP August 1988: 118863-AUG1988_BLK1112_V08_2022-03-15.XP August 1996: 118863-AUG1996_BLK1112_V08_2022-03-15.XP

			LEGEND:	
		~	PHASE 2B	DRAINAGE AREA
			PHASE 2A	DRAINAGE AREA (FUTURE)
			PHASE 2C	2D DRAINAGE AREA (FUTURE)
			PHASE 1B	DRAINAGE AREA (EXISTING)
			PHASE 1A	DRAINAGE AREA (EXISTING)
			EXTERNAL	DRAINAGE AREA
			S318 — AREA ID 0.13 71 — Imp.(%)	
	KEY PLAN N.T.S.		AREA (ha)	V
			MH136 MANHOLE IE	V)
	•			
			14	
			13	
			11	
			9	
0 1 1 0 1 0 1 0 1 0 1 0 1			7	
			5	
² 1 ¹ 2004GGGH, No.1 (73 C PT (2100) ¹ (210) ¹ (210)			3	
			2 1 SUBMISSION No.1 FOR	CITY REVIEW P.S. 2018: 12: 20
			No. REVI	SIONS By Date
			CANADA LA	ANDS COMPANY
Citava, On K1P EL4 613 998 7777 HIG ROUP HIG STATE Citava, On K1P EL4 613 998 7777 HIG ROUP HIG STATE Citava, On K1P EL4 613 998 7777 HIG STATE HIG H			30 Metcalfe	Street Suite 601
			Ottawa, On 613 998 777	K1P 5L4 7
Project Title WATERIDGE VILLAGE AT ROCKCLIFFE PHASE 28 Project Title WATERIDGE VILLAGE AT ROCKCLIFFE PHASE 28 Drawing Title DDSWMM MODEL SCHEMATIC Scale 1:200 Design MB Date PS. Project No. Drawing No. 118862 750			IBI GRO	DUP
Project Tile WATERIDGE VILLAGE AT ROCKCLIFFE PHASE 28 WATERIDGE VILLAGE AT ROCKCLIFFE PHASE 28 Drawing Tile DDSWMM MODEL SCHEMATIC Scale 1:200 Design M.B Defe DEC. 2018 Drawing No. 118862 Terming No.			IBI Ottawa tel 613	ON K1S 5N4 Canada 225 1311 fax 613 225 9868
Project Tile WATERIDGE VILLAGE PHASE 2B				p.com
AT ROCKCLIFFE PHASE 28 AT ROCKCLIFFE PHASE 28			Project Title WATERID	GE VILLAGE
Index 20			AT ROO	CKCLIFFE
Image: Construction of the second				
AND				~
Drawing Title DDSWMM MODEL SCHEMATIC Scale 1:2000 Design M.B Date DEC. 2018 Drawing No. 118862 750			- M.S.BLACK - 100101736 - 2019/04/17	
Drawing Title DDSWMM MODEL SCHEMATIC Scale 1:2000 Design M.B Date DEC. 2018 Drawn S.V. Project No. Drawing No. 118863 750			NOLINCE OF ONT PE	
DDSWMM MODEL SCHEMATIC Scale 1:2000 Design Date M.B DEC. 2018 Drawn S.V. Project No. Drawing No. 118863 750	NANAK		Drawing Title	
Image: Scale 1:2000 Design M.B Date Drawn S.V. P.S. Project No. Drawing No. 118863 750	RO			
Scale 1:2000 Design Date DEC. 2018 Drawn Checked Project No. Drawing No. 118863 750				
Design Date M.B DEC. 2018 Drawn Checked S.V. P.S. Project No. Drawing No. 118863 750			Scale	1:2000
Design M.B Date DEC. 2018 Drawn S.V. Project No. Drawing No. 112863 750				
Drawn Checked S.V. P.S. Project No. Drawing No. 118863 750			Design M.B	Date DEC. 2018
Project No. Drawing No.			Drawn S.V.	Checked P.S.
			Project No.	Drawing No.

Velocity x Depth Calculation

Iteration equation:

Velocity:

$$v_x = v_{\min} + \frac{Q_x - Q_{\min}}{Q_{\max} - Q_{\min}} (v_{\max} - v_{\min})$$

$$d_x = d_{\min} + \frac{Q_x - Q_{\min}}{Q_{\max} - Q_{\min}} (d_{\max} - d_{\min})$$

								100 Y	'ear 3 Hou	r Chica	go Storn	n								
						SWMHY	'MO (11886	53VD.OUT)		Calcula	ation Shee F	et: Overfle Ponding /	ow for Typ Area	ical Road	SWMHY	'MO (118863)	VD.OUT)	Velocity x Depth	Maximum Static	Total Depth (Static +
Area ID (Dummy Segment, if	Road ROW	Longitudinal	Overflow	Flowrate	Flowra	Flowrate (cms) Velocity (m/s) Flowrate Qmin Qmax vmin vmax vx 0.039 0.084 0.699 0.847 0.73 N/					te (cms)		Depth (m)		Depth (m)			Ponding Depth	Dynamic)
applicable)	Section	Slope (%)	Qx (l/s)	Qx (cms)	s) Qmin Qmax vmin vmax vx Qmin 0.039 0.084 0.699 0.847 0.73 N/A			Qmax	dmin	dmax	dx	dmin	dmax	dx	(m²/s)	(m)	(m)			
S311A	20	1.52	49	0.049	ms) Qmin Qmax vmin vmax vx Qmin 49 0.039 0.084 0.699 0.847 0.73 N/A 10 0.000 0.002 0.000 0.301 0.00 0.000		N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.044	0.03	0.00	0.04			
S310A	20	1.22	0	0.000	0.039 0.084 0.699 0.847 0.73 0.000 0.002 0.000 0.301 0.00 0 0.024 0.952 0.420 0.552 0.50 0			0.000	0.001	0.000	0.001	0.000	N/A	N/A	N/A	0.00	0.29	0.29		
S309	20	0.60	43	0.043	0.039 0.084 0.699 0.847 0.73 0.000 0.002 0.000 0.301 0.00 0.024 0.053 0.439 0.532 0.50			N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.050	0.03	0.00	0.05		
S308	20	1.84	65	0.065	0.043	0.092	0.769	0.932	0.84	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.047	0.04	0.00	0.05
S308A	20	0.71	26	0.026	0.009	0.027	0.365	0.478	0.47	0.021	0.027	0.050	0.055	0.054	N/A	N/A	N/A	0.03	0.26	0.31
S340	20	2.40	50	0.050	0.049	0.105	0.878	1.064	0.88	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.041	0.04	0.00	0.04
S205C	24	0.71	37	0.037	0.024	0.053	0.439	0.532	0.48	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.047	0.02	0.00	0.05
S231	20	0.53	100	0.100	0.096	0.155	0.617	0.697	0.62	N/A	N/A	N/A	N/A	N/A	0.068	0.082	0.069	0.04	0.00	0.07
S207	24	0.51	61	0.061	0.053	0.096	0.532	0.617	0.55	N/A	N/A	N/A	N/A	N/A	0.055	0.068	0.057	0.03	0.00	0.06

Velocity x Depth Calculation

Iteration equation:

Velocity:

$$v_x = v_{\min} + \frac{Q_x - Q_{\min}}{Q_{\max} - Q_{\min}} (v_{\max} - v_{\min})$$
$$d_x = d_{\min} + \frac{Q_x - Q_{\min}}{Q_{\max} - Q_{\min}} (d_{\max} - d_{\min})$$

								100 Year	· 3 Hour Ch	icago S	itorm + 2	20%								
						SWMH	(MO (1188	63VD.OUT)		Calcula	ation Shee F	et: Overfle Ponding /	ow for Typ Area	ical Road	SWMHY	MO (118863)	/D.OUT)	Velocity x Depth	Maximum Static Ponding Depth	Total Depth (Static + Dynamic)
Area ID (Dummy Segment, if	Road ROW	Longitudinal	Overflow	Flowrate	Flowrat	Iowrate (cms) Velocity (m/s) Flowrate min Qmax vmin vmax vx Qmax							Depth (m	1)		Depth (m)				
applicable)	Section	Slope (%)	Qx (l/s)	Qx (cms)	Qmin	Qmax	vmin	vmax	vx	Qmin	Qmax	dmin	dmax	dx	dmin	dmax	dx	(m²/s)	(m)	(m)
S311A	20	1.52	66	0.066	0.039	0.084	0.699	0.847	0.79	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.049	0.04	0.00	0.05
S310A	20	1.22	33	0.033	0.012	0.035	0.478	0.626	0.61	0.028	0.035	0.055	0.060	0.059	N/A	N/A	N/A	0.04	0.29	0.35
S309	20	0.60	71	0.071	0.053	0.096	0.532	0.617	0.57	N/A	N/A	N/A	N/A	N/A	0.055	0.068	0.060	0.03	0.00	0.06
S308	20	1.84	216	0.216	0.167	0.272	1.081	1.221	1.15	N/A	N/A	N/A	N/A	N/A	0.068	0.082	0.075	0.09	0.00	0.07
S308A	20	0.71	268	0.268	0.255	0.364	0.841	0.919	1.29	0.240	0.269	0.125	0.130	0.130	N/A	N/A	N/A	0.17	0.26	0.39
S340	20	2.40	98	0.098	0.049	0.105	0.878	1.064	1.04	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.053	0.06	0.00	0.05
S205C	24	0.71	46	0.046	0.024	0.053	0.439	0.532	0.51	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.052	0.03	0.00	0.05
S231	20	0.53	165	0.165	0.155	0.234	0.697	0.773	0.71	N/A	N/A	N/A	N/A	N/A	0.082	0.095	0.084	0.06	0.00	0.08
S207	24	0.51	89	0.089	0.053	0.096	0.532	0.617	0.60	N/A	N/A	N/A	N/A	N/A	0.055	0.068	0.066	0.04	0.00	0.07

Storm Hydraulic Grade Line Elevations

XPSWMM NODE	MH NO.	PROPOSED GROUND	USF (M)	100 YEAR	3 HOUR CHICAGO	100 YEAR 3 H INCREAS	OUR CHICAGO ED BY 20%	100 YEAR SCS T	24 Hour Type II	100 YEAR SCS TYPI	24 HOUR E II + 20%	JULY	1 1979	AUGU	ST 1988	AUGU	ST 1996
ID		ELEVATION (M)		HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)
Phase 1B																	
S143	143	102.40	100.00	98.16	1.84	98.16	1.84	98.16	1.84	98.16	1.84	98.16	1.84	98.16	1.84	98.16	1.84
S144	144	99.41	97.01	95.79	1.22	95.79	1.22	95.78	1.23	95.79	1.22	95.78	1.23	95.79	1.22	95.78	1.23
S145	145	97.64	95.24	93.01	2.23	93.01	2.23	93.01	2.23	93.01	2.23	93.00	2.24	93.01	2.23	93.00	2.24
S146	146	95.28	92.88	90.96	1.92	91.82	1.06	90.77	2.11	91.26	1.62	90.91	1.97	91.01	1.87	90.63	2.25
S147	147	93.27	N/A	90.93	N/A	91.78	N/A	90.72	N/A	91.23	N/A	90.88	N/A	90.98	N/A	90.60	N/A
USBRM	N/A	N/A	N/A	90.88	N/A	91.72	N/A	90.67	N/A	91.17	N/A	90.83	N/A	90.93	N/A	90.56	N/A
BURMA	N/A	N/A	N/A	89.41	N/A	89.87	N/A	89.24	N/A	89.53	N/A	89.43	N/A	89.31	N/A	89.04	N/A
OUTLET	N/A	N/A	N/A	89.26	N/A	89.75	N/A	89.07	N/A	89.39	N/A	89.29	N/A	89.15	N/A	88.65	N/A
S152	152	92.73	90.33	89.71	0.62	89.71	0.62	89.71	0.62	89.71	0.62	89.71	0.62	89.71	0.62	89.71	0.62
S151	151	92.50	90.10	89.58	0.52	89.57	0.53	89.58	0.52	89.58	0.52	89.58	0.52	89.58	0.52	89.57	0.53
S150	150	92.32	89.92	89.49	0.43	89.48	0.44	89.49	0.43	89.49	0.43	89.49	0.43	89.49	0.43	89.49	0.43
S149	149	92.34	89.94	89.42	0.52	89.42	0.52	89.42	0.52	89.42	0.52	89.42	0.52	89.42	0.52	89.42	0.52
S148	148	92.14	89.74	89.30	0.44	89.29	0.45	89.30	0.44	89.30	0.44	89.30	0.44	89.30	0.44	89.30	0.44
S157	157	91.24	N/A	89.21	N/A	89.20	N/A	89.21	N/A	89.21	N/A	89.21	N/A	89.21	N/A	89.21	N/A
S154	154	91.02	N/A	87.68	N/A	87.68	N/A	87.68	N/A	87.68	N/A	87.68	N/A	87.68	N/A	87.68	N/A
S215	215	90.77	88.37	87.58	0.79	87.58	0.79	87.58	0.79	87.58	0.79	87.58	0.79	87.58	0.79	87.58	0.79
S216	216	90.85	88.45	87.30	1.15	87.30	1.15	87.30	1.15	87.30	1.15	87.30	1.15	87.31	1.14	87.30	1.15
S217	217	90.66	88.26	87.13	1.13	87.18	1.08	87.12	1.14	87.15	1.11	87.14	1.12	87.13	1.13	87.12	1.14
S218	218	90.40	88.00	87.04	0.96	87.10	0.90	87.02	0.98	87.06	0.94	87.05	0.95	87.04	0.96	87.02	0.98
S219	219	90.08	87.68	86.85	0.83	86.94	0.74	86.82	0.86	86.88	0.80	86.86	0.82	86.84	0.84	86.81	0.87
S220	220	89.86	87.46	86.74	0.72	86.84	0.62	86.70	0.76	86.78	0.68	86.75	0.71	86.72	0.74	86.68	0.78
S221	221	89.88	87.48	86.57	0.91	86.72	0.76	86.51	0.97	86.63	0.85	86.59	0.89	86.54	0.94	86.36	1.12
S222	222	89.86	87.46	86.38	1.08	86.51	0.95	86.32	1.14	86.43	1.03	86.39	1.07	86.35	1.11	86.19	1.27
S200	200	94.71	92.31	90.73	1.58	90.74	1.57	90.73	1.58	90.72	1.59	90.73	1.58	90.72	1.59	90.73	1.58
\$214	214	93.52	91.12	90.26	0.86	90.28	0.84	90.26	0.86	90.27	0.85	90.26	0.86	90.26	0.86	90.26	0.86
MH201	201	94.29	91.89	90.72	1.17	90.73	1.16	90.72	1.17	90.72	1.17	90.72	1.17	90.72	1.17	90.71	1.18
MH202	202	93.91	91.51	90.42	1.09	90.43	1.08	90.41	1.10	90.42	1.09	90.41	1.10	90.41	1.10	90.40	1.11
MH203	203	92.38	89.98	88.66	1.32	88.68	1.30	88.63	1.35	88.66	1.32	88.63	1.35	88.64	1.34	88.61	1.37
MH204	204	90.40	88.00	87.08	0.92	87.10	0.90	87.06	0.94	87.08	0.92	87.06	0.94	87.07	0.93	87.02	0.98
MH205	205	89.35	86.95	85.86	1.09	85.88	1.07	85.83	1.12	85.86	1.09	85.84	1.11	85.84	1.11	85.77	1.18
MH206	206	89.10	86.70	85.65	1.05	85.65	1.05	85.62	1.08	85.65	1.05	85.63	1.07	85.63	1.07	85.57	1.13
MH207	207	88.53	86.13	84.65	1.48	84.65	1.48	84.62	1.51	84.65	1.48	84.63	1.50	84.64	1.49	84.58	1.55
\$212	212	90.25	87.85	86.86	0.99	86.87	0.98	86.83	1.02	86.85	1.00	86.83	1.02	86.84	1.01	86.82	1.03
S213	213	89.74	87.34	86.45	0.89	86.45	0.89	86.43	0.91	86.45	0.89	86.44	0.90	86.44	0.90	86.42	0.92
5210	210	89.14	86.74	86.43	0.31	86.43	0.31	86.42	0.32	86.43	0.31	86.42	0.32	86.43	0.31	86.41	0.33
S211	211	89.15	86.75	85.94	0.81	85.93	0.82	85.93	0.82	85.94	0.81	85.93	0.82	85.93	0.82	85.92	0.83
S208	208	88.77	86.37	85.92	0.45	85.91	0.46	85.78	0.59	85.91	0.46	85.81	0.56	85.88	0.49	85.70	0.67
\$209	209	88.75	86.35	85.46	0.89	85.45	0.90	85.41	0.94	85.46	0.89	85.42	0.93	85.45	0.90	85.38	0.97
MH231	231	89.81	87.41	85.61	1.79	85.64	1.77	85.73	1.67	85.78	1.63	85.84	1.57	85.77	1.63	85.71	1.69

Storm Hydraulic Grade Line Elevations

XPSWMM NODE	MH NO.	PROPOSED GROUND	USF (M)	100 YEAR 3	B HOUR CHICAGO	100 YEAR 3 H INCREASI	OUR CHICAGO ED BY 20%	100 YEAR SCS T	24 Hour Type II	100 YEAR SCS TYPI	24 HOUR E II + 20%	JULY	1 1979	AUGU	ST 1988	AUGU	ST 1996
ID		ELEVATION (M)		HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)
Wateridge Village F	Phase 1A																
S153	153	92.78	90.38	89.45	0.93	89.46	0.92	89.44	0.94	89.45	0.93	89.44	0.94	89.45	0.93	89.44	0.94
S160	160	92.27	89.87	89.01	0.86	89.02	0.85	89.01	0.86	89.01	0.86	89.01	0.86	89.01	0.86	89.00	0.87
S161	161	91.94	89.54	88.57	0.97	88.58	0.96	88.57	0.97	88.57	0.97	88.57	0.97	88.57	0.97	88.57	0.97
S162	162	91.34	88.94	88.26	0.68	88.26	0.68	88.25	0.69	88.26	0.68	88.25	0.69	88.26	0.68	88.25	0.69
S163	163	90.94	88.54	87.68	0.86	87.68	0.86	87.68	0.86	87.68	0.86	87.68	0.86	87.68	0.86	87.68	0.86
S164	164	90.22	87.82	87.00	0.82	87.01	0.81	86.99	0.83	87.00	0.82	87.00	0.82	87.00	0.82	86.99	0.83
S165B	165	89.61	87.21	86.45	0.76	86.45	0.76	86.44	0.77	86.44	0.77	86.44	0.77	86.44	0.77	86.44	0.77
S165	165	89.30	86.90	85.98	0.92	86.05	0.85	85.93	0.97	86.01	0.89	85.99	0.91	85.96	0.94	85.83	1.07
S166	166	88.90	86.50	84.88	1.62	85.03	1.47	84.78	1.72	84.93	1.57	84.88	1.62	84.85	1.65	84.59	1.91
S167	167	88.40	86.00	84.71	1.29	84.86	1.14	84.60	1.40	84.76	1.24	84.71	1.29	84.67	1.33	84.39	1.61
S168	168	87.70	85.30	84.54	0.76	84.66	0.64	84.43	0.87	84.58	0.72	84.54	0.76	84.50	0.80	84.22	1.08
S141	141	87.32	84.92	84.28	0.64	84.39	0.53	84.18	0.74	84.32	0.60	84.28	0.64	84.25	0.67	83.97	0.95
S142	142	87.52	85.12	84.02	1.10	84.12	1.00	83.94	1.18	84.06	1.06	84.03	1.09	84.00	1.12	83.74	1.38
MH176	176	88.03	85.63	83.77	1.86	83.85	1.78	83.69	1.94	83.80	1.83	83.77	1.86	83.75	1.88	83.49	2.14
MH178	178	89.00	86.60	83.41	3.19	83.47	3.13	83.34	3.26	83.44	3.16	83.41	3.19	83.39	3.21	83.18	3.42
MH180	180	88.23	85.83	82.20	3.62	82.44	3.38	81.98	3.84	82.27	3.56	82.21	3.62	82.10	3.73	81.49	4.34
MH190	190	88.10	85.70	81.90	3.80	82.12	3.58	81.65	4.05	81.97	3.73	81.91	3.79	81.80	3.90	81.23	4.47
MH191	191	86.36	83.96	81.66	2.30	81.86	2.10	81.44	2.52	81.73	2.23	81.67	2.29	81.56	2.40	81.06	2.91
MH192	192	85.92	83.52	81.41	2.11	81.59	1.93	81.21	2.31	81.47	2.05	81.41	2.11	81.31	2.21	80.89	2.63
MH193	193	84.85	82.45	81.09	1.36	81.24	1.21	80.92	1.53	81.14	1.31	81.09	1.36	81.00	1.45	80.60	1.85
MH194	194	82.44	N/A	80.45	N/A	80.53	N/A	80.35	N/A	80.48	N/A	80.46	N/A	80.40	N/A	80.13	N/A
S130	130		N/A	101.25	N/A	101.25	N/A	101.24	N/A	101.25	N/A	101.24	N/A	101.24	N/A	101.23	N/A
S131	131		N/A	101.05	N/A	101.05	N/A	101.04	N/A	101.05	N/A	101.04	N/A	101.04	N/A	101.03	N/A
S132	132		N/A	99.64	N/A	99.64	N/A	99.64	N/A	99.64	N/A	99.64	N/A	99.64	N/A	99.63	N/A
S133	133		N/A	96.52	N/A	96.52	N/A	96.51	N/A	96.52	N/A	96.51	N/A	96.51	N/A	96.50	N/A
S134	134		N/A	93.01	N/A	93.01	N/A	93.00	N/A	93.01	N/A	93.00	N/A	93.00	N/A	92.99	N/A
S135	135		N/A	90.11	N/A	90.11	N/A	90.10	N/A	90.11	N/A	90.10	N/A	90.10	N/A	90.09	N/A
S136	136		N/A	87.38	N/A	87.38	N/A	87.37	N/A	87.38	N/A	87.37	N/A	87.37	N/A	87.37	N/A
S137	137		86.91	85.77	1.14	85.77	1.14	85.76	1.15	85.77	1.14	85.76	1.15	85.77	1.14	85.76	1.15
S138	138		86.31	84.96	1.35	84.96	1.35	84.95	1.36	84.96	1.35	84.95	1.36	84.95	1.36	84.94	1.37
S139	139		85.66	84.46	1.20	84.48	1.18	84.46	1.20	84.46	1.20	84.46	1.20	84.46	1.20	84.45	1.21
S140	140		N/A	84.35	N/A	84.42	N/A	84.34	N/A	84.37	N/A	84.35	N/A	84.34	N/A	84.34	N/A
S100	100		87.16	85.70	1.46	85.69	1.47	85.70	1.46	85.70	1.46	85.70	1.46	85.70	1.46	85.70	1.46
S108	108		86.66	85.24	1.43	85.23	1.43	85.23	1.43	85.24	1.42	85.23	1.43	85.23	1.43	85.23	1.43
S109	109		85.36	84.05	1.31	84.05	1.31	84.05	1.31	84.05	1.31	84.05	1.31	84.05	1.31	84.05	1.31
S117	117		85.06	83.54	1.52	83.58	1.48	83.53	1.53	83.54	1.52	83.53	1.53	83.54	1.52	83.53	1.53
\$118	118		84.71	83.21	1.50	83.48	1.23	83.20	1.51	83.25	1.46	83.22	1.49	83.21	1.50	83.20	1.51
\$101	101		87.16	85.55	1.61	85.55	1.61	85.54	1.62	85.55	1.61	85.54	1.62	85.54	1.62	85.54	1.62
S102	102		86.46	84.72	1.74	84.72	1.74	84.71	1.75	84.72	1.74	84.71	1.75	84.71	1.75	84.70	1.76
S119	119		85.46	83.95	1.51	83.95	1.51	83.95	1.51	83.95	1.51	83.94	1.52	83.95	1.51	83.95	1.51
S104	104		N/A	85.90	N/A	85.89	N/A	85.89	N/A	85.90	N/A	85.89	N/A	85.89	N/A	85.88	N/A

PROPOSED 100 YEAR 3 HOUR CHICAGO 100 YEAR 24 HOUR 100 YEAR 24 HOUR **100 YEAR 3 HOUR CHICAGO** JULY 1 1979 **INCREASED BY 20%** SCS TYPE II SCS TYPE II + 20% **XPSWMM NODE** GROUND MH NO. USF (M) **ELEVATION** ID **USF - HGL** USF - HGL USF - HGL HGL (M) USF - HGL (M) HGL (M) USF - HGL (M) HGL (M) HGL (M) HGL (M) HGL (M) (M) (M) (M) S103 103 84.36 2.10 84.36 2.10 84.34 2.12 84.36 2.10 84.35 86.46 2.11 84. S105 105 85.71 83.90 1.81 83.91 1.80 83.89 1.82 83.90 1.81 83.89 83. 1.82 S122 122 84.86 83.53 1.33 83.53 1.33 83.53 1.33 83.53 1.33 83.53 1.33 83. S121 121 82.80 1.46 83.03 1.23 82.43 1.83 82.82 1.44 82.77 1.49 82. 84.26 S127 127 82.67 1.69 82.92 1.44 82.34 2.02 82.71 1.65 82.66 1.70 82. 84.36 S128 128 N/A 82.61 N/A 82.86 N/A 82.30 N/A 82.67 N/A 82.61 N/A 82. 107 N/A 85.29 85. S107 N/A 85.29 N/A 85.28 N/A 85.29 N/A 85.28 N/A 83. S106 106 83.76 1.85 83.75 83.73 1.88 85.61 1.86 83.76 1.85 83.74 1.87 S124 1.75 83.94 83. 124 85.69 83.94 1.75 83.93 1.76 83.94 1.75 83.93 1.76 83. 125 1.97 83.38 1.96 S125 83.37 83.35 1.99 83.37 1.97 83.36 1.98 85.34 2.09 82. S126 126 82.87 83.14 1.82 82.85 2.11 82.89 2.07 82.85 2.11 84.96 S182 182 N/A 82.70 N/A 82.18 N/A 82.52 N/A 82.46 82. N/A 82.46 N/A S181 181 N/A 82.36 N/A 82.61 N/A 82.11 N/A 82.43 N/A 82.37 N/A 82. S110 110 85.56 83.59 1.97 83.80 1.76 83.59 1.97 83.59 1.97 83.59 1.97 83. 83. S111 111 84.96 83.59 1.37 83.80 1.16 83.58 1.38 83.59 1.37 83.58 1.38 83. S112 112 83.40 1.52 83.77 1.14 83.18 1.73 83.50 1.41 1.49 84.91 83.42 S113 113 84.51 83.41 1.10 83.74 0.77 83.06 1.45 83.48 1.03 83.40 1.11 83. 114 0.85 83.31 82. S114 83.06 0.60 82.66 1.25 83.11 0.80 83.04 0.87 83.91 S115 115 83.04 0.52 83.33 0.23 82.64 0.92 0.43 83.01 0.55 82. 83.56 83.13 82. S116 116 83.71 82.88 0.83 83.16 0.55 82.51 1.20 82.92 0.79 82.85 0.86

83.08

0.88

82.48

1.48

82.88

1.08

82.83

1.13

Storm Hydraulic Grade Line Elevations

S120

120

83.96

82.86

1.10

AUGUS	ST 1988	AUGUS	ST 1996
HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)
84.35	2.11	84.34	2.12
83.90	1.81	83.89	1.82
83.53	1.33	83.53	1.33
82.61	1.65	81.98	2.28
82.51	1.85	81.85	2.51
82.47	N/A	81.81	N/A
85.28	N/A	85.27	N/A
83.75	1.86	83.73	1.88
83.93	1.76	83.92	1.77
83.36	1.98	83.35	1.99
82.86	2.10	82.84	2.12
82.32	N/A	81.68	N/A
82.24	N/A	81.61	N/A
83.59	1.97	83.59	1.97
83.59	1.37	83.58	1.38
83.22	1.69	83.22	1.69
83.08	1.43	83.05	1.46
82.85	1.06	82.49	1.42
82.83	0.73	82.45	1.11
82.70	1.01	82.10	1.61
82.67	1.29	82.06	1.90

Storm Hydraulic Grade Line Elevations

XPSWMM NODE	MH NO.	PROPOSED GROUND	USF (M)	100 YEAR	3 HOUR CHICAGO	100 YEAR 3 H INCREASE	OUR CHICAGO ED BY 20%	100 YEAR SCS T	24 Hour Type II	100 YEAR SCS TYPI	24 HOUR E II + 20%	JULY	L 1979	AUGU	ST 1988	AUGU	ST 1996
ID		ELEVATION (M)		HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)
Phase 2B, 4																	
MH317	317	94.08	91.68	91.17	0.51	91.18	0.50	91.14	0.54	91.15	0.53	91.15	0.53	91.14	0.54	91.11	0.57
MH316	316	94.09	91.69	90.96	0.73	90.96	0.73	90.95	0.74	90.95	0.74	90.95	0.74	90.95	0.74	90.92	0.77
MH315	315	93.39	91.36	90.28	1.08	90.29	1.07	90.25	1.11	90.26	1.10	90.27	1.09	90.27	1.09	90.26	1.10
MH314	314	93.00	91.16	89.91	1.25	89.91	1.25	89.91	1.25	89.91	1.25	89.91	1.25	89.91	1.25	89.89	1.27
MH313	313	92.62	90.71	89.35	1.36	89.34	1.37	89.35	1.36	89.35	1.36	89.35	1.36	89.35	1.36	89.34	1.37
MH312	312	91.36	89.68	88.42	1.26	88.42	1.26	88.41	1.27	88.42	1.26	88.42	1.26	88.42	1.26	88.38	1.30
MH311	311	90.69	88.29	87.44	0.85	87.56	0.73	87.40	0.89	87.48	0.81	87.45	0.84	87.47	0.82	87.38	0.91
MH310	310	90.04	87.64	87.28	0.36	87.42	0.22	87.25	0.39	87.35	0.29	87.30	0.34	87.33	0.31	87.06	0.58
MH309	309	90.15	87.75	87.44	0.31	87.08	0.67	87.33	0.42	87.44	0.31	87.41	0.34	87.43	0.32	87.22	0.53
MH308	308	89.68	87.28	86.88	0.40	86.69	0.59	86.81	0.47	86.88	0.40	86.87	0.41	86.88	0.40	86.76	0.52
MH326	326	94.76	92.36	91.33	1.03	91.33	1.03	91.32	1.04	91.32	1.04	91.32	1.04	91.32	1.04	91.33	1.03
MH318	318	94.40	92.00	91.03	0.97	91.03	0.97	91.00	1.00	91.03	0.97	91.00	1.00	91.00	1.00	91.00	1.00
MH300	300	94.00	91.60	90.71	0.89	90.70	0.90	90.67	0.93	90.70	0.90	90.68	0.92	90.68	0.92	90.68	0.92
MH301	301	93.73	91.33	90.21	1.12	90.21	1.12	90.20	1.13	90.20	1.13	90.21	1.12	90.20	1.13	90.20	1.13
MH302	302	92.80	90.40	88.64	1.76	88.64	1.76	88.63	1.77	88.63	1.77	88.64	1.76	88.63	1.77	88.63	1.77
MH303	303	90.67	88.27	87.80	0.47	87.81	0.46	87.63	0.64	87.65	0.62	87.79	0.48	87.72	0.55	87.64	0.63
MH304	304	90.30	87.90	87.39	0.51	87.38	0.52	87.30	0.60	87.31	0.59	87.38	0.52	87.34	0.56	87.30	0.60
MH305	305	91.00	88.60	86.54	2.06	86.56	2.04	86.61	1.99	86.64	1.96	86.69	1.91	86.65	1.95	86.60	2.00
MH319	319	88.81	86.61	86.13	0.48	86.12	0.49	86.12	0.49	86.13	0.48	86.12	0.49	86.12	0.49	86.12	0.49
MH320	320	89.12	86.92	85.49	1.43	85.49	1.43	85.49	1.43	85.49	1.43	85.49	1.43	85.49	1.43	85.49	1.43
MH321	321	87.67	85.47	84.18	1.29	84.39	1.08	84.10	1.37	84.15	1.32	84.11	1.36	84.13	1.34	84.09	1.38
MH322	322	87.50	85.30	84.18	1.12	84.39	0.91	84.10	1.20	84.15	1.15	84.10	1.20	84.12	1.18	84.09	1.21
MH323	323	86.57	84.37	83.40	0.97	83.48	0.89	83.31	1.06	83.37	1.00	83.32	1.05	83.34	1.03	83.30	1.07

Appendix B

Supporting Sanitary Information

SCHEDULE "A"

PARCEL IDENTIFICATION, DESCRIPTION, AND MINIMUM DENSITY¹

**Boundaries of the development parcels are estimated. Purchasers to provide dimensioned sketch or electronic survey to confirm these boundaries

¹ This image if provided for demonstration purposes only

400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada

tel 613 225 1311 fax 613 225 9868 ibigroup.com LEGEND

Block 11&12 Proposed Conditions

Old Criteria being used

											ICI AREA	S			INFILT	RATION ALLO	OWANCE	FIXED	TOTAL			PROPC	SED SEWER	DESIGN							
	LOCATION			AREA		UNIT	TYPES		AREA	POPU	LATION	PEAK	PEAK			AREA (Ha)			PEAK	AR	EA (Ha)	FLOW	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAI	LABLE
STREET		FROM	то	Phase 1B	SF	SD	тн	ΑΡΤ	EXTERNAL	IND	CUM	FACTOR	FLOW	INSTIT	UTIONAL	COMMERCIAL	INDU	JSTRIAL	FLOW	IND	сим	(1/s)	(I /s)	(1/s)	(L/s)	(m)	(mm)	(%)	(full)	CAP	ACITY
		МН	мн	(Ha)			<u> </u>		(Ha)				(L/s)	IND	CUM	IND CUM	IND	CUM	(L/s)			(====)	(==)	(=: -)	(===)	()	()	(,,,	(m/s)	L/s	(%)
Phase 1P							+	+							-		_												├─── ┚		
							+	+													-							+	├─── ′		-
rue Michael Stoqua Street	EX205A	BULK205AN	MH205A						0.66	33.1	33.1	4.00	0.54		0.00	0.00		0.00	0.00	0.66	0.66	0.18	0.00	0.72	66.24	21.00	250	1.14	1.307	65.52	98.91%
•							<u> </u>	1																				1			
Hemlock Road	205A	MH205A	MH206A	0.25						0.0	186.6	4.00	3.02		0.00	0.00		0.00	0.00	0.25	2.51	0.70	0.00	3.73	31.02	111.90	250	0.25	0.612	27.29	87.99%
								<u> </u>																				<u> </u>	<u> </u>		
rue Bareille-Snow Street	EX206A-B	BULK206AN	MH206A					4	<u>9.79</u>	<u>2598.3</u>	2598.3	3.49	36.78		0.00	0.00		0.00	0.00	9.79	9.79	2.74	0.00	39.52	88.83	21.00	250	2.05	1.753	49.30	55.50%
Homlook Bood	2064	MH206A		0.20						0.0	2794.0	3 47	30.14		0.00	0.00		0.00	0.00	0.20	12.50	3.50	0.00	12.64	100.99	80.20	300	1.00	1 292	59.24	57 72%
Heilliock Road	2004	WII 1200A	WII 1207A	0.20				1		0.0	2704.5	3.47	35.14		0.00	0.00		0.00	0.00	0.20	12.50	3.50	0.00	42.04	100.00	09.50	300	1.00	1.303	J0.24	51.1570
Block 20	PARK1	MH207AN	MH207A	0.32			+	+		0.0	0.0	4.00	0.00		0.00	0.00		0.00	0.00	0.32	0.32	0.09	0.00	0.09	50.02	13.80	250	0.65	0.987	49.93	99.82%
							1	1														1				1			· · · · · ·		
Hemlock Road	PARK1, 207A	MH207A	BULK176AE	0.12						0.0	2784.9	3.47	39.14		0.00	0.00		0.00	0.00	0.12	12.94	3.62	0.00	42.77	134.59	33.10	300	1.78	1.845	91.83	68.23%
																													<u> </u>		
Phase 1A		DU 11 14 17 0 4 5						+		0.0	0704.0	0.47	00.44		0.00	0.00		0.00	0.00	0.00	10.01	0.00	0.00	40.77	05.00	04.07	000	0.40	0.000	00.04	04.50%
Hemlock Road		BULK176AE	: MH176A			-	+	+		0.0	2784.9	3.47	39.14		0.00	0.00		0.00	0.00	0.00	12.94	3.62	0.00	42.77	65.38	21.97	300	0.42	0.896	22.61	34.59%
Phase 1B							+	+													-							+	├─── ′		-
chemin Wanaki Road	200A. COM1	MH200A	MH214A	0.25			+	+		0.0	0.0	4.00	0.00		0.00	0.90 0.90		0.00	0.78	1.15	1.15	0.32	0.00	1.10	71.01	98.50	250	1.31	1.401	69.90	98.45%
chemin Wanaki Road	214A, COM2	MH214A	BULK153AN	0.16			1	1		0.0	0.0	4.00	0.00		0.00	0.65 1.55		0.00	1.35	0.81	1.96	0.55	0.00	1.89	57.20	44.60	250	0.85	1.129	55.30	96.69%
																													<u> </u>		
Phase 1A																													<u> </u>		
chemin Wanaki Road	COM2	BULK153AN	I MH153A	0.01			<u> </u>			0.0	0.0	4.00	0.00		0.00	1.55		0.00	1.35	0.00	1.96	0.55	0.00	1.89	51.91	20.13	250	0.70	1.024	50.01	96.35%
chemin Wanaki Road	153A, COM3	MH153A	MH151A	0.21		-	+	+		0.0	0.0	4.00	0.00		0.00	0.88 2.43		0.00	2.11	1.09	3.05	0.85	0.00	2.96	36.70	85.04	250	0.35	0.724	33.74	91.93%
chemin Wanaki Road	151A, COM4	MH150A	MH140A	0.11			+	+		0.0	0.0	4.00	0.00		0.00	0.45 2.88		0.00	2.50	0.50	3.01	1.01	0.00	3.51	36.70	40.97	250	0.35	0.724	33.19	90.43%
chemin Wanaki Road	149A	MH149A	MH148A	0.11			+			0.0	0.0	4.00	0.00		0.00	3.83		0.00	3.32	0.10	4.07	1.31	0.00	4.65	36.70	40.04	250	0.35	0.724	32.07	87.30%
chemin Wanaki Road	148A	MH148A	MH157A	0.04			<u> </u>	1		0.0	0.0	4.00	0.00		0.00	3.83		0.00	3.32	0.04	4.81	1.35	0.00	4.67	36.70	20.58	250	0.35	0.724	32.03	87.27%
																													<u> </u>		
Phase 1B								<u> </u>																					<u> </u>		
chemin Wanaki Road	143B	BULK143AE	MH143A	0.31			+			104.0	104.0	4.00	1.69		0.00	0.00		0.00	0.00	0.31	0.31	0.09	0.00	1.77	43.87	21.50	250	0.50	0.866	42.10	95.96%
chemin Wanaki Road	143A	MH143A	MH144A	0.27		-				0.0	104.0	4.00	1.69		0.00	0.00		0.00	0.00	0.27	0.58	0.16	0.00	1.85	83.69	34.70	250	1.82	1.652	81.85	97.79%
chemin Wanaki Road	144A, 144D	MH144A	MH145A MH146A	2.77			+	+		835.6	939.6	3.82	14.53		0.00	0.00		0.00	0.00	2.77	4.07	0.30	0.00	2.05	105.83	41.10 53.30	250	2.04	2.089	90.30	85.19%
chemin Wanaki Koad	1407, 1400, 1400	1011140/1	1011140/1	2.11			+	+		000.0	000.0	0.02	14.00		0.00	0.00		0.00	0.00	2.11	4.01	1.14	0.00	10.07	100.00	00.00	200	2.01	2.000	00.10	00.1070
chemin Wanaki Road	146A	MH146A	MH147A	0.14			<u> </u>	1		0.0	939.6	3.82	14.53		0.00	0.00		0.00	0.00	0.14	4.21	1.18	0.00	15.71	43.54	37.30	250	0.97	1.206	27.83	63.92%
chemin Wanaki Road	PARK2	BLK147AE	MH147A	0.55						0.0	0.0	4.00	0.00		0.00	0.00		0.00	0.00	0.55	0.55	0.15	0.00	0.15	39.24	17.70	250	0.40	0.774	39.08	99.61%
	4470	DLK447AM	NALIA 47A	0.40				+		22.0	22.0	4.00	0.54		0.00	0.00		0.00	0.00	0.40	0.10	0.02	0.00	0.57	44.00	17.70	050	0.45	0.001	44.04	00.000/
chemin Wanaki Road	1470	BLK 147AW	MH 147A	0.10			+	+		33.0	33.0	4.00	0.54		0.00	0.00	_	0.00	0.00	0.10	0.10	0.03	0.00	0.57	41.02	17.70	250	0.45	0.821	41.04	98.62%
chemin Wanaki Road	147A	MH147A	MH170A	0.03			+	+		0.0	973.2	3.81	15.01		0.00	0.00	+	0.00	0.00	0.03	4.89	1,37	0.00	16.38	38.74	10.30	250	0.39	0,765	22.36	57,72%
chemin Wanaki Road	147B	MH170A	MH147C	0.16			+	+		0.0	973.2	3.81	15.01		0.00	0.00		0.00	0.00	0.16	5.05	1.41	0.00	16.42	31.63	38.20	250	0.26	0.624	15.21	48.08%
chemin Wanaki Road		MH147C	BLK148AW				<u> </u>	1		0.0	973.2	3.81	15.01		0.00	0.00		0.00	0.00	0.00	5.05	1.41	0.00	16.42	46.01	11.80	250	0.55	0.908	29.58	64.30%
Phase 1A																												<u> </u>	<u> </u>		
chemin Wanaki Road		BULK148AW	V MH157A		<u> </u>		<u> </u>			0.0	973.2	3.81	15.01	<u> </u>	0.00	0.00		0.00	0.00	0.00	5.05	1.41	0.00	16.42	62.04	8.00	250	1.00	1.224	45.61	73.52%
chemin Wanaki Bood	1574	MH157A	MH159A	0.05			+	+		0.0	072.2	3 91	15.01		0.00	3.03		0.00	3 3 3	0.05	0.01	2 77	0.00	21.11	31.02	25.69	250	0.25	0.612	0.01	31 0/1%
Chemin Wanaki Kudu	1374	WITTSTA	WITTSOA	0.05			+	+		0.0	51J.Z	5.01	13.01	1	0.00	3.03		0.00	3.52	0.03	5.51	2.11	0.00	21.11	31.02	20.00	200	0.25	0.012	3.31	51.5470
Street No. 2	INST1	BULK158AN	I MH158A			1	+	+		0.0	0.0	4.00	0.00	2.62	2.62	0.00		0.00	2.27	2.62	2.62	0.73	0.00	3.01	39.24	15.10	250	0.40	0.774	36.23	92.33%
				1	1	1	<u> </u>	1	1								1												<u> </u>		
chemin Wanaki Road	158A	MH158A	MH154A	0.22						0.0	973.2	3.81	15.01		2.62	3.83		0.00	5.60	0.22	12.75	3.57	0.00	24.18	31.02	68.91	250	0.25	0.612	6.84	22.05%

AS-BUILT SANITARY SEWER DESIGN SHEET

Former CFB Rockcliffe City of Ottawa Canada Lands Company

400-333 Preston Street

Ottawa, Ontario K1S 5N4 Canada

tel 613 225 1311 fax 613 225 9868 ibigroup.com LEGEND

Block 11&12 Proposed Conditions

Old Criteria being used

	1 00 17101							RESID	ENTIAL							ICI AREAS	6		INFILT	RATION ALL	OWANCE	FIXED	TOTAL			PROPO	SED SEWER	DESIGN		
	LOCATION			AREA		UNIT	TYPES		AREA	POPL	LATION	PEAK	PEAK		ARE	A (Ha)		PEAK	ARE	A (Ha)	FLOW	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVA	LABLE
STREET		FROM	то	Phase 1B	SE.	en	тц	ADT	EXTERNAL		CUM	FACTOR	FLOW	INSTITUTIONAL	COMM	IERCIAL	INDUSTRIAL	FLOW		CUM	(1/c)	(1/c)	(1/c)	(1./c)	(m)	(mm)	(%)	(full)	CAP	ACITY
STREET		МН	MH	(Ha)	31	30	III	AFT	(Ha)	IND	COM		(L/s)	IND CUM	IND	CUM	IND CUM	(L/s)	IND	COM	(L/3)	(1/3)	(L/S)	(L/S)	(11)	(1111)	(78)	(m/s)	L/s	(%)
Phase 1B																														
Block 9	154A	Ex. BULK	MH217Aa	0.19						0.0	973.2	3.81	15.01	2.62		3.83	0.00	5.60	0.19	12.94	3.62	0.00	24.23	104.37	24.40	250	2.83	2.060	80.13	76.78%
Block 9		MH217Aa	a MH217A							0.0	973.2	3.81	15.01	2.62		3.83	0.00	5.60	0.00	12.94	3.62	0.00	24.23	62.66	78.50	250	1.02	1.237	38.42	61.32%
croissant Squadron Crescent	215Aa-b	D MH215A	MH216A	0.79	3	4				117.8	117.8	4.00	1.91	0.00		0.00	0.00	0.00	0.79	0.79	0.22	0.00	2.13	55.49	56.10	250	0.80	1.095	53.36	96.16%
croissant Squadron Crescent	216Aa-b	D MH216A	MH217A	0.67	2	6				94.5	212.3	4.00	3.44	0.00		0.00	0.00	0.00	0.67	1.46	0.41	0.00	3.85	46.01	70.80	250	0.55	0.908	42.16	91.63%
croissant Squadron Crescent	217A	MH217A	MH218A	0.02						0.0	1185.5	3.75	18.01	2.62		3.83	0.00	5.60	0.02	14.42	4.04	0.00	27.65	39.72	9.70	250	0.41	0.784	12.07	30.39%
					_							0.75						5.00			1.0.1		07.00	00.01		050		0.774	11.50	00.510/
croissant Squadron Crescent	218A	MH218A	MH218B	0.02	-	-				0.0	1185.5	3.75	18.01	2.62		3.83	0.00	5.60	0.02	14.44	4.04	0.00	27.66	39.24	9.90	250	0.40	0.774	11.58	29.51%
The are aliffed Ville are	THODN	4	MUCOAA						5.55	4574.0	4574.0	2.00	00.00	0.00		0.00	0.00	0.00	E 55	10.00	5.00	0.00	20.00	60.46	01.40	200	0.47	0.040	40.00	50.400/
Thorncline village	THURN		MH0UTA		_				0.00	15/4.0	1574.0	3.00	23.30	0.00		0.00	0.00	0.00	0.00	19.99	5.60	0.00	28.90	109.10	21.40	300	0.47	0.948	40.20	28.12%
		WITTOUTA	INITIZ TOD						1	0.0	1374.0	5.00	23.30	0.00		0.00	0.00	0.00	0.00	19.99	5.00	0.00	20.90	100.10	40.90	300	1.15	1.405	19.22	13.2370
croissant Squadron Crescent	218B	MH218B	MH219A	0.07						0.0	2759.5	3.47	38.82	2.62		3.83	0.00	5.60	0.07	34.50	9.66	0.00	54.08	96.76	40.20	300	0.92	1.326	42.68	44.11%
croissant Squadron Crescent	219A	MH219A	MH220A	0.15						0.0	2759.5	3.47	38.82	2.62		3.83	0.00	5.60	0.15	34.65	9.70	0.00	54.12	66.92	72.40	300	0.44	0.917	12.79	19.12%
croissant Squadron Crescent	220A, 220	0B MH220A	MH221A	<u>1.46</u>						319.0	3078.5	3.43	42.81	2.62		3.83	0.00	5.60	1.46	36.11	10.11	0.00	58.52	74.82	43.30	300	0.55	1.025	16.30	21.78%
croissant Squadron Crescent	221A	MH221A	MH222A	0.02						0.0	3078.5	3.43	42.81	2.62		3.83	0.00	5.60	0.02	36.13	10.12	0.00	58.53	64.60	7.40	300	0.41	0.885	6.07	9.40%
croissant Squadron Crescent		MH222A	MH223A							0.0	3078.5	3.43	42.81	2.62		3.83	0.00	5.60	0.00	36.13	10.12	0.00	58.53	58.82	81.60	300	0.34	0.806	0.30	0.51%
croissant Squadron Crescent	BLOCK 1	IS BLK223AE	E MH223A		-		1	1	1	1		1	-	Design by Others		1	<u>г г</u>	1	1	-	-	1	1	109.23	10.00	250	3.10	2.156	109.23	100.00%
croissant Squadron Crescent	222A	MH223A	MH165A	0.22						0.0	3078.5	3.43	42.81	2.62		3.83	0.00	5.60	0.22	36.35	10.18	0.00	58.59	96.24	36.10	300	0.91	1.319	37.65	39.12%
STOREGALL OF GALAR OF GROUPS																														
																						1						1		1
Design Parameters:				Notes:								Designed	:	WY		No.				R	evision							Date		
				1. Manning	s coefficient	(n) =		0.013								1.	1. City submission No. 1											2016-07-08		
Residential		ICI Areas		2. Demand	(per capita):		350) L/day	300	L/day						2.	2. City submission No. 2											2016-11-04		
SF 3.4 p/p/u			Peak Facto	or 3. Infiltration	n allowance:		0.28	3 L/s/Ha				Checked:		JIM		3. City submission No. 3												2017-01-25		
TH/SD 2.7 p/p/u	INST	50,000 L/Ha/day	1.5	Resident	tial Peaking I	Factor:										4.				Revised as pe	er Mattamy's I	Design						2017-12-08		
APT 1.8 p/p/u	COM	50,000 L/Ha/day	1.5		Harmon F	ormula = 1+	(14/(4+P^0.	5))								5.				As-Bui	It Submission							2018-01-29		
Other 60 p/p/Ha	IND	35,000 L/Ha/day	MOE Char	t	where P =	population i	in thousand	S				Dwg. Refe	erence:	38298-501		6.				Block 1	1 & 12 Study							2022-03-15		
		17000 L/Ha/day														File Reference: Date: Sheet No:														
												1				File Reference: Date: 38298.5.7.1 2016-07-08												1 of 2		

AS-BUILT SANITARY SEWER DESIGN SHEET

Former CFB Rockcliffe City of Ottawa Canada Lands Company

400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

LEGEND MH231A Existing infrastructure (shown for information only) Block 11, 12 Existing Conditions

							RE	SIDENTIAL								ICI A	REAS				INFILT	RATION ALI	OWANCE			TOTAL			PROPO	SED SEWE	R DESIGN		
	LOCATION			AREA		UNIT T	YPES	AREA	POPU	LATION	RES	PEAK			ARE	A (Ha)			ICI	PEAK	ARE	A (Ha)	FLOW	TIALDI	2011 (2/3)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAI	LABLE
STREET		FROM	то	w/ Units	SE	SD / TH/F	TH/S AP	w/o Units	IND	СПМ	PEAK	FLOW	INSTITU	JTIONAL	COMM	ERCIAL	INDU	STRIAL	PEAK	FLOW	IND	CUM	(1/s)	IND	CUM	(1/s)	(I /s)	(m)	(mm)	(%)	(full)	CAP	ACITY
UNKEET		MH	MH	(Ha)	01	007110	nilo A	(Ha)	inte	00111	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	FACTOR	(L/s)	IND	00111	(13)		00111	(1/3)	(13)	(11)	(1111)	(70)	(m/s)	L/s	(%)
				1.50		101					0.17										. = 0	1.50					10.00						
Pimiwidon Street	MH317-1, MH317-2	MH317A	MH316A	1.50	1	104			284.2	284.2	3.47	3.20	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.50	1.50	0.50	0.00	0.00	3.69	40.68	83.00	250	0.43	0.803	36.99	90.93%
Pimiwidon Street	MH316A	NITIS TOA	BULK202AN	0.16					2.7	200.9	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.16	1.00	0.55	0.00	0.00	3.77	37.74	43.10	250	0.37	0.745	33.90	90.00%
Pimiwidon Street	-	BULK202AN	MH202A						0.0	286.9	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.00	0.55	0.00	0.00	3.77	40.68	21.00	250	0.43	0.803	36.91	90.72%
Wigwas Street	MH3154	MH3154	MH314A	0.79	2	18			55.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.79	0.79	0.26	0.00	0.00	0.92	49.63	111 64	250	0.64	0.979	48 72	98 16%
Wigwas Street	MH314A	MH314A	BUILK203AN	0.06	~	10			0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.06	0.85	0.20	0.00	0.00	0.92	83.46	14.37	250	1.81	1 647	82.53	98.88%
Wigwas Street	-	BUILK203AN	MH203A	0.00					0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.85	0.28	0.00	0.00	0.93	80.17	21.00	250	1.67	1.582	79.24	98.83%
Thighad barbot		202112007111	111120011						0.0	00.7	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.20	0.00	0.00	0.00	00.77	21.00	200	1.07	1.002	70.27	00.0070
Moses Tennisco Street	MH313A	MH313A	MH312A	0.66	2	16			50.0	50.0	3.65	0.59	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.66	0.66	0.22	0.00	0.00	0.81	75.73	77.20	250	1.49	1.495	74.92	98.93%
Moses Tennisco Street	MH312A, PARK	MH312A	BULK204AN	0.21		2			5.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.21	0.87	0.29	0.00	0.00	0.94	94.29	49.70	250	2.31	1.861	93.35	99.00%
Park	PARK	MH350A	pipe	0.42					0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.42	0.42	0.14	0.00	0.00	0.14	48.39	11.00	200	2.00	1.492	48.25	99.71%
																											_						_
Moses Tennisco Street	-	BULK204AN	MH204A						0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.87	0.29	0.00	0.00	0.94	89.90	21.00	250	2.10	1.774	88.96	98.95%
Mintered Objects Object	NII 1044A			0.44					07.7	07.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.44	0.44	0.45	0.00	0.00	0.40	70.05	77.00	050	4.00	4.400	74.07	00.049/
Michael Stoqua Street	MH311A	MH311A	MH310A	0.44	1	9			21.1	27.7	3.69	0.33	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.44	0.44	0.15	0.00	0.00	0.48	72.35	11.82	250	1.36	1.428	/1.8/	99.34%
Michael Stoqua Street	MH3TUA	RULK205AN	BULK205AN	0.21		2			5.4	33.1	3.00	0.39	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.21	0.05	0.21	0.00	0.00	0.61	66.24	49.19	250	1.12	1.290	65.62	99.07%
Michael Stoqua Street	-	BULKZUJAN	IVIH205A	-		-			0.0	33.1	3.00	0.39	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.05	0.21	0.00	0.00	0.07	00.24	21.00	250	1.14	1.307	05.05	99.00%
Wanaki Road	MH200A	MH200A	MH3184						0.0	0.0	3.80	0.00	0.00	0.00	1.01	1.01	0.00	0.00	1.50	0.49	1.01	1.01	0.33	0.00	0.00	0.82	42 53	63 35	250	0.47	0.839	41 71	98.06%
Wanaki Road	MH2007	MH318A	MH300A						0.0	0.0	3.80	0.00	0.00	0.00	0.95	1.96	0.00	0.00	1.50	0.45	0.95	1.01	0.65	0.00	0.00	1.60	42.53	77 11	250	0.47	0.839	40.93	96.24%
Tawadina Road	MH300A	MH300A	MH301A	0.47		15			40.5	40.5	3.67	0.48	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.47	2.43	0.80	0.00	0.00	2.24	31.02	109.85	250	0.25	0.612	28.78	92.79%
Tawadina Road	MH301A	MH301A	MH302A	0.54		14			37.8	78.3	3.62	0.92	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.54	2.97	0.98	0.00	0.00	2.85	59.18	110.39	250	0.91	1,168	56.33	95.18%
Tawadina Road	MH302A	MH302A	MH303A	0.26		2			5.4	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.26	3.23	1.07	0.00	0.00	3.00	72.61	111.69	250	1.37	1.433	69.62	95.87%
Tawadina Road	MH303A	MH303A	MH304A	0.21					0.0	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.21	3.44	1.14	0.00	0.00	3.07	31.02	112.10	250	0.25	0.612	27.95	90.11%
Tawadina Road	MH305A	MH305A	MH304A	0.24					0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.08	0.00	0.00	0.08	49.63	111.61	250	0.64	0.979	49.55	99.84%
																				0.00													
Bareille-Snow Street	EXT-1	BULK304AN	MH304A	7.35			90	5	1629.0	1629.0	3.12	16.49	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7.35	7.35	2.43	0.00	0.00	18.91	31.02	20.00	250	0.25	0.612	12.11	39.04%
							10			0000						1.00	0.00	0.00			=	10.50				0.5.1.1			0.50				0.0 800/
Bareille-Snow Street	MH304A-1, MH304A-2	MH304A	MH308A	1.47			19)	342.0	2054.7	3.06	20.38	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	1.47	12.50	4.13	0.00	0.00	25.14	39.72	119.21	250	0.41	0.784	14.58	36.70%
Bareille-Snow Street	MH306A	RULK206AN	DULK200AN	0.07					0.0	2054.7	3.06	20.30	0.00	0.00	0.00	1.90	0.00	0.00	1.00	0.64	0.07	12.57	4.15	0.00	0.00	25.17	04.10	21.00	250	1.04	1.001	<u>56.99</u>	70.09%
Darenie-Show Street		DOLIZUUAN	WII 1200A	-		-			0.0	2004.7	3.00	20.00	0.00	0.00	0.00	1.30	0.00	0.00	1.00	0.04	0.00	12.07	4.15	0.00	0.00	20.17	00.03	21.00	230	2.05	1.755	03.00	11.0770
Codd's Road	MH340A	MH340A	BLK231AN	1.78			27	3	500.4	500.4	3.38	5.48	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.78	1.78	0.59	0.00	0.00	6.07	75.98	70.00	250	1.50	1,500	69.91	92.01%
Codd's Road		MH231A	BULK176AN						0.0	500.4	3.38	5.48	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.78	0.59	0.00	0.00	6.07	83.92	50.22	250	1.83	1.656	77.86	92.77%
-																																	
Design Parameters:				Notes:							Designed	:	KH			No.							Revision								Date		
				1. Mannings	coefficient	(n) =	0.013									1						Submission	No. 1 for City	Review							2018-12-20		
Residential	IC	I Areas		2. Demand (per capita):		280 L/day	200	J L/day		Ob solution in					2						Submission	NO. 2 for City	Review							2019-03-15		
SF 3.4 p/p/u	INCT	000 1/11=/day		3. Infiltration	allowance:		0.33 L/s/Ha				Checked:		JIM			3						MEC	PSubmission	(1)= (1)							2019-04-17		
TU/S 2.2 p/p/U	COM 20	,000 L/Ha/day		4. Residentia	Hormon C	racior:	A/(A+(D/1000)40.4				1					4						Record info	mation Addec	(NO.1)							2020-10-08		
APT 18 p/p/u	LND 25	000 L/Ha/day	MOE Chart	1		0.8 Correction	n Eactor	0,00.0			Dwg Pofe	ronco:	118863 40	0		5						Record into	11 8 12 Stud	(100.2)							2021-03-23		
Other 60 p/p/U	17 JD	7000 L/Ha/day	WOE GHART	5 Commerci	al and Instit	tutional Peak I	Eactors based on	total area			Dwg. Refe	nence.	10003-40	0		E E	ilo Poforon					DIOCK	IT OLIZ OLUG	y Dato:							2022-03-15		
очног оо ририпа	17	000 Lilia/uay		1.5 if are	a and molil acter than 2	0% otherwise		iotal alca,			1						118863 5 7	1						2021-03-3	1						1 of 1		

SANITARY SEWER DESIGN SHEET

Wateridge at Rockcliffe - Phase 2B City of Ottawa Canada Lands Company

ibigroup.com

400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

							RESID	ENTIAL								ICI A	REAS				INFILTE	RATION ALL	OWANCE		000 (1 1-2)	TOTAL	1		PROPOS	SED SEWER	DESIGN		
	LOCATION			AREA		UNIT TY	PES	AREA	POPU	LATION	RES	PEAK			ARE	A (Ha)			ICI	PEAK	ARE	A (Ha)	FLOW	FIXED FI	_OW (L/S)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVA	ILABLE
STREET		FROM	то	w/ Units	SF	SD / TH/F	TH/S APT	w/o Units	IND	CUM	PEAK	FLOW	INSTITU	JTIONAL	COMN	IERCIAL	INDU	STRIAL	PEAK	FLOW	IND	CUM	(I /s)	IND	CUM	(1 /s)	(I /s)	(m)	(mm)	(%)	(full)	CA	PACITY
UTREET		MH	MH	(Ha)	01	0071111		(Ha)		00111	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	FACTOR	(L/s)		0011	(2/3)	IND	0011	(13)	(1/3)	(,	()	(70)	(m/s)	L/s	(%)
																															<u> </u>		
Pimiwidon Street	MH317-1, MH317-2	MH317A	MH316A	1.50	1	104			284.2	284.2	3.47	3.20	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.50	1.50	0.50	0.00	0.00	3.69	40.68	83.00	250	0.43	0.803	36.99	90.93%
Pimiwidon Street	MH316A	MH316A	BULK202AN	0.16		1			2.7	286.9	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.16	1.66	0.55	0.00	0.00	3.77	37.74	43.10	250	0.37	0.745	33.96	90.00%
Pimiwidon Street	-	BULK202AN	MH202A	-				-	0.0	286.9	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.66	0.55	0.00	0.00	3.77	40.68	21.00	250	0.43	0.803	36.91	90.72%
Minung Chreat	MUDIEA	MUDIEA	MUDIAA	0.70	2	10			55 A	55 A	2.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.70	0.70	0.00	0.00	0.00	0.02	40.02	111.61	250	0.64	0.070	40.70	00.40%
Wigwas Street	MH313A MH214A	MH214A	NITI 14A	0.79	2	10		-	55.4	55.4	3.04	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.79	0.79	0.26	0.00	0.00	0.92	49.03	1/1.04	250	1.04	0.979	40.72	96.10%
Wigwas Street	MH314A	BUILK202AN	MH203A	0.00					0.0	55.4	3.04	0.05	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.85	0.28	0.00	0.00	0.93	80.17	21.00	250	1.07	1.047	70.24	90.00%
Wigwas Street		DOLNZOJAN	10111203A						0.0	55.4	3.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.20	0.00	0.00	0.95	00.11	21.00	200	1.07	1.302	73.24	30.0378
Moses Tennisco Street	MH313A	MH313A	MH312A	0.66	2	16			50.0	50.0	3.65	0.59	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.66	0.66	0.22	0.00	0.00	0.81	75.73	77.20	250	1.49	1.495	74.92	98.93%
Moses Tennisco Street	MH312A, PARK	MH312A	BULK204AN	0.21		2			5.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.21	0.87	0.29	0.00	0.00	0.94	94.29	49.70	250	2.31	1.861	93.35	99.00%
																															,		
Park	PARK	MH350A	pipe	0.42					0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.42	0.42	0.14	0.00	0.00	0.14	48.39	11.00	200	2.00	1.492	48.25	99.71%
																															'		
Moses Tennisco Street	-	BULK204AN	MH204A						0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.87	0.29	0.00	0.00	0.94	89.90	21.00	250	2.10	1.774	88.96	98.95%
																															<u> </u>		
Michael Stoqua Street	MH311A	MH311A	MH310A	0.44	1	9		_	27.7	27.7	3.69	0.33	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.44	0.44	0.15	0.00	0.00	0.48	72.35	77.82	250	1.36	1.428	71.87	99.34%
Michael Stoqua Street	MH310A	MH310A	BULK205AN	0.21		2			5.4	33.1	3.68	0.39	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.21	0.65	0.21	0.00	0.00	0.61	65.66	49.19	250	1.12	1.296	65.05	99.07%
Michael Stoqua Street	-	BULK205AN	MH205A						0.0	33.1	3.68	0.39	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.65	0.21	0.00	0.00	0.61	66.24	21.00	250	1.14	1.307	65.63	99.08%
Wanaki Bood	MH200A	MU200A	MU210A	-				_	0.0	0.0	2 90	0.00	0.00	0.00	1.01	1.01	0.00	0.00	1.50	0.40	1.01	1.01	0.22	0.00	0.00	0.92	42.52	62.25	250	0.47	0.920	41 71	08.06%
	MH200A	WH200A	IVIH3 TOA	0.17					0.0	0.0	3.60	0.00	0.00	0.00	1.01	1.01	0.00	0.00	1.50	0.49	1.01	1.01	0.33	0.00	0.00	0.82	42.55	03.35	250	0.47	0.839	41.71	98.00%
Tawadina Road	MH300A	MH300A	MH301A	0.47		15		-	40.5	40.5	3.67	0.48	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.47	2.43	0.80	0.00	0.00	2.24	31.02	109.85	250	0.25	0.612	28.78	92.79%
Tawadina Road	MH301A	MH301A	MH302A	0.54		14			37.8	/8.3	3.62	0.92	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.54	2.97	0.98	0.00	0.00	2.85	59.18	110.39	250	0.91	1.168	56.33	95.18%
Tawadina Road	MH302A	MH302A	MH204A	0.26		2		-	5.4	03.7	3.01	0.96	0.00	0.00	0.00	1.90	0.00	0.00	1.50	0.95	0.26	3.23	1.07	0.00	0.00	3.00	72.01	112.10	250	0.35	1.433	09.02	95.67%
Tawauna Kuau	MH303A	WIH303A	IVITI304A	0.21				-	0.0	03.1	3.01	0.90	0.00	0.00	0.00	1.90	0.00	0.00	1.00	0.95	0.21	3.44	1.14	0.00	0.00	3.07	31.02	112.10	200	0.25	0.012	21.90	90.1176
Tawadina Road	MH3054	MH3054	MH304A	0.24					0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.08	0.00	0.00	0.08	49.63	111.61	250	0.64	0.979	49.55	99.84%
rawaama rooda	10007	1011000/1	1011004/1	0.24					0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.00	0.00	0.00	0.00	40.00	111.01	200	0.04	0.010	40.00	33.0476
Bareille-Snow Street	EXT-1	BULK304AN	MH304A	7.35			905		1629.0	1629.0	3.12	16.49	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7.35	7.35	2.43	0.00	0.00	18.91	31.02	20.00	250	0.25	0.612	12.11	39.04%
																															,		
Bareille-Snow Street	MH304A-1, MH304A-2	MH304A	MH308A	1.48			140		252.0	1964.7	3.07	19.57	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	1.48	12.51	4.13	0.00	0.00	24.33	39.72	119.21	250	0.41	0.784	15.39	38.75%
Bareille-Snow Street	MH308A	MH308A	BULK206AN	0.96			352		633.6	2598.3	3.00	25.23	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.96	13.47	4.45	0.00	0.00	30.31	84.15	16.82	250	1.84	1.661	53.85	63.99%
Bareille-Snow Street		BULK206AN	MH206A						0.0	2598.3	3.00	25.23	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.00	13.47	4.45	0.00	0.00	30.31	88.83	21.00	250	2.05	1.753	58.52	65.88%
																															<u>'</u> '		
Codd's Road	MH340A	MH340A	BLK231AN	0.88	_		212		381.6	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.88	0.88	0.29	0.00	0.00	4.53	75.98	70.00	250	1.50	1.500	71.46	94.04%
Codd's Road		MH231A	BULK176AN						0.0	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.88	0.29	0.00	0.00	4.53	83.92	50.22	250	1.83	1.656	79.40	94.61%
																															<u>↓</u> /		
			-	-				-																							·/		-
esion Parameters:				Notes:		-					Designed:		КН			No.						F	Revision	1		1		1			Date		
				1. Mannings	s coefficien	t (n) =	0.013									1	-					Submission N	No. 1 for City	Review							2018-12-20		
Residential	ICI Are	eas		2. Demand	(per capita)):	280 L/day	200) L/day							2						Submission N	No. 2 for City	Review							2019-03-15		
SF 3.4 p/p/u				3. Infiltration	n allowance) 9:	0.33 L/s/Ha		,		Checked:		JIM			3						MECF	Submission								2019-04-17		
TH/F/SD 2.7 p/p/u	INST 28,000) L/Ha/day		4. Residenti	ial Peaking	Factor:										4						Record inform	mation Added	I (No.1)							2020-10-08		
TH/S 2.3 p/p/u	COM 28,000) L/Ha/day		1	Harmon F	ormula = 1+(14	/(4+(P/1000)^0.5))0	.8								5						Record inforr	mation Added	I (No.2)							2021-03-23		
APT 1.8 p/p/u	IND 35,000) L/Ha/day	MOE Chart	1	where K =	= 0.8 Correction	Factor				Dwg. Refe	rence:	118863-40	0		6						Block	11 & 12 Study	у							2022-03-15		
Other 60 p/p/Ha	17000) L/Ha/day		5. Commerci	ial and Inst	titutional Peak F	actors based on tota	al area,								F	ile Referen	ce:						Date:							Sheet No:		
				1.5 if gr	reater than	20%, otherwise	1.0										118863.5.7	.1						2021-03-31							1 of 1		

LEGEND MH231A Existing infrastructure (shown for information only) Block 11&12 Proposed Conditions

SANITARY SEWER DESIGN SHEET

Wateridge at Rockcliffe - Phase 2B City of Ottawa Canada Lands Company

Mary Jarvis - November 23, 2022

APPENDIX B

- Sanitary Sewer Spreadsheet Original Concept Site Plan
- Sanitary Sewer Spreadsheet DesignWorks Engineering Site Plan

400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

ter 613 225 1311 fax 613

LEGEND MH231A Existing infrastructure (shown for information only) Block 11&12 Proposed Conditions

								RESID	ENTIAL								ICI A	REAS				INFILT	RATION ALL	OWANCE			TOTAL			PROPO	SED SEWE	(DESIGN		
	ECCATION	-	T	AREA		UNIT	TYPES	Т	AREA	POPU	LATION	RES	PEAK			ARE	A (Ha)	1		ICI	PEAK	ARE	A (Ha)	FLOW	TIALDT	LOW (L/3)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAI	ABLE
STREET	AREA ID	FROM	то	w/ Units	SF	SD / TH/F	TH/S	APT	w/o Units	IND	CUM	PEAK	FLOW	INSTITU	JTIONAL	COMM	IERCIAL	INDU	ISTRIAL	PEAK	FLOW	IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(full)	CAP/	ACITY
		MH	МН	(Ha)					(Ha)			FACTOR	(L/s)	IND	COM	IND	CUM	IND	COM	FACTOR	(L/s)			. ,			. ,	• •	. ,	. ,	. ,	(m/s)	L/s	(%)
Dimiwidan Street	MU217 1 MU217 2	MU217A	MU216A	1.50	1	104				204.2	204.2	2.47	2.20	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.50	1.50	0.50	0.00	0.00	2.60	40.69	82.00	250	0.42	0.902	26.00	00.02%
Pimiwidon Street	MH316A	MH316A	BUILK202AN	0.16		104				204.2	204.2	3.47	3.20	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.16	1.50	0.50	0.00	0.00	3.09	37.74	43.00	250	0.43	0.803	33.99	90.93%
Pimiwidon Street	MITSTOA	BUIK202AN	MH202A	0.10		· ·				0.0	286.0	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.10	1.66	0.55	0.00	0.00	3.77	40.68	21.00	250	0.37	0.743	36.01	90.00%
r iniiwiddin Street		DOLNZOZAN	WII 1202A							0.0	200.9	3.47	5.25	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	7.00	0.00	0.00	0.00	5.77	40.00	21.00	230	0.45	0.005	30.91	30.7278
Wigwas Street	MH315A	MH315A	MH314A	0.79	2	18				55.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.79	0.79	0.26	0.00	0.00	0.92	49.63	111.64	250	0.64	0.979	48.72	98.16%
Wigwas Street	MH314A	MH314A	BULK203AN	0.06						0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.06	0.85	0.28	0.00	0.00	0.93	83.46	14.37	250	1.81	1.647	82.53	98.88%
Wigwas Street	-	BULK203AN	MH203A							0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.85	0.28	0.00	0.00	0.93	80.17	21.00	250	1.67	1.582	79.24	98.83%
Ť																																1	[
Moses Tennisco Street	MH313A	MH313A	MH312A	0.66	2	16				50.0	50.0	3.65	0.59	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.66	0.66	0.22	0.00	0.00	0.81	75.73	77.20	250	1.49	1.495	74.92	98.93%
Moses Tennisco Street	MH312A, PARK	MH312A	BULK204AN	0.21		2				5.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.21	0.87	0.29	0.00	0.00	0.94	94.29	49.70	250	2.31	1.861	93.35	99.00%
																																	1	
Park	PARK	MH350A	pipe	0.42						0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.42	0.42	0.14	0.00	0.00	0.14	48.39	11.00	200	2.00	1.492	48.25	99.71%
		B1 // // A A / A A		_					_																						0.10			
Moses Lennisco Street	-	BULK204AN	MH204A							0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.87	0.29	0.00	0.00	0.94	89.90	21.00	250	2.10	1.//4	88.96	98.95%
Michael Storus Street	MH311A	MH311A	MH310A	0.44	1	0				27.7	27.7	3.60	0.33	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.44	0.44	0.15	0.00	0.00	0.48	72 35	77.82	250	1 36	1.428	71.97	00 34%
Michael Stoqua Street	MH310A	MH310A	BUI K205AN	0.44		2				54	33.1	3.68	0.39	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.44	0.44	0.13	0.00	0.00	0.40	65.66	49.19	250	1.30	1.420	65.05	99.07%
Michael Storua Street	-	BUILK205AN	MH205A	0.21		-				0.0	33.1	3.68	0.39	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.65	0.21	0.00	0.00	0.61	66.24	21.00	250	1 14	1.307	65.63	99.08%
initial of oroqua offoor		202/200/11	111120011							0.0	00.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.27	0.00	0.00	0.01	00.27	27.00	200			00.00	00.0070
Wanaki Road	MH200A	MH200A	MH318A							0.0	0.0	3.80	0.00	0.00	0.00	1.01	1.01	0.00	0.00	1.50	0.49	1.01	1.01	0.33	0.00	0.00	0.82	42.53	63.35	250	0.47	0.839	41.71	98.06%
Tawadina Road	MH300A	MH300A	MH301A	0.47		15				40.5	40.5	3.67	0.48	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.47	2.43	0.80	0.00	0.00	2.24	31.02	109.85	250	0.25	0.612	28.78	92.79%
Tawadina Road	MH301A	MH301A	MH302A	0.54		14				37.8	78.3	3.62	0.92	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.54	2.97	0.98	0.00	0.00	2.85	59.18	110.39	250	0.91	1.168	56.33	95.18%
Tawadina Road	MH302A	MH302A	MH303A	0.26		2				5.4	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.26	3.23	1.07	0.00	0.00	3.00	72.61	111.69	250	1.37	1.433	69.62	95.87%
Tawadina Road	MH303A	MH303A	MH304A	0.21						0.0	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.21	3.44	1.14	0.00	0.00	3.07	31.02	112.10	250	0.25	0.612	27.95	90.11%
																																	1	
Tawadina Road	MH305A	MH305A	MH304A	0.24						0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.08	0.00	0.00	0.08	49.63	111.61	250	0.64	0.979	49.55	99.84%
		51.11.1/0.0 (1.1.1											10.10								0.00			0.40			10.01						<u> </u>	
Bareille-Snow Street	EXI-1	BULK304AN	MH304A	7.35				905		1629.0	1629.0	3.12	16.49	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7.35	7.35	2.43	0.00	0.00	18.91	31.02	20.00	250	0.25	0.612	12.11	39.04%
Baraille Snow Street	MH304A 1 MH304A 2	MH304A	MH308A	1 / 8				140		252.0	1064 7	3.07	10.57	0.00	0.00	0.00	1.06	0.00	0.00	1.00	0.64	1 / 8	12.51	4 13	0.00	0.00	24.33	30.72	110 21	250	0.41	0.784	15 30	38 75%
Bareille-Snow Street	MH3084	MH308A	BUILK206AN	0.96				352	-	633.6	2598.3	3.00	25.23	0.00	0.00	0.00	1.90	0.00	0.00	1.00	0.64	0.96	13.47	4.15	0.00	0.00	30.31	84.15	16.82	250	1.84	1 661	53.85	63.99%
Bareille-Snow Street	111100011	BULK206AN	MH206A	0.00				002		0.0	2598.3	3.00	25.23	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.00	13.47	4.45	0.00	0.00	30.31	88.83	21.00	250	2.05	1.753	58.52	65.88%
																																		1
Codd's Road	MH340A	MH340A	BLK231AN	0.88				212		381.6	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.88	0.88	0.29	0.00	0.00	4.53	75.98	70.00	250	1.50	1.500	71.46	94.04%
Codd's Road		MH231A	BULK176AN							0.0	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.88	0.29	0.00	0.00	4.53	83.92	50.22	250	1.83	1.656	79.40	94.61%
																																	L	L
																																	L	
Design Devenuetores				Matea								Designed		K U			Na						· · · · ·	Davisian			1					Dete	L	<u> </u>
Design Parameters:				Notes:		(-) -		0.012				Designed:		КΠ			NO.						Cubasiasias	Revision	Deview							Date 0010 10 00		
Posidential	IC.			1. Mannings	coefficient	(n) =	200	0.013	200	l /dov							1						Submission	No. 1 for City	Review							2018-12-20		
SE 3.4 p/p/u	ic ic	JI Aleas		2. Demand (per capita).		0.33	L/c/Ho	200	L/uay		Chockod		IIM			2						MEC	P Submission								2019-03-13		
TH/F/SD 2.7 p/p/u	INST 28	3 000 I /Ha/day		4 Residentia	al Peaking F	actor	0.00	L/3/11a				Olleckeu.		JIW			4						Record infor	mation Adder	1 (No 1)							2020-10-08		
TH/S 2.3 p/p/u	COM 28	3.000 L/Ha/day			Harmon Fr	ormula = 1+i	(14/(4+(P/10	000)^0.5\\0	.8								5	1					Record infor	mation Added	1 (No.2)					t		2021-03-23		
APT 1.8 p/p/u	IND 35	5.000 L/Ha/dav	MOE Chart		where K =	0.8 Correcti	on Factor	,,,				Dwa. Refe	rence:	118863-40	0		6						Block	11 & 12 Stud	v							2022-03-15		
Other 60 p/p/Ha	1	7000 L/Ha/dav		5. Commercia	al and Instit	utional Peal	k Factors ba	sed on tota	al area,						-		F	ile Referen	nce:				2.500	5 <u>2</u> 5.444	Date:							Sheet No:		
	-	,		1.5 if gre	eater than 2	0%, otherwi	se 1.0		,									118863.5.7	7.1						2021-03-3	1						1 of 1		

SANITARY SEWER DESIGN SHEET

Wateridge at Rockcliffe - Phase 2B City of Ottawa Canada Lands Company

400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 _____ibigroup.com

LEGEND MH231A Existing infrastructure (shown for information only) Block 11 Proposed Conditions (DesignWorks Engineering)

	LOCATION						RESID	DENTIAL								ICI A	REAS				INFILT	RATION ALL	OWANCE			TOTAL			PROPO	SED SEWER	DESIGN		-
	LOCATION			AREA	UNIT	TYPES		AREA	POPU	LATION	RES	PEAK			ARE	A (Ha)			ICI	PEAK	ARE	EA (Ha)	FLOW	FIXED	LOW (L/S)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVA	ILABLE
STREET		FROM	то	w/ Units		ти/е	ADT	w/o Units	IND	CUM	PEAK	FLOW	INSTITU	JTIONAL	COMN	IERCIAL	INDU	STRIAL	PEAK	FLOW	IND	CUM	(1.(0)	IND	CUM	(1./0)	(1.(0)	(m)	(mm)	(9/)	(full)	CAF	ACITY
SIREET	ANEA ID	MH	MH	(Ha)	51 50711/	111/3	AFT	(Ha)		COW	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	FACTOR	(L/s)		COM	(L/3)		COM	(L/3)	(L/3)	(11)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(70)	(m/s)	L/s	(%)
Tawadina Road	MH300A	MH300A	MH301A	0.47	15				40.5	40.5	3.67	0.48	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.47	2.43	0.80	0.00	0.00	2.24	31.02	109.85	250	0.25	0.612	28.78	92.79%
Tawadina Road	MH301A	MH301A	MH302A	0.54	14				37.8	78.3	3.62	0.92	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.54	2.97	0.98	0.00	0.00	2.85	59.18	110.39	250	0.91	1.168	56.33	95.18%
Tawadina Road	MH302A	MH302A	MH303A	0.26	2				5.4	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.26	3.23	1.07	0.00	0.00	3.00	72.61	111.69	250	1.37	1.433	69.62	95.87%
Tawadina Road	MH303A	MH303A	MH304A	0.93			240		432.0	515.7	3.37	5.64	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.93	4.16	1.37	0.00	0.00	7.96	31.02	112.10	250	0.25	0.612	23.06	74.33%
Townding Bood	MH20EA	MH20EA	MU204A	0.24					0.0	0.0	2 90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.08	0.00	0.00	0.08	40.62	111 61	250	0.64	0.070	40.55	00.94%
Tawadina Koad	WI 1505A	WINDOJA	IVII 1504A	0.24					0.0	0.0	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.00	0.00	0.00	0.00	43.03	111.01	230	0.04	0.373	49.00	33.0470
Bareille-Snow Street	EXT-1	BUILK304AN	MH304A	7 35			905		1629.0	1629.0	3 12	16.49	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7 35	7 35	2.43	0.00	0.00	18 91	31.02	20.00	250	0.25	0.612	12 11	39.04%
Darchie-Orlow Offeet	EXT-1	DOLIGO	101100-07	1.00			500		1020.0	1020.0	0.12	10.40	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00	1.00	2.40	0.00	0.00	10.01	01.02	20.00	200	0.20	0.012	12.11	00.0470
Bareille-Snow Street	MH304A-1, MH304A-2	MH304A	MH308A	0.76			52		93.6	2238.3	3.04	22.04	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.76	12.51	4.13	0.00	0.00	26.80	39.72	119.21	250	0.41	0.784	12.93	32.54%
Bareille-Snow Street	MH308A	MH308A	BULK206AN	0.96			352		633.6	2871.9	2.97	27.61	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.96	13.47	4.45	0.00	0.00	32.69	84.15	16.82	250	1.84	1.661	51.46	61.15%
Bareille-Snow Street		BULK206AN	MH206A						0.0	2871.9	2.97	27.61	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.00	13.47	4.45	0.00	0.00	32.69	88.83	21.00	250	2.05	1.753	56.13	63.20%
Codd's Road	MH340A	MH340A	BLK231AN	0.88			212		381.6	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.88	0.88	0.29	0.00	0.00	4.53	75.98	70.00	250	1.50	1.500	71.46	94.04%
Codd's Road		MH231A	BULK176AN						0.0	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.88	0.29	0.00	0.00	4.53	83.92	50.22	250	1.83	1.656	79.40	94.61%
																															<u> </u>		
Design Parameters:				Notes:	ļ			-			Designed:		КН			No.							Revision	ł		ł					Date		
				1. Mannings	s coefficient (n) =		0.013									1						Submission	No. 1 for City	Review							2018-12-20		
Residential	ICI A	reas		2. Demand	(per capita):	280) L/day	200) L/day							2						Submission	No. 2 for City	Review							2019-03-15		
SF 3.4 p/p/u				3. Infiltration	n allowance:	0.33	3 L/s/Ha				Checked:		JIM			3						MEC	P Submission	ı							2019-04-17		
TH/F/SD 2.7 p/p/u	INST 28,00	0 L/Ha/day		4. Residential Peaking Factor: 4 Record information Added (No.1)															2020-10-08														
TH/S 2.3 p/p/u	COM 28,00	0 L/Ha/day			Harmon Formula = 1	+(14/(4+(P/1	000)^0.5))0	0.8							5 Record information Added (No.2)													2021-03-23					
APT 1.8 p/p/u	IND 35,00	0 L/Ha/day	MOE Chart	hart where K = 0.8 Correction Factor Dwg. Reference: 118663-400																													
Other 60 p/p/Ha	1700	0 L/Ha/day		5. Commerci	ial and Institutional Pe	ak Factors ba	ased on tot	al area,								F	ile Referen	nce:						Date:		_					Sheet No:		
				1.5 if gr	eater than 20%, otherv	vise 1.0											118863.5.7	' .1						2021-03-3	1						1 of 1		

SANITARY SEWER DESIGN SHEET

Wateridge at Rockcliffe - Phase 2B City of Ottawa Canada Lands Company

Mary Jarvis - November 23, 2022

APPENDIX C

• Water Modeling Results – Phase 2B Design Brief

Phase 2 Node ID's and Pipe Sizes

Phase 2 Basic Day (Max HGL) Pressures

Phase 2 Peak Hour Pressures

Phase 2 Max Day + Fire Design Fireflows

Mary Jarvis - November 23, 2022

APPENDIX D

• Low Impact Development (LID) Review

То:	Anton Chetrar & Jim Moffatt IBI 400-333 Preston Street, Ottawa, ON K1S 5N4
	Krisendat Sewgoolam & Mary Jarvis Canada Lands Corporation (CLC) 30 Metcalfe Street, Suite 601, Ottawa, Ontario, K1P 5L4
From:	Chris Denich, M.Sc. P.Eng., Aquafor Beech Ltd. 55 Regal Road, Guelph, ON, N1K 1B6
Re:	Submission 1: Site Plan Package Submission to Canada Lands Company; 1050 Tawadina Road, Ottawa

At the request of CLC, we have completed a review of submission 1 for 1050 Tawadina Road, Ottawa (Block 11) in regards to the Low Impact Development (LID) requirements. The review has been based on the designs as detailed in the relevant reports and site drawings prepared by Westurban Developments and offer the following advisory comments, without prejudice. The following documents, reports and drawings were reviewed:

- 1. Wateridge Village Municipal Servicing and Stormwater Management Feasibility Study Report (October 21, 2022) Prepared by Design Works Engineering Ltd.;
- Civil Drawings (Issued for CLC Submission) October 25, 2022 Prepared by Design Works Engineering Ltd:
 - a. Site Grading Plan;
 - b. Site Servicing Plan;
 - c. Site Erosion and Sediment Control Plan;
 - d. Utility Plan;
- 3. Geotechnical Investigation Proposed Two New Apartments Buildings 1050 Tawadina Road, Ottawa, ON (November 3, 2022) Prepared by Englobe.
- 4. Architectural Drawings (undated) Prepared By Formed Alliance Architects Studio (FAAS)
- 5. Landscape Drawings (October 24, 3022) Prepared by CSW

General Comments

- In regards to submission 1, it is noted that CLC's goal for this overall development is for the Wateridge Village development (Former CFB Rockcliffe) to be a model community for LID. In general, the proposed design is not in keeping with CLC's design vision nor the LID Demonstration Project goals and objectives, including overall aesthetic enhancement and synergies using LIDs. The current site plan does not demonstrate LID technologies to the full extent.
- 2. It is acknowledged that per Section 5.3 Wateridge Village Municipal Servicing and Stormwater Management Feasibility Study Report that reference has been appropriately made to Wateridge Phase 2B LID Developer's Checklist, which was include as Appendix D. It is further noted that notwithstanding the comments below, the design calculations demonstrates that proposed LID achieves the required 4mm LID Infiltration target and 4mm LID Erosion Target, but does not achieve the required Minimum Water Quality Target of the 15mm event as specified in Table 2.1.

- 3. It is acknowledged that a series two (2) Soleno Underground Infiltration Systems (Solo Max Perforated Subdrain) been included with the intent of infiltrating runoff from the respective roof drainage area. The following is noted:
 - a. Sufficient design details have not been provided for the proposed Underground Infiltration Systems. No design details and/or cross-sections are provided within the civil drawings and no product specifications/ technical documents. Trench widths, bedding materials, filter fabrics, founding elevations, backfill and compaction requirements etc. should be detailed.
 - b. Per the TRCA/CVC LID Planning and Design Guide (2010), Wiki Document (wiki.sustainabletechnologies.ca) or most current, infiltration galleries (soakaways, trenches and chambers), should be set back at least four (4) metres from building foundations (specifically where liveable spaces, mechanical rooms, parking or other are located sub-surface) unless infiltration facility inverts are located below the lowest finished floor elevation. As such the following is recommended:
 - i. Show offset from the respective Building A proximal to the infiltration gallery and increase to 4m if feasible.
 - ii. Please confirm if the infiltration system inverts are located below the lowest finished floor elevation of Building A proximal to the infiltration system.
 - iii. If 4m cannot be accommodated or infiltration systems cannot be located below the lowest finished floor elevation, it is recommended that inclusion of impermeable barriers proximal to the building side of the infiltration system or additional building waterproofing be included.
 - c. It is understood that the infiltration systems will accept roof runoff. Pre-treatment devises (leaf screens and/or filters) are recommended to prevent debris from entering the infiltration systems.
 - d. The Wateridge Village Municipal Servicing and Stormwater Management Feasibility Study Report should include a discussion of winter operation/ functionality of the infiltration systems
 - e. Per the TRCA/CVC LID Planning and Design Guide (2010), Wiki Document (wiki.sustainabletechnologies.ca) or most current, please confirm that the impervious drainage area to the areas of each infiltration systems is between 5:1 and 20:1.
 - f. LID specific Erosion and Sediment Controls and Construction Staging for Section 5.21 of the Stormwater Management Existing Conditions Report & LID Pilot Project Scoping (Aquafor Beech (2015) have not been provided. LID controls that rely on infiltration require specific ESC controls to be in place during construction to prevent contamination/ clogging during construction.
 - g. LID designs should reference the requirements of the City of Ottawa, Low Impact Development Technical Guidance Report – Implementation in Areas with Potential Hydrogeological Constraints (February 2021) for design, analysis and in-situ testing requirements.
- 4. No discussion or details are provided with the Wateridge Village Municipal Servicing and Stormwater Management Feasibility Study Report or the Geotechnical Investigation in regards to the site context as it relates to the Underground Infiltration Systems specifically:
 - a. In-situ Infiltration rates of the native soils within the proposed footprint of the Underground Infiltration Systems
 - b. the seasonally high groundwater elevation,

Guelph Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 186 Tel: 519-224-3740 • Fax: 519-224-3750

Head Office:

2600 Skymark Ave, Mississauga, Ontario, L4W 5B2 Tel: 905-629-0099 • Fax: 905-629-0089

www.aquaforbeech.com

- c. bedrock elevation, and
- d. the soil stratigraphy that proposed Underground Infiltration Systems would be founded
- 5. As an advisory comment, opportunities for additional LID integration into the site include but are not limited to:
 - a. Raised planter areas: opportunity to design as bioretention planters
 - b. Tree plantings: opportunity to design tree pits or cluster plantings
 - c. Area drains: opportunity to design as bioretention areas
 - d. Unit paver areas: opportunity to design as permeable pavements

The above noted comments should be considered preliminary in nature and limited to the information provided. Additional information shall be required prior to Aquafor Beech completing a thorough and complete review.