

MONTGOMERY SISAM ARCHITECTS INC.

Orleans Long Term Care Facility Functional Servicing Report

1161 Old Montreal Road, City of Ottawa

February 2023 - 21-2647

Table of Contents

1.0	Introduct	tion 1		
	1.1	Reference Documents		
2.0	2.0 Transportation Servicing			
	2.1	Existing Conditions		
	2.2	Proposed Roadways2		
3.0	Sanitary	Servicing 3		
	3.1	Existing Conditions		
	3.2	Design Criteria4		
	3.3	Proposed Servicing4		
4.0	Stormwa	ter Servicing 6		
	4.1	Background Information		
	4.2	Design Criteria		
	4.3	Proposed Servicing7		
	4.3.1	Stormwater Design Calculations		
	4.3.2	Drainage Areas9		
	4.3.3	Site Detention		
	4.3.4	Water Quality9		
	4.3.5	Erosion Controls9		
	4.3.6	Conservation Authority9		
5.0	Waterma	ain Servicing 10		
	5.1	Existing Conditions		
	5.2	Proposed Servicing10		
6.0	Utilities	12		
	6.1	Gas12		
	6.2	Telecommunications		

Orleans Long Term Care Facility Functional Servicing Report - 1161 Old Montreal Road, City of Ottawa February 2023 – 21-2647

	6.3	Hydro	. 12
7.0	Conclusio	on	13

Tables

Table 1:	Sanitary Sewer Design Criteria	4
Table 2:	Storm Sewer Design Criteria	6
Table 3:	Water Demand Information1	0

Appendices

А	Functional Servicing Plan
В	Sanitary Sewer and Storm Sewer Design Sheets
С	Stormwater Management Calculations
D	Water Service and Boundary Condition
E	RVCA Comments

1.0 Introduction

Dillon Consulting Limited (Dillon) was retained by Montgomery Sisam Architects Inc. to develop a functional servicing strategy for the undeveloped property fronting Famille-Laporte Avenue, located at 1161 Old Montreal Road in the City of Ottawa. This document outlines the servicing strategy including supporting studies and related information for the transportation, sanitary, stormwater management, and water main servicing for the site.

The total area of the entire site is approximately 2.01 Ha. The Developer is planning on severing the property into two separate development lots. The proposed Long Term Care development site is approximately 1.25 Ha, and the remaining undeveloped lands area are approximately 0.76 Ha. The overall site is presently zoned RI5 Rural Institutional and currently consists of a vacant/grassed field. The proposed Long Term Care Facility development will be located on the southern portion of the site within the limits of the vacant field.

This document is intended for use for the Long Term Care facility portion of the site only. A separate FSR will be prepared for the future development lands to be north.

1.1 Reference Documents

The following documents and drawings were referenced when completing this study:

- City of Ottawa– Sewer Design Guidelines (Ottawa, 2012)
- City of Ottawa GIS Interactive Mapping (Ottawa)
- Design Guidelines for Sewage Works (MOE, 2008)
- Cardinal Creek Master Servicing Study (David Schaeffer Engineering Ltd., 2013)
- Cardinal Creek Village, Phase 1A As-Built Drawings (David Schaeffer Engineering Ltd., 2014)

2.0 **Transportation Servicing**

2.1 **Existing Conditions**

There is no existing access to the proposed development. The property is bounded on the north limit, east limit, and south limit by residential homes.

2.2 Proposed Roadways

The proposed access points to this development will be from Famille-Laporte Avenue at the west limit of the site. Staff, visitors, EMS, services and deliveries will access the site via Famille-Laporte Avenue. The site layout is shown in *Appendix A*. The pavement structure of the proposed internal roads will be consistent with geotechnical recommendations and the City's Development Manual. A Traffic Impact Study (TIS) has been completed for the site and is included as a separate submission.

3.0 Sanitary Servicing

3.1 **Existing Conditions**

Currently, there is an existing 200mm diameter sanitary sewer located underneath Famille-Laporte Avenue, which is located west of the proposed development. The existing sanitary sewer increases to 250mm in diameter at the service connection point and drains northwards, ultimately discharging to the City of Ottawa Robert O. Pickard Environmental Centre treatment plant.

While the existing site is undeveloped, it was identified as Existing Residential in the Cardinal Creek Master Servicing Study. Using Table 10 in Section 6.3 as a reference (included below), the site was assumed to be low-density residential. The Population Density was determined to be 86 ppl/Ha. The CCMSS assumed a residential flow rate of 350 L/s/person. Using these criteria, an estimated existing site flow was calculated to be slightly more than the proposed peak flow from the Long Term Care Facility (2.25 L/s vs. 2.16 L/s). Refer to *Appendix B* for the calculations.

Dwelling Unit	Area	Density (uph)		Units		Household Population		ulation
Projections	(ha)	Min.	Max.	Min.	Max.	Size (ppu)	Min.	Max.
Low Density (Singles/Semis)	50	26	28	1,298	1,397	3.3	4,282	4,612
Medium Density (Multi-Family)	13	50	60	662	794	2.5	1,655	1,986
Mixed Use (Apartments)	8	60	75	464	580	1.8	835	1,044
Existing Residential - Low Density	14	26	28	351	378	3.3	1,158	1,247
Existing Residential - Medium Density	5	50	60	225	270	2.5	563	675
Total	89			2,999	3,420		8,493	9,564

Table 10: Population Estimates

Montgomery Sisam Architects Inc. Orleans Long Term Care Facility Functional Servicing Report - 1161 Old Montreal Road, City of Ottawa February 2023 – 21-2647

3.2 Design Criteria

The following sanitary sewer design criteria for this property are outlined in Table 1. The design criteria was established by the City of Ottawa's Design Guidelines (2012).

Table 1: Sanitary Sewer Design Criteria

Criteria	City of Ottawa's Design Guidelines (2012)
Hydraulic Sewer Sizing	Manning's Equation
Minimum Sewer Size (mm)	135 mm diameter
Minimum Cover Depth (m)	2.5
Manning's Roughness Coefficient 'n'	0.013
Velocity: Minimum (m/s) Maximum (m/s)	0.60 3.00
 Hydraulic Losses Across Manholes: Straight Run (m) 45 degree turn of less (m) Greater than 45 degree turn to 90 degree turn (m) 	Grade of Sewer 0.03 0.06
Infiltration Allowance/Peak Extraneous Flow	0.05 L/Ha/s [Dry Weather] 0.28 L/Ha/s [Wet Weather] 0.33 L/Ha/s [Total Infiltration Allowance]
Peaking Factor	1.5 For Institutional
Population Densities For Facility:	224 Bed Facility
Average Daily Sewage	450 L/Cap/Day [Per OBC 8.2.1.3.B – Long Term Care]
Sewer Surcharging	Maximum hydraulic grade line

3.3 Proposed Servicing

Refer to the attached *Appendix A* which illustrates the proposed sanitary servicing layout. The sanitary servicing for the proposed development is as follows:

- All sanitary flows from the proposed building will be conveyed via a new 200mm site sanitary sewer.
- The site sanitary sewer will outlet to the existing Private Drain Connection stub located at the Famille-Laporte Avenue right-of-way limit. The existing PDC sewer is 200mm in diameter, connects to an existing sanitary manhole within the Famille-Laporte right-of-way, and drains northerly via an existing 250mm diameter sewer.
- A new Sanitary Manhole will be installed at the property line/PDC stub.

• A 200mm diameter service connection will be installed from the west side of the building and directed to a new manhole.

The sanitary sewer functional design sheets are provided in *Appendix B*. Criteria used in flow calculation is listed in Table 1.

The future detailed design of the sanitary sewer and service is to be consistent with the requirements of the City of Ottawa, Cardinal Creek Master Servicing Study and the Ministry of Environment, Conservation and Parks (MECP).

4.0 Stormwater Servicing

4.1 Background Information

The proposed development is of approximately 1.25 Ha and is zoned RI5 Rural Institutional, currently consists of a vacant field. The City of Ottawa has previously installed a storm sewer stub for the proposed development at this location. There is an existing 1200 mm diameter municipal storm sewer within the Famille-Laporte Avenue right-of-way along east side of the road heading northwards, which drains to the downstream Cardinal Creek stormwater management facility and ultimately discharges to the Ottawa River. An outlet sewer/drain connection for the site drain to City of Ottawa manhole MHST74214. According to the as-built drawings provided by the City, the private drain connection is a 600mm diameter concrete pipe at 0.50% slope that terminates at the property with a manhole.

The development parcel is within the Cardinal Creek Development area. Cardinal Creek is subject to the Cardinal Creek Master Servicing Study (2013). As a part of that Master Servicing Study, a regional stormwater management pond was constructed. For the purposes of determining stormwater management criteria for the site, the subject parcel was assigned an existing Runoff Coefficient of 0.70 as per the Storm Drainage Plan for the Development (Sheet 65 – Cardinal Creek Village Phase 1A, David Schaeffer Engineering Ltd, 2014). The Storm Drainage Plan is included in *Appendix B*.

Areas to the south and southeast of the property presently grade towards the subject parcel. The offsite parcels are existing residential properties, mainly grassed with various structures. Overland flows from larger rain events will drain towards and onto the subject parcel. The offsite areas are also included in the Cardinal Creek Master Servicing Study (2013) and are also assigned an existing Runoff Coefficient of 0.70.

4.2 Design Criteria

The following storm sewer design criteria for this property are outlined in Table 2. The design criteria were established by the City of Ottawa's Design Guidelines (2012) and the Cardinal Creek Master Servicing Study (2013).

Criteria	City of Ottawa's Design Guidelines (2012)	
Hydraulic Sewer Sizing	Rational Method / Mannings Equation	
Sewer Sizing Rainfall Event	5 year storm event	
Minimum Cover Depth (m)	2	
Manning's Roughness Coefficient 'n'	0.013	

Table 2: Storm Sewer Design Criteria

Montgomery Sisam Architects Inc. Orleans Long Term Care Facility Functional Servicing Report - 1161 Old Montreal Road, City of Ottawa February 2023 – 21-2647

Criteria	City of Ottawa's Design Guidelines (2012)		
Velocity:			
Minimum (m/s)	0.80		
Maximum (m/s)	3.0		
Roof Downspouts	Connected directly to site service connection		
Rooftop Storage	Permitted (maximum 150mm depth)		
Parking Lot Storage	Maximum 300mm depth		
Inlet Times:			
Institutional	10 minute maximum		
Runoff Coefficients:	Calculated per Site Conditions		
Paved and Roof Surfaces	0.90		
Landscaped/Open Space	0.25		
Sewer Surcharging	 No surface ponding during 5 year storm event 100 year Hydraulic Grade Line 0.3m below building footing 		
Stormwater Storage Requirements	 Storage of 100 year storm event Outlet rate to be confirmed through consultation with City 		
Water Quality Treatment	None per City of Ottawa. Provided downstream in Cardinal Creek SWM Facility		

4.3 Proposed Servicing

It is proposed that the site's stormwater outlet to the existing 1200 mm diameter storm sewer that is currently located within the Famille-Laporte Avenue right-of-way, located west of the site.

Refer to *Appendix A* for the proposed servicing. The stormwater servicing for the proposed development is as follows:

- The proposed site, and paved area will be serviced through a new storm sewer network constructed within the site.
- Onsite detention will be provided in accordance with City of Ottawa and Rideau Valley Conservation Authority Design Guidelines. The site storm outlet rate is to be restricted to the outlet rates recommended in the Cardinal Creek Master Servicing Study for the 5 and 100 year storm events. Site allowable outlet rate is based on an assumed predevelopment C value of 0.70 for the site.
- Required restricted flows for the 100 year storm event are to be detained in an underground storage facility. The anticipated 100 year high water line of 64.15m will be near the inside ceiling of the detention facility, which is below the lowest point on the site. The Detention Chambers have open grate manholes at either ends to permit access, ventilation and extreme events to discharge to the overland flow routes.

• The site will be graded to allow for overland flow to be captured onsite and directed to the storm sewer network. Rain events in excess of the 100 year event will pond onsite, then drain overland through the site to the existing City road network.

Refer to Appendix B for the storm sewer design and Appendix C for the Stormwater Management Calculations.

4.3.1 Stormwater Design Calculations

The entire development (1.25 Ha) is located within the Cardinal Creek Village, and is subject to the Cardinal Creek Master Servicing Study. The study completed in 2013, outlines the stormwater management requirements for the site. In general, the site is tributary to a downstream regional stormwater management facility. The site was assigned an existing Rational Method runoff coefficient of 0.70. As the site is presently all grassed, the Master Serving Study assumed the site was fully developed in the roadway sewer sizing and downstream detention facility design. The increased runoff coefficient allows for the LTC site to have a reduced volume of onsite detention from what would be typically expected when a grassed site is converted to a fully developed site.

All sewers within the site drain to below ground detention facilities to detain up to the 100 year event. The site sewers have been oversized to better accommodate the flows from the 100 year event. As agreed upon with the City of Ottawa, the rooftop runoff will discharge directly to the proposed site sewer network and flow to the underground detention facility. The 100 year HGL at the building leads are over 1.2m below the Finished Floor Elevation.

Presently there are residential lands to the south and southeast of the site that have overland drainage towards the subject parcel. The properties are 1171, 1183, 1195, 1199 and 1201 Old Montreal Road. The total additional area that drains to the site is approximately 0.92 Ha of mainly grassed lots with homes and structures. Per City comments, the offsite flows are not required to be included in the site storage requirements and have been excluded. These offsite lands were also included in the Cardinal Creek Master Servicing Study, as such, the tributary area to the existing City sewers and pond will not be increased. Like the LTC site, the residential lands have been allocated an existing runoff coefficient of 0.70. If these lands were to be redeveloped in the future, it is understood that the properties would accommodate their own site drainage and regrade the lands to prevent overland flows from reaching the LTC site.

As shown in the design calculation in *Appendix C*, the calculated outlet rate for the 5 year event for the LTC site is 0.254 m^3 /s. The 5 year design requirements utilized for the site were identified in the Cardinal Creek Master Servicing Study. Due to the high permitted release rate, a conventional inlet control device is too small to utilize. In order to control flows from the site to the City sewer system, a 600mm diameter control pipe with a 300mm diameter orifice will be implemented. Refer to the design drawings for the location of the outlet controls and *Appendix C* for orifice sizing calculations.

Drainage Areas
The proposed site drainage areas can be found on Sheet DRG-1 in <i>Appendix B</i> . These can be read in conjunction with the sewer design sheets for the development area. The drainage areas tributary to the site include the above noted offsite residential lands/areas that presently drain overland to the subject parcel. These offsite lands will be deleted from the overall site drainage area if/when the offsite lands redevelop.
Site Detention
The required site 100 year event detention volume was calculated using the outlet rate detailed in Section 4.3.1. The total required volume for the site, including the identified offsite residential areas, is 191.0 m ³ . The site architect has confirmed that there is no planned rooftop storage.
The total required storage will be provided in underground concrete chambers along the west side of the site. Details for the detention chambers are included with Civil Design Plans.
Water Quality
Based on the Cardinal Creek Master Servicing Study, the drainage area requires enhanced quality treatment, with a long-term average removal of 80% of suspended solids. The existing Cardinal Creek detention facility includes a wet pond to permit removal of TSS. The City of Ottawa has confirmed that no additional Water Quality Measures are required for this development.
Erosion Controls
Erosion and sediment controls will be implemented by the General Contractor onsite, and within the Famille-Laporte right-of-way, prior to any earth disturbances on the site. Erosion control requirements are detailed within the civil plan drawing set. Erosion controls, including all catch basin silt bags, are to be inspected on a daily basis and/or after major rain events. Any repairs or required maintenance shall be completed promptly. Site erosion controls are to remain in place until site works and vegetative restoration has been completed and approved.
Conservation Authority
Comments on the proposed development from the Rideau Valley Conservation Authority (RVCA) were provided dated May 4, 2022. The provided comments are included in <i>Appendix E</i> for reference.

5.0 Watermain Servicing

5.1 **Existing Conditions**

An existing 400 mm diameter watermain is located within the Famille-Laporte Avenue right-of-way, located in the west boulevard. The site currently has two (2) 200mm diameter service connection terminated with a valve at the property line. One service connection is located in front of the proposed development area, the other is located in the lands to the north which are to remain undeveloped at this time.

5.2 Proposed Servicing

Please refer to the attached *Appendix A* which illustrates the proposed watermain servicing. The watermain servicing for the proposed development is as follows:

- The new building will be serviced by a new 150 mm watermain connected to the existing 200mm service stub located at the property line. The building service line will be split into domestic and fire after entering the building. A backflow preventer will be installed inside the building mechanical room. A meter chamber per City Standard W3 will be installed prior to the building.
- One new water service crossing of Famille-Laporte Avenue will be completed via open cut to the roadway. The new water service will connect to the existing 400mm main. The roadway will be restored to its predevelopment condition following the connection.
- Two (2) new fire hydrants and 150 mm diameter leads are proposed for the site. One is located in the south parking area to be in close proximity to the building FDC connection, the second is located at the north end of the development area off of the parking.
- An existing water service to the north end of the property will be removed. The existing service lead will be removed back to the main on Famille-Laporte Avenue via open cut to the roadway. Once capped per City Standards, the roadway will be restored to its predevelopment condition.
- The Site Contractor will be responsible for acquiring all necessary City permits and traffic controls prior to commencement of work within the roadway.

A Fire Flow Demand Analysis was completed/estimated for the proposed four storey structure using the Fire Underwriters Survey Guidelines (2020). The inputs and results can be found in *Appendix D*.

Table 3: Water Demand Information

Item	Results
Gross Floor Area (All Floors)	12,516 m ²
Average Daily Demand	1.17 L/s (70 L/m)
Maximum Daily Demand	2.92 L/s (175 L/m)

Item	Results
Fire Flow (FUS 2020)	209.2 L/s (12,552 L/m)
Maximum Day + Fire Flow	212.0 L/s (12,727 L/m)

A Boundary Conditions Analysis can also be found in Appendix D.

The detailed design of the watermain service are to be consistent with the requirements of the City of Ottawa and will be coordinated during the detailed design process.

6.0	Utilities				
6.1	Gas				
	Existing natural gas infrastructure is located along the Famille-Laporte Avenue right-of-way, located west of the site. There is no existing natural gas service currently servicing the proposed site. During detailed design, future conversation on loading will be required with Enbridge.				
6.2	Telecommunications				
	The existing site is not currently serviced by telecommunications. It is anticipated that existing telecommunications infrastructure exists within the Famille-Laporte Avenue right-of-way, located west of the site. Detailed design, additional consultation will be held with utility owner to confirm internal servicing requirements.				
6.3	Hydro				
	Existing hydro infrastructure is buried along the east side of the Famille-Laporte Avenue right-of-way. There is no existing hydro currently servicing the proposed site. During detailed design, future conversation on loading will be required with the hydro provider.				

7.0 Conclusion

The review of the adjacent services have been found to be sufficient for the proposed development. The design of the proposed internal services will be finalized during detailed design.

Yours sincerely,

DILLON CONSULTING LIMITED

C.D. PATTEN 100083837 Chris Patten, P.Eng. 100083837 Project Manager 10-FEB-23 POLINCE OF ONTR

Appendix A

Functional Servicing Plan

Montgomery Sisam Architects Inc. Orleans Long Term Care Facility Functional Servicing Report February 2023 – 21-2647

STORM SEWER INVERTS TWCB 10 600x600mm COVER S19.1 SE INV. 64.35m RIM ELEV. 65.55m EXISTING MH NE INV. 63.3308m EX. SW INV. 63.258m (OUTLET) RIM ELEV. 67.18m CB 11 600x600mm COVER S19.1 SE INV. 64.65m RIM ELEV. 65.85m MH 1 - 1200mm DIA. FRAME S25/COVER S24.1 NW INV. 65.07 NE INV. 64.93 SE INV. 64.99m RIM ELEV. 66.58m DILLON CB 12 600x600mm COVER S19.1 SE INV. 65.20m RIM ELEV. 66.40m CONSULTING MH 2 — 1200mm DIA. FRAME S25/COVER S24.1 SW INV. 65.35m NW INV. 64.90m SE INV. 64.70m RIM ELEV. 67.18m <u>CB 13</u> 600x600mm COVER S19.1 NE INV. 65.17m S INV. 65.12m RIM ELEV. 66.50m Conditions of Use Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited. MH <u>3</u> – <u>1800mm DIA.</u> FRAME S25/COVER S24.1 SE INV. 64.50m NW INV. 64.35m SW INV. 64.35m RIM ELEV. 67.42m <u>CB 14</u> 600x600mm COVER S19.1 SE INV. 65.20m RIM ELEV. 66.40m Do not scale dimensions from drawing. Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited. <u>CB 15</u> 600x600mm COVER S19.1 NE INV. 65.50m RIM ELEV. 67.00m MH 4B - 1800mm DIA. FRAME 525/COVER 524.1 NW INV. 65.764m NE INV. 64.28m SW INV. 64.18m RIM ELEV. 67.24m <u>CB_16</u> 600x600mm COVER S19.1 NE INV. 65.90m RIM ELEV. 67.10m MH 4A - 1800mm DIA. FRAME S25/COVER S24.1 NW INV. 65.95m NE INV. 64.17m SW INV. 64.17m RIM ELEV. 67.38m CB 17 600x600mm COVER S19.1 NE INV. 66.00m RIM ELEV. 67.15m CB 18 600x600mm COVER S19.1 NE INV. 66.00m RIM ELEV. 67.10m MH 4 – 1800mm DIA. FRAME S25/COVER S24.1 SE INV. 65.70m NE INV. 64.12m NW INV. 64.12m RIM ELEV. 67.20m CB 19 600x600mm COVER S19.1 NE INV. 66.00m RIM ELEV. 67.10m MH 5 – 1200mm DIA. FRAME S25/COVER S24.1 NW INV. 63.34m SE INV. 63.31m SW INV. 63.309m CB 20 600x600mm COVER S19.1 NW INV. 66.95m RIM ELEV. 67.10m W/300mm ORIFICE RIM ELEV. 67.28m CB 21 600x600mm COVER S19.1 NW INV. 65.80m RIM ELEV. 67.15m MH 6 – 1200mm DIA. FRAME S25/COVER S24.1 NW INV. 64.08m SE INV. 64.08m RIM ELEV. 66.42m <u>CB 22</u> 600x600mm COVER S19.1 NW INV. 65.68m RIM ELEV. 67.08m MH 7 — 1200mm DIA. FRAME S25/COVER S24.1 NW INV. 64.38m NE INV. 64.26m SE INV. 64.11 RIM ELEV. 65.70 CB 23 600x600mm COVER S19.1 NW INV. 65.80m RIM ELEV. 67.00m MH 8 - 1200mm DIA. FRAME S25/COVER S24.1SW. NW INV. 65.07m SW INV. 64.63m RIM ELEV. 66.55m <u>CBMH 24 – 1200mm DIA.</u> FRAME S25/COVER S24.1 NW INV. 66.13m RIM ELEV. 67.80m CB 25 600x600mm COVER S19.1 NW INV. 66.40m RIM ELEV. 67.70m STORAGE CHAMBER 1 30m 2400mmx1800m CONCRETE BOX NW INV. 63.37m SW INV. 63.34m STORAGE CHAMBER 2 15m 2400mmx1800mr CONCRETE BOX NW INV. 64.02m SE INV. 63.36m NW INV. 63.36m SE INV. 63.36m CB 26 300mmø COVER S31 NW INV. 65.90m RIM ELEV. 67.10m <u>CB 27</u> 300mmø COVER S31 NW INV. 65.15m RIM ELEV. 66.35m OF1- OVERFLOW I INV 65.20m RIM 67.11m CB_28 300mmø COVER S31 NW INV. 64.44m RIM ELEV. 65.50m OF2- OVERFLOW MANHOLE INV 65.17m RIM 67.00m <u>CB 29</u> 300mmø COVER S31 NW INV. 65.90m RIM ELEV. 67.10m OF3- OVERFLOW MANHOLE INV 65.19m RIM 66.95m CB 30 300mmø COVER S31 NW INV. 66.10m RIM ELEV. 67.30m OF4- OVERFLOW MANHOLE INV 65.20m RIM 66.80m CDP, DS RE-ISSUED FOR SITE PLAN CONTROL APPLICATION AND 27/01/2023 CDP. DS 19/08/2022 RE-ISSUED FOR SITE PLAN CDP DS 2 CONTROL APPLICATION AND ZONING BY-LAW AMENDMEN CDP 12/02/2021 SPA / ZBA SUBMISSION date: All drawing and All drawing and specifications are the property of the architect. The contractor shall verify all dimensions and information on site and report any discrepancy to architect before proceeding. Arch Corp - Orleans 161 OLD MONTREAL RD, RLEANS ON, K4A 3N6 1200mm SITE SERVICING PLAN Or/6=67.35 @ MH-CB T/G=67.30 T/V=66.27 1:250 DS SITE BENCHMARK 'C T/S FIRE HYDRANT ELEV.=68.29m CDP viewed by: 21-2647 ob number: olot date: February 10, 202 Irawing number CIV-1

Appendix B

Sanitary Sewer and Storm Sewer Design Sheets

Montgomery Sisam Architects Inc. Orleans Long Term Care Facility Functional Servicing Report February 2023 – 21-2647

ORLEANS LONG TERM CARE FACILITY - CITY OF OTTAWA SANITARY SEWER DESIGN SHEET - EXISTING CONDITIONS ASSESSMENT (LOW DENSITY RESIDENTIAL)

Project Name: 0 Project No: 21-4	Orleans LT 1926	C		The Peak Using	king Factor Harmon Fo	was deriv ormula=	ived: Y	(Y or N)	Residential Ave	erage Daily Flow=	350	L/Cap.D				Outlet In	vert Elevation= Mannings 'n'=	61.422 0.013		Baseme	nt Floor Elevation =	0.000	Ground E	evation at Outlet =	66.790	
City of Ottawa				,	From a Value from	a Table= i table=	N		Peak I	Extraneous Flow=	0.330	L/Ha.S					Total Area=	1.250		Hydraulic	or Grade Line Cover =	= 2.00		HGL at Outlet =	61.600	
ROAD/STN	LOCA FROM MH	TION TO MH	INDIV POP	IDUAL AREA (ha.)	POP	ATIVE AREA (ha.)	PEAKING FACTOR M	POP FLOW Q(p) (L/s)	PEAK EXTR. FLOW Q(i) (L/s)	PEAK DESIGN FLOW Q(d) (L/s)	SEWER CAPACITY (L/s)	LENGTH (m)	PIPE DIA. (mm)	Wall Thickness (mm)	SLOPE (%)	UPPER INVERT (m)	file LOWER INVERT (m)	FALL (m)	VELOCITY (m/s)	DROP IN LOWER MANHOLE (m)	Ground Elevation Upper MH	Cover @ Up MH (m)	Cover @ Low MF (m)	HGL Elev at Upstream MH	Hydraulic Grade Line HGL Elev vs. Grnd Elev @ Up MH	HGL Elev vs. Obvert @ Up MH
LTC	BLDG	MH A	107.0	1.25	107	1.25	4.235	1.836	0.413	2.25	^{56.81} xisting S esidenti	^{1.0} Site Ass al Flow	²⁰⁰ sumed /s	15	3.00	63.030	63.000	0.030	1.81	0.570	67.450	4.205	4.085	61.601	OKAY	ΟΚΑΥ

ORLEANS LONG TERM CARE FACILITY - CITY OF OTTAWA SANITARY SEWER DESIGN SHEET

Project Name:	Orleans L	тс														Outlet In	vert Elevation=	61.422								
Project No: 21-	4926			The Peak	ng Factor	was deri	ived:		Residential Av	erage Daily Flow=	450	L/Cap.D														
				Using I	Harmon Fo	ormula=	N	(Y or N)									Mannings 'n'=	0.013		Basemer	t Floor Elevation =	0.000	Ground E	levation at Outlet =	66.790	
					From a	a Table=	Y		Peak	Extraneous Flow=	0.330	L/Ha.S							_		or					
City of Ottawa				١	/alue from	n table=	1.500										Total Area=	1.250		Hydraulic (Grade Line Cover =	2.00		HGL at Outlet =	61.600	
Lo	ocation					F	low Charact	eristics							Sew	er Design/Pro	file					Cover			Hydraulic Grade Line	
	LOC	ATION	INDIVI	DUAL	CUMUL	LATIVE	PEAKING	POP FLOW	PEAK EXTR.	PEAK DESIGN	SEWER			Wall												
ROAD/STN	FROM	TO	POP	AREA	POP	AREA	FACTOR	Q(p)	FLOW Q(i)	FLOW Q(d)	CAPACITY	LENGTH	PIPE DIA.	Thickness	SLOPE	UPPER	LOWER	FALL	VELOCITY	DROP IN LOWER	Ground Elevation	Cover @ Up MH	Cover @ Low MH	HGL Elev	HGL Elev vs.	HGL Elev vs.
	MH	MH		(ha.)		(ha.)	М	(L/s)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(%)	INVERT (m)	INVERT (m)	(m)	(m/s)	MANHOLE (m)	Upper MH	(m)	(m)	at Upstream MH	Grnd Elev @ Up MH	Obvert @ Up MH
-																										
LTC	BLDG	MH A	224.0	1.25	224	1.25	1.500	1.750	0.413	2.16	56.81	1.0	200	15	3.00	63.030	63.000	0.030	1.81	0.570	67.450	4.205	4.085	61.601	OKAY	OKAY
MH A	MH A	MH B	0.0	0.00	224	1.25	1.500	1.750	0.413	2.16	56.81	11.0	200	15	3.00	62.430	62.100	0.330	1.81	0.560	67.300	4.655	4.685	61.601	OKAY	OKAY

														1.	ORL 5 YEAR STORM	EANS LT	CF DESIGN SH	FFT									
	Project Nan	ne: Orleans						Intensity	Option #	1				•		021121	2201011 011										
	Project Nun	nber: 21-26	47				1) Intensity	y (i) = a/(t-	+b)^c	2) Intensity (i) = a*t^b	3) Ins	sert Intensity		M	anning's n =	0.013										
	Based on 1: City of Otta	:5 Year Sto wa	rm Event					a= b= c=	998.071 6.053 0.814	a= b=		i=			Tota	l Area (ha)=	1.25	Outlet Inve	ert Elevation=	63.2	200	Ground Eleva	ation @ Outlet =	67.25	High V	Vater Level at Outlet=	= 63.68
		Location															Sewer Desigr	n / Profile						Cover		Hydrauli	c Grade Line
Downstream	Road	From MH	То МН	Area (ba)	Run. Coet.	2.78AC	Accum.	T of In	T of F	T of Conc.	Intensity (mm/br)	Exp. Flow	Pipe Capacity (L/s)	Velocity	Wall Thickness	Length	Pipe Dia.	Slope	Invert Un MH	Invert	Fall (m)	Drop Across	Ground Elev	Cover @ Up M	IH Cover @ Low MH	HGL Elevation	HGL Elev vs. Grnd Elev @ Up MH
15	/otations	MH1	MH2	0.08	0.70	0.16	0.16	10.0	0.32	10.00	104.19	16.22	57.21	0.81	11	15.6	300	0.35	64.96	64.90	0.05	0.200	66.500	1.23	1.94	65.31	Okav
16		MH2	MH3	0.26	0.76	0.55	0.71	10.0	1.08	10.32	102.53	72.28	388.33	1.37	15	89.0	600	0.40	64.70	64.35	0.36		67.150	1.83	2.39	65.30	Okay
17		MH3	MH4B	0.07	0.82	0.16	0.86	10.0	0.55	11.40	97.33	84.15	274.59	0.97	100	31.8	600	0.20	64.35	64.28	0.06	0.100	67.350	2.30	2.37	65.18	Okay
18		MH4B	MH4A	0.05	0.89	0.12	1.29	10.0	0.20	11.95	94.92	122.31	431.17	0.98	100	12.0	750	0.15	64.18	64.17	0.02		67.350	2.32	2.33	65.18	Okay
19		MH 4A		0.13	0.75	0.27	1.96	10.0	0.30	12.15	94.05	184.33	497.87	1.13	100	20.6	750	0.20	64.17	64.12	0.04	0.750	67.350	2.33	2.38	65.17	Okay
20	CHAMBER	STOR 1	STOR 1	0.00	0.29	0.00	2.01	10.0	0.04	12.40	92.75	185.99	3634.96	1.13	100	30.0	1800	0.20	63.37	63.34	0.01	0.750	67.000	1 73	1.85	65.17	Okay
22	OF # UNDERV	STOR 1	MH5	0.00	0.29	0.00	2.01	10.0	0.06	12.85	91.21	183.19	434.17	1.54	100	5.8	600	0.50	63.34	63.31	0.03		67.100	3.06	2.99	63.94	Okay
23		MH5	EX. MH	0.00	0.29	0.00	2.64	10.0	0.02	12.91	90.96	240.51	253.16	0.90	100	1.0	600	0.17	63.309	63.308	0.00	0.050	67.000	2.99	3.17	63.91	Okay
	EX STUB	EX. MH	MAIN	0.00	0.90	0.30	2.94	10.0	0.12	12.93	90.89	267.61	434.17	1.54	100	11.5	600	0.50	63.258	63.200	0.06		67.180	3.22	3.35	63.86	Okay
26		мцо		0.12	0.71	0.24	0.24	10.0	0.45	10.00	104 10	24 69	06 70	1 27	15	27.0	200	1.00	64 621	64 261	0.27	0.150	66 550	1 60	1 1 2	6E 20	Okov
20		MH7	MH6	0.12	0.71	0.24	0.24	10.0	0.45	10.00	104.19	24.00	127 50	0.80	100	14.0	300 450	0.20	64.031	64.201	0.37	0.150	65 700	1.00	1.12	65.18	Okay
28		MH6	STOR 2	0.06	0.29	0.05	0.29	10.0	0.61	10.74	100.43	28.65	127.50	0.80	100	29.2	450	0.20	64.08	64.02	0.06	0.650	66.250	1.62	1.93	65.18	Okay
29	CHAMBER	STOR 2	STOR 2	0.00	0.29	0.00	0.64	10.0	0.18	11.35	97.57	62.01	3634.96	1.43	200	15.0	1800	0.10	63.37	63.36	0.02		66.500	1.13	1.64	65.17	Okay
21		STOR 2	MH5	0.00	0.29	0.00	0.64	10.0	0.28	11.52	96.78	61.50	237.81	0.84	100	14.2	600	0.15	63.36	63.34	0.02		67.000	2.94	3.06	63.96	Okay
17	BLDG B	ROOF	MH 4B	0.12	0.90	0.30	0.30	10.0	0.07	10.00	104.19	31.28	46.38	1.48	15	6.0	200	2.00	66.100	65.980	0.12	1.797	67.450	1.13	1.15	66.30	Okay
18	BLDG C	ROOF	MH4A	0.16	0.90	0.40	0.40	10.0	0.06	10.00	104.19	41.71	84.10	1.71	15	6.0	250	2.00	66.028	65.908	0.12	1.743	67.450	1.16	1.18	66.28	Okay
28	BLDG A	ROOF	STOR 2	0.14	0.90	0.35	0.35	10.0	0.04	10.00	104.19	36.50	118.94	2.42	15	5.5	250	4.00	66.020	65.800	0.22	2.425	67.450	1.17	0.44	66.27	Okay

1

- FLOW RESTRICTION PIPE

ORLEANS LTCF 1:100 YEAR STORM SEWER DESIGN SHEET

								Intensitv	Option #	1				1.1	IN TEAR STOR		DESIGN SP										
	Project Nan Project Nun	ne: Orleans nber: 21-26	LTCF 47				1) Intensity	y (i) = a/(t	+b)^c	2) Intensity ((i) = a*t^b	3) Ins	ert Intensity		М	lanning's n =	0.013										
	Based on 1	:100 Year S	Storm Even	t				a=	1735.700	a=	=	i=			T /		4.05	0 4 4 4			200			07.05			00.00
	City of Otta	wa						D= C=	6.014 0.820	D=	=				I ota	al Area (na)=	1.25	Outlet Inve	ert Elevation=	63.2	200	Ground Eleva	ation @ Outlet =	67.25	High V	vater Level at Outlet=	= 63.68
	r	Location						-									Sewer Design	/ Profile						Cover		Hydrauli	c Grade Line
													Pipe														
	Road	From	То	Area	Run.	2.78AC	Accum.	T of In	T of F	T of Conc.	Intensity	Exp. Flow	Capacity	Velocity	Wall Thickness	Length	Pipe Dia.	Slope	Invert	Invert	Fall	Drop Across	Ground Elev	Cover @ Up M	H Cover @ Low MH	HGL Elevation	HGL Elev vs.
Downstream 1	/Stations	MH	MH	(na)	0.70	0.46	2.78AC	(min)	(min)	(min)	(mm/nr)	(L/S)	(L/S)	(m/s)	(mm)	(m)	(mm)	(%)		LOW MH	(m)	LOW MH (m)	Ор МН	(m)	(m)	at Upstream MH	
15				0.06	0.70	0.16	0.16	10.0	1.02	10.00	175.50	27.00	3/.21	1.37	15	10.0	300 600	0.35	64.90	64.90	0.05	0.200	67 150	1.23	2 30	65.32	Okay
17		MH3	MH4B	0.07	0.82	0.16	0.86	10.0	0.55	11.40	166.69	144.12	274.59	0.97	100	31.8	600	0.20	64.35	64.28	0.06	0.100	67.350	2.30	2.37	65.21	Okay
18		MH4B	MH4A	0.05	0.89	0.12	1.29	10.0	0.20	11.95	162.53	209.42	431.17	0.98	100	12.0	750	0.15	64.18	64.17	0.02		67.350	2.32	2.33	65.19	Okay
19		MH 4A	MH4	0.13	0.75	0.27	1.96	10.0	0.30	12.15	161.02	315.59	497.87	1.13	100	20.6	750	0.20	64.17	64.12	0.04		67.350	2.33	2.38	65.19	Okay
20		MH4	STOR 1	0.06	0.29	0.05	2.01	10.0	0.04	12.46	158.84	318.99	497.87	1.13	200	3.0	750	0.20	64.12	64.12	0.01	0.750	67.350	2.28	1.93	65.17	Okay
21	CHAMBER	STOR 1	STOR 1	0.00	0.29	0.00	2.01	10.0	0.35	12.50	158.53	318.38	3634.96	1.43	100	30.0	1800	0.10	63.37	63.34	0.03		67.000	1.73	1.86	65.17	Okay
22		MH5		0.00	0.29	0.00	2.01	10.0	0.06	12.00	155.00	313.34 411.64	253 16	0.90	100	5.6	600	0.50	63 309	63 308	0.03	0.050	67.100	2.00	2.99	63.94	Okay
20	EX STUB	EX. MH	MAIN	0.00	0.90	0.30	2.94	10.0	0.12	12.93	155.56	458.01	434.17	1.54	100	11.5	600	0.50	63.258	63.200	0.06	0.000	67.180	3.22	3.35	63.86	Okay
00		MUO	N 41 177	0.40	0.74	0.04	0.04	40.0	0.45	40.00	470 50	40.00	00 70	4.07	45	07.0	200	4.00	04.004	04.004	0.07	0.450	00 550	1.00	4.40	05.00	01
20				0.12	0.71	0.24	0.24	10.0	0.45	10.00	178.50	42.29	96.70	1.37	15	37.0	300	1.00	64.031	64.261	0.37	0.150	65 700	1.60	1.12	65.20	Okay
28		MH6	STOR 2	0.06	0.29	0.00	0.24	10.0	0.23	10.45	172.05	49.07	127.50	0.80	100	29.2	450	0.20	64.08	64.02	0.05	0.650	66.250	1.62	1.93	65.18	Okay Okay
29	CHAMBER	STOR 2	STOR 2	0.00	0.29	0.00	0.64	10.0	0.18	11.35	167.10	106.20	3634.96	1.43	200	15.0	1800	0.10	63.37	63.36	0.02		66.500	1.13	1.64	65.17	Okay
21		STOR 2	MH5	0.00	0.29	0.00	0.64	10.0	0.28	11.52	165.73	105.33	237.81	0.84	100	14.2	600	0.15	63.36	63.34	0.02		67.000	2.94	3.06	63.96	Okay
17	BLDG B	ROOF	MH 4B	0.12	0.90	0.30	0.30	10.0	0.07	10.00	178.56	53.61	46.38	1.48	15	6.0	200	2.00	66.100	65.980	0.12	1.797	67.450	1.13	1.15	66.30	Okay
18	BLDG C	ROOF	MH4A	0.16	0.90	0.40	0.40	10.0	0.06	10.00	178.56	71.48	84.10	1.71	15	6.0	250	2.00	66.028	65.908	0.12	1.743	67.450	1.16	1.18	66.28	Okay
		DOOF	OTODO			0.05	0.67	10.0	0.04	10.00	170 50			0.40	45		050	4.00	00.000	05 000	0.00	0.405	07 450		0.44	00.07	
28	BLDG A	RUOF	STOR 2	0.14	0.90	0.35	0.35	10.0	0.04	10.00	178.56	62.55	118.94	2.42	15	5.5	250	4.00	66.020	65.800	0.22	2.425	67.450	1.17	0.44	66.27	Okay

1

- FLOW RESTRICTION PIPE

Appendix C

Stormwater Management Calculations

Montgomery Sisam Architects Inc. Orleans Long Term Care Facility Functional Servicing Report February 2023 – 21-2647

and the second sec	Stormwater N	lanagement C	alculations	Project:	Perth LTCF	No.:	212317	
DILION	Rational Meth	nod Calculatio	ns	By:	SZ	Date:	2023-02-10	Page:
CONSULTING	Pre-Developn	nent		Checked:	JVM	Scenario:	Existing	1
Calculation of exis	ting runoff rate	is undertaken	using the Rat	ional Method	: Q = CiA			<u>.</u>
Where:	Q = Peak flow C = Runoff cou- I = Rainfall inter $A = Catchment$	rate (litres/sec efficient ensity (mm/hou t area (hectare	ond) ır) s)					
Project Area, A	1.25	hectares		Soil type	Agg Maps Silty Clay D]		
	Composite	Runoff Coeff	ficient					
	Land Use		Area (m²)	С*				
Existing Site			12,543	0.70				
Composite Runoff	f Coefficient		12,543	0.70	<- C Factor assumed fo	r site in Card	inal Creek MP	
* - Per the Cardina	al Creek Master	· Servicing Stud	y				_	
		Time	e of Concer	ntration				
Per Cardinal Cree	k Master Servio	cing Study			t _c (min) =	10.0		
Rainfall intensity o (if only two param Where:	alculated in active ters are provide A, B, and C = I = Rainfall inte T = Time of co	cordance with t ed, enter B as " IDF Parameter ensity (mm/hou oncentration (ho	he Governing 0" and C as p s From Local ir) purs)	Standards/F ositive numb Municipality	Reports: $I = \frac{1}{(B + C)}$ Guidelines	$\frac{A}{(t+t_c)^c}$		
Return Period (Ye	ars)	5*	100**					
A		998.071	1735.688		Notes:			
В		6.053	6.014		* - Per the Cardinal Cre	ek Master Se	rvicing Study	
C	- \ **	0.814	0.820		** - Per the City of Ottaw	va Sewer De	sign Standards	
	br)	10.0	10.0					
	s)	254 3	435 Q	<- Allowable	Release Rate for I TC Si	te Only (1 25	(Ha)	
Q (m ₃	/s)	0.254	0.436			() Only (1.20		

				By:	SZ		Date:	2023-02-10	Pa
NSULTING	Storage Calcula	ations		Checked:	JVM		Scenario:	Proposed	
Calculation of exi	sting runoff rate is	undertaken us	ing the Ratio	nal Method:		Q = CiA			
Where	· Q = Peak flow ra	ate (litres/secor	nd)						
Whore.	C = Runoff coeff	ficient							
	I = Rainfall inten	sity (mm/hour)							
	A = Catchment a	area (hectares)							
Site Area	1 25	hectares							
Drainage Area	2.17	hectares	[Includes 1.2	25 Ha onsite a	and 0.92 Ha fro	om offisitel			
						,			
	Composito	Dunoff Cooffi	alant		•				
		Kunon Coem	$\Delta rea (m^2)$	C.	4				
Buildina (Includin	a Courtvard)		4.209	0.82					
Asphalt/Concrete	e Pavement		4,630	0.90	1				
Rocks, Misc Land	scape		1,211	0.80	1				
Grass	•		2,494	0.25	1				
Composite Runo	ff Coefficient		12,543	0.73					
								_	
Offiste (South and	d Southeast of Site	e)	9,200	0.30	Not controlled	d or Stored	Onsite		
				1					
Runoff C	oefficient Adjus	stment:	25%						
Desigr	n Runoff Coeffic	ient:	0.92						
Design	Runoff Coeffic	ient:	0.92	- 1:5 Yoor I		e Storm Out	Hot Doto For (Subject Derect (
Design Allowable	n Runoff Coeffic e Discharge, Qa	ient:	0.92	<- 1:5 Year I	Existing Desigr	n Storm Out	tlet Rate For \$	Subject Parcel C	Dnl
Desigr Allowabl Orifice	n Runoff Coeffic e Discharge, Qa Discharge, Qo (sient: (m ³ /s): m ³ /s):	0.92 0.254 0.253	<- 1:5 Year I	Existing Desigr	n Storm Out	tlet Rate For S	Subject Parcel C	Dnl
Desigr Allowable Orifice	n Runoff Coeffic e Discharge, Qa Discharge, Qo (ient: (m ³ /s): m ³ /s): Desig	0.92 0.254 0.253	<- 1:5 Year I	Existing Desigr	n Storm Out	tlet Rate For S	Subject Parcel C	Dnl
Desigr Allowable Orifice	n Runoff Coeffic e Discharge, Qa Discharge, Qo (ient: (m ³ /s): m ³ /s): Desig	0.92 0.254 0.253 n Event	<- 1:5 Year I	Existing Design	n Storm Out	tlet Rate For \$	Subject Parcel C	Dnl
Desigr Allowable Orifice 100-Year Storm	n Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV	ient: (m ³ /s): m ³ /s): Desig WM Guidelines	0.92 0.254 0.253 n Event s 2012 /Cardi	<- 1:5 Year F	Existing Desigr	n Storm Out	tlet Rate For S	Subject Parcel C	Dnl
Desigr Allowable Orifice 100-Year Storm	h Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A =	ient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7	0.92 0.254 0.253 n Event s 2012 /Cardi	<- 1:5 Year I	Existing Desigr	n Storm Out	tlet Rate For S	Subject Parcel C	Dnl
Desigr Allowable Orifice 100-Year Storm	A Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B =	ient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014	0.92 0.254 0.253 n Event s 2012 /Cardi	<- 1:5 Year I	Existing Desigr	n Storm Out	tlet Rate For S	Subject Parcel C	Dnl
Desigr Allowable Orifice 100-Year Storm	A Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step -	ient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10	0.92 0.254 0.253 n Event s 2012 /Cardi	<- 1:5 Year I	Existing Desigr	n Storm Out	tlet Rate For S	Subject Parcel C	Dnl
Desigr Allowable Orifice	A Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step =	ient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10	0.92 0.254 0.253 n Event s 2012 /Cardi	<- 1:5 Year f	Existing Design	n Storm Out	tlet Rate For S	Subject Parcel C	Dnl
Desigr Allowable Orifice 100-Year Storm (if only two paran	A Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step =	ient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10 , enter B as "0"	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as pos	<- 1:5 Year I	Existing Desigr	n Storm Out	tlet Rate For S	Subject Parcel C	Dnl
Desigr Allowable Orifice 100-Year Storm (if only two paran Where:	A Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step = nters are provided, : A, B, and C = ID	ient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10 ; enter B as "0"	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City	<- 1:5 Year I	Existing Design aster Servicin	in Storm Out ing Study $I = \frac{A}{(B + t)}$	tlet Rate For $\left(\frac{1}{c}\right)^{c}$	Subject Parcel C	Dnl
Desigr Allowable Orifice 100-Year Storm (if only two paran Where:	A Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step = nters are provided, : A, B, and C = ID I = Rainfall inten	ient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (m://ou)	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City	<- 1:5 Year I	Existing Design	in Storm Out ing Study $I = \frac{A}{(B + t)}$	tlet Rate For S	Subject Parcel C	Dnl
Desigr Allowable Orifice 100-Year Storm (if only two paran Where:	• Runoff Coeffic • Discharge, Qa Discharge, Qo (• From Ottawa SV A = B = C = Time Step = • A, B, and C = ID I = Rainfall inten t_c = Time of cond	ient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City rs)	<- 1:5 Year I	Existing Design	in Storm Out ing Study $I = \frac{A}{(B + t)}$	tlet Rate For S	Subject Parcel C	Dnl
Desigr Allowable Orifice 100-Year Storm (if only two paran Where:	Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step = nters are provided, : A, B, and C = ID I = Rainfall inten t_c = Time of conce	ient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou Peak Purooff	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City rs) Release	<- 1:5 Year I	Existing Design	in Storm Out	tlet Rate For $\frac{1}{c}$	Subject Parcel C	Dnl
Desigr Allowable Orifice 100-Year Storm (if only two paran Where: Event Duration	A Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step = nters are provided, A, B, and C = ID I = Rainfall inten t_c = Time of cond Rainfall Intensity	ient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou Peak Runoff Rate	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City rs) Release Rate (O_)	<- 1:5 Year F inal Creek M sitive number Storage Rate	Existing Design aster Servicin	in Storm Out	tlet Rate For S	Subject Parcel C	Dnl
Design Allowable Orifice 100-Year Storm (if only two paran Where: Event Duration (mins)	A Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step = nters are provided, : A, B, and C = ID I = Rainfall inten t_c = Time of cond Rainfall Intensity (mm/hr)	ient: (m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou Peak Runoff Rate (L/s)	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City rs) Release Rate (Q ₀) (L/s)	<- 1:5 Year F inal Creek M sitive number Storage Rate (L/s)	Existing Design aster Servicin	in Storm Out	tlet Rate For S	Subject Parcel C	Dnl
Design Allowable Orifice 100-Year Storm (if only two paran Where: Event Duration (mins)	• Runoff Coeffic • Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step = • A, B, and C = ID I = Rainfall inten t_c = Time of cond Rainfall Intensity (mm/hr)	ient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou Peak Runoff Rate (L/s) 574.10	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as pos From City rs) Release Rate (Q ₀) (L/s)	<- 1:5 Year F inal Creek M sitive number Storage Rate (L/s)	Existing Design aster Servicin) Required Storage Volume (m3)	in Storm Out	tlet Rate For S	Subject Parcel C	Dnl
Design Allowable Orifice 100-Year Storm (if only two paran Where: Event Duration (mins)	A Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step = hters are provided, : A, B, and C = ID I = Rainfall inten t_c = Time of cond Rainfall Intensity (mm/hr) 178.56 142.99	ient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou Peak Runoff Rate (L/s) 571.48 457.24	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City rs) Release Rate (Q ₀) (L/s) 253.2 253.2	<- 1:5 Year F inal Creek M sitive number Storage Rate (L/s) 318.3	Required Storage Volume (m3) 191.0	in Storm Out	tlet Rate For S	Subject Parcel C	Dnl
Design Allowable Orifice 100-Year Storm (if only two paran Where: Event Duration (mins) 10 15 20	Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV $A =$ $B =$ $C =$ Time Step = nters are provided, $A, B, and C = ID$ $I =$ Rainfall inten $t_c =$ Time of cond Rainfall Intensity (mm/hr) 178.56 142.89 119.95	ient: (m ³ /s): m ³ /s): Desig MM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou Peak Runoff Rate (L/s) 571.48 457.34 383.90	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City rs) Release Rate (Q _o) (L/s) 253.2 253.2 253.2	<- 1:5 Year I inal Creek M sitive number Storage Rate (L/s) 318.3 204.1 130.7	Required Storage Volume (m3) 191.0 183.7 156.8	in Storm Out	tlet Rate For S $\overline{r_c}$ Maximum Required Storage (m ³) 191.0	Subject Parcel C Peak Duration	Dnl
Allowable Orifice 100-Year Storm (if only two paran Where: Event Duration (mins) 10 15 20 25	Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step = nters are provided, A, B, and C = ID I = Rainfall inten tc = Time of cond Rainfall Intensity (mm/hr) 178.56 142.89 119.95 103.85	Lient: (m ³ /s): m ³ /s): Desig MM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou Peak Runoff Rate (L/s) 571.48 457.34 383.90 332.36	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City rs) Release Rate (Q ₀) (L/s) 253.2 253.2 253.2 253.2 253.2	<- 1:5 Year I inal Creek M sitive number Storage Rate (L/s) 318.3 204.1 130.7 79.2	Required Storage Volume (m3) 191.0 183.7 156.8 118.7	in Storm Out	tlet Rate For S $\frac{1}{c}c^{c}$ Maximum Required Storage (m ³) 191.0	Subject Parcel C) I
Design Allowable Orifice 100-Year Storm (if only two paran Where: Event Duration (mins) 10 15 20 25 30	A Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step = nters are provided, A, B, and C = ID I = Rainfall inten t_c = Time of cond Rainfall Intensity (mm/hr) 178.56 142.89 119.95 103.85 91.87	Event: (m ³ /s): m ³ /s): Desig MM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou Peak Runoff Rate (L/s) 571.48 457.34 383.90 332.36 294.03	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City rs) Release Rate (Q ₀) (L/s) 253.2 253.2 253.2 253.2 253.2 253.2	<- 1:5 Year B inal Creek M sitive number Storage Rate (L/s) 318.3 204.1 130.7 79.2 40.8	Required Storage Volume (m3) 191.0 183.7 156.8 118.7 73.5	in Storm Out	tlet Rate For S $\overline{r_c}^c$ Maximum Required Storage (m ³) 191.0	Subject Parcel C))
Allowable Orifice 100-Year Storm (if only two paran Where: Event Duration (mins) 10 15 20 25 30 35	A Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step = hters are provided, : A, B, and C = ID I = Rainfall inten t_c = Time of cond Rainfall Intensity (mm/hr) 178.56 142.89 119.95 103.85 91.87 82.58	Lient: (m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou Peak Runoff Rate (L/s) 571.48 457.34 383.90 332.36 294.03 264.29 264.29 264.29	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as pos From City rs) Release Rate (O _o) (L/s) 253.2 255.2	<- 1:5 Year B inal Creek M sitive number Storage Rate (L/s) 318.3 204.1 130.7 79.2 40.8 11.1	Required Storage Volume (m3) 191.0 183.7 156.8 118.7 73.5 23.3 23.3	in Storm Out	tlet Rate For S \overline{c} , \overline{c} Maximum Required Storage (m ³) 191.0	Subject Parcel C	
Allowable Orifice 100-Year Storm (if only two paran Where: Event Duration (mins) 10 15 20 25 30 35 40	A Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV A = B = C = Time Step = nters are provided, A, B, and C = ID I = Rainfall inten t_c = Time of cond Rainfall Intensity (mm/hr) 178.56 142.89 119.95 103.85 91.87 82.58 75.15 epope	Lient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou Peak Runoff Rate (L/s) 571.48 457.34 383.90 332.36 294.03 264.29 240.50	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City rs) Release Rate (Q ₀) (L/s) 253.2 255.2	<- 1:5 Year I inal Creek M sitive number Storage Rate (L/s) 318.3 204.1 130.7 79.2 40.8 11.1 -12.7 22.2	Required Storage Volume (m3) 191.0 183.7 156.8 118.7 73.5 23.3 -30.5	in Storm Out	tlet Rate For $\frac{1}{c}$	Subject Parcel C Peak Duration	Dnl
Allowable Orifice 100-Year Storm (if only two paran Where: Event Duration (mins) 10 15 20 25 30 35 40 45 50	Runoff Coeffic e Discharge, Qa Discharge, Qo (- From Ottawa SV $A =$ $B =$ $C =$ Time Step = hters are provided, $A, B, and C = ID$ $I = Rainfall inten$ $t_c = Time of cond Rainfall Intensity (mm/hr) 178.56 142.89 119.95 103.85 91.87 82.58 75.15 69.05 63.95 $	Lient: (m ³ /s): m ³ /s): Desig WM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou Peak Runoff Rate (L/s) 571.48 457.34 383.90 332.36 294.03 264.29 240.50 221.00 2004 69	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City rs) Release Rate (Q ₀) (L/s) 253.2	<- 1:5 Year B inal Creek M sitive number Storage Rate (L/s) 318.3 204.1 130.7 79.2 40.8 11.1 -12.7 -32.2 -48.5	Required Storage Volume (m3) 191.0 183.7 156.8 118.7 73.5 23.3 -30.5 -86.9 -145.5	in Storm Out	tlet Rate For S Maximum Required Storage (m ³) 191.0	Subject Parcel C Peak Duration) I
Allowable Orifice 100-Year Storm (if only two paran Where: Event Duration (mins) 10 15 20 25 30 35 40 45 50 55	A Runoff Coeffice Discharge, QaDischarge, Qo (- From Ottawa SV $A =$ $B =$ $C =$ Time Step =nters are provided, $A, B, and C = ID$ $I = Rainfall$ inten $I_c =$ Time of condRainfallIntensity(mm/hr)178.56142.89119.95103.8591.8782.5875.1569.0563.9559.62	Eient: (m ³ /s): m ³ /s): Desig MM Guidelines 1735.7 6.014 0.820 10 F Parameters sity (mm/hour) centration (hou Peak Runoff Rate (L/s) 571.48 457.34 383.90 332.36 294.03 264.29 240.50 221.00 204.69 190.83	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City rs) Release Rate (Q _o) (L/s) 253.2	<- 1:5 Year I inal Creek M sitive number Storage Rate (L/s) 318.3 204.1 130.7 79.2 40.8 11.1 -12.7 -32.2 -48.5 -62.4	Required Storage Volume (m3) 191.0 183.7 156.8 118.7 73.5 23.3 -30.5 -86.9 -145.5 -205.8	in Storm Out	tlet Rate For S $\overline{r_c}$ Maximum Required Storage (m ³) 191.0	Subject Parcel C Peak Duration))
Allowable Orifice 100-Year Storm (if only two paran Where: Event Duration (mins) 10 15 20 25 30 35 40 45 50 55 60	A Runoff Coeffice Discharge, QaDischarge, Qo (- From Ottawa SV $A =$ $B =$ $C =$ Time Step =nters are provided,: A, B, and C = IDI = Rainfall inten $t_c =$ Time of condRainfallIntensity(mm/hr)178.56142.89119.95103.8591.8782.5875.1569.0563.9559.6255.89	Lient: (m ³ /s): Desig M Guidelines 1735.7 6.014 0.820 10 F Parameters Sity (mm/hour) centration (hou Peak Runoff Rate (L/s) 571.48 457.34 383.90 332.36 294.03 264.29 240.50 221.00 204.69 190.83 178.89	0.92 0.254 0.253 n Event s 2012 /Cardi min and C as por From City rs) Release Rate (O _o) (L/s) 253.2	<- 1:5 Year I inal Creek M sitive number Storage Rate (L/s) 318.3 204.1 130.7 79.2 40.8 11.1 -12.7 -32.2 -48.5 -62.4 -74.3	Required ster Servicir (m3) 191.0 183.7 156.8 118.7 73.5 23.3 -30.5 -86.9 -145.5 -205.8 -267.5	in Storm Out	tlet Rate For $\frac{1}{c}$	Subject Parcel C Peak Duration) h

* Per City of Ottawa Design Standards

	Stormwater Management Calculations	Project:	Orleans LTCF	No.:	21-2647	
DILION	Orifice Calculations &	By:	CDP	Date:	2023-02-10	Page
CONSULTING	Storage Calculations	Checked:	JVM	Scenario:	Proposed	3

Calculation of Required Orifice (Inlet Control Device) Diamater

Q (cms) = 0.61 x A x sqrt(2 x g x H)

Where: Q = Peak flow rate (cubic metres/second)

- 0.61 = Orifice Coefficient
- A = Area of Orifice (m2)
- g = Gravitational Constant (9.81 m/s2)
- H = Maximum Head above the centerline of the orifice (m)

0.254

m3 / s

Maximum Allowable Outlet Rate (Qt) =

<- Total Site Release Rate including rooftop area

Unit
m
m
m
m

Orifice Equation (Peak Outflow)	0.254	m3/s

Peak Site Outflow is less than Maximum Allowable Site Outlet Rate Utilize an orifice of 300mm in diameter.

Outlet Pipe has a capacity of 253 m3/s. Reduced orifice will restrict flows including allowance for head. Larger diameter Outlet Pipe will provide same flow rate under free flow conditions.

Provided Storage

All site detention will be provided by the underground Concrete Culvert Chambers. Proposed Culvert are to be 2.4m Wide x 1.8m High Box Culverts. Per the Manufactuer information, the cross-section area of the chambers are 4.38 m² / m

	Availabl	e Site Storage	e	
Chamber	Size	Area	Length	Volume
Chamber 1	2.4m x 1.8m	4.38	30.000	131.40
Chamber 2	2.4m x 1.8m	4.38	15.000	65.70
	Total Available	Storage		197.10
100 Ye	ar High Water	Line	65.14	m

Appendix D

Water Service and Boundary Condition

Montgomery Sisam Architects Inc. Orleans Long Term Care Facility Functional Servicing Report February 2023 – 21-2647

Water Demand Calculations

Project:Long Term Care Home, Famile-Laporte Avenue, Orleans ONProject #:21-2647Location:Orleans, Ontario

Watermains shall be sized to accommodate the greater of:

1. Maximum day demand plus fire flow or;

2. Peak Hour Demand

Water Demand Design Criteria (Ottawa Water Distribution Design Guidelines, July 2010):

Maximum Hour Factor	2.2
Maximum Day Factor	2.5
Average Daily Demand per Capita	
(per OBC 8.2.1.3.B - Long Term Care)	
(L/Bed/d)	450
Persons Per Bed (1 + employees)	1

Water Demand Calculations:

				Avg. Daily		Peak Hourly			Max Day +
	Gross Floor Area	Number of		Demand	Max Daily	Demand	Fire Flow	Fire Flow	Fire Flow
Building	(m ²)	Beds	Population	(L/s)	Demand (L/s)	(L/s)	(L/s)	Duration (hr.)	(L/s)
Long Term Care Facility	11,789	224	224	1.17	2.92	2.57	209.2	3	212
Total				70	175	154	12,552		12,727
				L/m	L/m	L/m	L/m		L/m

FUS Calculations

Project: Project #: Location:	Long Term Care Home, Famile-Laporte Avenue, Orleans C 21-2647 Orleans, Ontario					
Buildling Footprint Number of Floors	3,031 m ² 4	(Main Floor)				
Gross Floor Area	11789 m ²	(Excluding Basement)				

Building Information					System Type							Occupancy/ Contents Charges	
							Standard						
	NBC	Gross Floor	# of	Construction	NFPA 13		Water		Fully		Total	Contents	Contents
Building	Occupancy	Area (m²)	Storeys	Class	Sprinkler	Credit	Supply	Credit	Supervised	Credit	Credits	Factor	Charge
Long Term Care Facility	B3	11,789	4	NC	Yes	30%	Yes	10%	No	0%	40%	Care Occ	-15%

Exposure Charge						Unadjusted Fire Flow Correction Factors									
East		We	st	North	1	Sou	uth			F=220C√A			concettor	IT detors	
		Distance				Distance		Total					FF Adjusted	Sprinkler	Exposure
Distance (m)	Charge	(m)	Charge	Distance (m)	Charge	(m)	Charge	Charges	С	A (m²)	F (L/min)	Occupancy	Occupancy	Decrease	Charge
>30m	0%	>30m	0%	20.1-30m	15%	>30m	0%	15%	0.8	12,516	19,690	- 2,954	16,737	- 6,695	2,510

Required Flow						
L/min	L/s					
12,552	209.21					

Boundary Conditions 1161 Old Montreal Road

Provided Information

Secondria	Demand				
Scenario	L/min	L/s			
Average Daily Demand	70	1.17			
Maximum Daily Demand	175	2.92			
Peak Hour	154	2.57			
Fire Flow Demand #1	12,727	212.0			

Location

Results

Connection 1 – Famille-Laporte Ave.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	114.0	68.8
Peak Hour	108.9	61.6
Max Day plus Fire 1	99.1	45.9

Ground Elevation = 65.6 m

Connection 2 – Famille-Laporte Ave.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	114.0	68.8
Peak Hour	108.9	61.6
Max Day plus Fire 1	99.1	45.9

Ground Elevation = 64.1 m

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Appendix E

RVCA Comments

Montgomery Sisam Architects Inc. Orleans Long Term Care Facility Functional Servicing Report February 2023 – 21-2647

Conservation Partners Partenaires en conservation

File: 22-OTT-SPC-0018 22-OTT-ZBA-0017

May 4th, 2022

City of Ottawa Planning, Infrastructure and Economic Development Department 110 Laurier Avenue West, 4th Floor Ottawa, ON K1P 1J1

Attention: Kelly Livingstone

Subject: DTOC II Facility Inc. Site Plan Control Application D07-12-22-0006 Zoning By-law Amendment Application D02-02-22-0004 1161 Old Montreal Road, formerly Cumberland, now City of Ottawa

Dear Ms. Livingstone:

The Conservation Partners Planning and Development Review Team has completed a review of the above noted applications to permit residential care facility and retirement home uses and to construct on the southerly part of the site, a 4-storey long-term care facility of 12,500 sq. metres in gross floor area, consisting of 224 residential units/beds.

We have undertaken our review within the context of Sections 1.6.6 Sewage, Water and Stormwater, 2.1 Natural Heritage, 2.2 Water and 3.1 Natural Hazards of the Provincial Policy Statement, 2020 issued under Section 3 of the *Planning Act*, and from the perspective of the Conservation Authority regulations. The following comments are offered for your consideration.

Natural Heritage

There have been no natural heritage features identified on this property which would preclude this application.

Natural Hazards

Conservation Authorities were delegated natural hazard responsibilities by the Minister of Natural Resources (now known as Ministry of Natural Resources and Forestry). This includes flood plain management, hazardous slopes, Great Lakes shorelines, unstable soils and erosion which are now encompassed by Section 3.1 "Natural Hazards" of the Provincial Policy Statement.

Landslide Risk

In 2017, there were several slope failures within the Bilberry Creek valley lands which resulted in significant remedial measures required to render portions of the valley lands stable. In response, since 2018, the Conservation Authority has been investigating landslide risk within the Ottawa area and has sought the expertise from a third party consultant with extensive expertise in landslide hazard and risk assessments. As a result, the Conservation Authority has a much greater understanding of sensitive marine clay and landslide risk in the Ottawa area.

The proposed development is approximatley 200 metres of Cardinal Creek. The site has also been identified as being within less than 1 km of two documented landslides and one potential landslide based on information documented by the Geological Survey of Canada. The closest landslide being less than 500 metres away.

Based on the information available, the documented landslides extended between 150 to 230 metres beyond the original slope face. Given the history of landslides in the area, the RVCA would like to engage a third party consultant with expertise in landslide hazards to determine what/if additional information will be required from the applicant to support this application.

Stormwater Management

The stormwater management report "*Functional Servicing Report – Orleans Long Term Care Facility, Montgomery Sisam Architects Inc, City of Ottawa*" dated November 2021, prepared by Dillon Consulting indicates stormwater from this site will be directed to the existing storm sewer along Famille-Laporte Avenue. However, the report indicates that the stormwater ultimately outlets to Cardinal Creek and then the Ottawa River. It is our understanding that the stormwater from this area is to be directed to a stormwater management facility. Therefore, confirmation on the above statements is required. The report also does not make reference to the Master Servicing Study for this area. The report should confirm that it is in conformity with the assumptions of the Master Servicing Study.

Conclusion

In conclusion, the RVCA recommends that the application be place ON HOLD until the above noted matters are addressed. The Conservation Authority kindly requests to be kept informed on the status of this file. For any questions regarding the information contained in this letter, please feel free to contact me.

Respectfully,

b

Jamie Batchelor, MCIP, RPP Planner, Planning and Watershed Science Rideau Valley Conservation Authority 613-692-3571 ext. 1191 Jamie.batchelor@rvca.ca

Cc: David McKay: MHBC Planning