Lithos

January 2023

UD22-093

Stormwater Management Penort

Project: 50 The Driveway, Ottawa Client: 276405 Ontario Inc.

Lithos Group Inc. 150 Bermondsey Road Toronto, ON M4A-1Y1 Tel: (416) 750-7769

Email: info@LithosGroup.ca

PREPARED BY:

Syrender

Dimitra Frysali, P.Eng., M.A.Sc. Project Designer

REVIEWED BY:

4

Sarra Karavasili, P.E., M.A.Sc. Assistant Project Manager

AUTHORIZED FOR ISSUE BY:

LITHOS GROUP INC.

Nick Moutzouris, P.Eng., M.A.Sc.

Principal

Issues and Revisions Registry

Identification	Date	Description of issued and/or revision
FSR/SWM Report	January 13 th , 2023	Issued for Site Plan Application

Statement of Conditions

This Report / Study (the "Work") has been prepared at the request of, and for the exclusive use of, the Owner / Client, the City of Ottawa and its affiliates (the "Intended User"). No one other than the Intended User has the right to use and rely on the Work without first obtaining the written authorization of Lithos Group Inc. and its Owner. Lithos Group Inc. expressly excludes liability to any party except the intended User for any use of, and/or reliance upon, the work.

Neither possession of the Work, nor a copy of it, carries the right of publication. All copyright in the Work is reserved to Lithos Group Inc. The Work shall not be disclosed, produced or reproduced, quoted from, or referred to, in whole or in part, or published in any manner, without the express written consent of Lithos Group Inc. and the Owner.

City of Ottawa

Functional Servicing and Stormwater Management Report

Executive Summary

Lithos Group Inc. (Lithos) was retained by 276405 Ontario Inc. (the "Owner") to prepare a Functional Servicing and Stormwater Management Report in support of a Site Plan Application, for a proposed residential-use development located in the area referred to as the "Golden Triangle", at 50 The Driveway (K2P 1E2), in the City of Ottawa (the "City"). The following summarizes our conclusions:

Storm Drainage

The post-development 100-year storm flow has been designed to match the five (5)-year predevelopment storm flow. In order to achieve the target flows and meet the City's Regulations, quantity controls will be utilized and 79.00 m³ of storage tank will be required as well as 54.10 m³ will be utilized in underground chambers. The stormwater management (SWM) system will be designed to provide enhanced level (Level 1) protection as specified by the Ministry of the Environment, Conservation and Parks (MECP). Water quality control can be provided for a minimum total suspended solids (TSS) removal of 80%.

Sanitary Sewers

The proposed development will connect to the existing 300mm combined sewer on Queen Elizabeth Driveway ROW, through a 200mm diameter sanitary sewer lateral connection, with a minimum grade of 2.00% (or equivalent pipe design). The additional net discharge flow from the proposed development, is anticipated at approximately 1.80 L/s. According to the information provided by the City, the existing infrastructure has the capacity to support the additional sanitary flow, from the proposed development.

Water Supply

Water supply for the site will be from the existing 300mm diameter watermain on the Queen Elizabeth Driveway ROW. It is anticipated that a total design flow of 84.81 L/s will be required to support the proposed development. Based on the boundary conditions received from the City, it is revealed that the existing water infrastructure can support the proposed development.

Site Grading

The proposed grades will improve the existing drainage conditions to meet the City's/Regional requirements. Grades will be maintained along the property line wherever feasible. Existing drainage patterns on adjacent properties will not be altered and stormwater runoff from the subject development will not affect the adjacent properties.

City of Ottawa

Table of Contents

1.0	Introduction	4
2.0	Site Description	4
3.0	Site Proposal	4
4.0	Terms of Reference and Methodology	5
4.1.	. Terms of Reference	5
4.2.	. Methodology: Stormwater Drainage and Management	5
4.3.	. Methodology: Sanitary Discharge	5
	. Methodology: Water Usage	
5.0	Stormwater Management and Drainage	7
5.1.	. Existing Conditions	7
5.2.	Proposed Conditions	8
	5.2.1.1 Quantity Controls	
	5.2.1.2 Underground Storage Tank	9
	Underground Storm Chambers	
	5.2.1.3 Major Overland Flow Route and Emergency Overland Flow Route	
	5.2.1.4 Quality Controls	
6.0	Combined Drainage System	11
6.1.	. Existing Combined Drainage System	11
6.2.	. Existing Flows	11
6.3.	. Proposed Flows	11
6.4.	. Proposed Sanitary Connections	11
6.5.	. Conclusions	11
7.0	Water Supply System	12
7.1.	. Existing System	12
7.2.	. Proposed Water Supply Requirements	12
7.3.	. Watermain Analysis Results	13
7.4.	. Proposed Watermain Connection	13
8.0	Erosion and Sediment Control	14
9.0	Site Grading	14
9.1.	. Existing Grades	14
9.2.	Proposed Grades	15

10.0 Conclusions and Recommendation	ns 1	5
-------------------------------------	------	---

LIST OF FIGURES

Figure 1 - Location Plan.

Figure 2 -Aerial Plan.

LIST OF TABLES

Table 4-1 – Sanitary Design Criteria	θ
Table 4-2 – Water Usage	7
Table 5-1 – Target Input Parameters	7
Table 5-2 – Target Peak Flows	8
Table 5-3 – Post-development Input Parameters	8
Table 5-4 – Post-development Quantity Control as Per City Requirements	g
Table 5-5– Site TSS Removal	10
Table 7-1 – Fire Flow Input Parameters	12
Table 7-2 – Water Demand	12
Table 7-3– Boundary Conditions Provided by the City	13
Table 7-4- Watermain Analysis Results – Domestic Flow	13

Appendices

Appendix A – Site Photographs

Appendix B – Background Information

Appendix C – Storm Analysis

Appendix D – Sanitary Data Analysis

Appendix E – Water Data Analysis

1.0 Introduction

Lithos Group Inc. (Lithos) was retained by Main and Main (the "Owner") to prepare a Functional Servicing and Stormwater Management Report in support of a Site Plan Application for a proposed residential-use development located at 50 The Driveway in the City of Ottawa (the "City").

The purpose of this report is to provide site-specific information for the City's review with respect to infrastructure required to support the proposed development. More specifically, the report will present details on sanitary discharge, water supply and of the storm drainage pattern.

The following documents were available for our review:

- Plan and Profiles of:
 - o Waverley Street, drawing No. 3331 Sheet 11 of 20, dated January, 2003;
 - Lewis Street from Robert Street to N.C.C Driveway, drawing No. 911-P, dated June, 1978;
 - o Gilmour Street, drawing No. 012 Sheet 12 of 35, dated March 2018.
- Sewer and Water Maps of the existing combined sewer network upstream and downstream of the subject site (for reference purposes only);
- Site Plan & Statistics prepared by Hobin Architecture Inc., dated January 05, 2023;
- Topographical Survey prepared by Annis, O'Sullivan, Vollebekk Ltd., dated July 01, 2021; and,
- Geotechnical Investigation prepared by Paterson Group dated July 16, 2021.

2.0 Site Description

The existing site is approximately 0.296 hectares and is currently comprised of an existing building, an elevated tower and outdoor parking area. The site is located within the urban limits of the City of Ottawa (K1L 6N1), in the area referred to as the "Golden Triangle". Refer to Figures 1 and 2 following this report and site photographs in Appendix A.

3.0 Site Proposal

The proposed development will be a 9-storey residential-use building and it will be serviced by two (2) underground parking levels. The proposed development will be comprised of 77 residential units. The total development will include approximately 8,886.92 m² of Gross Floor Area (GFA). Please refer to **Appendix B** for site plan and building statistics.

4.0 Terms of Reference and Methodology

4.1. Terms of Reference

The following references and technical guidelines were consulted in the present study:

- A City of Ottawa Servicing Study Guidelines, online edition,
- A City of Ottawa Sewer Design Guidelines, (2012),
- A City of Ottawa Design Guidelines Water Distribution, (2010),
- A Technical Bulletin ISTB-2018-2;
- A Ministry of Environment, Conservation and Park (MECP) Guidelines for the Design of Water Systems (2008)
- A MECP Guidelines for the Design of Sanitary Sewage Systems (2008)
- A MECP Stormwater Planning and Design Manual (2003)
- A Ontario Building Code (2010)

4.2. Methodology: Stormwater Drainage and Management

This report provides a detailed Stormwater Management (SWM) review of the pre-development and post-development conditions and comments on opportunities to reduce peak flows, as per the City of Ottawa guidelines.

The stormwater management criteria for this development are based on the City of Ottawa Sewer Design Guidelines, as well as the Ministry of Environment, Conservation and Parks (MECP) 2003 Stormwater Management Planning and Design Manual (SWMPD). The following design criteria will be reviewed:

- Post-development peak flow for the 100-year storm event from the site should be controlled to the 5-year target flow. A 20-minute time of concentration and a 10 min inlet time derived from City of Ottawa IDF curves, were considered for connection to a dedicated storm sewer;
- For connection to a dedicated storm sewer, when the imperviousness of the existing property is greater than 50%, the maximum value of the runoff coefficient, "c", used in calculating the predevelopment peak runoff rate is limited to 0.40;
- A safe overland flow will be provided for all major flows in excess of the 100-year storm event.

4.3. Methodology: Sanitary Discharge

The sanitary sewage discharge from the site will be determined using sanitary sewer design sheets that incorporate the land use and building statistics as supplied by the design team. The calculated values provide peak sanitary flow discharge that considers infiltration.

The estimated sanitary discharge flows from the proposed site will be calculated based on the criteria shown **Table 4-1** below. (Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines).

Design Parameter	Value	
Residential Units (1-Bedroom)	1.4 people/unit	
Residential Units (2-Bedroom)	2.1 people/unit	
Residential Units (3-Bedroom)	3.1 people/unit	
Average Daily Residential Flow	280 L/person/day	
Residential Peak Factor	PF = 1 + (14/(4+(P/1000) ^{1/2})	
Commercial Floor Space	50000 L/ha/day	
Commercial Peaking Factor	1.5 if commercial contribution >20%, otherwis	
Infiltration and Inflow Allowance	0.28 L/s/ha	
Sanitary sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	
Minimum Manning's 'n'	0.013	
Minimum Depth of Cover	1.5 m from crown of sewer to grade	
Minimum Full Flowing Velocity	0.6 m/s	
Maximum Full Flowing Velocity	3.0 m/s	

4.4. Methodology: Water Usage

The fire flow requirements were estimated using the method prescribed by the Fire Underwriters Survey (FUS). This method is based on the floor area of the building to be protected, the type and combustibility of the structural frame and the separation distances with adjoining building units.

Section 4.3.22 of the City Design guidelines for water distribution provides guidance for determining the method for estimating Fire Demand. As indicated, the requirements for levels of fire protection on private property are covered in the Ontario Building Code. Section 7.2.11 of the OBC addresses the installation of water service pipes and fire service mains. Part 3 of the OBC outlines the requirement for Fire Protection, Occupant Safety, and Accessibility; and subsection A-3.2.5.7 provides the provisions for firefighting.

Based on trained personnel responding to the emergency and water supply being delivered through a municipal main, the required minimum provision for water supply flow rates shall not be less than 2,700L/min or greater than 9,000L/min (OBC Section A.3.2.5.7, Table 2). The City of Ottawa was contacted in June 2021 to obtain boundary conditions based on an estimated water demand.

The domestic water usage was calculated based on the City of Ottawa Guidelines – Water Distribution outlined in **Table 4-2** that follows.

Table 4-2 – Water Usage

Design Parameter	Value
Average Residential Day Demand	350 L/person/day
Maximum Residential Day Demand	2.5 x Average Day Demand
Maximum Residential Hour Demand	2.2 x Max Day Demand
Average Commercial Day Demand	2.5 L/m²/d
Maximum Commercial Day Demand	1.5 x Average Day Demand
Maximum Commercial Hour Demand	1.8 x Max Day Demand
Minimum Depth of Cover	2.4 m from top of watermain to finished grade
During Peak Hour Demand desired operating pressure is within	350kPa and 480KPa
Minimum pressure during normal operating conditions (average day to maximum hour demand)	275kPa
During normal operating conditions, pressure must not exceed	552kPa
Minimum pressure during fire flow plus maximum day demand	140kPa

5.0 Stormwater Management and Drainage

5.1. Existing Conditions

The existing site is currently comprised of an existing building, an elevated tower and outdoor parking space.

According to available records there is an on-site catchbasin (CB) in the parking area near the east end of the parking area. This catchbasin appears to be connected to the 1800 mm diameter combined sewer on Lewis Street.

Moreover, the existing site is primarily covered by impermeable surfaces; thus, there is no significant infiltration onsite. Although the existing run-off composite coefficient is estimated at 0.90, the City of Ottawa Guidelines require the target flow calculations to be based on a run-off coefficient of 0.4. **Table 5-1** shows the pre-development input parameters, as illustrated on the drainage area plan in **Figure DAP-1** in **Appendix C**.

Table 5-1 – Target Input Parameters

Catchment	Drainage Area (ha)	Actual "C"	Design "C"	Tc (min.)
A1- Pre	0.296	0.90	0.40	20
External Area	0.071	0.49	0.40	20

City of Ottawa

Functional Servicing and Stormwater Management Report

Peak flows calculated for the existing conditions are shown in **Table 5-2** below. Detailed calculations are in **Appendix C**.

Table 3.2 Talbert Carrious					
Catchment	Peak Flow Rational Method (L/s)				
	5-year	100-year			
A1 Pre	23.1	39.5			
External Area	5.5	9.5			

Table 5-2 - Target Peak Flows

As shown on Table 5-2 above, post-development flows towards the City's infrastructure will need to be controlled to the target flow of 23.1 L/s.

5.2. Proposed Conditions

In order to meet the City's Stormwater Management criteria, the development flow rate is to be controlled to the five (5)-year target flow, as established in **Section 5.1**. The site will consist of the following three (3) internal and one (1) external drainage areas:

- 1. A1 Post Storm runoff from the Rooftops/Terraces/Walkways will be controlled in the underground storage tank, located into P1 level;
- A2 Post Uncontrolled storm runoff conveyed towards the adjacent right of ways;
- 3. A3 Post Area towards the catch basin will be controlled in infiltration chambers;
- 4. Ext.1 Storm Runoff from External Area that will be controlled in infiltration chambers.

The post-development drainage areas and runoff coefficients are indicated in Figure DAP-2, located in Appendix C and summarized in Table 5-3 below.

Drainage Area	Drainage Area (ha)	Drainage Area Atot (ha)	"C"	Tc (min.)
A1 Post (rooftops/terrace/walkways controlled in tank)	0.226	0.251	1.00*	10
A2 Post (Uncontrolled Area – towards Lewis Street)	0.025	0.202	0.61*	10
A3 Post (Area towards the catch basin controlled in chambers)	0.045	0.116	0.62*	10
External Area- (Area towards the catch basin controlled in chambers)	0.071	0.116	0.61*	10

Table 5-3 - Post-development Input Parameters

The external drainage area and A3 Post will be captured by catch basin #1 (CB1) which is to retain any storm runoff from its tributary area into an underground infiltration gallery and avoid discharging it into the municipal infrastructure for events up to 100 years.

^{* &}quot;C" value for the 100 year storm event is increased by 25%, with a maximum of 1.00, as per City's Sewer Design Guidelines.

5.2.1.1 Quantity Controls

Using the City's intensity-duration-frequency (IDF) data, modified rational method calculations were undertaken to determine the maximum storage required during each storm event. Results for the 5, and 100-year storm events are provided in **Table 5-4**. The detailed post-development quantity control calculations are provided in **Appendix C**.

Storm Event	Target Controlled Release Rate (L/s)	Uncontrolled Flow (L/s)	Required Storage Tank Volume (m³)	Total Controlled Release Rate of the Tank (L/s)	Total Site Release Rate (L/s)
5-year	22.1	3.5	35.0	9.6	13.1
100-year	23.1	7.5	79.0	14.4	21.9

Table 5-4 – Post-development Quantity Control as Per City Requirements

As shown in **Table 5-4**, in order to control post-development flows to the 5-year pre-development conditions, a target flow of 23.1 L/s is to be satisfied. The required on-site storage is accommodated by the use of one (1) underground storage tank, located at P1 level. **Table 5-4**, illustrates the minimum required storage to be retained, which is 79.0 m³, for the 100-year storm event.

The stormwater flow released from the rooftops and the terraces (Drainage Area A1 Post) will be gravity driven into the underground storage tank, at P1 Level. Please refer to engineering drawing Site Servicing Plan ("SS-01", submitted separately) for details.

5.2.1.2 Underground Storage Tank

An underground storage tank is proposed to meet the quantity control requirements, set forth by the City's WWFMG Guidelines. Controlled stormwater flows from the rooftops and terraces (**Drainage Area A1 Post**) will be gravity driven into the proposed underground main storage tank located at P1 level.

The proposed underground storage tank will have an active storage depth of 1.12 m above the inlet of the outlet pipe, accounting for a quantity control maximum storage of 79.0 m³, during the hundred year storm event. Stormwater from the underground storage tank will outlet through a **80mm diameter orifice plate** with a maximum release rate of 14.4 L/s and it will be gravity driven to the existing 300mm diameter combined sewer along Queen Elizabeth Driveway ROW.

The proposed storage tank will have a total footprint area of 70.0 m². Refer to **Figure 3**, included in **Appendix C**, for the minimum tank design requirements. Additional details of the tank design will also be provided by the mechanical engineer.

In summary, a maximum control stormwater release rate from the main storage tank of 14.4 L/s, along with the uncontrolled release rate of 7.5 L/s (**Drainage Area A2 Post**), results to a post-development total release rate of 21.9 L/s, for the 100-year event.

Consequently, the proposed SWM plan retains enough runoff volume, to reduce the post-development peak flows for each storm event to the extent possible and approach the required target flow.

Underground Infiltration Chambers

Stormwater from the site and external will ultimately be driven into the underground storage chambers before being infiltrated.

The underground chambers will be located at the north east corner of the property (refer to Site Servicing Plan **SS-01**, submitted separately). The underground chambers will have a minimum storage depth of 1.32 m and an active storage component of 57.45 m³ to meet the 100 year storage requirement. In order to meet the required volume of 54.10 m³, it is proposed to use 136 blocks of Greenstorm-ST-B Chambers. Please refer to **Appendix B** for more details.

The bottom of the storage facility will be at 63.80 masl and there will be 1.00 m clearance from the existing 'high' groundwater level to the bottom of the chambers, as required by MOE. In addition, the proposed chambers will have more than 5.0 m at horizontal distance from the proposed buildings' footings according to the OBC requirements.

5.2.1.3 Major Overland Flow Route and Emergency Overland Flow Route

Under existing conditions, overland flow from Queen Elizabeth Driveway enters the site and exits through the adjacent properties to the east, reaching Waverley Street. Under post-development conditions, the drainage pattern is being maintained without causing any flooding to the proposed development. All accesses to the building are above the flood limit and the maximum ponding achieved during flooding is estimated at 20 cm as per the proposed grading and the correspondence email, found in **Appendix B**.

5.2.1.4 Quality Controls

For MECP Enhanced Level protection, the removal of 80% total suspended solids (TSS) is required. Stormwater discharged from the proposed development's rooftop area is considered "clean" and will be driven into the underground storage tank. The detailed quality control calculations can be found in **Appendix C**. A summary of the site quality control is included in below.

Drainage Area	Drainage Area (ha)	% Area of Controlled Site	Effective TSS Removal	Additional Quality Control Required
A1, A3, EXT.1	0.342	100%	80%	Inherent
Total	0.342	100%		

Table 5-5- Site TSS Removal

5.2.1.5 Proposed Storm Connection

The proposed development will connect to the existing 300 mm diameter combined sewer along Queen Elizabeth Driveway ROW, via a 150mm diameter storm sewer service connection, with a minimum grade of 2.00% (or equivalent pipe design). The engineering drawing SS-01 (submitted separately), indicates the stormwater service connection.

6.0 Combined Drainage System

6.1. Existing Combined Drainage System

The existing site is currently comprised of an existing building, an elevated tower and outdoor parking space. According to available records, there are two (2) combined sewers abutting the subject property. More specifically:

- A 300mm diameter combined sewer located within the Queen Elizabeth Driveway ROW. This
 combined sewer outlets to the 1800 mm diameter combined sewer noted below.
- A 1800mm diameter trunk combined sewer located within Lewis Street ROW (flowing north).
 This combined sewer eventually discharges into the Somerset trunk sewer, which in turn outlets into the Rideau River Collector (RRC).

6.2. Existing Flows

The sanitary flow generated by the proposed development at 50 The Driveway was compared to the existing flow in order to quantify the net increase in the combined sewer network abutting the subject site.

Using the design criteria outlined in **Section 4.3** and existing site information, the sanitary discharge flow from the existing property towards Lewis Street is estimated at 0.17 L/s.

6.3. Proposed Flows

According to the proposed development statistics, as well as the design criteria outlined in **Section 4.3**, the new building will discharge 1.97 L/s (1.89 L/s of sanitary flow and 0.083 L/s of infiltration) into the City's Infrastructure.

The additional flow will be considered within the sanitary discharge rate; therefore, there is an increase in sanitary flow of approximately 1.80 L/s. For detailed calculations, refer to the sanitary sewer design sheet in **Appendix D**.

6.4. Proposed Sanitary Connections

The proposed development will connect to the existing 300mm diameter combined sewer on Queen Elizabeth Driveway ROW through a 200 mm diameter sanitary sewer connection with horizontal and vertical bendings, at a minimum grade of 2.00% (or equivalent pipe design). According to the coordination that took place with the City of Ottawa, a lateral connection with bends is acceptable, in order to avoid a connection into the NCC property. Please refer to correspondence email included in **Appendix B** as well as to engineering drawing "SS-01" (submitted separately) for details.

6.5. Conclusions

After taking into consideration all the above, we provided the required calculations to the City, in order to review how the additional flow from the proposed development will affect the municipal networks downstream. According to the information provided, the combined sewer infrastructure along Queen Elizabeth Driveway ROW has adequate capacity to accommodate the additional flows from the proposed development and, thus, they can support it. Refer to Appendix B for email correspondence with the City. For detailed calculations refer to the sanitary sewer design sheet in Appendix D.

7.0 Water Supply System

7.1. Existing System

The subject property lies within the City of Ottawa 1W pressure zone. The existing watermain system consists of a 300 mm diameter watermain on the Queen Elizabeth Driveway ROW.

7.2. Proposed Water Supply Requirements

The estimated water consumption was calculated based on the occupancy rates shown on Table 4-2, according to the City's watermain design criteria.

It is anticipated that an average domestic water consumption of approximately 0.59 L/s (50,976 L/day), a maximum daily consumption of 1.48 L/s (127,872 L/day) and a peak hourly demand of 3.25 L/s (11,700L/hr) will be required.

The fire flow requirements we estimated using the method prescribed by the Fire Underwriters Survey (FUS) be undertaken to assess the minimum requirement for fire suppression. The fire flow calculations is normally conducted for the largest storey, by area, and for the two immediately adjacent storeys.

As a result, to the above-mentioned method, we have selected the total area of Level 2 and the immediately adjoining storeys, which are Levels 1 and 3.

Table 7-1 illustrates the input parameters used for the FUS calculations. According to our calculations, a minimum fire suppression flow of approximately 83.33 L/s (1,320 USGPM) will be required. Detailed calculations can be found in **Appendix E**.

Table 7.2 The Flow in pact arameters							
	Frame used	Combustibility	Presence	Separation Distance			
Parameter	for Building	of Contents	of Sprinklers	North	East	South	West
Value according to FUS options	Non- Combustible Construction	Non- Combustible	Yes	30.1m to 45m	10.1m to 20m	10.1m to 20m	>45m
Surcharge/reduction from base flow	0.8	25%	30%	5%	11%	11%	0%

Table 7-1 – Fire Flow Input Parameters

In summary, the required design flow is the sum of 'the minimum fire suppression flow' and 'maximum daily demand' (83.33 + 1.48 = 84.81 L/s, 1,344 USGPM).

Table 7-2 summarizes the anticipated water demand on the City of Ottawa Guidelines – Water Distribution.

Table 7-2 - Water Demand

Design Parameter	Anticipated Demand (L/min)
Average Day Demand	35.4
Max Day + Fire Flow	88.8 + 7,000.2 = 7,089
Max Hour Demand	195.0

7.3. Watermain Analysis Results

Upon completion of the detailed calculations in order to determine the anticipated domestic water consumption and the required minimum fire flow for the proposed development, the calculation results were provided to the City of Ottawa. As a result, the above noted values were used to generate the municipal watermain network boundary conditions.

Table 7-3 below summarizes the boundary conditions provided by the City of Ottawa for the existing municipal watermain network along Lewis and Queen Elizabeth Driveway.

Municipal Watermain Boundary Condition	152 mm on Lewis Street	305 mm on Queen Elizabeth Driveway
Minimum HGL	106.4	106.4
Maximum HGL	115.3	115.3
Max Day + Fire Flow (250 L/s) (m)	91.7	105.3

Table 7-3- Boundary Conditions Provided by the City

Table 7-4 below summarizes the calculated water demands for the proposed development under the various operating conditions and compares the anticipated operating pressures at the watermains to the normal operating pressures outlined in the City of Ottawa Design Guidelines. Furthermore, the pressure losses from the building's water service to the Siamese connection have been calculated, in order to define the available flow at this point.

Watermain Connection	Design Parameter	Anticipated Demand (L/s)	Approximate Design Operating Pressures (psi) / Relative Head (m)	Normal Municipal Operating Pressures (psi)
	Average Demand	0.59	87 psi (66.3m)	50-70 psi
Queen Elizabeth Driveway	Peak Hour Demand	3.25	54.0 psi (37.7m)	40-70 psi
2emay	Max Day + Fire Flow	118.15	52.0 psi (36.6m)	20 psi (min)

Table 7-4- Watermain Analysis Results – Domestic Flow

According to **Table 7-4** and the information provided by the City of Ottawa, the water pressure for the average demand and the peak hour demand, result in values that achieve the criteria of the City's Guidelines, as indicated in the **Table 8-4**.

7.4. Proposed Watermain Connection

The proposed development will be serviced by one (1) 150 mm diameter and one (1) 200 mm diameter waterline separated by an isolation valve. The proposed water lateral will connect to the 300mm diameter existing watermain on Queen Elizabeth Driveway ROW. Refer to engineering drawings "SS-01" (submitted separately) for details.

8.0 Erosion and Sediment Control

Soil erosion occurs naturally and is a function of soil type, climate topography. The extent of erosion losses is exaggerated during construction where vegetation has been removed and the top layer of soil becomes agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the site and will be cleaned and maintained throughout construction.

Catch basins will have filter fabric installed under the grate during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.

- Limit extend of exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with plastic or synthetic mulches.
- Install silt fence to prevent sediment from entering existing ditches.
- No refueling or cleaning of equipment near existing watercourses.
- Provide sediment traps and basins during dewatering.
- Install filter cloth between catch basins and frames.
- Plan construction at proper time to avoid flooding.

Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not following under silt barriers.
- Clean and change filter cloth at catch basins.

9.0 Site Grading

9.1. Existing Grades

The existing site is approximately 0.296 hectares and is currently comprised of an existing building, an elevated tower and by an adjacent outdoor parking area. The site drains into the existing stormwater system inside the property and the drainage pattern is being maintained as previously existed.

City of Ottawa

Functional Servicing and Stormwater Management Report

9.2. Proposed Grades

The proposed grades will improve the existing drainage conditions to meet the City's/Regional requirements. Grades will be maintained along the property line wherever feasible. Existing drainage patterns on adjacent properties will not be altered and stormwater runoff from the subject development will not affect the adjacent properties.

10.0 Conclusions and Recommendations

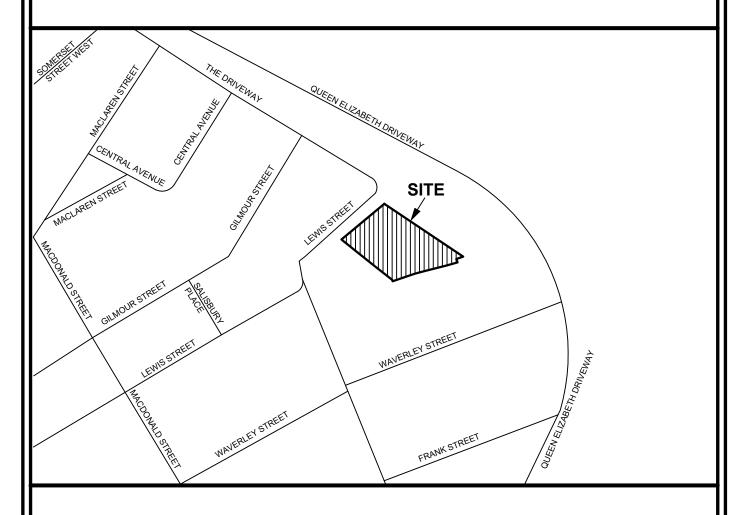
Based on our investigation, we conclude the following:

Storm Drainage

The post-development 100-year storm flow has been designed to match the five (5)-year predevelopment storm flow. In order to achieve the target flows and meet the City's Regulations, quantity controls will be utilized and 79.00 m³ of storage tank will be required as well as 54.10 m³ will be utilized in underground chambers. The stormwater management (SWM) system will be designed to provide enhanced level (Level 1) protection as specified by the Ministry of the Environment, Conservation and Parks (MECP). Water quality control can be provided for a minimum total suspended solids (TSS) removal of 80%.

Sanitary Sewers

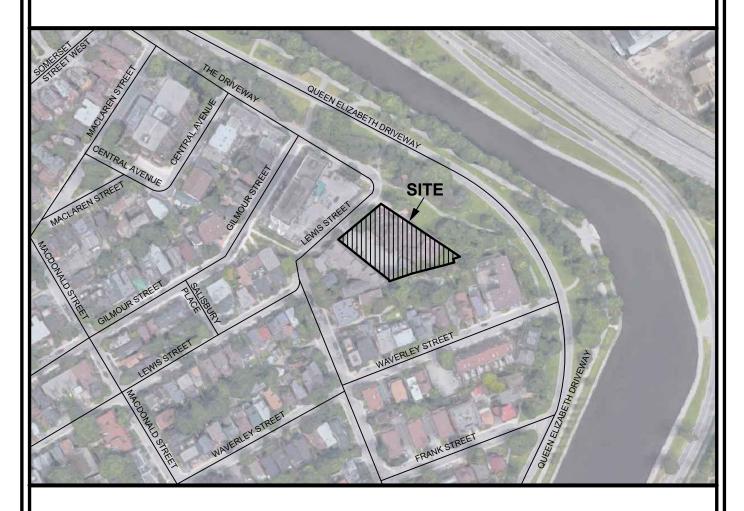
The proposed development will connect to the existing 300mm combined sewer on Queen Elizabeth Driveway ROW, through a 200mm diameter sanitary sewer lateral connection, with a minimum grade of 2.00% (or equivalent pipe design). The additional net discharge flow from the proposed development, is anticipated at approximately 1.80 L/s. According to the information provided by the City, the existing infrastructure has the capacity to support the additional sanitary flow, from the proposed development.


Water Supply

Water supply for the site will be from the existing 300mm diameter watermain on the Queen Elizabeth Driveway ROW. It is anticipated that a total design flow of 84.81 L/s will be required to support the proposed development. Based on the boundary conditions received from the City, it is revealed that the existing water infrastructure can support the proposed development.

Site Grading

The proposed grades will improve the existing drainage conditions to meet the City's/Regional requirements. Grades will be maintained along the property line wherever feasible. Existing drainage patterns on adjacent properties will not be altered and stormwater runoff from the subject development will not affect the adjacent properties.



LOCATION PLAN
RESIDENTIAL USE DEVELOPMENT
50 THE DRIVEWAY
OTTAWA, ONTARIO

14 C-1	DATE:	JANUARY 2023	PROJECT No:	UD22-093
150 Bermondsey Road, Toronto, Ontario M4A 1Y1	SCALE:	N.T.S.	FIGURE No:	FIG 1

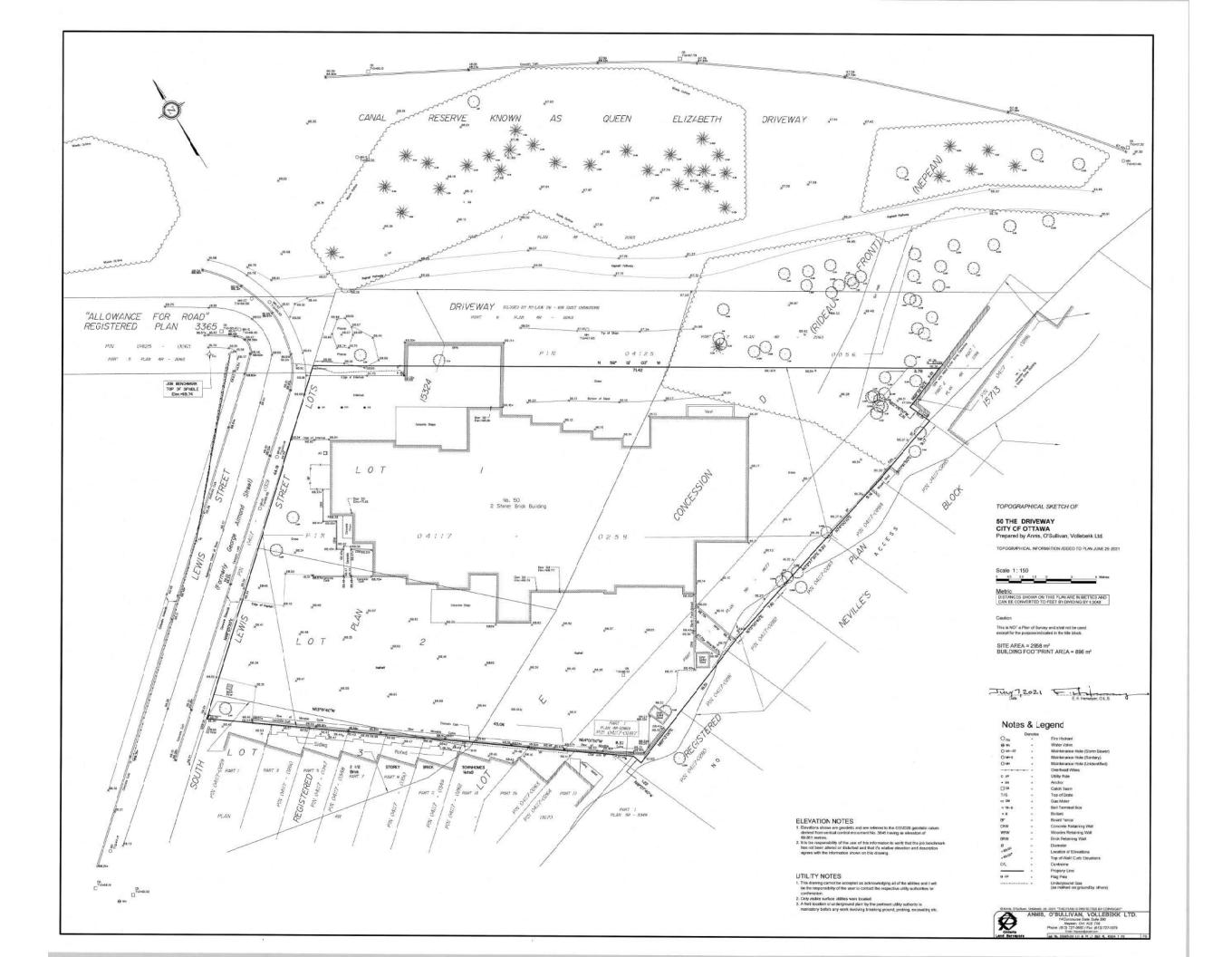
AERIAL PLAN

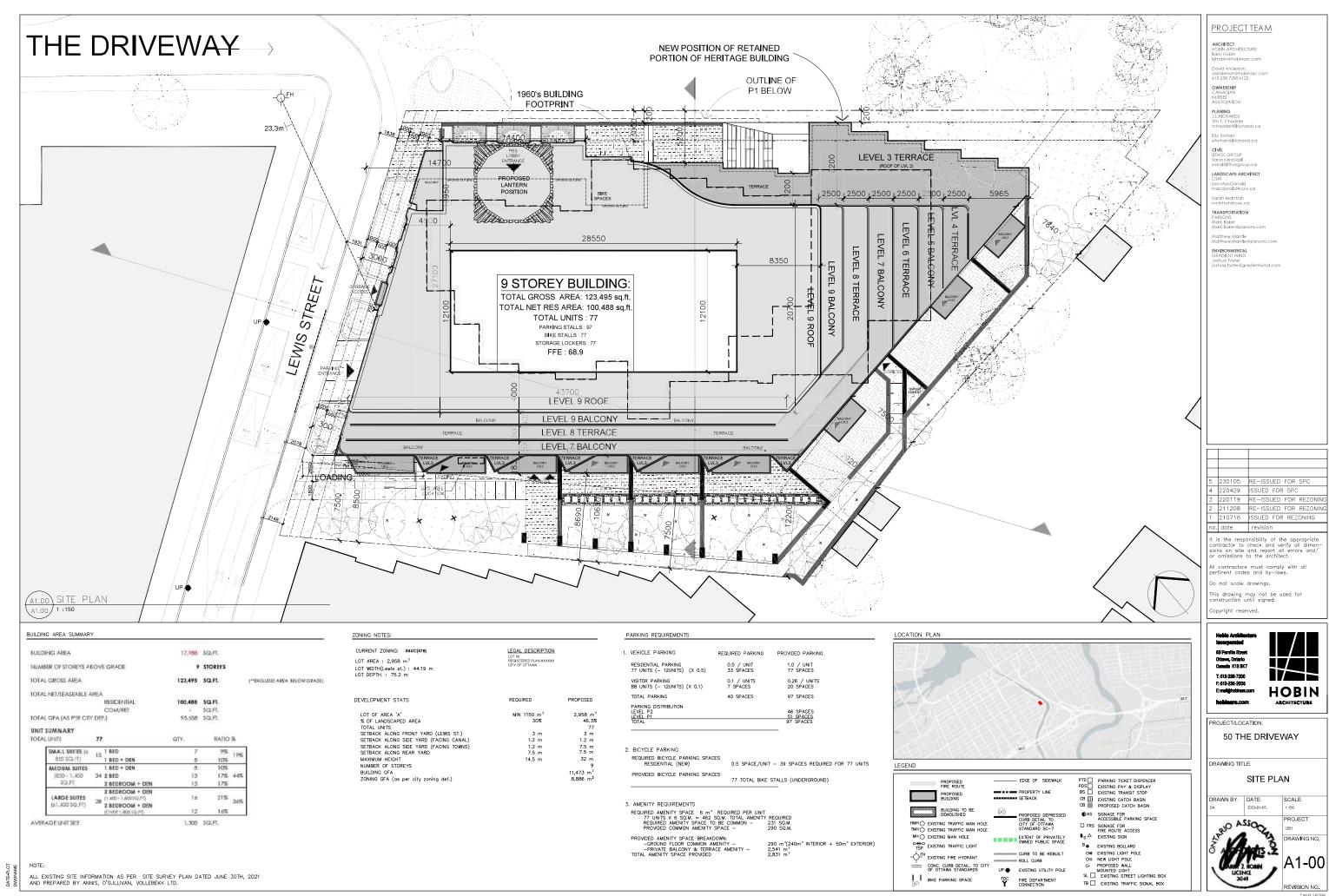
RESIDENTIAL USE DEVELOPMENT 50 THE DRIVEWAY OTTAWA, ONTARIO

	DATE:	JANUARY 2023	PROJECT No:	UD22-093
150 Bermondsey Road, Toronto, Ontario M4A 1Y1	SCALE:	N.T.S.	FIGURE No:	FIG 2

Appendix A

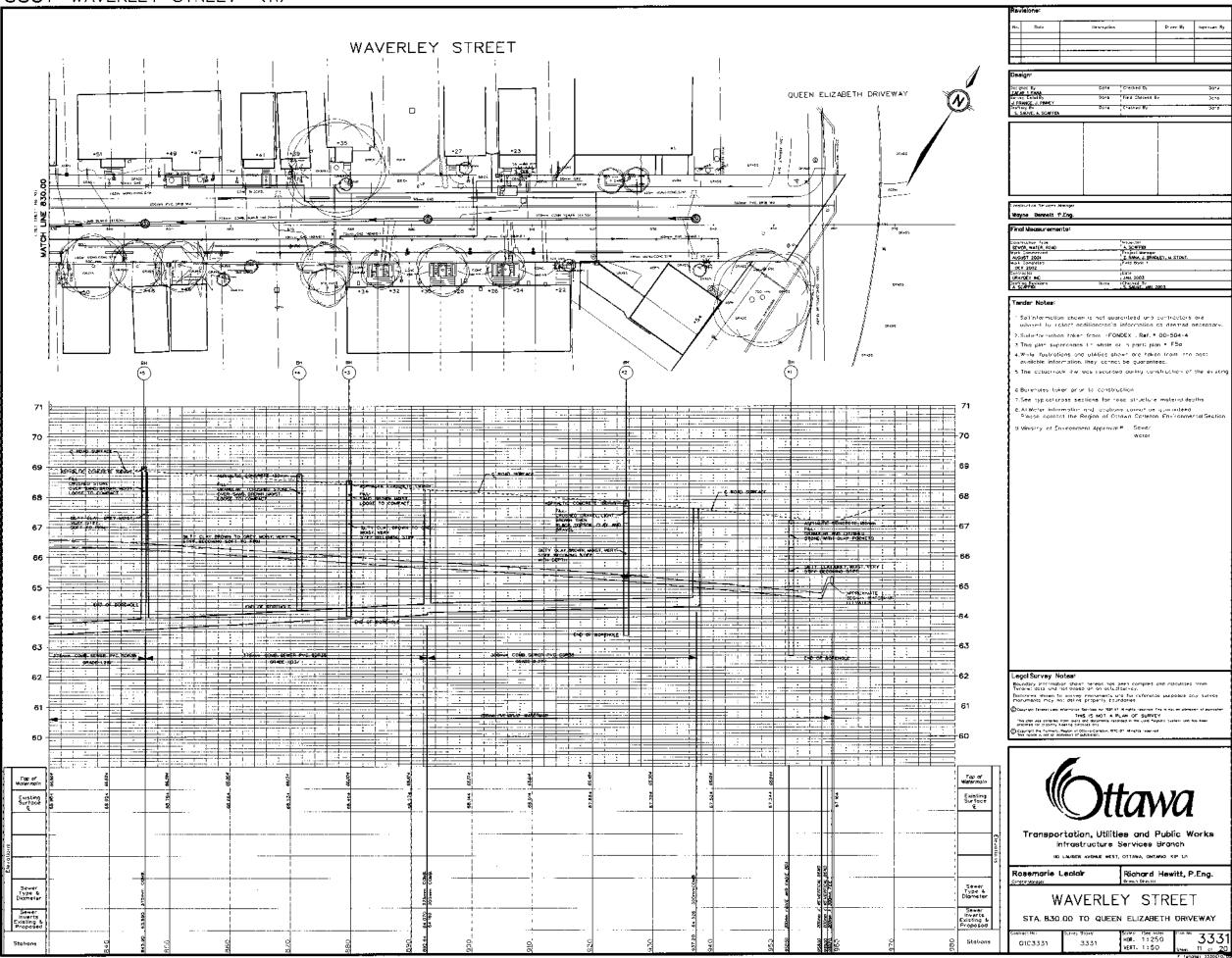
Site Photographs

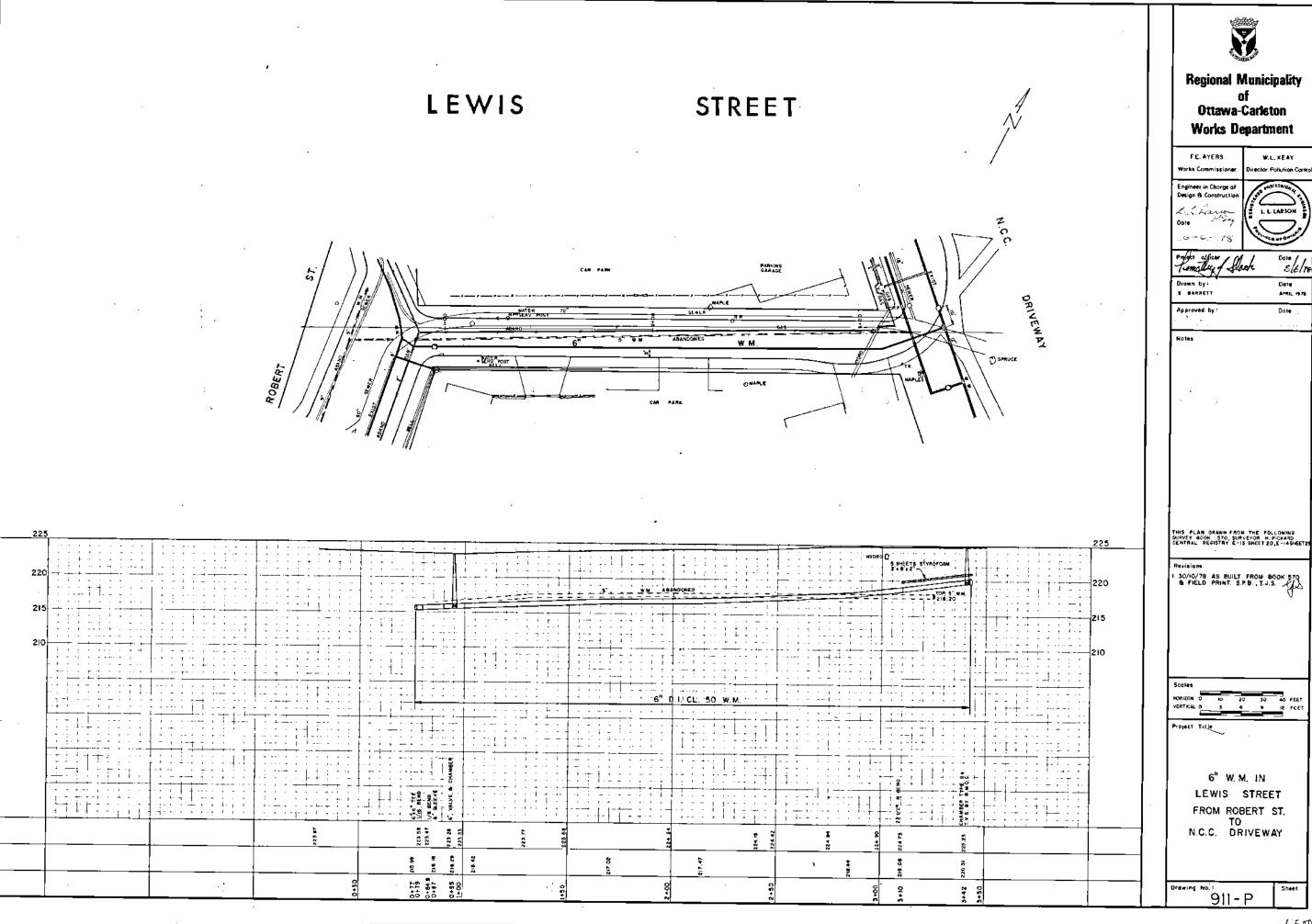

North-West Corner of property along Driveway Road

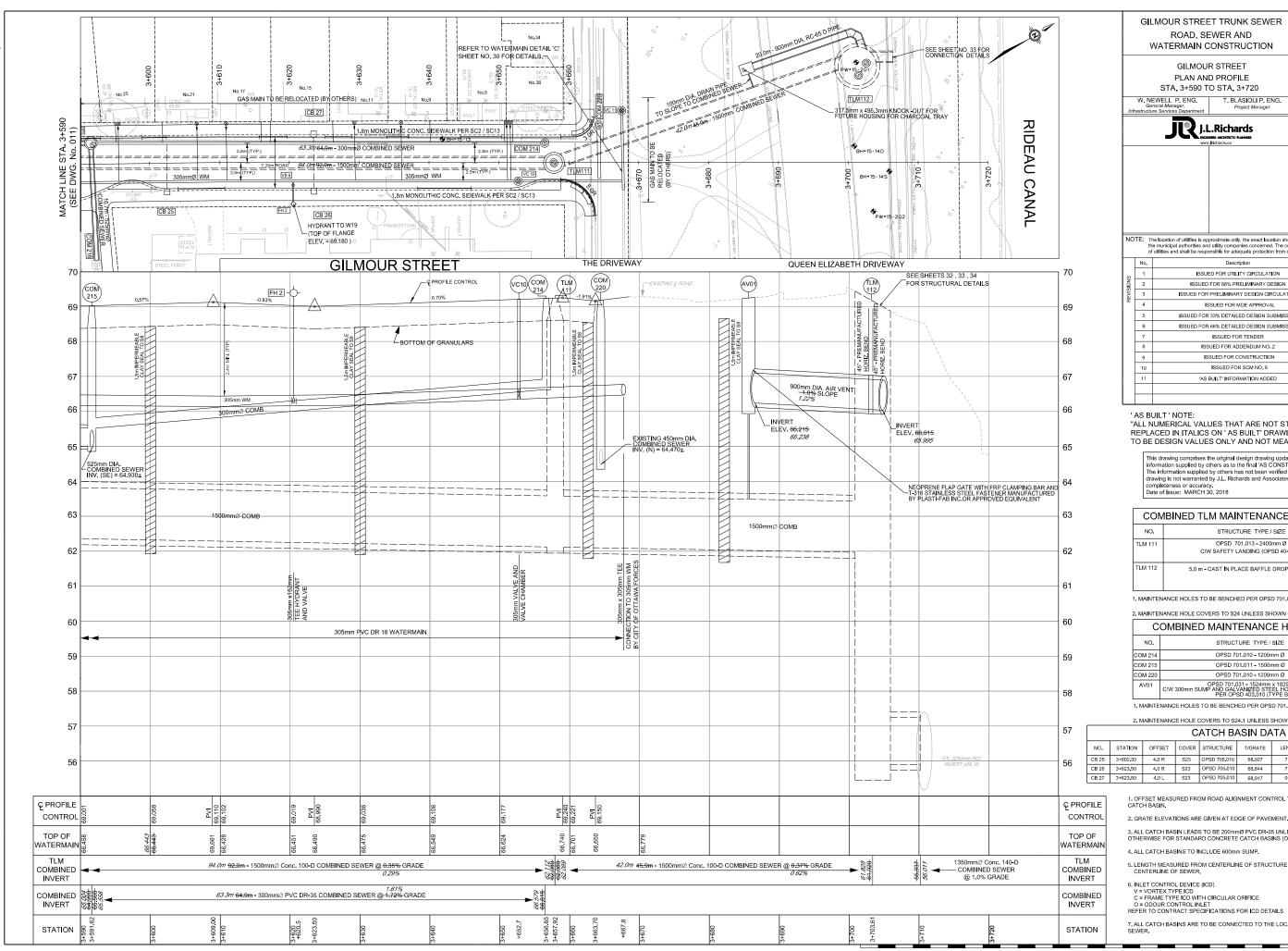


South-West Corner of property along Driveway Road

Appendix B


Background Information




VG 18798

lenome: 3330s10/sgr plenome: wowtpl.com marg.com

GILMOUR STREET TRUNK SEWER ROAD, SEWER AND WATERMAIN CONSTRUCTION

GILMOUR STREET PLAN AND PROFILE

STA, 3+590 TO STA, 3+720 W. NEWELL P. ENG. T. BLASIOLI P. ENG.

J.L.Richards
BIGINESS ASCRITECTS FLANNESS

ISD15-5013 012

Sheet 12 of 35

sset Group

HORIZONTAL 1:250

NOTE: The location of utilities is approximate only, the exact location should be determined by consulting the municipal authorities and utility companies concerned. The contractor shall prove the location of utilities and shall be responsible for adequate protection from damage.

	No.	Description	Ву	Date (dd/mm/yy)
w	1	ISSUED FOR UTILITY CIRCULATION	PDR	22/06/15
REVISIONS	2	ISSUED FOR 66% PRELIMINARY DESIGN	PDR	17/07/15
E	3	ISSUED FOR PRELIMINARY DESIGN CIRCULATION	PDR	07/08/15
œ	4	ISSUED FOR MOE APPROVAL	PDR	14/08/15
	5	ISSUED FOR 33% DETAILED DESIGN SUBMISSION	CB	15/09/15
	6	ISSUED FOR 66% DETAILED DESIGN SUBMISSION	CB	14/10/15
	7	ISSUED FOR TENDER	СВ	03/12/15
	8	ISSUED FOR ADDENDUM NO. 2	PDR	11/01/16
	9	ISSUED FOR CONSTRUCTION	СВ	01/02/16
	10	ISSUED FOR SCM NO. 6	СВ	16/03/16
	11	'AS BUILT' INFORMATION ADDED	СВ	30/03/18

'AS BUILT'NOTE:

AS BUILT NOTE:
"ALL NUMERICAL VALUES THAT ARE NOT STROKED OUT AND
REPLACED IN ITALICS ON 'AS BUILT' DRAWINGS ARE CONSIDERED TO BE DESIGN VALUES ONLY AND NOT MEASURED IN THE FIELD "

This drawing comprises the original design drawing updated to reflect information supplied by others as to the final 'AS CONSTRUCTED' conditions. The information supplied by others has not been verified and, as such, this drawing is not warranted by J.L. Richards and Associates Limited for completeness or accuracy.

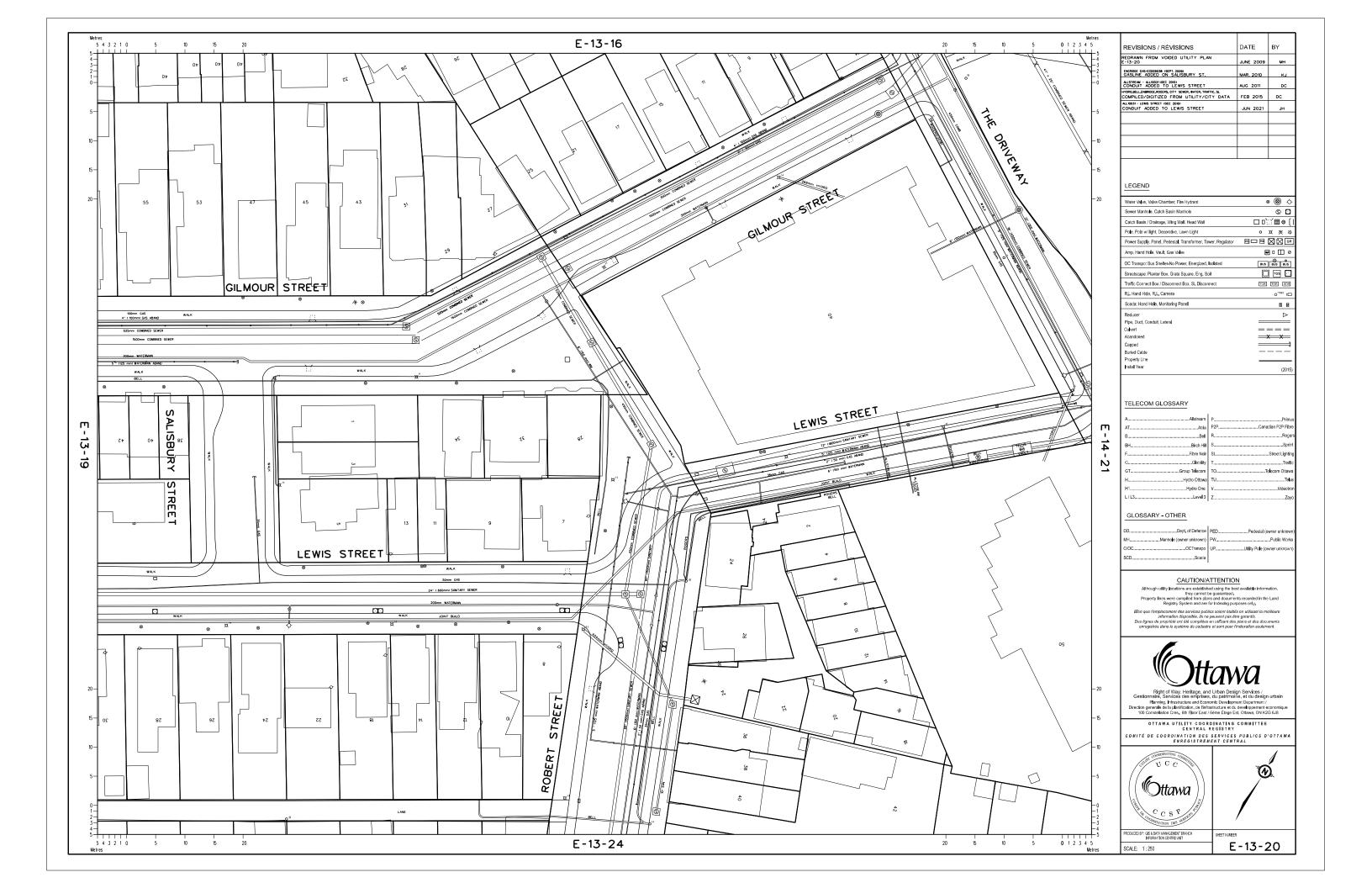
Date of Issue: MARCH 30, 2018

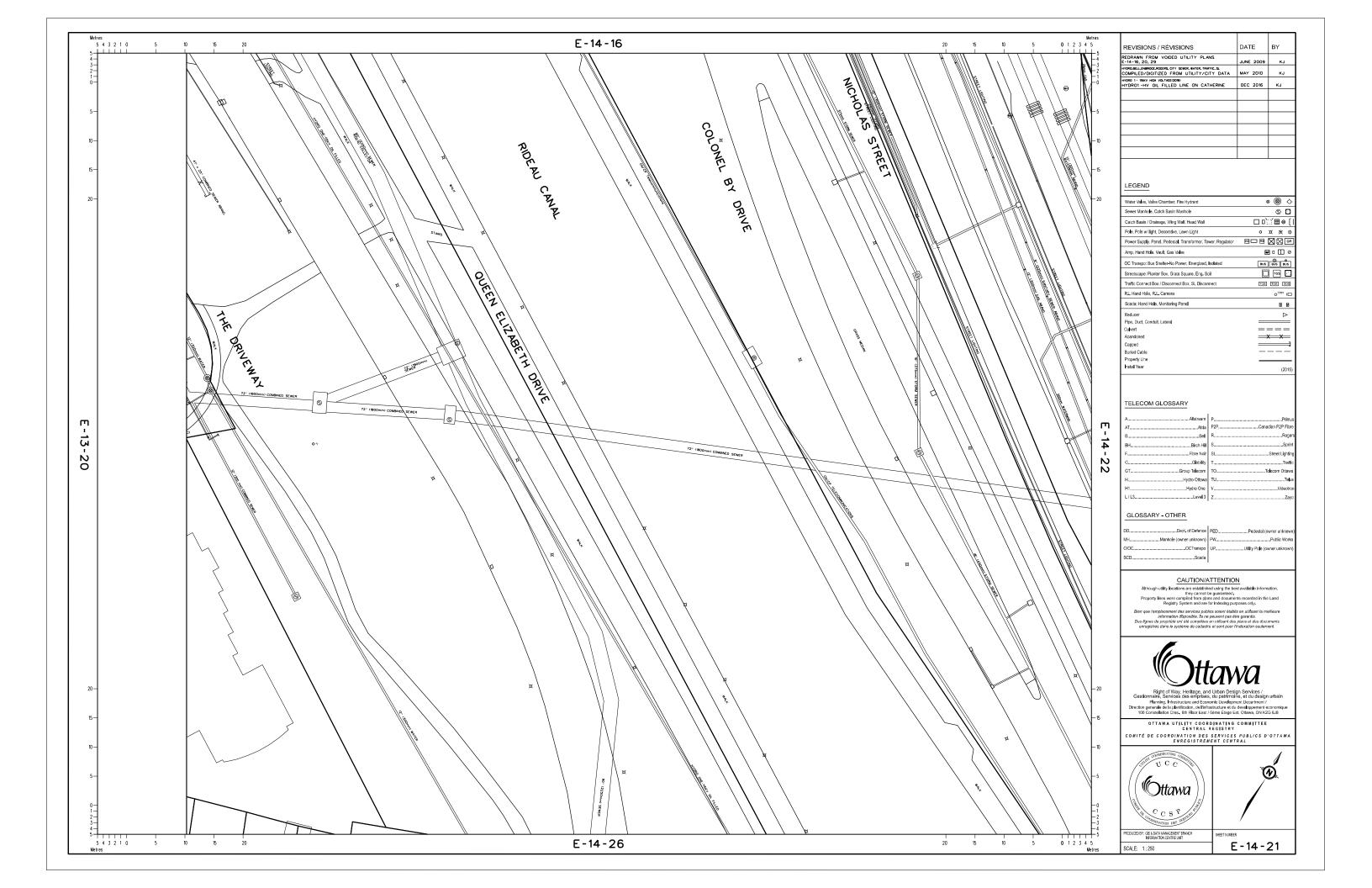
COV	COMBINED TLM MAINTENANCE HOLE DATA						
NO.	STRUCTURE TYPE/SIZE						
TLM 111	OPSD 701.013 - 2400mm Ø C/W SAFETY LANDING (OPSD 404.020)						
TLM 112	5.0 m - CAST IN PLACE BAFFLE DROP CHAMBER						

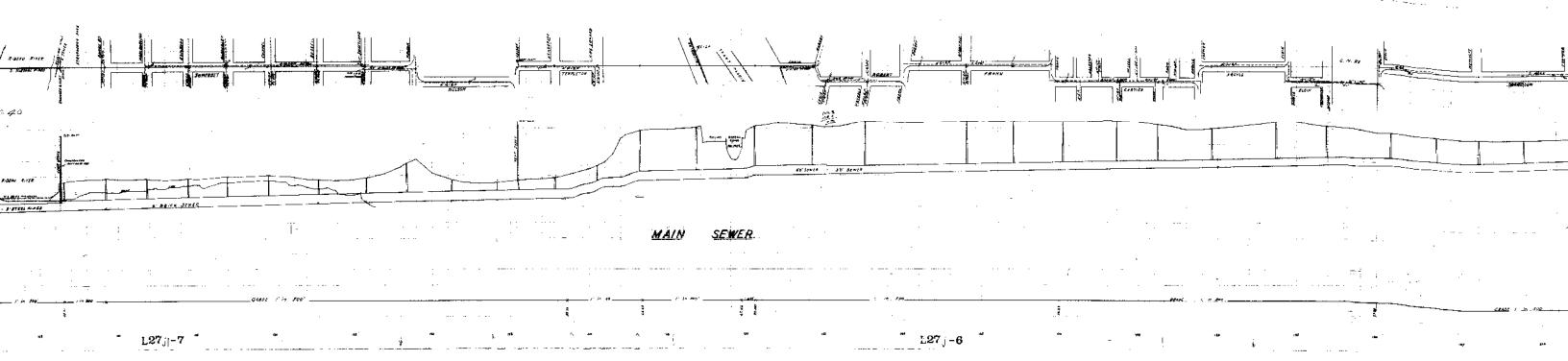
1. MAINTENANCE HOLES TO BE BENCHED PER OPSD 701.021

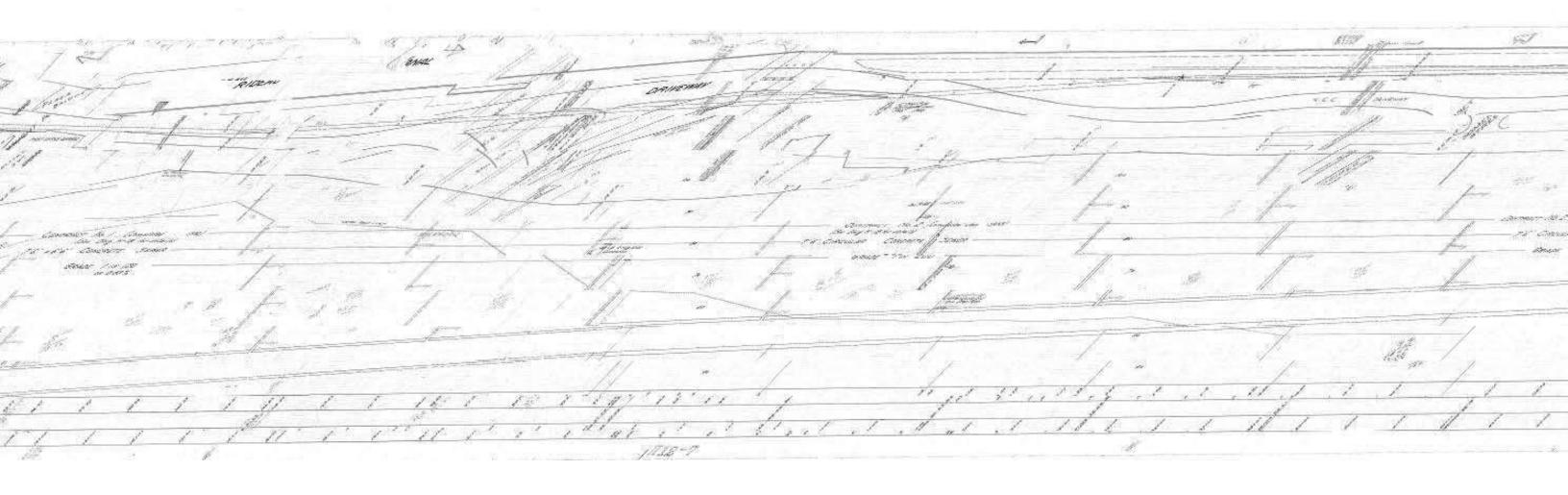
2. MAINTENANCE HOLE COVERS TO S24 UNLESS SHOWN OTHERWISE

COMBINED MAINTENANCE HOLE DATA						
NO.	STRUCTURE TYPE / SIZE					
COM 214	OPSD 701.010 - 1200mm Ø					
COM 215	OPSD 701.011 - 1500mm Ø					
COM 220	OPSD 701.010 - 1200mm Ø					
AV01	OPSD 701.031 - 1524mm x 1829mm C/W 300mm SUMP AND GALVANIZED STEEL HONEYCOMB GRATING PER OPSD 403 010 (TYPE R)					


1. MAINTENANCE HOLES TO BE BENCHED PER OPSD 701.021


2. MAINTENANCE HOLE COVERS TO S24.1 UNLESS SHOWN OTHERWISE


CATCH BASIN DATA									
vo.	O. STATION OFFSET COVER STRUCTURE T/GRATE LENGTH INVERT ICD								
B 25	3+602.50	4.0 R	S23	OPSD 705.010	68.927	7.4	67.527	V-0	
B 26	3+623.50	4.0 R	S23	OPSD 705.010	68.844	7.2	67.444	C-0	
B 27	3+623.50	4.0 L	S23	OPSD 705.010	68,917	8.0	67.517	C-0	


- 1. OFFSET MEASURED FROM ROAD ALIGNMENT CONTROL TO CENTER OF
- 2. GRATE ELEVATIONS ARE GIVEN AT EDGE OF PAVEMENT.
- 3, ALL CATCH BASIN LEADS TO BE 200mm0 PVC DR-35 UNLESS SHOWN OTHERWISE FOR STANDARD CONCRETE CATCH BASINS (OPSD 705.010)
- 4. ALL CATCH BASINS TO INCLUDE 600mm SUMP.
- 5. LENGTH MEASURED FROM CENTERLINE OF STRUCTURE TO CENTERLINE OF SEWER.

- 7. ALL CATCH BASINS ARE TO BE CONNECTED TO THE LOCAL COMBINED

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Noise and Vibration Studies

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7S8

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Geotechnical Investigation

Proposed Multi-Storey Building 50 The Driveway Ottawa, Ontario

Prepared For

Main and Main

July 16, 2021

Report: PG5880-1

Table of Contents

1.0	Introduction	PAGE 1
2.0	Proposed Development	
3.0	Method of Investigation	
3.1	Field Investigation	
3.2		
3.3	•	
3.4	, ,	
4.0	Observations	
4.1	Surface Conditions	
4.2	Subsurface Profile	5
4.3	Groundwater	6
5.0	Discussion	8
5.1	Geotechnical Assessment	8
5.2	Site Grading and Preparation	8
5.3	Foundation Design	9
5.4	Design for Earthquakes	10
5.5	Basement Slab	12
5.6	Basement Wall	12
5.7	Pavement Design	14
6.0	Design and Construction Precautions	16
6.1	Foundation Drainage and Backfill	16
6.2	Protection of Footings Against Frost Action	18
6.3	Excavation Side Slopes and Temporary Shoring	18
6.4	Pipe Bedding and Backfill	20
6.5	Groundwater Control	21
6.6	Winter Construction	22
6.7	Corrosion Potential and Sulphate	23
7.0	Recommendations	24
8.0	Statement of Limitations	25

Appendices

Appendix 1 Soil Profile and Test Data Sheets

Symbols and Terms Analytical Test Results

Appendix 2 Figure 1 - Key Plan

Figures 2 & 3 – Seismic Shear Wave Velocity Profiles

Drawing PG5880-1 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Main and Main to conduct a geotechnical investigation for the proposed development to be located at 50 The Driveway in the City of Ottawa (refer to Figure 1 - Key Plan in Appendix 2 of this report).

The objectives of the geotechnical investigation were to:

- Determine the subsoil and groundwater conditions at this site by means of boreholes.
- Provide geotechnical recommendations pertaining to the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

Investigating the presence or potential presence of contamination on the subject property was not part of the scope of work of the present investigation. Therefore, the present report does not address environmental issues.

2.0 Proposed Development

Based on the available drawings, it is understood that the proposed development will consist of a multi-storey mixed-use structure with two levels of underground parking which will occupy the majority of the subject site. It is also understood that portions of the east and south existing building facades will be retained and integrated as part of the proposed building. However, the structure is expected to be demolished as part of the proposed development.

The proposed building will generally be surrounded by walkways and landscaped areas. It is also expected that the proposed building will be municipally serviced.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The field program for the current geotechnical investigation was carried out during the period of June 30 through July 5, 2021. At that time three (3) boreholes and two (2) test pits were advanced to maximum depth of 20.5 m and 4.7 m below the existing ground surface, respectively. The test hole locations were distributed in a manner to provide general coverage of the subject site and taking into consideration the location of underground utilities and site features. The test hole locations are shown on Drawing PG5880-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were drilled using a low-clearance drill rig operated by a two-person crew. The test pits were excavated using a rubber-tired back-hoe. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The drilling procedure consisted of advancing each test hole to the required depths at the selected locations and sampling the overburden.

Sampling and In Situ Testing

The soil samples were recovered from the auger flights and using a 50 mm diameter split-spoon sampler. Grab samples were collected from the test pit sidewalls and by hand-auger recovery at selected intervals. The samples were classified on site, placed in sealed plastic bags, and transported to our laboratory. The depths at which the auger, split spoon and grab samples were recovered from the boreholes are shown as SS, AU and G, respectively, on the Soil Profile and Test Data sheets in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing, using a vane apparatus, was carried out at regular intervals of depth in cohesive soils.

The overburden thickness was evaluated by a dynamic cone penetration test (DCPT) completed at BH 1-21 and BH 5-21. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data sheets in Appendix 1 of this report.

Groundwater

Monitoring wells were installed at boreholes BH 1-21, BH 4-21, and BH 5-21. Boreholes BH 2-21, BH 3-21 and BH 5-21 were fitted with flexible standpipe piezometers to allow for groundwater level monitoring. Groundwater level observations are discussed in Section 4.3 and are presented in the Soil Profile and Test Data sheets in Appendix 1.

Monitoring Well Installation

3.0 m of slotted 51 mm PVC screen at the base of the boreholes.
51 mm diameter PVC riser pipe from the top of the screen to the ground surface
No. 3 silica sand backfill within annular space around screen.
300 mm thick bentonite hole plug directly above PVC slotted screen.
Clean backfill from top of bentonite plug to the ground surface.

Typical monitoring well construction details are described below:

Refer to the Soil Profile and Test Data sheets in Appendix 1 for specific well construction details.

Sample Storage

All samples will be stored in the laboratory for a period of one (1) month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The test hole locations were selected by Paterson to provide general coverage of the proposed development, taking into consideration the existing site features and underground utilities. The test hole locations and ground surface elevation at each test hole location were surveyed by Paterson personnel using a handheld GPS and referenced to a geodetic datum. The location of the boreholes and ground surface elevation at each test hole location are presented on Drawing PG5880-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples were recovered from the subject site and visually examined in our laboratory to review the results of the field logging. Soil samples will be stored for a period of one month after this report is completed, unless otherwise directed.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity, and the pH of the samples. The results are presented in Appendix 1 and are discussed further in Section 6.7.

4.0 Observations

4.1 Surface Conditions

Existing Conditions

The subject site is currently occupied by a three-storey institutional building with associated landscaped areas, parking areas and access lanes. The ground surface is relatively flat throughout the parking area. The ground surface around the eastern portion of the site slopes downwards gradually form north to south and between geodetic elevations of 68.5 to 66.0 m.

The site is bordered to the east by a paved pedestrian pathway and further by Queen Elizabeth Driveway, to the south by the Embassy of Germany and residential dwellings, to the west by townhouses and to the north by Lewis Street and further by a high-rise apartment building and the associated above-ground parking structure.

Historical Conditions

It should be noted Neville's Creek historically transected the southern portion of the subject site, which is understood to have been infilled in the late 19th century. The existing surface conditions have been completely altered since that time and are not considered representative of its previous footprint due to notable in-filling of the creek.

4.2 Subsurface Profile

Overburden

Generally, the subsurface profile encountered at the test hole locations consisted of an asphalt pavement structure or topsoil underlain by a variable layer of fill. The fill was observed to generally consist of brown and/or grey silty clay or sand with varying amounts of gravel, cobbles, concrete, wood debris and organics. The fill was observed to extend to depths ranging between of 0.7 m to 6.7 m below the existing ground surface.

The fill layers were observed to be underlain by a deposit of silty clay. This deposit was generally observed to consist of a very stiff to stiff, brown silty clay crust underlain by a layer of stiff grey silty clay. It should be noted the crust layer was not encountered in the areas where the fill layer was encountered above the grey silty clay at BH 2-21 and BH 5 -21.

Practical refusal to DCPT was encountered at an approximate depth of 20.5 m and 22.1 m at the location of boreholes BH 1-21 and BH 5-21, respectively.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for the details of the soil profile encountered at each test hole location.

Bedrock

Based on available geological mapping, the bedrock in the subject area consists of Paleozoic Shale of the Carlsbad formation, with an overburden drift thickness of 15 to 25 m depth.

Existing Building Foundation

Two test pits were advanced against portions of the existing building that are anticipated to be incorporated as part of the proposed development. The foundation wall was generally observed to consist of damp-proofed concrete and backfilled against by fill containing variable amounts of clay, silt, sand, gravel and inorganic debris. The top of the footing was encountered at an elevation of 63.3 and 62.2 m at TP 1-21 and TP 2-21, respectively. The underside of footing was encountered at an elevation of 63.0 m at TP 1-21 along with a clay drainage pipe.

The underside of footing was not encountered at TP 2-21 due to a combination of groundwater ingress and loose foundation backfill sidewalls unable to remain open. The top of the footing was inferred at an elevation of 62.2 m based on auger-probes carried out prior to in-filling the test pit at that time.

Based on our review of structural drawings prepared for The Canadian Nurses Association and dated October 1986, the southwestern and southeastern building addition is understood to be founded on piles anticipated to have been driven to refusal.

4.3 Groundwater

Groundwater levels were measured on July 6, 2021 within the installed monitoring wells and piezometers. Also, groundwater infiltration levels were recorded within the open holes during the excavation of the test pits. The measured groundwater levels and observed depth of infiltration are presented in Table 1 below:

Table 1 - Sun	nmary of Ground	dwater Levels	3		
Test Hole	Groundwater Measuring	Ground Surface	Measured Gro Level / Gro Infiltration fo	undwater	Dated
Number	Medium	Elevation (m)	Depth (m)	Elevation (m)	- Recorded
BH 1-21	Monitoring Well	68.36	Dry	Dry	July 6, 2021
BH 2-21	Piezometer	68.21	10.56	57.65	July 6, 2021
BH 3-21	Piezometer	68.69	4.13	64.56	July 6, 2021
BH 4-21	Monitoring Well	66.10	4.03	62.57	July 6, 2021
BH 5-21	Monitoring Well	66.18	3.82	62.36	July 6, 2021
BH 5-21	Piezometer	66.18	9.72	56.46	July 6, 2021
TP 1-21 Sidewall Infiltration		65.98	Dry	Dry	June 30, 2021
TP 2-21	Sidewall Infiltration	66.18	3.0	63.18	June 30, 2021

Note: The ground surface elevation at each borehole location was surveyed using a handheld GPS using a geodetic datum.

It should be noted that long-term groundwater levels can also be estimated based on the observed colour and consistency of the recovered soil samples. Based on these observations, the long-term groundwater table can be expected at approximate depths of 3.5 to 4.5 m below ground surface. The recorded groundwater levels are noted on the applicable Soil Profile and Test Data sheet presented in Appendix 1.

However, it should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater levels could vary at the time of construction.

From: Sidhu, Jasmin < Jasmin.Sidhu@stantec.com>

Sent: December 22, 2022 3:00 PM

To: Tousignant, Eric < Eric.Tousignant@ottawa.ca>

Cc: D'Aoust, Stephane <stephane.daoust@stantec.com>; Gillott, Fiona <Fiona.Gillott@ottawa.ca>

Subject: RE: 50 Driveway

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Good afternoon Eric,

Given the pseudo-2D nature of the model (i.e., where runoff is generated using standard storm subcatchments and directed to CBs at ground surface, from where uncaptured flow is then routed onto the 2D surface), 2D surface model results only reflect overland spill which ICM reports in terms of depth, direction, and velocity per mesh element.

However, below is s screenshot of the existing conditions model for the area of interest. This figure shows the general direction of flow and ponding in the area near 50 the Driveway under the 1:100-yr design event, based on ground elevations from the City's 1m DEM. The anticipated flow paths along Lewis St, the Driveway, and the parking lot of 50 the Driveway are also shown on the figure (blue arrows). Based on the DEM, overland flow from Gilmour St would flow southeast along the Driveway and southwest along Lewis St to Robert St. There is ~0.4m between the bottom of curb/edge of roadway to the high (spill) point in the parking lot area for the property in question.

Kind regards,

Jasmin Sidhu P.Eng.

Water Resources Engineer
"Vacation Alert: Please note that I will be off work from December 22 to January 9, inclusive.

From: Tousignant, Eric < Eric.Tousignant@ottawa.ca> Sent: Monday, December 19, 2022 14:57

To: Sidhu, Jasmin < <u>Jasmin.Sidhu@stantec.com</u>>

Cc: D'Aoust, Stephane <<u>stephane.daoust@stantec.com</u>>; Gillott, Fiona <<u>fiona.gillott@ottawa.ca</u>>

Subject: RE: 50 Driveway

Thanks Jasmin, much appreciated.

Fric

From: Sidhu, Jasmin < Jasmin.Sidhu@stantec.com>

Sent: December 19, 2022 2:53 PM

To: Tousignant, Eric < Eric.Tousignant@ottawa.ca

Cc: D'Aoust, Stephane <stephane.daoust@stantec.com>; Gillott, Fiona <Fiona.Gillott@ottawa.ca>

Subject: RE: 50 Driveway

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Of course. This does fall within the O'Connor model extents. We'll take a look at the modelled major system flow through this site and let you know what we find.

Kind regards,

Water Resources Engineer Vacation Alert: Please note that I will be off work from December 22 to January 9, inclusive.

sarrak@lithosgroup.ca

From: Bakhit, Reza <reza.bakhit@ottawa.ca>

Sent:December 13, 2022 4:58 PMTo:sarrak@lithosgroup.caCc:Fawzi, Mohammed

Subject: RE: 50 The Driveway, OT - capacity of the combined sewer

Hi Sarra,

I can confirm the proposed wastewater flow of 1.97l/s is acceptable.

Thanks,

Reza Bakhit, P.Eng, C.E.T

Project Manager

Planning, Real Estate and Economic Development Department / Direction générale de la planification, des biens immobiliers et du développement économique

Development Review - Centeral Branch

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1

613.580.2424 ext./poste 19346, reza.bakhit@ottawa.ca

Please note: Given the current pandemic, I will be working from home until further notice; reaching me by email is the easiest. I will be checking my voicemail, just not as frequently as I normally would be.

From: Bakhit, Reza

Sent: Tuesday, December 13, 2022 9:13 AM

To: 'sarrak@lithosgroup.ca' <sarrak@lithosgroup.ca>

Subject: RE: 50 The Driveway, OT - capacity of the combined sewer

Hi Sarra,

I will provide you with clarification on the capacity.

Thanks.

Reza Bakhit, P.Eng, C.E.T

Project Manager

Planning, Real Estate and Economic Development Department / Direction générale de la planification, des biens immobiliers et du développement économique

Development Review - Centeral Branch

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1

613.580.2424 ext./poste 19346, reza.bakhit@ottawa.ca

Please note: Given the current pandemic, I will be working from home until further notice; reaching me by email is the easiest. I will be checking my voicemail, just not as frequently as I normally would be.

From: sarrak@lithosgroup.ca

Sent: December 12, 2022 10:54 AM

To: Mottalib, Abdul < Abdul. Mottalib@ottawa.ca >

Subject: 50 The Driveway, OT - capacity of the combined sewer

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

I hope my email finds you well.

We are the civil engineers working on the second SPA submission for the property at 50 The Driveway, in the City of Ottawa.

Could you kindly confirm that there is enough capacity in the combined sewer network abutting our site, taking into consideration that the calculated wastewater flow for the subject property is 1.97 L/s (net flow 1.80 L/s)?

Thank you for your assistance.

Sincerely,

Sarra Karavasili, P.E., M.A.Sc.

Assistant Project Manager

Lithos Group Inc.

150 Bermondsey Rd, Unit #200 Toronto, Ontario M4A 1Y1 D: (647) 366-9610 x1 Main Office: (416) 750-7769 Sarrak@LithosGroup.ca www.LithosGroup.ca

CONFIDENTIALITY NOTE

This email may contain confidential information and any rights to privilege have not been waived. If you have received this transmission in error, please notify us by telephone or e-mail. Thank you.

Χωρίς ιούς.www.avast.com

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

From: Tousignant, Eric < Eric.Tousignant@ottawa.ca>

Sent: Tuesday, November 29, 2022 11:48 AM

To: Fel Petti

Cc: Neff, Pete; Fawzi, Mohammed

Subject: RE: 50 Driveway

Hi Fel

I had a chat internally here and a lateral connection with bends would be acceptable due to the exceptional situation here. However, it will still need to be discussed with Operations first. This would be one pipe out of the Monitoring MH since this is in the ultimate combined sewer area. We would need some kind of deviation report.

We can chat further if you wish.

Eric

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

From: Elaine Guenette
To: sarrak@lithosgroup.ca
Cc: dimitraf@lithosgroup.ca

Subject: RE: 50 The Driveway, OT- addressing comments **Date:** Thursday, December 15, 2022 9:11:03 AM

Hi Sarra,

The proposed building at 50 The Driveway will be fully sprinklered.

Regards,

Smith + Andersen

Elaine Guenette B.A.Sc., P.Eng., LEED AP Principal **d** 613 691 1853 **m** 343 961 2244

From: sarrak@lithosgroup.ca <sarrak@lithosgroup.ca>

Sent: December 15, 2022 8:30 AM

To: Elaine Guenette <elaine.guenette@smithandandersen.com>

Cc: dimitraf@lithosgroup.ca

Subject: 50 The Driveway, OT- addressing comments

CAUTION: This message originated from outside Smith + Andersen

Hello Elaine,

I hope my email finds you well.

We are the civil engineers working on the 2nd SPA submission for the subject project.

Following our review of the 1st round of comments dated August 31, 2022, we would require your assistance on the comment below:

3.10: 'Provide an email correspondence from the mechanical engineer confirming that the proposed building will be sprinklered. Please include this correspondence as an appendix in the report.'

Could you kindly confirm that the proposed building will be sprinklered, just so we address the above noted comment?

Thank you,

Sarra Karavasili, P.E., M.A.Sc.
Assistant Project Manager
<u>Lithos Group Inc.</u>

150 Bermondsey Rd, Unit #200 Toronto, Ontario M4A 1Y1 D: (647) 366-9610 x1 Main Office: (416) 750-7769 Sarrak@LithosGroup.ca

CONFIDENTIALITY NOTE

www.LithosGroup.ca

This email may contain confidential information and any rights to privilege have not been waived. If you have received this transmission in error, please notify us by telephone or e-mail. Thank you.

Holiday Closure Notice: Lithos Group Inc. will be closed for the holidays from 5pm on Friday, 23 December, reopening at 8:30 am on Tues, January 3, 2023.

Guy Forget

From: Jamie Batchelor <jamie.batchelor@rvca.ca>

Sent: Monday, July 12, 2021 9:26 AM

To: Guy Forget
Cc: Eric Lalande
Subject: RE: 50 Driveway

[CAUTION] This email originated from outside JLR. Do not click links or open attachments unless you recognize the sender and know the content is safe. If in doubt, please forward suspicious emails to Helpdesk.

Good Morning Guy,

Based on the proposed plans (rooftops and landscaped areas) and the fact that the stormwater from this site would ultimately be directed to combined storm sewers, no additional on-site water quality control would be required save and except best management practices. We would encourage you to explore opportunities to incorporate LID measures into the stormwater management plan.

Jamie Batchelor, MCIP, RPP Planner, ext. 1191 Jamie.batchelor@rvca.ca

3889 Rideau Valley Drive PO Box 599, Manotick ON K4M 1A5 T 613-692-3571 | 1-800-267-3504 F 613-692-0831 | www.rvca.ca

This message may contain information that is privileged or confidential and is intended to be for the use of the individual(s) or entity may contain confidential or personal information which may be subject to the provisions of the Municipal Freedom of Information & F you are not the intended recipient of this e-mail, any use, review, revision, retransmission, distribution, dissemination, copying, printing taking of any action in reliance upon this e-mail, is strictly prohibited. If you have received this e-mail in error, please contact the send and any copy of the e-mail and any printout thereof, immediately. Your cooperation is appreciated.

From: Guy Forget <gforget@jlrichards.ca> Sent: Thursday, July 8, 2021 4:06 PM

To: Jamie Batchelor < jamie.batchelor@rvca.ca>

Cc: Eric Lalande <eric.lalande@rvca.ca>

Subject: FW: 50 Driveway

Hi Jamie,

I just sent this email to Eric for an opinion on water quality (see attached and below).

We are submitting mid next week, and was hoping to have an opinion before then. Given that Eric is back next week, can I ask you or somebody else at the RVCA to provide an opinion?

Guy

Guy Forget, P.Eng., LEED AP Senior Water Resources Engineer

J.L. Richards & Associates Limited 700 - 1565 Carling Avenue, Ottawa, ON K1Z 8R1 Direct: 343-804-5363

J.L. Richards & Associates Limited is proactively doing our part to protect the wellbeing of our staff and communities while improving our communication technology. We are pleased to announce that we have implemented direct phone lines for all of our staff, allowing you to connect with us regardless of whether we are working remotely or in the office. We are dedicated to delivering quality services to you through value and commitment, as always. Please reach out to us if you have any questions about your project.

From: Guy Forget

Sent: Thursday, July 8, 2021 4:01 PM **To:** 'Eric Lalande' < ric.lalande@rvca.ca>

Cc: Lucie Dalrymple ldalrymple@jlrichards.ca; 'Emily Roukhkian' emily@mainandmain.ca

Subject: 50 Driveway

Hi Eric,

Hope you are doing well.

We have been retained to prepare an Assessment of Adequacy of Public Services Report (Servicing Brief) for 50 Driveway, in the City of Ottawa.

As shown on the attached Location Plan, the Site (0.28 ha) is bounded by Queen Elizabeth Way and Lewis Street and is part of the combined sewer system that ultimately drains to ROPEC.

There is a large combined (1800 mm diameter) on Lewis Street and a smaller 305 mm diameter on QED. Based on our review of the existing condition, runoff from the site currently drains to both combined sewers.

Under the post-development condition (see attached), a significant portion of the site will be the 9-storey roof which accounts for 60% of the overall parcel (1700 m2 of 2800 m2).

The areas outside of the of the building envelope are either grassed or interlock. The area labelled in cyan as 127 m2 is the one that is almost all hard surface and will sheet flow to the 1800 mm combined sewer as there are no opportunities to pick it up with a sewer. The other areas I have labelled are a combination of grass and interlock. Please note that there is no above ground parking. As such, there will be a reduction in TSS given that the large existing parking surface will be removed.

Could you provide an opinion whether the project can proceed without any additional quality measures given the reduction in TSS combined to the fact that the Site is part of the combined system which ultimately drains to ROPEC. Note that we are submitting our Report mid next week, so we would be grateful if you could provide RVCA's opinion before then.

Thank you Guy

Q

FRÄNKISCHE / EN / Products / Rigofill® ST block/half block

BACK TO OVERVIEW

Rigofill® ST block/half block

CONTENTS

Components

Downloads

Contact search

polypropylene (PP).

The Rigofill ST full block consists of two half elements to be installed on site and has a void ratio of > 96 %. The Rigofill ST half block consists of only one half element, which must be assembled with a roof slab on site. The cross-shaped inspection tunnel in the storage/infiltration unit has been designed for the use of automotive dollies. This allows for full inspection of the effective drainage surface and the entire system volume with all statically relevant bearing-type fixtures. In combination with QuadroControl ST, Rigofill ST storage/infiltration systems have been designed for professional final acceptance inspection and repeated inspection. Installation under trafficked areas (HGV 60) and at great depths is possible.

NB! Follow the Rigofill ST installation manual! **Rigofill ST block**

 \blacksquare W x D x H = 800 x 800 x 660 mm

■ Gross volume: 422 l

Storage volume: 406 l

Rigofill ST half block

• $W \times D \times H = 800 \times 800 \times 350 \text{ mm}$

Gross volume: 224 l

Storage volume: 212 l

Q

cial geotextile lining, QuadroControl ST inspection shafts and additional accessories.

Accessories

Side wall lattice Rigofill® ST

Accessories

Side wall lattice Rigofill® ST half

Accessories

Block connector Rigofill® ST

Accessories

Adapter Rigofill® ST

Accessories

Side wall lattice Rigofill® ST short

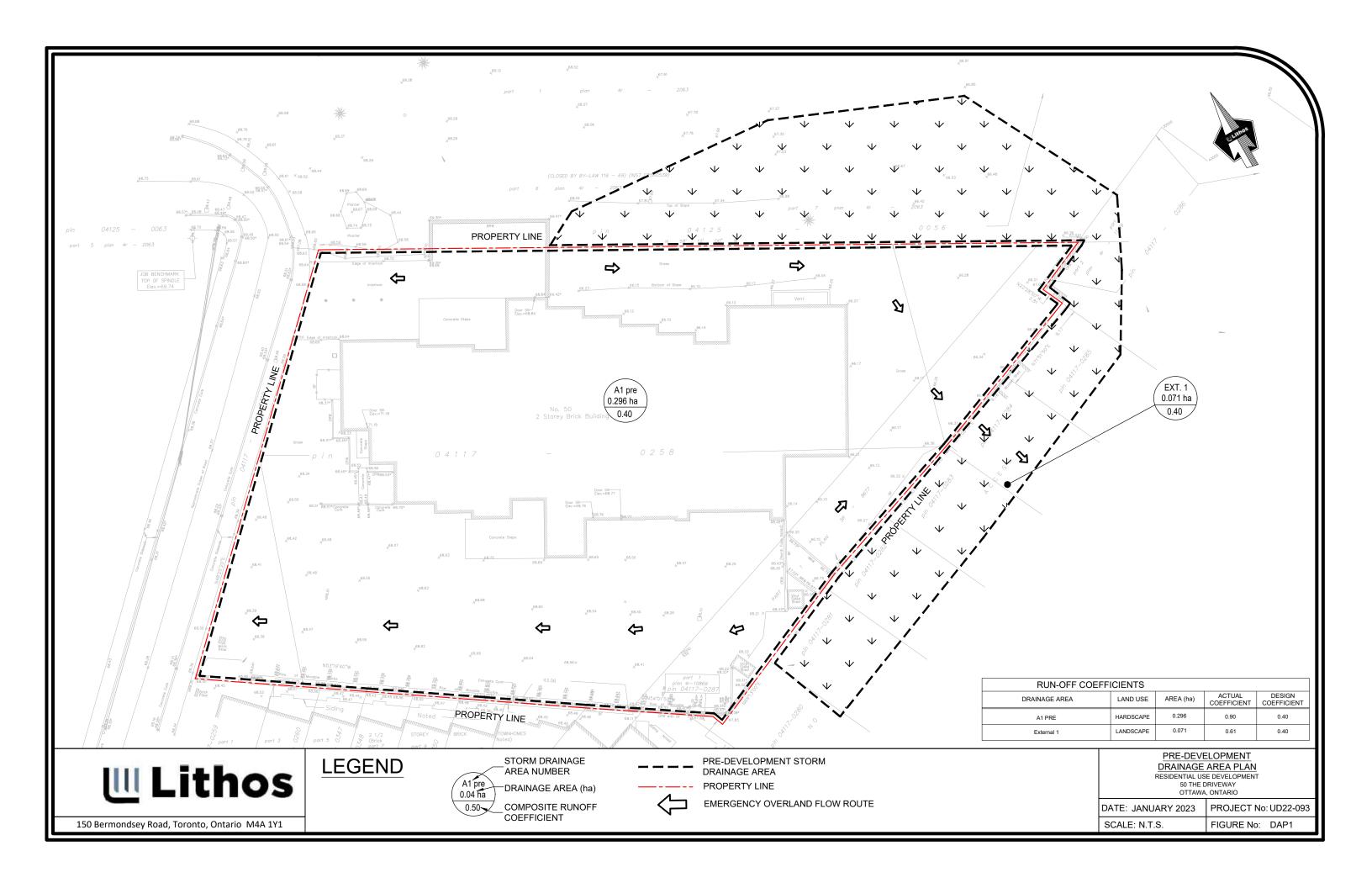
Accessories

Side wall lattice Rigofill® ST half

Accessories

The supporting grid

Downloads



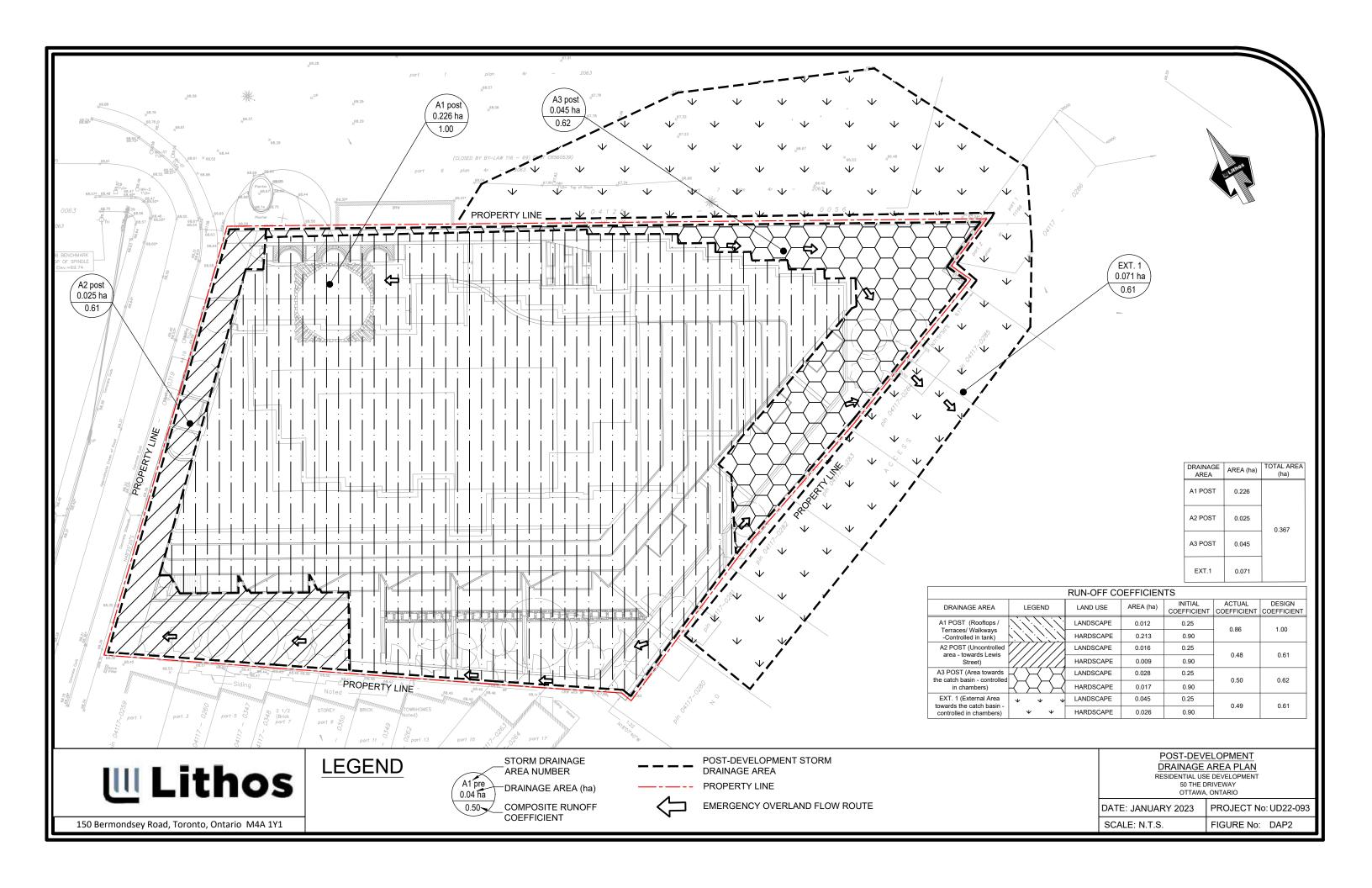
Data Sheet Rigofill ST Datasheet

Appendix C

Storm Analysis

Rational Method Pre-Development Flow Calculation

50 The Driveway File No. UD22-093


City of Ottawa Date: January 2023

Prepared By: Dimitra Frysali, P.E., M.A.Sc. Reviewed by: Nick Moutzouris, P.Eng., M.A.Sc.

Area Number	Area (ha)	Actual Coefficient	Design Coefficient
A1 Pre	0.296	0.90	0.40
External Area 1	0.071	0.49	0.40
A1 Pre + External Area 1	0.367	0.77	0.40

Rational Method Calculation

Event 5-year	IDF Data Set	City of Ottawa	a =	998.071	b=	6.053	C=
Area Number	A	С	AC	Тс	ı	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
A1 Pre	0.296	0.40	0.12	20	70.25	0.023	23.1
External Area 1	0.071	0.400	0.028	20	70.25	0.006	5.5
Event 100-year	IDF Data Set	City of Ottawa	a =	1735.688	b=	6.014	C=
Area Number	A	С	AC	Tc	I	Q	Q
	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)
A1 Pre	0.296	0.40	0.12	20	119.95	0.039	39.5
	i						

Modified Rational Method - 5 Year

StormSite Flow and Storage Summary

50 The Driveway, Ottawa

50 The Driveway, Ottawa

File No. UD22-093 City of Ottawa

File No: UD22-093 Prepared by: Dimitra Frysali P.E., M.A.Sc

pared by: Dir)93				50 The Driveway, Otta	wa				City of Ottawa		
	mitra Frysali P.E., I									Date: January 2	023	
riewed by: Ni	ck Moutzouris, P.E	Ing., M.A.Sc. Drainage Area A1 P	ost		Drainage Area A2 F	Post		Total Site				
		Rooftops / Terraces/ Walkwa		alled in tank	Uncontrolled area - towards		not					
		Toorlops / Terraces/ Walkwa	iys -conti	oned in tank	Officontioned area - towards	s Lewis Oth	set	Total Site= A1 + A2	2			
		Area (A1) = "C" =	0.226 0.86	ha	Area (A2) = "C" =	0.025 0.48	ha	Design Contr	rolled Release I	Rate (80mm orifice plate)=	9.6	L/s
		AC1= Tc=	0.195 10.0	min	AC2= Tc=	0.01	min	N.	Max. Storage Ta	nk Size =	35	m ³
		Time Increment =	5.0	min	Time Increment =	5.0	min		Sto	rage Tank footprint Area =	70.0	m ²
		Release Rate =	56.42	L/s	Max. Release Rate =	3.5	L/s					
									Controlled	Release Rate Achieved =	9.6	L/s L/s
									Un	controlled Release Rate =	3.5	2,0
										Total Site Release Rate =	13.1	L/s
5-Year De	esign Storm	Tributary Area (A1)	ha	С	Tributary Area (A2)	ha	С] °-'		pment Site Release Rate llowable Release Rate) =	23.1	L/s
a=	998.07	Landsc.Area	0.013	0.25	Landsc.Area	0.016	0.25					
b=	6.053 0.814	Hardsc. Area Total	0.213 0.226	0.90	Hardsc. Area Total	0.009	0.90 0.48					
C=		Total	0.220	0.00	rotar	0.020	0.40					
(1)	a / (TC + b)c (2)	(3)		(4)	(5)	((3)	(7)	(8)	(9)		(10)
Time	Rainfall	Storm		Runoff	Storm		Runoff Total Storm Released Storage			Stor		
	Intensity	Runoff (A1 post)		Volume (A1 post)	Runoff (A2 Post)		ume Post)	Runoff Volume Volume		Volume	Depth	of Tank
(min)	(mm/hr)	(m³/s)		(m ³)	(m³/s)		n³)	(m ³)	(m³)	(m³)		(m)
10.0 15.0	104.2 83.6	0.056 0.045		33.85 40.72	0.004 0.003		10 53	33.85 40.72	5.76 8.64	28.09 32.08		0.40 0.46
20.0	70.3	0.038		45.65	0.002		83	45.65	11.52	34.13		0.49
25.0	60.9	0.033		49.47	0.002	3.	07	49.47	14.41	0.50		
30.0	53.9	0.029		52.57	0.002		26	52.57	17.29	35.06 35.28		0.50
35.0	48.5	0.026		55.17	0.002	3.	42	55.17	20.17	35.01		0.50
40.0	44.2	0.024		57.43	0.001		56	57.43	23.05	34.38		0.49
45.0	40.6	0.022		59.40	0.001		69	59.40	25.93	33.47		0.48
50.0				61.17	0.001		80	61.17	28.81	32.36		0.46
	37.7	0.020				1 3	90	62.77	31.69			
55.0	35.1	0.019		62.77	0.001					31.08		0.44
55.0 60.0	35.1 32.9	0.019 0.018		64.22	0.001	3.		64.22	34.57	29.65		0.42
55.0 60.0 65.0	35.1 32.9 31.0	0.019 0.018 0.017		64.22 65.56	0.001 0.001	3. 4.	07	64.22 65.56	34.57 37.45	29.65 28.11		0.42 0.40
55.0 60.0 65.0 70.0	35.1 32.9 31.0 29.4	0.019 0.018 0.017 0.016		64.22 65.56 66.80	0.001 0.001 0.001	3. 4. 4.	07 15	64.22 65.56 66.80	34.57 37.45 40.34	29.65 28.11 26.47		0.42 0.40 0.38
55.0 60.0 65.0 70.0 75.0	35.1 32.9 31.0 29.4 27.9	0.019 0.018 0.017 0.016 0.015		64.22 65.56 66.80 67.96	0.001 0.001 0.001 0.001	3. 4. 4. 4.	07 15 22	64.22 65.56 66.80 67.96	34.57 37.45 40.34 43.22	29.65 28.11 26.47 24.74		0.42 0.40 0.38 0.35
55.0 60.0 65.0 70.0 75.0 80.0	35.1 32.9 31.0 29.4 27.9 26.6	0.019 0.018 0.017 0.016 0.015 0.014		64.22 65.56 66.80 67.96 69.04	0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4.	07 15 22 29	64.22 65.56 66.80 67.96 69.04	34.57 37.45 40.34 43.22 46.10	29.65 28.11 26.47 24.74 22.95		0.42 0.40 0.38 0.35 0.33
55.0 60.0 65.0 70.0 75.0 80.0 85.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4	0.019 0.018 0.017 0.016 0.015 0.014		64.22 65.56 66.80 67.96	0.001 0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4.	07 15 22	64.22 65.56 66.80 67.96	34.57 37.45 40.34 43.22 46.10 48.98	29.65 28.11 26.47 24.74		0.42 0.40 0.38 0.35 0.33 0.30
55.0 60.0 65.0 70.0 75.0 80.0	35.1 32.9 31.0 29.4 27.9 26.6	0.019 0.018 0.017 0.016 0.015 0.014		64.22 65.56 66.80 67.96 69.04 70.06	0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4.	07 15 22 29 35	64.22 65.56 66.80 67.96 69.04 70.06	34.57 37.45 40.34 43.22 46.10	29.65 28.11 26.47 24.74 22.95 21.08		0.42 0.40 0.38 0.35 0.33
55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4.	07 15 22 29 35 41 46 52	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18		0.42 0.40 0.38 0.35 0.33 0.30 0.27 0.25 0.22
55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 105.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.013 0.012		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4.	07 15 22 29 35 41 46 52	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13		0.42 0.40 0.38 0.35 0.33 0.30 0.27 0.25 0.22 0.19
55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 105.0 110.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8	0.019 0.018 0.017 0.016 0.015 0.014 0.014 0.013 0.013 0.012 0.012		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4. 4.	07 15 22 29 35 41 46 52 57 62	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04		0.42 0.40 0.38 0.35 0.33 0.30 0.27 0.25 0.22 0.19 0.16
55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 115.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4. 4. 4.	07 15 22 29 35 41 46 52 57 62	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91		0.42 0.40 0.38 0.35 0.33 0.30 0.27 0.25 0.22 0.19 0.16 0.13
55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 105.0 115.0 120.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4. 4. 4.	07 15 22 29 35 41 46 552 57 62 67 71	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76		0.42 0.40 0.38 0.35 0.30 0.27 0.25 0.19 0.16 0.13 0.10
55.0 60.0 65.0 70.0 75.0 80.0 95.0 100.0 110.0 115.0 125.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.012 0.011 0.011		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	07 15 22 29 35 41 46 552 57 62 67 71	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58		0.42 0.40 0.38 0.35 0.30 0.27 0.25 0.22 0.19 0.16 0.13 0.10 0.07
55.0 60.0 65.0 70.0 75.0 85.0 90.0 95.0 100.0 115.0 115.0 120.0 125.0 130.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.011		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	07 15 22 29 35 41 46 52 57 62 67 71 75	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37		0.42 0.40 0.38 0.35 0.33 0.30 0.27 0.25 0.22 0.19 0.16 0.13 0.10 0.07
55.0 60.0 65.0 70.0 75.0 80.0 95.0 100.0 110.0 115.0 125.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.012 0.011 0.011		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	07 15 22 29 35 41 46 552 57 62 67 71	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58		0.42 0.40 0.38 0.35 0.30 0.27 0.25 0.22 0.19 0.16 0.13 0.10 0.07
55.0 60.0 70.0 75.0 80.0 85.0 90.0 100.0 110.0 115.0 120.0 125.0 130.0 135.0 140.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 17.3	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	07 15 22 22 29 33 41 46 55 57 62 67 77 75 80 84 88 89	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00		0.42 0.40 0.38 0.35 0.35 0.30 0.27 0.25 0.19 0.16 0.13 0.10 0.07 0.03 0.00 0.00
55.0 60.0 70.0 75.0 86.0 90.0 95.0 100.0 115.0 115.0 125.0 135.0 140.0 145.0 145.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 17.3 16.8	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.011 0.011 0.010 0.010 0.009 0.009		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.27 77.92 78.55 79.16	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	07 15 22 22 29 335 41 46 55 57 62 67 77 77 80 84 84 88 89 91	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00		0.42 0.40 0.38 0.35 0.33 0.30 0.27 0.25 0.22 0.19 0.16 0.13 0.07 0.03 0.00 0.00 0.00
55.0 60.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 110.0 120.0 125.0 135.0 145.0 145.0 145.0 155.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.3 17.8 17.8 16.8 16.4 15.9	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.95 79.16 79.74 80.31	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	07 15 22 22 29 33 35 41 46 52 57 66 66 67 71 75 80 84 88 89 91 99 99	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00		0.42 0.40 0.38 0.35 0.33 0.30 0.27 0.25 0.22 0.19 0.16 0.13 0.10 0.07 0.03 0.00 0.00 0.00
55.0 60.0 70.0 75.0 86.0 95.0 90.0 95.0 100.0 115.0 125.0 135.0 140.0 145.0 155.0 155.0 156.0 156.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 17.3 16.8 16.4 15.9	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.009 0.009 0.009 0.009		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 80.31 80.87	0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	07 15 22 22 29 35 41 46 52 57 62 67 77 75 80 84 88 89 91 95 96	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 92.19	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00		0.42 0.40 0.38 0.38 0.35 0.33 0.30 0.27 0.25 0.22 0.19 0.16 0.13 0.10 0.07 0.03 0.00 0.00 0.00 0.00 0.00
55.0 60.0 65.0 70.0 75.0 80.0 85.0 95.0 90.0 95.0 110.0 125.0 115.0 125.0 135.0 145.0 145.0 155.0 160.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 16.8 16.4 15.9	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.011 0.011 0.011 0.011 0.010 0.010 0.009 0.009 0.009 0.008 0.008		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 80.31 80.87 81.40	0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	07 15 22 29 35 441 446 552 57 71 77 880 884 89 99 99 90 90 90 90	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 90.87 80.87 80.87 81.40	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 92.19	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42 0.40 0.38 0.35 0.33 0.27 0.25 0.22 0.16 0.13 0.10 0.07 0.03 0.00 0.00 0.00 0.00 0.00
55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 105.0 115.0 125.0 130.0 140.0 145.0 150.0 150.0 150.0 150.0 160.0 170.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 17.3 16.8 16.4 15.9 15.6 15.2	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.013 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.008 0.008		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93	0.001 0.001	3.4.4.4.4.4.4.4.4.5.5.5.5.5.5.	07 15 22 29 33 34 41 46 52 57 66 67 67 77 71 75 80 84 88 89 91 99 99 90 20 00 50 60	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 92.19 95.08 97.96	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42 0.40 0.38 0.35 0.33 0.30 0.27 0.25 0.19 0.16 0.10 0.07 0.03 0.00 0.00 0.00 0.00 0.00 0.0
55.0 60.0 65.0 70.0 75.0 80.0 85.0 95.0 90.0 95.0 110.0 125.0 115.0 125.0 135.0 145.0 145.0 155.0 160.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 16.8 16.4 15.9	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.011 0.011 0.011 0.011 0.010 0.010 0.009 0.009 0.009 0.008 0.008		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 80.31 80.87 81.40	0.001 0.001	3.4.4.4.4.4.4.4.4.5.5.5.5.5.5.5.5.	07 15 22 29 35 441 446 552 57 71 77 880 884 89 99 99 90 90 90 90	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 90.87 80.87 80.87 81.40	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 92.19	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42 0.40 0.38 0.35 0.33 0.27 0.25 0.22 0.16 0.13 0.10 0.07 0.03 0.00 0.00 0.00 0.00 0.00
55.0 60.0 65.0 770.0 75.0 80.0 85.0 95.0 100.0 115.0 110.0 115.0 120.0 130.0 145.0 145.0 145.0 145.0 145.0 166.0 177.0 177.0 185.0 185.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 17.3 16.8 15.9 15.6 15.6 15.6 15.6	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.011 0.011 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.42	0.001 0.001	3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 5. 5. 5. 5. 5.	07 15 22 29 29 441 46 552 57 62 67 71 75 80 84 88 89 91 90 90 90 80 11 11 11 11 11	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.42	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 95.08 97.96 100.84 103.72 106.60	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42 0.40 0.38 0.35 0.35 0.30 0.27 0.22 0.19 0.16 0.13 0.10 0.07 0.03 0.00 0.00 0.00 0.00 0.00 0.0
55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 105.0 110.0 125.0 135.0 135.0 145.0 155.0 160.0 155.0 160.0 170.0 175.0 180.0 180.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 16.8 16.4 15.9 15.6 14.5 14.5 14.5	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.011 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.42 83.89	0.001 0.001	3.4.4.4.4.4.4.4.4.4.4.5.5.5.5.5.5.5.5.5.	07 15 22 29 335 41 46 552 57 662 67 71 75 80 884 888 91 995 998 002 005 008 112 115	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.42 83.89	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 92.19 95.08 97.96 100.84 103.72 106.60	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42 0.40 0.38 0.35 0.35 0.33 0.30 0.27 0.25 0.19 0.16 0.13 0.10 0.07 0.03 0.00 0.00 0.00 0.00 0.00 0.0
55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 115.0 110.0 115.0 120.0 135.0 140.0 155.0 140.0 155.0 160.0 165.0 175.0 180.0 175.0 180.0 185	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9 17.8 17.8 17.3 16.8 15.9 15.6 15.9 15.6 14.5 14.5 14.5 14.5 14.5 14.6 15.9 15.0 16.8 16.8 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.87 81.40 81.93 82.44 82.93 83.42 83.89 84.35	0.001 0.001	3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	07 15 22 29 335 41 44 46 55 57 66 67 77 77 88 88 89 91 99 99 99 90 00 10 11 15 11 18	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.42 83.89 84.35	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 92.19 95.08 97.96 100.84 103.72 106.60 109.48 112.36	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42 0.43 0.38 0.35 0.35 0.30 0.27 0.25 0.22 0.19 0.16 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
55.0 60.0 65.0 70.0 775.0 80.0 85.0 90.0 95.0 110.0 115.0 120.0 125.0 130.0 135.0 145.0 145.0 160.0 165.0 170.0 165.0 170.0 180.0 180.0 180.0 180.0 190.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 16.8 15.9 15.6 15.6 15.6 14.5 14.5 14.5 14.5 14.5 13.9 13.6 13.3 13.0	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.17 80.31 80.87 81.40 81.93 82.94 82.93 83.89 84.35 84.80	0.001 0.000	3.4.4.4.4.4.4.4.4.4.4.4.4.5.5.5.5.5.5.5.	07 15 22 29 35 41 44 46 55 57 66 67 77 77 80 84 88 89 99 99 00 10 11 11 18 12 12 14	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 80.31 80.87 81.40 81.93 82.44 82.93 83.42 83.89 84.35 84.80	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 95.08 97.96 100.84 103.72 106.60 109.48 112.36	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42 0.45 0.46 0.38 0.35 0.36 0.37 0.27 0.27 0.27 0.27 0.27 0.27 0.26 0.29 0.19 0.16 0.16 0.17 0.
55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 115.0 115.0 125.0 130.0 140.0 145.0 150.0 155.0 150.0 155.0 150.0 160.0 160.0 175.0 185.0 195	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 17.3 16.4 15.9 15.6 15.2 14.8 14.5 14.2 13.9 13.6 13.3 13.0 13.0	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.013 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.008		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.42 83.89 84.35 84.80 85.24	0.001 0.000	3.4.4.4.4.4.4.4.4.5.5.5.5.5.5.5.5.5.5.5.	07 15 22 29 335 41 44 46 52 57 66 67 77 77 80 84 88 88 89 99 99 99 90 90 12 15 11 15 11 12 12 12 12 12 12 12 12 12 13 14 14 14 15 15 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.42 83.89 84.35 84.80 85.24	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 92.19 95.08 97.96 100.84 103.72 106.60 109.48 112.36 115.24 118.12	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42 0.45 0.038 0.35 0.30 0.37 0.27 0.25 0.22 0.22 0.22 0.022 0.022 0.020 0.000
55.0 60.0 65.0 70.0 775.0 80.0 85.0 99.0 105.0 1115.0 120.0 130.0 135.0 140.0 145.0 145.0 145.0 165.0 1770.0 175.0 180.0 175.0 180.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 22.4 21.6 20.1 19.5 18.9 18.3 17.8 17.3 16.8 16.4 15.9 15.6 15.6 15.6 15.6 15.2 14.5 14.5 13.9 13.6 13.3 13.9 13.6 13.3 13.9 13.6 13.8	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.011 0.011 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.007		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 80.31 80.87 81.40 81.93 82.44 82.93 83.89 84.80 85.24 85.67	0.001 0.000 0.000 0.000	3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	07 15 22 29 35 41 46 55 27 67 67 67 71 75 80 88 88 99 99 90 10 11 11 11 11 11 11 11 11 11 11 11 11	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 80.31 80.87 81.40 81.93 82.44 82.93 83.42 83.42 85.67	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 92.19 95.08 97.96 100.84 103.72 106.60 109.48 112.36 115.24 118.12	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42
55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 105.0 110.0 125.0 130.0 135.0 145.0 155.0 160.0 155.0 160.0 170.0 175.0 180.0 185.0 200	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 16.8 16.4 15.9 15.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5	0.019 0.018 0.017 0.016 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.011 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.007		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.42 83.42 83.89 84.35 84.85 85.67 86.09	0.001 0.000 0.000	3.4.4.4.4.4.4.4.4.4.4.4.5.5.5.5.5.5.5.5.	07 15 22 29 335 41 446 52 57 662 67 77 77 80 84 88 88 89 99 99 90 90 10 15 15 11 15 11 15 12 14 14 15 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.93 83.42 83.89 84.35 84.80 85.24 85.67 86.09	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 92.19 95.08 97.96 100.84 103.72 106.60 109.48 112.36 115.24 118.12 121.01 123.89	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42 0.40 0.40 0.40 0.40 0.40 0.40 0.40
55.0 60.0 65.0 70.0 75.0 80.0 89.0 99.0 105.0 115.0 1120.0 115.0 120.0 145.0 140.0 145.0 155.0 166.0 175.0 180.0 175.0 180.0 175.0 180.0 175.0 180.0 175.0 180.0 175.0 180.0 170.0 175.0 180.0 170.0 175.0 180.0 170.0 1	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 22.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 17.3 16.4 15.9 15.6 15.6 15.6 14.5 14.5 14.5 14.5 14.6 14.2 13.9 13.3 13.3 13.3 13.3 13.3 12.8 12.8 12.8 12.8 12.8 12.8 12.8 13.9 13.9 14.8 14.9 14.9 15.9 16.9 16.9 16.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.007		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.89 84.80 85.24 85.67 86.09 86.50	0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	07 15 22 29 335 41 46 552 67 77 77 88 88 91 99 99 90 90 12 15 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.42 83.89 84.35 84.85 85.67 86.09 86.50	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 92.19 95.08 97.96 100.84 103.72 106.60 109.48 112.36 115.24 118.12 121.81 123.89	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42 0.40 0.40 0.40 0.40 0.40 0.40 0.40
55.0 60.0 65.0 70.0 775.0 80.0 85.0 99.0 100.0 110.0 115.0 1115.0 120.0 125.0 130.0 135.0 145.0 145.0 155.0 166.0 165.0 170.0 165.0 170.0 180.0 180.0 185.0 180.0 185.0 180.0 185.0 180.0 185.0 180.0 185.0 180.0 185.0	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 23.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.3 16.8 15.9 15.6 15.2 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5	0.019 0.018 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.93 82.93 83.42 83.89 84.35 84.80 85.24 86.69	0.001 0.000 0.000	3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.5.5.5.5.	07 15 22 29 335 41 46 52 57 66 67 77 77 80 84 88 89 91 99 90 90 90 10 11 11 11 11 11 11 11 11 11 11 11 11	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.42 83.89 84.35 84.80 85.67 86.90 86.50 86.91	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 92.19 95.08 97.96 100.84 103.72 106.60 109.48 112.36 115.24 118.12 121.01 123.89 126.77 129.65	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42 0.40 0.40 0.40 0.40 0.40 0.40 0.40
55.0 60.0 65.0 70.0 75.0 80.0 89.0 99.0 105.0 115.0 1120.0 115.0 120.0 145.0 140.0 145.0 155.0 166.0 175.0 180.0 175.0 180.0 175.0 180.0 175.0 180.0 175.0 180.0 175.0 180.0 170.0 175.0 180.0 170.0 175.0 180.0 170.0 1	35.1 32.9 31.0 29.4 27.9 26.6 25.4 24.3 22.3 22.4 21.6 20.8 20.1 19.5 18.9 18.3 17.8 17.3 16.4 15.9 15.6 15.6 15.6 14.5 14.5 14.5 14.5 14.6 14.2 13.9 13.3 13.3 13.3 13.3 13.3 12.8 12.8 12.8 12.8 12.8 12.8 12.8 13.9 13.9 14.8 14.9 14.9 15.9 16.9 16.9 16.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.007		64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.89 84.80 85.24 85.67 86.09 86.50	0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	3.4.4.4.4.4.4.4.4.4.5.5.5.5.5.5.5.5.5.5.	07 15 22 29 335 41 46 552 67 77 77 88 88 91 99 99 90 90 12 15 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	64.22 65.56 66.80 67.96 69.04 70.06 71.03 71.94 72.80 73.63 74.42 75.18 75.90 76.60 77.27 77.92 78.55 79.16 79.74 80.31 80.87 81.40 81.93 82.44 82.93 83.42 83.89 84.35 84.85 85.67 86.09 86.50	34.57 37.45 40.34 43.22 46.10 48.98 51.86 54.74 57.62 60.50 63.38 66.26 69.15 72.03 74.91 77.79 80.67 83.55 86.43 89.31 92.19 95.08 97.96 100.84 103.72 106.60 109.48 112.36 115.24 118.12 121.81 123.89	29.65 28.11 26.47 24.74 22.95 21.08 19.17 17.20 15.18 13.13 11.04 8.91 6.76 4.58 2.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.42 0.40 0.40 0.40 0.40 0.40 0.40 0.40

Modified Rational Method - 100 Year

Site Flow and Storage Summary

50 The Driveway, Ottawa

50 The Driveway, Ottawa

File No. UD22-093

City of Ottawa Date: January 2023

Prepared by: Dimitra Frysali P.E., M.A.Sc Reviewed by: Nick Moutzouris, P.Eng., M.A.Sc

File No: UD22-093

Total Site Drainage Area A2 Post Drainage Area A1 Post Rooftops / Terraces/ Walkways -Controlled in tank Uncontrolled area - towards Lewis Street Total Site= A1 + A2 * C value for the 100 year storm event is increased by Design Controlled Release Rate (80mm orifice plate)= Area (A1) = 0.226 ha Area (A2) = 0.025 ha 14.4 L/s 25%, with a maximum of 1.0 1.00 0.226 10.0 0.61 0.02 per City's Sewer Design Max. Storage Tank Size = 79 m³ Guidelines Tc = min Tc= 10.0 min Storage Tank footprint Area = 70.0 m² Release Rate = 112.10 L/s Max. Release Rate = 7.5 L/s L/s Controlled Release Rate Achieved = 14.4 Uncontrolled Release Rate = Total Site Release Rate = 21.9 L/s 5-vear pre-development Site Release Rate 100-Year Design Storm С С (Allowable Release Rate) = Tributary Area (A1) Tributary Area (A2) 23.1 L/s 1735.69 Landsc.Area 0.013 0.25 0.90 Landsc.Area 0.016 0.25 6.014 Hardsc. Area 0.213 Hardsc. Area 0.009 0.90 0.820 Tota 0.86 Total 0.025 (3) (4) (5) Storm (6) Runoff (7) Total Storm (8) (9) (10) Rainfall Runoff Volume Runoff Volume Runoff Intensity Volume Depth of Tank (A1 post) (A2 Post) (A1 post) (m³) (m³/s) (m³) (m³) (m³) (mm/hr) (m³/s) 178.6 142.9 120.0 67.26 0.008 67 26 8 64 58 62 0.090 80.74 90.36 0.006 0.005 5.40 6.05 80.74 90.36 12.96 17.28 67.78 73.08 0.97 1.04 6.54 6.95 7.29 7.58 1.09 1.11 1.12 25.0 30.0 76.19 77.89 103.8 0.065 97.79 0.004 97.79 21.60 91.9 82.6 75.1 0.058 0.052 0.004 0.003 25.92 30.24 103.81 103.81 35.0 108.87 108.87 78.63 40.0 0.047 113.22 0.003 113.22 34.56 78.66 1.12 0.043 0.003 7.83 8.06 117.04 38.88 64.0 120.45 120.45 77.25 50.0 43.20 1.10 55.0 60.0 0.037 0.035 123.52 126.32 0.003 0.002 0.002 8.27 8.45 123.52 126.32 47.52 51.84 76.00 74.48 72.74 59.6 55.9 52.6 49.8 47.3 45.0 1.09 1.06 1.04 1.01 0.98 0.95 8.63 128.90 56.16 65.0 0.033 128.90 70.0 75.0 80.0 0.002 0.002 0.002 8.79 8.93 9.07 0.031 131.28 131.28 60.48 70.80 0.030 0.028 133.50 135.57 133.50 135.57 64.80 69.12 85.0 43.0 0.027 137.52 0.002 9.20 137.52 73.44 64.08 0.92 139.37 141.11 142.77 139.37 141.11 142.77 41.1 39.4 0.026 0.025 0.002 0.002 77.76 82.08 61.61 59.03 90.0 9.33 0.88 9.44 9.55 100.0 37.9 0.024 0.002 86.40 56.37 0.81 105.0 36.5 0.023 144 35 0.002 9.66 144 35 90.72 53 63 0.77 35.2 34.0 32.9 0.77 0.68 0.64 0.023 0.022 0.021 145.86 147.30 0.002 0.001 0.001 9.76 9.86 145.86 147.30 95.04 99.36 148.69 9.95 120.0 0.021 0.001 148.69 103.68 45.01 0.60 0.56 0.51 31.9 30.9 150.02 151.30 125.0 0.020 150.02 0.001 10.04 108 00 42 02 151.30 152.53 112.32 116.64 135.0 30.0 0.019 0.001 10.21 152.53 35.89 140.0 29.2 0.018 153.73 0.001 10.29 153.73 120.96 32.77 0.47 28.4 27.6 0.018 0.017 0.001 10.37 10.44 154.88 156.00 29.60 26.40 23.16 0.42 0.38 0.33 145.0 154.88 125.28 26.9 157.08 10.51 155.0 0.017 0.001 157.08 133.92 160.0 26.2 0.016 158 14 0.001 10.58 158 14 138 24 19 90 0.28 142.56 146.88 151.20 165.0 170.0 25.6 25.0 0.016 0.016 159.16 160.15 0.001 10.56 10.72 159.16 160.15 16.60 13.27 0.24 175.0 24.4 0.015 161.12 0.001 10.78 161.12 9.92 0.14 0.001 0.001 0.001 0.001 0.09 0.04 0.00 155.52 159.84 180.0 23.9 0.015 162.06 10.85 162.06 6.54 23.4 22.9 162.98 163.87 162.98 163.87 3.14 0.00 190.0 0.014 10.97 164.16 195.0 22.4 0.014 164.75 0.001 11.03 164.75 168.48 0.00 0.00 11.08 11.14 11.19 165.60 166.44 167.25 0.00 0.00 0.00 200.0 205.0 0.014 0.014 0.001 172.80 177.12 0.00 22.0 165.60 166.44 167.25 21.6 21.1 210.0 0.013 0.001 181.44 0.00 215.0 20.8 0.013 168.05 0.001 11 25 168 05 185 76 0.00 0.00 20.4 20.0 0.013 0.013 168.83 169.60 0.001 11.30 11.35 168.83 169.60 190.08 194.40 0.00 0.00 230.0 19.7 0.012 170.35 0.001 11.40 170.35 198.72 0.00 0.00 235.0 193 0.012 171.09 0.001 11.45 171.09 203 04 0.00 0.00

Orifice Design

50 The Driveway, Ottawa File No. UD22-093

Date: January 2023

Prepared by: Dimitra Frysali, P.E., M.A.Sc. Reviewed by: Nick Moutzouris, P.Eng., M.A.Sc.

Orifice Equation for 80mm Plate

$$Q = C \times A \times \sqrt{2 \times g \times h}$$

	100 yr event		<u>5 yr event</u>	
d=	80	mm	d= 80	mm
C=	0.61		C= 0.61	
A=	0.005	m^2	A= 0.005	m^2
g=	9.81	m/s ²	g= 9.81	m/s ²
h=	1.12	m	h= 0.50	m
Q=	14.4	L/s	Q= 9.6	L/s

Lithos Modified Rational Method - 5 Year **Storm - Chambers**

Site Flow and Storage Summary

50 The Driveway, Ottawa

50 The Driveway, Ottawa File No. UD22-093 City of Ottawa

Date: January 2023

File No: UD22-093 Prepared by: Dimitra Frysali P.E., M.A.Sc Reviewed by: Nick Moutzouris, P.Eng., M.A.Sc.

		Drainage Area A3 P	ost		EXT.1			Total Site		
		Area towards the catch to chambe		olled in	External Area - controlle	d in chaml	bers			
		Area (A1) = "C" = AC1=	0.045 0.50 0.022	ha	Area (A3) = "C" = AC3=	0.071 0.49 0.03	ha		Void Space= 96	%
		Tc=	10.0	min	Tc =	10.0	min	Max.	Storage Size = 26.4	m^3
		Time Increment =	5.0	min	Time Increment =	5.0	min			
		Release Rate =	6.45	L/s	Max. Release Rate =	10.03	L/s	Area of Undergrour	nd Chambers = 43.64	m ²
								CAP/ MODEL: GRE	ED STORMWATER CHAMBE ABLE TO RETAIN 57.45m3 EENSTORM-ST-B (0.8X0.8X0 MBER OF BLOCKS: 136	
5-Year De	sign Storm	Tributary Area (A1)	ha	С	Tributary Area (A3)	ha	С	'	FOOTPRINT: 43.64m2	
a= b=		Landsc.Area Hardsc. Area	0.028 0.017	0.25 0.90	Landsc.Area Hardsc. Area	0.045 0.25 0.026 0.90				
C=	0.814	Total	0.045	0.50	Total	0.071	0.49			
	a / (TC + b)c									
(1) Time	(2) Rainfall	(3) Storm		(4) Runoff	(5) Storm		6) Inoff	(7) Total Storm	(8) Storage	(9)
	Intensity	Runoff (A1 post)		Volume (A1 post)	Runoff (A3 Post)		lume Post)	Runoff Volume	Volume	Storage Depth of Chambers
(min)	(mm/hr)	(m³/s)		(m ³)	(m³/s)		m³)	(m ³)	(m³)	(m)
10.0 15.0	104.2 83.6	0.006 0.005		3.87 4.66	0.010 0.008		.02 .24	9.89 11.90	9.89 11.90	0.24 0.28
20.0	70.3	0.004		5.22	0.007	8	.11	13.34	13.34	0.32
25.0 30.0	60.9 53.9	0.004 0.003		5.66 6.01	0.006 0.005		.79 .34	14.45 15.36	14.45 15.36	0.34 0.37
35.0	48.5	0.003		6.31	0.005	9	.81	16.12	16.12	0.38
40.0 45.0	44.2 40.6	0.003 0.003		6.57 6.80	0.004 0.004).21).56	16.78 17.35	16.78 17.35	0.40 0.41
50.0	37.7	0.002		7.00	0.004	10).87	17.87	17.87	0.43
55.0 60.0	35.1 32.9	0.002 0.002		7.18 7.35	0.003		I.16 I.41	18.34 18.76	18.34 18.76	0.44
65.0	31.0	0.002		7.50	0.003 0.003		1.65	19.15	19.15	0.45 0.46
70.0	29.4	0.002		7.64	0.003		1.87	19.52	19.52	0.47
75.0 80.0	27.9 26.6	0.002 0.002		7.77 7.90	0.003 0.003		2.08 2.27	19.85 20.17	19.85 20.17	0.47 0.48
85.0	25.4	0.002		8.01	0.002	12	2.45	20.47	20.47	0.49
90.0 95.0	24.3 23.3	0.002 0.001		8.12 8.23	0.002 0.002		2.62 2.79	20.75 21.01	20.75 21.01	0.50 0.50
100.0	22.4	0.001		8.33	0.002	12	2.94	21.27	21.27	0.51
105.0 110.0	21.6 20.8	0.001 0.001		8.42 8.51	0.002 0.002		3.09 3.23	21.51 21.74	21.51 21.74	0.51 0.52
115.0	20.1	0.001		8.60	0.002	13	3.36	21.96	21.96	0.52
120.0 125.0	19.5 18.9	0.001 0.001		8.68 8.76	0.002 0.002		3.49 3.62	22.17 22.38	22.17 22.38	0.53 0.53
130.0	18.3	0.001		8.84	0.002	13	3.73	22.57	22.57	0.54
135.0 140.0	17.8 17.3	0.001 0.001		8.91 8.99	0.002 0.002		3.85 3.96	22.76 22.95	22.76 22.95	0.54 0.55
145.0	16.8	0.001		9.05	0.002	14	1.07	23.12	23.12	0.55
150.0 155.0	16.4 15.9	0.001 0.001		9.12 9.19	0.002 0.002		1.17 1.27	23.30 23.46	23.30 23.46	0.56 0.56
160.0	15.6	0.001		9.25	0.001	14	1.37	23.62	23.62	0.56
165.0 170.0	15.2 14.8	0.001 0.001		9.31 9.37	0.001 0.001		1.47 1.56	23.78 23.93	23.78 23.93	0.57 0.57
175.0	14.5	0.001		9.43	0.001	14	1.65	24.08	24.08	0.57
180.0 185.0	14.2 13.9	0.001 0.001		9.49 9.54	0.001 0.001		1.74 1.83	24.23 24.37	24.23 24.37	0.58 0.58
190.0	13.6	0.001		9.60	0.001	14	1.91	24.51	24.51	0.58
195.0 200.0	13.3 13.0	0.001 0.001		9.65 9.70	0.001 0.001		1.99 5.07	24.64 24.77	24.64 24.77	0.59 0.59
205.0	12.8	0.001		9.75	0.001	15	5.15	24.90	24.90	0.59
210.0 215.0	12.6 12.3	0.001 0.001		9.80 9.85	0.001 0.001		5.23 5.30	25.03 25.15	25.03 25.15	0.60 0.60
220.0	12.1	0.001		9.89	0.001	15	5.37	25.27	25.27	0.60
225.0 230.0	11.9 11.7	0.001 0.001		9.94 9.99	0.001 0.001		5.45 5.52	25.39 25.50	25.39 25.50	0.61 0.61
235.0	11.5	0.001		10.03	0.001	15	5.59	25.62	25.62	0.61
240.0	11.3	0.001		10.07	0.001	15	5.65	25.73	25.73	0.61

Lithos Modified Rational Method - 100 Year Storm - Chambers

50 The Driveway, Ottawa File No. UD22-093

Site Flow and Storage Summary City of Ottawa Date: January 2023 50 The Driveway, Ottawa

File No: UD22-093

Prepared by: Dimitra Frysali P.E., M.A.Sc

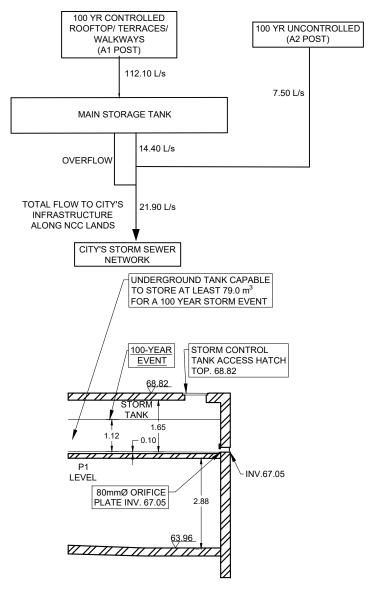
Reviewed by: Ni	ck Moutzouris, F									
		Drainage Area A3	Post		EXT.1			Total Site		
* 0	the 400	Area towards the catch ba	asin -Control	led in chambers	External Area - controlle	ed in cham	nbers			
* C value for storm event is 25%, with a ma per City's Se	increased by aximum of 1.0	Area (A1) = "C" =	0.045 0.62	ha	Area (A3) = "C" =	0.071 0.61	ha		Void Space= 96	8 %
Guide	lines	AC1= Tc =	0.028 10.0	min	AC3= Tc=	0.04 10.0	min	Max. Storage 0	Chamber Size = 54.	1 m ³
		Time Increment =	5.0	min	Time Increment =	5.0	min			2
		Release Rate =	13.83	L/s	Max. Release Rate =	21.48	L/s	Area of Undergrou	nd Chambers = 43.0	64 m ²
								DPOPOS!	ED STORMWATER CHA	AMBEDS
								CAP. MODEL: GRI	ABLE TO RETAIN 57.45 EENSTORM-ST-B (0.8X	5m3 0.8X0.66)M,
100-Year De	sign Storm	Tributary Area (A1)	ha	С	Tributary Area (A3)	ha	С		IMBER OF BLOCKS: 13 FOOTPRINT: 43.64m2	36
a=	1735.69	Landsc.Area	0.028	0.25	Landsc.Area	0.045	0.25	1		
b= c=	6.014 0.820	Hardsc. Area Total	0.017 0.045	0.90 0.50	Hardsc. Area Total	0.026 0.071	0.90			
	- / /TO . b)-	Total	0.040	0.00	, otal	0.071	0.40			
(1)	(2)	(3)		(4)	(5)		6)	(7)	(8)	(9)
Time	Rainfall	Storm		Runoff	Storm		noff	Total Storm	Storage	Storage
(mta)	Intensity	Runoff (A1 post)		Volume (A1 post) (m³)	Runoff (A3 Post) (m³/s)	Volume (A3 Post) (m³)		Runoff Volume (m³)	Volume	Depth of Chambers
(min) 10.0	(mm/hr) 178.6	(m³/s) 0.014		8.30	0.021	(m°) 12.89		21.19	(m³) 21.19	(m) 0.51
15.0 20.0	142.9 120.0	0.011 0.009		9.96 11.15	0.017 0.014	15.47 17.32		25.43 28.46	25.43 28.46	0.61 0.68
25.0	103.8	0.009		12.06	0.012		.32 3.74	30.80	30.80	0.74
30.0 35.0	91.9 82.6	0.007 0.006		12.80 13.43	0.011 0.010).90).86	32.70 34.29	32.70 34.29	0.78 0.82
40.0	75.1	0.006		13.96	0.009	21	.70	35.66	35.66	0.85
45.0 50.0	69.1 64.0	0.005 0.005		14.44 14.86	0.008 0.008		2.43 3.08	36.87 37.94	36.87 37.94	0.88 0.91
55.0	59.6	0.005		15.24	0.007		3.67	38.91	38.91	0.93
60.0 65.0	55.9 52.6	0.004 0.004		15.58 15.90	0.007 0.006	24	21 70	39.79 40.60	39.79 40.60	0.95 0.97
70.0 75.0	49.8 47.3	0.004 0.004		16.19 16.47	0.006 0.006		5.16 5.58	41.35 42.05	41.35 42.05	0.99 1.00
80.0	45.0	0.003		16.72	0.005	25	5.98	42.70	42.70	1.02
85.0 90.0	43.0 41.1	0.003 0.003		16.96 17.19	0.005 0.005		5.36 5.71	43.32 43.90	43.32 43.90	1.03 1.05
95.0	39.4	0.003		17.40	0.005	27	.04	44.45	44.45	1.06
100.0 105.0	37.9 36.5	0.003 0.003		17.61 17.80	0.005 0.004		7.36 7.66	44.97 45.47	44.97 45.47	1.07 1.09
110.0	35.2	0.003		17.99	0.004	27	.95	45.94	45.94	1.10
115.0 120.0	34.0 32.9	0.003 0.003		18.17 18.34	0.004 0.004		3.23 3.50	46.40 46.83	46.40 46.83	1.11 1.12
125.0	31.9	0.002		18.50	0.004	28	3.75	47.25	47.25	1.13
130.0 135.0	30.9 30.0	0.002 0.002		18.66 18.81	0.004 0.004	29).00).23	47.66 48.05	47.66 48.05	1.14 1.15
140.0	29.2	0.002		18.96	0.004	29	0.46	48.42	48.42	1.16
145.0 150.0	28.4 27.6	0.002 0.002		19.10 19.24	0.003 0.003).68).90	48.79 49.14	48.79 49.14	1.16 1.17
155.0	26.9	0.002		19.37	0.003	30).10	49.48	49.48	1.18
160.0 165.0	26.2 25.6	0.002 0.002		19.50 19.63	0.003 0.003).31).50	49.81 50.13	49.81 50.13	1.19 1.20
170.0 175.0	25.0	0.002 0.002		19.75 19.87	0.003	30).69).88	50.45 50.75	50.45 50.75	1.20
175.0 180.0	24.4 23.9	0.002 0.002		19.87 19.99	0.003 0.003		.06	51.05	51.05	1.21 1.22
185.0	23.4	0.002		20.10	0.003	31	.23	51.34	51.34	1.23
190.0 195.0	22.9 22.4	0.002 0.002		20.21 20.32	0.003 0.003	31	.41 .57	51.62 51.89	51.62 51.89	1.23 1.24
200.0	22.0	0.002		20.43	0.003	31	.74	52.16	52.16	1.25
205.0 210.0	21.6 21.1	0.002 0.002		20.53 20.63	0.003 0.003		.90 2.05	52.43 52.68	52.43 52.68	1.25 1.26
215.0	20.8	0.002		20.73	0.002	32	2.21	52.93	52.93	1.26
220.0 225.0	20.4 20.0	0.002 0.002		20.82 20.92	0.002 0.002		2.36 2.50	53.18 53.42	53.18 53.42	1.27 1.28
230.0	19.7	0.002		21.01	0.002	32	2.65	53.66	53.66	1.28
235.0 240.0	19.3 19.0	0.001 0.001		21.10 21.19	0.002 0.002	32	2.79 2.93	53.89 54.12	53.89 54.12	1.29
∠40.0	19.0	0.001		∠1.19	0.002	32	ყა	54.12	54.12	1.29

Water Quality Calculations

50 The Driveway, Ottawa File No. UD22-093 Date: January 2023

Surface	Method	Effective TSS Removal	Area (ha)	% Area of Controlled Site	Overall TSS Removal
Rooftops and Terraces	Inherent	80%	0.342	100%	80%
Total			0.342	100%	80%

Note: Uncontrolled water does not account in the above calculations



Water Quality Calculations

50 The Driveway, Ottawa File No. UD22-093 Date: January 2023

Surface	Method	Effective TSS Removal	Area (ha)	% Area of Controlled Site	Overall TSS Removal
Rooftops and Terraces	Inherent	80%	0.342	100%	80%
Total			0.342	100%	80%

Note: Uncontrolled water does not account in the above calculations

QUANTITY CONTROL Volume required for 100-year event = 79.00 m³ Tank Area = 70.0 m²

NOTE: TANK DESIGN TO BE VERIFIED BY BUILDING MECHANICAL CONSULTANT

TANK DESIGN

RESIDENTIAL USE DEVELOPMENT 50 THE DRIVEWAY OTTAWA, ONTARIO

	DATE:	JANUARY 2023	PROJECT No:	UD22-093
150 Bermondsey Road, Toronto, Ontario M4A 1Y1	SCALE:	N.T.S.	FIGURE No:	FIG 3

Appendix D

Sanitary Data Analysis

COMBINED SEWER DESIGN SHEET

50 The Driveway CITY OF OTTAWA

							RESIDENT	TIAL							COMMERCIA	AL .	INFILTR	ATION			SI	WER DES	IGN	
LOCATION	SECTION (ha.)	SINGLE FAMILY DWELLING @ 3.4 ppu	SEMI-DETACHED / TOWNHOUSE (ROW) @ 2.7 ppu	DUPLEX @ 2.3 ppu	BACHELOR @1.4 ppu	1 BED @1.4 ppu	2 BED @2.1 ppu	3 BED @3.1 ppu	AVERAGE APT. @1.8 ppu	TOTAL RESIDENTIAL POPULATION population	AVERAGE RES. FLOW @ 280 L/c/d (L/s)	HARMON PEAKING FACTOR	RES. PEAK FLOW (L/s)	INSTITUTIONAL AREA (ha.)	AVERAGE INSTITUTIONAL FLOW @50000/L/ha/d (L/s)	INSTITUTIONAL PEAK FLOW (L/s)	TOTAL ACCUM. AREA (ha.)	INFILT. @ 0.28 L/s/ha. (L/s)	TOTAL DESIGN FLOW (L/s)	PIPE LENGTH (m)	PIPE DIA. (mm)	SLOPE	FULL FLOW CAPACITY n = 0.013 (L/sec)	% of DESIG CAPACITY (%)
column number	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)
Existing Condition												, ,	. ,			` '	, ,		• ,	,		, ,	. ,	
Institutitional (towards QED ROW)	0.296	0	0	0	0	0	0	0	0	0.00	0.00	4.00	0.00	0.10	0.06	0.08	0.296	0.083	0.17	-	-	-	-	-
Proposed Condition																								
Residential-use development (towards QED ROW)	0.296	0	0	0	0	23	54	0	0	146	0.47	4.00	1.89	0.00	0.00	0.00	0.296	0.083	1.97		200	2.0%	46.38	4.25%
Average Residential Flow Rate - 280 Average Daily Flow Commercial - 50 Average Daily Flow Institutional - 50 Average Daily Flow Industrial - 35,0	0,000 Litres 0,000 Litres 00 Litres / g	/ gross ha / d / gross ha / d ross ha / day	ay		Infitration A	llowance (W llowance (To	et Weather) - otal I/I) - 0.33	0.28 Litres / Litres / s / g								Total Net Flow to	wards QED R	OW=	1.80					
Site Area:	0.296	па	<u> </u>							Prepared I	3v. Dimitra	Frvsali I	P F M A	A Sc					Project:	50 The Driv	eway			

Ⅲ Lithos

Reviewed by: Nick Moutzouris, P.Eng., M.A.Sc.

Date: January 2023

Project: UD22-093

City of Ottawa Sheet 1 OF 1

Appendix E

Water Data Analysis

WATER DEMAND

50 The Driveway, Ottawa

File No: UD22-093 Date: January 2023

Prepared by: Dimitra Frysali, P.E., M.A.Sc. Reviewed By: Nick Moutzouris, P.Eng., M.A.Sc.

Note: The levels indicated, reference the floors

with the largest areas (refer to architectural design)

Fire Flow Calculation

1 F= 220 C $(A)^{1/2}$

Where F= Fire flow in Lpm

C= construction type coefficient

= 0.8 for non combustible

A = total floor area in sq.m. excluding basements

Area Applied

Level 2= 1592.17 m² 100% Level 1= 1588.64 m² 25% Level 3= 1350.35 m² 25%

= 2,326.9 sq.m. F = 8.489.91 L/min F(No.1) = 200C VA

F = 8,000 L/min F(No.1) Round to nearest 1000 l/min

2 Occupancy Reduction

15% reduction for limited-combustible occupancy

F = 6800 L/min $F(No.2) = F(No.1) \times \text{occupancy reduction/charge(%)}$

3 Sprinkler Reduction

30% Reduction for NFPA Sprinkler System

F = 4760 l/min $F(No.3) = F(No.2) \times \text{sprinkler reduction(%)}$

4 Separation Charge

 0% West
 >45m

 5% North
 30.1m to 45m

 11% South
 10.1m to 20m

 11% East
 10.1m to 20m

 27% Total Separation Charge

F = 1,836.00 L/min

 $F(No.4) = F(No.2) \times separation charge(%)$

 $\begin{array}{lll} F = & 6,596.00 \text{ L/min} & F (tot) = F(No.3) + F(No.4) \\ F = & 7,000 \text{ L/min} & F(tot) \text{ Round to nearest } 1000 \text{ l/min} \end{array}$

116.67 L/s = 1849 US GPM

Domestic Flow Calculations

Population= 146 Persons From Sanitary Calculations

Commercial Area (Retail) = 0.0 m² From Site Statistics

Average Day Demand (Residential) = 350.0 L/person/day

Average Day Demand (Commercial) = 2.5 L/m²/day (OBC) 1 US Gallon=3.785 L

Average Residential Water Demand= 0.59 L/s

9 US GPM 1L/s=15.852 US GPM

Average Commercial Water Demand= 0.00 L/s

0.00 US GPM

Max. Daily Residentail Demand Peaking Factor= 2.5

Max. Daily Commercial Demand Peaking Factor = 1.5

Max. Daily Demand = 1.48 L/s = 23 US GPM

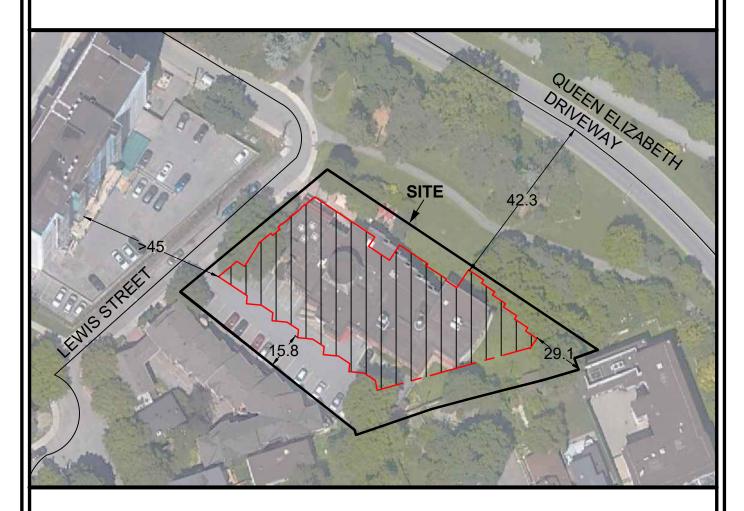
or

Max. Hourly Residential Demand Peaking Factor = 2.2

Max. Hourly Commercial Demand Peaking Factor = 1.8

Max. Hourly Demand = 3.25 L/s = 52 US GPM

Max Daily Demand = 1.48 L/s


Fire Flow = 116.67 L/s

Required 'Design' Flow = 118.15 L/s 1873 US GPM Note: Required 'Design' Flow is the maximum of either:

1) Fire Flow + Maximum Daily Demand

2) Maximum Hourly Demand

SEPARATION DISTANCES

RESIDENTIAL USE DEVELOPMENT 50 THE DRIVEWAY OTTAWA, ONTARIO

	DATE:	DECEMBER 2022	PROJECT No:	UD22-093
150 Bermondsey Road, Toronto, Ontario M4A 1Y1	SCALE:	N.T.S.	FIGURE No:	FIG 4

Guy Forget

From: Mottalib, Abdul <Abdul.Mottalib@ottawa.ca>

Sent: Friday, June 25, 2021 5:22 PM

To: Guy Forget
Cc: Mottalib, Abdul
Subject: FW: 50 The Driveway

Attachments: 50 The Driveway June 2021.pdf

[CAUTION] This email originated from outside JLR. Do not click links or open attachments unless you recognize the sender and know the content is safe. If in doubt, please forward suspicious emails to Helpdesk.

Hello Guy,

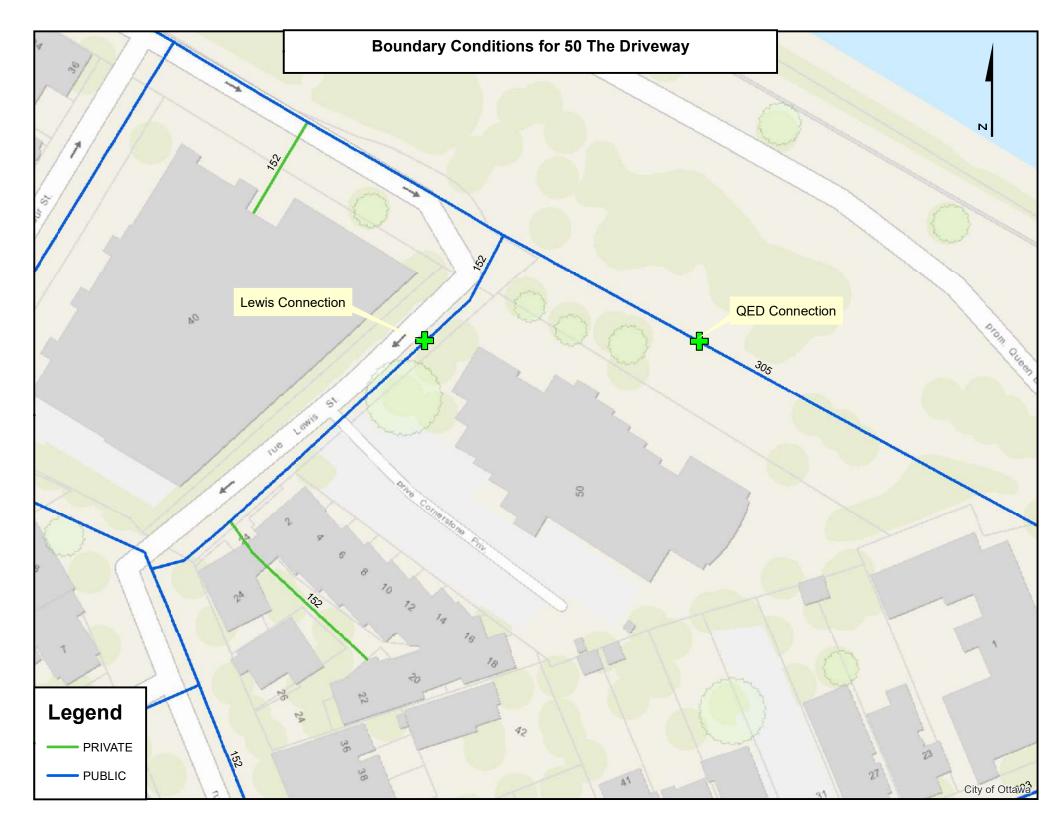
Please see email below as requested.

Thanks

Abdul

From:....

Sent: June 25, 2021 4:49 PM


To: Mottalib, Abdul < Abdul. Mottalib@ottawa.ca> **Cc:** Bourke, Simone < simone.bourke@ottawa.ca>

Subject: RE: 50 The Driveway

Hi Abdul,

The following are boundary conditions, HGL, for hydraulic analysis at 50 The Driveway (zone 1W) assumed to be connected to either the 152 mm on Lewis Street OR the 305 mm on Queen Elizabeth Driveway (see attached PDF for location).

	152 mm on Lewis	305 mm on QED
Minimum HGL (m)	106.4	106.4
Maximum HGL (m)	115.3	115.3
Max Day + Fire Flow (250 L/s) (m)	91.7	105.3

