

## Final Geotechnical Reference Document

Proposed Industrial Development -Intersection of Rideau Street and Somme Street Ottawa, Ontario

Consolidated FastFrate (Ottawa) Holdings Inc.

October 20, 2022

→ The Power of Commitment



#### GHD

347 Pido Road, Unit 29 Peterborough, Ontario K9J 6X7, Canada T +1 705 749 3317 | F +1 705 749 9248 | ghd.com

Reviewers :

Ounis Ron

Denis Roy, Eng. (Qc), M.B.A.



Alex Fiorilli, P. Eng.

Approved :

David Rizk, Eng. (Qc)

#### **Document status**

| Status | Revision | Author     | Reviewer  |           | Approved for issue |            |           |
|--------|----------|------------|-----------|-----------|--------------------|------------|-----------|
| code   |          |            | Name      | Signature | Name               | Signature  | Date      |
| S4     | 00       | David Rizk | Denis Roy | Ounis Roy | Alex Fiorilli      | Alex Kiall | 2022Oct20 |
|        |          |            |           |           |                    |            |           |

#### © GHD 2022

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorized use of this document in any form whatsoever is prohibited.



## Contents

| 1. | Introdu     | ction                                                     | 1  |
|----|-------------|-----------------------------------------------------------|----|
| 2. | Previou     | us investigations                                         | 2  |
| 3. | Site an     | d project description                                     | 2  |
| 4. | Method      | lology                                                    | 2  |
|    | 4.1         | Field investigation                                       | 2  |
|    | 4.2         | Surveying                                                 | 3  |
|    | 4.3         | Laboratory testing                                        | 4  |
|    | 4.4         | Subsurface conditions                                     | 4  |
|    |             | 4.4.1 Topsoil layer                                       | 6  |
|    |             | 4.4.2 Fill layer                                          | 6  |
|    |             | 4.4.3 Silty sand to sandy silt deposit                    | 7  |
|    |             | 4.4.4 Sandy clay layer                                    | 7  |
|    |             | 4.4.5 Silty clay till                                     | /  |
|    | 4 5         | 4.4.0 Bedlock                                             | 0  |
|    | 4.5         | Correctivity testing regults                              | 0  |
| -  | 4.0<br>D'   |                                                           | 9  |
| 5. | Discus      | 9                                                         |    |
|    | 5.1         | Site preparation and grading                              | 11 |
|    |             | 5.1.1 Building rootprints (roundations and stabs)         | 11 |
|    | 52          | Excavation and dewatering                                 | 12 |
|    | 53          | Shallow foundation                                        | 12 |
|    | 5.5<br>5.4  |                                                           | 12 |
|    | 5.4<br>5.5  | Frost protection                                          | 13 |
|    | 5.6         | Interior floor slabs                                      | 13 |
|    | 5.7         | Exterior slabs                                            | 18 |
|    | 5.0<br>5.0  | Payament recommendations                                  | 14 |
|    | 5.0         | Linderground service transpos                             | 14 |
|    | 5.9<br>5.10 | Pormanant drainage                                        | 15 |
|    | 5.10        | 5 10 1 Underfloor drainage slab-on-grade – No basement    | 10 |
|    |             | 5.10.2 Perimeter drainage                                 | 16 |
|    | 5.11        | Corrosion potential of soils                              | 16 |
|    | 5.12        | Backfill                                                  | 17 |
|    | 5.13        | Slope stability                                           | 17 |
|    | 0.10        | 5.13.1 Slope stability under dynamic compaction loads     | 17 |
|    |             | 5.13.2 Slope stability for the final slope configurations | 21 |
|    | 5.14        | Vibration monitoring and contingency plans                | 23 |
| 6. | Limitat     | ions of the investigation                                 | 24 |

#### **Table index**

| Table 1  | Soundings of Previously Completed Geotechnical Investigation                    | 3  |
|----------|---------------------------------------------------------------------------------|----|
| Table 2  | Geotechnical Laboratory Testing Completed                                       | 4  |
| Table 3  | Subsoil Stratigraphy Depth and Elevation (m)                                    | 5  |
| Table 4  | Summary of the Particle Size Distribution Tests Results on Fill Layer Samples   | 6  |
| Table 5  | Summary of Atterberg Limit Tests Results on Fill Layer Samples                  | 6  |
| Table 6  | Summary of the Particle Size Distribution Tests Results on Silty Sand to Sandy  |    |
|          | Silt Deposit Samples                                                            | 7  |
| Table 7  | Summary of Atterberg Limit Tests Results on Silty Sand to Sandy Silt Deposit    | _  |
|          | Samples                                                                         | 7  |
| Table 8  | Summary of the Particle Size Distribution Test Results on Silty Clay Till Layer |    |
|          | Sample                                                                          | 8  |
| Table 9  | Summary of Atterberg Limit Test Results on Silty Clay Till Layer Sample         | 8  |
| Table 10 | Summary of Uniaxial Compressive Strength of Intact Rock Core Specimens          | 8  |
| Table 11 | Groundwater Readings                                                            | 9  |
| Table 12 | Corrosion Parameter Results                                                     | 9  |
| Table 13 | Pavement Design (Flexible Pavement Structure) for a Design Life of 20 years     | 15 |
| Table 14 | Pavement Design (Rigid Pavement Structure)                                      | 15 |
| Table 15 | Classes of Exposure                                                             | 17 |
| Table 16 | Geotechnical Parameters for the Slope Stability Analysis                        | 18 |
| Table 17 | Results of the Slope Stability Analyses During Dynamic Compaction Works         | 20 |
| Table 18 | Additional Geotechnical Parameters for the Soil Stability Analysis              | 21 |
| Table 19 | Results of the Slope Stability analyses for the Final Slope Configuration       | 23 |
| Table 20 | Prohibited construction vibrations                                              | 23 |

#### **Figure index**

| Figure 1 | Site Layout showing the location of the analyzed cross sections and the          | 40 |
|----------|----------------------------------------------------------------------------------|----|
|          | proposed building tootprint                                                      | 19 |
| Figure 2 | Site layout showing the location of the analyzed cross-sections and the proposed |    |
|          | building footprint                                                               | 22 |
| Figure 3 | Site Location Plan                                                               | 25 |
| Figure 4 | Borehole Location Plan                                                           | 26 |

#### Appendices

Appendix A Soundings Reports

Appendix B Geotechnical Lab Results

Appendix C Analytical Lab Results

- Appendix D Water Well Record from the Ministry of the Environment, Conservation and Parks
- Appendix E Slope Stability Analysis Results under Dynamic Compaction Conditions
- Appendix F Slope Stability Analysis Results following the Final Slop Projected Geometry
- Appendix G Maccaferri Retaining Structure Drawings

## 1. Introduction

GHD Limited (GHD) has been retained by Consolidated FastFrate (Ottawa) Holdings Inc. (FastFrate), represented by Mr. Keefe Primett of CBRE Limited, to complete a number of geotechnical investigations and analyses for the construction of a new warehouse and office building located southeast of the intersection of Rideau Street and Somme Street in Ottawa, Ontario, hereafter referred to as the 'Site'.

This Final Geotechnical Reference Document, hereby referred to as Final Geotechnical Report, is prepared in accordance with the CBRE Change of Order sent by email to GHD by Mr. Keefe Primett on October 11, 2022.

The purpose of this Final Geotechnical Report is to present the subsurface soil and groundwater conditions within the site development footprint as interpreted from the previous geotechnical investigations as well as taking into considerations questions and comments presented by the City of Ottawa during the Site Plan Control approval process. This Final Geotechnical Report supersedes any previously emitted geotechnical document.

This report provides recommendations with respect to the proposed development, including but not limited to:

- Foundation design and general recommendations with respect to deep dynamic compaction ground improvement technique.
- Subgrade preparation for the proposed building slabs and exterior pavement areas, including exterior pavement design.
- General excavation recommendations.
- Site seismic classification in accordance with the National Building Code of Canada (NBCC).
- Control of groundwater.
- General Construction recommendations.
- Slope Stability Analyses

In addition, this report is accompanied by a series of three appendices:

- Appendix A Soundings Reports
- Appendix B Geotechnical Lab Results
- Appendix C Analytical Lab Results
- Appendix D Water Well Record from the Ministry of the Environment and Parks
- Appendix E Slope Stability Analysis Results Under Dynamic Compaction Conditions
- Appendix F
   Slope Stability Analysis Results Following the Final Slope Projected Geometry
- Appendix G Maccaferri Retaining Structure Drawings

It should be noted that no field investigations were completed in order to prepare this Final Geotechnical Report. This report aims to summarize different geotechnical investigation reports and recommendations given by GHD for this development into one final document. However, all previous field investigations and geotechnical laboratory analysis methods and results are described.

Although GHD recognizes that some works have been recently completed on the site, namely grading and Dynamic Compaction, this Final Geotechnical Report only includes information and recommendations based on previously completed site investigations and comments from the City of Ottawa presented as part of the Site Plan Control approval process.

The Site location map is provided in Figure 3 at the end of this report.

The factual data, interpretations, and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. This report should be read in

conjunction with the Statement of Limitations appended to this report. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report.

## 2. Previous investigations

GHD previously completed the following geotechnical investigations on this site:

- "Geotechnical Study Subdivision Plan Hawthorne Industrial Park Lots 26 and 27, Concession 6 Southeast of Hawthorne and Rideau Roads", dated May 4<sup>th</sup>, 2009, ref no.: T020556-A1.
- "Geotechnical Investigation Warehouse and Offices, Intersection of Rideau Street and Somme Street", dated October 27<sup>th</sup>, 2021, ref no.: 11215612.
- "Supplementary Geotechnical Investigation, Proposed Industrial Development Intersection of Rideau Street and Somme Street, Ottawa, Ontario", dated January 24<sup>th</sup>, 2022, ref no.: 11231101.

In addition to these geotechnical investigations, GHD also submitted an Addendum letter in response to the City of Ottawa comments, which is dated June 7<sup>th</sup>, 2022, ref no. 12576381.

As previously stated, this Final Geotechnical Report supersedes all other geotechnical documents submitted by GHD for this project.

## 3. Site and project description

The proposed new building will consist of an approximately 50,000 square feet (sf) warehouse on the eastern portion of the Site, connected to an approximately 20,000 sf cross dock on the western portion, with approximately 1,500 sf of associated office space.

The Site topography is relatively flat with various small mounds of fill material sloping down to the surrounding streets. The surrounding topography slopes up from south to north by approximately 3.5 meters (m) from Rideau Street to the section of Somme Street south of the Site. The Site elevation is higher compared to the surrounding streets varying from approximately 0.2 m higher on the south side (Somme Street) to 4.0 m higher on the north side (Rideau Street). There is also a ditch along the south, west, and north perimeters of the Site.

The historic fill placement at the Site has created sloping of approximately 2H:1V around the south, west, and north perimeters of the Site.

GHD's understanding of the proposed building, is based on a sketch provided by the client, which is illustrated in the Borehole Location Plan provided in Figure 4.

The location of the Site is shown on the Site Location Plan attached as Figure 3.

## 4. Methodology

The field investigation and geotechnical laboratory testing protocols and methodologies for the previous investigations are presented in the following sections.

#### 4.1 Field investigation

The drilling program for each investigation is summarized in Table 1.

#### Table 1 Soundings of Previously Completed Geotechnical Investigation

| Investigation                       | Soundings                                   | Approx. depth (m) |
|-------------------------------------|---------------------------------------------|-------------------|
| 1. 2009 - T020556-A1 <sup>(1)</sup> | B5-1, B5-2, B5-3, MW7-08, TP5-01            | 3.9 to 10.0       |
| 2. 2021 - 11215612                  | BH1, BH2, BH3, BH4, DCPT5                   | 11.3 to 14.9      |
| 3. 2022 - 11231101                  | BH-1-21, BH-2-21, BH-3-21, BH-4-21, BH-5-21 | 8.0 to 18.9       |
| Notes:                              |                                             |                   |

(1) Only the soundings completed in the proposed development footprint are presented.

The drilling program associated with the 2022 geotechnical investigation was conducted between July 26 and July 28, 2021, and consisted of advancing a total of five boreholes identified as BH1-21 to BH5-21. Three of the boreholes were located within the proposed building footprints and extended to 9.1 to 18.9 metres below ground surface (mbgs), and two of the boreholes were located in the proposed retaining structure footprint located on the northern extremity of the site extended from 8.0 to 12.0 mbgs.

Drilling for the 2021 geotechnical investigation was conducted between August 6 and August 7, 2020, and consisted of advancing a total of four boreholes and one dynamic cone penetration test identified as BH1 to BH4 and DCPT5. The boreholes were advanced to depths ranging between 11.1 and 14.9 mbgs, and the dynamic cone penetration test was terminated at 5.9 mbgs.

For the 2009 investigation, four boreholes and one test pit identified as B5-1 to B5-3, MW7-08, and TP5-01 were advanced in the proposed development footprint. The boreholes were advanced between 3.9 and 10.0 mbgs. The test pit was terminated at 3 mbgs.

The drilling work was carried out by a track-mounted power auger drilling rig, under the full-time supervision of a GHD's experienced technical representative.

The boreholes were advanced using hollow stem augers, and soil samples were collected every 0.75 m intervals to the termination depth of the boreholes. All samplings were conducted using a 50-millimetre (mm) outside diameter split spoon sampler in general accordance with the specifications of the Standard Penetration Test Method (ASTM D1587-8). In addition, at each borehole location, the relative density or consistency of the subsurface soil layers was measured using the Standard Penetration Test (SPT) method, by counting the number of blows ('N') required to drive a conventional split-barrel soil sampler 0.30 m depth. Soil samples were retrieved from each borehole location to verify strata boundaries and soil properties.

In each investigation phase, GHD's technical representatives logged the overburdened material encountered in the boreholes and examined the samples as they were obtained. The recovered samples were sealed in clean and transferred to the GHD laboratory, where they were reviewed by a senior geotechnical engineer. The detailed results of the individual boreholes are recorded on the accompanying borehole logs presented in Appendix A.

Monitoring wells were installed in boreholes nos BH1 and MW7-08 in order to measure groundwater levels. Details of the monitoring well construction are presented on the attached borehole logs.

The boreholes in which monitoring wells were not installed were backfilled upon completion and sealed in accordance with Ontario Regulation 903 (O. Reg. 903). Excess soil cuttings were distributed evenly on the ground surface in the area of the location of the boreholes.

## 4.2 Surveying

Geodetic ground surface elevations were collected by GHD field staff with a Leica 1200+ Real-Time-Kinematic (RTK) GPS survey system. The elevations of the boreholes are for use within the context of this report only.

## 4.3 Laboratory testing

Prior to the geotechnical laboratory testing, the soil samples extracted from the Site were subjected to tactile examination by an experienced GHD geotechnical engineer who confirmed the field descriptions and selected representative samples for detailed testing. Soil classification has been conducted in accordance with the Unified Soil Classification System (ASTM D2487).

Geotechnical laboratory testing included moisture content determination on 127 recovered samples. The results for moisture content determination are presented in Appendix B.

A total of 11 particle size distribution tests (gradation analysis) using sieve analysis (ASTM D6913) and hydrometer testing (MTO LS-702) were completed. The results of the grain size analysis (sieve and hydrometer) are summarized in the following sections and the grain-size distribution curves are presented in Appendix B.

Uniaxial Compressive Strength of Intact Rock Core Specimens tests (ASTM D7012 – Method C) were conducted on two representative rock core samples. The results are presented in Appendix B. A summary of the obtained results is tabulated in the following sections.

Table 2 presents the number and type of geotechnical laboratory testing completed within the previous investigations.

| Laboratory test                            | 2022 investigation (11231101) | 2021 investigation (11215612) |
|--------------------------------------------|-------------------------------|-------------------------------|
| Hydrometer grain size analyses             | 7                             | 4                             |
| Atterberg limit tests                      | 5                             | 1                             |
| Moisture content determination             | 79 (on all collected samples) | 48 (on all collected samples) |
| Unconfined compressive strength test (UCS) | 1                             | 1                             |

Table 2 Geotechnical Laboratory Testing Completed

Analytical testing was also carried out on one soil sample collected during the 2021 investigation to determine the corrosion potential of the subsurface soils at the Site. The certificates of analysis of the corrosion testing are presented in Appendix C.

## 4.4 Subsurface conditions

Error! Reference source not found. presents a summary of the depth (elevation) or thickness of each subsoil stratum encountered at the sounding locations completed by GHD. The corresponding borehole logs are presented in Appendix A of this report. The subsections below briefly summarize the encountered stratigraphy.

It should be noted that the subsurface conditions are confirmed at the borehole locations only and may vary at other locations (between and beyond the borehole locations). The boundaries between the various strata, as shown on the borehole logs, are based on non-continuous sampling. These boundaries represent an inferred transition between the various strata, rather than a precise plane of geological change.

The general stratigraphy at the Site consists of topsoil overlying a thick layer of fill material, underlain by a native silty sand to sandy silt deposit. Locally, a silty clay till is encountered under this deposit. Limestone bedrock with interbedded sandstone was encountered at depths ranging from 8.2 mbgs (BH1) to 14.8 mbgs (BH2-21). A brief description of each soil stratum is summarized in **Table 3** and in the sections below.

Table 3Subsoil Stratigraphy Depth and Elevation (m)

| Sounding no.<br>(Surface<br>elevation) | Topsoil<br>thickness<br>(m) | Fill<br>thickness<br>(m) | Silty sand<br>to sandy<br>silt depth<br>(Elevation) | Sandy clay<br>depth<br>(Elevation) | Silty clay<br>depth<br>(Elevation) | Bedrock<br>depth<br>(Elevation) | End of<br>sounding<br>depth<br>(Elevation) |
|----------------------------------------|-----------------------------|--------------------------|-----------------------------------------------------|------------------------------------|------------------------------------|---------------------------------|--------------------------------------------|
| 2022 Investigation                     | ı                           |                          |                                                     |                                    |                                    |                                 |                                            |
| BH1-21<br>(91.07)                      | 0.075                       | 4.50                     | 4.58<br>(86.49)                                     |                                    |                                    | 9.86<br>(81.21)                 | 13.82<br>(77.25)                           |
| BH2-21<br>(90.79)                      | 0.075                       | 5.26 <sup>(1)</sup>      | 5.34<br>(85.45)                                     |                                    | 11.56<br>(79.23)                   | 14.78<br>(76.01)                | 18.87<br>(71.92)                           |
| BH3-21<br>(90.55)                      | 0.075                       | 3.33 <sup>(1)</sup>      | 3.81<br>(86.74)                                     |                                    |                                    |                                 | 9.14 <sup>(2)</sup><br>(81.11)             |
| BH4-21<br>(90.23)                      | 0.075                       | 6.48 <sup>(1)</sup>      | 6.55<br>(83.68)                                     |                                    | 11.43<br>(78.80)                   |                                 | 12.04 <sup>(2)</sup><br>(78.19)            |
| BH5-21<br>(90.39)                      | 0.075                       | 4.50                     | 4.57<br>(85.82)                                     |                                    |                                    |                                 | 8.00 <sup>(2)</sup><br>(82.39)             |
| 2021 Investigation                     | n                           |                          |                                                     |                                    |                                    |                                 |                                            |
| BH1<br>(90.21)                         | 0.075                       | 5.84                     | 5.91<br>(84.30)                                     |                                    |                                    | 8.21<br>(82.00)                 | 11.30<br>(78.91)                           |
| BH2<br>(89.80)                         | 0.075                       | 6.03                     | 6.10<br>(83.70)                                     |                                    |                                    | 9.30<br>(80.50)                 | 12.20<br>(77.60)                           |
| BH3<br>(90.88)                         | 0.125                       | 5.96                     | 6.08<br>(84.80)                                     |                                    |                                    | 11.88<br>(79.00)                | 14.90<br>(75.98)                           |
| BH4<br>(90.44)                         | 0.125                       | 6.02 <sup>(1)</sup>      | 6.14<br>(84.30)                                     |                                    |                                    |                                 | 11.14 <sup>(2)</sup><br>(79.30)            |
| 2008 Study                             |                             |                          |                                                     |                                    |                                    |                                 |                                            |
| B5-1<br>(90.48)                        |                             | 5.33((1)                 | 5.33<br>(85.15)                                     | 6.86<br>(83.62)                    | 7.32<br>(83.16)                    |                                 | 10.03 <sup>(2)</sup><br>80.45              |
| B5-2<br>(90.78)                        |                             | 4.57 <sup>(1)</sup>      |                                                     |                                    | 4.57<br>(86.21)                    |                                 | 6.71<br>(84.07)                            |
| B5-3<br>(90.51)                        |                             | 6.10 <sup>(1)</sup>      |                                                     |                                    | 6.10<br>(84.41)                    |                                 | 7.62<br>(82.89)                            |
| MW7-08<br>(93.81)                      |                             | 5.49                     | 5.49<br>(88.32)                                     |                                    |                                    |                                 | 3.92<br>(89.83)                            |
| TP5-01<br>(91.08)                      |                             | 3.00                     |                                                     |                                    |                                    |                                 | 3.00<br>(88.08)                            |
| Notes:                                 |                             |                          |                                                     |                                    |                                    |                                 |                                            |

(1) Presence of organic materials encountered in the fill

(2) Borehole terminated on auger refusal

-- Not encountered

#### 4.4.1 Topsoil layer

A surficial layer of topsoil with rootlets and organic matter was encountered at the ground surface of all 2022 and 2021 boreholes drilled at the Site. The thickness of the topsoil layer ranged from 75 mm to 125 mm at the borehole locations. It should be noted that the thickness of topsoil may vary between borehole locations. Classification of this material was based solely on visual and textural evidence.

#### 4.4.2 Fill layer

Fill was encountered below the ground cover in all soundings. The fill materials generally extended to approximate depths ranging between 3.3 to 6.0 mbgs. Its composition is in general heterogeneous, consisting of a mixture of sand, silt, clay, and gravel. Cobbles and possible boulders were encountered in the boreholes at varying depths. Trace amount of organic matter and/or rootlets were also observed within the fill in boreholes nos BH2-21 through BH4-21, BH4, and B5-1 through B5-3. Fragments of buried asphalt were noted in boreholes nos. BH3, BH4, BH3-21, B5-1, through B5-3, and MW7-08.

Standard Penetration (SPT) 'N' values obtained within the fill layer varied between 2 to 46 blows per 300 mm, indicating a soft to stiff consistency of the fine-grained fill materials or very loose to dense relative density of the granular materials. One shear vane test was performed within the clay fill material at the location of borehole no. BH2 location that recorded a shear strength of 50 kilopascals (kPa).

Samples of this material were visually described to be in a generally moist condition transitioning to wet at around 3 to 4 mbgs depth. The measured moisture content of the fill samples extracted from the borings generally ranged between 10 and 20 percent by weight. Occasionally elevated moisture content values obtained from the fill material indicate the presence of organic matter.

Five fill samples were submitted to particle size distribution tests and one to an Atterberg Limit test. The results are summarized in **Table 4** and **Table 5**.

| Borehole ID | Sample number | Depth<br>(mbgs) | Gravel<br>(%) | Sand<br>(%) | Silt<br>(%) | Clay<br>(%) | Fines silt &<br>clay (%) |
|-------------|---------------|-----------------|---------------|-------------|-------------|-------------|--------------------------|
| BH1         | SS3           | 1.5 – 2.1       | 51            | 43          | 5           | 1           | 6                        |
| BH2         | SS4           | 2.3 – 3.0       | 1             | 2           | 36          | 61          | 97                       |
| BH2         | SS7           | 4.5 – 6.1       | 25            | 38          | 29          | 8           | 37                       |
| BH1-21      | SS2B          | 0.9 – 1.4       | 17            | 60          | 19          | 4           | 23                       |
| BH5-21      | SS3           | 1.5 – 2.1       | 25            | 38          | 29          | 8           | 37                       |

Table 4 Summary of the Particle Size Distribution Tests Results on Fill Layer Samples

Table 5

Summary of Atterberg Limit Tests Results on Fill Layer Samples

| Borehole ID                                                            | Sample Number | Depth (mbgs) | WL (%) | WP (%) | IP (%) | W (%) |  |  |
|------------------------------------------------------------------------|---------------|--------------|--------|--------|--------|-------|--|--|
| BH2                                                                    | SS4           | 2.3 - 3.0    | 69     | 21     | 48     | 56.0  |  |  |
| Notes:     V     Notest       WL – Liquid Limit     WP – Plastic Limit |               |              |        |        |        |       |  |  |
| IP – Plasticity                                                        | Index         |              |        |        |        |       |  |  |

These results confirm that the fill layer is generally heterogeneous with mainly sand and gravel with varying proportions of silt and clay.

#### 4.4.3 Silty sand to sandy silt deposit

The prominent native soil at the Site consists of granular deposits of silty sand to sandy silt that was encountered beneath the earth fill layer in all the drilled boreholes. The granular soils contained varying amounts of gravel and clay. Cobbles and possible boulders are expected within this deposit becoming more frequent with depth.

SPT 'N' values within the silty sand or sandy silt stratum varied between 5/300 mm and greater than 100/300 mm, indicating a loose to very dense relative density. The deposit is generally in a compact to very dense condition except in borehole no. BH3-21, where the silty sand soils were locally observed to be loose between 4.8 to 5.2 mbgs.

Water content measurements obtained from extracted samples of the granular soils varied between 7 and 30 percent indicating a moist to wet condition.

Five samples were submitted to particle size distribution tests and four to Atterberg Limit test. The results are summarized in **Table 6** and **Table 7**.

Table 6 Summary of the Particle Size Distribution Tests Results on Silty Sand to Sandy Silt Deposit Samples

| Borehole ID | Sample number | Depth (mbgs) | Gravel<br>(%) | Sand<br>(%) | Silt<br>(%) | Clay<br>(%) | Fines silt<br>& clay (%) |
|-------------|---------------|--------------|---------------|-------------|-------------|-------------|--------------------------|
| BH3         | SS10          | 6.9 – 7.5    | 8             | 47          | 37          | 8           | 45                       |
| BH1-21      | SS13          | 9.1 – 9.8    | 16            | 32          | 36          | 16          | 52                       |
| BH2-21      | SS12          | 8.4 - 9.0    | 20            | 38          | 33          | 9           | 42                       |
| BH3-21      | SS8           | 5.3 – 5.9    | 19            | 49          | 26          | 6           | 32                       |
| BH5-21      | SS7           | 4.6 - 5.2    | 10            | 38          | 41          | 11          | 52                       |

Table 7

Summary of Atterberg Limit Tests Results on Silty Sand to Sandy Silt Deposit Samples

| Borehole ID                                               | Sample number | Depth (mbgs) | WL (%) | WP (%) | IP (%) | W (%) |  |  |  |
|-----------------------------------------------------------|---------------|--------------|--------|--------|--------|-------|--|--|--|
| BH1-21                                                    | SS13          | 9.1 – 9.8    | 26     | 18     | 8      | 8.0   |  |  |  |
| BH2-21                                                    | SS12          | 8.4 - 9.0    | 25     | 17     | 8      | 8.9   |  |  |  |
| BH3-21                                                    | SS8           | 5.3 – 5.9    | 17     | 13     | 4      | 9.7   |  |  |  |
| BH5-21                                                    | SS7           | 4.6 - 5.2    | 20     | 13     | 7      | 15.0  |  |  |  |
| Notes:     V     Notest       W     Natural Water Content |               |              |        |        |        |       |  |  |  |

WP – Plastic Limit

IP – Plasticity Index

#### 4.4.4 Sandy clay layer

A sandy clay layer was encountered below the silty sand to sandy silt at the location of borehole no. B5-1. The material was very soft and in a moist condition. Refusal, with SPT 'N' values over 50 for 300 mm, was encountered in this material, which indicates that it is in a very dense state.

#### 4.4.5 Silty clay till

Below the fill material and the native sandy clay (in borehole no. B5-1) a silty clay layer was encountered at depths ranging from 4.6 to 11.4 mbgs in borehole nos. BH-2-21, BH-4-21, B5-1, B5-2, and B5-3. With the exception of localized sections in boreholes nos B5-2 and B5-3, the silty clay layer stiffness can be described as hard. An SPT 'N' value between 39 and 59 and refusal was encountered in this deposit. In borehole no. B5-2, between 4.57 and

6.12 mbgs, the silty clay layer is firm to stiff with an SPT 'N' values of 2 and 7. In borehole no. B5-3, between 6.1 and 6.71 mbgs, the deposit is firm with an SPT 'N' value of 25. It then becomes very stiff with an SPT 'N' value of 39.

Water content measurements obtained from extracted samples of the fine-grained soils varied between 11 and 14 percent, indicating a moist condition.

One sample of this layer was submitted to a particle size distribution test and an Atterberg Limit test. The results are summarized in **Table 8** and **Table 9**.

Table 8 Summary of the Particle Size Distribution Test Results on Silty Clay Till Layer Sample

| Borehole ID | Sample number     | Depth (mbgs) | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | Fines silt &<br>clay (%) |
|-------------|-------------------|--------------|------------|----------|----------|----------|--------------------------|
| BH2-21      | SS18 (Silty Clay) | 13.0 – 13.6  | 6          | 29       | 42       | 23       | 65                       |

Table 9

Summary of Atterberg Limit Test Results on Silty Clay Till Layer Sample

| Borehole ID               | Sample Number     | Depth (mbgs) | WL (%) | WP (%) | IP (%) | W (%) |
|---------------------------|-------------------|--------------|--------|--------|--------|-------|
| BH2-21                    | SS18 (Silty Clay) | 13.0 – 13.6  | 28     | 14     | 14     | 11.9  |
| Notes:                    |                   |              |        |        |        |       |
| W – Natural Water Content |                   |              |        |        |        |       |
| WL – Liquid Limit         |                   |              |        |        |        |       |
| WP – Plastic Limit        |                   |              |        |        |        |       |
| IP – Plasticity           | Index             |              |        |        |        |       |

The geotechnical tests conducted in this layer, which show water content values lower than the plasticity limit as well as the SPT 'N' values obtained during the advancement of the boreholes and the visual observations of the retrieved samples, allow us to conclude that this deposit is associated with a fluvioglacial till and not a glaciomarine clay. This deposit is not considered sensitive.

#### 4.4.6 Bedrock

Limestone bedrock with interbedded sandstone was encountered at depths of 8.2 mbgs (BH1), 9.3 mbgs (BH2), 11.9 m (BH3), 9.9 mbgs (BH1-21), and 14.8 mbgs (BH2-21). Boreholes nos BH4, BH3-21 to BH5-21, and B5-1 were terminated upon refusal at depths ranging from 8.0 to 12.0 mbgs in inferred bedrock or boulders. The bedrock quality varied with depth and location; the recorded rock quality designation (RQD) ranged between 37 to 95 percent.

| Borehole ID | Rock type | Depth<br>(mbgs) | Compressive strength<br>(MPa) |
|-------------|-----------|-----------------|-------------------------------|
| BH2         | Limestone | 9.4 - 9.6       | 125.2                         |
| BH2-21      | Limestone | 15.7 – 15.8     | 139.1                         |

Table 10 Summary of Uniaxial Compressive Strength of Intact Rock Core Specimens

Based on the results of the unconfined compressive strength test, the tested rock core samples may be generally classified in accordance with ISRM (International Society of Rock Mechanics) guidelines as very strong.

#### 4.5 Groundwater conditions

Four wells are present on the site. Two of them, wells nos MW7-08 and BH1 were installed by GHD. The details of the other two wells are unknown, however, based on the logs of the historical water wells installed at the Site or in its immediate vicinity obtained from the Ministry of Environment and Parks (MECP) website, these wells could be wells nos 1527383 and 1527384. The well logs retrieved from the MECP website are presented in Appendix D.

Table 11 shows measured groundwater levels.

| Monitoring<br>well ID | Installation<br>date | Ground<br>surface<br>elevation <sup>(2)</sup><br>(m) | Well<br>installation<br>depth (mbgs) | Water level<br>readings<br>depths<br>mbgs <sup>(1)</sup> /Elev.<br>(m) August 18,<br>2020 | Water level<br>readings<br>depths<br>mbgs <sup>(1)</sup> /Elev.<br>(m)June 3,<br>2022 | Water level<br>readings<br>depths<br>mbgs <sup>(1)</sup> /Elev.<br>(m) August 9,<br>2022 |
|-----------------------|----------------------|------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| BH1 (GHD)             | August 6, 2020       | 90.2                                                 | 7.1                                  | 4.0/86.2                                                                                  | 2.95/87.5                                                                             | Abandoned                                                                                |
| MW7 (CRA)             | 2008                 | 90.8                                                 | 6.0                                  | 3.3/87.5                                                                                  | 2.70/88.3                                                                             | Abandoned                                                                                |
| Northwest Well        | Unknown              | 90.9                                                 | 5.3                                  | 3.3/87.6                                                                                  | 3.30/87.6                                                                             | Abandoned                                                                                |
| Northeast Well        | Unknown              | 90.3                                                 | 5.4                                  | 3.5/86.8                                                                                  | 2.90/87.6                                                                             | Abandoned                                                                                |
| Notes:                |                      |                                                      |                                      |                                                                                           |                                                                                       |                                                                                          |

| Table 11   | Groundwater | Readings  |
|------------|-------------|-----------|
| 1 41010 11 | orounanator | riouunigo |

(1) Metres below ground surface

The measured groundwater levels in the installed monitoring wells ranged between 2.70 and 4.0 mbgs, at elevations ranging between 86.2 and 88.3 m. These levels indicate the water is within the fill material. It should be noted that the groundwater table is subject to seasonal fluctuations and in response to precipitation and snowmelt events. Also, it would be expected that water may be perched within the fill materials, especially during and following periods of precipitation and in the spring and fall or other wet seasonal periods.

#### Corrosivity testing results 4.6

One soil sample was submitted for analysis of parameters used to assess the potential corrosivity of the site soils to steel and concrete during the 2021 investigation. The Certificates of Analysis are provided in Appendix C and summarized in Table 12.

| Sample ID            | BH3 SS3 |
|----------------------|---------|
| рН                   | 8.66    |
| Resistivity (ohm-cm) | 1920    |
| Sulphate (%)         | 0.08    |
| Chloride (%)         | 0.008   |
| REDOX Potential (mV) | 205     |
| Sulphide (ug/g)      | <0.20   |

Table 12 **Corrosion Parameter Results** 

#### **Discussion and recommendations** 5.

The recommendations in this report are based on GHD's understanding of the most recent proposed development, which is outlined below:

- An approximate 50,000 sf warehouse on the west portion of the Site.
- An approximate 20,000 sf cross-dock connected to the east face of the warehouse.
- Approximately 1,500 sf of office space connected to the south face of the cross-dock.
- No underground levels are planned for the proposed structure.

At the time of preparation of this report, it is understood that the finished floor elevation is at 92.0 m. Structural details, specifically column loads, were not known.

Based on the proposed development, the subsurface conditions encountered in the boreholes, and assuming the boreholes to be representative of the subsurface conditions across the Site, the following recommendations are provided for the design of the proposed building.

#### Fill material:

An approximate 3.3 m to 6.0 m thick layer of fill is present throughout the Site. The composition of the fill material is not consistent with depth or from borehole to borehole. Buried asphalt was noted in the fill material at various locations. Traces of organic matter and layers up to 3.51 m bgs were also locally encountered in the fill material. This uncontrolled fill material is unsuitable to accommodate the use of conventional shallow foundations and slab-on grades in its current state.

Ground improvement methods, such as deep dynamic compaction, can be used to render the existing fill suitable to support the shallow foundation for the proposed structure. Although deep dynamic compaction is generally considered suitable for deep, loose, low-plasticity mineral fills, it is not effective in adequately compact, high organic layers. It is, therefore, recommended that prior to commencing the deep dynamic compaction detailed design, the specialty soil improvement contractor conducts a supplementary test pit investigation to determine the nature and extent of organics within the fill layer or at the fill/native deposit interface to confirm that the deep dynamic compaction method is the most viable and feasible soil improvement method for this project. Over excavation of organics/clayey lens and addition of sand and gravel layer during the compacting process could be locally required.

Alternatively, other soil improvement techniques, such as the installation of rigid inclusions or deep foundations, such as steel piles driven to refusal, could be used to support both the building structure and slabs may be considered. GHD can provide recommendations for other foundation support systems (including other soil improvement techniques) at FastFrate's request and if required.

However, considering that the Client has opted for the use of deep dynamic compaction on the site to improve the existing ground conditions, GHD is only presenting recommendations regarding this option.

#### Presence of cobbles and boulders:

Obstructions to SPT were encountered within the fill material as well as within the native deposit overlying the bedrock. The obstructions are assumed to be possible cobbles or boulders. The specialty soil improvement contractor should review the presence of cobbles and boulders in the fill layer and native deposits and determine if their presence would affect the preferred methodology and its effectiveness.

#### **Dewatering:**

Considering the groundwater level, which is approximately 2.7 mbgs, the general excavations are expected to be above the groundwater level. Surface water and perched water lenses may, however, be encountered.

#### Slope stability:

The historic fill placement at the Site has created sloping of approximately 2:1 (H:V) around the south, west, and north perimeters of the Site. Slope stability analysis for the construction sequence, under dynamic compaction conditions and the geometry of the final slopes, has been completed by GHD and is presented in the following sections.

## 5.1 Site preparation and grading

#### 5.1.1 Building footprints (foundations and slabs)

As previously stated, the initial site conditions consist of a 3.3 to 6.5 m thick uncontrolled fill layer. This fill layer was randomly placed (i.e., it is not an engineered fill), therefore, not suitable to support conventional shallow foundations. Ground improvement methods, such as deep dynamic compaction, can be used to densify the existing fill layer and accommodate such structures founded directly on the subgrade. These soil improvement works must be completed and certified by a contractor specialized in this field.

The deep dynamic compaction method would compact the existing fill material using a crane that repeatedly drops a weight in a closely spaced grid pattern across the site, creating a uniformly compacted subgrade.

This would result in consolidation and thus lower the existing grades. Additional fill could be required to achieve the design grades.

Following the end of the dynamic compaction work, the soil improvement contractor will have to certify his work for the desired bearing capacity. For this project, the desired serviceability limit state the bearing capacity is 150 kPa and the ultimate limit states bearing capacity is 225 kPa. In order to certify these capacities, the contractor will have to conduct a number of Pressure Meter Testing (PMT) in accordance with ASTM D4719. An acceptable lower limit of the pressure limit result from the PMT would be 600 kPa over a depth of 1.5 B, where B is the footing width. However, the confirmation of the bearing capacity of the improved soils is the responsibility of the specialty contractor.

Although the existing fill is generally suitable for densification with deep dynamic compaction, it should be noted that the presence of organics within this uncontrolled fill may require the excavation and replacement of some materials. This will be determined by the soil improvement contractor while completing the deep dynamic compaction work, as deep craters may appear in zones with increased organic materials. In which case, the existing fill will have to be excavated and replaced with granular material.

Prior to Site grading activity, the exposed dynamically compacted subgrade soils should be visually inspected and probed. Any soft, organic, or unacceptable areas should be removed as directed by the Geotechnical Engineer and replaced with suitable engineered materials.

The fill required to achieve the design grades must comprise clean granular materials free of organics, frozen soils, construction debris, particle sizes larger than 100 mm, and any other deleterious materials. This material, approved by the geotechnical engineer, should be placed in loose lifts of up to 200 mm thick and compacted to 98 percent SPMDD in the building footprint.

Fill in the building footprint must be placed under full-time geotechnical supervision to be certified as engineered fill.

#### 5.1.2 Exterior pavement and underground servicing

Similarly, as stated above the presence of a 3.3 m to 6.0 m thick layer of uncontrolled fill would require site soil improvement for the pavement and servicing subgrade.

Ideally, this improvement would involve similar dynamic compaction methods as discussed in the building subgrade preparation section above.

Should these operations not be economically justified, the client must be aware that deflections and cracking and potential movement of underground servicing should be anticipated where parking areas and underground services are constructed over the existing fill. A pavement and servicing maintenance program should be considered for this development.

Should the client forgo dynamic compaction within the pavement and exterior servicing areas, alternate less significant improvement methods would involve additional compaction of the subgrade as well as placement of thicker base and sub-base layers.

Prior to Site grading activity, the exposed subgrade soils should be visually inspected, compacted, and proof-rolled using large axially loaded equipment. Any soft, organic, or unacceptable areas should be removed as directed by the Geotechnical Engineer and replaced with suitable engineered materials.

The fill required to achieve the design grades must comprise clean granular materials free of organics, frozen soils, construction debris, particle sizes larger than 100 mm, and any other deleterious materials. The material, approved by the geotechnical engineer, should be placed in loose lifts up to 200 mm thick and compacted to 98 percent SPMDD in the pavement footprint areas and 92 percent SPMDD in the proposed landscaped areas. The pavement sub-base and base layers must be compacted to 100 percent SPMDD.

Perimeter drainage must be designed so as to prevent lateral infiltration beneath the asphalt surfaces from adjacent grassed or landscaped areas.

Sanitary sewer and watermain bedding should comply with the City of Ottawa Standard S6 and S7, and W17, respectively, and Class B bedding consisting of OPSS Granular "A" 300 mm thick below the invert of the pipe and extending to 300 mm above the crown of the pipe. The bedding material should be compacted to 95 percent SPMDD.

#### 5.2 Excavation and dewatering

Considering the final floor elevation of 92.0 m and the projected final grade surrounding the proposed building, which varies between 90.8 m and 91.99, the depth of the general excavation is not expected to be under the groundwater level, which was measured at a maximum elevation of 88.3 m. Surface water management and perched water lenses may, however, be encountered during excavation work.

Roadway construction debris, including concrete and asphalt, are expected within the fill material. This debris was also observed on the surface at the time of GHD's Site visit. For excavations less than two (2) m of depth, the walls of the excavations must be sloped at a <u>minimum</u> of 1H:1V as per the Occupational Health and Safety Act (OHSA) requirements for Type 3 soils (fill) or supported by temporary shoring. For excavations more than two (2) m deep, the walls of the excavation must be sloped at a <u>minimum</u> of 2H: 1V.

Unsupported side slopes should be adjusted depending on the true subsoil and groundwater conditions encountered during excavation work, and flatter side slopes than those mentioned above may be required locally.

During the excavation, no excavated material should be piled, nor machinery or equipment placed closer than the distance equivalent to the depth of the excavations. Furthermore, no vertical un-braced excavations should be performed in the soil. In addition, the exposed subsoils should be protected against erosion from water runoff or rain.

The stability and safety of unsupported excavation slopes remain the responsibility of the contractor at all times.

It is recommended that the FastFrate design team include in the specification package requirements for the successful contractor to submit written Plans for Excavation as well as Soil and Groundwater Management for review by the FastFrate design team.

## 5.3 Shallow foundation

Once the building footprint is prepared as discussed in section 5.1.1 and certified by the soil improvement contractor, the Site would be suitable to support conventional shallow foundations.

The soil improvement works must be completed by a contractor specialized in this field. As the resulting serviceability and ultimate bearing capacity values are an integral part of the eventual foundation design, these values must be determined and confirmed by the soil improvement contractor. The degree of densification must be confirmed by in-situ testing by the specialty soil improvement contractor following the dynamic compaction operations following the recommendations and thresholds presented in section 5.1.1. The dynamic compaction work and pad preparation must be certified by the soil improvement contractor prior to the construction of the proposed building.

For footings design, footings placed on at least 1.0 m thick engineered fill underlain by improved ground can be sized for Serviceability Limit State (SLS) soil bearing resistance of 150 kPa and factored ( $\Phi$ =0.5) Ultimate Limit State soil

bearing resistance of 225 kPa. As previously mentioned, the bearing capacity design values must be confirmed by the soil improvement designer following the completion of the soil improvement works.

#### 5.4 Seismic site classification

The 2012 Ontario Building Code (OBC) requires the assignment of a Seismic Site Class for calculations of earthquake design forces and the structural design based on a two percent probability of exceedance in 50 years. According to the 2012 OBC, the Seismic Site Class is a function of soil profile and is based on the average properties of the subsoil strata to a depth of 30 m below the ground surface. The 2012 OBC provides the following three methods to obtain the average properties for the top 30 m of the subsoil strata:

- Average shear wave velocity.
- Average Standard Penetration Test (SPT) values (uncorrected for overburden).
- Average undrained shear strength.

During the geotechnical investigations, the depths of boreholes extended to a maximum depth of approximately 14 m bgs and the subsurface profile below this depth is inferred. Based on the borehole information for the Site and using site classification criteria provided in Table 4.1.8.4.A, of the 2012 OBC, a Seismic Site Class 'D' can be used for preliminary design purposes if the proposed building is supported on certified improved ground.

A Seismic Site Class 'C' may potentially be obtained following the soil improvement work should shear wave velocity testing confirm this improved classification.

#### 5.5 Frost protection

All of the exterior building foundations (footings, etc.) for heated structures should be placed at least 1.5 m beneath the final exterior grade in order to provide adequate frost protection.

Building foundations for unheated structures or isolated exterior foundations (retaining walls, signs, lamp posts, etc.) should be placed at least 1.8 m beneath the final exterior grade in order to provide adequate frost protection.

Note that exterior building foundation sections (even for a heated structure) with exposed foundation walls, such as foundation walls at dock areas, must be considered unheated for frost protection design purposes.

Should construction take place during winter, the exposed surfaces to support foundations must be protected by Contractors against freezing assuming unheated conditions.

#### 5.6 Interior floor slabs

Once the building footprint is prepared as discussed in section 5.1.1 and certified by the soil improvement contractor, the site would be suitable to support conventional slab-on-grades.

The slab-on-grade foundation should incorporate a final granular base layer, consisting of at least 300 mm of Granular 'A' material as per Ontario Provincial Standard Specifications (OPSS form 1010), compacted to at least 100 percent of the material's SPMDD. Depending on the final floor's finish, the architect may require the use of a vapour barrier to be installed, to limit vapour emission through the concrete slab.

The slab-on-grade must be set at least 200 mm above the exterior grades, which should be sloping away from the building footprint at 5 percent in landscaped areas and 2 percent in paved areas.

The specialty contractor should be providing the modulus of subgrade reaction for design of the slab-on-grade if required.

## 5.7 Exterior slabs

Once the building footprint is prepared as discussed in section 5.1.1 and certified by the soil improvement contractor, the site would be suitable to support conventional slab-on-grades.

In order to avoid the potentially detrimental effects of freeze-thaw cycles on the good behaviour of exterior concrete slabs around the proposed building, GHD recommends that a non-frost susceptible base layer, such as a Granular 'A' as per Ontario Provincial Standard Specifications (OPSS Form 1010), be used under the exterior slabs down to a depth of 1.8 m below the top of the slabs.

This base layer should be placed in thin lifts not exceeding 300 mm and compacted to a minimum of 98 percent SPMDD.

The base layer should also be properly drained by means of a French drain in order to prevent water accumulation under the slabs. Note that this requirement also applies to the exterior concrete aprons.

Transition slopes of 3.0 H / 1.0 V should be provided at the edges of the various slabs, between the non-frost susceptible granular foundation and the surrounding soils (silty clay/clayey silt deposit), over the entire frost depth of 1.8 m.

A possible alternative to the placement of non-frost susceptible base material to a depth of 1.8 m below exterior slab grades could include the use of sufficient insulation material under the slab to replace the equivalent amount of granular base backfill omitted to frost depth. As a general rule of thumb, one (1.0) inch 25 mm of insulation is equivalent to 300 mm of non-frost susceptible material.

In any case, the slabs should incorporate a granular base layer consisting of at least 300 mm of OPSS Granular 'A' compacted to at least 100 percent of the material's SPMDD.

#### 5.8 Pavement recommendations

Once the exterior pavement footprint is adequately prepared, as discussed in section 5.1.2, the following pavement structures are suggested. This design load is based on a proposed warehouse and office structure that will be serviced by eleven loading docks, sixty parking spaces for light-duty vehicles, and eight parking spaces for heavy-duty vehicles.

The following input parameters for the pavement design have been provided by the Transportation Impact Study, dated May 18, 2021, prepared by Castleglenn Consultants:

- The facility will be staffed by 30 employees.
- The daily truck volume could range from 60 to 120 two-way trips, with an average of 90 two-way truck trips.
- The trucks would be loaded on the way in and empty on the way out.

Assuming that the facility will be operated on weekdays only, and will be closed on the weekend and statutory holidays, 250 days per year are used to calculate the Equivalent Single Axle Load (ESAL) of 9.92 x 105. A heavy-duty pavement with a structural number of 123 mm is required for supporting the design ESAL. The structural number of the proposed pavement is 171 mm, which exceeds the required 123 mm.

#### Table 13 Pavement Design (Flexible Pavement Structure) for a Design Life of 20 years

| Pavement structure element                                   | Compaction requirement | Layer thickness (mm) |                    |
|--------------------------------------------------------------|------------------------|----------------------|--------------------|
|                                                              |                        | Light duty           | Heavy duty         |
| Surface course<br>OPSS 1150 HL1 Hot Mix, PG70-34             | OPSS 310, Table 8      | 40                   | 40                 |
| Base course<br>OPSS 1150 HL8 HS Hot Mix Asphalt, PG64-34     | OPSS 310, Table 8      | 50                   | 100 (in two lifts) |
| Granular A base<br>(19 mm crusher run limestone)             | 100 % SPMDD            | 300                  | 300                |
| Granular B Type II sub-base<br>(50 mm crusher run limestone) | 100 % SPMDD            | 400                  | 500                |

 Table 14
 Pavement Design (Rigid Pavement Structure)

| Pavement structure element                                   | Compaction requirement         | Layer thickness (mm) |
|--------------------------------------------------------------|--------------------------------|----------------------|
| Rolled compacted concrete                                    | N/A                            | 180                  |
| Base course: Granular A<br>(19 mm crusher run limestone)     | 100 percent of SPMDD ASTM D698 | 300                  |
| Granular B Type II sub-base<br>(50 mm crusher run limestone) | 100 percent of SPMDD ASTM D698 | 300                  |

The pavement contractor is responsible for ensuring adequate compaction of the asphalt and base layers, as per OPSS.

It is noted that the pavement granular base and sub-base layers can consist of gravel or crushed limestone, as specified above. The material gradation and durability requirements of the selected granular courses should meet OPSS 1010 specifications.

The pavement design considers that construction will be carried out during dry periods of the year and that the subgrade is competent, as discussed in section 5.1.2 of this report. If the subgrade becomes excessively wet or rutted during construction activities, additional sub-base material may be required. The need for additional sub-base material is best determined during construction.

Joint design and construction should be carried out in accordance with the OPSS/OPSD requirements.

The installation of a geotextile membrane at the subgrade level is required to prevent contamination of the sub-base layers with fine particles.

To maintain the integrity of the pavement at the Site, subdrains should be installed at all catch basins and along the perimeter of the parking lot.

Grading adjacent to pavement areas should be designed so that water is not allowed to pond adjacent to the outside edges of the pavement.

#### 5.9 Underground service trenches

Underground service lines, if any, should be founded on a prepared fill subgrade, as discussed in section 5.1.2. The suitability of the foundation soils to provide adequate support for buried services must be verified and confirmed on the Site at the time of construction/installation by qualified geotechnical personnel experienced in such work. For subgrade consisting of the existing uncontrolled fill, which is outside the projected footprint of the soil amelioration work, some settlements may occur, and a servicing maintenance program should be considered.

The frost penetration depth for the region of Ottawa is considered as 1.8 m in accordance with Ontario Provincial Standard Drawing (OPSD) 3090.101. Accordingly, underground services should be located below the depth of frost penetration and in accordance with the City of Ottawa specifications.

Note that the City of Ottawa specifies that watermains and sewer require respective minimum soil cover above of 2.4 and 2.0 m. Where the available cover is less than required, thermal rigid insulation should be used as specified in the City of Ottawa specifications.

The bedding and sand cover materials should be adequately compacted to provide support and protection to the service pipes. Provided the base area of the underground service line is free of all soft/loose and deleterious materials, the pipe bedding should comply with a Class B bedding configuration as per the requirements of OPSD 802.031 and OPSD 802.032 (rigid pipe) and/or OPSD 802.010 (flexible pipe). Where disturbance of the trench base has occurred because of surface water or groundwater seepage and the like, the disturbed soils should be sub-excavated and replaced with suitably compacted granular fill.

Backfilling of trenches can be accomplished by reusing the excavated soils or similar fill material or imported granular soil, provided the moisture content of the material is maintained within ±2 percent of optimum, and the fill is free of topsoil, organics, and any deleterious material. The fill placed in excavated trenches should be in loose lifts not exceeding 200 mm thick and compacted to not less than 95 percent of its SPMDD.

Due to the relatively low permeability of the existing fill and depth of excavation, no major groundwater problems are foreseen at this time for such excavations. Infiltration into the excavations should be readily handled with ordinary sumps and pumps.

## 5.10 Permanent drainage

#### 5.10.1 Underfloor drainage slab-on-grade - No basement

Under-floor drains are not considered necessary for a structure without a basement and a floor slab set above the surrounding grades.

#### 5.10.2 Perimeter drainage

For the proposed building with no basement or underground level, and based on the Site's subsurface condition, perimeter drainage around the exterior of the walls of the proposed building is not considered necessary.

## 5.11 Corrosion potential of soils

Analytical testing was carried out on a soil sample collected (BH3 SS3) to determine the corrosion potential of the subsurface soils at the Site. The certificates of analysis for the sample tested are presented in Appendix C and are summarized in **Table 12**.

The American Water Works Association (AWWA) publication 'Polyethylene Encasement for Ductile-Iron Pipe Systems' ANSI/AWWA C105/A21.5-10, dated October 1, 2010, assigns points based on the results of the above tests. Soil that has a total point score of 10 or more is considered to be potentially corrosive to ductile iron pipe. A score of less than 10 was obtained for the soil sample submitted.

**Table 15** of the Canadian Standards Association (CSA) document A23.1-04/A23.2-04 'Concrete Materials and Methods of Concrete Construction/Methods of Test and Standard Practices for Concrete divides the degree of exposure into the following three classes:

Table 15 Classes of Exposure

| Degrees (Class) of Exposure | Water Soluble (SO4) in Soil Samples (%) |
|-----------------------------|-----------------------------------------|
| Very Severe (S-1)           | >2.0                                    |
| Severe (S-2)                | 0.20 – 2.0                              |
| Moderate (S-3)              | 0.10 – 0.20                             |

A review of the analytical test results shows the sulphate content in the tested samples was found to be less than 0.08 percent.

Although both test samples suggest a low degree of corrosivity, GHD recommends that further tests be carried out through the entire site in order to obtain a broader representation of corrosivity potential as a result of the variability and uncontrolled nature of the existing fill on-Site.

## 5.12 Backfill

The placement and compaction of the materials that will support pavement, floor slab, or footings must be treated as engineered fill.

The fill operations for engineered fill must satisfy the following criteria:

- Engineered fill must be placed under the continuous supervision of the geotechnical engineer.
- Prior to placing any engineered fill, all unsuitable fill materials must be removed, and the subgrade proof rolled and approved. Any deficient areas should be repaired.
- Prior to the placement of engineered fill, the source or borrow areas for the engineered fill must be evaluated for their suitability. Samples of proposed fill material must be provided to the geotechnical engineer and tested in the geotechnical laboratory for standard proctor maximum dry density (SPMDD) and grain size prior to approval of the material for use as engineered fill. The engineered fill must consist of environmentally suitable soils (as per industry standard procedures of federal or provincial guidelines/regulations), free of organics and other deleterious material (building debris such as wood, bricks, metal, and the like), compactable, and of suitable moisture content so that it is within -2 percent to +0.5 percent of the optimum moisture as determined by the standard proctor test. Imported granular soils meeting the requirements of Granular 'A' or Type II OPSS 1010 criteria would be suitable.
- The engineered fill must be placed in maximum loose lift thicknesses of 0.2 m. Each lift of engineered fill must be compacted with a heavy roller to 100 percent SPMDD.
- Field density tests must be taken by the geotechnical engineer on each lift of engineered fill. Any engineered fill, which is tested and found to not meet the specifications, shall be either removed or re-compacted and retested.

## 5.13 Slope stability

The historic fill placement at the Site has created sloping of approximately 2H:1V around the south, west, and north perimeters of the Site.

Slope stability analysis was performed for the slopes under loads induced by dynamic compaction works and following the final slopes geometry. This final slope geometry includes the construction of a retaining structure in the north sector.

#### 5.13.1 Slope stability under dynamic compaction loads

The stability assessment has been completed in alignment with the cross-sections received by GHD from CIVITAS on July 28, 2021 and July 22, 2021, for the north and west slopes, respectively. The locations of the cross-sections are shown on the site plan provided in **Figure 1**.

Based on the subsurface conditions described in section 4, GHD determined geotechnical parameters to be used in the slope stability analysis.

| Material                              | Unit weight (kN.m <sup>3</sup> ) | Cohesion (kPa) | Internal friction angle (°) |
|---------------------------------------|----------------------------------|----------------|-----------------------------|
| Existing fill                         | 18                               | 4              | 25                          |
| Native sandy silt                     | 17                               | 2              | 34                          |
| Bedrock N/A (considered impenetrable) |                                  |                |                             |

 Table 16
 Geotechnical Parameters for the Slope Stability Analysis

These parameters were calculated based on SPT correlations as presented in "Foundation Analysis and Design", fifth edition, by Joseph E. Bowles and on engineering judgment.

Dynamic compaction works consist in repeatedly dropping a 5 to 40 tons mass freely from a height of 10 to 40 m on a grid pattern. For this project, a 12.5 tons (12 500 kg) hammer dropped from a height of 12 m is considered.

Due to the dropping of the heavy mass, vibrations are generated in the surrounding soil. Vibration then propagates through the surrounding soil until the vibration wave attenuates completely. If the vibrations exceed certain threshold limits for level or sloping ground conditions, ground displacements may occur. In addition, vibrations can cause a reduction in the shear strength of soils. As such, construction vibrations such as dynamic compaction need to be considered in the stability analyses.

Vibrations are a function of the amount of energy that gets dissipated with increase in distance from the source of energy. The established energy versus distance relationship is exponential in nature, meaning that an exponential reduction in vibration is realized with increasing distances. Vibration energy, measured as Peak Particle Velocity (PPV), gets dissipated with time as soil conditions have a damping effect on vibration. PPV follows a reverse log curve on an exponential scale, therefore, values begin very high near the source of vibrations and drop off rapidly farther from the source. A slope can experience movements if ground acceleration 'a' due to gravity exceeds yield acceleration (Ky) values<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup> Matasovic' N., (1991): Selection of Method for Seismic Slope Stability Analysis. Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, March 11-15, 1991, St. Louis, Missouri, Paper No. 7.20



Figure 1 Site Layout showing the location of the analyzed cross sections and the proposed building footprint

Ground acceleration 'a' is related to PPV through the frequency of motion 'F', assuming sinusoidal motion, using the following equation:

$$a = 2 * \pi * PPV * F$$
 Eq. (1)

Where:

- PPV = Peak Particle Velocity in mm/sec
- F = Frequency in Hz

One way to estimate the PPV value occurring from the dynamic compaction is presented by Hamidi & al., 2011<sup>2</sup>, which proposes a number of equations between the pounder weight (w), the distance (d), and the pounder drop height (H). An upper PPV value can be calculated using the following equation:

$$PPV \leq 25 * \left(\frac{\sqrt{WH}}{d}\right)^{1.1}$$
 Eq. (2)

For the west slope, GHD recommends the construction of a platform extending 4 m from the building footprint with a 5.7H:1V slope. For the north slope, the dynamic compaction works will be at approximatively 35 m from the crest of the existing slope.

Using the abovementioned equations and assuming a maximum frequency of motion for the machinery of 10 Hz for construction operations<sup>3</sup>, a ground acceleration value of 0.35g and 0.05g will be used for the west and north slope, respectively. These ground acceleration values will be incorporated in the slope stability analysis as horizontal seismic loads in order to account for the impact of the vibrations occurring due to dynamic compaction works.

The slope stability analysis was carried out using the SLOPE/W 2019 software package produced by GEO-SLOPE International Ltd. Each trial was modelled using the Morgenstern-Price method, and the optimized critical slip surface was selected. This approach calculates a factor of safety that represents the ratio of forces resisting a failure (i.e., shear strength, friction, etc.) to those favouring failure (weight, external loading, etc.). Theoretically, a factor of safety of 1.0 would represent an equilibrium condition (i.e., a marginally stable slope). The City of Ottawa recommends a minimum factor of safety of 1.5 under static conditions and 1.1 under pseudo-static conditions to account for uncertainty in soil parameters used and slope geometry. Due to the thickness of the fill layer and generally horizontally layered stratigraphy, only circular slip failures were considered.

A distributed load of 100 kPa located 3 m away from the building edge was calculated to represent the crane load used during dynamic compaction. The crane load considered is a Liebherr HS855HD.

A summary of the slope stability analysis results is shown in **Table 17**, with the graphical output for the analysis for each condition provided in Appendix E.

|             | Factor of safety |                                                                            |  |  |
|-------------|------------------|----------------------------------------------------------------------------|--|--|
|             | Static loading   | Pseud-static loading (considering vibrations impact from the pounder drop) |  |  |
| West slope  | 1.60             | 1.1                                                                        |  |  |
| North slope | 2.06             | 1.71                                                                       |  |  |

Table 17 Results of the Slope Stability Analyses During Dynamic Compaction Works

<sup>&</sup>lt;sup>2</sup> Babak Hamidi, Hamid Nikraz and Serge Varaksin, (2011) : Dynamic Compaction Vibration Monitoring in a Saturated Site, International Conference on Advances in Geotechnical Engineering, Perth, Australia.

<sup>&</sup>lt;sup>3</sup> OSM Blasting Performance Standards 30 Code of Federal Regulations

Based on the slope stability analysis, the factor of safety for the slope is above or equal to the recommended values of 1.5 for static conditions and 1.1 for pseudo-static conditions. The west and north slope are considered stable under static and pseudo-static conditions during the deep dynamic compaction works. Some sloughing and bulging-type movements at the west slope could be expected during the dynamic compaction. The slope will need to be restored to its design grades under-engineered controls after dynamic compaction is complete and before the proposed building is constructed.

#### 5.13.2 Slope stability for the final slope configurations

The stability assessment of the final north slopes has been completed in alignment with the cross-sections received by GHD from Maccaferi which are presented in the reinforced structure drawings attached in Appendix G. The stability assessment of the final west slope has been completed in alignment with the cross-section provided by CIVITAS on July 22, 2021. The locations of the cross-sections are shown on the site plan provided in Figure 2.

For the final slope configuration, static and pseudo-static analyses were completed. The pseudo-static analysis takes into account an earthquake's Peak Ground Acceleration (PGA) with a 2 percent probability of exceedance in 50 years, which is 0.308 g, where 'g' is the acceleration due to gravity. The PGA occurs only for a fraction of a second in a given earthquake. A use of PGA may therefore result in a very conservative design. Hynes-Griffin and Franklin<sup>4</sup> concluded that slopes and embankments with a yield acceleration equal to half the peak ground acceleration would experience permanent seismic deformations of less than 1 m in any earthquake, even for embankments where amplification of acceleration by a factor of three occurs. In the absence of amplification, or if amplification is taken into account in determining the peak acceleration, the Hynes and Franklin data suggest that deformations will remain less than 0.3 m for yield accelerations less than or equal to one-half the peak acceleration. In this case, the amplification is only by a factor of 1.05, therefore an earthquake-induced deformation of less than 0.3 m is expected. The seismic coefficient used in the pseudo-static analyses was 50 percent of the PGA value of 0.308, i.e., 0.154.

Along the Site's north boundary, a retaining structure up to approximately 6.5 m in height and a face slope of 45 to 60 degrees from the vertical, will be constructed due to vehicle circulation constraints and to redirect the stormwater drainage to the south. This retaining structure design was completed by Maccaferri and reviewed by GHD. The reinforcement will be obtained by the use of geogrids between each 560 mm soil lift.

In order to build this reinforced structure, the fill available on site can be used as long as it is comprised of compactable mineral soils only, i.e. SM and/or SC soils only. Note that some organic materials and buried asphalt have been noted within the existing on-site fill layer as described in section 4. These materials will need to be sorted out before the fill is used for the new reinforced structure. It is recommended that compaction of the fill be completed using layers with a thickness of 200 millimetres (mm) to achieve a 95 percent of the standard proctor. Please note that this recommendation does not consider environmental considerations if any.

The slope stability analyses for the north slope were completed on three different cross sections each under static and pseudo-static conditions. The geometry of each cross-section is based on the drawings provided by Maccaferri.

In order to complete the slope stability analysis, geotechnical parameters for the reinforced soil were determined based on our engineering judgment and experience. These parameters are presented in **Table 18**.

| Table 18 Additional Geotechnical Pa | arameters for the Soil Stability Analysis |
|-------------------------------------|-------------------------------------------|
|-------------------------------------|-------------------------------------------|

| Material        | Unit weight (kN.m <sup>3</sup> ) | Cohesion (kPa) | Internal friction angle (°) |
|-----------------|----------------------------------|----------------|-----------------------------|
| Reinforced fill | 18                               | 4              | 25                          |

Additionally, in order to account for the possibility of a truck impact load on the safety barriers installed on top of the retaining structure, GHD completed a slope stability analysis using a horizontal impact force of 564 kN corresponding to a truck travelling a distance of 1 m at a speed of 5 km/hr creating an impact force of approximately 100 kN. This force was conservatively applied as a point load horizontally at the top of the retaining structure.

<sup>&</sup>lt;sup>4</sup> Hynes-Griffin, M.E., Franklin A.G., (1984): Rationalizing the Seismic Coefficient Method, Miscellaneous Paper GL-84-13, Corps of Engineers



Figure 2 Site layout showing the location of the analyzed cross-sections and the proposed building footprint

A summary of the slope stability analysis results is presented in **Table 19**. The graphical output for each analysis is provided in Appendix F.

|                                  | Factor of safety |                      |                                                 |  |  |  |  |  |  |  |
|----------------------------------|------------------|----------------------|-------------------------------------------------|--|--|--|--|--|--|--|
|                                  | Static loading   | Pseud-static loading | Considering truck impact load on safety barrier |  |  |  |  |  |  |  |
| West slope                       | 2.49             | 1.66                 | Not applicable                                  |  |  |  |  |  |  |  |
| North slope –<br>Cross section A | 1.74             | 1.29                 | 1.49                                            |  |  |  |  |  |  |  |
| North Slope –<br>Cross section B | 1.63             | 1.21                 | 1.51                                            |  |  |  |  |  |  |  |
| North Slope –<br>Cross section C | 1.63             | 1.23                 | 1.56                                            |  |  |  |  |  |  |  |

 Table 19
 Results of the Slope Stability analyses for the Final Slope Configuration

Based on the slope stability analysis, the factor of safety for the slopes is above or equal to the recommended values of 1.5 for static conditions and 1.1 for pseudo-static conditions. The west and north slope are considered stable under static and pseudo-static conditions.

#### 5.14 Vibration monitoring and contingency plans

During the dynamic compaction vibration works, monitoring must be carried out using approved seismographs/ accelerometers. Continuous readings must be recorded for one week prior to the start of construction. Continuous readings comprised of PPV and construction frequency in all directions must be recorded throughout construction at Site boundaries and any nearby structures. The recording must be checked at least once per day to ensure that the vibration levels are not exceeding the specified limits.

Should the recorded vibrations exceed the allowable limits, the ground improvement contractor should review and modify the ground improvement methodology. The modifications may include reductions in the drop weight, drop height, or both while increasing the number of drops per impact point.

The vibration limits within habited areas are set to avoid disturbance to inhabitants and to avoid damage to any existing structures. The criteria presented in **Table 20** are, typically, set for a construction site.

Table 20 Prohibited construction vibrations

| Frequency of vibration (Hz) | Vibration PPV (mm/sec) |
|-----------------------------|------------------------|
| Less than 4                 | 8                      |
| 4 to 10                     | 15                     |
| More than 10                | 25                     |

## 6. Limitations of the investigation

This report: has been prepared by GHD for Consolidated FastFrate (Ottawa) Holdings Inc. and may only be used and relied on by Consolidated FastFrate (Ottawa) Holdings Inc. for the purpose agreed between GHD and Consolidated FastFrate (Ottawa) Holdings Inc. as set out in section 1 of this report.

GHD otherwise disclaims responsibility to any person other than Consolidated FastFrate (Ottawa) Holdings Inc. arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions, and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report (refer to sections 1 and 5 of this report). GHD disclaims liability arising from any of the assumptions being incorrect.

The recommendations made in this report are in accordance with our present understanding of the project, the current Site use, ground surface elevations and conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of geotechnical engineering professions currently practicing under similar conditions in the same locality.

No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

All details of design and construction are rarely known at the time of completion of a geotechnical study. The recommendations and comments made in this report are based on our subsurface investigation and resulting understanding of the project, as defined at the time of the study. We should be retained to review our recommendations when the drawings and specifications are complete. Without this review, GHD will not be liable for any misunderstanding of our recommendations or their application and adaptation into the final design. By issuing this report, GHD is the geotechnical engineer of record. It is recommended that GHD be retained during construction of all foundations and during earth-work operations to confirm the conditions of the subsoil are actually similar to those observed during our study. The intent of this requirement is to verify that conditions encountered during construction are consistent with the findings in the report and that inherent knowledge developed as part of our study is correctly carried forward to the construction phases.

It is important to emphasize that a soil investigation is, in fact, a random sampling of a site and the comments included in this report are based on the results obtained at the test locations only. The subsurface conditions confirmed at the test locations may vary at other locations. The subsurface conditions can also be significantly modified by the construction activities on Site (ex., excavation, dewatering and drainage, blasting, pile driving, etc.). These conditions can also be modified by exposure of soils or bedrock to humidity, dry periods, or frost. Soil and groundwater conditions between and beyond the test locations may differ both horizontally and vertically from those encountered at the test locations and conditions may become apparent during construction which could not be detected or anticipated at the time of our investigation. Should any conditions at the Site be encountered which differ from those found at the test locations, we request that we be notified immediately in order to permit a reassessment of our recommendations. If changed conditions are identified during construction, no matter how minor, the recommendations in this report shall be considered invalid until sufficient review and written assessment of said conditions by GHD are completed.

#### Accessibility of documents

If this report is required to be accessible in any other format, this can be provided by GHD upon request and at an additional cost if necessary.



Q:[gis2/GISIPROJECTS\11231000s\11231101Layouts\202109\_RPT001\11231101\_202109\_RPT001\_GIS001 - Site Location Plan.mxd Print date: 03 Sep 2021 - 13:55 FIGURE 3 Imagery source: © City of Ottawa, 2019.

SITE LOCATION PLAN



Metres Map Projection: Transverse Mercator Horizontal Datum: Noth American 1983 Grid: NAD 1983 UTM Zone 18N



CONSOLIDATED FASTRATE RIDEAU ROAD & SOMME STREET, OTTAWA, ON PT LOT 26, CON 6 FROM RIDEAU RIVER GEOGRAPHIC TOWNSHIP OF GLOUCESTER CITY OF OTTAWA

GEOTECHNICAL INVESTIGATION

**BOREHOLE LOCATION PLAN** 

Revision No. Date Sep 3, 2021

**FIGURE 4** 

Q:lgis2/GISIPROJECTS\11231000s\11231101Layouts\202109\_RPT001\11231101\_202109\_RPT001\_GIS002 - Borehole Location Plan.mxd Print date: 03 Sep 2021 - 13:52 Imagery source: © City of Ottawa, 2019; CAD Data: 1128236a1-dessin1.dw

# Appendices

# Appendix A Soundings Reports



#### Notes on Borehole and Test Pit Reports

#### Soil description :

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

|                                                                                  | Classification                                                       | (Unified sys                                                    | stem)                                        |                                                      |                                             | Terminol                             | ogy                                                           |                                   |  |  |  |  |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|---------------------------------------------|--------------------------------------|---------------------------------------------------------------|-----------------------------------|--|--|--|--|--|
| Clay                                                                             | < 0.002 mm                                                           |                                                                 |                                              |                                                      |                                             |                                      |                                                               |                                   |  |  |  |  |  |
| Silt                                                                             | 0.002 to 0.075 mm                                                    |                                                                 |                                              |                                                      |                                             |                                      |                                                               |                                   |  |  |  |  |  |
| Sand                                                                             | 0.075 to 1.75 mm                                                     | fino                                                            | 0.075 to 4.25 mm                             |                                                      | "tra                                        | ce"<br>mo"                           | 1-10%                                                         |                                   |  |  |  |  |  |
| Sanu                                                                             | 0.075 10 4.75 1111                                                   | modium 0.425 to 2.0 mm                                          |                                              |                                                      | adjoctivo (silty sa                         |                                      | 10-20%                                                        |                                   |  |  |  |  |  |
|                                                                                  |                                                                      | coarso                                                          | 2.0 to 4.75 mm                               |                                                      | auje<br>"on                                 | a"                                   | () 20-33 %                                                    |                                   |  |  |  |  |  |
|                                                                                  |                                                                      | coarse                                                          | 2.0 10 4.75 1111                             |                                                      | an                                          | u                                    | 55-50 %                                                       |                                   |  |  |  |  |  |
| Gravel                                                                           | 4.75 to 75 mm                                                        | Tine         4.75 to 19 mm           coarse         19 to 75 mm |                                              |                                                      |                                             |                                      |                                                               |                                   |  |  |  |  |  |
| Boulders                                                                         | >300 mm                                                              |                                                                 |                                              |                                                      |                                             |                                      |                                                               |                                   |  |  |  |  |  |
| Relati <sup>v</sup><br>grai                                                      | ve density of<br>nular soils                                         | Standa<br>inde                                                  | ard penetration<br>ex "N" value              |                                                      | Consi<br>cohe                               | istency of<br>sive soils             | Undraine<br>strengt                                           | ed shear<br>h (Cu)                |  |  |  |  |  |
|                                                                                  |                                                                      | (BLO)                                                           | WS/ft – 300 mm)                              |                                                      |                                             |                                      | (P.S.F)                                                       | (kPa)                             |  |  |  |  |  |
|                                                                                  |                                                                      |                                                                 |                                              |                                                      | Ve                                          | ery soft                             | <250                                                          | <12                               |  |  |  |  |  |
| V                                                                                | ery loose                                                            |                                                                 | 0-4                                          |                                                      |                                             | Soft                                 | 250-500                                                       | 12-25                             |  |  |  |  |  |
|                                                                                  | Loose                                                                |                                                                 | 4-10                                         |                                                      |                                             | Firm                                 | 500-1000                                                      | 25-50                             |  |  |  |  |  |
| C                                                                                | Compact                                                              |                                                                 | 10-30                                        |                                                      |                                             | Stiff                                | 1000-2000                                                     | 0 50-100                          |  |  |  |  |  |
|                                                                                  | Dense                                                                |                                                                 | 30-50                                        |                                                      | Ve                                          | ery stiff                            | 2000-4000                                                     | 100-200                           |  |  |  |  |  |
| Ve                                                                               | ery dense                                                            |                                                                 | >50                                          |                                                      |                                             | Hard                                 | >4000                                                         | >200                              |  |  |  |  |  |
|                                                                                  | Rock quality                                                         | designatio                                                      | n                                            |                                                      |                                             | STRATIGRAPH                          | IIC LEGEND                                                    |                                   |  |  |  |  |  |
| "RQE                                                                             | 0" (%) Value                                                         | Quality                                                         |                                              |                                                      | 100000000                                   |                                      | •                                                             |                                   |  |  |  |  |  |
|                                                                                  | <25                                                                  | ,                                                               | Very poor                                    |                                                      |                                             | 00                                   | 20                                                            |                                   |  |  |  |  |  |
| 25-50                                                                            |                                                                      | Poor                                                            |                                              |                                                      | Sand                                        | Gravel                               | Cobbles& boulders                                             | Bodrook                           |  |  |  |  |  |
|                                                                                  | 50-75                                                                |                                                                 | Fair                                         |                                                      | Sanu                                        |                                      |                                                               | Deulock                           |  |  |  |  |  |
| 75-90                                                                            |                                                                      | Good                                                            |                                              |                                                      |                                             | 77777                                | $\Delta $                                                     | XXXXXX                            |  |  |  |  |  |
|                                                                                  | >90                                                                  | Excellent                                                       |                                              |                                                      |                                             |                                      | $\sim \sim$                                                   |                                   |  |  |  |  |  |
|                                                                                  |                                                                      |                                                                 |                                              |                                                      | Silt                                        | Clay                                 | Organic soil                                                  | Fill                              |  |  |  |  |  |
| Samples:<br>Type and Numl<br>The type of sam<br>SS: Split spoon<br>SSE, GSE, AGE | <b>ber</b><br>Iple recovered is shown o<br>E: Environmental sampling | n the log by t                                                  | the abbreviation listed he<br>ST: S<br>PS: P | ereafter. The num<br>helby tube<br>Piston sample (Os | bering of samples is                        | sequential for each<br>A(<br>R(<br>G | type of sample.<br>3: Auger<br>2: Rock core<br>5: Grab sample |                                   |  |  |  |  |  |
| Recovery<br>The recovery, sl                                                     | hown as a percentage, is                                             | the ratio of le                                                 | ength of the sample obtain                   | ined to the distan                                   | ce the sampler was o                        | driven/pushed into th                | ne soil                                                       |                                   |  |  |  |  |  |
| RQD                                                                              |                                                                      |                                                                 |                                              |                                                      |                                             |                                      |                                                               |                                   |  |  |  |  |  |
| The "Rock Qual the run.                                                          | ity Designation" or "RQD"                                            | value, expre                                                    | essed as percentage, is t                    | he ratio of the tot                                  | al length of all core fr                    | ragments of 4 inches                 | s (10 cm) or more to th                                       | ne total length o                 |  |  |  |  |  |
| IN-SITU TEST                                                                     | rs:                                                                  |                                                                 |                                              |                                                      |                                             |                                      |                                                               |                                   |  |  |  |  |  |
| N: Standard penetration index<br>R: Refusal to penetration                       |                                                                      |                                                                 |                                              | N <sub>c</sub> : Dynamic<br>Cu: Undr                 | cone penetration in<br>ained shear strength | dex<br>1                             | k: Permeab<br>ABS: Absorption (F                              | rmeability<br>otion (Packer test) |  |  |  |  |  |
|                                                                                  |                                                                      |                                                                 |                                              | Pr:                                                  | Pressure meter                              |                                      |                                                               |                                   |  |  |  |  |  |
| LABORATOR                                                                        | Y TESTS:                                                             |                                                                 |                                              |                                                      |                                             |                                      |                                                               |                                   |  |  |  |  |  |
| I : Diooticity in d                                                              | N/                                                                   | 11.11.                                                          | dramatar analysis                            | A. Attacher                                          | a limito                                    | C: Canaalidati                       | on.                                                           | O.V.: Organic                     |  |  |  |  |  |
| W: Liquid limit                                                                  | 58                                                                   | H: Hy                                                           | Grain size analysis                          | A. Atterbel                                          | y minis<br>ontent                           | CS: Swedich f                        | on<br>all cone                                                | ναμοι                             |  |  |  |  |  |
| Wp: Plastic limit                                                                |                                                                      | 66A.                                                            | Grain Size dilaiyoio                         | v. I Init wei                                        | aht                                         | CHFM <sup>•</sup> Chemi              | cal analysis                                                  |                                   |  |  |  |  |  |
|                                                                                  |                                                                      |                                                                 |                                              | 1. 01111 1001                                        | a                                           |                                      |                                                               |                                   |  |  |  |  |  |

GHD PS-020.01-IA- Notes on Borehole and Test Pit Reports - Rev. 0 - 07/01/2015

| REFER                              | RENCE N                   | o.:              | 11231101                                              | -                               |       |                                                                       |       |                              |                                                                                                                                                                                                           | ENCLO                                      | SUF         | RE No                          | o.: .           |                 |                                 |               |          |  |
|------------------------------------|---------------------------|------------------|-------------------------------------------------------|---------------------------------|-------|-----------------------------------------------------------------------|-------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------|--------------------------------|-----------------|-----------------|---------------------------------|---------------|----------|--|
|                                    |                           | Ċ                | HD                                                    | BOREHOLE No.: <u>BH1-21</u>     |       |                                                                       |       |                              | BOREHOLE LOG                                                                                                                                                                                              |                                            |             |                                |                 |                 |                                 |               |          |  |
|                                    |                           | $\geq$           |                                                       | ELEVATION:91.07 m               |       |                                                                       |       |                              |                                                                                                                                                                                                           | Page: <u>1</u> of <u>2</u>                 |             |                                |                 |                 |                                 |               |          |  |
| CLII<br>PRO                        | ENT: <u>C</u><br>DJECT: _ | onsolid<br>ConFa | lated Fastfrate (Ottawa) H<br>astfrate, New Warehouse | oldings Ltd.<br>& Offices       |       |                                                                       |       |                              |                                                                                                                                                                                                           | LEGEND<br>SS Split Spoon<br>ST Shelby Tube |             |                                |                 |                 |                                 |               |          |  |
| LOCATION: Somme Street, Ottawa, ON |                           |                  |                                                       |                                 |       |                                                                       |       |                              |                                                                                                                                                                                                           |                                            | Roc         | k Cor                          | e               |                 |                                 |               |          |  |
| DES                                | SCRIBED                   | BY:              | J. Scott                                              | CHECKED BY:                     |       | Leandro                                                               | Ram   | os                           |                                                                                                                                                                                                           | ¥_<br>∘                                    | Wa<br>Wat   | ter Le <sup>.</sup><br>ter con | vel<br>ntent (  | (%)             |                                 |               |          |  |
|                                    | E (STAR                   | RT):             | 26 July 2021                                          | DATE (FINISH):                  | :     | 27 Jul                                                                | y 202 | 1                            |                                                                                                                                                                                                           | ⊷ N                                        | Atte        | erberg                         | limits          | s (%)<br>dex b  | ased                            | on            |          |  |
| sc                                 | SCALE STR                 |                  |                                                       | ATIGRAPHY                       |       | SAI                                                                   | MPLE  | DATA                         | ~                                                                                                                                                                                                         | • N                                        | Spli<br>Pen | t Spo                          | on sa<br>on Ind | imple<br>ex ba  | ised o                          | on.           |          |  |
| Depth<br>BGS                       | Elevation<br>(m)          | Stratigraphy     | DES<br>SOIL                                           | SCRIPTION OF<br>AND BEDROCK     | State | State<br>Type and<br>Number<br>Recovery<br>Blows per<br>6 in. / 15 cm |       | Penetration<br>Index / RQD % | Dynamic Cone sample         △ Cu       Shear Strength based on         □ Cu       Shear Strength based on         Sensitivity Value of Soil         ▲ Shear Strength based on         Pocket Penetrometer |                                            |             |                                |                 |                 | n Field Vane<br>n Lab Vane<br>n |               |          |  |
| metres                             | 91.07                     |                  | GRO                                                   | OUND SURFACE                    |       |                                                                       | %     |                              | Ν                                                                                                                                                                                                         | 50<br>10                                   | SCAI        | LE FC<br>100k                  | OR TE           | EST F<br>150k   | RESU<br>Ra<br>0 70              | ILTS<br>200ki | Pa<br>90 |  |
| -                                  | 90.99                     |                  | TOPSOIL (75 mm)                                       |                                 |       | 001                                                                   | 00    |                              |                                                                                                                                                                                                           |                                            |             |                                |                 |                 |                                 |               |          |  |
|                                    |                           |                  | FILL - SILTY SAND, tra<br>moist, compact              | ce gravel, trace clay, dark gr  | ey,   | 551<br>552A                                                           | 71    | 9-6-3-4                      | 25                                                                                                                                                                                                        | •                                          |             |                                |                 | -               | +                               | _             |          |  |
| - 1.0                              | 90.20                     |                  | FILL - SAND, trace silt,                              | trace gravel, brown, moist,     | X     | SS2B                                                                  |       | -                            |                                                                                                                                                                                                           | 0                                          |             |                                |                 | $\square$       | $\exists$                       | _             | _        |  |
| 2.0                                | 89.54                     |                  | FILL - SILTY SAND, wit<br>moist, dense                | th clay, trace gravel, dark gre | ey,   | SS3                                                                   | 71    | 7-13-33-40                   | 46                                                                                                                                                                                                        | -0                                         |             |                                | •               | $\rightarrow$   | -                               | +             |          |  |
|                                    |                           |                  | cobble encountered at                                 | 1.oo mugs                       | X     | SS4                                                                   | 42    | 5-2-3-50/76                  | 5                                                                                                                                                                                                         | ••                                         |             |                                |                 | $\exists$       | $\neg$                          | $\mp$         | _        |  |
| 3.0                                |                           |                  |                                                       |                                 |       | SS5A                                                                  | 67    | mm<br>8-8-5-3                | 13                                                                                                                                                                                                        | C●                                         |             |                                |                 | $\dashv$        | -                               | +             | _        |  |
| -<br> -                            |                           |                  | with organics and wood                                | l fragments                     | X     | SS5B                                                                  |       |                              |                                                                                                                                                                                                           |                                            |             |                                |                 | =               | =                               | $\square$     |          |  |
| 4.0                                |                           |                  | augers grinding at 3.96 construction debri            | mbgs, inferred boulders or      | ×     | SS6                                                                   | 0     | 50/51 mm                     | 50/51<br>mm                                                                                                                                                                                               |                                            |             |                                |                 |                 |                                 | +             |          |  |
| - 5.0                              | 86.49                     |                  | SILTY SAND - trace gra<br>dense to very dense         | ivel, trace clay, brown, moist, | · X   | SS7                                                                   | 83    | 10-21-37<br>-50/127 mm       | 58                                                                                                                                                                                                        | -0                                         |             |                                |                 | •               |                                 | =             |          |  |
|                                    |                           |                  |                                                       |                                 |       | SS8A                                                                  | 100   | 43-31-36-47                  | 67                                                                                                                                                                                                        | 0                                          |             |                                |                 |                 | •                               | _             |          |  |
| - 6.0                              | 85.27                     |                  | grey, very moist, augers<br>boulder                   | s grinding at 9.85 mbgs, infer  | red 🖂 | SS8B                                                                  | 02    |                              | 44                                                                                                                                                                                                        | 0                                          |             |                                |                 | _               | _                               | +             | _        |  |
|                                    |                           |                  | cobble encoutered at 6                                | 86 mbas                         |       | 339                                                                   | 05    | 24-23-16-20                  | 41                                                                                                                                                                                                        |                                            |             |                                | •               |                 |                                 | -             |          |  |
|                                    |                           |                  |                                                       |                                 | X     | SS10                                                                  | 75    | 13-11-15-12                  | 26                                                                                                                                                                                                        | 0                                          | •           |                                |                 | -               |                                 | -             |          |  |
| 8.0                                |                           |                  |                                                       |                                 | X     | SS11                                                                  | 71    | 6-4-12-23                    | 16                                                                                                                                                                                                        | •                                          | -           |                                |                 |                 |                                 |               |          |  |
|                                    |                           |                  |                                                       |                                 | X     | SS12                                                                  | 67    | 50-15-15-18                  | 30                                                                                                                                                                                                        | 0                                          |             | •                              |                 |                 | _                               |               |          |  |
| - 9.0<br>-                         |                           |                  | Gravel 16% Sand 2                                     | 2% Silt - 36% Clay - 16%        | X     | SS13                                                                  | 67    | 13-17-19-17                  | 36                                                                                                                                                                                                        | -0                                         | ┝╼┫         | •                              |                 | $\downarrow$    | $\downarrow$                    | $\downarrow$  |          |  |
| - 10.0                             | 81.21                     |                  | LIMESTONE - interbedo                                 | ded sandstone, grey, poor to    |       |                                                                       |       |                              |                                                                                                                                                                                                           |                                            |             |                                |                 |                 | _                               | $\downarrow$  |          |  |
|                                    |                           |                  | - highly weatherd from 9                              | 9.86 mbgs to 9.93 mbgs          |       | RC1                                                                   | 58    | 38                           | 38                                                                                                                                                                                                        |                                            |             |                                |                 | $ \rightarrow $ | $\rightarrow$                   | $\pm$         |          |  |
| 11.0                               |                           |                  | silty sand seam at 10.9                               | 2 mbgs                          |       |                                                                       |       |                              |                                                                                                                                                                                                           |                                            |             |                                |                 | _               | _                               |               |          |  |
| NOTES                              | ):<br>meters h            | elowa            | round surface                                         |                                 |       |                                                                       |       |                              |                                                                                                                                                                                                           |                                            |             |                                |                 |                 |                                 |               |          |  |
| RQD:                               | Rock Qua                  | ality De         | esignation                                            |                                 |       |                                                                       |       |                              |                                                                                                                                                                                                           |                                            |             |                                |                 |                 |                                 |               |          |  |
| · L                                |                           |                  |                                                       |                                 |       |                                                                       |       |                              |                                                                                                                                                                                                           |                                            |             |                                |                 | —               | —                               | —             |          |  |

| REFER                  | ENCE No                     | ).:                                                   | 11231101                                     |                             |                                                                                                                |         |       |                                         |     | ENCL                       | SSU                 | RE N                    | lo.:                     |                      |                        |           |          |  |  |  |
|------------------------|-----------------------------|-------------------------------------------------------|----------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------|---------|-------|-----------------------------------------|-----|----------------------------|---------------------|-------------------------|--------------------------|----------------------|------------------------|-----------|----------|--|--|--|
|                        |                             | BOREHOLE No.:     BH1-21       ELEVATION:     01.07 m |                                              |                             |                                                                                                                |         |       |                                         |     |                            | BOREHOLE LOG        |                         |                          |                      |                        |           |          |  |  |  |
|                        |                             |                                                       |                                              | ELEVATION:                  | 91.07                                                                                                          | m       |       | -                                       |     | Page: <u>2</u> of <u>2</u> |                     |                         |                          |                      |                        |           |          |  |  |  |
| CLIE                   | ENT: <u>Co</u>              | nsolid                                                | ated Fastfrate (Ottawa) I                    | loldings Ltd.               |                                                                                                                |         |       |                                         |     | Ms                         | S Sp                | L<br>lit Spc            | <u>EG</u>                | END                  | <u>)</u>               |           |          |  |  |  |
| PRC                    | DJECT:                      | ConFa                                                 | astfrate, New Warehouse                      | & Offices                   |                                                                                                                |         |       |                                         |     |                            | Г Sh                | elby T                  | ube                      |                      |                        |           |          |  |  |  |
| LOC                    | CATION:                     | Somr                                                  | me Street, Ottawa, ON                        |                             |                                                                                                                |         |       |                                         |     |                            | C Ro                | ck Co                   | re                       |                      |                        |           |          |  |  |  |
| DES                    | SCRIBED                     | BY:                                                   | J. Scott                                     | CHECKED BY:                 |                                                                                                                | Leandro | Ram   | os                                      |     | ¥_<br>⊙                    | Wa<br>Wa            | ater Le<br>ater co      | evel<br>ntent            | (%)                  |                        |           |          |  |  |  |
|                        | E (STAR                     | T):                                                   | 26 July 2021                                 | DATE (FINISH):              |                                                                                                                | 27 Jul  | y 202 | 1                                       |     | • N                        | Att<br>Pe           | erberg<br>netrati       | g limit<br>ion In        | s (%)<br>dex b       | ased                   | on        |          |  |  |  |
| sc                     | SCALE STR                   |                                                       |                                              | ATIGRAPHY SAMPLE DATA       |                                                                                                                |         |       |                                         | • N | Sp<br>Pei<br>Dvi           | lit Spo<br>netratio | on sa<br>on Inc<br>Cone | ample<br>lex ba:<br>samp | sed o                | n                      |           |          |  |  |  |
| Depth<br>BGS           | Elevation<br>(m)            | Stratigraphy                                          | DES<br>SOIL                                  | SCRIPTION OF<br>AND BEDROCK | State<br>State<br>Type and<br>Number<br>Recovery<br>Blows per<br>6 in. / 15 cm<br>Penetration<br>Index / RQD 9 |         |       | Penetration<br>Index / RQD <sup>6</sup> |     |                            |                     |                         |                          | n Fiel<br>n Lab      | Field Vane<br>Lab Vane |           |          |  |  |  |
| metres                 | 91.07                       |                                                       | GRO                                          | OUND SURFACE                |                                                                                                                |         | %     |                                         | Ν   | 1 <u>0</u> 5               | SCA<br>i0kPa<br>20  | LE FO<br>100<br>30 4    | DR 11<br>kPa<br>0 5      | ±STF<br>150k<br>0 60 | RESU<br>(Pa<br>) 70    | 200k      | Pa<br>90 |  |  |  |
|                        |                             |                                                       |                                              |                             | Ī                                                                                                              | RC2     | 98    | 95                                      | 95  |                            |                     |                         |                          |                      | $\downarrow$           | $\square$ | $\perp$  |  |  |  |
|                        |                             |                                                       | vertical fracture at 11.5                    | o mogs                      |                                                                                                                |         |       |                                         |     |                            | -                   | -                       |                          |                      |                        | -+        | -        |  |  |  |
|                        |                             |                                                       |                                              |                             | ļ                                                                                                              | 4       |       |                                         |     |                            | -                   | +                       |                          |                      | -                      | -+        | +        |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
| 2 - 13.0               |                             |                                                       |                                              |                             |                                                                                                                | RC3     | 95    | 58                                      | 58  |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
| 14.0                   | 77.25                       |                                                       | Borehole terminated at                       | 13.82 mbgs                  |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      | _                      | _         | _        |  |  |  |
|                        |                             |                                                       | Note:<br>Borebole Coordinate                 |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
|                        |                             |                                                       | - UTM Zone 18                                |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
| 15.0<br> -             |                             |                                                       | - Northing: 501/223.9<br>- Easting: 456487.2 |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
| <b>↓</b><br>→          |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            | _                   |                         |                          |                      |                        |           |          |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      | _                      |           |          |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           | -        |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
| g - 17.0               |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           | _        |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      | -                      | _         | _        |  |  |  |
| 18.0                   |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           | +        |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
| 19.0                   |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      | _                      | _         | _        |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      | -                      | _         |          |  |  |  |
| 20.0                   |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           | +        |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
| 21.0                   |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            | _                   |                         |                          |                      |                        | _         |          |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            | -                   | -                       |                          |                      |                        | -+        | +        |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            | +                   | +                       |                          |                      | +                      | +         | +        |  |  |  |
| 5 <b>–</b> 22.0        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
|                        |                             |                                                       |                                              |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
| NOTES<br>mbgs:<br>RQD: | S:<br>meters be<br>Rock Qua | elow g<br>lity De                                     | round surface<br>esignation                  |                             |                                                                                                                |         |       |                                         |     |                            |                     |                         |                          |                      |                        |           |          |  |  |  |
| REFER                  | RENCE N                   | o.:                | 11231101                                             | -                               |      |                             |           |                            |                              | ENC         | LOS      | SURE                                                | No.:                                                    |                                                          |                                                 |                      |                    |
|------------------------|---------------------------|--------------------|------------------------------------------------------|---------------------------------|------|-----------------------------|-----------|----------------------------|------------------------------|-------------|----------|-----------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------|--------------------|
|                        |                           | 6                  |                                                      | BOREHOLE No.:                   | BH2  | 2-21                        |           | _                          |                              |             | E        | BOR                                                 | EH                                                      |                                                          | e 37<br>E L                                     | 00                   | ;                  |
|                        |                           | ×                  |                                                      | ELEVATION:                      | 90.7 | '9 m                        |           | _                          |                              |             |          | Page                                                | : _1                                                    |                                                          | of _                                            | 2                    |                    |
| CLI                    | ENT: C                    | onsolio            | dated Fastfrate (Ottawa) H                           | loldings Ltd.                   |      |                             |           |                            |                              |             | ~~       | 0.111                                               | LEC                                                     | GEN                                                      | D                                               |                      |                    |
| PRO                    | DJECT:                    | ConF               | astfrate, New Warehouse                              | & Offices                       |      |                             |           |                            |                              |             | SS<br>ST | Split Shelb                                         | ipoon<br>/ Tube                                         | •                                                        |                                                 |                      |                    |
| LOC                    | ATION:                    | Som                | me Street, Ottawa, ON                                |                                 |      |                             |           |                            |                              |             | RC       | Rock                                                | Core                                                    |                                                          |                                                 |                      |                    |
| DES                    | SCRIBED                   | BY:                | J. Scott                                             | CHECKED BY:                     |      | Leand                       | ro Ran    | nos                        |                              | <b>▼</b>    |          | Water<br>Water                                      | Level                                                   | nt (%)                                                   |                                                 |                      |                    |
| DA1                    | E (STAF                   | RT): _             | 27 July 2021                                         | DATE (FINISH):                  |      | 27 J                        | uly 202   | 21                         |                              |             | H<br>N   | Atterb                                              | erg lin                                                 | nits (%<br>Index                                         | )<br>haser                                      | lon                  |                    |
| sc                     | ALE                       |                    | STR                                                  | ATIGRAPHY                       |      | s                           | AMPLE     | DATA                       |                              |             | N        | Split S<br>Penetr                                   | ation li<br>ation li                                    | sampl<br>ndex b                                          | e<br>ased (                                     | on                   |                    |
| Depth<br>BGS           | Elevation<br>(m)          | Stratigraphy       | DES<br>SOIL                                          | SCRIPTION OF<br>AND BEDROCK     |      | State<br>Type and<br>Number | Recovery  | Blows per<br>6 in. / 15 cm | Penetration<br>Index / RQD % | ∆<br>□<br>S | Cu<br>Cu | Dynan<br>Shear<br>Shear<br>Sensit<br>Shear<br>Pocke | nic Cor<br>Stren<br>Stren<br>ivity V<br>Stren<br>t Pene | ne sam<br>gth ba<br>gth ba<br>alue o<br>gth ba<br>strome | ple<br>sed o<br>sed o<br>f Soil<br>sed o<br>ter | n Fiel<br>n Lab<br>n | d Vane<br>Vane     |
| metres                 | 90.79                     |                    | GRO                                                  | OUND SURFACE                    |      |                             | %         |                            | Ν                            | 10          | 50k      | Pa<br>30                                            | FOR<br>100kPa<br><u>40</u>                              | 1EST<br>150<br>50 6                                      | RESU<br>0kPa<br><u>30 7</u>                     | JLTS<br>2001<br>0 8  | (Pa<br><u>) 90</u> |
| -                      | 90.71                     |                    |                                                      | co clav, traco bricka, traco    | /    | SS14                        | A 92      | 3-12-11-15                 | 23                           | 0           |          | •                                                   |                                                         |                                                          |                                                 |                      |                    |
|                        | 90.33                     |                    | asphalt, brown to black                              | <u>, moist, compact</u>         | /    | SS1E                        | 3         |                            |                              | <b>–</b> ¢  | ,        |                                                     |                                                         | _                                                        |                                                 |                      |                    |
| 1.0                    | 90.03                     |                    | ☐ <b>FILL</b> - SAND AND GRA                         | VEL, trace silt, brown, moist,  | /    | 🕅 ss2                       | 88        | 6-14-17-15                 | 31                           | 0           |          | •                                                   |                                                         |                                                          |                                                 |                      |                    |
|                        |                           |                    | FILL - SILTY SAND, wit<br>grey, moist, dense         | th gravel, trace clay, brown to |      | ∐<br>⊠ 5534                 | 46        | 7-9-6-6                    | 15                           |             |          |                                                     |                                                         |                                                          |                                                 |                      |                    |
| 2 - 2.0                |                           |                    | with clay at 1.65 mbgs                               |                                 | ĺ    | SS3E                        | 3         |                            |                              | c           | ,        |                                                     |                                                         |                                                          |                                                 |                      |                    |
|                        |                           |                    | trace clay at 2.89 mbgs                              |                                 |      |                             |           |                            |                              |             |          | _                                                   |                                                         |                                                          |                                                 |                      | _                  |
|                        |                           |                    |                                                      |                                 |      |                             | 67        | 28-13-12-3                 | 3 25                         | 0           |          | •                                                   |                                                         |                                                          |                                                 |                      |                    |
|                        |                           |                    |                                                      |                                 |      | SS5                         | 63        | 8-7-5-12                   | 12                           |             | •        |                                                     |                                                         |                                                          |                                                 |                      |                    |
|                        |                           |                    | asphalt at 3.35 mbgs                                 |                                 | ,    |                             | 67        |                            | 2                            |             |          |                                                     |                                                         |                                                          |                                                 |                      |                    |
| 4.0                    | 86.93                     |                    |                                                      | an grouply trace alow brown     |      |                             |           |                            | 2                            |             | 0        | 0                                                   |                                                         |                                                          |                                                 |                      |                    |
| j E                    | 86.88                     |                    | wet, loose                                           | ce gravel, trace clay, brown,   | /    |                             |           |                            |                              |             |          |                                                     |                                                         |                                                          |                                                 |                      |                    |
| 5                      |                           |                    | with topsoil at 4.57 mbg<br>with clay, bricks fragme | js<br>nts at 4.72 mbgs          |      | X SS74                      | A 88<br>B | 2-3-7-8                    | 10                           |             |          |                                                     |                                                         |                                                          |                                                 |                      |                    |
|                        |                           |                    |                                                      |                                 |      | $\Delta$                    |           |                            |                              |             | -        |                                                     |                                                         |                                                          |                                                 |                      |                    |
|                        | 85.45                     |                    | wet, compact to dense                                | , trace gravel, brown, moist to | D    | SS8                         | 83        | 8-19-22-40                 | 41                           |             | 0        |                                                     | •                                                       |                                                          |                                                 |                      |                    |
| 6.0                    |                           |                    | grey at 6.10 mbgs                                    |                                 | 2    |                             |           |                            |                              |             |          |                                                     |                                                         |                                                          |                                                 |                      |                    |
|                        |                           |                    |                                                      |                                 |      | ∬ 559                       | 54        | 9-14-12-13                 | 26                           |             | <b>`</b> | •                                                   |                                                         |                                                          |                                                 |                      |                    |
| 7.0                    |                           |                    |                                                      |                                 |      |                             | ) 79      | 5-3-5-6                    | 8                            |             | <u>,</u> | _                                                   |                                                         |                                                          |                                                 |                      |                    |
|                        |                           |                    |                                                      |                                 |      | Δ                           |           |                            |                              |             | -        |                                                     |                                                         |                                                          |                                                 |                      |                    |
| - 8.0                  |                           |                    |                                                      |                                 |      | SS11                        | 1 75      | 5-7-8-10                   | 15                           |             | •        |                                                     |                                                         |                                                          |                                                 |                      |                    |
|                        |                           |                    |                                                      |                                 |      |                             |           |                            |                              |             |          |                                                     |                                                         |                                                          |                                                 |                      |                    |
|                        |                           |                    | Gravel - 20%, Sand - 3                               | 8%, Silt - 33%, Clay - 9%       |      | SS12                        | 2 63      | 6-10-11-17                 | 21                           | 0           | H        | H                                                   |                                                         |                                                          |                                                 |                      | _                  |
| 9.0                    |                           |                    | wet at 9.14 mbgs                                     |                                 |      |                             | 71        | 11,18,19 0                 | 1 36                         |             |          |                                                     |                                                         |                                                          |                                                 |                      |                    |
|                        |                           |                    |                                                      |                                 |      |                             |           | 10-10-2                    |                              |             | . –      | -                                                   |                                                         |                                                          |                                                 |                      |                    |
| 5 <b>−</b> 10.0        |                           |                    | augers grinding at 10.0                              | 8 mbgs, inferred boulder        |      | SS14                        | 1 71      | 19-50/25<br>mm             | 50/25<br>mm                  |             | )        |                                                     |                                                         |                                                          |                                                 |                      |                    |
|                        |                           |                    |                                                      |                                 |      |                             |           |                            |                              |             |          |                                                     |                                                         |                                                          |                                                 |                      |                    |
| - 11.0                 |                           |                    |                                                      |                                 |      | SS15                        | 5 25      | 11-14-15-2                 | 1 29                         |             | 0        |                                                     |                                                         |                                                          |                                                 |                      |                    |
| NOTES<br>mbgs:<br>RQD: | S:<br>meters b<br>Rock Qu | elow g<br>ality De | round surface<br>esignation                          |                                 |      |                             |           |                            |                              |             |          |                                                     |                                                         |                                                          |                                                 |                      |                    |
|                        |                           |                    |                                                      |                                 |      |                             |           |                            |                              |             |          |                                                     |                                                         |                                                          |                                                 |                      |                    |

| REFER           | RENCE No               | .:                 | 11231101                                | -                              |           |                    |              |                            |                              | ENCLO             | SUF                             | RE No                                                  | D.: _                                       |                                             |                                 |                    |             |
|-----------------|------------------------|--------------------|-----------------------------------------|--------------------------------|-----------|--------------------|--------------|----------------------------|------------------------------|-------------------|---------------------------------|--------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------|--------------------|-------------|
|                 |                        | G                  | HD                                      | BOREHOLE No.:                  | BH2-      | 21                 |              | -                          |                              |                   | BO                              | RE                                                     | HO                                          | Page<br>DLE                                 | 38<br>L(                        | )G                 | I           |
|                 |                        |                    |                                         | ELEVATION:                     | 90.79     | m                  |              |                            |                              |                   | Paę                             | ge: _                                                  | 2                                           | o                                           | f                               | 2                  |             |
| CLI             | ENT: <u>Co</u>         | nsolida            | ated Fastfrate (Ottawa) Ho              | ldings Ltd.                    |           |                    |              |                            |                              | Mee               | Sol                             |                                                        | <u>EGI</u>                                  | END                                         |                                 |                    |             |
| PRO             | DJECT: _               | ConFa              | stfrate, New Warehouse 8                | Offices                        |           |                    |              |                            |                              | — 33<br>  []] ST  | She                             | elby Tu                                                | ibe                                         |                                             |                                 |                    |             |
| LOC             | CATION:                | Somn               | ne Street, Ottawa, ON                   |                                |           |                    |              |                            |                              |                   | Roc                             | ck Core                                                | е                                           |                                             |                                 |                    |             |
| DES             | SCRIBED                | BY: _              | J. Scott                                | CHECKED BY:                    |           | L. Ra              | mos          |                            |                              | ¥<br>∘            | Wa<br>Wa                        | ter Lev<br>ter cor                                     | vel<br>ntent (                              | (%)                                         |                                 |                    |             |
| DAT             | TE (STAR               | Г):                | 27 July 2021                            | DATE (FINISH):                 |           | 27 July            | <u>/ 202</u> | 1                          |                              |                   | Atte                            | erberg                                                 | limits                                      | (%)                                         |                                 | _                  |             |
| so              | CALE                   |                    | STR                                     | ATIGRAPHY                      |           | SA                 | MPLE         | DATA                       | .0                           | • N               | Per<br>Spli<br>Per              | it Spoo                                                | on Ind<br>on sar<br>on Ind                  | ex bas<br>nple<br>ex bas                    | sed or                          | n                  |             |
| Depth<br>BGS    | Elevation<br>(m)       | Stratigraphy       | DES<br>SOIL                             | SCRIPTION OF<br>AND BEDROCK    | State     | Type and<br>Number | Recovery     | Blows per<br>6 in. / 15 cm | Penetration<br>Index / RQD % | ∆ Cu<br>□ Cu<br>S | She<br>She<br>Ser<br>She<br>Poo | ear Stre<br>ear Stre<br>sitivity<br>ear Stre<br>ket Pe | ength<br>ength<br>/ Valu<br>ength<br>enetro | based<br>based<br>e of So<br>based<br>meter | d on F<br>d on L<br>oil<br>d on | -ield \<br>.ab Va  | √ane<br>ane |
| metres          | 90.79                  |                    | GRO                                     | OUND SURFACE                   |           |                    | %            |                            | Ν                            | 5<br>10           | SCA<br>0kPa<br>20 3             | ALE FO<br>1004<br>30 40                                | OR TE<br>kPa<br>0 50                        | EST RI<br>150kF<br>) 60                     | ESUL<br>Pa<br>70                | .TS<br>200kf<br>80 | Pa<br>90    |
|                 | 70.26                  |                    | SAND - trace silt, grey,                | wet, dense                     |           | SS16A              | 92           | 11-15-18-31                | 23                           |                   | •                               |                                                        |                                             |                                             |                                 |                    |             |
|                 | 79.30                  |                    | SILTY CLAY - with san                   | d, trace gravel reddish brown, | — X       | SS16B              |              | -                          |                              | 0                 |                                 |                                                        |                                             |                                             | _                               | _                  |             |
| 91-12.0         | 79.23                  |                    | moist, hard                             |                                | X         | SS17               | 0            | 21-31-31-40                | 62                           |                   |                                 |                                                        |                                             |                                             |                                 | $\pm$              |             |
|                 |                        |                    |                                         |                                | $\square$ |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             | $\rightarrow$                   | +                  |             |
| 로는 13.0<br>뽀는   |                        |                    |                                         |                                | $\square$ | 5518               | 100          | 9-21-38-                   | 59                           |                   |                                 |                                                        |                                             |                                             | +                               | +                  |             |
|                 |                        |                    |                                         |                                | Δ         | 0010               |              | 50/127 mm                  | 00                           |                   |                                 |                                                        |                                             | $\neg$                                      |                                 | +                  |             |
|                 |                        |                    |                                         |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             | -                               | +                  |             |
| ₽T 14.0<br>₽T   |                        |                    |                                         |                                | $\land$   | 5519               | 100          | 17-26-48-<br>50/127 mm     | 59                           |                   |                                 |                                                        |                                             |                                             |                                 |                    |             |
|                 |                        |                    |                                         |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             |                                 | $\downarrow$       |             |
|                 | 76.01                  |                    | LIMESTONE - interbedd                   | ed sandstone, grey, good quali | ty        | RC1                | 100          | 78                         | 78                           |                   |                                 |                                                        |                                             |                                             |                                 | +                  |             |
|                 |                        |                    | based on RQD                            |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             | _                               | +                  |             |
| 5-              |                        |                    | 1100 - 400 4 MD-                        |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             | -                               | +                  |             |
| -<br>.0.0       |                        |                    | UCS = 139.1 MPa                         |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             |                                 |                    |             |
|                 |                        |                    |                                         |                                |           | RC2                | 08           | 76                         | 76                           |                   |                                 |                                                        |                                             |                                             |                                 | $\square$          |             |
|                 |                        |                    |                                         |                                |           | 1102               |              | 10                         | 10                           |                   |                                 |                                                        |                                             |                                             | $\rightarrow$                   | +                  |             |
| § <u>–</u> 17.0 |                        |                    |                                         |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             | -+                              | +                  |             |
|                 |                        |                    |                                         |                                |           | -                  |              |                            |                              |                   |                                 |                                                        |                                             |                                             | _                               | +                  |             |
|                 |                        |                    |                                         |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             |                                 |                    |             |
| 51-18.0<br>51-  |                        |                    |                                         |                                |           | RC3                | 100          | 89                         | 89                           |                   |                                 |                                                        |                                             |                                             |                                 |                    |             |
| 19.<br>         |                        |                    |                                         |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             | $\rightarrow$                   | $\rightarrow$      |             |
|                 | 71.00                  |                    | Borehole terminated at 1                | 8.87 mbas                      |           | -                  |              |                            |                              |                   | -                               | $\left  \right $                                       |                                             | _                                           | +                               | +                  | +           |
|                 | /1.92                  |                    | Note:                                   | 5                              |           |                    |              |                            |                              |                   | +                               | $\left  \right $                                       |                                             |                                             | +                               | +                  | -+          |
|                 |                        |                    | Borehole Coordinates                    |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             | -                               | +                  |             |
| 20.0            |                        |                    | - UTM Zone 18N<br>- Northing: 5017221.2 |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             |                                 |                    |             |
|                 |                        |                    | - Easting: 456581.5                     |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             |                                 | $\downarrow$       |             |
|                 |                        |                    |                                         |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             | _                               | +                  |             |
| 21.0            |                        |                    |                                         |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             | +                               | +                  | —           |
|                 |                        |                    |                                         |                                |           |                    |              |                            |                              |                   | +                               |                                                        |                                             | +                                           | +                               | +                  | +           |
|                 |                        |                    |                                         |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             |                                 |                    |             |
| 22.0            |                        |                    |                                         |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             | -                               | $\neg$             |             |
|                 | 1<br>S:                |                    |                                         |                                |           |                    |              | I                          | I                            |                   | _                               |                                                        |                                             |                                             |                                 |                    |             |
| t m bgs<br>RQD: | : meters b<br>Rock Qua | elow gi<br>lity De | round surface<br>signation              |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             |                                 |                    |             |
| FIIe:           |                        | -                  |                                         |                                |           |                    |              |                            |                              |                   |                                 |                                                        |                                             |                                             |                                 |                    |             |
| -               |                        |                    |                                         |                                |           |                    | _            |                            | _                            |                   |                                 |                                                        | _                                           |                                             |                                 | -                  |             |

| REFER        | ENCE No          |              | 11231101                                     |                                                            |           |                    |          |                            |                              | ENC         | LOS      | SURE                                            | = NO                                            | .:                                                         |                                                      | 20                                      |                  |         |
|--------------|------------------|--------------|----------------------------------------------|------------------------------------------------------------|-----------|--------------------|----------|----------------------------|------------------------------|-------------|----------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|------------------|---------|
|              |                  | 6            | HD                                           | BOREHOLE No.: <u>E</u>                                     | BH3-2     | 21                 |          | -                          |                              |             | E        | BOF                                             | REI                                             | HÓ                                                         |                                                      | LC                                      | G                |         |
|              |                  | ×            |                                              | <b>ELEVATION</b> :9                                        | 0.55      | m                  |          | -                          |                              |             |          | Page                                            | e:                                              | 1                                                          | of                                                   | f _1                                    | _                |         |
| CLIE         | ENT: Co          | nsolida      | ated Fastfrate (Ottawa) Ho                   | dinas Ltd.                                                 |           |                    |          |                            |                              |             |          |                                                 | L                                               | EGE                                                        | ND                                                   |                                         |                  |         |
| PRC          | JECT:            | ConFa        | stfrate, New Warehouse &                     | Offices                                                    |           |                    |          |                            |                              |             | SS<br>ST | Split :                                         | Spool<br>ov Tuł                                 | n<br>De                                                    |                                                      |                                         |                  |         |
| LOC          | ATION:           | Somm         | ne Street, Ottawa, ON                        |                                                            |           |                    |          |                            |                              |             | RC       | Rock                                            | Core                                            |                                                            |                                                      |                                         |                  |         |
| DES          | CRIBED I         | BY: _        | J. Scott                                     | CHECKED BY:                                                |           | L. Rar             | nos      |                            |                              | Ţ           |          | Wate                                            | er Lev                                          | el<br>tent (9                                              | 061                                                  |                                         |                  |         |
| DAT          | E (START         | -):          | 26 July 2021                                 | DATE (FINISH):                                             |           | 26 July            | 202      | 1                          |                              | Ē           | 1        | Attert                                          | perg li                                         | imits                                                      | %)<br>(%)                                            |                                         |                  |         |
| SC           | ALE              |              | STR                                          | ATIGRAPHY                                                  |           | SAN                | MPLE     | DATA                       |                              | •           | N        | Pene<br>Split S                                 | tratio<br>Spool<br>tratio                       | n Inde<br>n sam<br>n Inde                                  | ex bas<br>Iple                                       | ed on                                   |                  |         |
| Depth<br>BGS | Elevation<br>(m) | Stratigraphy | DES<br>SOIL :                                | CRIPTION OF<br>AND BEDROCK                                 | State     | Type and<br>Number | Recovery | Blows per<br>6 in. / 15 cm | Penetration<br>Index / RQD % | ∆<br>□<br>S | Cu<br>Cu | Dynai<br>Shea<br>Shea<br>Sensi<br>Shea<br>Pocke | r Stre<br>r Stre<br>itivity<br>r Stre<br>et Per | Cone s<br>ength l<br>ength l<br>Value<br>ength l<br>netror | sampl<br>based<br>based<br>e of So<br>based<br>meter | le<br>I on Fi<br>I on La<br>oil<br>I on | eld Va<br>มb Van | ne<br>e |
| metres       | 90.55            |              | GRO                                          | UND SURFACE                                                |           |                    | %        |                            | N                            | 40          | 50k      | SCAL                                            | E FC                                            | R TE                                                       | ST RE                                                |                                         | IS<br>200kPa     |         |
| -            | 00.48            |              | <b>TOPSOIL</b> (75 mm)                       |                                                            | _/\       |                    |          |                            |                              |             | ) 2      | 0 30                                            | 40                                              |                                                            | - 60                                                 |                                         |                  | 90      |
|              | 30.40            |              | FILL - SILTY SAND, with<br>compact           | n gravel, trace clay, brown, moist,                        | Å         | SS1                | 71       | 2-6-4-10                   | 10                           |             | 10       |                                                 |                                                 |                                                            |                                                      |                                         |                  |         |
| - 10         |                  |              |                                              |                                                            |           | SS2A               | 42       | 5-5-7-14                   | 12                           |             |          | 0                                               |                                                 |                                                            |                                                      |                                         | +                | _       |
| - 1.0        | 89.64            |              | with presence of organic                     | s/topsoli                                                  |           | 552B               |          | _                          |                              |             |          |                                                 |                                                 | _                                                          |                                                      | _                                       | _                | _       |
| -            |                  |              |                                              |                                                            |           |                    |          |                            |                              |             |          | -                                               |                                                 |                                                            |                                                      | +                                       | +                | +       |
| - 2.0        |                  |              |                                              |                                                            | М         | SS3                | 33       | 5-5-6-15                   | 11                           |             |          |                                                 |                                                 |                                                            |                                                      | +                                       | +                | +       |
| -            |                  | $\bigotimes$ |                                              |                                                            | H         |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      |                                         |                  |         |
| _            |                  | $\bigotimes$ | with to trace clay at 2.5 n                  | n bgs                                                      | Х         | SS4                | 42       | 7-6-4-3                    | 10                           | 0           | )        |                                                 |                                                 |                                                            |                                                      |                                         | $\perp$          |         |
| - 3.0        |                  | $\bigotimes$ | arey at 2.0 m has                            |                                                            |           |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      | _                                       | _                | _       |
| -            | 07.00            |              | moist                                        |                                                            | _#        | SS5                | 86       | 2-2-8-27                   | 10                           | 0           | )        |                                                 |                                                 |                                                            |                                                      | _                                       | +                | +       |
| -            | 87.20            |              |                                              | dark grav wat compact                                      | ┘凵        |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      |                                         | +                | +       |
| - 4.0        | 87.15            |              | SILTY SAND - trace grav                      | , dark grey, wet, compact<br>/el, some clay, brown, moist, | - M       | SS6                | 46       | 12-12-5-7                  | 17                           | ¢           | •        |                                                 |                                                 |                                                            |                                                      |                                         | -                |         |
| _            | 86.74            |              | compact                                      | · · · · · ·                                                | $\square$ |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      |                                         |                  |         |
|              |                  |              | loose at 4.75 m bgs                          |                                                            | Μ         | SS7                | 0        | 3-2-3-4                    | 5                            | •           |          |                                                 |                                                 |                                                            |                                                      |                                         | _                | _       |
| - 5.0        |                  |              | Ŭ                                            |                                                            | $\square$ |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      |                                         | _                | _       |
| -            |                  |              | compact to very dense at                     | 55 m bas                                                   | Μ         | 558                | 73       | 10-16-21-46                | 37                           | _           | н        |                                                 |                                                 | _                                                          |                                                      | -                                       | +                | +       |
| - 60         |                  |              | Gravel - 19%, Sand - 49                      | %, Silt - 26%, Clay - 6%                                   | Δ         | 000                |          |                            | 0.                           |             |          |                                                 |                                                 |                                                            |                                                      | -                                       | +                | -       |
| -₹           | WL6.2            |              |                                              |                                                            | Μ         | 000                | 100      | 10.00.07.44                | 50                           |             |          |                                                 |                                                 |                                                            |                                                      |                                         | +                | 1       |
| -            | 2021-07          | -26          |                                              |                                                            | Δ         | 228                | 100      | 13-20-27-41                | 55                           |             |          |                                                 |                                                 |                                                            |                                                      |                                         |                  |         |
| - 7.0        |                  |              |                                              |                                                            | \$        | SS10A              | 100      | 9-11-11-15                 | 22                           |             |          | •                                               |                                                 |                                                            |                                                      |                                         | _                | _       |
|              | 83.54            |              | with clay, trace gravel, tra                 | ace cobbles, grey, moist, compact                          | Х         | SS10B              |          | -                          |                              | ¢           | >        |                                                 | _                                               | _                                                          |                                                      | _                                       | +                | +       |
|              |                  |              |                                              |                                                            |           |                    |          |                            |                              |             |          |                                                 | _                                               | _                                                          |                                                      |                                         | _                | +       |
| - 8.0        |                  |              |                                              |                                                            | М         | SS11               | 71       | 8-13-20-28                 | 33                           | -0          |          | -                                               | •                                               |                                                            |                                                      |                                         | +                | +       |
| [            |                  |              |                                              |                                                            | H         |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      |                                         |                  |         |
|              |                  |              |                                              |                                                            | X         | SS12               | 79       | 5-10-16-36                 | 26                           | 0           |          | •                                               |                                                 | $\square$                                                  |                                                      |                                         | $\perp$          | $\perp$ |
| - 9.0        |                  |              | wat at 0.14 m h                              |                                                            | Ĥ         | 0040               |          | 10 50/105                  | 100                          |             |          |                                                 |                                                 |                                                            |                                                      | -                                       | +                | +       |
|              | 04.44            |              | Borehole terminated due                      | to auger refusal at 9.45 mbos                              | -         | 3313               | 00       | mm                         | 100+                         | 0           |          | -+                                              | -                                               | +                                                          |                                                      | +                                       | +                | +       |
|              | ŏ1.11            |              | Bedrock or boulder inferr                    | ed                                                         |           |                    |          |                            |                              |             |          | +                                               | +                                               | +                                                          |                                                      | +                                       | +                | +       |
| - 10.0       |                  |              | Noted:                                       |                                                            |           |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      |                                         | $\pm$            |         |
|              |                  |              | Borehole Location - UTM Zone 18N             |                                                            |           |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      |                                         |                  |         |
| -<br>        |                  |              | - Northing: 5017286.1<br>- Fasting: 456612.6 |                                                            |           |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      |                                         | +                | +       |
|              |                  |              | 200012.0                                     |                                                            |           |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      |                                         |                  |         |
| m bgs:       | meters be        | elow gr      | ound surface                                 |                                                            |           |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      |                                         |                  |         |
| RQD: F       | KOCK QUA         | ity Des      | signation                                    |                                                            |           |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      |                                         |                  |         |
|              |                  |              |                                              |                                                            |           |                    |          |                            |                              |             |          |                                                 |                                                 |                                                            |                                                      |                                         |                  |         |

| REFER                      | ENCE No                   | .:                  | 11231101                                    | -                                  |        |                    |                    |                            |                              | ENC                    | LOSI              | JRE N                                                 | lo.:                                            |                                                |                                              |                     |              |   |
|----------------------------|---------------------------|---------------------|---------------------------------------------|------------------------------------|--------|--------------------|--------------------|----------------------------|------------------------------|------------------------|-------------------|-------------------------------------------------------|-------------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------|--------------|---|
|                            |                           |                     |                                             | BOREHOLE No.:                      | BH4    | -21                |                    | _                          |                              |                        | в                 | OR                                                    | EHO                                             | Pag                                            | e 40                                         | ÖG                  | ;            |   |
|                            |                           |                     |                                             | ELEVATION:                         | 90.23  | 3 m                |                    | _                          |                              |                        | F                 | age:                                                  | _1                                              | _ (                                            | of _                                         | 2                   |              |   |
| CLIF                       | =NT· Co                   | nsolida             | ated Eastfrate (Ottawa) Ho                  | ldinas I td                        |        |                    |                    |                            |                              |                        |                   |                                                       | LEG                                             | EN                                             | 2                                            |                     |              |   |
| PRC                        | JECT:                     | ConFa               | stfrate, New Warehouse &                    | A Offices                          |        |                    |                    |                            |                              |                        | SS S<br>ST S      | Split Sp<br>Shelby <sup>-</sup>                       | oon<br>Tube                                     |                                                |                                              |                     |              |   |
| LOC                        | ATION:                    | Somn                | ne Street, Ottawa, ON                       |                                    |        |                    |                    |                            |                              |                        | RC F              | Rock Co                                               | ore                                             |                                                |                                              |                     |              |   |
| DES                        | CRIBED                    | BY: _               | J. Scott                                    | CHECKED BY:                        |        | L. Ra              | mos                |                            |                              | <b>▼</b>               | 1                 | Vater L                                               | evel                                            | (0/.)                                          |                                              |                     |              |   |
| DAT                        | E (STAR                   | r):                 | 8 July 2021                                 | DATE (FINISH):                     |        | 28 July            | y 202 <sup>-</sup> | 1                          |                              | Ļ                      |                   | Atterber                                              | g limit                                         | s (%)                                          |                                              |                     |              |   |
| sc                         | ALE                       |                     | STF                                         | ATIGRAPHY                          |        | SA                 | MPLE               | DATA                       |                              |                        |                   | Penetra<br>Split Sp<br>Penetra                        | tion in<br>oon sa<br>tion in                    | dex ba<br>ample<br>dex ba                      | ased o                                       | on                  |              |   |
| Depth<br>BGS               | Elevation<br>(m)          | Stratigraphy        | DES<br>SOIL                                 | SCRIPTION OF<br>AND BEDROCK        | C toto | Type and<br>Number | Recovery           | Blows per<br>6 in. / 15 cm | Penetration<br>Index / RQD % | ∆<br>□<br>S            | Cu S<br>Cu S<br>F | Shear S<br>Shear S<br>Sensitiv<br>Shear S<br>Pocket I | trengt<br>trengt<br>ity Val<br>trengt<br>Penetr | h base<br>h base<br>ue of t<br>h base<br>omete | pie<br>ed on<br>ed on<br>Soil<br>ed on<br>er | Field<br>Lab \      | Vane<br>′ane | ; |
| metres                     | 90.23                     |                     | GR                                          | OUND SURFACE                       |        |                    | %                  |                            | Ν                            | 10                     | 50kP<br>20        | CALE<br>a 10<br>30                                    | FOR 1<br>10kPa<br>40                            | EST F<br>150<br>50 6                           | RESU<br>kPa<br>0 7                           | LTS<br>2004<br>0 80 | (Pa<br>) 9(  | 0 |
| 77/1                       | 90.16                     |                     |                                             | h alay traca ractiata brawn ta     |        | SS1                | 43                 | 1-2-7-4                    | 9                            |                        |                   |                                                       |                                                 |                                                |                                              |                     |              |   |
| 24/<br>1                   |                           |                     | grey, moist, stiff                          | The clay, trace rootiets, brown to | ľ      |                    |                    |                            |                              | $\square$              | -                 |                                                       |                                                 |                                                |                                              | _                   | -            |   |
| 1.0                        |                           |                     | asphalt at 0.8 m bgs<br>cobble at 0.9 m bgs |                                    |        | ss2                | 54                 | 7-8-4-9                    | 12                           |                        | 0                 |                                                       |                                                 |                                                |                                              |                     |              |   |
|                            |                           |                     | cobble at 1.5 m bgs                         |                                    |        |                    |                    |                            |                              |                        | _                 |                                                       |                                                 |                                                |                                              |                     | _            |   |
| 2.0                        |                           |                     |                                             |                                    | Ź      | SS3                | 21                 | 9-10-7-5                   | 17                           |                        | -                 |                                                       |                                                 |                                                |                                              |                     |              |   |
|                            |                           |                     |                                             |                                    |        | SS4                | 0                  | 4-2-1-2                    | 3                            | •                      |                   |                                                       |                                                 |                                                |                                              |                     |              |   |
| 3.0                        | 07 10                     |                     | FILL - verv loose fill mix                  | ed with organics/top soil and w    |        | 7                  |                    |                            |                              |                        |                   |                                                       | -                                               |                                                |                                              | _                   | $\dashv$     |   |
|                            | 07.19                     |                     | fragments - dark brown,                     | moist                              | Ź      | SS5                | 67                 | 2-1-1-4                    | 2                            |                        |                   |                                                       |                                                 |                                                |                                              |                     | $\square$    |   |
| 4.0                        |                           |                     |                                             |                                    | Ν      | 7 886              | 12                 | 5101                       | 1                            |                        |                   |                                                       | -                                               |                                                |                                              | _                   | -            |   |
|                            |                           |                     |                                             |                                    | Ľ      | 330                |                    | 5-1-0-1                    |                              | H                      |                   |                                                       | -                                               |                                                |                                              | _                   | $\neg$       |   |
|                            |                           |                     |                                             |                                    |        | 7                  |                    |                            |                              |                        |                   |                                                       |                                                 |                                                |                                              |                     |              |   |
| 5.0                        |                           |                     |                                             |                                    | Ź      | SS7                | 17                 | 2-1-1-2                    | 2                            |                        |                   |                                                       |                                                 |                                                |                                              |                     |              |   |
|                            |                           |                     |                                             |                                    |        |                    | 12                 | 2-1-2-2                    | 3                            |                        |                   |                                                       |                                                 |                                                |                                              | _                   | $\dashv$     |   |
| <sup>2</sup> - <b>-</b> 60 |                           |                     |                                             |                                    | Ľ      |                    | 42                 | 2-1-2-2                    |                              |                        |                   |                                                       |                                                 |                                                |                                              | _                   |              |   |
|                            | WL6.1<br>2021-07          |                     |                                             |                                    |        | SS9A               | 83                 | 1-3-2-3                    | 5                            | •                      | þ                 |                                                       |                                                 |                                                |                                              |                     |              |   |
|                            | 83.68                     |                     | SILTY SAND - with clay                      | , trace rootlets, brown, moist     |        | SS9B               |                    | -                          |                              |                        | 0                 |                                                       |                                                 |                                                |                                              |                     |              |   |
| - 7.0                      | 00.00                     |                     | wet at 6.86 mbgs                            | and at 7.04 making                 |        | 8810               | 12                 | 4 11 11 15                 | 22                           |                        |                   |                                                       |                                                 |                                                |                                              |                     | _            |   |
|                            |                           |                     | trace gravel, rootiets sto                  | pped at 7.01 mbgs                  | ľ      | 3310               | 42                 | 4-11-11-13                 | ~~~                          |                        |                   |                                                       |                                                 |                                                |                                              |                     | _            |   |
| s<br>L<br>s                |                           |                     | brown with grey mottling                    | , moist at 7.62 m bgs              |        | SS11               | 83                 | 5-10-12-11                 | 22                           |                        |                   |                                                       |                                                 |                                                |                                              |                     |              |   |
|                            |                           |                     |                                             |                                    | Ľ      |                    |                    |                            |                              |                        |                   |                                                       | -                                               |                                                |                                              | _                   | -            |   |
|                            |                           |                     | wat at 8 60 mbga                            |                                    |        | SS12               | 100                | 21-27-31-30                | 58                           |                        |                   |                                                       |                                                 | •                                              |                                              |                     |              |   |
| 9.0                        |                           |                     | wei at 0.09 mbgs                            |                                    | Ĺ      |                    |                    |                            |                              |                        |                   |                                                       |                                                 |                                                |                                              |                     |              |   |
|                            |                           |                     |                                             |                                    |        | SS13               | 0                  | 22-22-19-36                | 41                           |                        |                   |                                                       | •                                               |                                                |                                              | _                   | $\neg$       |   |
|                            |                           |                     |                                             |                                    | Ĺ      |                    |                    |                            |                              |                        |                   |                                                       |                                                 |                                                |                                              |                     | -            |   |
|                            |                           |                     |                                             |                                    |        | SS14               | 71                 | 8-21-20-31                 | 41                           |                        |                   |                                                       | •                                               |                                                |                                              |                     | $\square$    |   |
|                            |                           |                     |                                             |                                    | F      |                    |                    |                            |                              | $\mid \downarrow \mid$ |                   |                                                       |                                                 |                                                |                                              |                     | $\dashv$     |   |
| 11.0                       |                           |                     | moist at 10.82 mbgs                         |                                    |        | SS15               | 67                 | 20-16-25-25                | 41                           | -0                     |                   |                                                       | •                                               |                                                |                                              |                     | _+           |   |
| m bgs:<br>RQD: I           | :<br>meters b<br>Rock Qua | elow gi<br>lity Des | round surface<br>signation                  |                                    |        |                    |                    |                            |                              | f                      | <u> </u>          |                                                       | ·                                               |                                                |                                              |                     |              |   |

| RE                              | FER       | ENCE N           | o.:           | 11231101                                     | -                              |       |       |                    |          |                            |                              | ENCI            | -05           | SURE                                        | No.                                      | :                                                      |                                                       |                      |              |           |
|---------------------------------|-----------|------------------|---------------|----------------------------------------------|--------------------------------|-------|-------|--------------------|----------|----------------------------|------------------------------|-----------------|---------------|---------------------------------------------|------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|----------------------|--------------|-----------|
|                                 |           |                  | ć             | HD                                           | BOREHOLE No.:                  | BH4   | 4-2   | :1                 |          | -                          |                              |                 | B             | BOR                                         | EH                                       | Pa<br>I <b>OL</b>                                      | ge 4′<br><b>E L</b>                                   | 00                   | ;            |           |
|                                 |           |                  | ×             |                                              | ELEVATION:                     | 90.2  | 23    | m                  |          | -                          |                              |                 |               | Page:                                       | _2                                       | 2                                                      | of _                                                  | 2                    |              |           |
|                                 | CLIE      | ENT: Co          | onsolic       | lated Fastfrate (Ottawa) F                   | łoldings Ltd.                  |       |       |                    |          |                            |                              |                 | 20            | 0-14-0                                      | <u>LE</u>                                | GEN                                                    | D                                                     |                      |              |           |
|                                 | PRO       | JECT:            | ConFa         | astfrate, New Warehouse                      | & Offices                      |       |       |                    |          |                            |                              |                 | ST            | Shelby                                      | Tub                                      | е                                                      |                                                       |                      |              |           |
|                                 | LOC       | ATION:           | Som           | me Street, Ottawa, ON                        |                                |       |       |                    |          |                            |                              | Ē               | RC            | Rock (                                      | Core                                     |                                                        |                                                       |                      |              |           |
| -                               | DES       | CRIBED           | BY:           | J. Scott                                     | CHECKED BY:                    |       | L     | eandro             | Ram      | os                         |                              | <b>▼</b>        |               | Water                                       | Leve                                     | <br>nt (%)                                             |                                                       |                      |              |           |
| 12/8/2                          | DAT       | E (STAR          | T):           | 8 July 2021                                  | DATE (FINISH):                 | :     |       | 28 July            | 202      | 1                          |                              | Ļ               |               | Atterbe                                     | erg lir                                  | nits (9                                                | 6)                                                    |                      |              |           |
| Date:                           | SC        | ALE              |               | STR                                          | ATIGRAPHY                      |       |       | SAM                | /IPLE    | DATA                       |                              | • 1             | N             | Penetr<br>Split S<br>Penetra                | ation<br>poon<br>ation                   | samp<br>Index                                          | base<br>le<br>based                                   | on n                 |              |           |
|                                 | pth<br>3S | Elevation<br>(m) | Stratigraphy  | DES<br>SOIL                                  | CRIPTION OF<br>AND BEDROCK     |       | State | Type and<br>Number | Recovery | Blows per<br>6 in. / 15 cm | Penetration<br>Index / RQD % | ∆ (<br>□ (<br>S | Cu<br>Cu      | Shear<br>Shear<br>Sensiti<br>Shear<br>Pocke | Strer<br>Strer<br>Vity \<br>Strer<br>Pen | ne sai<br>ngth b<br>ngth b<br>/alue<br>ngth b<br>etrom | nple<br>ased c<br>ased c<br>of Soil<br>ased c<br>eter | n Fiel<br>n Lab<br>n | ld Va<br>Var | ine<br>ie |
| me                              | tres      | 90.23            |               | GRO                                          | OUND SURFACE                   |       |       |                    | %        |                            | Ν                            | 10              | 50kl<br>20    | CALE                                        | FOR<br>00kPa<br>40                       | TES1<br>50                                             | RES<br>60kPa<br>60 7                                  | ULTS<br>2001<br>0 8  | kPa<br>0 9   | 0         |
|                                 |           | 70 00            |               | SILTY CLAY - with sand                       | d, trace gravel, reddish browr | ז,    |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        | Ĩ                                                     |                      |              |           |
|                                 |           | 10.00            |               | moist, hard                                  | , ,                            | ,     | Х     | SS16               | 100      | 13-24-26-22                | 50                           | (               | с             |                                             |                                          | •                                                      |                                                       |                      |              |           |
| <u>n</u>  - 1                   | 2.0       | 78.19            |               | Borehole terminated du                       | e to auger refusal at 12.04 m  | ıbgs. | Ħ     |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
|                                 |           |                  |               | Bedrock or boulder infe                      | rred                           |       |       |                    |          |                            |                              |                 | _             |                                             | -                                        | _                                                      |                                                       |                      |              |           |
|                                 | 3 0       |                  |               | Note:<br>Borehole Coordinate                 |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
| -<br> -<br> -                   | 0.0       |                  |               | - UTM 18 Zone                                |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
|                                 |           |                  |               | - Northing: 5017343.6<br>- Easting: 456673.6 |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
| ธ่⊢<br>ธ⊢1                      | 4.0       |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
| 2311                            |           |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
|                                 |           |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 | _             |                                             |                                          | _                                                      |                                                       | $\square$            |              |           |
| ≣  -<br>≳                       | 5.0       |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
| Ē                               |           |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
| 1<br>1<br>1<br>1<br>1<br>1<br>1 | 6.0       |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 | _             |                                             | _                                        | _                                                      |                                                       |                      |              |           |
| 5-<br>- 20                      | 0.0       |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
| 12311                           |           |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
| 5-1                             | 7.0       |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
|                                 |           |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               | _                                           |                                          |                                                        |                                                       | $\left  \right $     |              |           |
|                                 |           |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
|                                 | 8.0       |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
| ¥S<br>F                         |           |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              | -         |
| ∑<br> -1                        | 9.0       |                  |               |                                              |                                |       |       |                    |          |                            |                              | $\vdash$        | +             |                                             | +                                        | +                                                      |                                                       | $\left  - \right $   |              |           |
| . 101                           |           |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          | _                                                      |                                                       |                      |              |           |
|                                 |           |                  |               |                                              |                                |       |       |                    |          |                            |                              | $\vdash$        | +             | +                                           | $\top$                                   | +                                                      |                                                       |                      |              |           |
| ≝ <b>⊢</b> 2                    | 0.0       |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
|                                 |           |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 | $\square$     |                                             |                                          |                                                        |                                                       | Ш                    |              |           |
|                                 |           |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 | $ \downarrow$ |                                             | _                                        | _                                                      |                                                       | $\left  - \right $   |              |           |
| ∦−2                             | 1.0       |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 | +             |                                             | +                                        | +                                                      |                                                       | $\left  - \right $   |              |           |
|                                 |           |                  |               |                                              |                                |       |       |                    |          |                            |                              | $\vdash$        | +             | +                                           | -                                        | -                                                      |                                                       | $\left  \right $     |              |           |
| ≝⊨                              |           |                  |               |                                              |                                |       |       |                    |          |                            |                              | $\vdash$        | +             | +                                           | +                                        |                                                        | +                                                     |                      |              |           |
|                                 | 2.0       |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
|                                 |           |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
| NC<br>MI                        | DTES      | :<br>meters b    | elow <u>g</u> | round surface                                |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
| ິ∥ R0                           | QD: F     | Rock Qua         | ality De      | esignation                                   |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |
| ΞL_                             |           |                  |               |                                              |                                |       |       |                    |          |                            |                              |                 |               |                                             |                                          |                                                        |                                                       |                      |              |           |

| REFER                                     | RENCE N             | o.:                | 11231101                          | _                              |           |              |       |                 |                  | ENCLO        | DSUF                | RE N               | 0.:                 |                  |                     |                 |            |
|-------------------------------------------|---------------------|--------------------|-----------------------------------|--------------------------------|-----------|--------------|-------|-----------------|------------------|--------------|---------------------|--------------------|---------------------|------------------|---------------------|-----------------|------------|
|                                           |                     | G                  | HD                                | BOREHOLE No.:                  | BH5-      | 21           |       | -               |                  |              | во                  | RE                 | HC                  |                  | <sup>42</sup><br>LO | G               |            |
|                                           |                     | ×                  |                                   | ELEVATION:                     | 90.39     | m            |       | -               |                  |              | Paę                 | ge:                | 1                   | of               |                     | _               |            |
| CLI                                       | ENT: C              | onsolid            | ated Fastfrate (Ottawa) I         | loldings Ltd.                  |           |              |       |                 |                  |              |                     | L                  | EG                  | END              |                     |                 |            |
| PRO                                       | DJECT:              | ConFa              | astfrate, New Warehouse           | & Offices                      |           |              |       |                 |                  | ⊠ ss<br>⊠ sт | S Spli              | it Spo<br>elbv Ti  | on<br>ube           |                  |                     |                 |            |
| LOC                                       | CATION:             | Som                | me Street, Ottawa, ON             |                                |           |              |       |                 |                  |              | Roc                 | ck Co              | re                  |                  |                     |                 |            |
| DES                                       | SCRIBED             | BY:                | J. Scott                          | CHECKED BY:                    |           | Leandro      | Ram   | OS              |                  | ¥            | Wa                  | ter Le             | vel                 | 0()              |                     |                 |            |
| DAT                                       | E (STAR             | T):                | 26 July 2021                      | DATE (FINISH):                 |           | 26 Jul       | y 202 | 1               |                  | °<br>H       | Atte                | ter cor<br>erberg  | ntent (<br>  limits | %)<br>\$ (%)     |                     |                 |            |
| sc                                        | ALE                 |                    | STR                               | ATIGRAPHY                      |           | SA           | MPLE  | DATA            |                  | • N          | Per<br>Spli         | netrati<br>it Spo  | on Ind<br>on sa     | lex ba<br>mple   | ised or             | ו               |            |
| 2                                         | 6                   | 2                  |                                   |                                |           |              |       | 5               | <u>۔</u> %       | • N          | Pen<br>Dyn          | netratio<br>namic  | on Ind<br>Cone      | ex bas<br>sample | ed on<br>e          |                 |            |
| Depth                                     | atior<br>n)         | Jrapł              | DES                               | CRIPTION OF                    | te<br>te  | and          | overy | s per<br>15 cn  | RQD              | ∆ Cu<br>□ Cu | She<br>She          | ear Sti<br>ear Sti | rengtł<br>rengtł    | i base<br>i base | d on F              | ield V<br>ab Va | ane<br>ine |
| BGS                                       | Elev<br>(r          | tratiç             | SOIL                              | AND BEDROCK                    | ť.        | Nun          | Rec   | Blow<br>3 in. / | <sup>5</sup> ene | s<br>▲       | Ser<br>She          | ar Sti             | y Val<br>rength     | ue of S<br>base  | Soil<br>d on        |                 |            |
|                                           |                     | ٥<br>ا             |                                   |                                |           |              | 01    |                 | <u> </u>         |              | SCA                 |                    | OR TE               | ST R             | r<br>ESULI          | ſS              |            |
|                                           | 90.39               |                    |                                   | JUND SURFACE                   |           |              | %     |                 | N                | 10<br>10     | 0kPa<br><u>20 3</u> | 1001<br>30 4       | kPa<br>0 50         | 150kF<br>60      | Pa 2<br>70          | 00kPa<br>80     | 90         |
|                                           | 90.32               |                    | FILL - SILTY CLAY, tra            | ce sand, grey, moist, very sof | t/ )      | SS1          | 21    | 1-0-0-1         | 0                | -            |                     | þ                  |                     |                  |                     |                 | _          |
|                                           |                     |                    |                                   |                                |           |              |       |                 |                  |              |                     |                    |                     |                  |                     |                 | +          |
| - 1.0                                     | 89.48               |                    | FILL - SANDY SILT, tra            | ce clay, trace gravel, dark    | K         | SS2A<br>SS2B | 24    | 2-5-6-7         |                  |              |                     |                    |                     |                  |                     |                 |            |
|                                           |                     |                    | brown, moist, compact             |                                | Ľ         | 0022         |       |                 |                  |              |                     |                    |                     |                  |                     |                 |            |
| ⊑' <del> -</del><br>2)<br>⊔ <del> -</del> |                     |                    | loose at 1.52 mbgs                |                                | N         | SS3          | 24    | 12-5-4-6        | 9                |              |                     |                    |                     |                  |                     |                 |            |
| 2.0                                       |                     |                    | Gravel - 25%, Sand - 3            | 8%, Silt - 29%, Clay - 8%      | Ľ         | 4            |       |                 |                  |              |                     |                    |                     |                  |                     |                 |            |
|                                           |                     |                    | with clay, some gravel a          | at 2.29 mbgs                   |           | 664          | 04    |                 |                  |              |                     |                    |                     |                  |                     |                 | _          |
|                                           |                     |                    |                                   |                                | Ľ         | 554          | 24    | 5-4-2-5-6       | 6                |              |                     |                    |                     | _                |                     |                 | +          |
| 3 - 3.0                                   |                     |                    |                                   |                                |           |              |       |                 |                  |              |                     |                    |                     |                  |                     |                 | -          |
|                                           |                     |                    | shale cobble at 3.2 mb            | js                             | X         | SS5          | 24    | 4-3-6-7         | 9                | -•0-         |                     |                    |                     |                  |                     | 1               |            |
|                                           |                     |                    |                                   |                                | F         | 7            |       |                 |                  |              |                     |                    |                     |                  |                     |                 |            |
|                                           |                     |                    |                                   |                                | Х         | SS6          | 24    | 4-3-3-5         | 6                | •            |                     |                    |                     |                  |                     |                 |            |
|                                           |                     |                    | SILTY SAND trace de               | v trace gravel brown moist     |           |              |       |                 |                  |              |                     |                    |                     |                  |                     |                 |            |
| 3-50                                      | 85.82               |                    | compact to very dense             |                                | X         | SS7          | 24    | 3-5-8-9         | 13               | •            | 4                   |                    |                     |                  |                     |                 | +          |
|                                           |                     |                    | wet at 5.03 mbgs                  | 8%, Silt - 41%, Clay - 11%     | É         |              |       |                 |                  |              |                     |                    |                     |                  |                     |                 | +          |
|                                           |                     |                    | moist, containing cobbl           | es at 5.33 mbgs                | $\lambda$ | SS8          | 24    | 14-20-42-42     | 62               | 0            |                     |                    |                     | •                | ,                   | 1               |            |
| 6.0                                       |                     |                    |                                   |                                | Ľ         |              |       |                 |                  |              |                     |                    |                     |                  |                     |                 |            |
|                                           |                     |                    | grey at 6.1 mbgs                  |                                | Ν         | SS9          | 24    | 8-16-20-20      | 36               |              |                     | •                  |                     |                  |                     |                 |            |
|                                           |                     |                    |                                   |                                | Ľ         | 4            |       |                 |                  |              |                     |                    |                     |                  |                     |                 | _          |
| <u>-</u> 7.0                              |                     |                    | wet, with clay at 6.86 m          | bgs                            |           | SS10         | 16    | 15-34-          | 84/254           |              |                     |                    |                     |                  |                     |                 | -          |
|                                           |                     |                    |                                   |                                |           |              |       | 50/102 mm       | mm               |              |                     |                    |                     |                  |                     | +               | -          |
|                                           |                     |                    | moist at 7.62                     |                                |           | SS11A        | 15    | 23-40-50/76     | 90/229           | 0            |                     |                    |                     |                  |                     | +               |            |
| §                                         | 82.52               | 010000             | SANDY SILT - trace cla            | y, grey, moist, very loose     |           | SS11B        |       | mm<br>          | mm               |              | ,                   |                    |                     |                  |                     |                 |            |
|                                           | 82.39               |                    | Bedrock or boulder infe           | rred                           | 5.        |              |       |                 |                  |              |                     |                    |                     |                  |                     |                 | _          |
|                                           |                     |                    | Note:                             |                                |           |              |       |                 |                  |              |                     |                    |                     |                  |                     | _               |            |
| 2 9.0                                     |                     |                    | Borehole Coordinate - UTM 18 Zone |                                |           |              |       |                 |                  |              |                     |                    |                     | _                |                     | +               | +          |
|                                           |                     |                    | - Northing: 5017293.2             |                                |           |              |       |                 |                  |              |                     |                    |                     |                  |                     | +               |            |
| 5<br>                                     |                     |                    | - Easuny. 400032. I               |                                |           |              |       |                 |                  |              |                     |                    |                     |                  |                     |                 |            |
|                                           |                     |                    |                                   |                                |           |              |       |                 |                  |              |                     |                    |                     |                  |                     |                 |            |
|                                           |                     |                    |                                   |                                |           |              |       |                 |                  |              |                     |                    |                     |                  |                     | +               | _          |
| - 11.0                                    |                     |                    |                                   |                                |           |              |       |                 |                  |              | -                   |                    |                     | _                |                     | +               | +          |
|                                           | L<br>S:             |                    |                                   |                                |           |              |       |                 | L                |              |                     |                    |                     |                  |                     |                 |            |
| ROD                                       | meters b<br>Rock Qu | elow g<br>ality De | round surface<br>esignation       |                                |           |              |       |                 |                  |              |                     |                    |                     |                  |                     |                 |            |
|                                           |                     | ,                  | J.                                |                                |           |              |       |                 |                  |              |                     |                    |                     |                  |                     |                 |            |
| - ட                                       |                     |                    |                                   |                                |           |              |       |                 |                  |              |                     |                    |                     |                  |                     |                 |            |

|                          |                           | 0                  | 11210012-A2                                                                 | _                       |                 |          |              |                    |          |      |                            |                 | _030                                   |                                                                | ю<br>- Г                                                 | <del>'age -</del>                                   | <u>в</u>                       |                    |           |
|--------------------------|---------------------------|--------------------|-----------------------------------------------------------------------------|-------------------------|-----------------|----------|--------------|--------------------|----------|------|----------------------------|-----------------|----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--------------------------------|--------------------|-----------|
|                          |                           | G                  | <b>T</b>                                                                    | BOR                     | EHOLE No.:      | В        | H1           |                    |          |      |                            |                 | В                                      | OR                                                             | EH                                                       | OLE                                                 | ELC                            | )G                 |           |
|                          |                           |                    |                                                                             | ELEV                    | ATION:          | 90       | .21          | m                  |          |      |                            |                 | Pa                                     | age:                                                           | 1                                                        | of                                                  | _2_                            |                    |           |
| CLIE                     | ENT: C                    | onsolio            | dated Fastrate (Ottawa) H                                                   | loldinas Lta            | J.              |          |              |                    |          |      |                            |                 |                                        | l                                                              | LEG                                                      | <u>END</u>                                          |                                |                    |           |
| PRC                      | JECT:                     | New \              | Warehouse                                                                   | <u> </u>                |                 |          |              |                    |          |      |                            |                 | SS Sp<br>SS AI                         | olit Spo<br>Ider Sa                                            | oon<br>ample                                             |                                                     |                                |                    |           |
| LOC                      | ATION:                    | Som                | me Street, Ottawa, ON                                                       |                         |                 |          |              |                    |          |      |                            |                 | ST SP                                  | nelby T                                                        | ube                                                      |                                                     |                                |                    |           |
| DES                      | CRIBED                    | BY:                | RVT                                                                         |                         | CHECKED BY:     |          |              | B١                 | /        |      |                            | Ţ               | W                                      | ater Le                                                        | evel                                                     | 0/)                                                 |                                |                    |           |
| DAT                      | E (STAR                   | T): _              | 6 August 2020                                                               | )                       | DATE (FINISH):  |          |              | 6 Augu             | st 202   | 20   |                            | Ē.              | At                                     | terberg                                                        | g limits                                                 | %)<br>(%)                                           |                                |                    |           |
| SC                       | ALE                       |                    | STRATIGRAPHY                                                                |                         | MONITOR<br>WELL |          |              | SAM                | PLE C    | ΟΑΤΑ |                            | •               | N Pe<br>Sp<br>N Pe                     | enetrati<br>olit Spo<br>enetrati                               | ion Ind<br>ion sai                                       | lex bas<br>nple<br>ex bas                           | ed on<br>ed on                 |                    |           |
| Depth<br>BGS             | Elevation<br>(m)          | Stratigraphy       | DESCRIPTION<br>SOIL AND BEDR                                                | OF<br>ROCK              | 1.01-           |          | State        | Type and<br>Number | Recovery | OVC  | Penetration<br>Index / RQD | ∆ (<br>□ (<br>S | Dy<br>Cu St<br>Cu St<br>St<br>St<br>Pc | namic<br>near St<br>near St<br>ensitivit<br>near St<br>ocket P | Cone<br>rength<br>rength<br>ty Valu<br>rength<br>Penetro | sample<br>based<br>based<br>based<br>based<br>based | on Fie<br>on La<br>oil<br>I on | əld Va<br>ıb Va    | ane<br>ne |
| meters                   | 90.21                     |                    | GROUND SURF                                                                 | ACE                     |                 |          |              |                    | %        | ppm  | Ν                          | 10              | 50kPa<br>20                            | ALE F<br>100<br>30 4                                           | FOR TI<br>IkPa<br>0 50                                   | EST RI<br>150kPa<br>60                              | ESULT                          | 'S<br>JkPa<br>30 § | 90        |
| - 0.5                    | 90.1                      |                    | TOPSOIL (75 mm thick<br>FILL - Silty sand, trace<br>loose, brown, damp      | ness)<br>gravel,        | _               |          | M            | SS1                | 50       |      | 5                          | •               |                                        |                                                                |                                                          |                                                     |                                |                    |           |
| <br>1.0                  | 89.4                      |                    | FILL - Gravel, trace sar<br>possible cobble/boulde                          | nd,<br>r,               |                 |          | $\square$    | SS2                | 50       |      | 47                         |                 |                                        |                                                                | •                                                        |                                                     |                                |                    |           |
|                          |                           |                    | compact to dense, grey                                                      | , uamp                  |                 |          | Д            | 002                | 00       |      |                            |                 |                                        |                                                                |                                                          |                                                     |                                |                    |           |
| - 1.5<br>-<br>-          | 88.7                      |                    | FILL - Silty sand, some<br>trace gravel, compact, l<br>and grev, damp       | clay,<br>brown          | Riser           |          | M            | SS3                | 42       |      | 20                         |                 | •                                      |                                                                |                                                          |                                                     | <u> </u>                       |                    |           |
| - 2.0                    |                           |                    |                                                                             |                         | Cuttings        |          | Δ            |                    |          |      |                            |                 |                                        |                                                                |                                                          |                                                     |                                |                    |           |
| 25                       |                           |                    |                                                                             |                         |                 |          | M            |                    |          |      |                            |                 |                                        |                                                                |                                                          |                                                     | +                              |                    |           |
|                          |                           |                    |                                                                             |                         |                 |          | Å            | SS4                | 58       |      | 19                         |                 | •                                      |                                                                |                                                          |                                                     | +                              |                    |           |
| - 3.0<br>                | 87.2                      |                    | FILL - Silty clay, some s<br>trace gravel, very stiff, I<br>and grey, damp  | sand,<br>brown          |                 |          | $\mathbb{N}$ | SS5                | 33       |      | 10                         | •               |                                        |                                                                |                                                          |                                                     |                                |                    |           |
| -<br>- 4.0               | 86.3                      |                    | becoming sandy at 3.8<br>FILL - Clayey silty sand<br>compact, grey and brow | mbgs<br>I,<br>wn, moist | WL 3.99 -       | <b>▼</b> | $\mathbb{N}$ | SS6                | 58       |      | 14                         |                 | •                                      |                                                                |                                                          |                                                     |                                |                    |           |
| 4.5                      |                           |                    |                                                                             |                         | 4.57 -          |          | $\square$    | 667                | 24       |      | 14                         |                 |                                        |                                                                |                                                          |                                                     |                                |                    |           |
| * - 5.0                  |                           |                    |                                                                             |                         | 5.18 -          |          | Δ            | 337                | 21       |      | 14                         |                 |                                        |                                                                |                                                          |                                                     |                                |                    |           |
|                          |                           |                    |                                                                             |                         | 5.49-           |          | M            | SS8                | 46       |      | 12                         |                 | ,                                      |                                                                |                                                          |                                                     |                                |                    |           |
|                          | 84.3                      |                    | SILTY SAND- some cla<br>trace to some gravel, c<br>brown and grey, moist    | ay,<br>ompact,          | Sand —          |          | $\square$    |                    |          |      |                            |                 |                                        |                                                                |                                                          |                                                     | +                              |                    |           |
|                          |                           |                    |                                                                             |                         |                 |          | Д            | SS9                | 54       |      | 12                         |                 |                                        |                                                                |                                                          |                                                     | 1                              |                    |           |
|                          |                           |                    |                                                                             |                         |                 |          | Ø            |                    |          |      |                            |                 |                                        |                                                                |                                                          |                                                     |                                |                    |           |
| NOTES<br>mbgs:<br>RQD: I | :<br>meters b<br>Rock Qua | elow g<br>ality De | ground surface<br>esignation                                                |                         |                 |          |              |                    |          |      |                            |                 |                                        |                                                                |                                                          |                                                     |                                |                    |           |

| REFER                    | ENCE N                    | o.:                | 11215612-A2                                             | _                |                  |       |                    |          |      |                            | ENCLC                  | SUR                                  | E No.                                                     | :<br>Par                                            | <del>10.44</del>                              | 1              |                          |           |
|--------------------------|---------------------------|--------------------|---------------------------------------------------------|------------------|------------------|-------|--------------------|----------|------|----------------------------|------------------------|--------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|----------------|--------------------------|-----------|
|                          |                           | G                  |                                                         | BOR              | EHOLE No.:       | BH    | 1                  |          |      |                            |                        | BC                                   | RE                                                        | HO                                                  | LE                                            | LO             | G                        |           |
|                          |                           |                    |                                                         | ELE\             | ATION:           | 90.2  | 1 m                |          |      |                            |                        | Pag                                  | e: _2                                                     | 2                                                   | of _                                          | 2              |                          |           |
| CLI                      | ENT: C                    | onsolic            | lated Fastrate (Ottawa) H                               | loldings Lte     | d.               |       |                    |          |      |                            |                        | 0.11                                 | LE                                                        | GEN                                                 | 1D                                            |                |                          |           |
| PRC                      | JECT:                     | New \              | Varehouse                                               |                  |                  |       |                    |          |      |                            | SS SS                  | Auge                                 | Spoon<br>er Sam                                           | ple                                                 |                                               |                |                          |           |
| LOC                      | ATION:                    | Som                | me Street, Ottawa, ON                                   |                  |                  |       |                    |          |      |                            | ST                     | Shel                                 | by Tub                                                    | e                                                   |                                               |                |                          |           |
| DES                      | CRIBED                    | BY:                | RVT                                                     |                  | CHECKED BY:      |       | B/                 | /        |      |                            | ₹<br>o                 | Wate<br>Wate                         | er Leve<br>er conte                                       | l<br>ent (%)                                        |                                               |                |                          |           |
| DAT                      | E (STAR                   | :T):               | 6 August 2020                                           |                  | _ DATE (FINISH): |       | 6 Augu             | st 202   | 20   |                            | • N                    | Atter<br>Pene                        | berg lir<br>etration                                      | nits (%<br>Index                                    | 5)<br>baser                                   | d on           |                          |           |
| SC                       | ALE                       |                    | STRATIGRAPHY                                            |                  | MONITOR<br>WELL  |       | SAM                |          | DATA |                            | • N                    | Split<br>Pene                        | Spoon<br>tration                                          | sampl<br>Index I                                    | ie<br>based                                   | on             |                          |           |
| Depth<br>BGS             | Elevation<br>(m)          | Stratigraphy       | DESCRIPTION<br>SOIL AND BEDF                            | OF<br>ROCK       |                  | State | Type and<br>Number | Recovery | OVC  | Penetration<br>Index / RQD | ∆ Cu<br>□ Cu<br>S<br>▲ | Shea<br>Shea<br>Sens<br>Shea<br>Pock | ar Strer<br>ar Strer<br>sitivity \<br>ar Strer<br>ket Pen | ingth ba<br>igth ba<br>/alue c<br>igth ba<br>etrome | ised o<br>ised o<br>of Soil<br>ised o<br>eter | n Fie<br>n Lab | ld Va<br>v Var           | ine<br>1e |
| meters                   | 90.21                     |                    | GROUND SURF                                             | ACE              |                  |       |                    | %        | ppm  | Ν                          | 50<br>1,0              | SCA<br>)kPa<br>20 3(                 | LE FOI<br>100kPa                                          | ₹ TEST<br>150<br>50 (                               | TRES<br>0kPa<br>60 7                          | SULT:<br>2001  | S<br>(Pa<br>) <u>9</u> ( | 0         |
| _                        |                           |                    | Refusal encountered at<br>mbas                          | 17.2             | 7.01             |       | SS10               | 71       |      | 50+                        |                        |                                      |                                                           | •                                                   |                                               |                |                          |           |
| 7.5                      |                           |                    | Cobbles and boulders<br>encountered from 7.3 to<br>mbgs | 0 8.2            |                  |       | RC1                | 49       |      |                            |                        |                                      |                                                           | <u> </u>                                            |                                               |                |                          |           |
|                          | 82.0                      |                    | LIMESTONE- interbed                                     | ded              | -                |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| 8.5                      |                           |                    | sandstone, grey, fair be<br>good quality with depth     | ecoming<br>based |                  |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               | $\square$      |                          |           |
|                          |                           |                    | on RQD                                                  |                  |                  |       | RC2                | 94       |      | 73                         |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| 9.0                      |                           |                    |                                                         |                  |                  |       | _                  |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| -                        |                           |                    |                                                         |                  |                  |       | -                  |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| - 95                     |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| -                        |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
|                          |                           |                    |                                                         |                  |                  |       | RC3                | 100      |      | 82                         |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| -                        |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
|                          |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           | +                                                   | +                                             | $\rightarrow$  |                          |           |
| - 10.5                   |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           | _                                                   |                                               |                |                          |           |
|                          |                           |                    |                                                         |                  |                  |       | -                  |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| - 11.0                   |                           |                    |                                                         |                  |                  |       | RC4                | 100      |      | 90                         |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| -                        | 78.9                      |                    | Borehole terminated at                                  | 11.3             | -                |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| - 11.5                   |                           |                    | mbgs                                                    |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           | —                                                   | +                                             |                |                          |           |
| 07/6/1                   |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| ) – 12.0                 |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
|                          |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| )<br>12.5                |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      | _                                                         |                                                     |                                               |                |                          |           |
|                          |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| 2<br>2<br>2<br>2<br>13.0 |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
|                          |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |
| A-13.5                   |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           | $\top$                                              |                                               |                |                          |           |
| 61211<br>                |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      | +                                                         | +                                                   |                                               |                |                          |           |
| NOTES<br>mbgs:<br>RQD:   | :<br>meters b<br>Rock Qua | elow g<br>ality De | round surface<br>esignation                             |                  |                  |       |                    | <u> </u> |      |                            |                        |                                      | [                                                         |                                                     |                                               | [              |                          |           |
|                          |                           |                    |                                                         |                  |                  |       |                    |          |      |                            |                        |                                      |                                                           |                                                     |                                               |                |                          |           |

| DORCHOLE No:       BH2       BORCHOLE LOG         LIEVATION:       38.80 m       Prest:       1 of 2         CUENT:       Consolidated Fastrate (Ottwae) Holings Lis.       Prest:       1 of 2         PROJECT:       New Watchouse       Prest:       1 of 2         LOCATION       Some Strate, Ottwae, ON       CHECKED BY:       BV       Prest:       BV         DESCRIBED DY:       PAT       STRATIGRAMY       SAMPLE DATA       Stratement (%)       Wate Load         SCALE       STRATIGRAMY       SAMPLE DATA       Stratement (%)       Stratement (%)       Wate Load       Stratement (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REFER        | ENCE N           | 0.:                | 11215612-A2                                 |                                 |            |                    |          |      |                            | ENCL            | OSUI                                       | RE N                                             | 0.:<br>F                                     | Page 4                                                        | <u>5</u>                    |                            |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--------------------|---------------------------------------------|---------------------------------|------------|--------------------|----------|------|----------------------------|-----------------|--------------------------------------------|--------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|-----------------------------|----------------------------|-----------|
| ELEVATION:     B9.80 m     Page:     1     of       CULENT:     Concidence Plantel (Ottawa, ON     Concidence Plantel (Ottawa, ON     Concidence Plantel (Ottawa, ON       DesCRIECD BY:     EV     CHECKED BY:     EV       BASK     EV     EV     CHECKED BY:     EV       BASK     EV     EV     EV     EV       SCALE     STRATIORAPY?     SMAPLE DATA     The Plantel BY:     EV       BCS     E     STRATIORAPY?     SMAPLE DATA     The Plantel BY:     Concerns Plantel BY:       BCS     E     STRATIORAPY?     SMAPLE DATA     The Plantel BY:     Concerns Plantel BY:       BCS     E     STRATIORAPY?     SMAPLE DATA     The Plantel BY:     Concerns Plantel BY:       BCS     E     BS     DESCRIPTION OF     SS     SS     SS     Concerns Plantel BY:       BCS     BS     DESCRIPTION OF     SS     SS     SS     Concerns Plantel BY:     Concerns Plantel BY:       Concerns Plante     SS     SS     SS     SS     SS     Concerns Plantel BY:     Concerns Plantel BY:       Concerns Plante     SS     SS     SS     SS     SS     SS     SS     SS       Concerns Plante     SSS     SSS     SS     SS     SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                  | G                  | <u>a</u>                                    | BOREHOLE No.:                   | BH         | 2                  |          |      |                            |                 | B                                          | OR                                               | EH                                           | OLE                                                           | LC                          | G                          |           |
| CLENT:       Consolidated Fastrate (Ottawa) Hotdings Ltd.         PROJECT:       New Waterboards         LOCATION:       Some Street, Ottawa, ON         DESCRIBED BY:       6 August 2020         DATE (FINSH):       6 August 2020         SCALE       STRATGRAPHY         Description       STRATGRAPHY         Description       Stratter (Nitron of the View Stratter (Nitro                                                                                                                                                                                                                                           |              |                  |                    |                                             | ELEVATION:                      | 89.8       | 0 m                |          |      |                            |                 | Ра                                         | ge:                                              | 1                                            | of                                                            | 2                           |                            |           |
| PROLECT: New Marchouse       US as Aquet Sample         LOCATION: Somme Street, Ottawa, ON       DESCRIPTED BY:       RVT       CHECKED BY:       BV         DESCRIPED DY:       RVT       CHECKED BY:       BV       When comme Street, Status, ON         SCALE       STRATGRAFIV       SAMPLE DATA       ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CLIE         | ENT: Co          | onsolid            | ated Fastrate (Ottawa) He                   | oldings Ltd.                    |            |                    |          |      |                            |                 | 0 0 1                                      | <u> </u>                                         | EG                                           | <u>END</u>                                                    |                             |                            |           |
| LOCATION: Somme Street, Ottawa, ON       With Fool         DESCRIBED BY:       RVT       CHECKED BY:       BV         SCALE       STRATICRAPHY       SAMPLE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PRC          | JECT:            | New V              | Varehouse                                   |                                 |            |                    |          |      |                            | ∏ S<br>∏ G      | s spi<br>S Au                              | lit Spo<br>ger Sa                                | on<br>ample                                  |                                                               |                             |                            |           |
| DESCRIED BY:       RVT       CHECKED BY:       BV       Were called (W)         SCALE       STRATIGRAPY       SAMULDATK       Marked (W)         SCALE       STRATIGRAPY       SAMULDATK       SAMULDATK         Book       B       B       STRATIGRAPY       SAMULDATK         Depth       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOC          | ATION:           | Som                | me Street, Ottawa, ON                       |                                 |            |                    |          |      |                            | ⊠ s             | T Sh                                       | elby T                                           | ube                                          |                                                               |                             |                            |           |
| Date (START):     6 August 2020     Date (FINSH):     6 August 2020       SCALE     STRATIGRAPHY     SAMPLE DATA       Depth     §     §       BdS     DESCRIPTION OF     §       BdS     SOL AND EBDROCK     §       BdS     SOL AND EBDROCK     §       BdS     GROUND SURFACE     %       BdS     GROUND SURFACE     %       BdS     GROUND SURFACE     %       BdS     GROUND SURFACE     %       Depth     §     SS1       BdS     GROUND SURFACE     %       Depth     §     SS1       BdS     GROUND SURFACE     %       Depth     §     SS1       BdS     GROUND SURFACE     %       Depth     SS1     SS1       BdS     GROUND SURFACE     %       Depth     SS1     SS1       Depth     SS2     100       1.0     SS2     100       1.5     SS4     100       2.0     SS4     100       2.1     SS4     100       3.0     SS4     100       3.0     SS4     100       4.0     SS4     100       4.0     SS7     S3       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DES          | CRIBED           | BY:                | RVT                                         | CHECKED BY:                     |            | B                  | V        |      |                            | ₹<br>∘          | Wa<br>Wa                                   | iter Le                                          | evel<br>ntent                                | (%)                                                           |                             |                            |           |
| SCALE         STRATIGRAPHY         SAMPLE DATA         Participation stage of membra based on final View of the | DAT          | E (STAR          | T):                | 6 August 2020                               | DATE (FINISH):                  |            | 6 Augu             | ist 20   | 20   |                            | • N             | Atte<br>Per                                | erberg<br>netrati                                | limits                                       | s (%)<br>dex bas                                              | ed on                       |                            |           |
| Depth         End         DESCRIPTION OF<br>SOLLAND BEDROCK         End         End <th< td=""><td>SC</td><td>ALE</td><td></td><td>STRA</td><td>TIGRAPHY</td><td></td><td>SAN</td><td>IPLE D</td><td>DATA</td><td>1</td><td>• N</td><td>Spl<br/>Pei</td><td>lit Spo<br/>netrati</td><td>on sa<br/>on Inc</td><td>mple<br/>lex base</td><td>ed on</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SC           | ALE              |                    | STRA                                        | TIGRAPHY                        |            | SAN                | IPLE D   | DATA | 1                          | • N             | Spl<br>Pei                                 | lit Spo<br>netrati                               | on sa<br>on Inc                              | mple<br>lex base                                              | ed on                       |                            |           |
| meters         93.90         GROUND SURFACE         % por         N         meters         99.7         N         meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth<br>BGS | Elevation<br>(m) | Stratigraphy       | DES<br>SOIL                                 | SCRIPTION OF<br>AND BEDROCK     | State      | Type and<br>Number | Recovery | OVC  | Penetration<br>Index / RQD | ∆ C<br>□ C<br>S | Uyi<br>u Shi<br>u Shi<br>Sei<br>Shi<br>Poi | ear St<br>ear St<br>nsitivit<br>ear St<br>cket P | Cone<br>rengti<br>rengti<br>y Vali<br>rengti | sample<br>n based<br>n based<br>ue of So<br>n based<br>ometer | on Fi<br>on La<br>oil<br>on | eld Va<br>Ib Va            | ane<br>ne |
| 88.7       TOPSOL/C5 mm thickness)         1.0       FLL- Sity clay, firm to stiff, grey, moist         1.0       SS1         1.0       SS2         1.0       SS3         1.5       SS3         2.0       SS3         2.1       SS3         2.0       SS3         2.0       SS3         2.0       SS3         2.0       SS3         3.0       SS4         3.0       SS4         3.0       SS4         4.0       FUL - Clayey sand, some gravel, organics, loose, grey         ad brown, moist       SS6         5.0       SS7         85.2       FILL - Clayey sand, some gravel, organics, loose, grey         5.5       SS6         6.0       S3.7         83.7       SS8         6.5       SS7         83.7       SS8         SS8       SS9         100       Image: moist to saturated         70       Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | meters       | 89.80            |                    | GR                                          | OUND SURFACE                    |            |                    | %        | ppm  | Ν                          | 10              | SC<br>50kPa<br>20                          | ALE F<br>100<br>30 4                             | OR T<br>kPa<br>0 50                          | EST RE<br>150kPa                                              | 200<br>70                   | F <b>S</b><br>0kPa<br>30 9 | 90        |
| 0.5       0.5       SS1       58       2       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _            | 89.7             |                    | TOPSOIL (75 mm thickr                       | ess)                            | _/\        | /                  |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                  |                    |                                             | sun, grey, moist                | X          | SS1                | 58       |      | 2                          | •               |                                            |                                                  |                                              |                                                               | -                           |                            |           |
| 1.0       SS2       100       2       1       1         1.5       SS3       100       1       1       1       1         2.0       SS3       100       1       1       1       1       1         2.5       SS4       100       FV5       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E 0.5        |                  | $\bigotimes$       |                                             |                                 | Ļ          | <u> </u>           |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 1.0       SS2       100       2       1         1.5       SS3       100       1       1       1         2.0       SS3       100       1       1       1       1         2.5       SS3       100       FU5       1       1       1       1       1         3.0       SS4       100       FV5       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                  |                    |                                             |                                 |            | 7                  |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 1.5       2.0       SS3       100       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 1.0        |                  |                    |                                             |                                 | X          | SS2                | 100      |      | 2                          | •               |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 1.5       SS3       100       1         2.0       SS3       100       1         2.5       SS4       100       WH         3.0       SS4       100       WH         3.1       SS4       100       WH         4.0       FILL - Clayey sand, some gravel, organics, loose, grey       SS6       75         4.0       FILL - Clayey sand, some gravel, organics, loose, grey       SS6       75         4.5       85.2       FILL - Gravelly sandy silt, compact to very dense, brown and grey, saturated       SS7       83         5.0       SS8       63       70       6.5         6.5       SS8       63       70       6.5         6.5       SS9       100       27       6.5         MOTES:       mbgs: meters below ground surface       SS9       100       27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _            |                  |                    |                                             |                                 | Ľ          | <u> </u>           |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 2.0<br>2.5<br>3.0<br>3.5<br>86.0<br>4.0<br>4.5<br>85.2<br>FILL - Clayey sand, some gravel, organics, loose, grey<br>and brown, moist<br>5.5<br>5.0<br>5.5<br>6.0<br>83.7<br>SS8 63<br>70<br>5.5<br>6.0<br>83.7<br>SS8 63<br>70<br>5.5<br>6.0<br>83.7<br>SS8 63<br>70<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 1.5        |                  | $\bigotimes$       |                                             |                                 |            | 7                  |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 2.0<br>2.5<br>3.0<br>3.5<br>4.0<br>4.0<br>4.5<br>86.0<br>5.5<br>6.0<br>83.7<br>SILTY SAND- some gravel, compact to very dense,<br>grey, moist to saturated<br>SS8<br>6.5<br>8.7<br>SS8<br>SS8<br>SS8<br>SS8<br>SS8<br>SS8<br>SS8<br>SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                  |                    |                                             |                                 | X          | SS3                | 100      |      | 1                          | •               | _                                          |                                                  |                                              |                                                               |                             |                            |           |
| 2.5       SS4       100       WH       Image: Constraint of the second seco                 | - 2.0        |                  |                    |                                             |                                 | Ľ          | N N                |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 2.5       SS4       100       WH       Image: status       WH         3.6       86.0       FILL - Clayey sand, some gravel, organics, loose, grey and brown, moist       SS6       75       5         4.0       SS4       100       FV5       Image: status       SS6       75         4.5       85.2       FILL - Gravelly sandy silt, compact to very dense, brown and grey, saturated       SS7       83       Image: status       Image: status         5.0       SS8       63       70       Image: status       Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _            |                  |                    |                                             |                                 |            |                    |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 3.0       3.5       86.0       FILL - Clayey sand, some gravel, organics, loose, grey and brown, moist       FV5         4.0       4.5       85.2       FILL - Cravelly sandy silt, compact to very dense, brown and grey, saturated       SS6       75       5         5.0       5.5       5.5       5.5       5.5       5       5         6.0       83.7       SILTY SAND- some gravel, compact to very dense, grey, moist to saturated       SS7       83       70       •         6.5       SILTY SAND- some gravel, compact to very dense, grey, moist to saturated       SS9       100       27       •       10         NOTES:       mdgs: meters below ground surface RQD: Rock Quality Designation       SS7       SS9       100       27       •       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 2.5        |                  |                    |                                             |                                 | N          | SS4                | 100      |      | wн                         |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 3.0       3.0       FV5         3.5       86.0       FILL - Clayey sand, some gravel, organics, loose, grey and brown, moist       SS6       75         4.0       SS6       75       5       1       1         4.5       85.2       FILL - Gravelly sandy silt, compact to very dense, brown and grey, saturated       SS7       83       3       1       1         5.0       SS8       63       70       1       1       1       1         6.0       83.7       SILTY SAND- some gravel, compact to very dense, grey, moist to saturated       SS9       100       27       1       1         NOTES:       mbgr: meters below ground surface RQD: Rock Quality Designation       SS7       SS9       100       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            |                  |                    |                                             |                                 | $\wedge$   |                    |          |      |                            |                 | _                                          |                                                  |                                              |                                                               |                             |                            |           |
| 3.5       86.0       FILL - Clayey sand, some gravel, organics, loose, grey and brown, moist       SS6       75       5         4.0       A.0       SS6       75       SS6       75         4.5       85.2       FILL - Gravelly sandy silt, compact to very dense, brown and grey, saturated       SS7       83       5         5.0       SS8       63       70       0       0         5.5       SS8       63       70       0       0         6.0       83.7       SILTY SAND- some gravel, compact to very dense, grey, moist to saturated       SS9       100       27         0       0       0       0       0       0       0         0       0       0       0       0       0       0         5.6       SS8       63       70       0       0       0       0         6.5       SS9       100       27       0       0       0       0       0         NOTES:       mbers below ground surface       RQD: Rock Quality Designation       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 3.0        |                  |                    |                                             |                                 |            |                    |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 3.5       86.0       FILL - Clayey sand, some gravel, organics, loose, grey and brown, moist       SS6       75       5         4.5       85.2       FILL - Gravelly sandy silt, compact to very dense, brown and grey, saturated       SS7       83       6       33         5.0       5.0       SS8       63       70       6       6.0       83.7         6.0       83.7       SILTY SAND- some gravel, compact to very dense, grey, moist to saturated       SS9       100       27       6         NOTES:       mders below ground surface RDD: Rock Quality Designation       SS9       100       27       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _            |                  | $\bigotimes$       |                                             |                                 | ſ          |                    |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 86.0       FILL - Clayey sand, some gravel, organics, loose, grey and brown, moist       SS6       75         4.5       85.2       FILL - Gravelly sandy silt, compact to very dense, brown and grey, saturated       SS7       83         5.0       5.5       SS8       63       70       6.5         6.0       83.7       SILTY SAND- some gravel, compact to very dense, grey, moist to saturated       SS9       100       27         0       0       0       0       0       0       0         NOTES:       moters below ground surface RQD: Rock Quality Designation       SS7       SS9       100       27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 3.5        |                  |                    |                                             |                                 |            | FV5                |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 4.0       FILL - Clayey sand, some gravel, organics, loose, grey and brown, moist       SS6       75       5       1       1       1         4.5       85.2       FILL - Gravelly sandy silt, compact to very dense, brown and grey, saturated       SS7       83       33       1       1       1       1         5.0       SS8       63       70       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 86.0             |                    |                                             |                                 | V          |                    |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 4.5       85.2       FILL- Gravely sandy silt, compact to very dense, brown and grey, saturated       SS6       75       5       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 4.0        | 00.0             | $\bigotimes$       | FILL - Clayey sand, son<br>and brown, moist | ne gravel, organics, loose, gre | ∍y         | 1                  |          |      |                            |                 | _                                          |                                                  |                                              |                                                               | _                           |                            |           |
| 4.5       85.2       FILL - Gravelly sandy silt, compact to very dense, brown and grey, saturated       SS7       83         5.0       5.5       SS8       63       70       6.0         83.7       SILTY SAND- some gravel, compact to very dense, grey, moist to saturated       SS9       100       27         6.5       NOTES:       mbgs: meters below ground surface RQD: Rock Quality Designation       SS9       100       27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _            |                  |                    |                                             |                                 | Į,         | SS6                | 75       |      | 5                          | •               |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 85.2 FILL - Gravelly sandy silt, compact to very dense, brown and grey, saturated 5.5 6.0 83.7 SILTY SAND- some gravel, compact to very dense, grey, moist to saturated NOTES: mbgs: meters below ground surface RQD: Rock Quality Designation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 4.5        |                  |                    |                                             |                                 | -          | 1                  |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 5.0       5.5         6.0       83.7         SILTY SAND- some gravel, compact to very dense, grey, moist to saturated       SS9         100       27         0       0         0.0       27         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 85.2             |                    | FILL - Gravelly sandy si                    | It, compact to very dense,      |            | 1                  |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 5.5<br>6.0<br>83.7<br>6.5<br>SILTY SAND- some gravel, compact to very dense,<br>grey, moist to saturated<br>NOTES:<br>mbgs: meters below ground surface<br>RQD: Rock Quality Designation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50           |                  | $\bigotimes$       | brown and groy, saturat                     |                                 | X          | SS7                | 83       |      | 33                         |                 |                                            | •                                                |                                              |                                                               |                             |                            |           |
| 5.5       83.7       SILTY SAND- some gravel, compact to very dense, grey, moist to saturated       SS8       63       70       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  |                    |                                             |                                 | Ļ          | 1                  |          |      |                            |                 | _                                          |                                                  |                                              |                                                               |                             |                            |           |
| 6.0       83.7         6.1       83.7         SILTY SAND- some gravel, compact to very dense, grey, moist to saturated         6.5         83.7         SILTY SAND- some gravel, compact to very dense, grey, moist to saturated         SS9         100         27         0         100         27         0         100         27         0         100         27         0         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                  |                    |                                             |                                 |            | 1                  |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 6.0       83.7         SILTY SAND- some gravel, compact to very dense, grey, moist to saturated         6.5         NOTES:         mbgs: meters below ground surface         RQD: Rock Quality Designation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  | $\bigotimes$       |                                             |                                 | X          | SS8                | 63       |      | 70                         |                 |                                            |                                                  |                                              |                                                               | •                           |                            |           |
| 6.0       83.7       SILTY SAND- some gravel, compact to very dense, grey, moist to saturated       SS9       100       27       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |                    |                                             |                                 | Ľ          | Ň                  |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| 6.5<br>NOTES:<br>mbgs: meters below ground surface<br>RQD: Rock Quality Designation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 - 6.0      | 83.7             | $\bigotimes$       | SILTY SAND- some gra                        | vel, compact to very dense,     |            |                    |          |      |                            |                 | _                                          |                                                  |                                              |                                                               |                             |                            |           |
| NOTES:<br>mbgs: meters below ground surface<br>RQD: Rock Quality Designation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                    | grey, moist to saturated                    |                                 | Ŋ          | SS9                | 100      |      | 27                         |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| NOTES:<br>mbgs: meters below ground surface<br>RQD: Rock Quality Designation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5          |                  |                    |                                             |                                 | $\square$  | V                  |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| NOTES:<br>mbgs: meters below ground surface<br>RQD: Rock Quality Designation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                    |                                             |                                 |            |                    |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
| RQD: Rock Quality Designation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NOTES        | :                | ndattil<br>oletti  |                                             |                                 | <i>V</i> ` | N                  | 1        |      | I                          |                 |                                            |                                                  |                                              |                                                               | _                           | I                          | L         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RQD: I       | Rock Qua         | elow g<br>ality De | esignation                                  |                                 |            |                    |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                  |                    |                                             |                                 |            |                    |          |      |                            |                 |                                            |                                                  |                                              |                                                               |                             |                            |           |

| REFER                    | ENCE N                    | o.:                | 11215612-A2                                                               | -                                               |       |                    |          |      |                            | ENCLO             | SURE                                  | No.:                                                     | Pag                                              | <del>c 46</del>                          | 2                    |                         |
|--------------------------|---------------------------|--------------------|---------------------------------------------------------------------------|-------------------------------------------------|-------|--------------------|----------|------|----------------------------|-------------------|---------------------------------------|----------------------------------------------------------|--------------------------------------------------|------------------------------------------|----------------------|-------------------------|
|                          |                           | G                  | HD                                                                        | BOREHOLE No.:                                   | BH2   | 2                  |          |      |                            |                   | во                                    | RE                                                       | 101                                              | LE                                       | LO                   | G                       |
|                          |                           |                    |                                                                           | ELEVATION:                                      | 9.8   | 0 m                |          |      |                            |                   | Page                                  | : _2                                                     | _ (                                              | of _                                     | 2                    |                         |
| CLIE                     | ENT: Co                   | onsolic            | lated Fastrate (Ottawa) H                                                 | oldings Ltd.                                    |       |                    |          |      |                            | ⊠ ss              | Solit                                 | LEC                                                      | GEN                                              | D                                        |                      |                         |
| PRC                      | JECT:                     | New \              | Varehouse                                                                 |                                                 |       |                    |          |      |                            | GS GS             | Auge                                  | r Sampl                                                  | e                                                |                                          |                      |                         |
| LOC                      | ATION:                    | Som                | me Street, Ottawa, ON                                                     |                                                 |       |                    | ,        |      |                            | ⊠ ST              | Shelb<br>Wate                         | y Tube<br>r Level                                        |                                                  |                                          |                      |                         |
|                          | CRIBED                    | ВҮ: _<br>т\·       | RVT<br>6 August 2020                                                      |                                                 |       | B\<br>6 Augu       | /        | 20   |                            | •<br>•            | Wate                                  | r conten                                                 | t (%)                                            | `                                        |                      |                         |
|                          |                           | ··/· _             | 0 August 2020                                                             |                                                 |       | 0 Augu             | 51 20    | 20   |                            | • N               | Pene                                  | tration I                                                | ndex                                             | )<br>based<br>e                          | d on                 |                         |
| SC                       | ALE                       | کر<br>ا            | SIR                                                                       | AIIGRAPHY                                       |       | SAN                |          | DATA |                            | • N               | Penel                                 | ration In<br>mic Con                                     | ndex b<br>le sam                                 | )<br>ased                                | on                   |                         |
| Depth<br>BGS             | Elevation<br>(m)          | Stratigraph        | DE<br>SOIL                                                                | SCRIPTION OF<br>AND BEDROCK                     | State | Type and<br>Number | Recovery | OVC  | Penetration<br>Index / RQD | △ Cu<br>□ Cu<br>S | Shea<br>Shea<br>Sensi<br>Shea<br>Pock | r Streng<br>r Streng<br>tivity Va<br>r Streng<br>et Pene | oth bas<br>oth bas<br>alue o<br>oth bas<br>trome | sed o<br>sed o<br>f Soil<br>sed o<br>ter | n Fiel<br>n Lab<br>n | ld Vane<br>Vane         |
| meters                   | 89.80                     |                    | GF                                                                        | OUND SURFACE                                    |       |                    | %        | ppm  | Ν                          | 50<br>10          | SCAL<br><sup>kPa</sup><br>20 30       | E FOR<br>100kPa<br>40                                    | TEST<br>150<br>50 6                              | RES<br>kPa<br>0 7                        | ULTS<br>200k<br>0 8( | S<br>(Pa<br><u>) 90</u> |
| - 7.5                    |                           |                    |                                                                           |                                                 | X     | SS10               | 83       |      | 57                         |                   |                                       |                                                          | •                                                |                                          |                      |                         |
| -<br>-<br>- 8.0          |                           |                    |                                                                           |                                                 |       | SS11               | 91       |      | 70                         |                   |                                       |                                                          |                                                  |                                          |                      |                         |
| -<br>-<br>-<br>- 8.5     |                           |                    | Cobbles and boulders e                                                    | encountered from 8.4 to 9.3 mbgs                | X     | SS12               | 100      |      | 50+                        |                   |                                       |                                                          | •                                                |                                          |                      |                         |
| 9.0                      |                           |                    |                                                                           |                                                 |       |                    |          |      |                            |                   |                                       |                                                          |                                                  |                                          | _                    |                         |
|                          | 80.5                      |                    | Refusal encountered at<br>LIMESTONE- interbedo<br>good guality based on f | 9.3 mbgs<br>led sandstone, grey, fair to<br>RQD | ×     | SS13               | 100      |      | 50+                        |                   |                                       |                                                          | •                                                |                                          |                      |                         |
|                          |                           |                    |                                                                           |                                                 |       | RC1                | 100      |      | 85                         |                   |                                       |                                                          |                                                  |                                          | _                    |                         |
| _ 10.0<br>_              |                           |                    |                                                                           |                                                 |       |                    |          |      |                            |                   |                                       |                                                          |                                                  |                                          |                      |                         |
| 10.5<br>                 |                           |                    |                                                                           |                                                 |       |                    |          |      |                            |                   |                                       |                                                          |                                                  |                                          | _                    |                         |
| - 11.0                   |                           |                    |                                                                           |                                                 |       | RC2                | 100      |      | 83                         |                   |                                       |                                                          |                                                  |                                          |                      |                         |
| <br>11.5                 |                           |                    |                                                                           |                                                 |       |                    |          |      |                            |                   |                                       |                                                          |                                                  |                                          |                      |                         |
|                          |                           |                    |                                                                           |                                                 |       | RC3                | 100      |      | 52                         |                   |                                       |                                                          |                                                  |                                          |                      |                         |
| 12.5                     | 77.6                      |                    | Borehole terminated at                                                    | 12.2 mbgs                                       |       |                    |          |      |                            |                   |                                       |                                                          |                                                  |                                          |                      |                         |
|                          |                           |                    |                                                                           |                                                 |       |                    |          |      |                            |                   |                                       |                                                          |                                                  |                                          | _                    |                         |
| ġ <b>⊢</b> 13.0          |                           |                    |                                                                           |                                                 |       |                    |          |      |                            |                   |                                       |                                                          |                                                  | $\left  - \right $                       | -+                   |                         |
|                          |                           |                    |                                                                           |                                                 |       |                    |          |      |                            |                   |                                       |                                                          |                                                  | $\square$                                | $\square$            |                         |
| 13.5<br>                 |                           |                    |                                                                           |                                                 |       |                    |          |      |                            |                   |                                       |                                                          |                                                  |                                          |                      |                         |
|                          |                           |                    |                                                                           |                                                 |       |                    |          |      |                            |                   |                                       |                                                          |                                                  |                                          |                      |                         |
| NOTES<br>mbgs:<br>RQD: I | :<br>meters b<br>Rock Qua | elow g<br>ality De | round surface<br>esignation                                               |                                                 |       |                    |          |      |                            |                   |                                       | ·                                                        |                                                  |                                          |                      |                         |

| REFER                       | ENCEN                     | 0.:                | 11215612-A2                                                                      |                                                                   |       |                    |          |      |                            | ENCL              | J20k                                       |                                                                | .:<br>Pac                                           | <del>ac 47</del>                                         | 3                |                      |
|-----------------------------|---------------------------|--------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|--------------------|----------|------|----------------------------|-------------------|--------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|------------------|----------------------|
|                             |                           | G                  |                                                                                  | BOREHOLE No.:                                                     | BH    | 3                  |          |      |                            |                   | BC                                         | DRE                                                            | HO                                                  | LE                                                       | LO               | G                    |
|                             |                           | 9                  |                                                                                  | ELEVATION:                                                        | 90.8  | 8 m                |          |      |                            |                   | Pag                                        | je:                                                            | 1                                                   | of _                                                     | 3                |                      |
| CLIE                        | NT: Co                    | onsolid            | lated Fastrate (Ottawa) H                                                        | oldings I td.                                                     |       |                    |          |      |                            | _                 |                                            | LI                                                             | EGEN                                                | ND                                                       |                  |                      |
| PRO                         | JECT:                     | New V              | Varehouse                                                                        |                                                                   |       |                    |          |      |                            | ∐ St              | S Spli                                     | t Spoor<br>er Sam                                              | )<br>Inle                                           |                                                          |                  |                      |
| LOC                         | ATION:                    | Som                | me Street, Ottawa, ON                                                            |                                                                   |       |                    |          |      |                            |                   | Γ She                                      | lby Tub                                                        | be<br>be                                            |                                                          |                  |                      |
| DES                         | CRIBED                    | BY:                | RVT                                                                              | CHECKED BY:                                                       |       | B                  | V        |      |                            | Ţ                 | Wat                                        | er Leve                                                        | el                                                  |                                                          |                  |                      |
| DATE                        | E (STAR                   | RT):               | 7 August 2020                                                                    | DATE (FINISH):                                                    |       | 7 Augu             | ust 20   | 20   |                            | Ĥ                 | Atte                                       | er cont<br>rberg li                                            | ent (%)<br>mits (%                                  | 6)                                                       |                  |                      |
| SCA                         | ALE                       |                    | STRA                                                                             | TIGRAPHY                                                          |       | SAM                | IPLE [   | DATA |                            | • N               | Pen<br>Spli                                | etration<br>t Spoor                                            | n Index<br>n samp                                   | based<br>le<br>based                                     | on               |                      |
| Depth<br>BGS                | Elevation<br>(m)          | Stratigraphy       | DE<br>SOIL                                                                       | SCRIPTION OF<br>AND BEDROCK                                       | State | Type and<br>Number | Recovery | OVC  | Penetration<br>Index / RQD | ∆ Ci<br>□ Ci<br>S | Dyn<br>J She<br>J She<br>Sen<br>She<br>Poc | amic C<br>ar Stre<br>ar Stre<br>sitivity<br>ar Stre<br>ket Per | ngth ba<br>ngth ba<br>ngth ba<br>Value o<br>ngth ba | mple<br>ased or<br>ased or<br>of Soil<br>ased or<br>eter | ו Field<br>ו Lab | d Vane<br>Vane       |
| meters                      | 90.88                     |                    | GR                                                                               | OUND SURFACE                                                      |       |                    | %        | ppm  | Ν                          | ع<br>10           | SCA<br>50kPa<br><u>20</u> 3                | LE FO<br>100kP                                                 | R TES<br>a 15<br><u>50</u>                          | TRES<br>0kPa<br>60 70                                    | 200kF            | <sup>2</sup> a<br>90 |
| <br>0.5                     | 90.8                      |                    | TOPSOIL (125 mm thicl<br>FILL - Clayey silty sand<br>brown and grey, damp        | rness)<br>, trace to some gravel, compa                           | act,  | SS1                | 63       |      | 11                         | •                 |                                            |                                                                |                                                     |                                                          |                  |                      |
| 1.0                         | 90.0                      |                    | FILL - Crushed limestor<br>black, damp                                           | ne, asphalt, compact, grey an                                     | nd    | SS2                | 58       |      | 42                         |                   |                                            | •                                                              |                                                     |                                                          | _                |                      |
| 1.5                         | 89.4                      |                    | FILL - Sand, trace grave compact, grey and blac                                  | el, clay pockets, asphalt,<br>k, damp to moist                    |       | SS3                | 38       |      | 15                         | •                 |                                            |                                                                |                                                     |                                                          | _                |                      |
| 2.0                         |                           |                    |                                                                                  |                                                                   | Ľ     |                    |          |      |                            |                   |                                            |                                                                |                                                     |                                                          |                  |                      |
| 2.5<br>2.5                  | 88.6                      |                    | FILL - Silty sand, some cobbles/boulders, comp                                   | gravel, trace clay, possible<br>act , grey, moist                 |       | SS4                | 33       |      | 54                         |                   |                                            |                                                                | •                                                   |                                                          |                  |                      |
| - 3.0<br>- 3.5              | 87.8                      |                    | FILL - Clayey sand, asp<br>and brown, moist                                      | halt, loose to compact, grey                                      |       | SS5                | 33       |      | 22                         |                   | •                                          |                                                                |                                                     |                                                          |                  |                      |
| -<br>- 4.0<br><br>          |                           |                    |                                                                                  |                                                                   |       | SS6                | 4        |      | 8                          | •                 |                                            |                                                                |                                                     |                                                          |                  |                      |
|                             | 86.3                      |                    | FILL - Silty sand, trace a<br>dense to very dense, br<br>possible cobbles/boulde | gravel, trace to some clay,<br>own and grey, damp to moist<br>ers | t,    | SS7                | 50       |      | 54                         |                   |                                            |                                                                | •                                                   |                                                          |                  |                      |
|                             |                           |                    |                                                                                  |                                                                   |       | SS8                | 33       |      | 44                         |                   |                                            | •                                                              | •                                                   |                                                          | _                |                      |
|                             | 84.8                      |                    | SANDY SILT- some gra<br>grey, damp                                               | avel, compact to very dense,                                      |       | SS9                | 83       |      | 31                         |                   |                                            | •                                                              |                                                     |                                                          |                  |                      |
| NOTES:<br>Mbgs: r<br>RQD: R | :<br>neters b<br>Rock Qua | elow g<br>ality De | round surface<br>esignation                                                      |                                                                   | >     | 1                  |          |      |                            |                   |                                            |                                                                |                                                     |                                                          |                  |                      |

|                                                                                               | ENCEN                      | J.:               | 11215012-A2                                              |                                          |       |                    |          |      |                            | ENGLU             | JSUF                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pa                                                             | <del>ige 4</del>                                   | 3                           |                  |
|-----------------------------------------------------------------------------------------------|----------------------------|-------------------|----------------------------------------------------------|------------------------------------------|-------|--------------------|----------|------|----------------------------|-------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-----------------------------|------------------|
|                                                                                               |                            | G                 | HD                                                       | BOREHOLE No.:                            | BH    | 3                  |          |      |                            |                   | B                               | ORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ΞНС                                                            | )LE                                                | LC                          | G                |
|                                                                                               |                            |                   |                                                          | ELEVATION:                               | 90.8  | 8 m                |          |      |                            |                   | Pag                             | ge: _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                              | of                                                 | 3                           |                  |
| CLIE                                                                                          | ENT: Co                    | onsolio           | lated Fastrate (Ottawa) H                                | oldings Ltd.                             |       |                    |          |      |                            |                   | 0                               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EGE                                                            | ND                                                 |                             |                  |
| PRC                                                                                           | JECT:                      | New \             | Varehouse                                                |                                          |       |                    |          |      |                            |                   | S Spli<br>S Aug                 | t Spoo<br>Jer Sai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on<br>mple                                                     |                                                    |                             |                  |
| LOC                                                                                           | ATION:                     | Som               | me Street, Ottawa, ON                                    |                                          |       |                    |          |      |                            | 🗍 ST              | She                             | lby Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ibe                                                            |                                                    |                             |                  |
| DES                                                                                           | CRIBED                     | BY:               | RVT                                                      | CHECKED BY:                              |       | B                  | V        |      |                            | ₹<br>∘            | Wat<br>Wat                      | ter Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /el<br>tent (%                                                 | .)                                                 |                             |                  |
| DAT                                                                                           | E (STAR                    | T): _             | 7 August 2020                                            | DATE (FINISH):                           |       | 7 Augu             | ist 20   | 20   |                            | ⊢––<br>● N        | Atte                            | rberg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | limits (                                                       | %)<br>x hase                                       | n be                        |                  |
| SC                                                                                            | ALE                        |                   | STR                                                      | ATIGRAPHY                                |       | SAM                | IPLE [   | ΟΑΤΑ |                            | • N               | Spli                            | t Spoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on sam                                                         | ple<br>k base                                      | don                         |                  |
| Depth<br>BGS                                                                                  | Elevation<br>(m)           | Stratigraphy      | DE<br>SOIL                                               | SCRIPTION OF<br>. AND BEDROCK            | State | Type and<br>Number | Recovery | ovc  | Penetration<br>Index / RQD | ∆ Cu<br>□ Cu<br>S | Dyn<br>She<br>Ser<br>She<br>Poo | amic (<br>ear Strear Stream Strea | Cone si<br>ength l<br>ength l<br>v Value<br>ength l<br>enetron | ample<br>based<br>based<br>of So<br>based<br>neter | on Fie<br>on Lal<br>I<br>on | ld Vane<br>Vane  |
| meters                                                                                        | 90.88                      |                   | GR                                                       | OUND SURFACE                             |       |                    | %        | ppm  | Ν                          | 5<br>10           | SC/<br><sup>0kPa</sup><br>20 3  | ALE F(<br>100k<br>30 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DR TE<br>Pa 1<br>50                                            | ST RE<br>50kPa<br>60                               | SULT<br>2001<br>70 8        | S<br>(Pa<br>) 90 |
| -<br>-<br>- 7.5                                                                               |                            |                   |                                                          |                                          |       | SS10               | 83       |      | 28                         |                   | •                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |
| -<br>-<br>- 8.0<br>-                                                                          |                            |                   | Possible cobbles/bould<br>mbgs                           | ers encountered from 7.6 to 9.           |       | SS11               | 83       |      | 24                         |                   | •                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |
| -<br>- 8.5<br>-                                                                               |                            |                   |                                                          |                                          |       | SS12               | 25       |      | 80                         |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             | ,                |
| 9.0                                                                                           |                            |                   |                                                          |                                          |       |                    |          |      |                            |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |
| -<br>- 9.5<br>-                                                                               |                            |                   |                                                          |                                          | X     | SS13               | 100      |      | 42                         |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |
| 10.0                                                                                          |                            |                   | Refusal encountered at<br>Cobbles and boulders e<br>mbgs | 10 mbgs<br>encountered from 10.0 to 11.9 | I     | -                  |          |      |                            |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |
| 10.5                                                                                          |                            |                   |                                                          |                                          |       |                    |          |      |                            |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |
| <br>11.0                                                                                      |                            |                   |                                                          |                                          |       | RC1                | 32       |      |                            |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |
| _<br>11.5                                                                                     |                            |                   |                                                          |                                          |       |                    |          |      |                            |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |
|                                                                                               | 79.0                       |                   | LIMESTONE- interbedo                                     | led sandstone, grey, poor to             |       | -                  |          |      |                            |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                              |                                                    |                             |                  |
|                                                                                               |                            |                   |                                                          |                                          |       |                    |          |      |                            |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |
| 20-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                            |                   |                                                          |                                          |       | RC2                | 100      |      | 57                         |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |
|                                                                                               |                            |                   |                                                          |                                          |       |                    |          |      |                            |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | +                                                  |                             |                  |
| 13.5                                                                                          |                            |                   | Rock core mechanical b<br>14.9 mbgs                      | preaks during coring from 13.4           | to    |                    |          |      |                            |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |
|                                                                                               |                            |                   |                                                          |                                          |       |                    |          |      |                            |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |
| NOTES<br>mbgs:<br>RQD: I                                                                      | s:<br>meters b<br>Rock Qua | elow g<br>ality D | ground surface<br>esignation                             |                                          |       |                    |          |      |                            |                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                                    |                             |                  |

| REFER        | ENCE No          | o.:          | 11215612-A2               |                             |     |       |                    |          |      |                            | ENCLC                  | SUF                             |                                                                 | ).:<br><u>Pa</u>                                  | ac 4                                   | <u>, 3</u>                  |                         |
|--------------|------------------|--------------|---------------------------|-----------------------------|-----|-------|--------------------|----------|------|----------------------------|------------------------|---------------------------------|-----------------------------------------------------------------|---------------------------------------------------|----------------------------------------|-----------------------------|-------------------------|
|              |                  | G            |                           | BOREHOLE No.:               | Bł  | -13   |                    |          |      |                            |                        | B                               | ORF                                                             | EHO                                               | LE                                     | LC                          | G                       |
|              |                  |              |                           | ELEVATION:                  | 90. | 88    | 3 m                |          |      |                            |                        | Pag                             | je: _                                                           | 3                                                 | of                                     | 3                           |                         |
| CLIE         | ENT: Co          | nsolic       | lated Fastrate (Ottawa) H | oldings Ltd.                |     |       |                    |          |      |                            |                        | 0.1                             | L                                                               | EGE                                               | ND                                     |                             |                         |
| PRC          | JECT:            | New \        | Varehouse                 |                             |     |       |                    |          |      |                            | ∑ SS<br>  ] GS         | Spii<br>Aug                     | t Spoc<br>jer Sar                                               | n<br>nple                                         |                                        |                             |                         |
| LOC          | ATION:           | Som          | me Street, Ottawa, ON     |                             |     |       |                    |          |      |                            | 🖉 ST                   | She                             | lby Tu                                                          | be                                                |                                        |                             |                         |
| DES          | CRIBED           | BY:          | RVT                       | CHECKED BY:                 |     |       | B۷                 | /        |      |                            | <b>▼</b><br>∘          | Wa<br>Wat                       | ter Lev<br>ter con                                              | rel<br>tent (%                                    | )                                      |                             |                         |
| DAT          | E (STAR          | T):          | 7 August 2020             | DATE (FINISH):              |     |       | 7 Augu             | st 20    | 20   |                            | • N                    | Atte<br>Per                     | erberg<br>etratic                                               | limits ( <sup>e</sup><br>n Inde:                  | %)<br>k base                           | d on                        |                         |
| SC           | ALE              |              | STR                       | ATIGRAPHY                   |     |       | SAM                | PLE [    | DATA |                            | • N                    | Spli<br>Per                     | t Spoc                                                          | n sam<br>n Index                                  | ble<br>base                            | 1 on                        |                         |
| Depth<br>BGS | Elevation<br>(m) | Stratigraphy | DE<br>SOII                | SCRIPTION OF<br>AND BEDROCK |     | State | Type and<br>Number | Recovery | OVC  | Penetration<br>Index / RQD | ∆ Cu<br>□ Cu<br>S<br>▲ | She<br>She<br>Ser<br>She<br>Poo | arnic c<br>ar Stre<br>sar Stre<br>sitivity<br>ar Stre<br>ket Pe | ength b<br>ength b<br>Value<br>ength b<br>enetrom | ased<br>ased<br>of Soi<br>ased<br>eter | on Fie<br>on Lat<br>I<br>on | Id Vane<br>Vane         |
| meters       | 90.88            |              | GF                        | ROUND SURFACE               |     |       |                    | %        | ppm  | Ν                          | 50<br>10               | SC/<br>0kPa<br>20               | ALE FC<br>100k<br>30 40                                         | DR TES<br>Pa 19<br>50                             | 50kPa<br>60                            | 2001<br>2001                | 5<br>(Pa<br><u>0 90</u> |
| -            |                  |              |                           |                             |     |       | RC3                | 92       |      | 37                         |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| - 14.5       |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| -            |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| - 15.0       | 75.9             |              | Borehole terminated at    | 14.9 mbas                   |     | Ц     |                    |          |      |                            |                        |                                 | $\square$                                                       |                                                   | _                                      | $\square$                   |                         |
| F            |                  |              |                           | 0                           |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| - 15.5       |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| -            |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| - 16.0       |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| -            |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| - 16.5       |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| -            |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| - 17.0       |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| -            |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| - 17.5       |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   | -                                      |                             |                         |
| -            |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 | $\vdash$                                                        |                                                   |                                        | $\square$                   |                         |
| - 18.0       |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| -            |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| - 18 5       |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
|              |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
|              |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   | _                                      |                             |                         |
|              |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
| ام<br>19.5   |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
|              |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
|              |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
|              |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 | $\left  \right $                                                | _                                                 |                                        | $\left  \right $            |                         |
|              |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 | $\left  - \right $                                              |                                                   |                                        | $\left  - \right $          |                         |
|              |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
|              |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
|              | :<br>meters ha   | elow o       | round surface             |                             | 1   | - 1   |                    |          |      |                            |                        |                                 | ·                                                               | I                                                 |                                        | ·l                          |                         |
| RQD: I       | Rock Qua         | lity De      | esignation                |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |
|              |                  |              |                           |                             |     |       |                    |          |      |                            |                        |                                 |                                                                 |                                                   |                                        |                             |                         |

| REFER        | ENCE N           | 0            | 11213012-AZ                                     | -                            |           |                    |          |      |                            |                   | 50r                                    |                                                        | F                                                      | age 5                                                   | 04                          |                   |           |
|--------------|------------------|--------------|-------------------------------------------------|------------------------------|-----------|--------------------|----------|------|----------------------------|-------------------|----------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-----------------------------|-------------------|-----------|
|              |                  | G            | -ID                                             | BOREHOLE No.:                | BH4       | 1                  |          | -    |                            |                   | B                                      | OR                                                     | EH                                                     | OLE                                                     | ELC                         | )G                |           |
|              |                  |              |                                                 | ELEVATION:                   | 90.4      | 4 m                |          |      |                            |                   | Pag                                    | ge:                                                    | 1                                                      | of                                                      | 2                           |                   |           |
| CLIE         | ENT: C           | onsolic      | lated Fastrate (Ottawa) H                       | oldings Ltd.                 |           |                    |          |      |                            |                   |                                        | Ī                                                      | EG                                                     | <u>end</u>                                              |                             |                   |           |
| PRC          | JECT:            | New \        | Varehouse                                       |                              |           |                    |          |      |                            |                   | Spli<br>Auc                            | it Spo<br>ier Sa                                       | on<br>ample                                            |                                                         |                             |                   |           |
| LOC          | CATION:          | Som          | me Street, Ottawa, ON                           |                              |           |                    |          |      |                            | ST                | She                                    | elby T                                                 | ube                                                    |                                                         |                             |                   |           |
| DES          | SCRIBED          | BY:          | RVT                                             | CHECKED BY:                  |           | B                  | V        |      |                            | Ţ                 | Wat                                    | ter Le                                                 | evel                                                   | %)                                                      |                             |                   |           |
| DAT          | E (STAR          | T):          | 7 August 2020                                   | DATE (FINISH):               |           | 7 Augu             | ust 20   | 20   |                            | Ĥ                 | Atte                                   | erberg                                                 | limits                                                 | (%)<br>6 (%)                                            |                             |                   |           |
| SC           | ALE              |              | STR                                             | ATIGRAPHY                    |           | SAN                | /PLE I   | DATA |                            | • N               | Spli<br>Pen                            | it Spo<br>it strati                                    | ion ind<br>ion sa<br>on Ind                            | mple<br>ex base                                         | ed on<br>ed on              |                   |           |
| Depth<br>BGS | Elevation<br>(m) | Stratigraphy | DE<br>SOIL                                      | SCRIPTION OF<br>AND BEDROCK  | State     | Type and<br>Number | Recovery | OVC  | Penetration<br>Index / RQD | ∆ Cu<br>□ Cu<br>S | Dyn<br>She<br>She<br>Ser<br>She<br>Poc | amic<br>ear St<br>ear St<br>sitivit<br>ear St<br>ket P | Cone<br>rength<br>rength<br>y Valu<br>rength<br>enetro | sample<br>based<br>based<br>ue of So<br>based<br>ometer | on Fi<br>on La<br>oil<br>on | eld V<br>Ib Va    | ane<br>ne |
| meters       | 90.44            |              | GF                                              | OUND SURFACE                 |           |                    | %        | ppm  | Ν                          | 10<br>5           | SCA<br>0kPa<br>20 3                    | ALE F<br>100<br>30 4                                   | -ORT<br>kPa<br>0 50                                    | EST RE<br>150kPa<br>60                                  | 200<br>200                  | 5<br>)kPa<br>30 9 | 90        |
|              | 90.3             |              | TOPSOIL(125 mm thic<br>FILL - Gravelly sand, co | kness)<br>ompact. grev. damp | //        | 1                  |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
|              |                  |              |                                                 | mpact, grey, damp            | IX.       | SS1                | 63       |      | 33                         |                   |                                        | •                                                      |                                                        |                                                         |                             |                   |           |
| - 0.5        |                  |              |                                                 |                              |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
|              | 89.7             |              | FILL - Sand and gravel,                         | compact, grey, damp          |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| - 1.0        |                  |              |                                                 |                              | X         | SS2                | 50       |      | 17                         |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
|              |                  |              |                                                 |                              | /\        |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| - 1.5        |                  |              | Asphalt apcountared at                          | 1.5 mbas                     |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| E            |                  |              | Asphalt encountered at                          | 1.5 mbgs                     | M         | 000                |          |      | 07                         |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| - 2.0        |                  |              |                                                 |                              |           | 553                | 54       |      | 27                         |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
|              |                  |              |                                                 |                              |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| Far          |                  |              |                                                 |                              |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| E 2.5        |                  |              |                                                 |                              | X         | SS4                | 58       |      | 28                         |                   | •                                      |                                                        |                                                        |                                                         |                             |                   |           |
|              |                  |              |                                                 |                              | $\square$ |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| 3.0          | 87.4             |              | FILL - Silty sand. trace                        | clay, trace to some gravel.  |           | SS5                | 100      |      | 50+                        |                   |                                        |                                                        | •                                                      |                                                         |                             |                   |           |
|              |                  |              | possible cobbles/boulde                         | ers, brown and grey, damp to |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| - 3.5        |                  |              | moist                                           |                              |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
|              |                  |              |                                                 |                              |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| - 4.0        |                  |              | Wood encountered at 3                           | .8 mbgs                      | M         |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| F            |                  |              |                                                 |                              | Ň         | SS6                | 17       |      | 19                         |                   | •                                      |                                                        |                                                        |                                                         |                             |                   |           |
| E 15         |                  |              |                                                 |                              |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
|              |                  |              |                                                 |                              |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| 4/9/2        |                  |              |                                                 |                              | X         | SS7                | 0        |      | 4                          | •                 |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| 5.0          |                  |              |                                                 |                              | /\        |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
|              |                  |              |                                                 |                              |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| 5.5          |                  |              |                                                 |                              | M         | 000                | 75       |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
|              |                  |              |                                                 |                              |           | 558                | /5       |      | 29                         |                   |                                        |                                                        |                                                        |                                                         | _                           |                   |           |
| ġ<br>⊢ 6.0   | 04.0             |              |                                                 |                              | <u> </u>  |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
|              | 84.3             |              | SILTY SAND- trace to s                          | some gravel, trace clay,     | 1         |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
| - 6.5        |                  |              | compact to dense, grey                          | and brown, moist             | X         | SS9                | 79       |      | 49                         |                   |                                        |                                                        | •                                                      |                                                         |                             |                   |           |
|              |                  |              |                                                 |                              | $\square$ |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         | -                           |                   |           |
|              |                  |              |                                                 |                              |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
|              | ):<br>metere h   | elow         | round surface                                   |                              |           | -                  |          |      |                            |                   |                                        | 1                                                      |                                                        |                                                         |                             |                   |           |
|              |                  | 51011 9      |                                                 |                              |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |
|              |                  |              |                                                 |                              |           |                    |          |      |                            |                   |                                        |                                                        |                                                        |                                                         |                             |                   |           |

| REFER                  | ENCE N       | o.:     | 11215612-A2               | -                    |           |               |        |      |                     | ENCLU             | 1501                     | KE N                                  | 0.:<br>                              | aae <del>t</del>                     | <del>, 4</del>   |                 |           |
|------------------------|--------------|---------|---------------------------|----------------------|-----------|---------------|--------|------|---------------------|-------------------|--------------------------|---------------------------------------|--------------------------------------|--------------------------------------|------------------|-----------------|-----------|
|                        |              | G       |                           | BOREHOLE No.:        | BH        | 4             |        | -    |                     |                   | B                        | OR                                    | EH                                   | OLE                                  | ELC              | )G              |           |
|                        |              |         |                           | ELEVATION:           | 90.4      | 4 m           |        | -    |                     |                   | Paę                      | ge:                                   | 2                                    | of                                   | _2               |                 |           |
| CLIE                   | ENT: Co      | onsolic | lated Fastrate (Ottawa) H | oldinas Ltd.         |           |               |        |      |                     |                   |                          | L                                     | EG                                   | END                                  |                  |                 |           |
| PRC                    | JECT:        | New V   | Varehouse                 |                      |           |               |        |      |                     | SS 💽 SS           | 5 Spli<br>5 Auc          | it Spo<br>per Sa                      | on<br>ample                          |                                      |                  |                 |           |
| LOC                    | ATION:       | Som     | me Street, Ottawa, ON     |                      |           |               |        |      |                     | ST                | She                      | elby T                                | ube                                  |                                      |                  |                 |           |
| DES                    | CRIBED       | BY:     | RVT                       | CHECKED BY:          |           | B١            | /      |      |                     | <b>▼</b><br>∘     | Wa<br>Wat                | ter Le                                | vel<br>ntent (                       | %)                                   |                  |                 |           |
| DAT                    | E (STAR      | T):     | 7 August 2020             | DATE (FINISH):       |           | 7 Augu        | st 20  | 20   |                     | • N               | Atte                     | erberg                                | limits                               | (%)<br>(%)<br>lex bas                | ed on            |                 |           |
| SC                     | ALE          |         | STR                       | ATIGRAPHY            |           | SAM           | IPLE [ | DATA |                     | • N               | Spli                     | it Spo<br>etratio                     | on sar<br>on Ind                     | nple<br>ex base                      | ed on            |                 |           |
| Depth                  | vation<br>m) | igraphy | DE                        |                      | tate      | e and<br>mber | covery | OVC  | etration<br>< / RQD | ∆ Cւ<br>□ Cւ<br>Տ | Dyn<br>She<br>She<br>Ser | amic<br>ear Str<br>ear Str<br>sitivit | Cone s<br>rength<br>rength<br>v Valu | sample<br>based<br>based<br>le of Sc | on Fi<br>I on La | əld Va<br>ab Va | ane<br>ne |
| 665                    | Ele<br>(     | Strat   | 301                       | AND BEDROCK          | S S       | Nu Nu         | Re     |      | Pene<br>Inde)       | Ă                 | She                      | ar Sti<br>ket P                       | rength                               | based                                | on               |                 |           |
| meters                 | 90.44        |         | GR                        | OUND SURFACE         |           |               | %      | ppm  | N                   | 5                 | SC/<br><sup>0kPa</sup>   | ALE F                                 |                                      | EST RE                               | ESULT            | IS<br>)kPa      |           |
| _                      |              |         |                           |                      |           | SS10          | 4      |      | 32                  |                   | 20 .                     | •                                     | <u>) 50</u>                          |                                      | 10 8             | <u>so a</u>     |           |
|                        |              |         |                           |                      | Ľ         | N N           |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
| - 7.5                  |              |         |                           |                      |           | 7             |        |      |                     |                   | -                        |                                       |                                      | _                                    | +                | <u> </u>        |           |
|                        |              |         |                           |                      | X         | SS11          | 58     |      | 18                  |                   |                          |                                       |                                      |                                      | <u> </u>         |                 |           |
| - 8.0                  |              |         |                           |                      | $\square$ |               |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
| -                      |              |         |                           |                      |           | 7             |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
| - 0.5                  |              |         |                           |                      | X         | SS12          | 58     |      | 44                  |                   |                          |                                       | •                                    |                                      |                  |                 |           |
|                        |              |         |                           |                      | $\square$ |               |        |      |                     |                   |                          |                                       |                                      |                                      | +                |                 |           |
| _ 3.0                  |              |         |                           |                      |           | 7             |        |      |                     |                   |                          |                                       |                                      | —                                    | +                | -               |           |
| - 95                   |              |         |                           |                      | X         | SS13          | 67     |      | 50                  |                   |                          |                                       |                                      |                                      | —                | <u> </u>        |           |
|                        |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
| E 10.0                 |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
| _                      |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
| - 10.5                 |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      | +                |                 |           |
| _                      |              |         |                           |                      |           | 7             |        |      |                     |                   |                          |                                       |                                      |                                      | +                | -               |           |
| - 11.0                 |              |         |                           |                      | Х         | SS14          | 88     |      | 50+                 |                   |                          |                                       | -                                    | _                                    | +                | <u> </u>        |           |
| _                      | 79.3         |         | Borehole terminated at    | refusal at 11.1 mbgs |           |               |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
| - 11.5                 |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
|                        |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
| <sup>≆</sup><br>- 12.0 |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      | 1                |                 |           |
|                        |              |         |                           |                      |           |               |        |      |                     |                   |                          | $\left  \cdot \right $                | +                                    |                                      | +                | -               | -         |
| 12.5                   |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       | $\rightarrow$                        | +                                    | +                | _               | -         |
|                        |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       | $\rightarrow$                        |                                      | +                | <u> </u>        |           |
| <u>-</u> 13.0          |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
|                        |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
| 13.5                   |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      | 1                |                 |           |
|                        |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       | +                                    |                                      | +                | -               | -         |
|                        | :            |         |                           |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
| mbgs:                  | meters b     | elow g  | round surface             |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |
|                        |              |         |                           |                      |           |               |        |      |                     |                   |                          |                                       |                                      |                                      |                  |                 |           |

| REFER        | ENCE NO          | ).:          | 11215612-A2                                     | -                                       |       |                    |          |      |                            | ENCLOS                 | SURE N                                                    | 10.:<br>Pa                                                          | <del>de 52</del>                                          | 5                           |             |
|--------------|------------------|--------------|-------------------------------------------------|-----------------------------------------|-------|--------------------|----------|------|----------------------------|------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------|
|              |                  | C            |                                                 | BOREHOLE No.:                           | DCP   | Т5                 |          |      |                            |                        | BOR                                                       | EHO                                                                 |                                                           | .OG                         | i           |
|              |                  |              |                                                 | ELEVATION:                              | 90.7  | 6 m                |          |      |                            |                        | Page:                                                     | 1                                                                   | of _1                                                     | <u> </u>                    |             |
| CLIE         | ENT: Co          | onsolid      | lated Fastrate (Ottawa) H                       | oldings Ltd.                            |       |                    |          |      |                            |                        | <u> </u>                                                  | EGE                                                                 | ND                                                        |                             |             |
| PRC          | JECT:            | New V        | Varehouse                                       |                                         |       |                    |          |      |                            | ⊠ ss<br>∎ Gs           | Split Spc<br>Auger Sa                                     | on<br>ample                                                         |                                                           |                             |             |
| LOC          | ATION:           | Som          | me Street, Ottawa, ON                           |                                         |       |                    |          |      |                            | 🖉 ST                   | Shelby T                                                  | ube                                                                 |                                                           |                             |             |
| DES          | CRIBED           | BY:          | RVT                                             | CHECKED BY:                             |       | B                  | V        |      |                            | <b>▼</b><br>○          | Water Le<br>Water co                                      | evel<br>ntent (%)                                                   | )                                                         |                             |             |
| DAT          | E (STAR          | T):          | 7 August 2020                                   | DATE (FINISH): _                        |       | 7 Augu             | ıst 20   | 20   |                            | ⊢ <br>● N              | Atterberg<br>Penetrat                                     | limits (<br>ion Index                                               | %)<br>< based (                                           | on                          |             |
| SC           | ALE              |              | STRA                                            | ATIGRAPHY                               |       | SAN                | IPLE I   | DATA |                            | • N                    | Split Spo<br>Penetrati                                    | on samp<br>on Index                                                 | ble<br>based o                                            | 'n                          |             |
| Depth<br>BGS | Elevation<br>(m) | Stratigraphy | DE<br>SOIL                                      | SCRIPTION OF<br>AND BEDROCK             | State | Type and<br>Number | Recovery | OVC  | Penetration<br>Index / RQD | △ Cu<br>□ Cu<br>S<br>▲ | Shear St<br>Shear St<br>Sensitivi<br>Shear St<br>Pocket F | Cone sa<br>rength b<br>rength b<br>ty Value<br>rength b<br>Penetrom | mple<br>ased on<br>ased on<br>of Soil<br>ased on<br>leter | Field V<br>Lab Va           | /ane<br>ane |
| meters       | 90.76            |              | GR                                              | OUND SURFACE                            |       |                    | %        | ppm  | Ν                          | 50k<br>10 20           | SCALE F<br>Pa 100<br>0 <u>30 4</u>                        | OR TES<br>kPa 15<br>0 50                                            | 50 RESU<br>50 kPa<br>60 70                                | JLTS<br>200kPa<br><u>80</u> | 90          |
| _            |                  |              | Dynamic Cone Penetrat<br>encountered at 5.9 mbc | tion test from surface to refusal<br>Is |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
|              |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           | -                           |             |
| - 0.5        |                  |              |                                                 |                                         |       |                    |          |      |                            | -                      | _                                                         |                                                                     |                                                           |                             |             |
| F ,          |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           | _                           |             |
| _ 1.0        |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| -            |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| - 1.5<br>-   |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| _            |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| - 2.0        |                  |              |                                                 |                                         |       |                    |          |      |                            | _/                     |                                                           |                                                                     |                                                           | _                           |             |
|              |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| - 2.5        |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| _            |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| - 3.0        |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
|              |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           | _                           |             |
| - 3.5        |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| _            |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| - 4.0        |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| _            |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| - 4.5        |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     | +                                                         | _                           |             |
|              |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| 5.0          |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
|              |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| <u> </u>     |                  |              |                                                 |                                         |       |                    |          |      |                            | -                      |                                                           |                                                                     | ++                                                        | +                           |             |
|              |                  |              |                                                 |                                         |       |                    |          |      |                            | $\rightarrow$          | -                                                         |                                                                     | $\downarrow \downarrow$                                   |                             |             |
| 6.0          | 84.8             |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           | $\square$                   |             |
|              |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| 6.5          |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
|              |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           | +                           |             |
|              | :                |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
| mbgs:        | meters be        | elow g       | round surface                                   |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |
|              |                  |              |                                                 |                                         |       |                    |          |      |                            |                        |                                                           |                                                                     |                                                           |                             |             |

| REFER        |                  | o.:          | T020556-A1                   |            |                  |             |                         |                    |          |                            |                            | ENCI                 | OSU                              | RE N                                                  | o.:                                            | ado-                                      | 52                                    | 16                 |                      |
|--------------|------------------|--------------|------------------------------|------------|------------------|-------------|-------------------------|--------------------|----------|----------------------------|----------------------------|----------------------|----------------------------------|-------------------------------------------------------|------------------------------------------------|-------------------------------------------|---------------------------------------|--------------------|----------------------|
|              |                  |              |                              | BORE       | HOLE No.:        | B           | 5-1                     |                    |          |                            |                            |                      | BC                               | RE                                                    | нс                                             | )LE                                       | E L (                                 | C                  |                      |
| iN           | JSPE             | C*S          | 5OL                          | ELEV       | ATION:           | 90.         | 48                      | m                  |          |                            |                            |                      | Pa                               | ige:                                                  | 1                                              | 0                                         | of                                    | 1                  |                      |
|              | 19               |              |                              | ļ,         |                  |             |                         |                    |          |                            |                            |                      |                                  | L                                                     | EG                                             | ENC                                       | )                                     |                    |                      |
| CLIE         | NT: <u>R.</u>    | W.Ton        | ninson Ltd.                  |            |                  |             |                         |                    |          |                            | —                          | $\boxtimes$          | SS Sp                            | lit Spo                                               | on                                             |                                           | -                                     |                    |                      |
| PRC          |                  | L of 2       | 6 and 27 concession 6        | Ottawa On  | tario            |             |                         |                    |          |                            | —                          |                      | ST SH                            | ielby T<br>ock Co                                     | ube                                            |                                           |                                       |                    |                      |
| DES          |                  | BY.          | B Beveridae                  | Ollawa, On | CHECKED B        | Y:          |                         | J.Ben              | nett     |                            |                            | Ţ                    | W                                | ater Le                                               | evel                                           |                                           |                                       |                    |                      |
| DAT          | E (STAR          | T):          | October 30, 200              | 8          | DATE (FINISI     | H):         | (                       | October 3          | 30, 20   | 008                        |                            | °                    | Wa<br>Ati                        | ater con<br>terberg                                   | ntent (<br>1 limit:                            | (%)<br>s (%)                              |                                       |                    |                      |
|              |                  |              |                              |            | MONITO           | /<br>)R     | 1                       |                    |          |                            |                            | • 1                  | N Pe<br>So                       | netrati<br>lit Spo                                    | ion In<br>ion sa                               | dex b<br>mole                             | ased                                  | on                 |                      |
| SC.          |                  |              | STRATIGRAPHY                 |            | WELL.            |             |                         | SAN                |          |                            |                            | • 1                  | N Pe<br>Dy                       | netratio                                              | on Ind<br>Cone                                 | ex ba<br>samp                             | sed o<br>le                           | л                  |                      |
| Depth<br>BGS | Elevation<br>(m) | Stratigraph  | DESCRIPTION<br>SOIL AND BEDR | OF<br>DCK  | 91.70—<br>91.60— | F           | State                   | Type and<br>Number | Recovery | Organic Vapo<br>ppm or %LE | Penetration<br>Index / RQE | ∆ (<br>□ (<br>S<br>▲ | Cu Sh<br>Cu Sh<br>Se<br>Sh<br>Po | iear St<br>iear St<br>insitivit<br>iear St<br>icket P | rengti<br>rengti<br>ty Val<br>rengti<br>'enetr | h bas<br>h bas<br>ue of<br>h bas<br>omete | ed on<br>ed on<br>Soil<br>ed on<br>er | Field<br>Lab       | l Vane<br>Vane       |
| meters       | 90.48            |              | GROUND SURF                  | ACE        |                  |             |                         |                    | %        | ppm                        | И                          | 10                   | SC/<br>50kPa<br>20               | ALE FO<br>100<br>30 4                                 | OR TE<br>kPa<br>0 50                           | EST F<br>150k                             | RESU<br>Pa                            | LTS<br>200kF<br>80 | <sup>з</sup> а<br>90 |
| _            |                  |              | FILL - silty clay, some s    | sand,      |                  |             | М                       | SS1                | 46       |                            | 6                          | •                    |                                  |                                                       |                                                |                                           | _                                     | 1                  |                      |
|              |                  | $\bigotimes$ | organics, loose to dens      | Se,        | _                |             | Ĥ                       |                    |          |                            |                            | +                    |                                  |                                                       |                                                |                                           | +                                     |                    |                      |
| _ 1.0        |                  | $\bigotimes$ | green/brown/grey, mos        | SI         |                  |             | М                       | SS2                | 25       |                            | 10                         | •                    |                                  | _                                                     |                                                |                                           |                                       |                    |                      |
| _            |                  |              |                              |            |                  | $\otimes$   | A                       |                    | -        |                            |                            |                      |                                  |                                                       |                                                | -+                                        | -                                     |                    | +                    |
| - 2.0        |                  | $\bigotimes$ |                              |            |                  |             | Å                       | 883                | 50       |                            | 4                          | •                    |                                  |                                                       |                                                |                                           |                                       | 1                  | 1                    |
| _            |                  |              |                              |            |                  |             | $\overline{\mathbf{N}}$ | SS4                | 50       |                            | 9                          | •                    |                                  |                                                       |                                                |                                           |                                       | +                  |                      |
| - 3.0        |                  | $\bigotimes$ |                              |            |                  |             | A                       |                    |          |                            |                            |                      |                                  | _                                                     |                                                |                                           |                                       | _                  | _                    |
|              |                  | $\bigotimes$ |                              |            |                  | $\boxtimes$ | X                       | SS5                | 75       |                            | 50+                        |                      |                                  |                                                       |                                                | ┝┤                                        | -+                                    | +                  |                      |
| -            |                  | $\bigotimes$ |                              |            |                  | X           | Ħ                       |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           | ~                                     |                    |                      |
| - 4.0        |                  |              |                              |            |                  |             | М                       | SS6                | 59       |                            | 10                         | •                    |                                  |                                                       |                                                |                                           |                                       | +                  |                      |
| _            |                  |              |                              |            |                  | $\boxtimes$ | М                       | SS7                | 67       |                            | 50+                        |                      |                                  |                                                       |                                                |                                           |                                       |                    | _                    |
| _ 5.0        | 05.45            | $\bigotimes$ |                              |            |                  |             | Δ                       | 337                | 07       |                            | 501                        |                      |                                  |                                                       |                                                |                                           |                                       | +                  |                      |
| _            | 85.15            |              | SANDY SILT- some sa          | ind,       |                  |             | M                       | SS8                | 25       |                            | 50+                        |                      |                                  |                                                       | •                                              | •                                         |                                       |                    | _                    |
| - 6.0        |                  |              | stiff, greenish brown, n     | noist      |                  | $\boxtimes$ | B                       |                    |          |                            |                            | _                    |                                  |                                                       |                                                |                                           |                                       | _                  |                      |
| _            |                  |              |                              |            |                  |             | Х                       | SS9                | 42       |                            | 50+4                       |                      |                                  |                                                       |                                                | ┝┤                                        | -                                     | +                  |                      |
| - 7.0        | 83.62            |              | SANDY CLAY- some of          | iravel,    | 6.98-            | $\otimes$   | Ħ                       | 0040               |          |                            |                            |                      |                                  |                                                       |                                                |                                           | _                                     | _                  |                      |
| <b>–</b>     | 83.16            | K            | trace oxidation, very so     | oft, red / | 7.29-            |             | Å                       | SS10               | 0        |                            | R                          |                      |                                  | -                                                     |                                                |                                           |                                       | +                  | +                    |
|              |                  |              | SILTY CLAY- some gra         | avel, very | WL 7.63-         | X           | $\nabla$                | SS11               | 50       |                            | R                          |                      |                                  |                                                       |                                                |                                           |                                       | _                  |                      |
| - 8.0        |                  | H            | stiff, grey, moist           |            |                  |             | $\square$               |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           | -                                     |                    |                      |
| _            |                  | 11           |                              |            | 8.81             |             | X                       | SS12               | 46       |                            | R                          |                      | 4                                |                                                       |                                                |                                           | _                                     | =                  |                      |
| - 9.0        |                  |              |                              |            |                  |             | Ħ                       |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           |                                       | _                  |                      |
| -            |                  |              |                              |            |                  |             | X                       | SS13               | 17       |                            | R                          |                      |                                  |                                                       |                                                |                                           |                                       |                    |                      |
| - 10.0       | 80.45            | 122          | End of Boreho                | lo         | 10.03-           |             |                         |                    |          |                            |                            |                      |                                  | -                                                     |                                                |                                           | _                                     |                    | _                    |
|              |                  |              | Auger Refusa                 |            |                  |             |                         |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           |                                       |                    |                      |
| -11.0        |                  |              | Assumed Bedro                | OCK        |                  |             |                         |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           |                                       | $\neg$             |                      |
| _            |                  |              |                              |            |                  |             |                         |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           |                                       | -                  |                      |
|              |                  |              |                              |            |                  |             |                         |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           |                                       | $\square$          |                      |
| - 12.0       |                  |              |                              |            |                  |             |                         |                    |          |                            |                            | $\vdash$             |                                  |                                                       |                                                |                                           | -                                     | +                  |                      |
| Ē            |                  |              |                              |            |                  |             |                         |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           | _                                     |                    |                      |
| _ 13.0       |                  |              |                              |            |                  |             |                         |                    |          |                            |                            | $\vdash$             |                                  | _                                                     | -                                              |                                           |                                       | _                  |                      |
| -            |                  |              |                              |            |                  |             |                         |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           |                                       |                    |                      |
| NOTES        | S:               |              |                              |            |                  |             |                         |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           |                                       |                    |                      |
|              |                  |              |                              |            |                  |             |                         |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           |                                       |                    |                      |
|              |                  |              |                              |            |                  |             |                         |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           |                                       |                    |                      |
|              |                  |              |                              |            |                  |             |                         |                    |          |                            |                            |                      |                                  |                                                       |                                                |                                           |                                       |                    |                      |

| REFER            | ENCE NO          | o.:          | T020556-A1                                           | -                                                          |       |                    |          |                               |                            | ENCL            | OSU                                          | RE No                                                               | D.:<br>Pan                                                   | <del>e 5</del> 4                                      | 17                      |                |
|------------------|------------------|--------------|------------------------------------------------------|------------------------------------------------------------|-------|--------------------|----------|-------------------------------|----------------------------|-----------------|----------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|-------------------------|----------------|
|                  | $\wedge$         |              |                                                      | BOREHOLE No.:                                              | B5-2  |                    |          |                               |                            |                 | BC                                           | RF                                                                  | HOI                                                          | FI                                                    | 00                      |                |
| ib               | JSPE             | EC • S       | SOL                                                  | ELEVATION:                                                 | 90.78 | m                  |          |                               |                            |                 | Pa                                           | ge:                                                                 | 1                                                            | of                                                    | 1                       |                |
|                  |                  |              | aliason I td                                         |                                                            |       |                    |          |                               |                            |                 |                                              | Ĺ                                                                   | EGE                                                          | ND                                                    |                         |                |
| PRC              | JECT:            | Geote        | chnical Investigation                                |                                                            |       |                    |          |                               |                            |                 | SS Sp                                        | lit Spor                                                            | on                                                           |                                                       |                         |                |
| LOC              | ATION:           | Lot 20       | 6 and 27, concession 6, (                            | Ottawa, Ontario                                            |       |                    |          |                               |                            |                 | RC Ro                                        | elby Tt<br>ck Cor                                                   | e                                                            |                                                       |                         |                |
| DES              | CRIBED           | BY:          | B.Beveridge                                          | CHECKED BY:                                                |       | J.Ber              | nett     |                               |                            | Ţ               | Wa                                           | ater Lev                                                            | vel                                                          |                                                       |                         |                |
| DAT              | E (STAR          | T):          | October 23, 2008                                     | B DATE (FINISH):                                           | 0     | October            | 23, 20   | 800                           |                            | °               | Wa<br>Att                                    | iter con<br>erberg                                                  | tent (%)<br>limits (                                         | )<br>%)                                               |                         |                |
| SC               | ALE              |              | STR                                                  | ATIGRAPHY                                                  |       | SA                 | MPLE I   | DATA                          |                            | • •             | N Pei<br>Spl<br>N Pei                        | netratio<br>lit Spoo<br>netratio                                    | on Index<br>on samp<br>n Index                               | k base<br>ple<br>based                                | d on<br>on              |                |
| Depth<br>BGS     | Elevation<br>(m) | Stratigraphy | DES<br>SOIL                                          | CRIPTION OF<br>AND BEDROCK                                 | State | Type and<br>Number | Recovery | Organic Vapour<br>ppm or %LEL | Penetration<br>Index / RQD | ∆ (<br>□ (<br>S | Dyi<br>Cu Shi<br>Cu Shi<br>Sei<br>Shi<br>Poi | namic C<br>ear Stri<br>ear Stri<br>nsitivity<br>ear Stri<br>cket Pe | Cone sa<br>ength b<br>ength b<br>Value<br>ength b<br>enetrom | mple<br>ased o<br>ased o<br>of Soi<br>ased o<br>neter | on Fiel<br>on Lab<br>on | d Vane<br>Vane |
| meters           | 90.78            |              | GRO                                                  | DUND SURFACE                                               |       |                    | %        | ppm                           | Ν                          | 10              | SCA<br>50kPa<br>20                           | LE FO<br>100k<br>30 40                                              | R TES<br>Pa 1                                                | T RES                                                 | ULTS<br>200k            | Pa             |
|                  |                  |              | FILL - silty clay, some a<br>organics, compact to de | sphalt, sand and gravel, trace<br>ense, brown/black, moist |       |                    |          |                               |                            |                 |                                              |                                                                     |                                                              |                                                       |                         |                |
| - 1.0            |                  |              |                                                      |                                                            | X     | SS1                | 92       |                               | 49                         |                 |                                              |                                                                     | •                                                            |                                                       |                         |                |
| - 2.0            |                  |              |                                                      |                                                            | X     | SS2                | 55       |                               | 12                         | •               |                                              |                                                                     |                                                              |                                                       |                         |                |
|                  |                  |              |                                                      |                                                            | X     | SS3                | 75       |                               | 50+                        |                 |                                              |                                                                     | •                                                            |                                                       |                         |                |
|                  |                  |              |                                                      |                                                            | X     | SS4                | 63       |                               | 17                         |                 | •                                            |                                                                     |                                                              |                                                       |                         |                |
| 4.0<br>          | 86 21            |              |                                                      |                                                            | X     | SS5                | 71       |                               | 32                         |                 |                                              | •                                                                   |                                                              |                                                       |                         | _              |
| - 5.0            | 00.21            |              | SILTY CLAY - some gra<br>brown/grey, moist to we     | avel, trace oxidation, firm to stif<br>t                   | f,    | SS6                | 38       |                               | 2                          | •               | -                                            |                                                                     |                                                              |                                                       |                         |                |
| -<br>- 6.0       |                  |              |                                                      |                                                            | A     | SS7                | 100      |                               | 7                          | •               | 4                                            |                                                                     |                                                              |                                                       |                         |                |
|                  |                  |              |                                                      |                                                            | Х     | SS8                | 84       |                               | R                          |                 | _                                            |                                                                     | _                                                            | ▲                                                     |                         | _              |
| - 7.0            | 84.07            |              | En                                                   | d of Borehole                                              |       |                    |          |                               |                            |                 |                                              |                                                                     |                                                              |                                                       |                         |                |
| - 8.0            |                  |              |                                                      |                                                            |       |                    |          |                               |                            |                 |                                              |                                                                     |                                                              |                                                       |                         |                |
|                  |                  |              |                                                      |                                                            |       |                    |          |                               |                            |                 | -                                            |                                                                     |                                                              | -                                                     |                         |                |
| - 9.0<br>-       |                  |              |                                                      |                                                            |       |                    |          |                               |                            |                 |                                              |                                                                     |                                                              |                                                       |                         |                |
| -<br>-<br>- 10.0 |                  |              |                                                      |                                                            |       |                    |          |                               |                            |                 |                                              |                                                                     |                                                              |                                                       |                         |                |
|                  |                  |              |                                                      |                                                            |       |                    |          |                               |                            |                 | _                                            |                                                                     |                                                              |                                                       |                         |                |
| - 11.0           |                  |              |                                                      |                                                            |       |                    |          |                               |                            |                 |                                              |                                                                     |                                                              |                                                       |                         |                |
| - 12.0           |                  |              |                                                      |                                                            |       |                    |          |                               |                            |                 |                                              |                                                                     |                                                              | -                                                     |                         |                |
| Ē                |                  |              |                                                      |                                                            |       |                    |          |                               |                            |                 |                                              |                                                                     |                                                              |                                                       |                         |                |
| - 13.0           |                  |              |                                                      |                                                            |       |                    |          |                               |                            |                 |                                              |                                                                     |                                                              |                                                       |                         |                |
| E                |                  |              |                                                      |                                                            |       |                    |          |                               |                            |                 |                                              |                                                                     |                                                              | _                                                     |                         |                |
| NOTES            | :                | <b>I</b>     |                                                      |                                                            |       |                    | -1       | I                             | 1                          | LI              |                                              |                                                                     |                                                              |                                                       | 1                       |                |

| REFER            | ENCE N           | o.:          | T020556-A1                                | -                                       |                     |                    |          |                              |                            | ENCI        | LOS      | URE                                       | No.                                 | Page                                            | 55                                           | 18                   |                |
|------------------|------------------|--------------|-------------------------------------------|-----------------------------------------|---------------------|--------------------|----------|------------------------------|----------------------------|-------------|----------|-------------------------------------------|-------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------|----------------|
|                  | $\wedge$         |              |                                           | BOREHOLE No.:                           | B <u>5-3</u>        | 3                  |          |                              |                            |             | E        | OR                                        | REH                                 | OL                                              | EL                                           | OG                   | ;              |
| l ib             | ISPE             | C*S          | SOL                                       | ELEVATION: 90                           | ).51                | <u>m</u>           |          |                              |                            |             |          | ⊃age                                      | : _1                                |                                                 | of _                                         | 1                    |                |
| CLIE             | NT: R.           | W.Ton        | nlinson Ltd.                              |                                         |                     |                    |          |                              |                            |             | 00       | 0-14.0                                    | LE                                  | GEN                                             | D                                            |                      |                |
| PRC              | JECT:            | Geote        | chnical Investigation                     |                                         |                     |                    |          |                              |                            |             | SS       | Spin a<br>Shelb                           | spoon<br>y Tub                      | e                                               |                                              |                      |                |
| LOC              | ATION:           | Lot 2        | 6 and 27, concession 6, 0                 | Ottawa, Ontario                         |                     |                    |          |                              |                            |             | RC       | Rock                                      | Core                                |                                                 |                                              |                      |                |
| DES              |                  | BY: _        | B.Beveridge                               | CHECKED BY:                             |                     | J.Ben              | nett     |                              | —                          | v<br>v      |          | water<br>Water                            | conte                               | nt (%)                                          |                                              |                      |                |
| DAI              | E (STAR          | T):          | October 23, 2008                          | 3 DATE (FINISH):                        | (                   | Jctober            | 23, 20   | 08                           |                            | •           | N        | Atterb<br>Penet                           | erg lir<br>ration                   | nits (%<br>Index                                | )<br>based                                   | 1 on                 |                |
| SC               | ALE              |              | STR                                       | ATIGRAPHY                               |                     | SAN                |          |                              |                            | •           | N        | Peneti                                    | ration I                            | ndex b                                          | e<br>ased                                    | on                   |                |
| Depth<br>BGS     | Elevation<br>(m) | Stratigraphy | DES<br>SOIL                               | CRIPTION OF<br>AND BEDROCK              | State               | Type and<br>Number | Recovery | Organic Vapou<br>ppm or %LEL | Penetration<br>Index / RQD | ∆<br>□<br>S | Cu<br>Cu | Shear<br>Shear<br>Sensi<br>Shear<br>Pocke | Stren<br>Stren<br>tivity V<br>Stren | gth ba<br>gth ba<br>/alue c<br>gth ba<br>etrome | ised o<br>sed o<br>of Soil<br>sed o<br>sed o | n Fiel<br>n Lab<br>n | d Vane<br>Vane |
| meters           | 90.51            |              | GRO                                       | OUND SURFACE                            |                     |                    | %        | ppm                          | Ν                          | 10          | 50kl     | CALE<br>30                                | FOR<br>100kPa<br>40                 | TEST<br>50                                      | RES<br>OkPa<br>60 7                          | JLTS<br>200k<br>0 80 | :Pa<br>) 90    |
| -                |                  | $\otimes$    | FILL- concrete and asp                    | halt fragments, some sand, trace        |                     |                    |          |                              |                            |             |          |                                           |                                     |                                                 |                                              | $\square$            |                |
| E                | 89.75            |              | Ell L silty clay some or                  | avel trace oxidation stiff brown        | - 17                |                    |          |                              |                            |             |          | -                                         |                                     |                                                 |                                              |                      |                |
| - 1.0<br>-       |                  | $\bigotimes$ | moist                                     |                                         | X                   | SS1                | 42       |                              | 50+                        |             | -        | -                                         |                                     | •                                               |                                              |                      |                |
| E                | 88.99            | XX           | FILL- sandy silt, some g                  | pravel, trace clay, organics, very      | X                   | SS2                | 58       |                              | 15                         |             | •        |                                           |                                     |                                                 |                                              |                      |                |
| 2.0              | 88.22            |              | stin, brownish green, m                   |                                         | <u> </u>            |                    |          |                              |                            |             | -        | _                                         |                                     |                                                 | -                                            |                      |                |
| Ē                |                  |              | organics, hard, brown, i                  | sphalt, gravel and sand, trace<br>moist | Х                   | SS3                | 50       |                              | 38                         |             |          |                                           | •                                   | •                                               |                                              |                      |                |
| - 3.0            |                  | $\bigotimes$ |                                           |                                         | $\overline{\nabla}$ | 664                | 50       |                              | 12                         |             |          |                                           |                                     |                                                 |                                              |                      |                |
| E                | 86 70            | $\bigotimes$ |                                           |                                         | Δ                   | 334                | 59       |                              | 13                         |             | -        |                                           |                                     |                                                 | -                                            | $\vdash$             |                |
| - 4.0            | 60.70            | $\bigotimes$ | FILL- silty clay, trace or<br>hard, moist | ganics, oxidation, gravel, sand,        | Χ                   | SS5                | 21       |                              | 17                         |             | •        |                                           |                                     |                                                 |                                              |                      |                |
| -                |                  |              |                                           |                                         | Ē                   |                    |          |                              |                            | $\vdash$    |          |                                           | _                                   |                                                 |                                              | $\vdash$             |                |
| 5.0              |                  | $\bigotimes$ | -becoming trace to som                    | e gravel                                | Å                   | SS6                | 84       |                              | 32                         |             |          | -                                         |                                     |                                                 | <u> </u>                                     |                      |                |
|                  |                  |              | -becoming more aspha                      | It fragments, hard to very stiff        | X                   | SS7                | 71       |                              | 22                         |             |          | •                                         |                                     |                                                 |                                              |                      |                |
|                  | 84.41            |              | SILTY CLAY- some sar<br>moist             | nd, trace organics, firm, grey,         | X                   | SS8                | 25       |                              | 7                          | •           | _        |                                           |                                     |                                                 |                                              |                      |                |
| - 7.0            |                  |              | -becoming very stiff                      |                                         | X                   | SS9                | 59       |                              | 39                         |             |          | _                                         | •                                   | _                                               |                                              |                      |                |
|                  | 82.89            |              | En                                        | d of Borehole                           |                     |                    |          |                              |                            |             |          |                                           |                                     |                                                 |                                              |                      |                |
|                  |                  |              |                                           |                                         |                     |                    |          |                              |                            |             |          |                                           |                                     |                                                 |                                              |                      |                |
|                  |                  |              |                                           |                                         |                     |                    |          |                              |                            |             |          | _                                         |                                     |                                                 |                                              |                      |                |
| 9.0              | -                |              |                                           |                                         |                     |                    |          |                              |                            |             |          |                                           |                                     | _                                               |                                              |                      |                |
|                  |                  |              |                                           |                                         |                     |                    |          |                              |                            |             |          | -                                         |                                     |                                                 | -                                            |                      |                |
| ິ⊢ 10.0          |                  |              |                                           |                                         |                     |                    |          |                              |                            |             |          |                                           |                                     |                                                 |                                              |                      |                |
|                  |                  |              |                                           |                                         |                     |                    |          |                              |                            | $\vdash$    |          | -                                         |                                     | +                                               | -                                            |                      |                |
| - 11.0           |                  |              |                                           |                                         |                     |                    |          |                              |                            |             |          | _                                         |                                     |                                                 |                                              |                      |                |
| -31-08           |                  |              |                                           |                                         |                     |                    |          |                              |                            |             |          |                                           |                                     |                                                 |                                              |                      |                |
| be − 12.0        |                  |              |                                           |                                         |                     |                    |          |                              |                            |             |          |                                           |                                     |                                                 |                                              |                      |                |
| A1-BI            |                  |              |                                           |                                         |                     |                    |          |                              |                            |             |          |                                           |                                     |                                                 |                                              |                      |                |
| 99<br>20<br>13.0 |                  |              |                                           |                                         |                     |                    |          |                              |                            | $\vdash$    |          |                                           |                                     |                                                 |                                              |                      |                |
| 2<br>5<br>5      |                  |              |                                           |                                         | 1.0                 |                    |          |                              |                            |             |          |                                           |                                     |                                                 |                                              |                      |                |
| HOTES            | S:               |              |                                           |                                         |                     |                    |          |                              |                            |             |          |                                           |                                     |                                                 |                                              |                      |                |
| DREHC            |                  |              |                                           |                                         |                     |                    |          |                              |                            |             |          |                                           |                                     |                                                 |                                              |                      |                |
| й <b></b>        |                  |              |                                           |                                         |                     |                    |          |                              |                            |             |          |                                           |                                     |                                                 |                                              |                      |                |





# STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW7-08 DATE COMPLETED: July 14, 2008 DRILLING METHOD: HSA FIELD PERSONNEL: T. Saunders

| DEPTH<br>m BGS | STRATIGRAPHIC DESCRIPTION & REMARKS                                                                                         | ELEV.          | MONITOR INSTALLATION                                                                                                                                                                                                                                                                                   |            | SAMPLE               |            |
|----------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|------------|
|                | TOP OF RISER<br>GROUND SURFACE                                                                                              | 94.82<br>93.81 | -<br>177                                                                                                                                                                                                                                                                                               | NUMBER     | REC (%)<br>'N' VALUE | PID (ppm)  |
|                | FILL - silty sand with some gravel, trace<br>asphalt, trace concrete, trace clay, compact to<br>dense, grey to brown, moist |                | Bentonite     Hole Plug                                                                                                                                                                                                                                                                                | SS1<br>SS2 | 50 38<br>35          | 0.0<br>4.6 |
| -3             |                                                                                                                             |                |                                                                                                                                                                                                                                                                                                        | 553        | 50 13                | 0.0        |
| -4             | - becoming wet at 3.65m BGS                                                                                                 |                | Filter Sand                                                                                                                                                                                                                                                                                            | 554        | 25 15<br>100         | 4.3        |
|                |                                                                                                                             |                | Well Screen                                                                                                                                                                                                                                                                                            | 556        | 42 54                | 0.0        |
| -6             | SM - TILL - silty sand with some gravel, brown, moist to wet                                                                | 88.32          |                                                                                                                                                                                                                                                                                                        | SS7<br>SS8 | 50 15<br>100         | 0.0<br>1.5 |
|                | END OF BOREHOLE @ 6.98m BGS                                                                                                 | 86.83          | WELL DETAILS<br>Screened interval:<br>90.76 to 87.72m<br>3.05 to 6.10m BGS<br>Length: 3.05m<br>Diameter: 51mm<br>Slot Size: 10<br>Material: PVC<br>Seal:<br>93.20 to 91.37m<br>0.61 to 2.44m BGS<br>Material: Bentonite<br>Sand Pack:<br>91.37 to 87.72m<br>2.44 to 6.10m BGS<br>Material: Silica Sand | 559        | 100                  | 0.0        |
| - <u>N</u>     | OTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE<br>STATIC WATER LE<br>CHEMICAL ANALYSIS                                     | FER TO C       | URRENT ELEVATION TABLE<br>July 17, 2008                                                                                                                                                                                                                                                                |            |                      |            |

| REFERENCE N                                           | lo.: <u> </u>  | 556-A1      |                                                                               |                         |                         |          | ENCLOS                | URE No.:       | 4                | 0       |
|-------------------------------------------------------|----------------|-------------|-------------------------------------------------------------------------------|-------------------------|-------------------------|----------|-----------------------|----------------|------------------|---------|
|                                                       | INSPEC-SO      | L           | TEST PIT No<br>ELEVATION:                                                     | .:TF<br>298             | 5 <b>-01</b><br>3.82 ft |          | TEST                  | PIT F          | REPOF            | RT      |
| CLIENT                                                | R W Tomlinso   | on I tel    |                                                                               |                         |                         | LEGE     | END                   | ******         |                  |         |
| PROJECT:                                              | Geotechnical   | Investigati | OD                                                                            |                         |                         | GSE      | - GRAB S              | AMPLE (        | environmer       | ntal)   |
| LOCATION:                                             | Lot 26 and 27  | . concessi  | on 6. Ottawa. Ontari                                                          | 0                       |                         | Cu       | - SHEAR               | TEST           | geotechnic       | ai)     |
| DESCRIBED B                                           | Y: B.Beveridae | 1 001100000 | DATE:                                                                         | November 10.            | 2008                    |          | I - CHEMIC<br>- ORGAN | CAL ANAL       | YSIS<br>R CONCEN | TRATION |
| CHECKED BY:                                           | J.Bennett      |             | DATE:                                                                         |                         |                         | INF<br>▼ | - INFILTR<br>- WATER  | ATION<br>LEVEL |                  |         |
| Depth                                                 | Elevation (ft) |             | STF                                                                           | RATIGRAPH               | Ý                       |          | Sample<br>Type &      | OVC            | Tests            | Ţ       |
| Feet Metres                                           | 298.82 0       | Fil I -silt | v clav, some brick, as                                                        | sphalt concrete         | a gravel cobbles        | trace    | Number                | ppm            | Туре             |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 288.99         | -Water i    | y clay, some brick, as<br>, brownish black, mo<br>nfiltration observed a<br>E | sphalt, concrete<br>ist | e, gravel, cobbles,     | trace    |                       |                |                  |         |

# Appendix B Geotechnical Lab Results





| Clie            | ənt:                                                                                         | Consolidated Fastfrate (Ottawa)                               | Holdings Inc.      | _Lab No.:                 | SS-21-66        | _                                                        |
|-----------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------|---------------------------|-----------------|----------------------------------------------------------|
| Pro             | ject/Site:                                                                                   | New Warehouse and Offices / Somr                              | ne Street, Ottawa  | _Project No.:             | 11231101        | _                                                        |
|                 | Borehole no.:<br>Depth:                                                                      | BH1-21<br>0.9 to 1.4m                                         |                    | Sample no.:<br>Enclosure: | SS2B<br>-       |                                                          |
| Percent Passing | 100       90       80       70       60       50       40       30       20       10       0 |                                                               |                    |                           |                 | )<br>10<br>20<br>30<br>50<br>50<br>70<br>80<br>90<br>100 |
|                 | 0.001                                                                                        | 0.01 0.1 Di                                                   | ameter (mm)        |                           | 10              |                                                          |
|                 |                                                                                              | Clay & Silt                                                   | Sand               | um Coarse                 | Gravel          |                                                          |
|                 |                                                                                              | Unified Soil                                                  | Classification Sys | tem                       |                 |                                                          |
|                 |                                                                                              | Soil Description                                              | Gravel (%)         | Sand (%)                  | Clay & Silt (%) |                                                          |
|                 |                                                                                              | Silty sand with gravel (SM)                                   | 17                 | 60                        | 23              |                                                          |
|                 | Cla                                                                                          | Silt-size particles (%):<br>ay-size particles (%) (<0.002mm): |                    | 19<br>4                   |                 |                                                          |
| Rei             | narks:                                                                                       |                                                               |                    |                           |                 | _                                                        |
| Per             | formed by:                                                                                   | Jade Gorman                                                   |                    | Date:                     | August 10, 2021 |                                                          |
| Ver             | ified by:                                                                                    | Joe Sullivan                                                  | Sullan             | Date:                     | August 11, 2021 | _                                                        |





| Clie            | ent:                                                                        | Consolidated Fastfrate (Ottawa) I | Holdings Inc.                 | _Lab No.:        | SS-21    | -66                                    | _                                      |
|-----------------|-----------------------------------------------------------------------------|-----------------------------------|-------------------------------|------------------|----------|----------------------------------------|----------------------------------------|
| Pro             | ject/Site:                                                                  | New Warehouse and Offices / Somm  | e Street, Ottawa              | Project No.:     | 11231    | 101                                    | _                                      |
|                 | Borehole no.:<br>Depth:                                                     | BH1-21<br>9.1 to 9.8m             |                               | Sample no.:      | SS13     |                                        | _                                      |
|                 | •                                                                           |                                   |                               |                  |          |                                        | _                                      |
| Percent Passing | 100       90       80       70       60       50       40       30       20 |                                   |                               |                  |          |                                        | 00 00 00 00 00 00 00 00 00 00 00 00 00 |
|                 | 10 0.001                                                                    | 0.01 0.1 Dia                      | meter (mm)                    |                  | 10       | 1<br>100                               | 00                                     |
|                 |                                                                             | Clay & Silt                       | Sand                          |                  | Gravel   |                                        |                                        |
|                 |                                                                             | Fi<br>Unified Soil                | ne Medi<br>Classification Sys | um Coarse<br>tem | Fine Co  | barse                                  |                                        |
|                 |                                                                             | Soil Description                  | Gravel (%)                    | Sand (%)         | Clay & S | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | ]                                      |
|                 |                                                                             | Son Description                   | Glaver (70)                   | Sand (76)        | Ciay & C | jiit ( 76)                             | _                                      |
|                 |                                                                             | Sandy lean clay with gravel (CL)  | 16                            | 32               | 52       |                                        |                                        |
|                 | Cla                                                                         | Silt-size particles (%):          |                               | 36               |          |                                        | -                                      |
|                 |                                                                             |                                   |                               | 10               |          |                                        | 1                                      |
| Rer             | narks:                                                                      |                                   |                               |                  |          |                                        | -                                      |
| Per             | formed by:                                                                  | Jade Gorman                       |                               | Date:            | August 1 | 0, 2021                                | _                                      |
| Ver             | ified by:                                                                   | Joe Sullivan                      | Sulla                         | Date:            | August 1 | 1, 2021                                | _                                      |



| Client:                                              |                             | Consolidated     | d Fastfrate (Ottav                            | wa) Holdings Inc.    |           | Lab no.:                            | SS-21-66                             |
|------------------------------------------------------|-----------------------------|------------------|-----------------------------------------------|----------------------|-----------|-------------------------------------|--------------------------------------|
| Project/Site:                                        | Ne                          | w Warehouse      | and Offices / Sc                              | omme Street, Ottawa  |           | Project no.:                        | 11231101                             |
| Borehole no.:                                        | BH1-21                      |                  | Sample no.:                                   | SS13                 |           | Depth:                              | 9.1 to 9.8m                          |
| Soil Description:                                    |                             |                  | Lean Clay (CL)                                |                      |           | Date sampled:                       |                                      |
| Apparatus:<br>Liquid limit device no.:<br>Sieve no.: | Hand                        | Crank<br>1<br>/a | Balance no.:<br>Oven no.:<br>Glass plate no.: | 10<br>B33-02667<br>1 |           | Porcelain bowl no.:<br>Spatula no.: | 1<br>1                               |
|                                                      | Liquid Limit                |                  | <u>-</u>                                      | Soil Drongration     |           |                                     |                                      |
|                                                      | Tost No. 1                  | Tost No. 2       | Tost No. 3                                    |                      | <125 um   | _                                   |                                      |
| Number of blows                                      | 32                          | 23               | 15                                            |                      | >425 µm   |                                     |                                      |
|                                                      | Water Conte                 | ent:             | 10                                            | Non-cohe             | esive     |                                     | Wet proparation                      |
| Tare no.                                             | 1                           | 8                | 43A                                           |                      |           | Results                             |                                      |
| Wet soil+tare, g                                     | 26.69                       | 30.76            | 28.34                                         | 28.0                 |           |                                     |                                      |
| Dry soil+tare, g                                     | 25.62                       | 28.79            | 26.84                                         |                      |           |                                     |                                      |
| Mass of water, g                                     | 1.07                        | 1.97             | 1.50                                          | (%                   |           |                                     |                                      |
| Tare, g                                              | 21.32                       | 21.19            | 21.22                                         | fent (6              |           |                                     |                                      |
| Mass of soil, g                                      | 4.30                        | 7.60             | 5.62                                          | 26.0                 |           |                                     |                                      |
| Water content %                                      | 24.9%                       | 25.9%            | 26.7%                                         | Wate                 |           |                                     |                                      |
| Plastic Limit (P                                     | L) - Water Cont             | ent:             |                                               |                      |           |                                     |                                      |
| Tare no.                                             | 20                          | 22               |                                               |                      |           |                                     |                                      |
| Wet soil+tare, g                                     | 28.02                       | 27.70            |                                               | 24.0                 |           |                                     |                                      |
| Dry soil+tare, g                                     | 26.99                       | 26.75            |                                               | 12 14                | 16 18     | 8 20 22 24 1<br>Nb Blows            | 26 28 30 32 34                       |
| Mass of water, g                                     | 1.03                        | 0.95             |                                               |                      | Soil F    | Plasticity Chart AST                | M D2487                              |
| Tare, g                                              | 21.36                       | 21.56            |                                               | 70                   |           | LL 50                               |                                      |
| Mass of soil, g                                      | 5.63                        | 5.19             |                                               | 60 Lean clay         | y (CL)    | Fat clay (                          | СН                                   |
| Water content %                                      | 18.3%                       | 18.3%            | -                                             | ÷ 50                 |           | Organic c                           |                                      |
| Average water content %                              | 18.                         | .3%              |                                               | ق<br>ق 40            |           |                                     |                                      |
| Natural Wate                                         | er Content ( W <sup>n</sup> | ):               | -                                             |                      | Orga      | nic clay (oL)                       |                                      |
| Tare no.                                             | N7                          |                  | -                                             | 20 Silty clay CL     |           | 7                                   | lastic silt MH                       |
| Wet soil+tare, g                                     | 203.55                      |                  | -                                             | 10                   |           | Org                                 | ganic silt (OH)                      |
| Dry soil+tare, g                                     | 191.76                      |                  | -                                             |                      | Silt      | Organic silt                        |                                      |
| Mass of water, g                                     | 11.79                       |                  | -                                             | 0 10                 | 20 30     | 0 40 50 60                          | 70 80 90 100                         |
| Tare, g                                              | 45.09                       |                  | -                                             | Liquid Limit         |           |                                     | Т                                    |
| Mass of soil, g                                      | 146.67                      |                  | -                                             | (LL) Plastic Li      | imit (PL) | Plasticity Index (PI)               | Natural Water Content W <sup>n</sup> |
| Water content %                                      | 8.0%                        |                  |                                               | 26 18                | 8         | 8                                   | 8.0                                  |
| Remarks:                                             |                             |                  |                                               |                      |           |                                     |                                      |
|                                                      | . <u> </u>                  |                  |                                               |                      |           |                                     |                                      |
| Performed by:                                        |                             | Josh             | Sullivan                                      | Dat                  | te:       | Au                                  | igust 10, 2021                       |
| Verified by:                                         | Joe Sullivan                | <                | Je Sun                                        | Dat                  | te:       | Au                                  | ıgust 11, 2021                       |





| Clie            | ent:                                                               | Consolidated Fastfrate (Ottawa)        | Holdings Inc.           | Lab No.:              | SS-21-6                 | 6                                                              |                  |
|-----------------|--------------------------------------------------------------------|----------------------------------------|-------------------------|-----------------------|-------------------------|----------------------------------------------------------------|------------------|
| Pro             | ject/Site:                                                         | New Warehouse and Offices / Somn       | ne Street, Ottawa       | Project No.:          | 1123110                 | 1                                                              |                  |
|                 | Borehole no.:                                                      | BH2-21                                 |                         | Sample no.:           | SS12                    |                                                                |                  |
|                 | Depth:                                                             | 8.4 to 9.0m                            |                         | Enclosure:            | -                       |                                                                |                  |
| Percent Passing | 100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20<br>10<br>0.001 |                                        |                         |                       | 10                      | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100 | Percent Retained |
|                 | <b></b>                                                            |                                        | Jameter (mm)            |                       |                         |                                                                |                  |
|                 |                                                                    | Clay & Silt                            | Sand<br>ne Medi         | um Coarse             | Gravel                  | 30                                                             |                  |
|                 |                                                                    | Unified Soil                           | Classification Sys      | tem                   |                         |                                                                |                  |
|                 |                                                                    | Soil Description                       | <b>Gravel (%)</b><br>20 | <b>Sand (%)</b><br>38 | ) Clay & Silt (%)<br>42 |                                                                |                  |
|                 |                                                                    | Silt-size particles (%):               |                         | 33                    | •                       |                                                                |                  |
|                 |                                                                    | ay-5126 particles ( /0) (>0.00211111). | _ <b>_</b>              | 9                     |                         |                                                                |                  |
| Rei             | narks:                                                             |                                        |                         |                       |                         |                                                                |                  |
| Per             | formed by:                                                         | Jade Gorman                            |                         | Date:                 | August 10, 2            | 2021                                                           |                  |
| Ver             | ified by:                                                          | Joe Sullivan                           | Sulla                   | Date:                 | August 11, 2021         |                                                                |                  |



| Client:                  |                                     | Consolidated | l Fastfrate (Otta | wa) Holdings I | nc.                 | Lab no.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS-21-66                             |
|--------------------------|-------------------------------------|--------------|-------------------|----------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Project/Site:            | Ne                                  | w Warehouse  | and Offices / So  | omme Street,   | Ottawa              | Project no.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11231101                             |
| Borehole no.:            | BH2-21                              |              | Sample no.:       | SS12           |                     | Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.4 to 9.0m                          |
| Soil Description:        |                                     | L            | ean Clay (CL)     |                |                     | Date sampled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
| Apparatus:               | Hand                                | Crank        | Balance no.:      |                | 10                  | Porcelain bowl no.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                    |
| Liquid limit device no.: |                                     | 1            | Oven no.:         | .: B33-02667   |                     | Spatula no.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                    |
| Sieve no                 |                                     | /a           | Glass plate no    |                |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| [                        | Liquid Limit (                      | (LL):<br>    | [                 | Soil Preparat  | ion:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
|                          | Test No. 1                          | Test No. 2   | Test No. 3        | <b>I</b>       | Cohesive <425 µm    | n 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dry preparation                      |
| Number of blows          | 27                                  | 21           | 15                |                | Cohesive >425 µm    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wet preparation                      |
| _                        | Water Conte                         | ent:         |                   |                | Non-cohesive        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Tare no.                 | 1                                   | 8            | 43A               |                |                     | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
| Wet soil+tare, g         | 29.51                               | 29.53        | 29.71             | - 29.0         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Dry soil+tare, g         | 27.86                               | 27.82        | 27.93             |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Mass of water, g         | 1.65                                | 1.71         | 1.78              | ıt (%)         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Tare, g                  | 21.30                               | 21.26        | 21.32             | Conter         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Mass of soil, g          | 6.56                                | 6.56         | 6.61              | - 10 27.0      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Water content %          | 25.2%                               | 26.1%        | 26.9%             | Š              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Plastic Limit (P         | Plastic Limit (PL) - Water Content: |              |                   |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| lare no.                 | 20                                  | 22           |                   |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Wet soil+tare, g         | 28.59                               | 28.68        |                   | 25.0           | 12 14 16            | 18 20 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24 26 28                             |
| Dry soil+tare, g         | 27.57                               | 27.62        |                   |                | Coll                | Nb Blows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M D2497                              |
| Mass of water, g         | 1.02                                | 1.06         |                   | 70 —           | 3011                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WI D2487                             |
| Tare, g                  | 21.57                               | 21.36        |                   | 60 -           |                     | LL 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| Mass of soil, g          | 6.00                                | 6.26         |                   | ᅻᇊ             | Lean clay           | Fat clay (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CH                                   |
| Average water content %  | 17.0%                               | 16.9%        |                   | - 00 E         |                     | Organic c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lay OH                               |
| Average water content %  | T/.                                 | .0 %         |                   | x 40 -         | Orga                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
|                          |                                     | ):           |                   | - 06 asticity  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Wet soil+tare a          | 194 57                              |              |                   | <u>ن</u> 20 –  | Silty clay (CL (ML) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Dry soil+tare a          | 182.50                              |              |                   | 10 -           |                     | Organic silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |
| Mass of water g          | 12.07                               |              |                   | 0              | Silt                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Tare g                   | 47 10                               |              |                   | 0              | 10 20 3             | 0 40 50 60<br>Liquid Limit LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70 80 90 100                         |
| Mass of soil. g          | 135.40                              |              |                   | Liquid Limit   | Plastic Limit (PL)  | Plasticity Index (PI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Natural Water Content W <sup>n</sup> |
| Water content %          | 8.9%                                |              |                   | (LL)<br>25     | 17                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89                                   |
| Pomarka:                 | 0.070                               |              |                   | 20             |                     | , and the second s | 0.0                                  |
| Remarks.                 |                                     |              |                   |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
|                          |                                     |              |                   |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Performed by:            |                                     | Josh         | Sullivan          |                | Date:               | Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gust 10, 2021                        |
| Verified by:             | Joe Sullivan                        | loe Sullivan |                   |                | Date:               | Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gust 11, 2021                        |





| Client:         |                                                           | Consolidated Fastfrate (Ottawa)   | Holdings Inc.          | _Lab No.:        | SS-2            | SS-21-66                              |                                     |  |
|-----------------|-----------------------------------------------------------|-----------------------------------|------------------------|------------------|-----------------|---------------------------------------|-------------------------------------|--|
| Pro             | ect/Site:                                                 | New Warehouse and Offices / Som   | ne Street, Ottawa      | Project No.:     | 1123            | 1101                                  | -                                   |  |
|                 | Borehole no.:                                             | BH2-21                            |                        | Sample no.:      | SS18            |                                       | <u>.</u>                            |  |
|                 | Depth:                                                    | 13.0 to 13.6m                     |                        | Enclosure:       | -               |                                       |                                     |  |
| Percent Passing | 100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20<br>10 |                                   |                        |                  |                 | • • • • • • • • • • • • • • • • • • • | Generative<br>Bercent Retained<br>0 |  |
|                 | 0.001                                                     | 0.01 0.1 <b>Di</b>                | ameter (mm)            | 1                | 10              | 100                                   |                                     |  |
|                 |                                                           | Clav & Silt                       | Sand                   |                  | Gravel          |                                       |                                     |  |
|                 |                                                           | F<br>Unified Soil                 | Classification Sys     | um Coarse<br>tem | Fine C          | oarse                                 |                                     |  |
|                 |                                                           | Soil Description                  | <b>Gravel (%)</b><br>6 | Sand (%)<br>29   | Clay & Silt (%) |                                       |                                     |  |
|                 |                                                           | Silt-size particles (%):          | _                      | 42               |                 |                                       |                                     |  |
|                 | Cla                                                       | ay-size particles (%) (<0.002mm): |                        | 23               |                 |                                       | l                                   |  |
| Ren             | narks:                                                    |                                   |                        |                  |                 |                                       |                                     |  |
| Per             | ormed by:                                                 | Josh Sullivan                     |                        | Date:            | Septembe        | r 9, 2021                             |                                     |  |
| Veri            | fied by:                                                  | Joe Sullivan                      | Sulla                  | Date:            | September       | 13, 2021                              | -                                   |  |



| Client:                                              |                                     | Consolidated     | l Fastfrate (Ottav                            | va) Holdings Inc. Lab no.: SS-21-66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------|-------------------------------------|------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project/Site:                                        | Ne                                  | w Warehouse      | and Offices / Sc                              | mme Street, Ottawa Project no.: 11231101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Borehole no.:                                        | BH2                                 |                  | Sample no.:                                   | SS18 Depth: 13.0 to 13.6m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Soil Description:                                    |                                     | l                | ean Clay (CL)                                 | Date sampled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Apparatus:<br>Liquid limit device no.:<br>Sieve no.: | Hand                                | Crank<br>1<br>/a | Balance no.:<br>Oven no.:<br>Glass plate no.: | 10         Porcelain bowl no.:         1           B33-02667         Spatula no.:         1           1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                      | Liquid Limit (                      | (LL):            |                                               | Soil Preparation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                      | Test No. 1                          | Test No. 2       | Test No. 3                                    | ्र Cohesive <425 µm ्र Dry preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Number of blows                                      | 34                                  | 23               | 15                                            | <br>□ Cohesive >425 μm Wet preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Water Content:                                       |                                     |                  | Non-cohesive                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tare no.                                             | 116                                 | 117              | 118                                           | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Wet soil+tare, g                                     | 30.86                               | 30.40            | 29.04                                         | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dry soil+tare, g                                     | 28.88                               | 28.46            | 27.37                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mass of water, g                                     | 1.98                                | 1.94             | 1.67                                          | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tare, g                                              | 21.48                               | 21.50            | 21.60                                         | tent tent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mass of soil, g                                      | 7.40                                | 6.96             | 5.77                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Water content %                                      | 26.8%                               | 27.9%            | 28.9%                                         | mat mat and mat an |
| Plastic Limit (P                                     | Plastic Limit (PL) - Water Content: |                  |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tare no.                                             | 20                                  | 21               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Wet soil+tare, g                                     | 27.84                               | 27.84            |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Dry soil+tare, g                                     | 27.06                               | 27.09            |                                               | Nb Blows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mass of water, g                                     | 0.78                                | 0.75             |                                               | Soil Plasticity Chart ASTM D2487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tare, g                                              | 21.41                               | 21.54            |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mass of soil, g                                      | 5.65                                | 5.55             |                                               | 60 Lean clay (CL) Fat clay (CH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Water content %                                      | 13.8%                               | 13.5%            |                                               | 1 50 Organic clay (0H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Average water content %                              | 13.                                 | .7%              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Natural Wate                                         | r Content ( W <sup>n</sup>          | ):               |                                               | E Organic clay (o.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tare no.                                             | S19                                 |                  |                                               | 20 Silty clay (CL_MLElastic silt_MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wet soil+tare, g                                     | 167.57                              |                  |                                               | Organic silt (OH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dry soil+tare, g                                     | 154.66                              |                  |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mass of water, g                                     | 12.91                               |                  |                                               | 0 10 20 30 40 50 60 70 80 90 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tare, g                                              | 45.95                               |                  |                                               | Liquid Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mass of soil, g                                      | 108.71                              |                  |                                               | (LL) Plastic Limit (PL) Plasticity Index (PI) Natural Water Content W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Water content %                                      | 11.9%                               |                  |                                               | 28 14 14 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Remarks:                                             |                                     |                  |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                      |                                     |                  |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Performed by:                                        |                                     | Josh             | Sullivan                                      | Date: September 10, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Verified by:                                         |                                     | Joe              | Sullivan                                      | Date: September 13, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |





| Client:                                                                  | Consolidated Fastfrate (Ottawa) H     | loldings Inc.       | Lab No.:     | SS-2     | SS-21-66 |                                       |
|--------------------------------------------------------------------------|---------------------------------------|---------------------|--------------|----------|----------|---------------------------------------|
| Project/Site:                                                            | New Warehouse and Offices / Somme     | e Street, Ottawa    | Project No.: | 11231    | 1101     | -                                     |
| Borehole no.:                                                            | BH3-21                                |                     | Sample no.:  | SS8      |          | -                                     |
| Depth:                                                                   | 5.3 to 5.9m                           |                     | Enclosure:   | -        |          | -                                     |
| 100<br>90<br>80<br>70<br>60<br>50<br>40<br>40<br>30<br>20<br>10<br>0.001 |                                       |                     |              |          |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|                                                                          |                                       | Sand                |              | Gravel   | ]        |                                       |
|                                                                          | Clay & Silt Fin                       | e Medi              | um Coarse    | Fine Co  | oarse    |                                       |
|                                                                          | Unified Soil (                        | Classification Syst | tem          |          |          |                                       |
|                                                                          | Soil Description                      | Gravel (%)          | Sand (%)     | Clay & S | Silt (%) |                                       |
| s                                                                        | andy silty clay with gravel (CL-ML)   | 19                  | 49           | 32       | 2        |                                       |
|                                                                          | Silt-size particles (%):              |                     | 26           |          |          | -                                     |
|                                                                          | ay oneo particido (70) (30.00211111). | <u> </u>            | 0            |          |          | 1                                     |
| Remarks:                                                                 |                                       |                     |              |          |          | -                                     |
| Performed by:                                                            | Jade Gorman                           |                     | Date:        | August 1 | 0, 2021  | _                                     |
| Verified by:                                                             | Joe Sullivan                          | ulla                | Date:        | August 1 | 1, 2021  | -                                     |



| Client:                                              |                                     | Consolidated     | l Fastfrate (Ottav                            | va) Holdings Inc.                             |           | Lab no.: SS-21-66                   |                                              |  |
|------------------------------------------------------|-------------------------------------|------------------|-----------------------------------------------|-----------------------------------------------|-----------|-------------------------------------|----------------------------------------------|--|
| Project/Site:                                        | Ne                                  | w Warehouse      | and Offices / Sc                              | omme Street, Ottawa                           |           | Project no.: 1123110                |                                              |  |
| Borehole no.:                                        | BH3-21                              |                  | Sample no.:                                   | SS8                                           |           | Depth:                              | 5.3 to 5.9m                                  |  |
| Soil Description:                                    |                                     | Si               | lty Clay (CL-ML)                              |                                               |           | Date sampled:                       |                                              |  |
| Apparatus:<br>Liquid limit device no.:<br>Sieve no : | Hand                                | Crank<br>1<br>/a | Balance no.:<br>Oven no.:<br>Glass plate no : | 10<br>B33-026667                              |           | Porcelain bowl no.:<br>Spatula no.: | <u>    1                                </u> |  |
|                                                      |                                     | (11):            |                                               |                                               |           |                                     |                                              |  |
|                                                      | Liquid Limit (                      | LL):             | TastNa                                        | Soil Preparation:                             | <40E      |                                     | Decementing                                  |  |
| Number of blows                                      | Test No. 1                          | 1 est No. 2      | 1 est No. 3                                   |                                               | <425 µm   | <b>v</b>                            | Dry preparation                              |  |
| Number of blows                                      | 20<br>Water Conte                   | 21               | 15                                            |                                               | >425 µm   |                                     | wet preparation                              |  |
| Tare no                                              | 116                                 | a.               | 7                                             |                                               |           |                                     |                                              |  |
| Wet soil+tare a                                      | 32.73                               | 31.64            | 30.02                                         | 19.0                                          |           | Results                             |                                              |  |
| Dry soil+tare, g                                     | 31 13                               | 30.20            | 28.77                                         |                                               |           |                                     |                                              |  |
| Mass of water, g                                     | 1.60                                | 1.44             | 1.25                                          |                                               |           |                                     |                                              |  |
| Tare, g                                              | 21.46                               | 21.75            | 21.67                                         | . (% .                                        | ~         |                                     |                                              |  |
| Mass of soil, g                                      | 9.67                                | 8.45             | 7.10                                          | - <sup>t</sup><br>- 17.0 -                    |           |                                     |                                              |  |
| Water content %                                      | 16.5%                               | 17.0%            | 17.6%                                         | Mater                                         |           |                                     |                                              |  |
| Plastic Limit (P                                     | Plastic Limit (PL) - Water Content: |                  |                                               |                                               |           |                                     |                                              |  |
| Tare no.                                             | 100                                 | 117              |                                               |                                               |           |                                     |                                              |  |
| Wet soil+tare, g                                     | 27.92                               | 28.13            |                                               | 15.0                                          |           |                                     |                                              |  |
| Dry soil+tare, g                                     | 27.17                               | 27.33            |                                               | 12 14                                         | 4 16      | 18 20 2<br>Nb Blows                 | 2 24 26 28                                   |  |
| Mass of water, g                                     | 0.75                                | 0.80             |                                               |                                               | Soil P    | lasticity Chart AST                 | M D2487                                      |  |
| Tare, g                                              | 21.53                               | 21.48            |                                               | 70                                            |           | LL 50                               |                                              |  |
| Mass of soil, g                                      | 5.64                                | 5.85             |                                               | 60                                            |           | Eat clay                            |                                              |  |
| Water content %                                      | 13.3%                               | 13.7%            |                                               |                                               |           |                                     |                                              |  |
| Average water content %                              | 13.                                 | 5%               |                                               | <u>ل</u><br><u>م</u><br><u>م</u><br><u>40</u> |           |                                     |                                              |  |
| Natural Wate                                         | r Content ( W <sup>n</sup> )        | ):               |                                               | <u>i</u><br><u>i</u> 30                       | Organ     |                                     |                                              |  |
| Tare no.                                             | Т3                                  |                  |                                               | Silty clay                                    |           | , E                                 | lastic silt                                  |  |
| Wet soil+tare, g                                     | 313.52                              |                  |                                               | 10                                            |           | Org                                 | ganic silt (OH)                              |  |
| Dry soil+tare, g                                     | 289.92                              |                  |                                               |                                               | Silt      | Organic silt                        |                                              |  |
| Mass of water, g                                     | 23.60                               |                  |                                               | 0 + + 0 10                                    | 20 30     | 40 50 60                            | 70 80 90 100                                 |  |
| Tare, g                                              | 46.54                               |                  |                                               | Liquid Limit                                  |           | Liquid Limit LL                     | 1                                            |  |
| Mass of soil, g                                      | 243.38                              |                  |                                               | (LL)                                          | imit (PL) | Plasticity Index (PI)               | Natural Water Content W <sup>n</sup>         |  |
| Water content %                                      | 9.7%                                |                  |                                               | 17 13                                         | 3         | 4                                   | 9.7                                          |  |
| Remarks:                                             |                                     |                  |                                               |                                               |           |                                     |                                              |  |
|                                                      |                                     |                  |                                               |                                               |           |                                     |                                              |  |
| Performed by:                                        |                                     | Josh             | Sullivan                                      | Dat                                           | te:       | Au                                  | gust 10, 2021                                |  |
| Verified by:                                         | Joe Sullivan                        | <                | Je Sim                                        | Dat                                           | te:       | August 11, 2021                     |                                              |  |





| Client:<br>Project/Site:                                       |                         | Consolidated Fastfrate (Ottav                                               | wa) Holdings Inc.                        | Lab No.:                  | SS-21-66              |                                                                                        |  |
|----------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------|------------------------------------------|---------------------------|-----------------------|----------------------------------------------------------------------------------------|--|
|                                                                |                         | New Warehouse and Offices / So                                              | omme Street, Ottawa                      | Project No.:              | 11231101              |                                                                                        |  |
|                                                                | Borehole no.:<br>Depth: | BH5-21                                                                      |                                          | Sample no.:<br>Enclosure: | SS3 -                 |                                                                                        |  |
| 100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20<br>10<br>0 |                         |                                                                             |                                          |                           |                       | 0<br>10<br>20<br>30<br>40<br>50<br>50<br>50<br>50<br>60<br>70<br>80<br>90<br>90<br>100 |  |
|                                                                |                         |                                                                             | Sand                                     |                           | Gravel                |                                                                                        |  |
|                                                                |                         | Clay & Silt                                                                 | Fine Mediu<br>Soil Classification System | ım Coarse<br>em           | Fine Coarse           |                                                                                        |  |
|                                                                |                         | Soil Description<br>Silty sand with gravel (SM)<br>Silt-size particles (%): | Gravel (%)<br>25                         | Sand (%)<br>38<br>29      | Clay & Silt (%)<br>37 |                                                                                        |  |
|                                                                | Cli                     | ay-size particles (%) (<0.002mm):                                           |                                          | 8                         |                       |                                                                                        |  |
| Rei                                                            | narks:                  |                                                                             |                                          |                           |                       |                                                                                        |  |
| Per                                                            | formed by:              | Jade Gormar                                                                 | n                                        | Date:                     | August 10, 2021       |                                                                                        |  |
| Ver                                                            | ified by:               | Joe Sullivan                                                                | Sulla                                    | Date:                     | August 11, 2021       |                                                                                        |  |





| Client:                                                             |             | Consolidated Fastfra                                      | te (Ottawa) Ho | Lab No.:       |              | SS-21-66 |                |                                                           |
|---------------------------------------------------------------------|-------------|-----------------------------------------------------------|----------------|----------------|--------------|----------|----------------|-----------------------------------------------------------|
| Projec                                                              | t/Site:     | New Warehouse and Off                                     | ïces / Somme   | Street, Ottawa | Project No.: |          | 11231101       |                                                           |
| Во                                                                  | rehole no.: | BH5                                                       | 5-21           |                | Sample no.:  |          | SS7            |                                                           |
| De                                                                  | pth:        | 4.6 to                                                    | 5.2m           |                | Enclosure:   |          |                |                                                           |
| 100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20<br>10<br>0<br>0 | .001        | 0.01                                                      | 0.1 Diam       | eter (mm)      |              | 10       |                | 0<br>10<br>20<br>30<br>40<br>10<br>10<br>10<br>100<br>100 |
|                                                                     |             |                                                           |                | Sand           |              | Gravel   |                |                                                           |
|                                                                     |             | Clay & Silt                                               | Fine           | e Media        | um Coarse    | Fine     | Coarse         |                                                           |
|                                                                     |             | Soil Description                                          |                | Gravel (%)     | Sand (%)     | CI       | lay & Silt (%) |                                                           |
|                                                                     | s           | Sandy silty clay with gravel (CL-ML)                      |                |                | 38           |          | 52             |                                                           |
|                                                                     | Cl          | Silt-size particles (%):<br>ay-size particles (%) (<0.002 | 2mm):          |                | 4            | 1        |                |                                                           |
| Remar                                                               | ·ks:        |                                                           |                |                |              |          |                |                                                           |
| Perfor                                                              | med by:     | Jade                                                      | Gorman         |                | Date:        | Au       | gust 10, 2021  |                                                           |
| Verifie                                                             | d by:       | Joe Sullivan                                              | Jes            | ulla-          | Date:        | Au       | gust 11, 2021  |                                                           |



#### Liquid Limit, Plastic Limit and Plasticity Indலேல் (ASTM D4318)

| Client:                             |                              | Consolidated | l Fastfrate (Ottav | wa) Holdings I       | nc.                | Lab no.:              | SS-21-66                             |  |
|-------------------------------------|------------------------------|--------------|--------------------|----------------------|--------------------|-----------------------|--------------------------------------|--|
| Project/Site:                       | Ne                           | w Warehouse  | and Offices / Sc   | omme Street,         | Ottawa             | Project no.: 11231101 |                                      |  |
| Borehole no.:                       | BH5-21                       |              | Sample no.:        | SS7                  |                    | Depth:                | 4.6 to 5.2m                          |  |
| Soil Description:                   |                              | Si           | lty Clay (CL-ML)   |                      |                    | Date sampled:         |                                      |  |
| Apparatus:                          | Hand                         | Crank        | Balance no.:       |                      | 10                 | Porcelain bowl no.:   |                                      |  |
| Liquid limit device no.:            | 1                            | l            | Oven no.:          | B3                   | 3-02667<br>1       | Spatula no.:          | 1                                    |  |
|                                     |                              | u<br>L I.).  | Class plate no     |                      | ·<br>· · · ·       | -                     |                                      |  |
| [                                   |                              | LL):         | Test No. 2         | Soli Preparat        | Cohooiyo <425 um   | _                     | Drymonovation                        |  |
| Number of blows                     | 1 est No. 1                  | 20           | 1 est No. 3        | ~                    |                    |                       | Dry preparation                      |  |
|                                     | 20<br>Water Conte            | 20           | 15                 |                      | Non-cohesive       |                       | wei preparation                      |  |
| Tare no                             | 2                            | 5            | 142                |                      | Non-concare        | Baguita               |                                      |  |
| Wet soil+tare g                     | 28.96                        | 28.31        | 27 50              | 23.0                 | )                  | Results               |                                      |  |
| Dry soil+tare g                     | 27.69                        | 27.09        | 26.38              | -                    |                    |                       |                                      |  |
| Mass of water g                     | 1 27                         | 1 22         | 1 12               |                      |                    |                       |                                      |  |
| Tare, g                             | 21.44                        | 21.39        | 21 40              | ent (%               |                    |                       |                                      |  |
| Mass of soil. g                     | 6.25                         | 5.70         | 4.98               |                      | )                  |                       |                                      |  |
| Water content %                     | 20.3%                        | 21.4%        | 22.5%              | Nater                |                    |                       |                                      |  |
| Plastic Limit (PL) - Water Content: |                              | -            |                    |                      |                    |                       |                                      |  |
| Tare no.                            | 19                           | 21           |                    |                      |                    |                       |                                      |  |
| Wet soil+tare, g                    | 28.76                        | 28.58        |                    | 19.0                 | )                  |                       |                                      |  |
| Dry soil+tare, g                    | 27.93                        | 27.75        |                    |                      | 12 14 16           | 18 20 2<br>Nb Blows   | 22 24 26 28                          |  |
| Mass of water, g                    | 0.83                         | 0.83         |                    |                      | Soil               | Plasticity Chart ASTI | M D2487                              |  |
| Tare, g                             | 21.58                        | 21.39        |                    | 70                   |                    | LL 50                 |                                      |  |
| Mass of soil, g                     | 6.35                         | 6.36         |                    | 60 -                 |                    | Eat clay (            |                                      |  |
| Water content %                     | 13.1%                        | 13.1%        |                    | ы<br>50 —            |                    |                       |                                      |  |
| Average water content %             | 13.                          | 1%           |                    | ä 40 –               |                    | Organic c             | lay On                               |  |
| Natural Wate                        | r Content ( W <sup>n</sup> ) | :            |                    | pu sit 10            | Orga               | anic clay OL          |                                      |  |
| Tare no.                            | N30                          |              |                    | Plasti               | Silty clay CL ML   | 7                     | lastic silt MH                       |  |
| Wet soil+tare, g                    | 240.14                       |              |                    | 20                   |                    | Örg                   | ganic silt OH                        |  |
| Dry soil+tare, g                    | 214.80                       |              |                    | 10                   |                    | Organic silt          |                                      |  |
| Mass of water, g                    | 25.34                        |              |                    | 0 +                  | 10 20 3            | 0 40 50 60            | 70 80 90 100                         |  |
| Tare, g                             | 46.40                        |              |                    |                      |                    | Liquid Limit LL       | 1                                    |  |
| Mass of soil, g                     | 168.40                       |              |                    | Liquid Limit<br>(LL) | Plastic Limit (PL) | Plasticity Index (PI) | Natural Water Content W <sup>n</sup> |  |
| Water content %                     | 15.0%                        |              |                    | 20                   | 13                 | 7                     | 15.0                                 |  |
| Remarks:                            |                              |              |                    |                      |                    |                       |                                      |  |
|                                     |                              |              |                    |                      |                    |                       |                                      |  |
| Performed by:                       |                              | Josh         | Sullivan           |                      | Date:              | Au                    | gust 10, 2021                        |  |
| Verified by:                        | Joe Sullivan                 | 6            | Je Sur             | ·                    | -<br>Date:         |                       | aust 11, 2021                        |  |
| vermed by:                          | Joe Sullivan                 |              |                    | Date:                |                    | Au                    | iyuər 11, 2021                       |  |



| Client:                  | Consolidated Fastrate (Ottawa) Holding |              |                  | wa) Holdings I        | id Lab no.:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G-20-13                              |
|--------------------------|----------------------------------------|--------------|------------------|-----------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Project/Site:            |                                        | New wareho   | ouse, Somme Str  | reet, Ottawa, C       | Dn                    | Project no.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11215612-A2                          |
| Borehole no.:            | 2                                      |              | Sample no.:      |                       | 4                     | Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.3 - 3.0m                           |
| Soil description:        |                                        |              |                  |                       |                       | Date sampled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7-Aug-20                             |
| Apparatus:               | Hand Crank/                            | Motor Driven | Balance no.:     |                       | 1                     | Porcelain bowl no.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                    |
| Liquid limit device no.: |                                        | 1            | Oven no.:        |                       | 1                     | Spatula no.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                    |
| Sieve no.:               |                                        | 1            | Glass plate no.: |                       | 1                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
|                          | Liquid Limit (                         | LL):         |                  | Soil Preparati        | ion:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
|                          | Test No. 1                             | Test No. 2   | Test No. 3       |                       | Cohesive <425 µn      | n 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dry preparation                      |
| Number of blows          | 30                                     | 27           | 20               |                       | Cohesive >425 µn      | n 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wet preparation                      |
|                          | Water Conte                            | ent:         |                  |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Tare no.                 | S15                                    | S16          | S29              | _                     |                       | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
| Wet soil+tare, g         | 43.61                                  | 38.30        | 40.40            |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Dry soil+tare, g         | 34.97                                  | 31.57        | 32.70            | 71.0                  | )                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Mass of water, g         | 8.64                                   | 6.73         | 7.70             | (%)                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Tare, g                  | 22.02                                  | 21.72        | 21.82            | tent<br>0.69          | )                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Mass of soil, g          | 12.95                                  | 9.85         | 10.88            | er Col                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Water content %          | 66.7%                                  | 68.3%        | 70.8%            | Wat                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Plastic Limit (Pl        | L) - Water Content:                    |              |                  | 67.0                  | )                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Tare no.                 | S14                                    | S20          |                  |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Wet soil+tare, g         | 27.14                                  | 27.75        |                  | 65.0                  | )                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Dry soil+tare, g         | 26.20                                  | 26.85        |                  |                       | 15 17 19              | 21 23 25 27<br>Nb Blows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 29 31 33 35<br>                    |
| Mass of water, g         | 0.94                                   | 0.90         |                  |                       | Soil Plasticity Chart |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Tare, g                  | 21.84                                  | 22.53        |                  | 70                    |                       | LL 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| Mass of soil, g          | 4.36                                   | 4.32         |                  | 60 -                  | Low plasticity        | High plasti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | city                                 |
| Water content %          | 21.6%                                  | 20.8%        |                  | 50 -                  | Inorganic clay        | (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |
| Average water content %  | 21.                                    | 2%           |                  | <sup>#</sup> d → 40 → |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Natural Wate             | r Content ( W <sup>n</sup> )           | ):           |                  | l lude                | CL                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Tare no.                 | S8                                     |              |                  |                       | Low compressibility   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (MH) and (CH)                        |
| Wet soil+tare, g         | 44.50                                  |              |                  | - 20 -                |                       | - High<br>inoi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | h compressibility<br>rganic silt     |
| Dry soil+tare, g         | 33.60                                  |              |                  | 10                    |                       | - Inpr<br>- Medium co<br>norganic s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ganc qay<br>pmpres\$ibility<br>ilt   |
| Mass of water, g         | 10.90                                  |              |                  | 0                     | 10 20 3               | $\frac{\text{Derived}}{2} - \frac{\text{Derved}}{2} - \frac{\text{Derved}}{2} - \frac{1}{2} -$ | ay                                   |
| Tare, g                  | 14.30                                  |              |                  | J                     |                       | Liquid Limit LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Mass of soil, g          | 19.30                                  |              |                  | Liquid Limit          | Plastic Limit (PL)    | Plasticity Index (PI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Natural Water Content W <sup>n</sup> |
| Water content %          | 56.5%                                  |              |                  | 69                    | 21                    | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56                                   |
| Remarks:                 | 1                                      |              |                  |                       | l                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
|                          |                                        |              |                  |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Deviewend by:            |                                        |              |                  |                       | Detc                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Performed by:            |                                        | Z. N         | lathurin         |                       | Date:                 | Αι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ugust 27, 2020                       |
| Verified by:             |                                        | 212          | 0                | Date:                 |                       | September 4, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |

GHD FO-930.105-Plastic and liquid limit - Rev. 0 - 07/01/2015



# Particle-Size Analysis of Soils MTO LS-702 (Geotechnical)

| Clie           | ent:          | Consolidated Fastrate (Ot            | tawa) Holdir | Lab No.:          | G-20-13              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|---------------|--------------------------------------|--------------|-------------------|----------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project, Site: |               | New Warehouse, Somme                 | Street, Otta | awa, ON           | Project No.:         | 11215612    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Borehole No.: | 1                                    |              |                   | Sample No.:          | 3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Depth:        | 1.5 - 2.1                            | 1m           |                   | Enclosure:           | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |               |                                      |              |                   |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | 100           |                                      |              |                   |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |               |                                      |              |                   |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | 90            |                                      |              |                   |                      |             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 80            |                                      |              |                   |                      |             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 70            |                                      |              |                   |                      |             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| sing           | 60            |                                      |              |                   |                      |             | 40 igi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ent Pas        | 50            |                                      |              |                   |                      |             | int Ret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Perce          | 50            |                                      |              |                   |                      |             | Let Contract Strength |
|                | 40            |                                      |              |                   |                      |             | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 30            |                                      |              |                   |                      |             | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 20            |                                      |              |                   |                      |             | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 10            |                                      |              |                   |                      |             | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |               |                                      |              |                   |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | 0.001         | 0.01                                 | 0.1<br>Diam  | eter (mm)         |                      | 10          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |               | Clay & Silt                          |              | Sand              |                      | Gravel      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |               | Particle                             | -Size Limits | as per USCS (ASTM | im Coarse<br>D-2487) | Fine Coa    | rse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |               | Soil Description                     |              | Gravel (%)        | Sand (%)             | Clay & Sil  | t (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                | G             | aravel and Sand, trace Silt, trace C | lay          | 51                | 43                   | 6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |               |                                      |              |                   |                      | 1 %         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rer            | narks:        |                                      |              |                   |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |               |                                      |              |                   |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Per            | formed by:    | Z. Ma                                | thurin       |                   | Date:                | August 27,  | 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ver            | ified by:     |                                      | 0            |                   | Date:                | September 4 | 4, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |


### Particle-Size Analysis of Soils MTO LS-702 (Geotechnical)

| Clie     | nt:           | Consolidated Fastrate (Ottawa) Hole    | dings Ltd.                     | Lab No.:               | G-20-13         |                      |
|----------|---------------|----------------------------------------|--------------------------------|------------------------|-----------------|----------------------|
| Pro      | ject, Site:   | New Warehouse, Somme Street, O         | ttawa, ON                      | Project No.:           | 11215612        |                      |
|          | Borehole No.: | 2                                      |                                | Sample No.:            | 4               |                      |
|          | Depth:        | 2.3 - 3.0m                             |                                | Enclosure:             | -               |                      |
|          |               |                                        |                                |                        |                 |                      |
|          | 100 -         |                                        |                                |                        |                 | ••••••               |
|          | 00            |                                        |                                |                        |                 |                      |
|          | 90 -          |                                        |                                |                        |                 | 10                   |
|          | 80            |                                        |                                |                        |                 | 20                   |
|          | 70            |                                        |                                |                        |                 | 30                   |
| assing   | 60            |                                        |                                |                        |                 | 64ained              |
| ercent F | 50            |                                        |                                |                        |                 | 50 50                |
| Pe       | 40            |                                        |                                |                        |                 | <b>۔ ۔ ۔ ۔ ۔ 6</b> 0 |
|          | 30            |                                        |                                |                        |                 | 70                   |
|          | 20            |                                        |                                |                        |                 |                      |
|          | 20            |                                        |                                |                        |                 | 80                   |
|          | 10            |                                        |                                |                        |                 | 90                   |
|          | 0.001         | 0.01 0.1 Dia                           | 1<br>1<br>1                    |                        | 10              | 100 <u>100</u>       |
|          |               |                                        | Sand                           |                        | Gravel          |                      |
|          |               | Fi Particle-Size Limits                | ne Medi<br>s as per USCS (ASTM | um Coarse<br>1 D-2487) | Fine Coarse     |                      |
|          |               | Soil Description                       | Gravel (%)                     | Sand (%)               | Clay & Silt (%) |                      |
|          | CI            | lay and Silt, trace Sand, trace Gravel | 1                              | 2                      | 97              |                      |
|          |               | Clay-size particles (<0.002 mm):       |                                |                        | 61 %            |                      |
| Rer      | narks:        |                                        |                                |                        |                 |                      |
| Per      | formed by:    | 7 Mathurin                             |                                | Date:                  | August 27 202   | 20                   |
| Ver      | ified by:     | El Del                                 |                                | - Date                 | September 4 20  | . <u>.</u><br>)20    |
| 1.61     |               |                                        |                                | - Date.                |                 |                      |



### Particle-Size Analysis of Soils MTO LS-702 (Geotechnical)

| Client:                                                            | Consolidated Fastrate (Otta                                                                             | wa) Holdings Ltd. | Lab No.:                    | G-20-13                 |                                                                                   |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|-------------------------|-----------------------------------------------------------------------------------|
| Project, Site:                                                     | New Warehouse, Somme S                                                                                  | treet, Ottawa, ON | _Project No.:               | 11215612                |                                                                                   |
| Borehole N<br>Depth:                                               | o.: 2<br>4.5 - 6.1m                                                                                     | n                 | Sample No.:<br>Enclosure:   | -                       |                                                                                   |
| 100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20<br>10<br>0.001 | 0.01                                                                                                    | 0.1 Diameter (mm) |                             | 10                      | 0<br>10<br>20<br>30<br>40<br>50<br>50<br>50<br>60<br>70<br>80<br>90<br>100<br>100 |
|                                                                    |                                                                                                         | Sand              |                             | Gravel                  |                                                                                   |
|                                                                    | Clay & Silt                                                                                             | Fine Med          | ium Coarse                  | Fine Coa                | irse                                                                              |
|                                                                    | Particle-S<br>Soil Description<br>Gravelly, Silty, Sand, trace Clay<br>Clay-size particles (<0.002 mm): | Gravel (%)        | M D-2487)<br>Sand (%)<br>38 | Clay & Sil<br>37<br>8 % | t (%)                                                                             |
| Remarks:                                                           |                                                                                                         | •                 |                             |                         |                                                                                   |
| Performed by                                                       | : Z. Math                                                                                               | urin              | Date:                       | August 27,              | 2020                                                                              |
| Verified by:                                                       | 2/2                                                                                                     | 9                 | Date:                       | September               | 4, 2020                                                                           |



### Particle-Size Analysis of Soils MTO LS-702 (Geotechnical)

| Client:            | Consolidated Fastrate (Ottawa) Holdi    | ngs Ltd.                     | Lab No.:             | G-20-13        |                                                                                                                                                                                                                  |        |  |  |
|--------------------|-----------------------------------------|------------------------------|----------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| Project, Site:     | New Warehouse, Somme Street, Otta       | awa, ON                      | Project No.:         | 11215612       |                                                                                                                                                                                                                  |        |  |  |
| Borehole No        | .: 3                                    |                              | Sample No.:          | 10             |                                                                                                                                                                                                                  |        |  |  |
| Depth:             | 6.9 - 7.5m                              |                              | Enclosure:           | -              |                                                                                                                                                                                                                  |        |  |  |
|                    |                                         |                              |                      |                |                                                                                                                                                                                                                  |        |  |  |
| 100                |                                         |                              |                      |                | • • • • • • • • •                                                                                                                                                                                                |        |  |  |
| 90                 |                                         |                              |                      |                | 10                                                                                                                                                                                                               |        |  |  |
|                    |                                         |                              |                      |                |                                                                                                                                                                                                                  |        |  |  |
| 80                 |                                         |                              |                      |                | 20                                                                                                                                                                                                               |        |  |  |
| 70                 |                                         |                              |                      |                | 30                                                                                                                                                                                                               |        |  |  |
| <b>buss</b> 60     |                                         |                              |                      |                | 40                                                                                                                                                                                                               | tained |  |  |
| 50 50              |                                         |                              |                      |                | 50                                                                                                                                                                                                               | ent Re |  |  |
| Perc               |                                         |                              |                      |                |                                                                                                                                                                                                                  | Perc   |  |  |
| 40                 |                                         |                              |                      |                | 60                                                                                                                                                                                                               |        |  |  |
| 30                 |                                         |                              |                      |                | 70                                                                                                                                                                                                               |        |  |  |
| 20                 |                                         |                              |                      |                | 80                                                                                                                                                                                                               |        |  |  |
| 10                 |                                         |                              |                      |                | 90                                                                                                                                                                                                               |        |  |  |
|                    |                                         |                              |                      |                |                                                                                                                                                                                                                  |        |  |  |
| 0.001              | 0.01 0.1 Diam                           | eter (mm)                    |                      | 10             | 100<br>100                                                                                                                                                                                                       |        |  |  |
|                    | Clav & Silt                             | Sand                         |                      | Gravel         |                                                                                                                                                                                                                  |        |  |  |
|                    | Fine<br>Particle-Size Limits            | e Mediu<br>as per USCS (ASTM | ım Coarse<br>D-2487) | Fine Coars     | se                                                                                                                                                                                                               |        |  |  |
|                    | Soil Description                        | Gravel (%)                   | Sand (%)             | Clay & Silt    | (%)                                                                                                                                                                                                              |        |  |  |
|                    | Sand and Silt, trace Gravel, trace Clay | 8                            | 47                   | 45             |                                                                                                                                                                                                                  |        |  |  |
|                    | Clay-size particles (<0.002 mm):        |                              |                      | 8 %            |                                                                                                                                                                                                                  |        |  |  |
| Remarks:<br>_      |                                         |                              |                      |                |                                                                                                                                                                                                                  |        |  |  |
| –<br>Performed by: | 7 Mathurin                              |                              | Date <sup>.</sup>    | August 27      | 2020                                                                                                                                                                                                             | _      |  |  |
|                    | 5/3 A                                   |                              | Doto:                | Contorriburg 4 | Gravel       80         10       100         Gravel       100         Fine       Coarse         Clay & Silt (%)       45         45       8%         45       8%         August 27, 2020       September 4, 2020 |        |  |  |
| vermea by:         | CAL W                                   |                              | Date:                | September 4    | , 2020                                                                                                                                                                                                           |        |  |  |



| Client:                    | Consolio       | dated Fastfra | ate (Ottawa) | Holdings In  | С.         | Lab No.:    |          | SS-2       | 1-66   |
|----------------------------|----------------|---------------|--------------|--------------|------------|-------------|----------|------------|--------|
| Project/Site:              | New Wareh      | ouse and Of   | fices / Som  | me Street, C | ttawa      | Project No. | :        | 1123       | 1101   |
|                            |                | Oven No.:     | B33-(        | )2932        | Scale No.: | 1           | 0        |            |        |
| BH No.:                    |                | BH1           | BH1          | BH1          | BH1        | BH1         | BH1      | BH1        | BH1    |
|                            |                | SS1           | SS2A         | SS2B         | SS3        | SS4         | SS5A     | SS5B       | SS6    |
|                            |                | 3"-2'         | 2.5-2'10"    | 2'10"-4.5'   | 5-7'       | 7.5-9.5'    | 10-10'8" | 10'8"-12'  |        |
| Container no.              |                | N25           | S40          | N18          | N20        | N23         | N15      | N13        |        |
| Mass of container          | + wet soil (g) | 233.32        | 166.90       | 185.70       | 290.57     | 265.60      | 180.34   | 126.64     | 、<br>、 |
| Mass of container          | + dry soil (g) | 220.09        | 156.92       | 176.04       | 276.32     | 246.39      | 169.56   | 85.39      | VERY   |
| Mass of container          | (g)            | 45.78         | 45.80        | 45.25        | 46.05      | 46.17       | 46.15    | 45.12      | ECO    |
| Mass of dry soil (g        | )              | 174.3         | 111.1        | 130.8        | 230.3      | 200.2       | 123.4    | 40.3       | NO R   |
| Mass of water (g)          |                | 13.2          | 10.0         | 9.7          | 14.3       | 19.2        | 10.8     | 41.3       | 2      |
| Moisture content (         | %)             | 7.6           | 9.0          | 7.4          | 6.2        | 9.6         | 8.7      | 102.4      |        |
| BH No.:                    |                | BH1           | BH1          | BH1          | BH1        | BH1         | BH1      | BH1        | BH1    |
|                            |                | SS7           | SS8A         | SS8B         | SS9        | SS10        | SS11     | SS12       | SS13   |
|                            |                | 15-17'        | 17.5-19'     | 19-19.5'     | 20-22'     | 22.5-24.5'  | 25-27'   | 27.5-29.5' | 30-32' |
| Container no.              |                | N1            | N4           | N10          | N17        | N8          | N9       | N16        | N7     |
| Mass of container          | + wet soil (g) | 278.30        | 213.70       | 240.62       | 252.25     | 238.93      | 201.02   | 246.61     | 203.55 |
| Mass of container          | + dry soil (g) | 262.26        | 200.59       | 226.34       | 236.87     | 228.08      | 189.49   | 231.05     | 191.76 |
| Mass of container          | (g)            | 45.80         | 46.34        | 45.40        | 45.80      | 45.62       | 45.75    | 46.75      | 45.08  |
| Mass of dry soil (g        | )              | 216.5         | 154.3        | 180.9        | 191.1      | 182.5       | 143.7    | 184.3      | 146.7  |
| Mass of water (g)          |                | 16.0          | 13.1         | 14.3         | 15.4       | 10.9        | 11.5     | 15.6       | 11.8   |
| Moisture content (         | %)             | 7.4           | 8.5          | 7.9          | 8.0        | 5.9         | 8.0      | 8.4        | 8.0    |
| Remarks:                   |                |               |              |              |            |             |          |            |        |
| Performed By: Jade Gorman  |                |               | Date:        |              | August     | 10, 2021    |          |            |        |
| Verified by : Joe Sullivan |                |               |              |              | Date:      |             | August   | 11, 2021   |        |



| Client:                          | Consolidated Fastfra | ate (Ottawa) H | oldings Inc. |            | Project no.: SS-21-66 |          |            |             |
|----------------------------------|----------------------|----------------|--------------|------------|-----------------------|----------|------------|-------------|
| Project/Site: Nev                | v Warehouse and O    | fices / Somme  | Street, Otta | awa        | Lab No.:              |          | 11231101   |             |
|                                  | Oven No.:            | B33-02         | 2932         | Scale No.: | 1                     | 0        | -          |             |
| BH No.:                          | BH2                  | BH2            | BH2          | BH2        | BH2                   | BH2      | BH2        | BH2         |
|                                  | SS1A                 | SS1B           | SS2          | SS3A       | SS3B                  | SS4      | SS5        | SS6A        |
|                                  | 3"-1.5'              | 1.5-2'         | 2.5-4.5'     | 5-5'5"     | 5'5"-7'               | 7.5-9.5' | 10-12'     | 12.5'-12'8" |
| Container no.                    | N14                  | N12            | N21          | N19        | N5                    | Т6       | Z48        | T2          |
| Mass of container + wet soil (g) | 174.43               | 177.11         | 281.71       | 266.40     | 269.35                | 207.95   | 199.66     | 151.70      |
| Mass of container + dry soil (g) | 169.52               | 165.71         | 267.18       | 246.46     | 249.63                | 199.32   | 184.55     | 142.47      |
| Mass of container (g)            | 45.42                | 47.01          | 45.23        | 45.24      | 46.36                 | 45.90    | 45.46      | 46.27       |
| Mass of dry soil (g)             | 124.1                | 118.7          | 222.0        | 201.2      | 203.3                 | 153.4    | 139.1      | 96.2        |
| Mass of water (g)                | 4.9                  | 11.4           | 14.5         | 19.9       | 19.7                  | 8.6      | 15.1       | 9.2         |
| Moisture content (%)             | 4.0                  | 9.6            | 6.5          | 9.9        | 9.7                   | 5.6      | 10.9       | 9.6         |
| BH No.:                          | BH2                  | BH2            | BH2          | BH2        | BH2                   | BH2      | BH2        | BH2         |
|                                  | SS6B                 | SS6C           | SS7A         | SS7B       | SS8                   | SS9      | SS10       | SS11        |
|                                  | 12'8"-12'10"         | 12'10"-14.5'   | 15-15.5'     | 15.5'-17'  | 17.5-19.5'            | 20-22'   | 22.5-24.5' | 25-27'      |
| Container no.                    | S18                  | S39            | N6           | S37        | Z47                   | S20      | Z60        | N11         |
| Mass of container + wet soil (g) | 119.33               | 171.21         | 217.62       | 216.49     | 207.82                | 292.03   | 245.95     | 186.74      |
| Mass of container + dry soil (g) | 110.90               | 147.07         | 191.26       | 194.79     | 188.53                | 268.92   | 226.39     | 175.42      |
| Mass of container (g)            | 46.62                | 46.88          | 44.84        | 46.95      | 45.88                 | 45.81    | 46.79      | 46.06       |
| Mass of dry soil (g)             | 64.3                 | 100.2          | 146.4        | 147.8      | 142.7                 | 223.1    | 179.6      | 129.4       |
| Mass of water (g)                | 8.4                  | 24.1           | 26.4         | 21.7       | 19.3                  | 23.1     | 19.6       | 11.3        |
| Moisture content (%)             | 13.1                 | 24.1           | 18.0         | 14.7       | 13.5                  | 10.4     | 10.9       | 8.8         |
| Remarks:                         |                      |                |              |            |                       |          |            |             |
| Performed By: Jade Gorman        |                      |                |              | Date:      |                       | August   | 10, 2021   |             |
| Verified by : Joe Sullivan       |                      |                |              | Date:      |                       | August   | 11, 2021   |             |





| Client:                                                   | nt: Consolidated Fastfrate (Ottawa) Holding |             |             |              | С.         | Project no. | :            | SS-2   | 21-66      |
|-----------------------------------------------------------|---------------------------------------------|-------------|-------------|--------------|------------|-------------|--------------|--------|------------|
| Project/Site:                                             | New Wareh                                   | ouse and Of | fices / Som | me Street, C | Ottawa     | Lab No.:    |              | 1123   | 51101      |
|                                                           |                                             | Oven No.:   | B33-        | 02932        | Scale No.: | 1           | 10           |        |            |
| BH No.:                                                   |                                             | BH2         | BH2         | BH2          | BH2        | BH2         | BH2          | BH2    | BH2        |
|                                                           |                                             | SS12        | SS13        | SS14         | SS15       | SS16A       | SS16B        | SS17   | SS18       |
|                                                           |                                             | 25.5-27.5'  | 30-32'      | 32.5-33'1"   | 35-37.5'   | 37.5-37'11" | 37'11"-39.5' |        | 42.5-44.5' |
| Container no.                                             |                                             | Z57         | S42         | S32          | S14        | N24         | N2           |        | S19        |
| Mass of container +                                       | wet soil (g)                                | 194.57      | 243.64      | 324.30       | 153.82     | 193.01      | 177.26       |        | 167.57     |
| Mass of container + dry soil (g)<br>Mass of container (g) |                                             | 182.50      | 225.66      | 298.54       | 140.73     | 169.48      | 162.64       | /ERY   | 154.66     |
| Mass of container (g                                      | )                                           | 47.10       | 46.28       | 46.23        | 45.69      | 46.17       | 45.34        | ECO    | 45.95      |
| Mass of dry soil (g)                                      |                                             | 135.4       | 179.4       | 252.3        | 95.0       | 123.3       | 117.3        | NO R   | 108.7      |
| Mass of water (g)                                         |                                             | 12.1        | 18.0        | 25.8         | 13.1       | 23.5        | 14.6         | 2      | 12.9       |
| Moisture content (%)                                      |                                             | 8.9         | 10.0        | 10.2         | 13.8       | 19.1        | 12.5         |        | 11.9       |
| BH No.:                                                   |                                             | BH2         | BH3         | BH3          | BH3        | BH3         | BH3          | BH3    | BH3        |
|                                                           |                                             | SS19        | SS1         | SS2A         | SS2B       | SS3         | SS4          | SS5    | SS6        |
|                                                           |                                             | 45-47'      | 3"2'        | 2.5-3'       | 3-4.5'     | 5-7'        | 7.5-9.5'     | 11-12' | 12.5-14.5' |
| Container no.                                             |                                             | Z10         | T15         | S21          | N27        | N26         | N3           | S12    | Z35        |
| Mass of container +                                       | wet soil (g)                                | 280.41      | 152.86      | 168.64       | 127.67     | 189.62      | 218.13       | 237.71 | 267.69     |
| Mass of container +                                       | dry soil (g)                                | 257.18      | 138.71      | 156.14       | 111.54     | 178.16      | 207.09       | 223.83 | 245.63     |
| Mass of container (g                                      | )                                           | 45.63       | 46.45       | 45.80        | 46.20      | 46.18       | 45.73        | 46.68  | 45.80      |
| Mass of dry soil (g)                                      |                                             | 211.6       | 92.3        | 110.3        | 65.3       | 132.0       | 161.4        | 177.2  | 199.8      |
| Mass of water (g)                                         |                                             | 23.2        | 14.2        | 12.5         | 16.1       | 11.5        | 11.0         | 13.9   | 22.1       |
| Moisture content (%)                                      | )                                           | 11.0        | 15.3        | 11.3         | 24.7       | 8.7         | 6.8          | 7.8    | 11.0       |
| Remarks:                                                  |                                             |             |             |              |            |             |              |        |            |
| Performed By: Jade Gorman                                 |                                             |             | Date:       |              | August 1   | 0, 2021     |              |        |            |
| Verified by : Joe Sullivan                                |                                             |             | mille       | Date:        |            | August 1    | 1, 2021      |        |            |



| Client: Consol                   | idated Fastfr | ate (Ottawa)  | Holdings In  | С.         | Project no | <b>.</b> :       | SS-2       | 1-66       |
|----------------------------------|---------------|---------------|--------------|------------|------------|------------------|------------|------------|
| Project/Site: New Ware           | nouse and O   | ffices / Somn | ne Street, C | ttawa      | Lab No.:   |                  | 1123       | 1101       |
|                                  | Oven No.:     | B33-0         | 2932         | Scale No.: | 1          | 0                |            |            |
| BH No.:                          | BH3           | BH3           | BH3          | BH3        | BH3        | BH3              | BH3        | BH3        |
|                                  | SS7           | SS8           | SS9          | SS10A      | SS10B      | SS11             | SS12       | SS13       |
|                                  |               | 17.5-19.5'    | 20-22'       | 22.5-23'   | 23-24.5'   | 25-27'           | 27.5-29.5' | 30-30'10"  |
| Container no.                    |               | Т3            | Z59          | S34        | S36        | Z42              | Z37        | S28        |
| Mass of container + wet soil (g) |               | 313.52        | 205.80       | 266.00     | 231.33     | 241.74           | 209.23     | 215.78     |
| Mass of container + dry soil (g) | /ER)          | 289.92        | 195.39       | 248.34     | 213.60     | 228.08           | 197.56     | 201.01     |
| Mass of container (g)            |               | 46.54         | 47.06        | 45.98      | 47.55      | 46.42            | 45.91      | 46.34      |
| Mass of dry soil (g)             | NO R          | 243.4         | 148.3        | 202.4      | 166.1      | 181.7            | 151.7      | 154.7      |
| Mass of water (g)                |               | 23.6          | 10.4         | 17.7       | 17.7       | 13.7             | 11.7       | 14.8       |
| Moisture content (%)             |               | 9.7           | 7.0          | 8.7        | 10.7       | 7.5              | 7.7        | 9.5        |
| BH No.:                          | BH4           | BH4           | BH4          | BH4        | BH4        | BH4              | BH4        | BH4        |
|                                  | SS1           | SS2           | SS3          | SS4        | SS5        | SS6              | SS7        | SS8        |
|                                  | 3"-2'         | 2.5-4.5'      | 5-7'         |            | 10-12'     | 12.5-14.5'       | 15-17'     | 15.5-17.5' |
| Container no.                    | S26           | Z29           | S17          |            | S27        | Z50              | T14        | Т8         |
| Mass of container + wet soil (g) | 223.60        | 225.82        | 263.66       |            | 222.97     | 116.87           | 151.70     | 224.79     |
| Mass of container + dry soil (g) | 194.94        | 201.43        | 250.71       | VERY       | 188.87     | 83.71            | 133.21     | 192.23     |
| Mass of container (g)            | 46.01         | 46.15         | 45.21        | ECO        | 46.16      | 47.05            | 45.34      | 46.06      |
| Mass of dry soil (g)             | 148.9         | 155.3         | 205.5        | NO R       | 142.7      | 36.7             | 87.9       | 146.2      |
| Mass of water (g)                | 28.7          | 24.4          | 13.0         | ~          | 34.1       | 33.2             | 18.5       | 32.6       |
| Moisture content (%)             | 19.2          | 15.7          | 6.3          |            | 23.9       | 90.5             | 21.0       | 22.3       |
| Remarks:                         |               |               |              |            |            |                  |            |            |
| Performed By: Jade Gorman        |               |               | Date:        |            | August     | 10, <u>2</u> 021 |            |            |
| Verified by : Joe Sullivan       |               |               |              | Date:      |            | August           | 11, 2021   |            |





| Client:                          |              | Con          |              |            | Project no. | :        | SS-2       | SS-21-66         111231101         BH4         BH4         SS14         SS14         SS14         SS14         SS14         SS14         SS14         SS14         SS15         2.5-34.5'         35-37'         S45         T9         242.41         271.90         224.01         254.61         46.07         45.78         177.9         208.8         18.4         17.3         10.3         8.3         BH5         SS5         SS6         10-12'         N36         171.27         157.43 |  |
|----------------------------------|--------------|--------------|--------------|------------|-------------|----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Project/Site: New War            | ehouse and O | ffices / Som | me Street, O | ttawa      | Lab No.:    |          | 1123       | 1101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                  | Oven No.:    | B33-         | 02932        | Scale No.: | 1           | 0        | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| BH No.:                          | BH4          | BH4          | BH4          | BH4        | BH4         | BH4      | BH4        | BH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                  | SS9A         | SS9B         | SS10         | SS11       | SS12        | SS13     | SS14       | SS15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                  | 20-21.5'     | 21.5-22'     | 22.5-24.5'   | 25-27'     | 27.5-29.5'  |          | 32.5-34.5' | 35-37'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Container no.                    | Z31          | T1           | N22          | S30        | S29         |          | S45        | Т9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Mass of container + wet soil (g) | 197.83       | 262.26       | 335.05       | 205.12     | 240.22      |          | 242.41     | 271.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Mass of container + dry soil (g) | 171.06       | 223.24       | 300.88       | 168.62     | 221.98      | VERY     | 224.01     | 254.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Mass of container (g)            | 45.87        | 45.83        | 45.42        | 45.70      | 45.78       | ECO      | 46.07      | 45.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Mass of dry soil (g)             | 125.2        | 177.4        | 255.5        | 122.9      | 176.2       | NO R     | 177.9      | 208.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Mass of water (g)                | 26.8         | 39.0         | 34.2         | 36.5       | 18.2        | 2        | 18.4       | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Moisture content (%)             | 21.4         | 22.0         | 13.4         | 29.7 10.4  |             |          | 10.3       | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| BH No.:                          | BH4          | BH5          | BH5          | BH5        | BH5         | BH5      | BH5        | BH5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                  | SS16         | SS1          | SS2A         | SS2B       | SS3         | SS4      | SS5        | SS6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                  | 37.5-39.5'   | 3"-2'        | 2.5-3'       | 3-4.5'     |             | 7.5-9.5' | 10-12'     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Container no.                    | N32          | N28          | Z5           | N29        | £           | N34      | N36        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Mass of container + wet soil (g) | 171.49       | 204.87       | 277.76       | 199.82     | IETE        | 184.69   | 171.27     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Mass of container + dry soil (g) | 156.21       | 166.78       | 240.15       | 176.72     | RON         | 171.19   | 157.43     | VERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Mass of container (g)            | 45.50        | 45.93        | 45.70        | 45.71      | НУР         | 46.67    | 45.36      | ECO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Mass of dry soil (g)             | 110.7        | 120.9        | 194.5        | 131.0      | FOR         | 124.5    | 112.1      | NO RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Mass of water (g)                | 15.3         | 38.1         | 37.6         | 23.1       | SED         | 13.5     | 13.8       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Moisture content (%)             | 13.8         | 31.5         | 19.3         | 17.6       |             | 10.8     | 12.3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Remarks:                         |              |              |              |            |             |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                  |              |              |              |            |             |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Performed By: Jade Gorman        |              |              | Date:        |            | August      | 10, 2021 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Verified by : Joe Sullivan       |              |              |              | Date:      |             | August   | 11, 2021   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |





| Client: Con                                                                                     | ient:       Consolidated Fastfrate (Ottawa) Holdings Inc.         oject/Site:       New Warehouse and Offices / Somme Street, Ottawa |                |              | Project no      | ).:<br>_  | SS-2         | 1-66    |      |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|-----------------|-----------|--------------|---------|------|
| Project/Site: New Wa                                                                            | arehouse and C                                                                                                                       | offices / Somr | ne Street, C | Ottawa          | Lab No.:  |              |         | 1101 |
|                                                                                                 | Oven No.:                                                                                                                            | B33-0          | 2932         | Scale No.:      |           | 10           |         |      |
| BH No.:                                                                                         | BH5                                                                                                                                  | BH5            | BH5          | BH5             | BH5 BH5   |              |         |      |
|                                                                                                 | SS7                                                                                                                                  | SS8            | SS9          | SS10            | SS11A     | SS11B        |         |      |
|                                                                                                 | 15-17'                                                                                                                               | 17.5-19.5'     | 20-22'       | 22.5-24.5'      | 25-25'10" | 25'10"-26'3" |         |      |
| Container no.                                                                                   | N30                                                                                                                                  | N35            | N33          | S44             | S13       | T13          |         |      |
| Mass of container + wet soil (g)                                                                | 240.14                                                                                                                               | 211.88         | 229.19       | 230.05          | 189.96    | 186.46       |         |      |
| Mass of container + dry soil (g)                                                                | 214.80                                                                                                                               | 197.53         | 214.27       | 211.44          | 180.54    | 166.64       |         |      |
| Mass of container (g)                                                                           | 46.40                                                                                                                                | 46.08          | 47.12        | 46.44           | 46.30     | 46.88        |         |      |
| Mass of dry soil (g)                                                                            | 168.4                                                                                                                                | 151.5          | 167.2        | 165.0           | 134.2     | 119.8        |         |      |
| Mass of water (g)                                                                               | 25.3                                                                                                                                 | 14.4           | 14.9         | 18.6            | 9.4       | 19.8         |         |      |
| Moisture content (%)                                                                            | 15.0                                                                                                                                 | 9.5            | 8.9          | 11.3            | 7.0       | 16.5         |         |      |
| BH No.:                                                                                         |                                                                                                                                      |                |              |                 |           |              |         |      |
|                                                                                                 |                                                                                                                                      |                |              |                 |           |              |         |      |
|                                                                                                 |                                                                                                                                      |                |              |                 |           |              |         |      |
| Container no.                                                                                   |                                                                                                                                      |                |              |                 |           |              |         |      |
| Mass of container + wet soil (g)                                                                |                                                                                                                                      |                |              |                 |           |              |         |      |
| Mass of container + dry soil (g)                                                                |                                                                                                                                      |                |              |                 |           |              |         |      |
| Mass of container (g)                                                                           |                                                                                                                                      |                |              |                 |           |              |         |      |
| Mass of dry soil (g)                                                                            |                                                                                                                                      |                |              |                 |           |              |         |      |
| Mass of water (g)                                                                               |                                                                                                                                      |                |              |                 |           |              |         |      |
| Moisture content (%)                                                                            |                                                                                                                                      |                |              |                 |           |              |         |      |
| Remarks:                                                                                        |                                                                                                                                      |                |              |                 |           |              |         |      |
| Performed By: Jade Gorman                                                                       |                                                                                                                                      |                |              | Date:           |           | Auaust 1     | 0, 2021 |      |
| Performed By:     Jade Gorman     I       Verified by :     Joe Sullivan     Joe Sullivan     I |                                                                                                                                      |                | Date:        | August 11, 2021 |           |              |         |      |

٦

### Moisture Content of Soils (ASTM D2216)

| Client:               | Consolidated Fastrate ( | Ottawa) Hold   | ings Ltd |        |            | Lab No.:  | G-20-13     |        |        |
|-----------------------|-------------------------|----------------|----------|--------|------------|-----------|-------------|--------|--------|
| Project:              | New Warehouse, Somm     | ne Street, Ott | awa, On  |        |            | Project N | lo.:        | 112156 | 12     |
| Location:             | Ottawa, On              |                |          |        |            |           |             |        |        |
| Apparatus Use         | d for Testing           |                |          |        |            |           |             |        |        |
|                       |                         | Oven no.:      | 1        |        | Scale no.: | 1         |             |        |        |
|                       |                         |                |          |        |            |           |             |        |        |
| Sample No.            |                         | BH1SS1         | BH1SS2   | BH1SS3 | BH1SS4     | BH1SS6    | BH1SS7      | BH1SS8 | BH1SS9 |
| Container no.         |                         | S18            | S21      | Bowl   | S16        | S15       | S29         | S43    | S34    |
| Mass of container     | r + wet soil (g)        | 70.9           | 78.5     | 350.4  | 83.1       | 92.1      | 95.5        | 91.5   | 87.1   |
| Mass of container     | r + dry soil (g)        | 65.2           | 75.7     | 335.8  | 77.9       | 86.7      | 88.1        | 76.9   | 72.9   |
| Mass of container (g) |                         | 22.7           | 21.8     | 0.0    | 21.8       | 22.1      | 21.8        | 22.1   | 14.6   |
| Mass of dry soil (g)  |                         | 42.5           | 53.9     | 335.8  | 56.1       | 64.6      | 66.3        | 54.8   | 58.3   |
| Mass of water (g)     |                         | 5.7            | 2.8      | 14.6   | 5.2        | 5.4       | 7.4         | 14.6   | 14.2   |
| Moisture content (%)  |                         | 13.4           | 5.2      | 4.3    | 9.3        | 8.4       | 11.2        | 26.6   | 24.4   |
| Sample No.            |                         | BH1SS10        | BH2SS1   | BH2SS2 | BH2SS2     | BH2SS4    | BH2SS4      | BH2SS6 | BH2SS6 |
| Container no.         |                         | S5             | S28      | S41    | S41        | S8        | S8          | S9     | S9     |
| Mass of container     | r + wet soil (g)        | 89.8           | 76.8     | 75.9   | 75.9       | 44.5      | 44.5        | 100.3  | 100.3  |
| Mass of container     | r + dry soil (g)        | 84.6           | 64.2     | 58.4   | 58.4       | 33.6      | 33.6        | 89.4   | 89.4   |
| Mass of container     | r (g)                   | 22.2           | 21.9     | 22.9   | 22.9       | 14.3      | 14.3        | 21.7   | 21.7   |
| Mass of dry soil (    | 3)                      | 62.4           | 42.3     | 35.5   | 35.5       | 19.3      | 19.3        | 67.7   | 67.7   |
| Mass of water (g)     |                         | 5.2            | 12.6     | 17.5   | 17.5       | 10.9      | 10.9        | 10.9   | 10.9   |
| Moisture content      | (%)                     | 8.3            | 29.8     | 49.3   | 49.3       | 56.5      | 56.5        | 16.1   | 16.1   |
| Remarks:              |                         |                |          |        |            |           |             |        |        |
| Performed by:         | Z. Mathurin             |                |          |        | Date:      | August 2  | 27, 2020    |        |        |
| Verified by :         | 2120                    |                |          |        | Date:      | Septemb   | oer 4, 2020 |        |        |



Г



| Client:              | Consolidated Fastrate (          | Ottawa) Hold | ings Ltd |        |            | Lab No.: |             | G-20-13 | 3<br>12-A2 |
|----------------------|----------------------------------|--------------|----------|--------|------------|----------|-------------|---------|------------|
| Location:            | Ottawa, On                       |              |          |        |            | FIOJECIN | IO          |         | ,          |
| Apparatus Used       | for Testing                      | Oven no.:    | 1        |        | Scale no.: | 1        |             |         |            |
| Sample No.           |                                  | BH2SS7       | BH2SS8   | BH2SS9 | BH2SS10    | BH2SS11  | BH2SS12     | BH2SS13 | BH2SS14    |
| Container no.        |                                  | S11          | S31      | S38    | S26        | S36      | S39         | S35     | S10        |
| Mass of container    | + wet soil (g)                   | 90.6         | 75.1     | 79.5   | 99.9       | 83.8     | 101.3       | 55.7    | 73.1       |
| Mass of container    | Mass of container + dry soil (g) |              | 66.7     | 74.3   | 93.7       | 79.0     | 92.5        | 55.6    | 55.5       |
| Mass of container    | (g)                              | 21.5         | 21.6     | 21.5   | 21.6       | 22.1     | 22.0        | 14.5    | 22.0       |
| Mass of dry soil (g) |                                  | 62.6         | 45.1     | 52.8   | 72.1       | 56.9     | 70.5        | 41.1    | 33.5       |
| Mass of water (g)    |                                  | 6.5          | 8.4      | 5.2    | 6.2        | 4.8      | 8.8         | 0.1     | 17.6       |
| Moisture content (   | %)                               | 10.4         | 18.6     | 9.8    | 8.6        | 8.4      | 12.5        | 0.2     | 52.5       |
| Sample No.           |                                  | BH3SS1       | BH3SS2   | BH3SS3 | BH3SS4     | BH3SS5   | BH3SS6      | BH3SS7  | BH3SS8     |
| Container no.        |                                  | S37          | S25      | S22    | S20        | S14      | S7          | S17     | S2         |
| Mass of container    | + wet soil (g)                   | 87.3         | 73.4     | 76.6   | 102.3      | 66.7     | 57.8        | 89.6    | 102.2      |
| Mass of container    | + dry soil (g)                   | 78.7         | 71.6     | 72.4   | 97.8       | 64.3     | 56.4        | 83.5    | 96.5       |
| Mass of container    | (g)                              | 22.0         | 21.8     | 22.2   | 22.5       | 21.8     | 21.7        | 21.5    | 21.8       |
| Mass of dry soil (g  | )                                | 56.7         | 49.8     | 50.2   | 75.3       | 42.5     | 34.7        | 62.0    | 74.7       |
| Mass of water (g)    |                                  | 8.6          | 1.8      | 4.2    | 4.5        | 2.4      | 1.4         | 6.1     | 5.7        |
| Moisture content (   | %)                               | 15.2         | 3.6      | 8.4    | 6.0        | 5.6      | 4.0         | 9.8     | 7.6        |
| Remarks:             |                                  |              |          |        |            |          |             |         |            |
| Performed by:        | Z. Mathurin                      |              |          |        | Date:      | August 2 | 7, 2020     |         |            |
| Verified by :        | 2120                             |              |          |        | Date:      | Septemb  | oer 4, 2020 |         |            |



| Client:                          | Consolidated Fastrate (C | Ottawa) Hold<br>e Street, Ott | ings Ltd |         |            | Lab No.:<br>Project N | lo ·        | G-20-13 | 3<br>12-A2 |
|----------------------------------|--------------------------|-------------------------------|----------|---------|------------|-----------------------|-------------|---------|------------|
| Location:                        | Ottawa, On               |                               |          |         |            |                       |             |         |            |
| Apparatus Used                   | for Testing              | Oven no.:                     | 1        |         | Scale no.: | 1                     |             |         |            |
| Sample No.                       |                          | BH3SS9                        | BH3SS10  | BH3SS11 | BH3SS12    | BH3SS13               | BH4SS1      | BH4SS2  | BH4SS3     |
| Container no.                    |                          | S12                           | S32      | S13     | S4         | S120                  | S6          | S23     | S40        |
| Mass of container + wet soil (g) |                          | 88.7                          | 84.4     | 88.7    | 77.6       | 85.2                  | 93.5        | 76.9    | 96.9       |
| Mass of container + dry soil (g) |                          | 84.0                          | 79.9     | 84.5    | 75.9       | 79.6                  | 85.7        | 73.6    | 93.1       |
| Mass of container                | (g)                      | 21.6                          | 21.7     | 24.1    | 21.8       | 21.9                  | 21.9        | 22.3    | 22.3       |
| Mass of dry soil (g)             |                          | 62.4                          | 58.2     | 60.4    | 54.1       | 57.7                  | 63.8        | 51.3    | 70.8       |
| Mass of water (g)                |                          | 4.7                           | 4.5      | 4.2     | 1.7        | 5.6                   | 7.8         | 3.3     | 3.8        |
| Moisture content (               | %)                       | 7.5                           | 7.7      | 7.0     | 3.1        | 9.7                   | 12.2        | 6.4     | 5.4        |
| Sample No.                       |                          | BH4SS4                        | BH4SS5   | BH4SS6  | BH4SS8     | BH4SS9                | BH4SS11     |         |            |
| Container no.                    |                          | S19                           | S1       | S130    | S42        | S110                  | 88          |         |            |
| Mass of container                | + wet soil (g)           | 105.4                         | 92.9     | 44.1    | 101.8      | 98.5                  | 73.0        |         |            |
| Mass of container                | + dry soil (g)           | 101.9                         | 86.7     | 41.8    | 94.3       | 92.8                  | 66.5        |         |            |
| Mass of container                | (g)                      | 21.9                          | 22.0     | 22.1    | 21.8       | 21.7                  | 1.5         |         |            |
| Mass of dry soil (g              | )                        | 80.0                          | 64.7     | 19.7    | 72.5       | 71.1                  | 65.0        |         |            |
| Mass of water (g)                |                          | 3.5                           | 6.2      | 2.3     | 7.5        | 5.7                   | 6.5         |         |            |
| Moisture content (               | %)                       | 4.4                           | 9.6      | 11.7    | 10.3       | 8.0                   | 10.0        |         |            |
| Remarks:                         |                          |                               |          |         |            |                       |             |         |            |
| Performed by:                    | Z. Mathurin              |                               |          |         | Date:      | August 2              | 7, 2020     |         |            |
| Verified by :                    | 2/20                     |                               |          |         | Date:      | Septemb               | oer 4, 2020 |         |            |



| Client:             | Consolidated Fastrate (Ottawa) Holdings Ltd |                 |         |         | Lab No.:  | G-20-13                  |    |
|---------------------|---------------------------------------------|-----------------|---------|---------|-----------|--------------------------|----|
| -<br>Project:       | New Warehouse, So                           | mme Street, Ott | awa, On |         |           | Project No.: 11215612-A2 |    |
| Location:           | Ottawa, On                                  |                 |         |         |           | -                        |    |
| Apparatus Used      | for Testing                                 | Oven no.:       | 1       |         | Scale no. | :1                       |    |
| Sample No.          |                                             | BH4SS12         | BH4SS13 | BH4SS14 |           |                          |    |
| Container no.       |                                             | 70              | 42      | 44      |           |                          |    |
| Mass of container   | + wet soil (g)                              | 60.0            | 67.4    | 72.1    |           |                          |    |
| Mass of container   | + dry soil (g)                              | 54.0            | 61.2    | 64.6    |           |                          |    |
| Mass of container   | (g)                                         | 1.5             | 1.4     | 1.4     |           |                          |    |
| Mass of dry soil (g | )                                           | 52.5            | 59.8    | 63.2    |           |                          |    |
| Mass of water (g)   |                                             | 6.0             | 6.2     | 7.5     |           |                          |    |
| Moisture content (  | %)                                          | 11.4            | 10.4    | 11.9    |           |                          |    |
| Sample No.          |                                             |                 |         |         |           |                          |    |
| Container no.       |                                             |                 |         |         |           |                          |    |
| Mass of container   | + wet soil (g)                              |                 |         |         |           |                          |    |
| Mass of container   | + dry soil (g)                              |                 |         |         |           |                          |    |
| Mass of container   | (g)                                         |                 |         |         |           |                          |    |
| Mass of dry soil (g | )                                           |                 |         |         |           |                          |    |
| Mass of water (g)   |                                             |                 |         |         |           |                          |    |
| Moisture content (  | %)                                          |                 |         |         |           |                          |    |
| Remarks:            |                                             |                 |         |         |           |                          |    |
| Performed by:       | Z. Mathurin                                 |                 |         |         | Date:     | August 27, 2020          |    |
| Verified by :       | 2/20                                        | -               |         |         | Date:     | September 4, 202         | 20 |



#### Uniaxial Compressive Strength of Intact Rock Core Specimens (ASTM D7012 - Method C)

| Client:                  | Consolidated Fastfrate (Ottaw          | Consolidated Fastfrate (Ottawa) Holdings Inc      |           | SS-21-66 |
|--------------------------|----------------------------------------|---------------------------------------------------|-----------|----------|
| Project/Site:            | New Warehouse and<br>Somme Street, Ott | New Warehouse and Offices<br>Somme Street, Ottawa |           | 11231101 |
| Borehole No.:            | BH2-21                                 | Sampled ID:                                       | Run #     | 2        |
| Depth:                   | 51'5" - 51'8" (1570 to 1579.4cm)       | Date Sampled:                                     | n/a       |          |
| Lithological Des         | cription: Limestone                    | -                                                 |           |          |
|                          |                                        |                                                   |           |          |
|                          | Initial Specime                        | en Parameters                                     |           |          |
| D                        | iameter, mm                            |                                                   | 47.0      |          |
| н                        | eight, mm                              |                                                   | 94.0      |          |
| Height-to-Diameter Ratio |                                        |                                                   | 2.0       |          |
| V                        | olume, cm <sup>3</sup>                 | 1                                                 | 63.1      |          |
| Μ                        | ass, g                                 | 4                                                 | 466.5     |          |
| В                        | ulk Density, kg/m <sup>3</sup>         | 2                                                 | 2860      |          |
| Μ                        | oisture Condition                      | As F                                              | Received  |          |
| Μ                        | oisture Content, %                     |                                                   | 0.2       |          |
|                          |                                        |                                                   |           |          |
| M                        | Maximum Applied Load, KN               |                                                   | 241.3     |          |
| С                        | ompressive Strength, MPa               | 1                                                 | 39.1      |          |
|                          |                                        |                                                   |           |          |
| REMARKS:                 |                                        |                                                   |           |          |
| PERFORMED B              | <b>f</b> : Jesse Carreau               | DATE:                                             | August 3, | 2021     |
| VERIFIED BY:             | Joe Sullivan                           | DATE:                                             | August 5, | 2021     |



GHD FO-930.112 - Unconfined Compressive Strength of Intact Rock Core Specimen - Rev.0 - 07/01/2015

# Appendix C Analytical Lab Results

| 🔅 euro             | ofins                                                       | <b>Certificate of Analysis</b> |                                                                 |                                                    | Page 89 |
|--------------------|-------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|----------------------------------------------------|---------|
|                    | Environment Testing                                         |                                |                                                                 |                                                    |         |
| Client:            | GHD Limited (Ottawa)<br>400-179 Colonnade Rd.<br>Ottawa, ON |                                | Report Number:<br>Date Submitted:<br>Date Reported:<br>Project: | 1936331<br>2020-08-11<br>2020-08-25<br>11215612-A2 |         |
| Attention:<br>PO#: | Mr. Ryan Vanden Tillaart<br>73520576                        |                                | COC #:                                                          | 210163                                             |         |
| Invoice to:        | GHD Limited (Ottawa)                                        | Page 1 of 4                    |                                                                 |                                                    |         |

#### Dear Ryan Vanden Tillaart:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:

Addrine Thomas 2020.08.25 15:09:43 -04'00'

Addrine Thomas, Inorganics Supervisor

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: <u>http://www.cala.ca/scopes/2602.pdf</u>.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.



## **Environment Testing**

| Client:     | GHD Limited (Ottawa)     |
|-------------|--------------------------|
|             | 400-179 Colonnade Rd.    |
|             | Ottawa, ON               |
|             | K2E 7J4                  |
| Attention:  | Mr. Ryan Vanden Tillaart |
| PO#:        | 73520576                 |
| Invoice to: | GHD Limited (Ottawa)     |

🛟 eurofins

| Report Number:  | 1936331     |
|-----------------|-------------|
| Date Submitted: | 2020-08-11  |
| Date Reported:  | 2020-08-25  |
| Project:        | 11215612-A2 |
| COC #:          | 210163      |

|                   |                         |       |        | Lab I.D.<br>Sample Matrix<br>Sample Type<br>Sampling Date<br>Sample I.D. | 1509594<br>Soil<br>2020-08-11<br>BH3-SS3 |
|-------------------|-------------------------|-------|--------|--------------------------------------------------------------------------|------------------------------------------|
| Group             | Analyte                 | MRL   | Units  | Guideline                                                                |                                          |
| Anions            | Cl                      | 0.002 | %      |                                                                          | 0.008                                    |
| -                 | SO4                     | 0.01  | %      |                                                                          | 0.08                                     |
| General Chemistry | Electrical Conductivity | 0.05  | mS/cm  |                                                                          | 0.52                                     |
| -                 | рН                      | 2.00  |        |                                                                          | 8.66                                     |
| -                 | Resistivity             | 1     | ohm-cm |                                                                          | 1920                                     |
| Redox Potential   | REDOX Potential         |       | mV     |                                                                          | 205                                      |
| Subcontract       | Moisture-Humidite       | 0.25  | %      |                                                                          | 8.54                                     |
| -                 | S2-                     | 0.2   | ug/g   |                                                                          | <0.20                                    |

Guideline =

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

### **Environment Testing**

| Client:     | GHD Limited (Ottawa)     |
|-------------|--------------------------|
|             | 400-179 Colonnade Rd.    |
|             | Ottawa, ON               |
|             | K2E 7J4                  |
| Attention:  | Mr. Ryan Vanden Tillaart |
| PO#:        | 73520576                 |
| Invoice to: | GHD Limited (Ottawa)     |

🛟 eurofins

| Report Number:  | 1936331     |
|-----------------|-------------|
| Date Submitted: | 2020-08-11  |
| Date Reported:  | 2020-08-25  |
| Project:        | 11215612-A2 |
| COC #:          | 210163      |

#### QC Summary

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Blank               | QC<br>% Rec | QC<br>Limits |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|--------------|
| Run No 387642 Analysis/Extraction Date 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20-08-13 Ana        | lyst AET    |              |
| Method C CSA A23.2-4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |             |              |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 98          | 90-110       |
| Run No         387870         Analysis/Extraction Date         20           Method         SUBCONTRACT-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20-08-14 <b>Ana</b> | lyst AET    |              |
| Moisture-Humidite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.25 %             | 101         |              |
| S2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.20 ug/g          | 98          |              |
| Run No         387916         Analysis/Extraction Date         20           Method         Cond-Soil         Cond-So | 20-08-18 <b>Ana</b> | lyst SG     |              |
| Electrical Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.05 mS/cm         | 97          | 90-110       |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.63                | 100         | 90-110       |
| Resistivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |             |              |
| Run No         388007         Analysis/Extraction Date         20           Method         AG SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20-08-19 <b>Ana</b> | lyst SKH    |              |
| SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01 %             | 96          | 70-130       |
| Run No388317Analysis/Extraction Date20MethodC SM2580B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20-08-25 Ana        | lyst AET    |              |
| REDOX Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 258 mV              | 101         |              |

#### Guideline =

#### \* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

## Appendix D Water Well Record from the Ministry of the Environment, Conservation and Parks

| COUNTY OR DISTRICT<br>L. PRINT ONLY IN SPACES PROVIDED<br>2. CHECK C CORRECT BOX WHERE APPLICABLE<br>TOWNSHIP BOROUGH CITY. TOWN VILLAGE<br>COUNTY OR DISTRICT<br>TOWNSHIP BOROUGH CITY. TOWN VILLAGE<br>COUNTY OR DISTRICT<br>TOWNSHIP BOROUGH CITY. TOWN VILLAGE<br>COUNTY OR DISTRICT<br>COUNTY OR DISTRICT<br>TOWNSHIP BOROUGH CITY. TOWN VILLAGE<br>COUNTY OR DISTRICT<br>COUNTY OR DISTRICT<br>TOWNSHIP BOROUGH CITY. TOWN VILLAGE<br>COUNTY OR DISTRICT<br>COUNTY |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. CHECK CORRECT BOX WHERE APPLICABLE<br>2. CHECK CORRECT BOX WHERE APPLICABLE<br>TOWNSHIP. BOROUGH. CITY. TOWN VILLAGE<br>CON BLOCK. TRACT. SURVEY ETC<br>CON BLOCK. SURVEY ETC<br>CON BLOCK.                                                                                                                                 |
| Incester       6       26         Box 4208 stn. "E" Ottawa, Ontario KIS 5B2       Date completed       48-33         Complete completed       48-33       0 - 8       93         Complete compl                                                                                                                                                                                                                                                                                                                                                                             |
| Box 4208 stn. "E" Ottawa,Ontario KIS 5B2       Day 16       Mo       8       YR93         16       RC       ELEVATION       RC       MASIN CODE       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Image: Second                                                                                                                                                                                                                                |
| LOG OF OVERBURDEN AND BEDROCK MATERIALS (SEE INSTRUCTIONS)         GENERAL COLOUR       MOST<br>CONMON MATERIAL       OTHER MATERIALS       GENERAL DESCRIPTION       DePTH - FEET<br>FROM       TO         Brown       Sand       Stone       0       5         Gray       Hardpan       Boulders       5       28         Gray       Sandstone       Hard       28       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GENERAL COLOURMOST<br>CONMON MATERIALOTHER MATERIALSGENERAL DESCRIPTIONFROMTOBrownSandStone05GrayHardpanBoulders528GraySandstoneHard28100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BrownSandStone05GrayHardpanBoulders528GraySandstoneHard28100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Gray     Hardpan     Boulders     5     28       Gray     Sandstone     Hard     28     100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Gray Sandstone Hard 28 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{bmatrix} 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| WATER FOUND KIND OF WATER DIAM MATERIAL THEATERIAL THEATERIAL THEATERIAL THEATERIAL AND TYPE DEPTH TO TOP 41-44 ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15-18 1 Greesh 3 SULPHUR 19 3 CONCRETE 4 OPEN HOLE 5 PLASTIC 6 Gas 10 FRESH 3 CONCRETE 4 OPEN HOLE 5 PLASTIC 10 FRESH 4 CONCRETE 10 FRESH 4 CONCRE                                                                                                                                                                                                 |
| 20-23 NOT FILESTED LEAD PACKER ETC.)<br>2 0-23 ATT CONCEPTED                                                                                                                                                                                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 30-33     1     FRESH     3     ISULPHUR     34     0       3     1     GONCRETE     3     ICONCRETE       2     ISALTY     6     IGAS     ISULPHUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 71 PUMPING TEST NETHOD 10 PUMPING RATE 11-14 DURATION OF PUMPING LOCATION OF WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Image: Static     Bailer     20     GPM     1     Hours     Mins       Static     Water Levels     25     Image: Pumping     In diagram below show distances of well from road and end of the pumping       Static     Water Levels during     Image: Pumping     Image: Pumping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LEVEL PUMPING C LEVEL PUMPING C LI RECOVERY<br>19-21 22-24 15 MINUTES 30 MINUTES 45 MINUTES 60 MINUTES<br>LU 26-28 29-31 32-34 35-37<br>D 2 0 0 1 2 0 2 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10     7'6" FEET     14'6" FEET     13'11"     14 FEET     14'6"       11     FLOWING.     38-41     PUMP INTAKE SET AT     WATER AT END OF TEST     42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GPM     FEET     1 GLEAR     2 GLOUDY       RECOMMENDED     FEET     1 GLEAR     2 GLOUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| a shallow A DEEP SETTING 50 FEET RATE 5 GPM 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EINAL 1 WATER SUPPLY 3 ABANDONED, INSUFFICIENT SUPPLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| STATUS : OBSERVATION WELL & ABANDONED POOR QUALITY<br>STATUS : DEST HOLE : DUNISHED<br>OF WELL A DEST HOLE : DEST HOLE                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WATER     3     1 IRREGATION     7     0     PUBLIC SUPPLY       USE     4     0     INDUSTRIAL     4     0     Cooling or air conditioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <sup>1</sup> OTHER <u><sup>3</sup></u> NOT USED <u>7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| METHOD     Image: Conventional image: Co                                                                                                                                                                                                                           |
| CONSTRUCTION + D ROTARY (AIR) + D DIVING<br>AIR PERCUSSION DIGGING D OTHER DRILLERS REMARKS 135946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NAME OF WELL CONTRACTOR WELL CONTRACTOR'S LICENCE NUMBER SOURCE STATE RECEIVED ST                                                                                                                                                                                                 |
| O LADITAL WATER SUPPLY LEG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Box 490 Stittsville, Ontario K2S 1A6<br>NAME OF WELL TECHNICIAN<br>LICENCE NUMBER<br>KENARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sofiller/To Harrison     TUU9//T2251       Signature of technician/contractor     Submission date       Ic     Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MINISTRY OF THE ENVIRONMENT COPY         DAY LONOYR.Z3         U         FORM NO. 0506 (11/86) FORM S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Ontario Ministry<br>of the<br>Environment                          | LY IN SPACES PROVIDED                                                |                                   | The<br><b>FER</b><br>1527: | Ontario V<br>WI<br>384    | Water Resource      | RECC                                           |                       |
|--------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|----------------------------|---------------------------|---------------------|------------------------------------------------|-----------------------|
| 2. CHECK 🗵<br>COUNTY OR DISTRICT                                   | CORRECT BOX WHERE APPLICAE<br>TOWNSHIP, BOROUGH                      | H CITY TOWN VILLAGE               |                            | CON                       | BLOCK, TRACT SURVEY |                                                | LOT 25-27             |
| Ottava Carloton                                                    |                                                                      | Gloucester                        |                            |                           | 6                   |                                                | 26                    |
|                                                                    | E                                                                    | 30x 4208 stn                      | "B" Ottaw                  | a,Ontar                   | io Kls 582          | DAY_16_ MO 8_                                  | yr <mark>93</mark>    |
| 1 2 W 10 12                                                        | 17 18                                                                |                                   |                            |                           | BASIN CODE          |                                                |                       |
|                                                                    | LOG OF OVERBUR                                                       | DEN AND BEDRO                     | OCK MATERI                 | ALS (SEE IN               | STRUCTIONS)         |                                                |                       |
| GENERAL COLOUR CONNON MATERIAL                                     | OTHER                                                                | R MATERIALS                       |                            | GENERA                    | L DESCRIPTION       | DEPT<br>FROM                                   | H - FEET<br>TO        |
| Gray & White Sandst                                                | one                                                                  |                                   |                            | Hard                      | <u> </u>            | 0                                              | 100                   |
|                                                                    |                                                                      |                                   |                            |                           |                     |                                                |                       |
|                                                                    |                                                                      |                                   |                            |                           |                     |                                                |                       |
|                                                                    |                                                                      | , <u>,</u>                        |                            |                           |                     |                                                |                       |
|                                                                    |                                                                      |                                   |                            |                           |                     |                                                |                       |
|                                                                    |                                                                      |                                   |                            |                           |                     |                                                |                       |
|                                                                    |                                                                      |                                   |                            |                           |                     |                                                |                       |
|                                                                    |                                                                      |                                   |                            |                           |                     |                                                |                       |
| · · · · · · · · · · · · · · · · · · ·                              |                                                                      | <u> </u>                          |                            |                           |                     |                                                |                       |
|                                                                    |                                                                      | ·····                             |                            |                           |                     |                                                |                       |
| 31                                                                 |                                                                      |                                   | <u>_</u>                   |                           |                     | 1  1  1                                        | <u> </u><br>          |
| $\begin{array}{c c} 32 \\ 1 \\ 1 \\ 2 \end{array}$                 |                                                                      |                                   |                            |                           |                     | ] <u>                                     </u> |                       |
| 41 WATER RECORD                                                    | 51 CASING                                                            | & OPEN HOLE                       | RECORD                     | 54<br>SIZE (5)<br>(SLOT ) | OF OPENING 31-3     | 65<br>3 DIAMETER 34-38                         | 75 80<br>LENGTH 39-40 |
| AT - FEET KIND OF WATER                                            | INSIDE<br>DIAN MATERIAL<br>INCHES                                    | WALL<br>THICKNESS<br>INCHES FR    | DEPTH - FEET               |                           | AL AND TYPE         | INCHES<br>DEPTH TO TOP<br>OF SCREEN            | FEET<br>41-44 30      |
| 30 2 SALTY 4 SUPPOR<br>6 GAS                                       | 6 1/4 1 STEEL<br>2 GALVANIZE<br>3 CONCRETE                           | • <b>188</b>                      | 0 2'2''                    | Ň                         |                     |                                                | FEET                  |
| 84 20.21                                                           | 4 □ OPEN HOLE<br>5 □ PLASTIC                                         | E                                 | 20-23                      | 61<br>DEPTH SE            | PLUGGING 8          | SEALING RECO                                   | DRD                   |
| 2 SALTY 6 GAS                                                      | 6 1/16 CONCRETE                                                      | ε <b>2</b>                        | 2 100                      | FROM<br>10-13             | TO MATE             | RIAL AND TYPE LEAD P                           | ACKER, ETC >          |
| 1 □ FRESH 3 □ SULPHUR<br>2 □ SALTY 6 □ GAS                         | 24-25 1 □ STEEL<br>24-25 24-25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 26                                | 27-30                      | 20"8 <b>*</b><br>18-21    | 0 Gro               | ited cemeth                                    | (3)                   |
| 30-33 I □ FRESH 3 □ SULPHUR 3<br>4 □ MINERALS<br>2 □ SALTY 6 □ GAS | 4 00 3 □ CONCRETE<br>4 □ OPEN HOLE<br>5 □ PLASTIC                    | E                                 |                            | 26-29                     | 30-33 80            |                                                |                       |
| 71 PUMPING TEST METHOD 10 PUMPING                                  | RATE 11-14 DURATION                                                  | OF PUMPING                        |                            | LO                        | CATION OF           | WELL                                           |                       |
| STATIC WATER LEVEL                                                 | <u>5-20</u> GPM <u>1</u>                                             | HOURS MINS                        | IN DIA                     | GRAM BELOW                | SHOW DISTANCES OF   | WELL FROM ROAD A                               | ND                    |
| н LEVEL PUMPING<br>0 19-21 22-24 35 Міни<br>Ш                      | 2<br>TES 30 MINUTES 45 MIN<br>28-28 29-31                            | TES 60 MINUTES                    |                            |                           | TATE NORTH BY ARROV | <i>l</i> .                                     |                       |
| G 21 6 FEET 24 4 FEET 23                                           | GET 24 FEET 24                                                       | 4" 24'4"<br>END OF TEST 42        |                            |                           | reno Roac           | I                                              |                       |
|                                                                    | 40 FEET 1 [] CL                                                      | EAR 2 👷 CLOUDY                    |                            |                           |                     | 1                                              |                       |
|                                                                    | TOED 42:43 RECOMMENT<br>PUMPING<br>50 FEET RATE                      | Б 46-49<br>5 срм                  |                            |                           |                     |                                                |                       |
| <u> </u>                                                           |                                                                      |                                   | g                          |                           |                     | 1                                              |                       |
| FINAL ' X WATER SUPPLY<br>STATUS ' D OBSERVATION<br>3 D TEST HOLE  | S 🗌 ABANDONED. IN<br>Well G 🗌 Abandoned Pr<br>7 🗍 Unfinished         | NSUFFICIENT SUPPLY<br>OOR QUALITY |                            |                           |                     | I                                              | 250 250               |
| OF WELL 4 C RECHARGE WE                                            |                                                                      |                                   | 212                        |                           |                     |                                                | m                     |
| WATER 2 STOCK<br>3 IRRIGATION                                      | MUNICIPAL<br>7 DEUBLIC SUPPLY                                        |                                   | H.                         |                           |                     | 1                                              |                       |
|                                                                    | COOLING OR AIR CC                                                    | ONDITIONING<br>NOT USED           | Hau                        |                           |                     | 4                                              |                       |
|                                                                    | ENTIONAL) 7 DIAMO                                                    | G<br>ND                           |                            |                           | R                   | *                                              |                       |
|                                                                    | RSE) B JETTIN<br>9 DRIVIN                                            | iG                                | 1                          |                           | $\mathcal{F}$       | 4 0 1                                          |                       |
| NAME OF WELL CONTRACTOR                                            |                                                                      |                                   | DRILLERS REMARK            | s                         | 4                   | 13:                                            | 544                   |
| 6 Capital Water Supply                                             | Ltd.                                                                 | 1558                              | Source                     |                           | 558 OATE            | SEP 2 1 1993                                   | 43-68 80              |
| Box 490 Stitteville                                                | . Ontario 820                                                        | 146                               |                            | TION                      | INSPECTOR           |                                                |                       |
| S. Miller/T. Harrison                                              |                                                                      | ELL TECHNICIAN'S<br>CENCE NUMBER  |                            |                           |                     |                                                |                       |
| SIGNATURE OF TECHNICIAN/CONTACTO                                   | SUBMISSION DATE                                                      | 9 92                              | OFFL                       |                           |                     |                                                |                       |
| - mourie                                                           |                                                                      | 10 YR.                            |                            |                           |                     |                                                |                       |

THE ENVIRONMENT COPY

-

## Appendix E Slope Stability Analysis Results under Dynamic Compaction Conditions

|  | GHD | Global Slope Stability Analysis<br>Consolidated FastFrate (Ottawa) Holdings Inc<br>Slope Stability Analysis Results Under Dynamic Compaction<br>Loads | 2022-10-17 |
|--|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|--|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------|

#### Geotechnical Parameters Used in the Global Slope Stability Analysis

| Geotechnical Parameters | Existing Backfill | Native Sandy Silt | Limestone              |
|-------------------------|-------------------|-------------------|------------------------|
| Material Model          | Mohr-Coulomb      | Mohr-Coulomb      | Bedrock (Impenetrable) |
| Unit Weight, γ (kN/m³)  | 18                | 17                | Not applicable         |
| Phi, φ (°)              | 25                | 34                | Not applicable         |
| Cohesion, Cu (kPa)      | 4                 | 2                 | Not applicable         |

| Client:    | Consolidated FastFrate (Ottawa) Holdings Inc                    | Droporod |                              |  |  |  |
|------------|-----------------------------------------------------------------|----------|------------------------------|--|--|--|
| Projet:    | Proposed Industrial Development                                 |          | David Rizk, ing. (Qc)        |  |  |  |
| Reference: | 12576381-RPT-1                                                  |          |                              |  |  |  |
| Location:  | Intersection of Rideau Street and Somme Street, Ottawa, Ontario | Reviewed |                              |  |  |  |
| Analysis:  | Geotechnical Parameters Used                                    | by:      | Denis Roy, ing. (QC), M.B.A. |  |  |  |









## Appendix F Slope Stability Analysis Results following the Final Slop Projected Geometry

| G                                                                   |                                     | Global Slope Stability Analysis<br>Consolidated FastFrate (Ottawa) Holdings Inc<br>Slope Stability Analysis Results Following the Final Slope<br>Projected Geometry |                         |                       |                 |                              | 2022-10-17   |  |  |  |
|---------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|-----------------|------------------------------|--------------|--|--|--|
| Geotechnical Parameters Used in the Global Slope Stability Analysis |                                     |                                                                                                                                                                     |                         |                       |                 |                              |              |  |  |  |
| Geotechnical Parameters                                             |                                     | Existing Backfill                                                                                                                                                   | Native Sandy Silt       | Reinforced Fill       | Lim             | estone                       | Soil Pocked  |  |  |  |
| Mate                                                                | Material Model Mohr-Coulomb Mohr-Co |                                                                                                                                                                     | Mohr-Coulomb            | Mohr-Coulomb          | Bedrock (       | Impenetrable)                | Mohr-Coulomb |  |  |  |
| Unit Wei                                                            | ght, γ (kN/m³)                      | 18                                                                                                                                                                  | 17                      | 18                    | Not a           | pplicable                    | 18           |  |  |  |
| Pł                                                                  | ni, φ (°)                           | 25                                                                                                                                                                  | 34                      | 25                    | Not applicable  |                              | 25           |  |  |  |
| Cohesio                                                             | Cohesion, Cu (kPa)                  |                                                                                                                                                                     | 2                       | 4                     | Not applicable  |                              | 4            |  |  |  |
|                                                                     |                                     |                                                                                                                                                                     |                         |                       |                 |                              |              |  |  |  |
| Client:                                                             | Consolidated Fas                    | FastFrate (Ottawa) Holdings Inc                                                                                                                                     |                         |                       |                 |                              |              |  |  |  |
| Projet:                                                             | Proposed Industr                    | ial Development                                                                                                                                                     | by:                     | David Rizk, ing. (Qc) |                 |                              |              |  |  |  |
| Reference:                                                          | 12576381-RPT-1                      | doou Stroot and Sam                                                                                                                                                 | ma Straat Ottowa Ostari |                       |                 |                              |              |  |  |  |
| Analysis:                                                           | Geotechnical Parameters Used        |                                                                                                                                                                     |                         |                       | Reviewed<br>by: | Denis Roy, ing. (Qc), M.B.A. |              |  |  |  |






















# Appendix G Maccaferri Retaining Structure Drawings

## PROJECT: SOMME STREET OTTAWA, ON FASTFRATE FACILITY

## MACCAFERRI GREEN TERRAMESH SYSTEM

DRAWINGS:

- CA21023\_1 CA21023\_2,3 CA21023\_4 CA21023\_5 CA21023\_6 CA21023\_7 CA21023\_8
  - 3\_1 \* Plan View
    - \* Elevation View

    - \* Cross Section A
    - \* Cross Section B
    - \* Cross Section C
    - \* Construction Notes
    - \* Installation Guide

| Issued for Construction     | JN                                                                                                         | 20/12/21                                                                                                                  |
|-----------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Issued to Client for review | JN                                                                                                         | 15/12/21                                                                                                                  |
| Issued to Client for review | JN                                                                                                         | 20/07/21                                                                                                                  |
| Issue / Revision:           | By:                                                                                                        | Date:                                                                                                                     |
|                             | Issued for Construction<br>Issued to Client for review<br>Issued to Client for review<br>Issue / Revision: | Issued for Construction JN<br>Issued to Client for review JN<br>Issued to Client for review JN<br>Issued to Revision: By: |



Maccaferri Canada Ltd. 400 Collier MacMillan Drive, Unit B Cambridge, ON CANADA N1R 7H7 Ph. (519) 623-9990 Fax (519) 623-1309 This drawing is stored in file:Maccaferri\_WDC/Canada\_Maccaferri/CA06001 is dawna is stored in fileMacadent WOCUSA MaccaferriEet ConstICA:103









|              | NOTES:                |                                                |                                            |                                                                                                                     |                           |                                 |                          |
|--------------|-----------------------|------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------|--------------------------|
|              | 1.0 DES               | IGN PARAMETE                                   | ERS                                        |                                                                                                                     |                           |                                 |                          |
|              | 1.1 1                 | THE DESIGN PF                                  | RESENTED HE                                | EREIN IS BA                                                                                                         | ASED ON T                 | THE SOIL PA                     | RAMETERS,                |
|              |                       | FOUNDATION                                     | CONDITIONS,<br>ATED IN SECT                | GROUNDV                                                                                                             | VATER CC                  | NDITIONS A                      | ND                       |
|              | 12                    | THE DESIGN OF                                  | THE GREEN                                  | TERRAME                                                                                                             | SH SYSTE                  |                                 | RE                       |
| aoDrain      | 1.2                   | IS BASED ON T                                  | THE FOLLOWI                                | NG SOIL P                                                                                                           | ARAMETE                   | RS PROVIDE                      | D BY GHD                 |
| acDrain      |                       | GEOTECHNICA                                    | AL INVESTIGA                               | TION/1121                                                                                                           | 5612/RPT-                 | 1 AND EMAIL                     | DATED 12/16/2021         |
|              |                       |                                                |                                            | FR<br>4                                                                                                             | ANGLE                     | COHESION                        | UNIT WT.                 |
|              | -                     |                                                |                                            |                                                                                                                     | (°)                       | (kPa)                           | (kN/m3)                  |
|              | F                     | OUNDATION S                                    |                                            |                                                                                                                     | 25<br>34                  | 4                               | 18                       |
|              | F                     | RETAINED SOIL                                  | 012                                        |                                                                                                                     | 25                        | 4                               | 18                       |
|              | 1.3 F                 | ACTORS OF S                                    | AFETY                                      |                                                                                                                     |                           |                                 |                          |
|              | N                     | MINIMUM FACT                                   | OR OF SAFET                                | Y FOR SLIE<br>NAL STABII                                                                                            | DING = 1.5<br>_ITY = 1.5( | (STATIC) 1<br>STATIC) 1.1       | .1(SEISMIC)<br>(SEISMIC) |
|              |                       | 1.3.2 GLOBAL S                                 | TABILITY IS T                              | THE RESPC                                                                                                           | NSIBLITY                  | OF GHD                          |                          |
|              | 1.4 :<br>F            | IORIZONTAL A                                   | N<br>CCELERATION                           | N COEFFIC                                                                                                           | IENT = 0.1                | 5g (50% of 0.                   | 3g)                      |
|              | 1.5 \$                | STRUCTURE IS                                   | DESIGN USIN                                | NG 180kN A                                                                                                          | XLE LOAD                  | )                               |                          |
|              | 1.6                   | DESIGN OF STE<br>GROUNDWATE                    | RUCTURE IS B<br>R IS AT ELEV               | BASED UPC<br>ATION 86.9                                                                                             | N THE AS                  | SUMPTION 1                      | ГНАТ                     |
|              | 2.0 REA<br>NOT<br>PRC | D DETAIL IN CO<br>ES FOR MACC<br>VIDED WITH TI | ONJUNCTION<br>AFERRI GREE<br>HIS DRAWING   | WITH STAN<br>EN TERRAN<br>3.                                                                                        | IDARD CC<br>IESH SYS      | NSTRUCTIO<br>TEM                | N                        |
|              | 3.0 DES<br>SUI        | GIGN TO BE RE                                  | /IEWED BY PF<br>RUCTURE TO                 | ROJECT EN<br>D SITE CON                                                                                             | IGINEER T<br>DITIONS.     | O DETERMI                       | NE                       |
|              | 4.0 FOU<br>ENG        | INDATION IS TO<br>SINEER.                      | ) BE REVIEWE                               | ED BY THE                                                                                                           | PROJECT                   | GEOTECHN                        | ICAL                     |
|              | 5.0 ONC               |                                                | D SLOPE SYS                                | TEM HAS E                                                                                                           |                           | ISTRUCTED,                      | NO                       |
|              |                       | D REINFORCED                                   | SOIL ZONE. I                               | IF PENETR                                                                                                           | ATION IN T                | ALL BE ALLO<br>THE SOIL         | DWED                     |
|              | REIN<br>REIN<br>CLE   | NFORCEMENT                                     | IS REQUIRED<br>AND CUT AN C<br>H THE GEOGR | , EXPOSE<br>OPENING V<br>RID REINFO                                                                                 | INDIVIDUA<br>VITH SHAF    | AL LAYERS C<br>RP INSTRUM<br>T. | IF<br>ENT                |
|              | 6.0 THE               | SOIL DESIGN                                    | PARAMETERS                                 | S STATED I                                                                                                          | N NOTE 1                  | 2 SHALL BE                      |                          |
|              | BE V<br>OF<br>TO      | VERIFIED BY TH<br>CONSTRUCTIO<br>THE ENGINEEF  | HE CONTRACT                                | TOR PRIOF<br>REPANCIES<br>_Y.                                                                                       | R TO COMI<br>S MUST BE    | MENCEMENT<br>REPORTED           | Γ                        |
|              |                       |                                                |                                            |                                                                                                                     |                           |                                 |                          |
|              |                       |                                                | DET                                        | AIL                                                                                                                 |                           |                                 |                          |
|              | GR                    | EEN TEI                                        | RRAME                                      | SH UN                                                                                                               | IIT FA                    | CING                            |                          |
|              |                       |                                                | SCALE: N.                                  | T.S                                                                                                                 |                           |                                 |                          |
|              | _                     |                                                |                                            |                                                                                                                     |                           |                                 |                          |
| Maccaterri G | ireen                 | lerramest                                      | 1                                          |                                                                                                                     |                           |                                 |                          |
|              |                       |                                                | $\leftarrow$                               |                                                                                                                     | ~                         |                                 |                          |
| <i>.</i> .   |                       |                                                | 7                                          | STA ST                                                                                                              |                           |                                 |                          |
|              |                       |                                                | -                                          | ׯ                                                                                                                   |                           | $\backslash$                    |                          |
| at 10.4      | < /                   | /                                              | THE A                                      | <u>4</u>                                                                                                            | <u> </u>                  |                                 |                          |
|              | $\rightarrow$         |                                                | ZZ A                                       |                                                                                                                     |                           | <u> </u>                        |                          |
|              | /                     | Ĩ,                                             | E.                                         |                                                                                                                     |                           | Þ₄                              |                          |
| ited Cover   |                       | - A                                            | $\mathbf{X}$                               | Δ. A                                                                                                                | <u>،</u>                  |                                 |                          |
| by Others)   |                       |                                                |                                            | 0.3                                                                                                                 | m                         | . 4 4                           |                          |
|              |                       |                                                |                                            | 4                                                                                                                   | 4                         |                                 |                          |
| Se els 1     | 17                    | JAN .                                          | <u> </u>                                   | <u>م</u>                                                                                                            | •                         |                                 |                          |
| ocket        | TH?                   |                                                |                                            |                                                                                                                     | <u>o o o</u>              |                                 |                          |
| thick)       |                       | F.                                             |                                            | م<br>م                                                                                                              | 4                         | ⊲ ⁴/                            |                          |
|              | A.                    |                                                | Å                                          | а<br>Т. А. Т. | 4                         | 4.4                             |                          |
|              |                       |                                                | • •                                        | 1 4 4                                                                                                               | 4                         |                                 |                          |
| aDrain Geog  | rids /                | $\sim$ .                                       | ۹ ۵ ۹<br>۵                                 | ه<br>۵ ک                                                                                                            | 21/2/                     | /                               |                          |
| am 000g      |                       | 4                                              | ۹¢.<br>د                                   | 4.                                                                                                                  | i i i                     |                                 |                          |
|              |                       |                                                | · · · · · · · · · · · · · · · · · · ·      |                                                                                                                     |                           |                                 |                          |
|              |                       |                                                |                                            |                                                                                                                     |                           |                                 |                          |
|              |                       | Μ                                              | AC                                         | °C                                                                                                                  |                           |                                 |                          |
|              |                       |                                                |                                            |                                                                                                                     |                           |                                 |                          |
|              |                       |                                                | M                                          | laccafer                                                                                                            | ri Cana                   | da I td                         |                          |
| ऽा∎⊓         | ノ                     |                                                | 400 Co                                     | llier Mar                                                                                                           | Millan                    | Drive. Uni                      | it B                     |
|              |                       |                                                | Cambrid                                    | dge, ON                                                                                                             | CANA                      | DA N1R 7                        | ′H7                      |

Ph. (519) 623-9990 Fax (519) 623-1309





## MACCAFERRI

Maccaferri Canada Ltd. 400 Collier MacMillan Drive, Unit B Cambridge, ON CANADA N1R 7H7 Ph. (519) 623-9990 Fax (519) 623-1309



| NOTES: |
|--------|
|        |

1.0 DESIGN PARAMETERS

- 1.1 THE DESIGN PRESENTED HEREIN IS BASED ON THE SOIL PARAMETERS, FOUNDATION CONDITIONS, GROUNDWATER CONDITIONS AND LOADINGS STATED IN SECTION 1.2.
- 1.2 THE DESIGN OF THE GREEN TERRAMESH SYSTEM STRUCTURE IS BASED ON THE FOLLOWING SOIL PARAMETERS PROVIDED BY GHD GEOTECHNICAL INVESTIGATION/11215612/RPT-1 AND EMAIL DATED 12/16/2021 FRICTION EFFECTIVE MOIST.

|    |                                | ANGLE<br>(°) | COHESION<br>(kPa) | UNIT WT.<br>(kN/m3) |  |
|----|--------------------------------|--------------|-------------------|---------------------|--|
|    | SELECTED EXISTING FILL         | 25           | 4                 | `18 ´               |  |
|    | FOUNDATION SOIL                | 34           | 2                 | 17                  |  |
|    | RETAINED SOIL                  | 25           | 4                 | 18                  |  |
| .3 | FACTORS OF SAFETY              |              |                   |                     |  |
|    | MINIMUM FACTOR OF SAFETY FOR S | LIDING = 1.  | 5(STATIC) 1.1     | (SEISMIC)           |  |
|    | MINIMUM FACTOR OF INTERNAL STA | BILITY = 1.5 | (STATIC) 1.1(8    | SEISMIC)            |  |
|    |                                |              |                   |                     |  |

- 1.3.2 GLOBAL STABILITY IS THE RESPONSIBLITY OF GHD
- 1.4 SEISMIC DESIGN
- HORIZONTAL ACCELERATION COEFFICIENT = 0.15g (50% of 0.3g)
- 1.5 STRUCTURE IS DESIGN USING 180kN AXLE LOAD
- 1.6 DESIGN OF STRUCTURE IS BASED UPON THE ASSUMPTION THAT **GROUNDWATER IS AT ELEVATION 86.9m**
- 2.0 READ DETAIL IN CONJUNCTION WITH STANDARD CONSTRUCTION NOTES FOR MACCAFERRI GREEN TERRAMESH SYSTEM PROVIDED WITH THIS DRAWING.
- 3.0 DESIGN TO BE REVIEWED BY PROJECT ENGINEER TO DETERMINE SUITABILITY OF STRUCTURE TO SITE CONDITIONS
- 4.0 FOUNDATION IS TO BE REVIEWED BY THE PROJECT GEOTECHNICAL ENGINEER.
- 5.0 ONCE REINFORCED SLOPE SYSTEM HAS BEEN CONSTRUCTED, NO AUGURING OR EXCAVATION USING EXCAVATOR SHALL BE ALLOWED INTO REINFORCED SOIL ZONE. IF PENETRATION IN THE SOIL REINFORCEMENT IS REQUIRED, EXPOSE INDIVIDUAL LAYERS OF REINFORCEMENT AND CUT AN OPENING WITH SHARP INSTRUMENT CLEANLY THROUGH THE GEOGRID REINFORCEMENT.
- 6.0 THE SOIL DESIGN PARAMETERS STATED IN NOTE 1.2 SHALL BE BE VERIFIED BY THE CONTRACTOR PRIOR TO COMMENCEMENT OF CONSTRUCTION, ANY DISCREPANCIES MUST BE REPORTED TO THE ENGINEER IMMEDIATELY.



## MACCAFERRI

Maccaferri Canada Ltd. 400 Collier MacMillan Drive, Unit B Cambridge, ON CANADA N1R 7H7 Ph. (519) 623-9990 Fax (519) 623-1309



### CONSTRUCTION NOTES FOR MACCAFERRI GREEN TERRAMESH SYSTEM

### MATERIALS

GREEN TERRAMESH SHALL BE GALVANIZED WITH POLIMAC COATING 8x10 HEXAGONAL DOUBLE TWIST WIRE MESH TYPE AS PER ASTM A975.

- 1.2 REINFORCED BACKFILL SHALL BE SELECTED EXISTING FILL AND HAVE THE REOUIRED SOIL PARAMETERS AS DEFINED ON THE CROSS SECTIONS PROVIDED.
- 1.3 REINFORCED BACKFILL MATERIAL SHALL BE SELECTED EXISTING FILL AND MUST BE APPROVED BY THE GEOTECHNICAL ENGINEER BEFORE USE
- 1.5 REINFORCED BACKFILL MATERIAL SHALL BE FREE OF EXCESS MOISTURE, MUCK, SOD, SNOW, FROZEN LUMPS, ORGANICS, OR DELETERIOUS MATERIALS. NO STONE SIZES GREATER THAN 100mm SHALL BE PLACED DIRECTLY AGAINST THE REINFORCEMENT.

### 2.0 DRAINAGE

- 2.1 PERMANENT SURFACE WATER DIVERSIONS SHALL BE REQUIRED AND CONSTRUCTED IN ACCORDANCE WITH THE GRADING DESIGN DRAWINGS.
- 2.2 THIS DESIGN IS BASED ON THE ASSUMPTION THAT THE REINFORCED REINFORCED BACKFILL MATERIAL SHALL BE FREE OF SUBSURFACE MOISTURE/WATER. IT IS THE RESPONSIBILITY OF THE CONSTRUCTOR CONSTRUCTOR TO ENSURE THAT PROPER SUBSURFACE IS PROVIDED.
- 2.3 AT THE END OF EACH WORKDAY, BACKFILL SURFACE SHALL BE GRADED A MINIMUM OF 2% AWAY FROM THE WALL FACE AND COMPACTED WITH A SMOOTH WHEEL ROLLER TO MINIMIZE PONDING.
- 2.4 THE ENGINEERING, ANALYSIS, DESIGN AND MITIGATION OF SURFACE DRAINAGE AND SEEPAGE OF GROUND WATER IS THE RESPONSIBILITY OF THE CONSTRUCTOR.
- 3.0 TECHNICAL REQUIREMENTS
- 3.1 PRIOR TO CONSTRUCTION THE CONTRACTOR SHALL CLEAR AND GRADE THE REINFORCED BACKFILL AREA, REMOVING TOP SOIL, BRUSH, SOD AND OTHER ORGANIC DELETERIOUS MATERIALS. ANY UNSUITABLE SOILS SHALL BE OVER EXCAVATED AND REPLACED AND COMPACTED WITH REINFORCED BACKFILL MATERIAL TO PROJECT SPECIFICATIONS OR AS OTHERWISE DIRECTED BY THE GEOTECHNICAL ENGINEER.
- 3.2 GREEN TERRAMESH SHALL BE INSTALLED ACCORDING TO MACCAFERRI CANADA LTD.'S SPECIFICATIONS.
- 3.3 GREEN TERRAMESH SHALL BE INSTALLED USING THE CORRECT BATTER ANGLE AS SHOWN ON THE DRAWING(S).

- 3.4 FILL SHALL BE PLACED IN HORIZONTAL LAYERS NOT EXCEEDING 200mm IN UNCOMPACTED THICKNESS FOR HEAVY COMPACTION EQUIPMENT. FOR ZONES WHERE COMPACTION IS ACHIEVED WITH HAND OPERATED EQUIPMENT FILL SHALL BE PLACED IN LIFTS NOT EXCEEDING 150mm IN UNCOMPACTED THICKNESS. ONLY HAND OPERATED EQUIPMENT SHALL BE ALLOWED WITHIN ONE METRE OF THE FRONT FACE.
- 3.5 FILL BEYOND ONE METRE FROM THE FRONT FACING SHALL BE COMPACTED AS REQUIRED BY PROJECT SPECIFICATIONS OR TO A MINIMUM OF 95% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY (SPMDD) AS DETERMINED IN ACCORDANCE WITH ASTM D698 AT A MOISTURE CONTENT OF -1/+2% POINT FROM OPTIUM.
- 3.6 THE FACING ELEMENT OF THE GREEN TERRMESH SHALL BE MONITORED DURING BACKFILL PLACEMENT AND COMPACTION. MODIFICATIONS TO THE COMPACTION EOUIPMENT AND PROCEDURES MAY BE NECESSARY TO PREVENT EXCESSIVE DEFORMATION OF THE FACING.
- 3.7 FOUNDATION SHALL BE PROOF ROLLED USING A SMOOTH DRUM ROLLER TO 98% SPMDD OR PER PROJECT SPECIFICATIONS. IT IS THE RESPONSIBILITY OF THE CONSTRUCTOR TO CONFIRM THAT THE SITE IS ADEQUATELY PREPARED.
- 3.8 VERIFICATION OF MATERIAL SPECIFICATIONS, TESTING METHODS AND FREQUENCY AND COMPACTION ARE THE RESPONSIBILITY OF THE ENGINEER.
- 4.0 SPECIAL PROVISIONS
- 4.1 MACCAFERRI CANADA LTD. ASSUMES NO LIABILITY FOR INTERPRETATION OR VERIFICATION OF SUBSURFACE CONDITIONS, SUITABILITY OF THE ASSUMED SOIL DESIGN PARAMETERS, SHOWN ON THE CROSS SECTION, AND INTERPRETATION OF GROUNDWATER CONDITIONS
- 4.2 IT IS THE RESPONSIBILITY OF THE CONSTRUCTOR TO VERIFY THAT THE ACTUAL SITE CONDITIONS ARE AS DESCRIBED ON THE CROSS SECTION. ANY DISCREPANCIES SHALL BE REPORTED TO MACCAFERRI AND THE GEOTECHNICAL ENGINEER.
- 4.3 THE SOIL DESIGN PARAMETERS STATED ON THE CROSS SECTION SHALL BE VERIFIED BY THE CONSTRUCTOR PRIOR TO COMMENCEMENT OF CONSTRUCTION. ANY DISCREPANCIES MUST BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 4.4 THE BEARING CAPACITY OF THE FOUNDATION SOIL MUST BE APPROVED BY THE ENGINEER
- 4.5 ANY REVISIONS TO THE DESIGN PARAMETERS STATED ON THE CROSS SECTION OR STRUCTURE GEOMETRY SHALL REQUIRE DESIGN MODIFICATIONS PRIOR TO CONSTRUCTION. THE CONTRACTOR SHALL CHECK AND VERIFY ALL DIMENSIONS ON THE STRUCTURAL DRAWINGS WITH SITE DRAWINGS PRIOR TO COMMENCEMENT OF CONSTRUCTION AND NOTIFY MACCAFERRI AND THE ENGINEER IMMEDIATELY OF ANY DISCREPANCIES.

|   | 4.6 | THE ACCOMPANYING DRAV |
|---|-----|-----------------------|
|   |     | CONJUNCTION WITH ALL  |
| 1 |     |                       |

- FOR THE GREEN TERRAMESH SYSTEM.
- SYSTEM AS SHOWN HEREIN.
- ENGINEER.

|      |                             |                    |           | Project Title: | SOMME               | STREET     |          | Designed:            | Date:    | Drawing Title: |
|------|-----------------------------|--------------------|-----------|----------------|---------------------|------------|----------|----------------------|----------|----------------|
|      |                             |                    |           | _              | ΟΤΤΑΝ               |            |          | Ŭ                    |          |                |
|      |                             |                    |           |                | OTIA                | VA, ON     |          | B                    | D. I     |                |
|      |                             |                    |           |                | FASTFRAT            | E FACILITY |          | Drawn:               | Date:    |                |
|      |                             |                    |           | Project No     | Client <sup>.</sup> |            |          | JN                   | 20/07/21 |                |
|      |                             |                    |           | CA21023        | 0                   |            |          | Checked <sup>.</sup> | Date:    |                |
| 2    | Issued for Construction     | JN                 | 20/12     | 21 0721023     |                     |            |          | onoonou.             | Duto.    |                |
| 1    | Issued to Client for review | JN                 | 15/12     | 21 Drawing No: |                     | Scale:     | Rev:     |                      |          |                |
| 0    | Issued to Client for review | JN                 | 20/07     | 21 CA210       | 23 7                | NTS        | 2        | Approved:            | Date:    |                |
| Rev: | Issue / Revision:           | Drawn <sup>.</sup> | App: Date | 0//210         | 20 _'               |            | <b>Z</b> |                      |          |                |

4.6 THE ACCOMPANYING DRAWING(S) SHALL BE READ IN OTHER CONTRACT DOCUMENTS.

4.7 THESE CONSTRUCTION NOTES MUST BE READ IN CONJUNCTION WITH PRODUCT SPECIFICATIONS AND PRODUCT INSTALLATION GUIDE

4.8 THIS DESIGN IS VALID ONLY FOR THE PROPOSED GREEN TERRAMESH

4.9 THE DESIGN PROVIDED HEREIN IS PRELIMINARY IN NATURE AND MUST BE VERIFIED BY A CONSULTING ENGINEER PRIOR TO COMMENCEMENT OF CONSTRUCTION. MACCAFERRI CANADA LTD. ASSUMES NO RESPONSIBILITY OR LIABILITY IF CONSTRUCTION IS COMMENCED WITHOUT SUCH VERIFICATION BY A CONSULTING

4.10 REINFORCED SLOPES SUCH AS GREEN TERRAMESH MUST BE VEGETATED AFTER CONSTRUCTION TO MINIMIZE OR PREVENT EROSION FROM RAINFALL AND RUNOFF ON THE FACE. IT IS THE RESPONSIBILITY OWNER OR THE OWNER'S REPRESENTATIVE TO SEEK THE SERVICES OF A COMPETENT HORTICULTURAL/ LANDSCAPE SPECIALIST, IN ORDER TO RECOMMEND THE MOST APPROPRIATE RECOMMEND THE MOST APROPIATE PLANT SPECIES. PLANT DENSITY AND MACCAFERRI LTD. ASSUMES NO RESPONSIBILTY OR LIABILITY FOR THE CHOICE CHOICE OF THE VEGETATION METHOD SELECTED FOR THE GREEN TERRAMESH FACING.





Maccaferri Canada I td 400 Collier MacMillan Drive, Unit B Cambridge, ON CANADA N1R 7H7 Ph. (519) 623-9990 Fax (519) 623-1309



Maccaferri Canada Ltd. 400 Collier MacMillan Drive, Unit B Cambridge, ON CANADA N1R 7H7 Ph. (519) 623-9990 Fax (519) 623-1309

MACCAFERRI

FOLDING OF THE EXTERNAL T.M. FACE ALONG THE UPPER REINFORCING WIRE. PLACEMENT OF THE GEOGRID, FOLLOWED BY THE PLACEMENT OF THE NEXT T.M. UNIT AND LACING BY STAINLESS STEEL RINGS TO THE UNIT UNDERNEATH

CUTTING OF THE GEOGRID USING THE CUTTER PLACE THE GEOGRIDS IN HORIZONTAL LAYERS PERPENDICULAR TO THE FACE

BACK FILLING UP TO THE DESIRED LEVEL

INSTALLATION OF REINFORCING STEEL SUPPORT

BRACKETS

EDGE OF THE EROSION CONTROL MAT TO BE OVERLAPPED TO THE ADJACENT UNIT

AND REINFORCING STEEL BRACKET

PLACEMENT AND OPENING OF THE UNIT ALONG

THE LOWER REINFORCING WIRE

Page 123



ghd.com

### → The Power of Commitment