

3718 Greenbank Road: Servicing and Stormwater Management Report

Stantec Project No. 160401657

November 7, 2022

Prepared for:

Mattamy Homes Ltd.

Prepared by:

Stantec Consulting Ltd. 400-1331 Clyde Avenue Ottawa ON K2C 3G4

Revision	Description	Author		Quality Check		Independent Review	
1	Issued for Approval	DM	2022-11-04	NC	2022-11-07	DT	2022-11-07

This document entitled 3718 Greenbank Road: Servicing and Stormwater Management Report was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Mattamy Homes Ltd. (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by	
Davide Milos, EIT	
Reviewed by	Mul Cody
Neal Cody, P.Eng.	
	nor for
Approved by	

Dustin Thiffault, P.Eng.

Table of Contents

1.0	INTRODUCTION	1.1
1.1	OBJECTIVE	1.2
2.0	REFERENCES	2.1
3.0	POTABLE WATER SERVICING	3.1
3.1	BACKGROUND	
3.2	PROPOSED WATERMAIN SIZING AND LAYOUT	
0.2	3.2.1 Ground Elevations	
	3.2.2 Domestic Water Demands	
3.3	LEVEL OF SERVICE	
0.0	3.3.1 Allowable Pressures	
	3.3.2 Fire Flow	
3.4	HYDRAULIC MODEL	
•	3.4.1 Boundary Conditions	
	3.4.2 Model Development	
	3.4.3 Ground Elevations	
3.5	HYDRAULIC MODELING RESULTS	3.5
	3.5.1 Average Day (AVDY)	
	3.5.2 Peak Hour (PKHR)	
	3.5.3 Maximum Day Plus Fire Flow (MXDY+FF)	3.7
3.6	POTABLE WATER SUMMARY	3.8
4.0	WASTEWATER SERVICING	_
4.1	BACKGROUND	4.9
4.2	DESIGN CRITERIA	4.9
4.3	SANITARY SERVICING DESIGN	4.10
5.0	STORMWATER MANAGEMENT AND SERVICING	5.1
5.1	PROPOSED CONDITIONS	
5.2	DESIGN CRITERIA AND CONSTRAINTS	5.1
	5.2.1 Minor System	
	5.2.2 Major System	
	5.2.3 Allowable Release Rate	5.3
5.3	MODELING METHODOLOGY	
	5.3.1 Modeling Rationale	
	5.3.2 SWMM Dual Drainage Methodology	5.4
	5.3.3 Modified Dual Drainage Methodology to Support E	EES5.4
	5.3.4 Model Input Parameters	
5.4	MODEL RESULTS AND DISCUSSION	
	5.4.1 Hydrology	
	5.4.2 Hydraulic Grade Line Analysis	
	5.4.3 Overland Flow	
	5.4.4 Peak System Outflows	5.11

5.5	QUALITY CONTROL	5.11
5.6	WATER BALANCE - ETOBICOKE EXFILTRATION SYSTEM	5.12
	5.6.1 Etobicoke Exfiltration System Monitoring and Maintenance	
6.0	GEOTECHNICAL CONSIDERATIONS AND GRADING	6.1
6.1	GEOTECHNICAL INVESTIGATION	6.1
	6.1.1 Groundwater Control	6.1
6.2	GRADING PLAN	6.1
7.0	APPROVALS	7.1
8.0	EROSION CONTROL	8.1
9.0	CONCLUSIONS AND RECOMMENDATIONS	9.1
9.1	POTABLE WATER SERVICING	9.1
9.2	WASTEWATER SERVICING	9.1
9.3	STORMWATER MANAGEMENT AND SERVICING	9.1
9.4	GRADING	9.2
9.5	APPROVALS/PERMITS	9.2

LIST OF TABLES

Table 3–1: Residential Water Demands	3.2
Table 3–2: Boundary Conditions	3.3
Table 3–3: C-Factors Used in Watermain Hydraulic Model	3.4
Table 4–1 Summary of Proposed Sanitary Peak Flows	4.10
Table 5–1 Allowable Peak Release Rate Calculations	5.3
Table 5–2: Allowable Peak Release Rate Summary	5.3
Table 5–3: General Subcatchment Parameters	5.5
Table 5–4: Individual Subcatchment Parameters	5.6
Table 5–7: Proposed ICD Schedule	
Table 5–8: Hydraulic Grade Line Results	5.9
Table 5–9: Maximum Static and Dynamic Water Depths, Chicago Storm	5.10
Table 5–10: Maximum Static and Dynamic Water Depths, SCS Storm	5.10
Table 5–11: Uncontrolled Non-Tributary Areas	5.11
Table 5–12: Peak Site Outflows	
Table 5–13: 22mm Event Simulated EES Volumes	5.13
LIST OF FIGURES	
Figure 1: Key Plan of 3718 Greenbank Road Development Area	1.1
Figure 2: Watermain Model Nodes	
Figure 3: Ground Elevations (m) in Hydraulic Model	
Figure 4: Pressures (psi) Under AVDY Demand Scenario	
Figure 5: Pressures (psi) Under PKHR Demand Scenario	
Figure 6: Available Fire Flows (L/s) for MXDY+FF Demand Scenario	

LIST OF APPENDICES

APPEI	NDIX A	POTABLE WATER SERVICING	A.1
		nand Calculations	
A.2	Fire Flow	Requirements per FUS Guidelines	A.2
A.3		Modelling Results	
APPEI	NDIX B	SITE PLAN	B.1
APPEI	NDIX C	SANITARY SERVICING	C.1
		sewer Design Sheet	
APPEI	NDIX D	STORMWATER MANAGEMENT	D.1
D.1	Storm Sev	ver Design Sheet	D.1
D.2		CSWMM Input (100yr Chicago)	
D.3	Sample P	CSWMM Output (100yr Chicago)	D.3
APPEI	NDIX E	EXTERNAL REPORTS	E.1
E.1	•	ief (Site Servicing Study) for the Ridge (Brazeau Lands) By DSEL (July	- 4
г о	2020)	Management Department and Dident (Department ANDO) DV (FOA (India	E.1
E.2		er Management Report for the Ridge (Brazeau LANDS) BY JFSA (July	E 2
E.3	Geotechn	cial Investigation report by Paterson Inc. (March 2020)	E.2
APPEI	NDIX F	DRAWINGS	F.1

Introduction

1.0 INTRODUCTION

Mattamy Homes Ltd. has retained Stantec Consulting Ltd. to prepare this Stormwater and Servicing Report in support of a site plan control application for 3718 Greenbank Road (Half Moon Bay South Phase 8 - Residential). The subject site is located within the Brazeau Lands development area otherwise known as The Ridge, located at 3809 Borrisokane Road within the Barrhaven South Urban Expansion Area (BSUEA) in the City of Ottawa. It is bound by Dundonald Drive to the north, Obsidian Street to the west and the future Realigned Greenbank Road to the east as illustrated in **Figure 1** below.

Figure 1: Key Plan of 3718 Greenbank Road Development Area

Introduction

The development land is approximately 3.09ha in area and comprising 19 blocks of townhouses with a total of 228 units. This servicing and stormwater management report will demonstrate that the subject site can be freely serviced by the existing municipal water, sanitary, and storm services while complying with established design criteria recommended in background studies and City of Ottawa guidelines. The proposed site plan is included in **Appendix B** for reference.

This parcel is currently zoned MR1 and is currently undergoing zoning amendment for future development. The bulk of the current phase of the proposed development has been recently cleared of topsoil which has been stockpiled in several piles across the site. Generally, the ground surface across the subject site is relatively flat within the central portion of the development and sloping sharply towards the north and east property lines. It should be noted that parts of the subject site had undergone excavation and in-filling activities as part of a previous sand extraction operation. The property is within the Jock River watershed and is under the jurisdiction of the Rideau Valley Conservation Authority (RVCA).

1.1 OBJECTIVE

This Site Servicing and Stormwater Management Brief has been prepared to present a servicing scheme that is free of conflicts and presents the most suitable servicing approach that complies with the relevant City design guidelines. The use of the existing infrastructure as obtained from available as-built drawings has been determined in consultation with David Schaeffer Engineering Ltd. (DSEL), J. F. Sabourin and Associates Inc. (JFSA), City of Ottawa staff, and the adjoining property owners. Infrastructure requirements for water supply, sanitary sewer, and storm sewer services are presented in this report.

Criteria and constraints provided by Brazeau Lands (The Ridge) Design brief and the City of Ottawa have been used as a basis for the servicing design of the proposed development. Specific elements and potential development constraints to be addressed are as follows:

- Potable Water Servicing
 - Estimate water demands to characterize the feed for the proposed development which will be serviced by an existing 300mm diameter PVC watermain fronting the site along Obsidian Street.
 - Watermain servicing for the development is to be able to provide average day and maximum day and peak hour demands (i.e., non-emergency conditions) at pressures within the allowable range of 40 to 80 psi (276 to 552 kPa).
 - Under fire flow (emergency) conditions with maximum day demands, the water distribution system is to maintain a minimum pressure greater than 20 psi (140 kPa).
- Prepare a grading plan in accordance with the proposed site plan and existing grades.
- Stormwater Management and Servicing
 - Define major and minor conveyance systems inline with guidelines used for the stormwater management of the Brazeau lands subdivision, as well as those provided in the October 2012

Introduction

- City of Ottawa Sewer Design Guidelines and subsequent technical memorandums, and generally accepted stormwater management design guidelines.
- As documented in the Barrhaven South Urban Expansion Area Master Servicing Study, by J. L Richards 2018, the development will also have Etobicoke Exfiltration Systems (EES) implemented within this subdivision. These EES will be installed within local roadways of the subdivision, to exfiltrate runoff from the development for the more frequent events.
- Coordinate with the Mechanical Engineer to convey run-off from rooftops to catchbasins within parking area.
- Connect to the existing storm maintenance hole structure at the intersection of Haiku and Obsidian Street.

Wastewater Servicing

 Estimate wastewater flows generated by the development and size sanitary sewers which will outlet to the existing sanitary sewer stub fronting the site, located off the Haiku and Obsidian Street intersection. The existing maintenance hole (SAN MH3A) will be relocated and cored into for the proposed connection.

The accompanying **Drawing SSP-1** included in **Appendix F** illustrates the proposed internal servicing scheme for the site.

References

2.0 REFERENCES

The following documents were referenced in the preparation of this stormwater management and servicing report:

- City of Ottawa Sewer Design Guidelines, 2nd Edition, City of Ottawa, October 2012.
- City of Ottawa Design Guidelines Water Distribution, First Edition, Infrastructure Services Department, City of Ottawa, July 2010.
- Design Brief for Cavian Greenbank Development Corporation, The Ridge (Brazeau Lands), David Schaeffer Engineering Ltd., July 2020.
- *Geotechnical Investigation,* Proposed Mixed Use Development Half Moon Bay South Phase 8 3718 Greenbank Road Ottawa, PG5690-1, Paterson Group, March, 2020.
- Hydraulic Capacity and Modeling Analysis Brazeau Lands, Final Report, GeoAdvice Engineering Inc., July 2020.
- Master Servicing Study Barrhaven South Urban Expansion Area, J.L. Richards & Associates Limited, Revision 2, May 2018.
- Pond Design Brief for Brazeau Subdivision, by J.F. Sabourin and Associates, July 2020.
- Stormwater Management Report for Brazeau Subdivision, by J.F. Sabourin and Associates (July 2020).
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003.
- Technical Bulletin ISTB-2014-02 Revision to Ottawa Design Guidelines Water, City of Ottawa, May 2014.
- Technical Bulletin PIEDTB-2016-01 Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, September 2016.

Potable Water Servicing

3.0 POTABLE WATER SERVICING

3.1 BACKGROUND

The subject site is located within Zone 3SW of the City of Ottawa water distribution system. The proposed residential development will include 19 blocks with 228 townhome units. The subject site is within The Ridge (Brazeau lands) subdivision for which David Schaeffer Engineering Ltd. (DSEL) conducted a servicing and stormwater management study in July 2020.

The development will be serviced via two existing 200mm diameter private watermain services located within Obsidian street and fed from the existing 300mm diameter watermain terminating at Dundonald Drive and the future New Greenbank Road alignment and a 400mm diameter watermain from the existing Cambrian Road forming part of the Tamarack Meadows, as shown in the design brief by DSEL in **Appendix E.1**.

In July 2020, GeoAdvice carried out a watermain analysis to determine the hydraulic capacity of the watermain network within Brazeau Lands which includes the residential portion of 3718 Greenbank Road. In absence of revised boundary conditions for potentially increased fire flow demand within the current site plan configuration, the following analysis considers firewalls to compartmentalize fire areas to suit previous assumptions made within the GeoAdvice model. Refer to GeoAdvice water analysis in enclosed in **Appendix A.3**.

3.2 PROPOSED WATERMAIN SIZING AND LAYOUT

The proposed watermain alignment and sizing for the development is demonstrated on **Drawing SSP-1** in **Appendix F**. A 200mm diameter watermain is proposed to loop around the street fronting Block 1, and a second 200mm diameter watermain is proposed to loop around the street fronting Block 18. The connection points are as follows:

- A 200mm diameter watermain will loop and connect to the existing 200mm stub at Haiku Street via 45° horizontal bend.
- A 200mm diameter watermain will loop and connect to the existing 300mm watermain along Obsidian Street via existing 200mm stub connection at the southwest boundary of the site.

3.2.1 Ground Elevations

The proposed ground elevations within the development range from approximately 103.1 m to 106.5 m, with the ground elevations highest in the southeast corner of the site. This significant variation in ground elevations was largely dictated by the original topography of the site, and to suit tie-in elevations at Obsidian Street.

Potable Water Servicing

3.2.2 Domestic Water Demands

The 3718 Greenbank Road development will contain a total of 19 blocks with 228 townhome units and outdoor amenity areas having a total estimated population of 616 persons. Refer to **Appendix A.1** for detailed domestic water demand calculations.

Water demands for the development were calculated using the City of Ottawa's Water Distribution Design Guidelines. For residential developments, the average day (AVDY) per capita water demand is 280L/cap/d. For maximum day (MXDY) demand, AVDY was multiplied by a factor of 2.5 and for peak hour (PKHR) demand, MXDY was multiplied by a factor of 2.2. For maximum day (MXDY) demand of amenity areas, AVDY was multiplied by a factor of 1.5 and for peak hour (PKHR) demand, MXDY was multiplied by a factor of 1.8. The calculated residential water consumption is represented in Table 3-1 below:

Table 3-1: Residential Water Demands

Unit Type	Units/ Amenity areas (m²)	Persons/Unit	Population	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
Townhome	228 units	2.7	616	1.99	4.99	10.97
		Total	616	1.99	4.99	10.97

3.3 LEVEL OF SERVICE

3.3.1 Allowable Pressures

The City of Ottawa Water Distribution Design Guidelines state that the desired range of system pressures under normal demand conditions (i.e. basic day, maximum day, and peak hour) should be in the range of 350 to 552 kPa (50 to 80 psi) and no less than 275 kPa (40 psi) at the ground elevation in the streets (i.e. at hydrant level). The maximum pressure at any point in the distribution system is to be no higher than 552 kPa (80 psi). As per the Ontario Building Code & Guide for Plumbing, if pressures greater than 552 kPa (80 psi) are anticipated, pressure relief measures (such as pressure reducing valves) are required. Under emergency fire flow conditions, the minimum pressure in the distribution system is allowed to drop to 138 kPa (20 psi).

3.3.2 Fire Flow

The FUS fire flow calculation spreadsheets for the governing fire flow demand scenarios (see **Appendix A.2**) were generated to calculate the expected fire flow demands from the proposed site.

The floor area of each block was estimated based on the average lot sizes shown on the site plan. For assessment of the worst case fire flow requirement, building exposures were reviewed on a block by block basis. Blocks 8 and 11 were determined to be the critical units for assessment given exposures

Potable Water Servicing

from adjacent units on all sides. The remaining blocks maintain exposures on at most three sides. Fire flow calculations were performed with consideration of a firewall separating the governing block at midblock. For the specified configurations, the maximum required fire flow was estimated to be 167 L/s (see **Appendix A.2**).

Location of firewalls within each block has been indicated on the grading plan (Drawing GP-1).

3.4 HYDRAULIC MODEL

3.4.1 **Boundary Conditions**

Boundary conditions for the connections servicing the proposed development were based on the GeoAdvice hydraulic model for the overarching subdivision. Connection points for the model mere determined to be located at approximately nodes J-41 (north connection) and J-78 (south connection). GeoAdvice Model outputs for the varying boundary condition scenarios are noted in the table below:

Table 3–2: Boundary Conditions

Demand Scenario	J-41 Head (m)	J-78 Head (m)
AVDY	156.10	156.10
PKHR	139.22	137.82
MXDY + FF	135.70	135.70

The GeoAdvice report notes that the boundary conditions supplied are for consideration prior to completion of the SUC Zone Reconfiguration. As noted in the report, post-reconfiguration pressure values are only expected to increase during the critical PKHR and MXDY+FF demand scenarios. As such, the model presented can be considered as conservative with respect to available fire flows.

3.4.2 Model Development

New watermains were added to the hydraulic model to simulate the proposed distribution system. A 200 mm dia. watermain network is used throughout the site following locations of proposed hydrants. Hazen-Williams coefficients (C-factors) were applied to the proposed watermain in accordance with the City of Ottawa's Water Distribution Design Guidelines. The C-factors used are given in **Table 3-3** below.

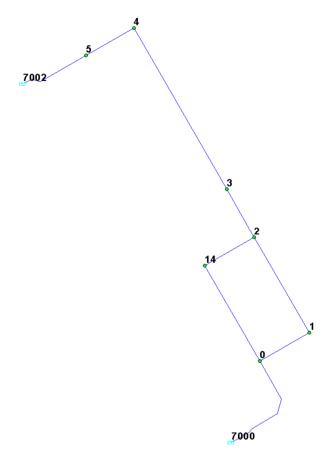
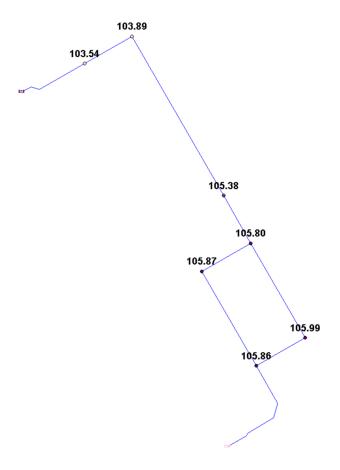

Potable Water Servicing

Table 3–3: C-Factors Used in Watermain Hydraulic Model

Pipe Diameter (mm)	C-Factor
150	100
200 to 250	110
300 to 600	120
Over 600	130

The labelling of the watermain junctions and reservoirs (representing boundary conditions at connections to the existing watermain network) is shown in **Figure 2**.

Figure 2: Watermain Model Nodes



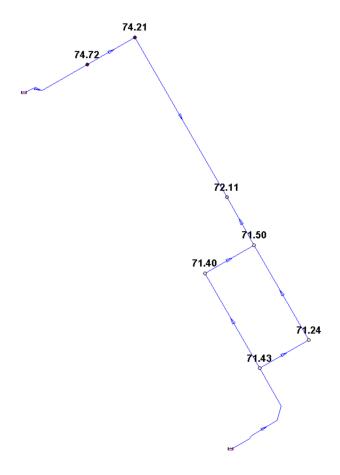
Potable Water Servicing

3.4.3 Ground Elevations

The ground elevations used at each node along the watermain model network are shown in **Figure 3** below. These elevations were interpolated from the detailed grading plan for the site (**Drawing GP-1**, included in **Appendix E**).

Figure 3: Ground Elevations (m) in Hydraulic Model

3.5 HYDRAULIC MODELING RESULTS


3.5.1 Average Day (AVDY)

The hydraulic modeling results show that under basic day demands the pressure in the distribution network falls between 491 kPa (71.2 psi) and 515 kPa (74.7 psi). Hydraulic modeling results are given in **Figure 4**.

Potable Water Servicing

Figure 4: Pressures (psi) Under AVDY Demand Scenario

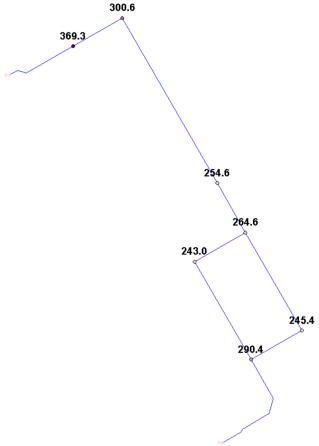
3.5.2 Peak Hour (PKHR)

The hydraulic modeling results show that under peak hour demands the pressure in the distribution network ranges between 314 kPa (45.6 psi) and 347 kPa (50.3 psi). Hydraulic modeling results are given in **Figure 5.**

Potable Water Servicing

49.58 50.34 46.69 45.75 45.75

Figure 5: Pressures (psi) Under PKHR Demand Scenario


3.5.3 Maximum Day Plus Fire Flow (MXDY+FF)

A hydraulic analysis using the H₂OMap Water model was conducted to determine if the proposed water distribution network can achieve the required FUS fire flow while maintaining a residual pressure of at least 138 kPa (20 psi), per City Water Distribution Design Guidelines. This was accomplished using a steady-state maximum day demand scenario along with the automated fire flow simulation feature of the software. Hydraulic modeling results are shown on **Figure 6**.

Potable Water Servicing

Figure 6: Available Fire Flows (L/s) for MXDY+FF Demand Scenario

A fire flow of 10,000 L/min was achieved at all serviced nodes (see **Appendix A** for details). Sufficient fire flows for each type of unit are provided at every point within the distribution network for the proposed development.

3.6 POTABLE WATER SUMMARY

The proposed watermain alignment and sizing is capable of achieving the required level of service throughout the development. Based on the hydraulic analysis conducted using H₂OMap Water, the following conclusions were made:

- The proposed water distribution system consists entirely of 200mm diameter mains.
- During peak hour conditions, the proposed system is capable of operating above the minimum pressure objective of 276 kPa (40 psi).
- During fire conditions, the proposed system is capable of providing 10,000 L/min fire flows at all
 modeled nodes, which are sufficient based on FUS calculations for the units within the proposed site.

Wastewater Servicing

4.0 WASTEWATER SERVICING

4.1 BACKGROUND

The subject site is located within the study of the Barrhaven South Urban Expansion Area (BSUEA) for which JLR associates prepared a Master Servicing Study in 2018. The study at conceptual level, provided design data for wastewater servicing and estimated residual capacities for sanitary trunk sewer in the area, as shown in the MSS extract in **Appendix E.1**. The subject site is referred to as Mattamy West (Residential) in this study. DSEL relied on this study to prepare a design brief for adjacent The Ridge subdivision (Brazeau Lands).

Projected sanitary flows from the site are directed to an existing 375mm diameter sanitary sewer collecting wastewater from the Ridge (Brazeau lands), and flows into the sanitary sewer on Greenbank Road. Refer to **Appendix E.1** for The Ridge site servicing study by DSEL (2020). The estimated peak sanitary flows for the subject site were originally determined as 4.45L/s (for a residential area of 1.90ha and a commercial area of 2.99ha) using City of Ottawa design criteria. DSEL estimated the subject site (referred to as Mattamy West (residential) area) to be 1.90ha with a projected population of 162 persons, peak factor of 3.54 and total flow of 2.49L/s which is 13% of the sanitary sewer full capacity. The residential area has subsequently been expanded to 3.09 ha for this site plan application with a corresponding reduction in the future commercial lands.

The proposed development will be serviced by the existing sanitary sewer stub fronting the site, located off the Haiku and Obsidian Street intersection. The existing maintenance hole (SAN MH3A) will be relocated and cored into for the future connection. The wastewater contributions from the site will tie-in to this structure via a 200mm diameter PVC pipe.

DSEL estimated the residential portion of the subject site (referred to as Mattamy West (residential) area) to be 1.9ha with a projected population of 162 persons, perk factor of 3.52 and total flow of 2.49L/s which is 13% of the sanitary sewer full capacity. Commercial flows from 2.42ha of the original 2.99ha commercial area constitute an additional 1.59L/s of the DSEL estimated flows from the subject site (total 4.08).

4.2 DESIGN CRITERIA

As outlined in the City's Sewer Design Guidelines, the following design parameters were used to calculate estimated wastewater flow rates and to preliminarily size on-site sanitary sewers for the subject site:

- Minimum Full Flow Velocity 0.6 m/s
- Maximum Full Flow Velocity 3.0 m/s
- Manning's roughness coefficient for all smooth-walled pipes 0.013
- Townhouse persons per unit 2.7
- Extraneous Flow Allowance 0.33 L/s/ha

Wastewater Servicing

- Residential Average Flows 280 L/cap/day
- Maintenance Hole Spacing 120 m
- Minimum Cover 2.5m
- Harmon Correction Factor 0.8

In addition, a residential peak factor based on Harmon's Equation was used to determine the peak design flows per Ottawa's Sewer Design Guidelines.

Refer to Appendix C.1 for the sanitary sewer design sheet for 3718 Greenbank Road

4.3 SANITARY SERVICING DESIGN

200 mm diameter sanitary sewers are proposed along the private roadways of the subject site. All sanitary sewers within the site ultimately outlet to existing SAN MH 3A located off Haiku/Obsidian Street at the intersection fronting Block 1. Existing MH SAN 3A is proposed to be relocated slightly closer to the site and cored to allow for connection to the property.

The proposed layout of the sanitary infrastructure is shown on **Drawing SA-1** in **Appendix F.** Sanitary peak flows will be directed to the 200mm diameter sanitary sewer on Obsidian Street which discharges to a 375mm diameter PVC sanitary sewer at Dundonald Drive which is ultimately directed to the sanitary sewer on Future Greenbank road. The connections to the existing sanitary sewer network and the associated peak flows are summarized in **Table 4–1** below.

Table 4–1 Summary of Proposed Sanitary Peak Flows

Area ID Number	Total area (ha)	No. Units	Population	Total Peak Flow (L/s)
Residential Site	3.09	228	616	7.8
Commercial Site (Future by Others)	1.23	-	-	1.0

A population density of 2.7ppu was applied to the residential townhouse units on site. A residential peak factor, based on Harmon Equation, was used to determine the peak design flows. An allowance of 0.33 L/s/effective gross ha (for all areas) was used to generate peak extraneous flows.

The total design peak flow for the subject site to be conveyed to the connections at the Obsidian street sewer is 8.8L/s. This value is slightly higher than the previous estimate of 4.08L/s by DSEL. The difference (4.72L/s) can be accommodated by the 200mm receiving sewer in Obsidian Street.

JLR Associates identified in its MSS for the BSUEA that there is residual capacity within the sanitary sewers draining Mattamy lands west to new Greenbank road based on a Stantec (2015) hydrodynamic model of trunk sanitary sewers (450 mm in diameter and greater), which in turn demonstrated that the existing downstream trunk system could accommodate the flows generated with no risk of surcharging or basement flooding. Consequently, Stantec concluded that system upgrades were not required. The

Wastewater Servicing

residual capacity in the sanitary sewer downstream of Greenbank road was estimated as 74.0L/s (Refer to **Appendix E.1** for details).

Stormwater Management and Servicing

5.0 STORMWATER MANAGEMENT AND SERVICING

The following sections describe the stormwater management (SWM) design for 3718 Greenbank Road in accordance with the background documents and governing criteria.

5.1 PROPOSED CONDITIONS

The proposed 3.09 ha development at 3718 Greenbank Road (the subject site) is located within the Brazeau Lands development area (otherwise known as "The Ridge") and comprises 228 back-to-back townhomes and outdoor amenity areas.

The storm sewer collection system for the proposed site will discharge to an existing manhole (MH 109) located near the northwest corner of the site, at the intersection of Obsidian Street and Haiku Street. This manhole is part of The Ridge's stormwater collections system which eventually discharges to a dry pond (referred to as the Drummond Pond) located in the northwest corner of the subdivision. This pond provides stormwater quantity control for the subdivision. OGS units upstream of the pond provide stormwater quality control for the subdivision.

Detailed grading of the site has been designed to direct emergency overland flows above the 100-year event to Obsidian Street, which runs along the west side of the subject site.

Minor grassed areas at the boundary of the subject site cannot be graded to drain internally and as such will sheet drain uncontrolled offsite. The uncontrolled areas on the west side of the site will drain to the existing Obsidian Street ROW and those on the east side of the site will drain to the Future Greenbank Road ROW.

5.2 DESIGN CRITERIA AND CONSTRAINTS

As noted previously, the subject site is located in The Ridge (Brazeau) subdivision which lies within the Barrhaven South Urban Expansion Area (BSUEA). The majority of the design criteria and guidelines used for the stormwater management of the subject site come from the Stormwater Management Report for The Ridge (Brazeau) Subdivision (J.F. Sabourin and Associates Inc, 2020). Further requirements are provided by The Master Servicing Study for the Barrhaven South Urban Expansion Area (J.L. Richards & Associates, 2018), the October 2012 *City of Ottawa Sewer Design Guidelines* and subsequent technical memorandums, and generally accepted stormwater management design guidelines.

As identified in the above reports, the minor and major system stormwater management design criteria and constraints will consist of:

5.2.1 Minor System

a) Storm sewers are to be designed to provide a minimum 2-year level of service.

Stormwater Management and Servicing

- b) The 100-Year hydraulic grade line (HGL) within the development minor systems must be maintained at least 0.3 m below the underside of footing elevation where gravity house connections are installed.
- c) For less frequent storms (i.e. larger than 1:2 year), the minor system shall, if required, be limited with the use of inlet control devices to prevent excessive hydraulic surcharges and to maximize the use of surface storage on the road where desired.
- d) Catchbasins on the road are to be equipped with City standard type S19 (fish) grates or City standard type S22 side inlets, and grates for catchbasins in rear yards, park and open spaces with pedestrian traffic are to be City standard type S19, S30 and S31.
- e) Single catchbasins are to be equipped with 200 mm minimum lead pipes, and double catchbasins are to be equipped with 250 mm minimum lead pipes.
- f) Rear yard catchbasins are to be equipped with 250 mm minimum lead pipes. Catchbasins installed on the street, where rear yard catchbasins connect to the main storm sewer through the catchbasin, are to be equipped with 250 mm minimum lead pipes for both single and double catchbasins.
- g) Under full flow conditions, the allowable velocity in storm sewers is to be no less than 0.80 m/s and no greater than 3.0 m/s. Where velocities over 3.0 m/s are proposed, provisions shall be made to protect against displacement of sewers by sudden jarring or movement. Velocities greater than 6 m/s are not permitted.

5.2.2 Major System

- a) The major system shall be designed with enough road surface storage to allow the excess runoff of a 100-year storm to be retained within road ponding areas where desired.
- b) Inlet control devices would be sized such that they do not create surface ponding on the road during the 2-year design storm on local roads (5-year design storm on collector and 10-year design storm on arterial roads); it should be noted that surface ponding over grates is present during rainfall under any design, as an appropriate depth of water is required for runoff to enter the grate.
- c) Roof leaders shall be installed to direct the runoff to splash pads and on to grassed areas.
- d) For the 100-year storm, the maximum total depth of water (static + dynamic) on all roads shall not exceed 35 cm at the gutter.
- e) During the 100-year + 20% stress test, the maximum extent of surface water on streets, rear yards, public space and parking areas shall not touch the building envelope.
- f) When catchbasins are installed in rear yards, safe overland flow routes are to be provided to allow the release of excess flows from such areas.

Stormwater Management and Servicing

- g) The product of the maximum flow depths on streets and maximum flow velocity must be less than 0.60 m²/s on all roads.
- h) The excess major system flows up to the 100-year return period are to be retained on-site in development blocks such as the proposed development.
- i) There must be at least 15 cm of vertical clearance between the spill elevation on the street and the ground elevation at the nearest building envelope that is in the proximity of the flow route or ponding area.
- j) There must be at least 30 cm of vertical clearance between the rear yard spill elevation and the ground elevation at the adjacent building envelope.
- k) Provide adequate emergency overflow conveyance off-site to ensure water will spill to downstream rights-of-way in the event of a blockage.

5.2.3 Allowable Release Rate

The subject site's allowable peak release rates were determined based on JFSA's Stormwater Management Report for The Ridge (Brazeau) Subdivision. In this report, the site's area was divided between two subcatchments (A109RES and A2260COM), see **Appendix E.2** for details. A proportional method, based on CAD measured areas, was then used to determine the allowable 2-Year and 100-Year peak release rates for the site. See **Table 5–1** for details.

Table 5–1 Allowable Peak Release Rate Calculations

Study Area		Subcatchment A109RES	Subcatchment A2260COM
	Area (ha)	1.64	2.68
Ridge (Brazeau)	2-Year Flow Rate (L/s)	201	371
Subdivision SWM Plan	100-Year Flow Rate (L/s)	230	382
	2-Year Unit Flow Rate (L/s/ha)	122.4	138.4
	100-Year Unit Flow Rate (L/s/ha)	140.1	142.5
	Area (ha)	1.64	1.46
378 Greenbank Road SWM Plan	2-Year Flow Rate (L/s)	201	201
Troda Civili Fidir	100-Year Flow Rate (L/s)	230	207

The target release rates for the site are summarized in **Table 5–2** below:

Table 5-2: Allowable Peak Release Rate Summary

Design Storm	Allowable Peak Release Rate (L/s)
2-Year Event	402
100-Year Event	437

Stormwater Management and Servicing

5.3 MODELING METHODOLOGY

5.3.1 Modeling Rationale

A hydrologic/hydraulic model was completed with PCSWMM for the sewers and roadways/parking areas within the proposed development, accounting for the estimated major and minor systems to evaluate the storm sewer infrastructure and ensure release rates meet the previously defined target criteria. The use of PCSWMM for modeling of the site hydrology and hydraulics allowed for an analysis of the system response during various storm events. The following assumptions were applied to the model:

- Hydrologic parameters as per Ottawa Sewer Design Guidelines, including Horton infiltration, Manning's 'n', and depression storage values.
- 3-hour Chicago distributions and 12-hour SCS Type II distributions for 2-year and 100-year storm
 events were used to evaluate the urban component of the dual drainage (i.e. minor system capture
 rates, total overland flow depth, hydraulic grade line (HGL), etc.).
- A 22 mm, 4-hour Chicago storm was used to evaluate the performance of the proposed Etobicoke exfiltration system.
- The 'climate change' scenarios created by adding 20% of the individual intensity values of the 100-year 3-hour Chicago storm and the 100-year 12-hour SCS Type II storm at their specified time step were used as an analytical tool to establish the function of the system under extreme events.
- Minor system capture rates within the proposed development were restricted to the 2-year peak runoff rate.

5.3.2 SWMM Dual Drainage Methodology

The proposed development is modeled in one PCSWMM model as a dual conduit system, where:

- 1) The minor system consists of storm sewers, represented by circular conduits, and manholes, represented by storage nodes;
- 2) The major system consists of overland spills, represented by weirs and irregular conduits using street-shaped cross-sections to represent the assumed overland road network with streets at varying slopes, and catch basins with surface ponding areas, represented by storage nodes.

The two systems are connected by outlet/orifice link objects, which represent inlet control devices (ICDs), that connect storage nodes representing catch basins to storage nodes representing manholes. Subcatchments are linked to the nodes representing catch basins and ponding areas so that generated hydrographs are directed there firstly.

5.3.3 Modified Dual Drainage Methodology to Support EES

To account for the presence of the proposed Etobicoke exfiltration system, the PCSWMM model was modified to include additional rectangular conduits in parallel to the conventional sewer lines. Rectangular

Stormwater Management and Servicing

conduits have been used to simulate drainage properties and dimensions of the clear stone media and perforated pipe but use a width equal to 40% of the actual trench width to simulate the porosity of the trench media. Inverts and obverts of the conduit can therefore still be consistent with design drawings, yet allow hydraulic modeling performed by PCSWMM to simulate hydraulic grade lines within the trench as it slopes upwards to follow traditional sewer grades. In such a manner, unused portions of the EES can be identified and minimized to ensure that an appropriate level of volume control is still provided for the site overall. Additional "dummy" manholes with zero storage were added to the upstream ends of EES conduits in the model to create dead ends. This was done to represent the fact that EES pipes will be capped at their upstream ends and will not convey stormwater through the minor system.

The simulation described above was repeated with varying EES trench depths, lengths, and widths to ensure complete capture of the 22 mm event as described in **Section 5.6** below.

5.3.4 Model Input Parameters

Drawing SD-1 summarizes the discretized subcatchments used in the analysis of the proposed development. All parameters were assigned as per applicable Ottawa Sewer Design Guidelines (OSDG); Ontario Ministry of the Environment, Conservation, and Parks (MECP); and background report requirements.

5.3.4.1 Hydrologic Parameters

Key parameters for the proposed development areas are summarized below, while example input files are provided for the 100-year, 3-hour Chicago storm in **Appendix D** which indicate all other parameters. For all other input files and results of storm scenarios, please examine the electronic model files located on the digital media provided with this report. This analysis was performed using PCSWMM, which is a front-end GUI to the EPA-SWMM engine. Model files can be examined in any program which can read EPA-SWMM files version 5.1.014.

Table 5–3: presents the general subcatchment parameters used for the proposed development.

Table 5-4: General Subcatchment Parameters

Subcatchment Parameter	Value
Infiltration Method	Horton
Max. Infil. Rate (mm/hr)	76.2
Min. Infil. Rate (mm/hr)	13.2
Decay Constant (1/hr)	4.14
N Imperv	0.013
N Perv	0.25
Dstore Imperv (mm)	1.57
Dstore Perv (mm)	4.67
Zero Imperv (%)	0

Stormwater Management and Servicing

Table 5–5 presents the individual parameters that vary for each of the proposed subcatchments in the model. Subcatchment width parameters were determined by dividing each subcatchment's area by its flow length. Flow lengths were estimated in CAD using the average distance runoff would sheet flow overland before being intercepted by a catch basin.

Table 5-6: Individual Subcatchment Parameters

Subcatchment ID	Area (ha)	Width (m)	Flow Length (m)	Slope (%)	% Impervious
L101A	0.021	23.3	9	2.6	77.1
L102A	0.556	222.2	25	3.1	92.9
L103A	0.134	103.4	13	3.3	78.6
L104A	0.641	267.2	24	2.2	78.6
L105A	0.112	46.6	24	2.5	50.0
L105B	0.231	100.6	23	3.5	35.7
L105C	0.058	22.2	26	3.0	12.9
L108A	0.429	186.6	23	1.5	88.6
L110A	0.187	78.0	24	2.0	70.0
L110B	0.053	27.7	19	2.6	78.6
L110C	0.374	143.9	26	1.6	87.1
L110D	0.124	95.5	13	2.7	78.6
UNC-1	0.044	145.0	3	3.0	42.9
UNC-2	0.076	253.7	3	3.0	7.1
UNC-3	0.048	160.0	3	3.0	25.7

5.3.4.2 Surface and Subsurface Storage Parameters

Table 5-5 summarizes the storage node parameters used in the model. Storage nodes represent the depth of the proposed catch basin barrel plus an addition 0.35 m to represent the maximum allowable surface water ponding depth. Surface storage was estimated based on surface models created in AutoCAD for the proposed grading plan. See **Drawing SD-1** in **Appendix F** for surface storage depths, areas, and volumes.

Table 5–5: Storage Parameters

Subcatchment ID	Structure	Invert Elevation (m)	Rim Elevation (m)	CB Barrel Depth (m)	Ponding Depth at Spill (m)	Ponding Area (m²)	Ponding Volume (m³)
L101A	CB 101A	101.89	103.65	1.76	0.05	13.8	0.2
L102A	CB 102A	101.99	103.72	1.73	0.35	552.6	64.5
L103A	CB 103A	102.23	103.95	1.72	0.25	328.9	27.4
L104A	CB 104A	102.66	104.35	1.69	0.35	773.2	90.2
L105A	CB 105A	103.32	105.35	2.03	0.31	196.5	20.3

Stormwater Management and Servicing

L105B	CBMH 105B	102.53	104.40	1.87	O ¹	N/A ¹	N/A ¹
L105C	CB 105C	103.82	105.55	1.73	0.05	12.0	0.2
L108A	CB 108A	104.15	105.70	1.55	0.35	900.3	105
L110A	CB 110A	104.27	106.00	1.73	0.35	595.4	69.5
L110B	CB 110B	104.05	105.78	1.73	0.25	98.4	8.2
L110C	CB 110C	103.97	105.70	1.73	0.35	863.6	100.8
L110D	CB 110D	104.34	106.07	1.73	0.22	256.9	18.8

^{1.} CBMH105B uses underground pipe storage instead of surface storage.

At several locations, underground storage was required to ensure there was no surface ponding during 2-year storm events. Big O or "umbilical" storage pipes were added to catch basin barrels to provide this storage. These were modeled using conduits to provide the required storage.

Note that the EES system was not included in the 2-year, 100-year, or 100-year + 20% models. This was done at the request of the City of Ottawa which did not want the storage volume provided by the EES to be considered in these events.

5.3.4.3 Hydraulic Parameters

As per the October 2012 City of Ottawa Sewer Design Guidelines, Manning's roughness values of 0.013 were used for sewer modeling and overland flow corridors representing roadways. Flow over grassed areas were modeled using a Manning's roughness value of 0.25.

The storm sewers within the proposed development were modeled to estimate flow capacities and hydraulic grade lines (HGLs) in the proposed condition. The proposed storm sewer design sheet is included in **Appendix D**.

Exit losses at manholes were set for all pipe segments based on the flow angle through the structure. Exit losses were assigned as per City guidelines (Appendix 6b of the guidelines), see **Table 5-6** below.

Table 5-6: Exit Loss Coefficients for Bends at Manholes

Degrees	Coefficient
11	0.060
22	0.140
30	0.210
45	0.390
60	0.640
90	1.320
180	0.020

The proposed development's storm sewers were sized to convey runoff from a 2-Year storm using rational method calculations. The rational method design sheet can be found in **Appendix D.1.**

Stormwater Management and Servicing

5.4 MODEL RESULTS AND DISCUSSION

The following section summarizes the key hydrologic and hydraulic model results. For detailed model results or inputs please refer to the example input files in **Appendix D** and the PCSWMM model on the enclosed digital files.

5.4.1 Hydrology

Table 5–7 summarizes the orifice link maximum flow rates and heads across the proposed development under the 2-year and 100-year storm scenarios. Discharge curves are as provided by the manufacturer for the selected IPEX Tempest ICDs.

Table 5–8: Proposed ICD Schedule

Struct ure	Invert	ICD Type	Max 100- Year Head (m)	Max 100- Year Flow (L/s)	Governi ng Storm	Max 2- Year Head (m)	Max 2- Year Flow (L/s)	Governi ng Storm
101A	101.89	IPEX TEMPEST LMF-90	1.43	8.6	Chicago	0.24	3.4	Chicago
102A	101.99	152 mm CIRCULAR ORIFICE	1.73	59.1	Chicago	0.84	40.3	scs
103A	102.23	102 mm CIRCULAR ORIFICE	1.54	25.3	Chicago	1.24	22.5	Chicago
104A	102.66	178 mm CIRCULAR ORIFICE	1.64	78.4	Chicago	0.82	53.9	Chicago
105A	103.32	IPEX TEMPEST LMF-105	1.91	13.5	SCS	1.32	11.2	Chicago
105C	103.82	83 mm CIRCULAR ORIFICE	1.32	15.5	SCS	0.07	2.3	SCS
108A	104.15	108 mm CIRCULAR ORIFICE	1.47	27.6	Chicago	1.12	24.0	SCS
110A	104.27	127 mm CIRCULAR ORIFICE	1.54	39.0	Chicago	0.83	28.0	Chicago
110B	104.05	IPEX TEMPEST LMF-90	1.58	9.0	Chicago	1.22	7.9	Chicago
110C	103.97	108 mm CIRCULAR ORIFICE	1.65	29.3	Chicago	1.28	25.7	SCS
110D	104.34	102 mm CIRCULAR ORIFICE	1.55	25.4	Chicago	1.06	20.8	Chicago
111	102.35	127 mm CIRCULAR ORIFICE	1.10	32.6	SCS	0.25	14.0	Chicago

5.4.2 Hydraulic Grade Line Analysis

As identified in JFSA's modeling of the downstream storm system in the Stormwater Management Report for The Ridge (Brazeau) Subdivision, the maximum 100-Year hydraulic grade line (HGL) for the subject site's connection point to the downstream sewer on Obsidian Street at MH 3 is 99.716 m. Note that MH 3 was a pre-installed service connection to the subject site which will be removed. Instead, this maximum HGL is applied as a static boundary condition to MH 100 in the proposed PCSWMM model.

A design sheet has been prepared for the proposed storm sewer system in **Appendix D.1** demonstrating all on-site sewers remain free-flowing (HGLs within the sewer) using an uncontrolled 2-year rate.

Stormwater Management and Servicing

Table 5–9 summarizes the hydraulic grade line (HGL) results for the subject site's proposed minor system. Note that all vales provided are for the SCS storm as it resulted in higher HGLs than the Chicago storm. Per the City of Ottawa Sewer Design Guidelines (2012), a building's underside of footing (USF) must be a minimum 300 mm above the 100-year HGL in the nearest upstream storm manhole. In addition, the buildings USF must also be above the HGL resulting from the 100-year + 20% stress test event.

Table 5–10: Hydraulic Grade Line Results

Block #	USF Elevation (m)	Adjacent Upstream Manhole ID	100-Year HGL in Adjacent Manhole (m)	100-Year Freeboard (m)	100-Year + 20% HGL in Adjacent Manhole (m)	100-Year + 20% Freeboard (m)
1	101.48	101	99.74	1.74	99.76	1.72
2	101.71	103	100.15	1.56	100.16	1.55
3	101.99	103	100.15	1.84	100.16	1.83
4	102.59	104	100.95	1.64	100.97	1.62
5	102.89	104	100.95	1.94	100.97	1.92
6	102.08	102	100.83	1.25	100.83	1.25
7	102.46	102	100.83	1.63	100.83	1.63
8	102.80	106	101.50	1.30	101.50	1.30
9	103.04	106	101.50	1.54	101.50	1.54
10	103.14	105	101.40	1.74	101.41	1.73
11	103.75	106	101.50	2.25	101.50	2.25
12	103.75	106	101.50	2.25	101.50	2.25
13	103.77	107	101.82	1.95	101.83	1.94
14	103.77	109	100.31	3.46	100.31	3.46
15	103.93	109	100.31	3.62	100.31	3.62
16	104.09	109	100.31	3.78	100.31	3.78
17	103.92	110	102.44	1.48	102.44	1.48
18	103.72	110	102.44	1.28	102.44	1.28
19	103.72	110	102.44	1.28	102.44	1.28

Model results indicate that there is sufficient clearance between the 100-year and 100-year + 20% stress test HGLs and the proposed USFs.

5.4.3 Overland Flow

Table 5–11 and **Table 5–12** present the total surface water depths (static ponding depth + dynamic flow) on the proposed roads/parking areas for the 2-year and 100-year design storms and the 100-year + 20% climate change storm. In no case do surface water depths exceed 0.35 m during the design storm events.

Stormwater Management and Servicing

Table 5-13: Maximum Static and Dynamic Water Depths, Chicago Storm

	Tomof	Lowest	2-	Year	100	-Year	100-Ye	ar + 20%
Storage Node ID	Top of Grate Elevation (m)	Adjacent Building Opening (m)	Max Surface HGL (m)	Total Surface Ponding Depth (m)	Max Surface HGL (m)	Total Surface Ponding Depth (m)	Max Surface HGL (m)	Total Surface Ponding Depth (m)
101A	103.30	103.55	102.13	0.00	103.32	0.02	103.39	0.09
102A	103.71	103.85	102.83	0.00	103.72	0.01	103.76	0.05
103A	103.60	104.05	103.47	0.00	103.77	0.17	103.81	0.21
104A	104.00	104.64	103.48	0.00	104.30	0.30	104.37	0.37
105A	105.00	105.46	104.64	0.00	105.22	0.22	105.28	0.28
105B	104.53	104.87	102.61	0.00	103.22	0.00	104.42	0.00
105C	105.20	105.42	103.88	0.00	104.87	0.00	105.26	0.06
108A	105.35	105.95	105.22	0.00	105.62	0.27	105.68	0.33
110A	105.65	106.24	105.10	0.00	105.81	0.16	105.85	0.20
110B	105.43	105.92	105.27	0.00	105.63	0.20	105.67	0.24
110C	105.35	105.95	105.14	0.00	105.62	0.27	105.68	0.33
110D	105.72	106.25	105.40	0.00	105.89	0.17	105.93	0.21

Table 5-14: Maximum Static and Dynamic Water Depths, SCS Storm

	Lowest 2-Year		Year	100	-Year	100-Year + 20%		
Storage Node ID	Top of Grate Elevation (m)	Adjacent Building Opening (m)	Max Surface HGL (m)	Total Surface Ponding Depth (m)	Max Surface HGL (m)	Total Surface Ponding Depth (m)	Max Surface HGL (m)	Total Surface Ponding Depth (m)
101A	103.30	103.55	102.06	0.00	102.84	0.00	103.40	0.10
102A	103.71	103.85	102.83	0.00	103.70	0.00	103.76	0.05
103A	103.60	104.05	103.10	0.00	103.76	0.16	103.80	0.20
104A	104.00	104.64	103.44	0.00	104.29	0.29	104.36	0.36
105A	105.00	105.46	104.32	0.00	105.23	0.23	105.28	0.28
105B	104.53	104.87	102.61	0.00	103.44	0.00	104.44	0.00
105C	105.20	105.42	103.89	0.00	105.14	0.00	105.26	0.06
108A	105.35	105.95	105.27	0.00	105.61	0.26	105.66	0.31
110A	105.65	106.24	104.85	0.00	105.80	0.15	105.84	0.19
110B	105.43	105.92	104.94	0.00	105.62	0.19	105.66	0.23
110C	105.35	105.95	105.25	0.00	105.61	0.26	105.66	0.31
110D	105.72	106.25	105.09	0.00	105.88	0.16	105.91	0.19

Stormwater Management and Servicing

The site was graded such that, should catchbasin discharge orifices become blocked; flows will spill from catchbasin grates overland to the site accesses in the northwest and southwest corners of the property, and out to Obsidian Street. Note that there were no major system flows during the 100-year storm events.

5.4.4 Peak System Outflows

Due to grading restrictions, three subcatchments have been designed without a storage component. Runoff from these catchment areas sheet flows off-site at an uncontrolled rate to the adjacent streets surrounding the proposed site. Peak discharges from these uncontrolled areas are summarized in **Table 5–15.**

Table 5-16: Uncontrolled Non-Tributary Areas

	Subcatchment Discharge (L/s)			
Design Storm	UNC-1	UNC-2	UNC-3	
2-Year (SCS)	4.6	2.2	3.3	
2-Year (Chicago)	5.4	7.1	5.3	
100-Year (SCS)	14.4	24.1	15.5	
100-Year (Chicago)	19.8	32.6	21.3	
100-Year + 20% Stress Test (SCS)	24.3	40.6	26.2	
100-Year + 20% Stress Test (Chicago)	17.5	29.5	19.0	

Table 5–17 below identifies the peak site outflows during the 2-year, 100-year, and climate change events in comparison to the design objectives determined in **Section 5.2.3**. The total outflows during all storm events are within the objectives, and therefore will not have a negative impact on the existing downstream system.

Table 5-17: Peak Site Outflows

	2-Year Storm Peak Discharge (L/s)			Storm Peak rge (L/s)	100-Year + 20% Stress Test Peak Discharge (L/s)		
	SCS	Chicago	scs	Chicago	scs	Chicago	
Uncontrolled – Surface Runoff	10.0	17.8	54.0	73.7	91.2	65.9	
Controlled – Minor System Flow	225.4	238.2	357.5	351.8	380.9	380.9	
Total	235.5	256.0	411.5	425.6	472.0	446.9	
Allowable Release Rate	402 L/s		437 L/s		N/A		

5.5 QUALITY CONTROL

Quality treatment of runoff will be partially provided through installation of an Etobicoke Exfiltration System (EES) as highlighted in **Section 5.6** below. This system has been sized to collect and infiltrate

Stormwater Management and Servicing

runoff from first flush rainfall events up to and including the 22mm rainfall event to meet water balance requirements noted below. In addition, further quality control for the overall development will be provided by the existing downstream oil-grit separator (OGS) for The Ridge subdivision located downstream of the proposed development and discharging to the Jock River via an existing ditch on the west side of Borrisokane Road. The oil-and-grit separator has previously been sized to ensure 80% Total Suspended Solids (TSS) removal for The Ridge development inclusive of the subject site. For more details regarding the OGS units within the downstream development, please refer to JFSA's July 2020, Pond Design Brief for the Ridge (Brazeau) Subdivision.

Based on assumptions made during design of the downstream phases, the subject site's lands were assumed to contribute at an overall average imperviousness of 68%, and the OGS was sufficiently sized to provide the appropriate level of control at this value. Based on subcatchment parameters listed above, the proposed development's overall imperviousness is 75.7%.

According to Table 3.2 of the MOE Stormwater Management Planning and Design Manual, the storage volume required to achieve 80% long-term S.S. removal in an infiltration type system such as the proposed EES is about 38 m³/impervious ha. The proposed 3.09 ha development is 75.7% impervious, meaning a minimum 89 m³ of storage is required. Per **Table 5**–17 below, the proposed development provides approximately 500 m³ of storage. Given this, we propose that the high level of treatment provided by the on-site EES system, in conjunction with the existing downstream OGS via treatment train, will provide sufficient quality control to meet design criteria for the development.

5.6 WATER BALANCE – ETOBICOKE EXFILTRATION SYSTEM

As a Best Management Practices (BMP) approach, the Barrhaven South Urban Expansion Area (J.L. Richards & Associates, 2018) MSS requires the capture and infiltration of stormwater via exfiltration system installed on local roads, such as the private roads within the subject site, where the surface runoff is not impacted by the City's winter road salting program to meet pre-development water balance criteria.

The City and RVCA determined that predevelopment infiltration levels should be maintained under post development conditions and that the infiltration should be provided across the development and not simply concentrated to one or two locations. JFSA determined the infiltration target for the site to be of the average simulated annual rainfall volume (552.0 mm), which is calculated to be 220.8mm annually as reported by JFSA in **Appendix E.2.** Similar to the BSUEA MSS, a 22mm storm event was selected for application within the current site plan to conservatively address post-development infiltration targets and water balance concerns.

An Etobicoke Exfiltration System (EES) has been proposed to be located below the storm sewer of the subject site (on sewer sections not identified as catch basin leads), the proposed locations of which are highlighted in **Drawing SD-1** in **Appendix F**.

For this exercise, the EES has been conservatively sized assuming no infiltration during rain events (seepage = 0 mm/hr). The EES units will be installed underneath storm sewers in specific areas and will consist of a 300 mm diameter perforated pipe surrounded by clear stone trench. Minimum 600 mm deep

Stormwater Management and Servicing

sumps will be installed in upstream catch basins to prevent/mitigate debris and potential oils from entering the perforated pipe system.

Table 5–18: 22mm Event Simulated EES Volumes

Pipe ID	Length (m)	Trench Height (m)	Trench Width¹ (m)	Available Volume ² (m ³)	Used Volume ³ (m ³)
101-100-E	36.2	1.7	1.575	38.8	36.1
102-101-E	62.9	1.6	1.2	48.3	36.1
103-101-E	32.0	1.6	1.425	29.2	27.7
104-103-E	70.3	1.6	1.425	64.1	50.8
105-104-E	44.7	1.7	3.25	98.7	88.4
107-105-E	45.4	1.7	1.35	41.6	37.0
108-107-E	36.1	1.7	1.425	35.0	34.0
109-107-E	70.5	1.7	1.2	57.5	51.5
110-108-E	79.9	2.0	1.35	86.3	80.8
Total	477.9	N/A	N/A	499.6	442.4

^{1.} The trench widths used in the model were set at 40% of the values provided in this table to account for the 40% clear stone porosity.

As can be seen in the above table, approximately 89% of the available volume in the overall EES system will be used in the 22mm event. In sections where the used volume is greater than the available volume, water spills into the next downstream segment, however there is no outflow from controlled areas of the site during the 22mm event.

5.6.1 Etobicoke Exfiltration System Monitoring and Maintenance

Due to the unique nature of the proposed site stormwater management plan, monitoring requirements have been included for construction stages in addition to maintenance for the post-construction criteria. In order to ensure the stormwater infrastructure is functioning as designed, the following maintenance and monitoring is recommended for the site. Monitoring described below is in addition to groundwater quality monitoring requirements described further within the BSUEA Environmental Management Plan.

5.6.2 Monitoring During Construction

The following practices are recommended during construction:

- Surface flows to be directed away from EES clear stone bedding as it is being installed prior to backfill;
- Fueling of machinery to be done at designated locations away from proposed EES locations;

^{2.} The available volumes for each trench section were calculated using the above dimensions and assuming 40% clear stone porosity.

^{3.} Volumes used incorporate storage volume provided by the 300mm perforated pipes within the EES.

Stormwater Management and Servicing

- Storage of machinery and material, fill, etc. to be done in designated areas away proposed EES locations;
- Equipment movement through proposed EES locations to be controlled;
- Regular inspection and maintenance of erosion control features corresponding to catch basins, catch basin manholes, and perforated subdrains.
- The EES system is to be jet flushed and inspected via CCTV upon construction completion prior to activation.

5.6.3 Annual Maintenance

Annual maintenance of the EES is to occur post-construction, and is to include:

- Removal of accumulated trash and debris from sumps and grates
- Removal of accumulated sediment depth in manholes / catch basins

Preventative maintenance via jet pressure washing of the conventional and EES system perforated pipes is to occur every 20 years, or as identified through annual sediment removal.

Geotechnical Considerations and Grading

6.0 GEOTECHNICAL CONSIDERATIONS AND GRADING

6.1 GEOTECHNICAL INVESTIGATION

A geotechnical investigation report for the development was completed by Paterson Group on March 30, 2021. The geotechnical investigation report is included in **Appendix E.3**.

The objective of the investigation was to determine the subsoil and groundwater conditions at this site by means of a borehole program and to provide geotechnical recommendations for the design of the proposed development based on the results on the results of the boreholes and other soil information available.

Based on the Paterson report, the subject site is a former agricultural land. The bulk of the current phase of the proposed development has been recently cleared of topsoil which has been stockpiled in several piles across the site. Generally, the ground surface across the subject site is relatively flat within the central portion and slopes up towards the edges. It should be noted that parts of the subject site had undergone excavation and in-filling activities as part of a previous sand extraction operation.

Generally, the subsurface profile across the subject site consists of varying amounts of fill consisting of silty sand mixed with occasional silty clay, gravel and cobbles. Practical refusal to augering was encountered at a range between 4.6 m and 8.3 m below existing ground surface.

6.1.1 Groundwater Control

It is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum of 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. Requirements for a PTTW or EASR registration are to be identified by the geotechnical consultant.

6.2 GRADING PLAN

The proposed development site measures 3.09ha in area. The topography across the site includes a moderate grade change with site grades on the east side of the property measuring approximately three

Geotechnical Considerations and Grading

(3) metres higher than the western property line. A detailed Grading Plan (**Drawing GP-1** in **Appendix F**) has been provided to satisfy the stormwater management requirements, adhere to permissible grade raise restrictions, and provide for minimum cover requirements for the storm and sanitary sewers where possible. Site grading has been established to provide emergency overland flow routes required for stormwater management in accordance with City of Ottawa requirements.

The site maintains emergency overland flow routes for flows in excess of major system storm events to Obsidian Street in accordance with the subdivision design report. A primary grading consideration for this development is the interface between the subject lands and the future Greenbank Road ROW. The proposed elevations along the property line shared with the future Greenbank Road ROW have been coordinated with the design team for Greenbank Road for this submission. As the design for Greenbank Road is currently ongoing, further communication with the City of Ottawa and the design team for Greenbank Road will be required throughout the design stage to ensure the proposed site development utilizes the latest Greenbank Road profiles and resulting property line elevations.

Approvals

7.0 APPROVALS

An Environmental Compliance Approval (ECA) may be required from the Ontario Ministry of the Environment, Conservation and Parks (MECP) for the proposed works. If the site remains under single ownership, it will comply with the exemptions from O.Reg. 525/98 and an ECA for storm and sanitary sewers as well as the EES system would not be required. These exemptions require that the site is not on industrial land or for industrial use, would drain to an approved outlet and would be under single ownership. If, however, the land will be divided into separate legal properties either through severance or through the condominium process an ECA would then be required for traditional storm and sanitary sewers in addition to the EES. The Rideau Valley Conservation Authority will need to be consulted in order to obtain municipal approval for site development.

An MECP Permit to Take Water (PTTW) or registration on the Environmental Activity and Sector Registry may be required as noted in **Section 6.0** above.

No other approval requirements from other regulatory agencies have been identified at the time of this report.

Erosion Control

8.0 EROSION CONTROL

In order to protect downstream water quality and prevent sediment build up in catch basins and storm sewers, erosion and sediment control measures must be implemented during construction. The following recommendations will be included in the contract documents and communicated to the Contractor.

- 1. Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- 2. Limit the extent of the exposed soils at any given time.
- 3. Re-vegetate exposed areas as soon as possible.
- 4. Minimize the area to be cleared and grubbed.
- 5. Protect exposed slopes with geotextiles, geogrid, or synthetic mulches.
- 6. Provide sediment traps and basins during dewatering works.
- 7. Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- 8. Schedule the construction works at times which avoid flooding due to seasonal rains.

The Contractor will also be required to complete inspections and guarantee the proper performance of their erosion and sediment control measures at least after every rainfall. The inspections are to include:

- Verification that water is not flowing under silt barriers.
- Cleaning and changing the sediment traps placed on catch basins.

Conclusions and Recommendations

9.0 CONCLUSIONS AND RECOMMENDATIONS

9.1 POTABLE WATER SERVICING

The model by GeoAdvice provided by DSEL demonstrates that the pressures in the proposed development's watermain stubs fall within the range of target system pressures with a maximum basic day pressure of 76 psi and 72 psi at J-41 (connection point 1) and J-86 (connection point 2) respectively.

The subject lands can be adequately serviced by the 300mm watermain along Haiku Street and 300mm diameter watermain on Obsidian Street. Private watermains will provide sufficient fire flow to meet FUS requirements. System pressures will fall within the City of Ottawa Water Distribution Guidelines.

9.2 WASTEWATER SERVICING

The total design peak flow for the subject site to be conveyed to the connections at the Obsidian Street. Design flows are slightly higher than the previous estimate of 2.49L/s by DSEL based on a service area of 1.9 ha and population of 162 people. The difference can be accommodated by the 200mm receiving sewer in Obsidian Street.

JLR Associates identified in its MSS for BSUEA stated that there is residual capacity within the sanitary sewers draining Mattamy lands west to new Greenbank Road based on a Stantec (2015) hydrodynamic model of trunk sanitary sewers (450 mm in diameter and greater), which in turn demonstrated that the existing downstream trunk system could accommodate the flows generated with no risk of surcharging or basement flooding.

9.3 STORMWATER MANAGEMENT AND SERVICING

The following summarizes the stormwater management conclusions for the proposed development:

- All storm runoff within the site will be controlled and directed to an existing storm control point identified as MH 3 in JFSA SWM model.
- The proposed stormwater management plan is in compliance with the objectives specified in the City of Ottawa Sewer Design Guidelines and in the background reports for the site.
- The minor system (storm sewers) is sized to convey the 2-year storm event under free-flow conditions using City of Ottawa I-D-F parameters.
- ICDs installed on the proposed catch basins force flows in excess of the 2-year event to be conveyed by overland paved areas and stored within proposed parking and access regions.
- Quality control for the development has been provided by an existing downstream oil-grit separator in conjunction with installation of an on-site Etobicoke Exfiltration System.

Conclusions and Recommendations

An Etobicoke Exfiltration System has been proposed to be located below the storm sewer on private roads of the subject site to meet water balance requirements of the BSUEA. The stormwater drainage plan has been designed to achieve stormwater servicing that is free of conflict with other services, respects the stormwater management requirement listed in background studies and in conformity with the City of Ottawa guidelines.

9.4 GRADING

The topography across the site includes a moderate grade change with site grades on the east side of the property measuring three (3) metres higher than the western property line. A detailed Grading Plan has been provided to satisfy the stormwater management requirements, adhere to permissible grade raise restrictions, and provide for minimum cover requirements for the storm and sanitary sewers where possible. A primary grading consideration for this development is the interface between the subject lands and the future Greenbank Road ROW.

9.5 APPROVALS/PERMITS

An Environmental Compliance Approval (ECA) will be required from the Ontario Ministry of the Environment, Conservation and Parks (MECP) for the proposed works. An MECP Permit to Take Water (PTTW) or registration on the Environmental Activity and Sector Registry may be required as noted in Section 6.0 above. No other approval requirements from other regulatory agencies were identified at the time of this report. The Rideau Valley Conservation Authority will need to be consulted in order to obtain municipal approval for site development.

APPENDICES

Appendix A Potable Water Servicing

Appendix A POTABLE WATER SERVICING

A.1 WATER DEMAND CALCULATIONS

Half Moon Bay South Phase 8 - Domestic Water Demand Estimates

Project No. 160401657

Based on Site plan provided by Mattamy Homes

Densities as per City Guidelines:

Townhomes 2.7 ppu

				Daily Rate of Demand	Avg D	ay Demand	Max Day	y Demand ¹	Peak Hou	r Demand ²
Building ID	Amenity Area (m ²)	No. of Units	Population	(L/cap/d or L/ha/d)	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)
Back-to-Back Townhomes										
All Blocks	-	228	615.6	280	119.7	2.00	299.3	4.99	658.4	10.97
Total Site :		228.0	616		119.7	2.00	299.3	4.99	658.4	10.97

The City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows:

- 1 maximum day demand rate = 2.5 x average day demand rate for residential
- 2 peak hour demand rate = 2.2 x maximum day demand rate for residential
- 3 Water demand criteria used to estimate peak demand rates for amenity/common areas are as follows:

maximum daily demand rate = 1.5 x average day demand rate

peak hour demand rate = 1.8 x maximum day demand rate

Appendix A Potable Water Servicing

A.2 FIRE FLOW REQUIREMENTS PER FUS GUIDELINES

FUS Fire Flow Calculation Sheet (2020)

Stantec Project #: 160401657
Project Name: 3718 Greenbank Road

Date: 11/8/2022

Fire Flow Calculation #: 1

Description: Back-to-Back Townhomes (Block 8 / Block 11)

Notes: 3-storey residential block with 2hr Firewall at mid-block

Step	Task				No	tes				Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction		Туре	V - Wood Fro	ame / Type I\	/-D - Mass Tir	mber Constru	uction		1.5	-
	Determine Effective Floor Area		Sum	of All Floor	Areas					-	-
2	Determine Effective Floor Area	238	288	288	0	0	0	0	0	814	-
3	Determine Required Fire Flow			(F = 220 x C	x A ^{1/2}). Rour	nd to nearest	1000 L/min		•	-	9000
4	Determine Occupancy Charge					-15%	7650				
			None Non-Standard Water Supply or N/A								
_	Determine Continue De du estica			Non-	-Standard Wo	iter Supply o	r N/A			0%	0
5	Determine Sprinkler Reduction			1	Not Fully Supe	ervised or N/	A			0%	0
				% (Coverage of	Sprinkler Syst	em			0%	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)		of Adjacent all	Firewall / Sprinklered ?	-	-
	Delever's also see for Forest and	North	10.1 to 20	13.5	3	41-60	Тур	e V	NO	12%	
6	Determine Increase for Exposures (Max. 75%)	East	3.1 to 10	20.8	3	61-80	Тур	e V	NO	18%	2601
		South	20.1 to 30	13.5	3	41-60	Тур	e V	NO	4%	2601
		West	0 to 3	20.8	3	61-80	Тур	e V	YES	0%	
				Total Requ	ired Fire Flow	in L/min, Ro	unded to Ne	arest 1000L/	min		10000
7	Determine Final Required Fire Flour						166.7				
′	Determine Final Required Fire Flow				Required			2.00			
					Required	d Volume of I	Fire Flow (m ³)			1200

Appendix A Potable Water Servicing

A.3 HYDRAULIC MODELLING RESULTS

Hydraulic Model Results - Average Day (AVDY)

Junction Results

ID	Demand	Elevation	Head	Pres	sure
IU	(L/s)	(m)	(m)	(psi)	(Kpa)
0	0.11	105.86	156.10	71.43	492.50
1	0.21	105.99	156.10	71.24	491.19
14	0.21	105.87	156.10	71.40	492.29
2	0.21	105.80	156.10	71.50	492.98
3	0.53	105.38	156.10	72.11	497.18
4	0.21	103.89	156.10	74.21	511.66
5	0.42	103.54	156.10	74.72	515.18

Pipe Results

ID	From	To Node	Length	Diameter	Roughness	Flow	Velocity
ID.	Node	10 Noue	(m)	(mm)	nougililess	(L/s)	(m/s)
1000	1	0	36.17	200	110	-0.43	0.01
1001	2	1	69.94	200	110	-0.22	0.01
1002	3	2	35.12	200	110	-0.17	0.01
1003	4	3	117.50	200	110	0.36	0.01
1004	5	4	35.03	200	110	0.57	0.02
1005	5	7002	45.09	200	110	-0.99	0.03
1008	7000	0	72.04	200	110	0.91	0.03
1013	14	0	69.94	200	110	-0.37	0.01
1014	2	14	36.24	200	110	-0.16	0.00

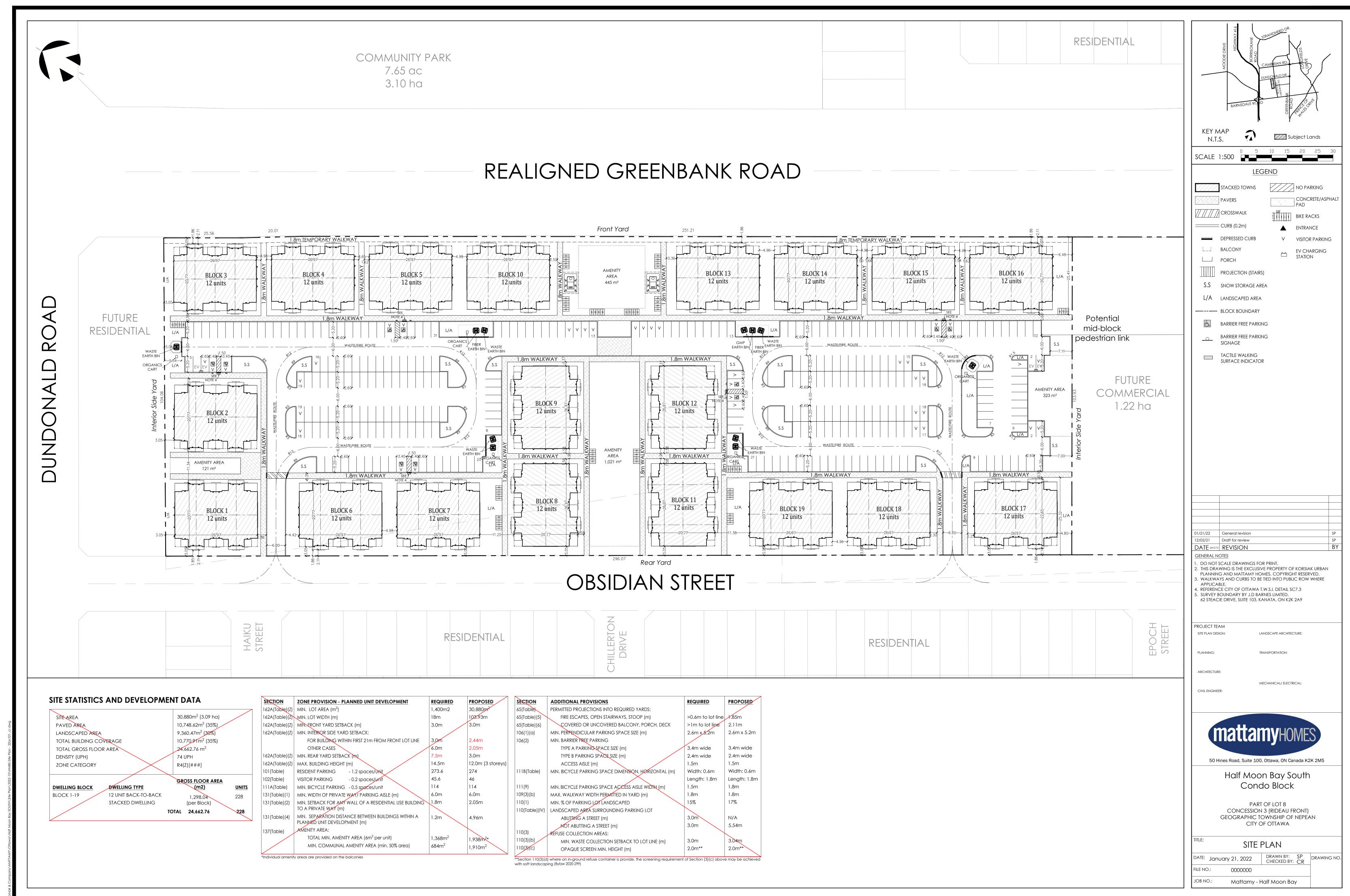
Hydraulic Model Results - Peak Hour (PKHR)

Junction Results

ID	Demand	Elevation	Head	Pres	sure
טו	(L/s)	(m)	(m)	(psi)	(Kpa)
0	0.58	105.86	138.00	45.70	315.09
1	1.16	105.99	138.03	45.55	314.06
14	1.16	105.87	138.06	45.75	315.44
2	1.16	105.80	138.09	45.90	316.47
3	2.89	105.38	138.22	46.69	321.92
4	1.16	103.89	138.77	49.58	341.84
5	2.31	103.54	138.95	50.34	347.08

Pipe Results

ID	From	To Node	Length	Diameter	Roughness	Flow	Velocity
10	Node	10 Noue	(m)	(mm)	nougililess	(L/s)	(m/s)
1000	1	0	36.17	200	110	8.91	0.28
1001	2	1	69.94	200	110	10.07	0.32
1002	3	2	35.12	200	110	21.66	0.69
1003	4	3	117.50	200	110	24.55	0.78
1004	5	4	35.03	200	110	25.71	0.82
1005	5	7002	45.09	200	110	-28.02	0.89
1008	7000	0	72.04	200	110	-17.60	0.56
1013	14	0	69.94	200	110	9.27	0.30
1014	2	14	36.24	200	110	10.43	0.33


Hydraulic Model Results - MXDY+FF (167 L/s)

ID	Static Demand	Static P	ressure	Static Head	Fire-Flow Demand	Residual	Pressure	Available Flow at Hydrant	Availab Pres	le Flow sure
	(L/s)	(psi)	(Kpa)	(m)	(L/s)	(psi)	(Kpa)	(L/s)	(psi)	(Kpa)
0	0.26	42.42	292.48	135.70	167	34.25	236.15	290.43	20.00	137.90
1	0.53	42.23	291.17	135.70	167	31.19	215.05	245.38	20.00	137.90
14	0.53	42.40	292.34	135.70	167	31.07	214.22	242.99	20.00	137.90
2	0.53	42.49	292.96	135.70	167	32.75	225.80	264.55	20.00	137.90
3	1.32	43.10	297.17	135.69	167	32.30	222.70	254.58	20.00	137.90
4	0.53	45.21	311.71	135.70	167	36.59	252.28	300.58	20.00	137.90
5	1.05	45.71	315.16	135.70	167	39.67	273.52	369.35	20.00	137.90

Appendix B Site Plan

Appendix B SITE PLAN

Appendix C Sanitary Servicing

Appendix C SANITARY SERVICING

C.1 SANITARY SEWER DESIGN SHEET

Stantec DATE:
REVISION:
DESIGNED BY:
CHECKED BY:

Job Name

1/12/2022 1 Y: NN Y: DT

SANITARY SEWER DESIGN SHEET (City of Ottawa)

FILE NUMBER: 160401657

DESIGN PARAMETERS

MAX PEAK FACTOR (RES.)= AVG. DAILY FLOW / PERSON 0.60 m/s MINIMUM VELOCITY 4.0 280 l/p/day MIN PEAK FACTOR (RES.)= 2.0 COMMERCIAL 28,000 l/ha/day MAXIMUM VELOCITY 3.00 m/s 2.4 1.5 3.4 2.7 PEAKING FACTOR (INDUSTRIAL): INDUSTRIAL (HEAVY) 55,000 l/ha/day MANNINGS n 0.013 PEAKING FACTOR (ICI >20%): INDUSTRIAL (LIGHT) 35,000 l/ha/day BEDDING CLASS В 28,000 l/ha/day PERSONS / SINGLE INSTITUTIONAL MINIMUM COVER
HARMON CORRECTION FACTOR 2.50 m 0.8 PERSONS / TOWNHOME
PERSONS / APARTMENT INFILTRATION 0.33 l/s/Ha

															PERSONS /	APARTMENT		1.8																	
LOC	ATION					RESIDENTIA	L AREA AND	POPULATION				COMM	ERCIAL	INDUS	TRIAL (L)	INDUST	RIAL (H)	INSTITU	JTIONAL	GREEN /	UNUSED	C+I+I		INFILTRATION	N	TOTAL				PII	PΕ				
AREA ID	FROM	ТО	AREA		UNITS		POP.		LATIVE	PEAK FACT.	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
NUMBER	M.H.	M.H.	(1)	SINGLE	TOWN	APT		AREA	POP.	FACT.	FLOW	(1)	AREA	(1)	AREA	(1)	AREA	(1)	AREA	(1)	AREA	FLOW	AREA	AREA	FLOW	(11-)	()	()			(0/)		PEAK FLOW		(ACT.)
			(ha)					(ha)			(I/S)	(na)	(ha)	(na)	(na)	(ha)	(na)	(na)	(na)	(na)	(ha)	(I/S)	(ha)	(ha)	(l/s)	(I/S)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
R7A	7	6	0.15	0	12	0	32	0.15	32	3.68	0.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.15	0.15	0.1	0.4	27.7	200	PVC	SDR 35	1.00	33.4	1.31%	1.05	0.30
		-		-						0.00	41.			7.00								***			***										
R10A	10	9	0.57	0	39	0	105	0.57	105	3.59	1.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.57	0.57	0.2	1.4	95.1	200	PVC	SDR 35	0.40	21.1	6.68%	0.67	0.31
R12A	12	11	0.53	0	36	0	97	0.53	97	3.60	1.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.53	0.53	0.2	1.3	93.5	200	PVC	SDR 35	0.40	21.1	6.19%	0.67	0.30
	11	9	0.00	U	0	U	0	0.53	97	3.60	1.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.53	0.2	1.3	36.1	200	PVC	SDR 35	0.40	21.1	6.19%	0.67	0.30
R109A	9	8	0.13	0	24	0	65	1.23	267	3.48	3.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.13	1.23	0.4	3.4	41.1	200	PVC	SDR 35	0.40	21.1	16.16%	0.67	0.40
		-		_		_																			•								1011070		
R13A	13	8	0.58	0	48	0	130	0.58	130	3.57	1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.58	0.58	0.2	1.7	64.5	200	PVC	SDR 35	0.40	21.1	7.99%	0.67	0.33
R108A		0	0.57	0	00	0	97	0.00	494	3.38	F 4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.57	2.38	0.8	0.0	117.5	200	D) (0	SDR 35	0.40	04.4	00.040/	0.07	0.40
R108A	8	б	0.57	U	30	U	97	2.38	494	3.38	5.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.57	2.38	0.8	6.2	117.5	200	PVC	SDR 35	0.40	21.1	29.31%	0.67	0.49
G6A	6	4	0.04	0	0	0	0	2.57	527	3.37	5.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.04	0.0	0.08	2.61	0.9	6.6	35.4	200	PVC	SDR 35	0.40	21.1	31.26%	0.67	0.49
R4A	5	4	0.30	0	24	0	65	0.30	65	3.63	8.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.30	0.30	0.1	0.9	68.9	200	HDPE	SDR 35	0.40	21.1	4.08%	0.67	0.27
004		0	0.00	0	0	^	•	2 87	504	0.05	0.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.0	0.00	0.04	4.0	7.4	3.7	200	PVC	SDR 35	0.40	04.4	04.000/	0.07	0.54
G6A	4	2	0.00	U	U	U	U	2.87	591	3.35	6.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.0	0.00	2.91	1.0	7.4	3.7	200	PVC	SDK 33	0.40	21.1	34.88%	0.67	0.51
R3A	3	2	0.17	0	24	0	65	0.17	65	3.63	0.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.17	0.17	0.1	0.8	30.3	200	PVC	SDR 35	0.50	23.6	3.47%	0.74	0.29
																											. ,								
G2A	2	1	0.04	0	0	0	0	3.08	656	3.33	7.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.08	0.0	0.08	3.16	1.0	8.1	29.4	200	PVC	SDR 35	0.40	21.1			0.52
	1	EX MH 3A	0.00	0	0	0	0	3.08	656	3.33	7.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.0	0.00	3.16	1.0	8.1	3.8	200	PVC	SDR 35	0.40	21.1	38.40%	0.67	0.52
																												200							
I	1																																		

Appendix D Stormwater Management

Appendix D STORMWATER MANAGEMENT

D.1 STORM SEWER DESIGN SHEET

(A) Standard		НМЕ	SS Phase	e 7/8				STORM					SIGN P.	ARAMET		(As per C	ity of Otto	awa Guide	olines 20	12)																					
Stantec	DATE:	ION:		2022-1	1-08			(City o				a =	Ĺ	,		1:10 yr	1:100 yr	_		0.013		BEDDING	CLASS =	В																	
		NED BY: KED BY:		AJ DT		FILE NUI	MBER:	1604016	557			b =		6.199 0.810	6.053 0.814	6.014 0.816		MINIMUM TIME OF		2.00 10																					
LOCATION																DF	RAINAGE AI	REA																	PIPE SELE	CTION					
AREA ID	FROM	и то	A	REA	AREA	AREA	AREA	AREA	С	С		С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	. M.H	,	,	(5-YEAR)	(10-YEAR)) (100-YEAI	R) (ROOF)	(2-YEA	AR) (5-YEA	AR) (10-	YEAR) (100-	YEAR)	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR)	- (R) (100-YEAR	AxC (100YR)							(CIA/360)		OR DIAMETE		SHAPE				(FULL)		(FULL)	(ACT)	FLOW
				(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)		(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
	109	10	7 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 0	.00 0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.00	76.81	104.19	122.14	178.56	0.0	0.0	0.0	70.5	300	300	CIRCULAR	PVC		0.50	68.0	0.00%	0.97	0.00	0.00
	1104	A 11	0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 0	.00 0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	0.0	17.3	200	200	CIRCULAR	PVC	-	1.00	33.3	0.00%	1.05	0.00	0.00
	1100) 11	, ,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	n n	.00 0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104 10	122 14	178.56	0.0	0.0	0.0	3.2	200	200	CIRCULAR	PVC		1.00	33.3	0.00%	1.05	0.00	0.00
	1100	, ,,,		7.00	0.00	0.00	0.00	0.00	0.00	0.00	J 0.	.00 0	7.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	70.01	104.15	122.14	170.30	0.0	0.0	0.0	5.2	200	200	CINCOLAR	FVC		1.00	33.3	0.00 /6	1.00	0.00	0.00
L110D, L110B, L110A, L110C	110).74	0.00	0.00	0.00	0.00	0.77	7 0.00	0 0	.00 0	0.00	0.565	0.565	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14		0.0	0.0	120.5	79.9	450	450	CIRCULAR	CONCRETE	-	0.50	210.3		1.28	1.14	1.16
L108A	108	10	7 0).43	0.00	0.00	0.00	0.00	0.82	2 0.00	0 0	.00 0	0.00	0.352	0.917	0.000	0.000	0.000	0.000	0.000	0.000	11.16 11.64	72.61	98.43	115.35	168.58	0.0	0.0	184.9	36.1	525	525	CIRCULAR	CONCRETE		0.50	317.2	58.28%	1.42	1.27	0.47
	107	10	5 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 0	.00 0	0.00	0.000	0.917	0.000	0.000	0.000	0.000	0.000	0.000	11.64 12.10	71.04	96.27	112.82	164.86	0.0	0.0	180.9	45.4	450	450	CIRCULAR	CONCRETE		1.00	297.4	60.82%	1.81	1.65	0.46
	106	10	5 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 0	.00 0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.00	76.81	104.19	122.14	178.56	0.0	0.0	0.0	43.7	300	300	CIRCULAR	PVC		0.50	68.0	0.00%	0.97	0.00	0.00
L105B, L105A, L105C L104A	105 104).40).64	0.00	0.00	0.00	0.00 0.00	0.45 0.75	5 0.00 5 0.00	0 0	.00 0	0.00	0.182 0.481	1.099 1.580	0.000 0.000	0.000 0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	12.10 12.53	69.60 68.29	94.29 92.49	110.48 108.37	161.43 158.33	0.0 0.0	0.0	212.5 299.7	44.7 70.3	450 525	450 525	CIRCULAR CIRCULAR	CONCRETE CONCRETE	:	1.00 1.03	297.4 454.4	71.44% 65.96%	1.81 2.03	1.72 1.89	0.43 0.62
	103/	A 10	3 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 0	.00 0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	13.15 10.00	76.81	104.19	122.14	178.56	0.0	0.0	0.0	17.9	200	200	CIRCULAR	PVC		0.90	31.6	0.00%	0.99	0.00	0.00
	l																					10.00																			
L103A	103	10	1 0).13	0.00	0.00	0.00	0.00	0.75	5 0.00	υ 0	.00 0	0.00	0.101	1.681	0.000	0.000	0.000	0.000	0.000	0.000	13.15 13.43	66.51	90.06	105.50	154.12	0.0	0.0	310.5	32.0	525	525	CIRCULAR	CONCRETE		1.00	448.7	69.22%	2.01	1.89	0.28
L102A	102	10	1 0).56	0.00	0.00	0.00	0.00	0.85	5 0.00	0 0	.00 0	0.00	0.472	0.472	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.62	76.81	104.19	122.14	178.56	0.0	0.0	100.7	62.9	300	300	CIRCULAR	PVC		1.50	117.8	85.55%	1.67	1.68	0.62
L101A	101 100	10 EX MH		0.02	0.00	0.00	0.00	0.00	0.74	4 0.00 0 0.00	-		0.00	0.016 0.000	2.169 2.169	0.000	0.000 0.000	0.000	0.000	0.000 0.000	0.000	13.43 13.82 13.95	65.74 64.70	88.99 87.57	104.25 102.57		0.0 0.0	0.0	396.0 389.7	36.2 11.3	675 675 675	675 675 675	CIRCULAR	CONCRETE		0.50 0.46	620.1 595.8	63.86% 65.42%	1.68 1.61	1.55 1.50	0.39 0.13

Appendix D Stormwater Management

D.2 SAMPLE PCSWMM INPUT (100YR CHICAGO)


```
[TITLE]
 ;;Project Title/Notes
 [OPTIONS]
;;Option Value
FLOW_UNITS LPS
INFILTRATION HORTON
FLOW_ROUTING DYNWAVE
LINK_OFFSETS ELEVATION
MIN_SLOPE 0
 MIN_SLOPE 0
ALLOW_PONDING YES
SKIP_STEADY_STATE NO
START_DATE 07/23/2009
START_TIME 00:00:00
REPORT_START_DATE 07/23/2009
REPORT_START_TIME 00:00:00
END_DATE 07/23/2009
END_TIME 12:00:00
SWEEP_START 01/01
SWEEP_END 12/31
DRY_DAYS 0
REPORT_STEP 00:01:00
WET_STEP 00:01:00
DRY_STEP 00:01:00
ROUTING_STEP 1
RULE_STEP 00:00:00
 INERTIAL DAMPING
                                        PARTIAL
 NORMAL_FLOW_LIMITED BOTH
 FORCE_MAIN_EQUATION H-W
SURCHARGE_METHOD Slot
VARIABLE_STEP 0
LENGTHENING_STEP 0
MIN_SURFAREA 0
MAY_TRIALS 8
HEAD_TOLERANCE 0.0015
SYS_FLOW_TOL 5
LAT_FLOW_TOL 5
MINIMUM_STEP 0.05
THREADS 6
 [EVAPORATION]
 ;;Data Source Parameters
 ;;-----
 CONSTANT 0.0
 DRY_ONLY
 [RAINGAGES]
;;Name Format Interval SCF Source
```

Raingage1

Raingage1

105C

108A

[SUBCATCHMENTS]

L105C;0.82

L108A

;;;0.74								
L101A	Raingage1	101A	0.020957	77.1	23.286	2.6	0	
;0.85 L102A	Raingage1	102A	0.555529	92 9	222.212	3.1	0	
;0.75	Raingagei					J.1		
L103A;0.75	Raingage1	103A	0.134436	78.6	103.412	3.3	0	
L104A	Raingage1	104A	0.641173	78.6	267.155	2.2	0	
;0.55 L105A	Raingage1	105A	0.111952	50	46.647	2.5	0	
;0.45	3 3							
L105B	Raingage1	105B	0.231421	35.7	100.618	3.5	0	

0.057701 12.9 22.193 3

0.429124 88.6 186.576 1.5

;;Name Rain Gage Outlet Area %Imperv Width %Slope CurbLen SnowPack

;0.69	D =	1	1103		0 107107 7	0	77 07	2	0		
L110A ;0.75	ка	ingage1	110A		0.187127 7	U	77.97	2	U		
L110B	Ra	ingage1	110B		0.052601 7	8.6	27.685	2.6	6 0		
;0.81											
L110C	Ra	ingage1	110C		0.374217 8	7.1	143.93	3 1.6	6 0		
;0.75	Do	inanan1	110D		0.124195 7	0 6	95.535	5 2.7	7 0		
L110D;0.50	Ra	ingage1	1100		0.124195 /	8.6	95.535) ∠.	/ 0		
UNC-1	Ra	ingage1	Obsidia	n St-1	0.043512 4	2.9	145.04	1 3	0		
;0.25				_							
UNC-2	Ra	ingage1	Greenba	nk_Rd	0.076099 7	.1	253.66	53 3	0		
;0.38	D =	1	01	- C+ 1	0 047000 0	E 7	150 00	-	0		
UNC-3	ка	ingage1	UDSIGIA	n_st-1	0.04/989 2	5./	159.96	3 3	0		
[SUBAREAS]											
;;Subcatchmen	t.	N-Imperv	N-Perv	S-Impe	rv S-Pe	rv	PctZe	ro	RouteTo	PctRouted	
;;											
L101A		0.013	0.25	1.57	4.67		0		OUTLET		
L102A		0.013	0.25	1.57	4.67		0		OUTLET		
L103A		0.013	0.25	1.57	4.67		0		OUTLET		
L104A		0.013	0.25	1.57	4.67		0		OUTLET		
L105A		0.013	0.25	1.57	4.67		0		OUTLET		
L105B		0.013	0.25	1.57	4.67		0		OUTLET		
L105C		0.013	0.25	1.57	4.67		0		OUTLET		
L103C		0.013	0.25	1.57	4.67		0		OUTLET		
L110A		0.013	0.25	1.57	4.67		0		OUTLET		
L110B		0.013	0.25	1.57	4.67		0		OUTLET		
L110C		0.013	0.25	1.57	4.67		0		OUTLET		
L110D		0.013	0.25	1.57	4.67		0		OUTLET		
UNC-1		0.013	0.25	1.57	4.67		0		OUTLET		
UNC-2		0.013	0.25	1.57	4.67		0		OUTLET		
UNC-3		0.013	0.25	1.57	4.67		0		OUTLET		
[INFILTRATION]										
;;Subcatchmen	t	Param1	Param2	Param3	Para	m4	Param!	5			
;;											
L101A		76.2	13.2	4.14	7		0				
L102A		76.2	13.2	4 1 4	7		0				
			13.4	4.14	/		U				
				4.14 4.14	7 7						
L103A		76.2	13.2	4.14	7		0				
L103A L104A		76.2 76.2	13.2 13.2	4.14 4.14	7 7		0				
L103A L104A L105A		76.2 76.2 76.2	13.2 13.2 13.2	4.14 4.14 4.14	7 7 7		0 0 0				
L103A L104A L105A L105B		76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14	7 7 7 7		0 0 0 0				
L103A L104A L105A L105B L105C		76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14	7 7 7 7 7		0 0 0 0				
L103A L104A L105A L105B L105C L108A		76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14	7 7 7 7 7		0 0 0 0 0				
L103A L104A L105A L105B L105C L108A L110A		76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7		0 0 0 0 0 0				
L103A L104A L105A L105B L105C L108A L110A L110B		76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7		0 0 0 0 0 0				
L103A L104A L105A L105B L105C L108A L110A L110B L110C		76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7		0 0 0 0 0 0 0				
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D		76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7		0 0 0 0 0 0 0 0				
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1		76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7		0 0 0 0 0 0 0 0				
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1		76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7		0 0 0 0 0 0 0 0 0				
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1		76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7		0 0 0 0 0 0 0 0				
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1		76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7		0 0 0 0 0 0 0 0 0				
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3		76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7		0 0 0 0 0 0 0 0 0				
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3		76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7	Gate	0 0 0 0 0 0 0 0 0 0	oute 1	Γο		
L103A L104A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;;		76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7	Gate	0 0 0 0 0 0 0 0 0 0	oute 1	Γο		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;;;Null Structu	 re	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7	Gate	0 0 0 0 0 0 0 0 0 0	oute 1	Γο		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;;;Null Structures	 re	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7	Gate 	0 0 0 0 0 0 0 0 0 0	oute 1	Γο		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;; ;Null Structu EX_109 Greenbank Rd	 re	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7		0 0 0 0 0 0 0 0 0 0	oute 1	Го 		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;; ;Null Structu EX_109 Greenbank Rd	 re	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7	NO	0 0 0 0 0 0 0 0 0 0	oute 1	Го		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;; ;Null Structu EX_109 Greenbank Rd	 re	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7	NO NO	0 0 0 0 0 0 0 0 0 0	oute 1	Γο		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;;;Null Structu EX_109 Greenbank_Rd Obsidian_St_2 Obsidian_St_3	 re	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7	NO NO NO	0 0 0 0 0 0 0 0 0 0	oute 1	Го		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;; ;Null Structu EX_109 Greenbank Rd	 re	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7	NO NO NO NO	0 0 0 0 0 0 0 0 0 0	oute 1	Γο		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;;;Null Structu EX_109 Greenbank_Rd Obsidian_St_2 Obsidian_St_3	 re	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7	NO NO NO NO	0 0 0 0 0 0 0 0 0 0	oute 1	Γο		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;; ;Null Structu EX_109 Greenbank_Rd Obsidian_St_2 Obsidian_St_1 [STORAGE]	 re	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 Type FREE FREE FREE FREE FREE FREE FREE FR	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7	NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0			Psi Ksat	IMD
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;; ;Null Structu EX_109 Greenbank_Rd Obsidian_St_2 Obsidian_St_3 Obsidian_St-1 [STORAGE] ;;Name ;;	 re	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7	NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0			Psi Ksat	
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;; ;Null Structu EX_109 Greenbank_Rd Obsidian_St_2 Obsidian_St_3 Obsidian_St-1 [STORAGE] ;;Name ;;	re	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 Curve Name	NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0	N/A	Fevap		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;; ;Null Structu EX_109 Greenbank_Rd Obsidian_St_2 Obsidian_St_3 Obsidian_St-1 [STORAGE] ;;Name ;;	re	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 Curve Name	NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0	N/A	Fevap		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;; ;Null Structu EX_109 Greenbank_Rd Obsidian_St_2 Obsidian_St_3 Obsidian_St-1 [STORAGE] ;;Name ;;	Elev. 97.27	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 Type FREE FREE FREE FREE FREE FREE FREE FR	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NO NO NO NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 0 0	Fevap		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;; ;Null Structu EX_109 Greenbank_Rd Obsidian_St_2 Obsidian_St_3 Obsidian_St-1 [STORAGE] ;;Name ;;	Elev. 97.27	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 Type FREE FREE FREE FREE FREE FREE FREE FR	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NO NO NO NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 0 0	Fevap 0 0		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;; ;Null Structu EX_109 Greenbank_Rd Obsidian_St_2 Obsidian_St_3 Obsidian_St-1 [STORAGE] ;;Name ;; 100 101 ;CB 101A 102	Elev. 97.27	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 Type FREE FREE FREE FREE FREE FREE FREE FR	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NO NO NO NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 0 0	Fevap 0 0		
L103A L104A L105A L105B L105C L108A L110A L110B L110C L110D UNC-1 UNC-2 UNC-3 [OUTFALLS] ;;Name ;; ;Null Structu EX_109 Greenbank_Rd Obsidian_St_2 Obsidian_St_3 Obsidian_St-1 [STORAGE] ;;Name ;; [STORAGE] ;;Name ;;	Elev. 97.27 97.71 101.8 98.07	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NO NO NO NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 0 0	Fevap 0 0		

L03 :CB	98.19 5.78		FUNCTIONAL		0	1.13		0		
L03A L04 ∶CB	102.23 1.72 98.88 6.02		TABULAR FUNCTIONAL	103A 0	0	1.13	0	0		
	102.66 1.69	0	TABULAR	104A			1	0		
L04A-Dummy	102.66 1.69 102.861 1.48		FUNCTIONAL	0.1	0	0	1	0		
105 :1200mm	99.41 5.95		FUNCTIONAL		0	1.13		0		
LOSA LOSB	103.32 2.03 102.53 1.87		TABULAR FUNCTIONAL	105A 0	0	1.13	0 1	0		
:CB L05C :1200mm	103.82 1.73	0	TABULAR	105C			0	0		
106	101.5 3.76	0	FUNCTIONAL	0	0	1.13	0	0		
108	101.5 3.76 99.89 5.99 99.74 5.93	0 0	FUNCTIONAL FUNCTIONAL		0	1.13 1.13		0		
:CB LO8A	104 15 1 55	. 0	TABIII.AR	108A			0	0		
108A-Dummy	104.15 1.55 104.351 1.34 100.31 5.69 100.14 5.62	9 0	TABULAR FUNCTIONAL FUNCTIONAL FUNCTIONAL	0.1	0	0	1	0		
109	100.31 5.69	0	FUNCTIONAL	0	0	1.13		0		
10	100.14 5.62	2 0	FUNCTIONAL	0	0	1.13	0	0		
CB 10A CB	104.27 1.73	0	TABULAR	110A			0	0		
	104.05 1.73	0	TABULAR	110B			0	0		
	103.97 1.73 104.171 1.52	0		110C			0	0		
:CB			FUNCTIONAL		0	0	1	0		
L10D L11	104.34 1.73 102.35 2.74	0	TABULAR FUNCTIONAL	110D 0	0	1.13	0	0		
[CONDUITS]	D N. l.			T 1 h	D l		T - 0.5.5.	0.1055		71.
MaxFlow			ode	-	_	iess	InOffse	et OutOff:	set Init	:F.TOM
; 										
.01-100	101	100		36.236	0.013		99.36	99.17	0	0
01A-Obsidian_		Obsi	dian_St_3	16.5	0.013		103.35	103.02	0	0
.01-EX_109							99.14			0
102-101	102	101		62.924	0.013		100.67			0
102A-101A	102A	101A		9.25	0.013		103.72			0
.02A-Umb .03-101	102A-Dumm 103	y 102A 101		100 32.026	0.013		102.191			0
103-101 103A-101A	103A	101 102A		26	0.013		99.83 103.85			0
104-103	104	103		70.269	0.013		100.61	99.89		0
L04A-104B	104A	102A		12.61	0 013		104 35	103 72		0
L04A-Umb	104A-Dumm	y 104A		80	0.013		102.861		0	0
105-104	105	104		44.683	0.013		101.13	100.68	0	0
05A-104A	105A			80	0.013					0
	105B	111		59.5	0.013		102.53			0
105B-Obsidian_			_	5	0.013		104.4			0
L05C-104A L06-105	105C 106	104A 105		64.3 43.7	0.013		105.25	104.35		0
.07-105	107	105		45.352	0.013		101.5	101.28 101.16		0
107 103	108	107		36.1	0.013		101.72	101.54		0
.08A-Umb	108A-Dumm			68	0.013		104.351			0
109-107	109	107		70.451	0.013		102.11	101.76		0
10-108	110	108		79.888	0.013		102.19	101.79		0
l10B-Obsidian_			dian_St_2		0.013		105.68			0
	110C	110B		5	0.013		105.7			0
.10C-Umb .10D-110B	110C-Dumm 110D	y 110C 110B		48 9.63	0.013		104.171 105.94			0 0
[ORIFICES]										
;;Name ;;	From Noc			Туре		Offse	et	Qcoeff 	Gated	CloseTim
, .02A-01	102A	10		SIDE	_	101.9	9	0.572	NO	0
L03A-01	103A	10		SIDE		102.2		0.572	NO	0
L04A-01	104A) 4	SIDE		102.6		0.572	NO	0
	105C	10		SIDE		103.8		0.572	NO	0
L05C-01	108A	10		SIDE		104.1		0.572	NO	0
			. 0	SIDE		104.2		0.572	NO	0
.08A-01	110A							0.572	NO	0
.08A-01 .10A-01	110A 110C	11	.0	SIDE		103.9	, ,	0.372	INO	U
105C-01 108A-01 110A-01 110C-01 110D-01				SIDE SIDE		103.9		0.572	NO	0

08A-110C 10A-110D	108A 110A	110C 110D	TRAPEZOIDAL TRANSVERSE	105.57 106	1.38 1.38		0	0	YES YES
OUTLETS]				_					
;Name ;	From Node	To Node	Offset	Туре		QTable/Qd	coeff 	Qexpon	Gated
01A-01	101A	101	101.89	TABUL	AR/HEAD	IPEX-90			NO
05A-01 10B-01	105A 110B	105 110	103.32 104.05	TABUL	AR/HEAD AR/HEAD				NO NO
102 01	1100	110	101.00	1112011	int, iidiid	11111 30			110
XSECTIONS]									
;Link	Shape	Geom1	Geom2	Ge	eom3	Geom4	Barı	rels	Culvert
; 01-100	CIRCULAR	0.675	0	0		0	 1		
	st 3 IRREGULA		1.4 X-Fall 0	0		0	1		
01-EX_109	CIRCULAR	0.675	_ 0	0		0	1		
02-101	CIRCULAR	0.3	0	0		0	1		
02A-101A 02A-Umb	IRREGULAR CIRCULAR	7.9_ROW_1. 0.9	.4_X-Fall 0 0	0		0	1 1		
03-101	CIRCULAR	0.525	0	0		0	1		
03A-101A	IRREGULAR	6.40_ROW_2	2.0_X-Fall 0	0		0	1		
04-103	CIRCULAR	0.525	0	0		0	1		
04A-104B 04A-Umb	IRREGULAR CIRCULAR	6.40_ROW_1 0.9	1.6_X-Fall 0 0	0		0	1 1		
05-104	CIRCULAR	0.9	0	0		0	1		
05A-104A	IRREGULAR		1.3_X-Fall 0	0		0	1		
)5B-111	CIRCULAR	0.9	_ 0	0		0	1		
	_St_1 IRREGULA		1.3_X-Fall 0	0		0	1 1		
05C-104A 06-105	IRREGULAR CIRCULAR	0.3	1.3_X-Fall 0 0	0		0	1		
07-105	CIRCULAR	0.45	Ö	0		0	1		
08-107	CIRCULAR	0.525	0	0		0	1		
08A-Umb	CIRCULAR	0.9	0	0		0	1 1		
09-107 10-108	CIRCULAR CIRCULAR	0.3 0.45	0	0		0	1		
	_St_2 IRREGULA		2.3_X-Fall 0	0		0	1		
10C-110B	IRREGULAR	6.40_ROW_0	0.6_X-Fall 0	0		0	1		
10C-Umb	CIRCULAR	0.9	0	0		0	1		
10D-110B 02A-01	IRREGULAR CIRCULAR	0.40_ROW_0	0.6_X-Fall 0 0	0		0	1		
03A-01	CIRCULAR	0.102	0	0		0			
04A-01	CIRCULAR	0.178	0	0		0			
05C-01	CIRCULAR	0.083	0	0		0			
08A-01 10A-01	CIRCULAR CIRCULAR	0.108 0.127	0	0		0			
10C-01	CIRCULAR	0.127	0	0		0			
10D-01	CIRCULAR		0	0		0			
11-01 087-110C	CIRCULAR TRAPEZOIDA		0 6.4	0		0			
08A-110C 10A-110D	TRAPEZOIDA RECT OPEN	0.1	6.4	0		0			
	- ata in HEC-2 : 0.025	format							
1 11.6_ROW_ R 0.198 R 0.3	1.3 X-Fall 7	-5.8 -5.8	5.8	0.0 5.8	0.0 0.075	0.0	0 0.15	.0 5	0.0
C 0.025			10 0	0	0 0	0 0	0 0	0	0
	7 0 0.15			.5	0.0 0.13		0.0	1	.0 0
1 14.75_ROW	0.13		J I	• •	0.10	J. /J	J	Τ,	•
l 14.75_ROW R 0.2	10 0.35								
1 14.75_ROW R 0.2	10 0.35								
1 14.75_ROW R 0.2 R 0.15	0.025 0.013	3							
1 14.75_ROW R 0.2 R 0.15 C 0.025 1 18.00_ROW	0.025 0.013	3 4.75		.0		0.0	0.0		.0
1 14.75_ROW R 0.2 R 0.15 C 0.025 1 18.00_ROW R 0.35	0.025 0.013 7 0 0.15	3 4.75 4.75		.0 .75		0.0	0.0		.0 3.25
1 14.75_ROW R 0.2 R 0.15 C 0.025 1 18.00_ROW R 0.35 R 0.15	0.025 0.013	3 4.75							
1 14.75_ROW R 0.2 R 0.15 C 0.025 1 18.00_ROW R 0.35 R 0.15	0.025 0.013 7 0 0.15 13.25 0.35	4.75 4.75 18							
14.75_ROW 0.2 0.15 0.025 18.00_ROW 0.35 0.15	0.025 0.013 7 0 0.15 13.25 0.35 0.025 0.013	4.75 4.75 18 3	9 0		0.13		0	13	

; NC 0.025 0. X1 6.40_ROW_0. GR 0.15 -3		-3.2 -3.2	3.2 0.02	0.0	0.0	0.0	0.0	0.0
NC 0.025 0. X1 6.40 ROW 1. GR 0.15 -3	025 0.013 2_X-Fall 5 .2 0	-3.2 -3.2	3.2	0.0	0.0	0.0	0.0	0.0
NC 0.025 0. X1 6.40_ROW_1. GR 0.213 -5 GR 0.24 3.	4_X-Fall 7 .3 0.15	-3.2 -3.2 4.8	3.2	0.0	0.0 0.045	0.0	0.0	0.0
NC 0.025 0. X1 6.40_ROW_1. GR 0.15 -3	025 0.013 6_X-Fall 5 .2 0	-3.2 -3.2	3.2 0.05	0.0	0.0	0.0	0.0 0.25	0.0
NC 0.025 0. X1 6.40 ROW 2. GR 0.216 -5 GR 0.28 3.	025 0.013 0_X-Fall 7 .4 0.15 2 0.328	-3.2 -3.2 4.8	3.2	0.0	0.0 0.065	0.0	0.0	0.0
NC 0.025 0. X1 6.40_ROW_2. GR 0.267 -7 GR 0.3 3.	3_X-Fall 7 .1 0.15	-3.2 -3.2	3.2	0.0	0.0 0.075	0.0	0.0 0.15	0.0
NC 0.025 0. X1 7.9_ROW_1.4 GR 0.15 -3	025 0.013 _X-Fall 5 .95 0	-3.95 -3.95	3.95 0.055	0.0	0.0 0.11	0.0 3.95	0.0 0.26	0.0 3.95
[LOSSES]								
, , <u> </u>	Kentry	Kexit	Kavg	Flap (Jate Seej	page		
;;Link ;;		Kexit 	Kavg 			page 		
101-100	0	0.157	0	Flap (NO NO	0	page 		
101-100 101-EX_109 102-101	0 0 0	0.157 0.168 1.344	0 0 0	NO NO	0 0 0	page 		
101-100 101-EX_109 102-101 103-101	0 0 0 0	0.157 0.168 1.344 0.021	0 0 0	NO NO NO	0 0 0 0	page 		
101-100 101-EX_109 102-101	0 0 0	0.157 0.168 1.344 0.021 1.344 0.021	0 0 0 0 0	NO NO	0 0 0	page 		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105	0 0 0 0 0 0	0.157 0.168 1.344 0.021 1.344 0.021 1.344	0 0 0 0 0 0	NO NO NO NO NO NO NO	0 0 0 0 0	page 		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105	0 0 0 0 0 0	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021	0 0 0 0 0 0	NO NO NO NO NO NO NO NO NO	0 0 0 0 0 0	page 		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107	0 0 0 0 0 0 0	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344	0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page 		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105	0 0 0 0 0 0	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021	0 0 0 0 0 0	NO NO NO NO NO NO NO NO NO	0 0 0 0 0 0	page 		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108	0 0 0 0 0 0 0	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021	0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0 0	page 		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name	0 0 0 0 0 0 0	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021	0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page 		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344	0 0 0 0 0 0 0 0 0 0 0 7-Value	NO	0 0 0 0 0 0 0	page 		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name	0 0 0 0 0 0 0	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344	0 0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page 		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0 Type 	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 X-Value	0 0 0 0 0 0 0 0 0 0 0 0 Y-Value	NO	0 0 0 0 0 0 0	page 		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344	0 0 0 0 0 0 0 0 0 0 0 7-Value	NO	0 0 0 0 0 0 0	page 		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0 Type 	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 0.000 0.1000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0 Type 	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 X-Value 0 1000 0 0.1 0.2 0.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0 Type 	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.300 0.000 0.1 0.2 0.3 0.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0 Type 	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 X-Value 0 1000 0 0.1 0.2 0.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0 Type 	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.300 0.000 0.1 0.2 0.3 0.4 0.5 0.6 0.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0 Type 	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 0.000 0.000 0.1000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0 Type 	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.300 0.000 0.1 0.2 0.3 0.4 0.5 0.6 0.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0 Type 	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 X-Value 0 1000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0 Type 	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 X-Value 0 1000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0 Type 	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 X-Value 0 1000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page		
101-100 101-EX_109 102-101 103-101 104-103 105-104 106-105 107-105 108-107 109-107 110-108 [CURVES] ;; Name ;;	0 0 0 0 0 0 0 0 0 0 0 Type 	0.157 0.168 1.344 0.021 1.344 0.021 1.344 0.021 1.344 0.021 1.344 X-Value 0 1000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO	0 0 0 0 0 0 0	page		

IPEX-105		1.7 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5	12.77 13.14 13.5 13.85 14.19 14.52 14.85 15.17 15.48 15.79 16.09 16.39 16.68 17.24 17.52 17.79 18.06 18.32 19.34 19.59 19.34 19.59 19.83 20.07 20.35 20.75 20.35 20.75 20.16 21.24 21.46 21.68 21.9
IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4	0 0.42 0.59 0.73 0.85 1.04 1.13 1.21 1.28 1.35 1.42 1.48 1.93 1.97 2.02 2.07 2.11 2.16 2.2 2.24 2.28 2.32 2.37 2.4 2.44 2.48 2.52

IPEX-40		3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	2.56 2.59 2.63 2.67 2.7 2.74 2.77 2.8 2.84 2.87 2.9 2.94 2.97 3 3.03 3.06
IPEX-50 IPEX-5	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 9 1 1.2 1.3 1.4 5 1.6 7 1.8 1.9 2 1.2 2.3 2.5 6 2.7 2.8 9 3 3.1 2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 2 4.3 4.4 5 4.6 7 4.8 9 5	0 0.73 1.02 1.24 1.43 1.59 1.75 1.88 2.02 2.14 2.25 2.36 2.47 2.57 2.67 2.85 2.94 3.03 3.11 3.27 3.35 3.42 3.57 3.42 3.57 3.42 3.57 3.98 4.04 4.11 4.23 4.29 4.35 4.41 4.52 4.63 4.69 4.74 4.85 4.96 5.06 6.06 6.06 6.06 6.06 6.06 6.06 6.0
IPEX-55	Rating	0	0

IPEX-80		1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5	7.88 8.08 8.28 8.48 8.67 8.85 9.04 9.21 9.39 9.56 9.73 9.9 10.06 10.22 10.38 10.54 10.69 11.14 11.29 11.43 11.57 11.71 11.85 11.99 12.26 12.39 12.52 12.65 12.78
IPEX-90	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6	0 2.21 3.17 3.9 4.51 5.05 5.54 5.99 6.41 6.8 7.17 7.52 7.86 8.19 8.5 8.8 9.09 9.37 9.64 9.91 10.17 10.42 10.66 10.9 11.14 11.37 11.6 11.82 12.04 12.25 12.46 12.67 13.67 13.27 13.46 13.65

IPEX-90		3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	13.84 14.03 14.21 14.4 14.58 14.75 14.93 15.1 15.27 15.44 15.61 15.77 15.94 16.1
101A	Storage	0	0.36
101A		1.41	0.36
101A		1.46	13.8
101A		1.76	13.81
102A	Storage	0	0.36
102A		1.38	0.36
102A		1.73	552.6
102B	Storage	0	0.36
102B		1.38	0.36
102B		1.63	113.2
102B		1.73	113.21
103A	Storage	0	0.36
103A		1.37	0.36
103A		1.62	328.9
103A		1.72	328.91
104A	Storage	0	0.36
104A		1.34	0.36
104A		1.69	773.2
104B	Storage	0	0.36
104B		1.38	0.36
104B		1.63	140.5
104B		1.73	140.51
105A	Storage	0	0.36
105A		1.68	0.36
105A		1.99	196.5
105A		2.03	196.51
105C	Storage	0	0.36
105C		1.38	0.36
105C		1.43	12
105C		1.73	12.01
108A	Storage	0	0.36
108A		1.2	0.36
108A		1.55	900.3
110A	Storage	0	0.36
110A		1.38	0.36
110A		1.73	595.4
110B	Storage	0	0.36
110B		1.38	0.36
110B		1.63	98.4
110B		1.73	98.41
110C	Storage	0	0.36
110C		1.38	0.36
110C		1.73	863.6

110D 110D 110D 110D	Storage	0 1.38 1.6 1.73	0.36 0.36 256.9 256.91
C655B-V C655B-V C655B-V	Storage	0 1 1.001 3	0 0 0 0
C664B-V C664B-V C664B-V	Storage	0 1 1.001 3	38.5 38.5 0
C666B-V C666B-V C666B-V	Storage	0 1 1.001 3	49.9 49.9 0
C668A-V C668A-V C668A-V C668A-V	Storage	0 1 1.001 3.17	11.6 11.6 0
C719A-V C719A-V C719A-V C719A-V	Storage	0 1 1.001 3	7.2 7.2 0
C724B-V C724B-V C724B-V C724B-V	Storage	0 1 1.001 3	25.2 25.2 0
C726B-V C726B-V C726B-V C726B-V	Storage	0 1 1.001 3	12.3 12.3 0
C731C-V C731C-V C731C-V C731C-V	Storage	0 1 1.001 3	26.12 26.12 0
[TIMESERIES] ;;Name ;;	Date	Time	Value
002C 002C 002C 002C 002C 002C 002C 002C		0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30 2:40 2:50 3:00	0 2.81 3.5 4.69 7.3 18.21 76.81 24.08 12.36 8.32 6.3 5.09 4.29 3.72 3.72 3.29 2.95 2.46 2.28
002S 002S	07/23/2009 07/23/2009		1.08 1.08

002S 002S <t< th=""><th>07/23/2009 07/23/2009</th><th>00:45:00 01:00:00 01:15:00 01:30:00 01:45:00 02:00:00 02:15:00 02:30:00 02:45:00 03:00:00 03:15:00 03:30:00 04:45:00 04:30:00 04:45:00 05:00:00 05:15:00 05:30:00 05:45:00 06:00:00 06:15:00 07:00:00 07:15:00 07:30:00 07:45:00 08:30:00 08:45:00 08:30:00 09:45:00 08:30:00 09:45:00 09:30:00 09:45:00 09:30:00 09:45:00 09:30:00 09:45:00 09:30:00 09:45:00 10:30:00 11:30:00 11:30:00</th><th>1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.296 1.296 1.296 1.296 1.728 1.728 1.728 1.728 2.592 2.592 3.456 3.456 5.184 5.184 20.736 57.024 7.776 7.776 7.776 3.456 3.456 3.456 2.592 2.592 2.592 2.592 2.592 1.514 0.864 0.864 0.864 0.864 0.864 0.864 0.864</th></t<>	07/23/2009 07/23/2009	00:45:00 01:00:00 01:15:00 01:30:00 01:45:00 02:00:00 02:15:00 02:30:00 02:45:00 03:00:00 03:15:00 03:30:00 04:45:00 04:30:00 04:45:00 05:00:00 05:15:00 05:30:00 05:45:00 06:00:00 06:15:00 07:00:00 07:15:00 07:30:00 07:45:00 08:30:00 08:45:00 08:30:00 09:45:00 08:30:00 09:45:00 09:30:00 09:45:00 09:30:00 09:45:00 09:30:00 09:45:00 09:30:00 09:45:00 10:30:00 11:30:00 11:30:00	1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.296 1.296 1.296 1.296 1.728 1.728 1.728 1.728 2.592 2.592 3.456 3.456 5.184 5.184 20.736 57.024 7.776 7.776 7.776 3.456 3.456 3.456 2.592 2.592 2.592 2.592 2.592 1.514 0.864 0.864 0.864 0.864 0.864 0.864 0.864
005C 005C 005C 005C 005C 005C 005C 005C 005C 005C 005C 005C 005C 005C 005C 005C 005C 005C		0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30 2:40 2:50 3:00	0 3.68 4.58 6.15 9.61 24.17 104.19 32.04 16.34 10.96 8.29 6.69 5.63 4.87 4.3 3.86 3.51 3.22 2.98
005S 005S 005S	07/23/2009 07/23/2009 07/23/2009	00:15:00	1.44 1.44 1.44

005S 005S 005S 005S 005S 005S 005S 005S	07/23/2009 07/23/2009	01:00:00 01:15:00 01:30:00 01:45:00 02:00:00 02:15:00 02:30:00 03:45:00 03:30:00 03:45:00 04:00:00 04:15:00 05:15:00 05:30:00 05:45:00 06:00:00 06:15:00 06:30:00	1.44 1.44 1.44 1.44 1.728 1.728 1.728 1.728 2.304 2.304 2.304 2.304 2.304 3.456 3.456 4.608 4.608 4.608 4.608 4.608 4.608
005s 005s 005s 005s 005s 005s 005s 005s	07/23/2009 07/23/2009	11:00:00 11:15:00 11:30:00 11:45:00	3.456 3.456 3.456 3.456 2.016 2.016 2.016 2.016 2.016 2.016 2.016 2.016 2.016 2.016 2.016 2.015 2.016 2.015 2.016 2.015 2.016 2.015 2.016 2.016 2.016 2.015
010S 010S	07/23/2009 07/23/2009	00:00:00 00:15:00 00:30:00 00:45:00 01:00:00 01:15:00 01:30:00 01:45:00 02:00:00 02:15:00 02:30:00 02:45:00 03:00:00 03:15:00 03:45:00 04:00:00 04:15:00 04:30:00 04:45:00 05:00:00 05:15:00	1.68 1.68 1.68 1.68 1.68 1.68 2.02 2.02 2.02 2.02 2.69 2.69 2.69 2.69 4.03 4.03 5.38 5.38 8.06 8.06 32.26

010S 010S	07/23/2009 07/23/2009	06:00:00 06:15:00 06:30:00 06:45:00 07:00:00 07:15:00 07:30:00 07:45:00 08:00:00 08:15:00 08:30:00 08:45:00 09:00:00 09:15:00 09:30:00 10:15:00 10:30:00 11:15:00 11:30:00 11:45:00	88.70 12.10 5.38 5.38 4.03 4.03 4.03 4.03 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 1.34
022M 022M		0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30 2:40 2:50 3:00 3:10 3:20 3:30 3:40 3:50 4:00	1.334157488 1.539221509 1.829269592 2.273590134 3.046310774 4.747597332 11.83434263 49.91741282 15.64955899 8.035504354 5.409986874 4.096737441 3.311349782 2.789038359 2.416326443 2.136703141 1.918926607 1.744318025 1.601074776 1.48131328 1.379613173 1.292113904 1.215981807 1.149098129
025M 025M 025M 025M 025M 025M 025M 025M 025M 025M 025M 025M 025M 025M 025M 025M 025M		0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 2:00 2:10 2:20 2:30 2:40 2:50 3:00	1.516088055 1.749115351 2.078715445 2.583625152 3.461716789 5.394996968 13.44811663 56.72433275 17.78358976 9.131254948 6.147712357 4.655383456 3.762897479 3.169361772 2.745825503 2.428071751 2.180598417 1.982179574

025M 025M 025M 025M 025M 025M		3:10 3:20 3:30 3:40 3:50 4:00	1.819403154 1.683310546 1.567742242 1.468311255 1.381797508 1.305793328
025s 025s 025s 025s 025s 025s 025s 025s	07/23/2009 07/23/2009	0:15:00 0:30:00 0:45:00 1:00:00 1:15:00 1:30:00 1:45:00 2:00:00 2:15:00 2:30:00 2:45:00 3:30:00 3:15:00 3:30:00 4:00:00 4:5:00 4:30:00 4:45:00 5:00:00 5:15:00 6:30:00 6:45:00 6:30:00 6:45:00 7:00:00 6:45:00 7:15:00 7:45:00 8:30:00 8:45:00 9:30:00 8:45:00 9:30:00 1:15:00 9:30:00 1:15:00 1:15:00 1:15:00 1:15:00 1:15:00 1:15:00 1:15:00 1:15:00 1:15:00 1:15:00 1:15:00 1:15:00 1:15:00	1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98
100C 100C 100C 100C 100C 100C 100C 100C		0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00	0 6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24 13.74 11.06 9.29

100C 100C 100C 100C 100C		2:10 2:20 2:30 2:40 2:50 3:00	8.02 7.08 6.35 5.76 5.28 4.88
100s 100s 100s 100s 100s 100s 100s 100s	07/23/2009 07/23/2009	00:15:00 00:30:00 00:45:00 01:00:00 01:30:00 01:30:00 01:35:00 02:00:00 02:15:00 02:30:00 02:45:00 03:00:00 03:15:00 03:30:00 03:45:00 04:00:00 04:15:00 04:30:00 05:15:00 05:30:00 05:45:00 06:15:00 06:15:00 07:00:00 07:15:00 07:30:00 07:45:00 08:00:00 08:15:00 09:30:00 09:15:00 09:30:00 09:15:00 10:30:00 11:30:00 11:30:00 11:45:00	2.4 2.4 2.4 2.4 2.4 2.4 2.88 2.88 2.88 2.88 2.88 3.84 3.84 3.84 3.84 3.84 3.76 5.76 7.68 7.90
120C 120C 120C 120C 120C 120C 120C 120C		0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00	0 7.26 9.048 12.192 19.164 48.78 214.272 64.86 32.784 21.888 16.488 13.272 11.148

120C 120C 120C 120C 120C 120C		2:10 2:20 2:30 2:40 2:50 3:00	9.624 8.496 7.62 6.912 6.336 5.856
120s 120s 120s 120s 120s 120s 120s 120s	07/23/2009 07/23/2009	0:15:00 0:30:00 0:45:00 1:00:00 1:15:00 1:30:00 1:45:00 2:00:00 2:15:00 2:30:00 2:45:00 3:00:00 3:15:00 3:30:00 4:45:00 4:30:00 4:45:00 5:00:00 5:15:00 5:30:00 6:45:00 6:30:00 6:45:00 6:4	2.88 2.88 2.88 2.88 2.88 2.88 2.88 3.46 3.46 3.46 4.61 4.61 4.61 4.61 4.61 4.61 4.61 4
INPUT YES CONTROLS NO SUBCATCHMENTS A NODES ALL			

[TAGS]

LINKS ALL

 Node
 EX_109
 HMBS_8

 Node
 100
 MN

 Node
 101
 MN

 Node
 101A
 RD

```
102
                                                                                                                                       MN
    Node
                                              102
102A
102A-Dummy
                                                                                                                                    RD

        Node
        102A - Dummy
        RD

        Node
        103 MN
        MN

        Node
        103A RD
        MN

        Node
        104 MN
        MN

        Node
        104A Dummy
        Umbilical

        Node
        104A Dummy
        Umbilical

        Node
        105A RD
        MN

        Node
        105A RD
        NO

        Node
        105B RD
        NO

        Node
        105C RD
        NO

        Node
        105C RD
        NO

        Node
        105 MN
        NO

        Node
        105 MN
        NO

        Node
        107 MN
        NO

        Node
        108 MN
        NO

        Node
        108 MN
        NO

        Node
        108A RD
        NO

        Node
        108A RD
        NO

        Node
        100 MN
        NO

        Node
        110A RD
        NO

        Node
        110A RD
        NO

        Node
        110C Dummy Umbilical

        Node
        110D RD
        RD

        Node
        110D RD

    Node
                                                                                                                              Umbilical
    Node
    [MAP]
    DIMENSIONS 364146.23915 5011263.2806 364407.77185 5011603.0794
    UNITS
                                                                                Meters
     [COORDINATES]
                                                                          X-Coord Y-Coord
    ;;Node
    ;;-----
  FX_109 364165.865 5011507.924 Greenbank_Rd 364332.558 5011462.453 Obsidian_St_2 364280.982 5011312.693 Obsidian_St_3 364167.572 5011509.531 Obsidian_St-1 364200.228 5011436.623 100 364177.152 5011507.353 101 364208.592 5011525.29 101A 364186.694 5011514.922 102 364238.888 5011472.164 102A 364222.806 5011510.555 102A-Dummy 364236.71 5011518.569 103 364236.444 5011541.23
```

103A	364227.194	5011556.94
104	36427.194 364271.443 364246.791 364236.224 364293.705 364285.792 364232.8 364296.962	5011480.22
104A	364246.791	5011484.878
104A-Dummy	364236.224	5011503.65
105	364293.705	5011441.477
105A	364285.792	5011440.8
105B	364232 8	5011413 384
1050	364296 962	501115.301
106	364255 778	5011137.072
107	364232.8 364296.962 364255.778 364316.3 364285.001	5011413.004
107	364310.3	5011384.165
108	364285.001	5011384.105
108A	364306.495	5011381.006
108A-Dummy	364314.458	5011385.649
109	364351.318	5011341.145
110	364324.819	5011314.908
110A	364339.775	5011323.503
110B	364300.626	5011324.07
110C	364321.81	5011355.162
110C-Dummy	364330.421	5011360.104
110D	364326.311	5011312.133
111	364316.3 364285.001 364306.495 364314.458 364351.318 364324.819 364339.775 364300.626 364321.81 364330.421 364326.311 364284.476	5011442.966
[VERTICES]	V. Carand	V. Carand
;;Link	X-Coord	r-Coord
::		
1017 01 111 01	2 264175 050	5011500 706
101A-Obsidian_St	_3 364175.952	5011509.736
101A-Obsidian_St 102A-101A	_3 364175.952 364203.956	5011509.736 5011515.104
101A-Obsidian_St 102A-101A 103A-101A	_3 364175.952 364203.956 364228.889	5011509.736 5011515.104 5011543.528
101A-Obsidian_St 102A-101A 103A-101A 103A-101A	_3 364175.952 364203.956 364228.889 364229.455	5011509.736 5011515.104 5011543.528 5011540.171
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A	_3 364175.952 364203.956 364228.889 364229.455 364227.599	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A	_3 364175.952 364203.956 364228.889 364229.455 364227.599 364221.564	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-101A	_3 364175.952 364203.956 364228.889 364229.455 364227.599 364221.564 364283.906	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A	_3 364175.952 364203.956 364228.889 364229.455 364227.599 364221.564 364283.906 364268.726	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A	_3 364175.952 364203.956 364228.889 364229.455 364227.599 364221.564 364283.906 364268.726 364288.215	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 105C-104A	_3 364175.952 364203.956 364228.889 364229.455 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363 5011473.879
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 105C-104A 110C-110B	_3 364175.952 364203.956 364228.889 364229.455 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536 364315.228	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011474.338 5011473.879 5011337.25
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 105C-104A 110C-110B 110C-110B	_3 364175.952 364203.956 364228.889 364229.455 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536 364315.228 364306.07	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363 5011473.879 5011337.25 5011327.405
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 105C-104A 110C-110B 110C-110B	_3 364175.952 364203.956 364228.889 364229.455 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536 364281.536 364315.228 364306.07 364323.113	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363 5011473.879 5011337.25 5011327.405
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 105C-104A 110C-110B 110C-110B	_3 364175.952 364203.956 364228.889 364229.455 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536 364281.536 364315.228 364306.07 364323.113	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363 5011473.879 5011337.25 5011327.405
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 105C-104A 110C-110B 110C-110B	_3 364175.952 364203.956 364228.889 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536 364315.228 364306.07 364323.113 364317.377	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363 5011473.879 5011337.25 5011327.405 5011313.871 5011323.514 5011325.002
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 105C-104A 110C-110B 110C-110B 110D-110B 110D-110B	_3 364175.952 364203.956 364228.889 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536 364315.228 364306.07 364323.113 364317.377	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363 5011473.879 5011337.25 5011327.405 5011313.871 5011323.514
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 105C-104A 110C-110B 110C-110B 110D-110B 110D-110B	3 364175.952 364203.956 364228.889 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536 364315.228 364306.07 364323.113 364317.377 364315.213	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363 5011473.879 5011337.25 5011327.405 5011313.871 5011323.514 5011325.002
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 105C-104A 110C-110B 110C-110B 110D-110B 110D-110B 110D-110B 110D-110B	3 364175.952 364203.956 364228.889 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536 364315.228 364306.07 364323.113 364317.377 364315.213	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363 5011473.879 5011337.25 5011327.405 5011313.871 5011323.514 5011325.002
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 105C-104A 110C-110B 110C-110B 110D-110B 110D-110B	3 364175.952 364203.956 364228.889 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536 364315.228 364306.07 364323.113 364317.377 364315.213	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363 5011473.879 5011337.25 5011327.405 5011313.871 5011323.514 5011325.002
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 105C-104A 110C-110B 110C-110B 110D-110B 110D-110B 110D-110B 1;;Subcatchment ;;	3 364175.952 364203.956 364228.889 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536 364315.228 364306.07 364323.113 364317.377 364315.213	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363 5011473.879 5011337.25 5011327.405 5011313.871 5011323.514 5011325.002
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 105C-104A 110C-110B 110C-110B 110D-110B 110D-110B 110D-110B 1;;Subcatchment ;;	3 364175.952 364203.956 364228.889 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536 364315.228 364306.07 364323.113 364317.377 364315.213	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363 5011473.879 5011337.25 5011327.405 5011313.871 5011323.514 5011325.002
101A-Obsidian_St 102A-101A 103A-101A 103A-101A 103A-101A 103A-101A 105A-104A 105A-104A 105C-104A 10C-110B 110C-110B 110D-110B 110D-110B 110D-110B 110D-110B 1; Subcatchment ;	3 364175.952 364203.956 364228.889 364227.599 364221.564 364283.906 364268.726 364288.215 364281.536 364315.228 364306.07 364323.113 364317.377 364315.213	5011509.736 5011515.104 5011543.528 5011540.171 5011536.878 5011533.518 5011447.943 5011474.338 5011462.363 5011473.879 5011337.25 5011327.405 5011313.871 5011323.514 5011325.002

3718 GREENBANK ROAD: SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix D Stormwater Management

D.3 SAMPLE PCSWMM OUTPUT (100YR CHICAGO)

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

WARNING 02: maximum depth increased for Node 102A WARNING 02: maximum depth increased for Node 104A WARNING 02: maximum depth increased for Node 105B

Element Count

Number of rain gages 1
Number of subcatchments . . . 15
Number of nodes 33
Number of links 40
Number of pollutants . . . 0
Number of land uses . . . 0

Name Data Source Type Interval
Raingage1 100C INTENSITY 10 min.

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
L101A	0.02	23.29	77.10	2.6000 Raingage1	101A
L102A	0.56	222.21	92.90	3.1000 Raingage1	102A
L103A	0.13	103.41	78.60	3.3000 Raingage1	103A
L104A	0.64	267.15	78.60	2.2000 Raingage1	104A
L105A	0.11	46.65	50.00	2.5000 Raingage1	105A
L105B	0.23	100.62	35.70	3.5000 Raingage1	105B
L105C	0.06	22.19	12.90	3.0000 Raingage1	105C
L108A	0.43	186.58	88.60	1.5000 Raingage1	108A
L110A	0.19	77.97	70.00	2.0000 Raingage1	110A
L110B	0.05	27.68	78.60	2.6000 Raingage1	110B
L110C	0.37	143.93	87.10	1.6000 Raingage1	110C
L110D	0.12	95.53	78.60	2.7000 Raingage1	110D
UNC-1	0.04	145.04	42.90	3.0000 Raingage1	Obsidian St-1
UNC-2	0.08	253.66	7.10	3.0000 Raingage1	Greenbank Rd
UNC-3	0.05	159.96	25.70	3.0000 Raingage1	Obsidian St-1

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
EX 109	OUTFALL	99.09	0.68	0.0	
Greenbank Rd	OUTFALL	0.00	0.00	0.0	
Obsidian St 2	OUTFALL	105.59	0.42	0.0	
Obsidian St 3	OUTFALL	102.98	0.33	0.0	
Obsidian St-1	OUTFALL	0.00	104.60	0.0	
100	STORAGE	97.27	5.96	0.0	
101	STORAGE	97.71	6.00	0.0	
101A	STORAGE	101.89	1.76	0.0	
102	STORAGE	98.07	6.12	0.0	
102A	STORAGE	101.99	2.06	0.0	
102A-Dummy	STORAGE	102.19	1.53	0.0	
103	STORAGE	98.19	5.78	0.0	
103A	STORAGE	102.23	1.72	0.0	

104 104A 104A-Dummy 105 105A 105B 105C 106 107	STORAGE	98.88 102.66 102.86 99.41 103.32 102.53 103.82 101.50 99.89 99.74 104.15	6.02 2.04 1.49 5.95 2.03 2.22 1.73 3.76 5.99 5.93 1.55	0.0 0.0 0.0 0.0 0.0 0.0 0.0
108A-Dummy 109 110 110A 110B 110C 110C-Dummy 110D	STORAGE	104.35 100.31 100.14 104.27 104.05 103.97 104.17 104.34 102.35	1.35 5.69 5.62 1.73 1.73 1.73 1.53 1.73 2.74	0.0 0.0 0.0 0.0 0.0 0.0

Link Summary

Name	From Node	To Node	Type	Length	%Slope Ro	ughness
101-100	101	100	CONDUIT	36.2	0.5243	0.0130
101A-Obsidian_S		Obsidian_St_3	CONDUIT	16.5	2.0004	0.0130
101-EX_109	100	EX_109	CONDUIT	11.3	0.4430	0.0130
102-101	102	$10\overline{1}$	CONDUIT	62.9	1.4940	0.0130
102A-101A	102A	101A	CONDUIT	9.3	4.0032	0.0130
102A-Umb	102A-Dummy	102A	CONDUIT	100.0	0.0010	0.0130
103-101	103	101	CONDUIT	32.0	0.9992	0.0130
103A-101A	103A	102A	CONDUIT	26.0	0.5000	0.0130
104-103	104	103	CONDUIT	70.3	1.0247	0.0130
104A-104B	104A	102A	CONDUIT	12.6	5.0023	0.0130
104A-Umb	104A-Dummy	104A	CONDUIT	80.0	0.0013	0.0130
105-104	105	104	CONDUIT	44.7	1.0071	0.0130
105A-104A	105A	104A	CONDUIT	80.0	1.2001	0.0130
105B-111	105B	111	CONDUIT	59.5	0.3025	0.0130
105B-Obsidian S	t 1 105B	Obsidian St-1	CONDUIT	5.0	3.0014	0.0130
105C-104A	_ 105C	104A	CONDUIT	64.3	1.3998	0.0130
106-105	106	105	CONDUIT	43.7	0.5034	0.0130
107-105	107	105	CONDUIT	45.4	0.9923	0.0130
108-107	108	107	CONDUIT	36.1	0.4986	0.0130
108A-Umb	108A-Dummy	108A	CONDUIT	68.0	0.0015	0.0130
109-107	109	107	CONDUIT	70.5	0.4968	0.0130
110-108	110	108	CONDUIT	79.9	0.5007	0.0130
110B-Obsidian S	t 2 110B	Obsidian St 2	CONDUIT	18.0	0.5000	0.0130
110C-110B	_ 110C	110B	CONDUIT	5.0	0.4000	0.0130
110C-Umb	110C-Dummy	110C	CONDUIT	48.0	0.0021	0.0130
110D-110B	110D	110B	CONDUIT	9.6	2.7009	0.0130
102A-01	102A	102	ORIFICE			
103A-01	103A	103	ORIFICE			
104A-01	104A	104	ORIFICE			
105C-01	105C	105	ORIFICE			
108A-01	108A	108	ORIFICE			
110A-01	110A	110	ORIFICE			
110C-01	110C	110	ORIFICE			
110D-01	110D	110	ORIFICE			
111-01	111	105	ORIFICE			
108A-110C	108A	110C	WEIR			
110A-110D	110A	110D	WEIR			
101A-01	101A	101	OUTLET			
105A-01	105A	105	OUTLET			
110B-01	110B	110	OUTLET			

Cross Section Summary *********

	^ ^ ^ ^ ^	D. 11	E11	IIal	Mass No.		E-11
					Max. No		
Conduit	Shape		area	кац.	width Bar.	reis	FIOW
	CIRCULAR						
101A-Obsidian St	3 6.40 ROW 1.4 X-Fa	11 0.2	9 1.8	2 0.3	20 10.10		1 6668.36
101-EX 109	CIRCULAR	0.68	0.36	0.17	0.68	1	559.48
102-101	CIRCULAR	0.30	0.07	0.07	0.30	1	118.21
102A-101A	7.9 ROW 1.4 X-Fall	0.26	1.62	0.19	7.90		1 8355.90
102A-Umb	7.9_ROW_1.4_X-Fall CIRCULAR CIRCULAR 6.40_ROW_2.0_X-Fall	0.90	0.64	0.23	0.90	1	57.25
103-101	CIRCULAR	0.53	0.22	0.13	0.53	1	429.92
103A-101A	6.40_ROW_2.0_X-Fall	0.33	2.04	0.21	10.20		1 3884.38
1 U 4 - 1 U 3	CIRCULAR	U - 5.3	() - / /	U - 1.5	U - 5.3		4.3.7.3.6
104A-104B	6.40_ROW_1.6_X-Fall CIRCULAR CIRCULAR	0.25	1.28	0.19	6.40		1 7213.46
104A-Umb	CIRCULAR	0.90	0.64	0.23	0.90	1	64.01
105-104	CIRCULAR	0.45	0.16	0.11	0.45	1	286.14
105A-104A	11.6_ROW_1.3_X-Fall CIRCULAR	0.35	3.50	0.24	14.80		1 11453.37
105B-111	CIRCULAR	0.90	0.64	0.23	0.90	1	995.77
105B-Obsidian_St	_1 11.6_ROW_1.3_X-Fa: 11.6_ROW_1.3_X-Fall	11 0.3	5 3.5	0 0.3	24 14.80		1 18112.79
105C-104A	11.6_ROW_1.3_X-Fall	0.35	3.50	0.24	14.80		1 12369.84
106-105	CIRCULAR CIRCULAR	0.30	0.07	0.07	0.30	1	68.62
107-105	CIRCULAR	0.45	0.16	0.11	0.45	1	284.02
108-107	CIRCULAR	0.53	0.22	0.13	0.53	1	303.70
108A-Umb	CIRCULAR	0.90	0.64	0.23	0.90	1	69.43
109-107	CIRCULAR	0.30	0.07	0.07	0.30	1	68.16
110-108	CIRCULAR	0.45	0.16	0.11	0.45	1	201.76
110B-Obsidian_St	_2 6.40_ROW_2.3_X-Fa	11 0.4	2 3.2	3 0.3	23 14.20		1 6514.73
110C-110B	6.40 ROW 0.6 X-Fall	0.19	1.09	0.16	6.40		1 1565.13
110C-Umb	CIRCULAR	0.90	0.64	0.23	0.90	1	82.63
110D-110B	6.40_ROW_0.6_X-Fall	0.19	1.09	0.16	6.40		1 4066.97

Transect	11.6	ROW	1.3	_X-Fall
7 2000				

Area:					
	0.0005	0.0022	0.0048	0.0086	0.0135
	0.0194	0.0264	0.0345	0.0436	0.0539
	0.0652	0.0776	0.0910	0.1056	0.1212
	0.1379	0.1557	0.1745	0.1944	0.2154
	0.2375	0.2606	0.2842	0.3083	0.3329
	0.3579	0.3833	0.4093	0.4356	0.4619
	0.4883	0.5146	0.5410	0.5673	0.5937
	0.6200	0.6463	0.6727	0.6990	0.7254
	0.7517	0.7781	0.8044	0.8310	0.8580
	0.8855	0.9134	0.9418	0.9707	1.0000
Hrad:					
	0.0142	0.0283	0.0425	0.0567	0.0708
	0.0850	0.0992	0.1133	0.1275	0.1417
	0.1558	0.1700	0.1842	0.1983	0.2125
	0.2267	0.2408	0.2550	0.2692	0.2833
	0.2975	0.3187	0.3460	0.3726	0.3985
	0.4238	0.4485	0.4725	0.4964	0.5205
	0.5448	0.5692	0.5936	0.6181	0.6427
	0.6672	0.6918	0.7164	0.7410	0.7657
	0.7903	0.8149		0.8642	0.8883
	0.9117	0.9346	0.9569	0.9787	1.0000
Width:					
	0.0365	0.0729	0.1094	0.1459	0.1824
	0.2188	0.2553	0.2918	0.3282	0.3647
	0.4012	0.4377	0.4741	0.5106	0.5471
	0.5836	0.6200	0.6565	0.6930	0.7294
	0.7659	0.7918	0.8075	0.8232	0.8390
	0.8547	0.8704	0.8861	0.8919	0.8919
	0.8919	0.8919	0.8919	0.8919	0.8919
	0.8919	0.8919	0.8919	0.8919	0.8919

	0.8919	0.8919	0.8922	0.9076	0.9230
	0.9384	0.9538	0.9692	0.9846	1.0000
Transect Area:	14.75_ROW				
	0.0005	0.0020	0.0046	0.0081	0.0127
	0.0182	0.0248	0.0324	0.0411	0.0507
	0.0613	0.0730	0.0857	0.0994	0.1141
	0.1298	0.1465	0.1642	0.1829	0.2017
	0.2206	0.2395	0.2593	0.2798	0.3012
	0.3234	0.3465	0.3704	0.3950	0.4202
	0.4457	0.4715	0.4978	0.5244	0.5513
	0.5787	0.6064	0.6344	0.6629	0.6917
	0.7208	0.7504	0.7803	0.8106	0.8412
	0.8722	0.9036	0.9354	0.9675	1.0000
Hrad:	0.0161	0.0323	0.0484	0.0645	0.0806
	0.0968	0.1129	0.1290	0.1452	0.1613
	0.1774	0.1935	0.2097	0.2258	0.2419
	0.2581	0.2742	0.2903	0.3131	0.3448
	0.3764	0.4079	0.4380	0.4663	0.4930
	0.5182	0.5421	0.5648	0.5867	0.6085
	0.6302	0.6517	0.6730	0.6941	0.7149
	0.7356	0.7560	0.7761	0.7960	0.8157
	0.8351	0.8544	0.8733	0.8921	0.9106
	0.9289	0.9470	0.9649	0.9825	1.0000
Width:		0.0601			
	0.0310 0.1862 0.3413 0.4965 0.5763 0.6929 0.7858 0.8422 0.8986 0.9549	0.0621 0.2172 0.3724 0.5275 0.5908 0.7184 0.7971 0.8535 0.9098 0.9662	0.0931 0.2482 0.4034 0.5585 0.6164 0.7439 0.8084 0.8647 0.9211	0.1241 0.2793 0.4344 0.5763 0.6419 0.7633 0.8197 0.8760 0.9324 0.9887	0.1551 0.3103 0.4654 0.5763 0.6674 0.7746 0.8309 0.8873 0.9436 1.0000
	18.00_ROW				
Area:	0.0005	0.0019	0.0043	0.0076	0.0119
	0.0171	0.0233	0.0304	0.0385	0.0475
	0.0575	0.0684	0.0803	0.0931	0.1069
	0.1216	0.1373	0.1539	0.1714	0.1890
	0.2067	0.2244	0.2428	0.2619	0.2816
	0.3021	0.3232	0.3451	0.3676	0.3908
	0.4147	0.4393	0.4646	0.4906	0.5172
	0.5446	0.5726	0.6014	0.6308	0.6609
	0.6917	0.7232	0.7554	0.7883	0.8218
	0.8561	0.8910	0.9267	0.9630	1.0000
Hrad:					
Wid+b-	0.0175	0.0349	0.0524	0.0699	0.0874
	0.1048	0.1223	0.1398	0.1573	0.1747
	0.1922	0.2097	0.2272	0.2446	0.2621
	0.2796	0.2971	0.3145	0.3393	0.3736
	0.4078	0.4420	0.4748	0.5059	0.5355
	0.5637	0.5906	0.6163	0.6408	0.6643
	0.6869	0.7086	0.7295	0.7496	0.7689
	0.7877	0.8058	0.8233	0.8403	0.8568
	0.8728	0.8884	0.9035	0.9183	0.9327
	0.9468	0.9605	0.9740	0.9871	1.0000
Width:	0.0254	0.0509	0.0763	0.1017	0.1271
	0.1526	0.1780	0.2034	0.2288	0.2543
	0.2797	0.3051	0.3306	0.3560	0.3814
	0.4068	0.4323	0.4577	0.4722	0.4722
	0.4722	0.4828	0.5013	0.5197	0.5382
	0.5567	0.5751	0.5936	0.6121	0.6306
	0.6490	0.6675	0.6860	0.7044	0.7229
	0.7414	0.7599	0.7783	0.7968	0.8153

	0.8337	0.8522	0.8707	0.8892	0.9076
	0.9261	0.9446	0.9631	0.9815	1.0000
Transect Area:	18.00_ROW_LS	3			
	0.0005	0.0019	0.0043	0.0076	0.0119
	0.0171	0.0233	0.0304	0.0385	0.0475
	0.0575	0.0684	0.0803	0.0931	0.1069
	0.1216	0.1373	0.1539	0.1714	0.1890
	0.2067	0.2244	0.2428	0.2619	0.2816
	0.3021	0.3232	0.3451	0.3676	0.3908
	0.4147	0.4393	0.4646	0.4906	0.5172
	0.5446	0.5726	0.6014	0.6308	0.6609
	0.6917	0.7232	0.7554	0.7883	0.8218
	0.8561	0.8910	0.9267	0.9630	1.0000
Hrad: Width:	0.0175 0.1048 0.1922 0.2796 0.4078 0.5637 0.6869 0.7877 0.8728	0.0349 0.1223 0.2097 0.2971 0.4420 0.5906 0.7086 0.8058 0.8884 0.9605	0.0524 0.1398 0.2272 0.3145 0.4748 0.6163 0.7295 0.8233 0.9035 0.9740	0.0699 0.1573 0.2446 0.3393 0.5059 0.6408 0.7496 0.8403 0.9183 0.9871	0.0874 0.1747 0.2621 0.3736 0.5355 0.6643 0.7689 0.8568 0.9327 1.0000
width:	0.0254	0.0509	0.0763	0.1017	0.1271
	0.1526	0.1780	0.2034	0.2288	0.2543
	0.2797	0.3051	0.3306	0.3560	0.3814
	0.4068	0.4323	0.4577	0.4722	0.4722
	0.4722	0.4828	0.5012	0.5197	0.5382
	0.5567	0.5751	0.5936	0.6121	0.6306
	0.6490	0.6675	0.6860	0.7044	0.7229
	0.7414	0.7599	0.7783	0.7968	0.8153
	0.8337	0.8522	0.8707	0.8892	0.9076
	0.9261	0.9446	0.9631	0.9815	1.0000
Transect Area:	6.40_ROW_0.6	_X-Fall			
	0.0011	0.0042	0.0096	0.0170	0.0265
	0.0382	0.0520	0.0680	0.0860	0.1062
	0.1282	0.1506	0.1729	0.1953	0.2176
	0.2400	0.2624	0.2847	0.3071	0.3294
	0.3518	0.3741	0.3965	0.4188	0.4412
	0.4635	0.4859	0.5082	0.5306	0.5529
	0.5753	0.5976	0.6200	0.6424	0.6647
	0.6871	0.7094	0.7318	0.7541	0.7765
	0.7988	0.8212	0.8435	0.8659	0.8882
	0.9106	0.9329	0.9553	0.9776	1.0000
Hrad:	0.0117	0.0234	0.0351	0.0468	0.0585
	0.0702	0.0819	0.0936	0.1053	0.1170
	0.1341	0.1573	0.1805	0.2036	0.2266
	0.2496	0.2725	0.2954	0.3182	0.3409
	0.3637	0.3863	0.4089	0.4315	0.4540
	0.4764	0.4988	0.5212	0.5435	0.5657
	0.5879	0.6100	0.6321	0.6542	0.6761
	0.6981	0.7200	0.7418	0.7636	0.7853
	0.8070	0.8287	0.8502	0.8718	0.8933
	0.9147	0.9361	0.9575	0.9788	1.0000
Width:	0.0950	0.1900	0.2850	0.3800	0.4750
	0.5700	0.6650	0.7600	0.8550	0.9500
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000

	1.0000	1.0000	1.0000	1.0000	1.0000
Transect Area:	6.40_ROW_1.2	_X-Fall			
	0.0007	0.0028	0.0063	0.0111	0.0174
	0.0251	0.0341	0.0445	0.0564	0.0696
	0.0842	0.1002	0.1176	0.1364	0.1566
	0.1782	0.2012	0.2253	0.2495	0.2737
	0.2979	0.3221	0.3463	0.3705	0.3947
	0.4189	0.4432	0.4674	0.4916	0.5158
	0.5400	0.5642	0.5884	0.6126	0.6368
	0.6611	0.6853	0.7095	0.7337	0.7579
	0.7821	0.8063	0.8305	0.8547	0.8789
	0.9032	0.9274	0.9516	0.9758	1.0000
Hrad:	0.0127	0.0253	0.0380	0.0507	0.0633
	0.0760	0.0887	0.1013	0.1140	0.1267
	0.1393	0.1520	0.1647	0.1773	0.1900
	0.2027	0.2153	0.2355	0.2604	0.2853
	0.3101	0.3348	0.3595	0.3841	0.4086
	0.4330	0.4574	0.4817	0.5060	0.5302
	0.5543	0.5783	0.6023	0.6262	0.6501
	0.6739	0.6976	0.7212	0.7448	0.7683
	0.7918	0.8152	0.8385	0.8618	0.8850
	0.9081	0.9312	0.9542	0.9771	1.0000
Width:	0.0575	0.1150	0.1725	0.2300	0.2875
	0.3450	0.4025	0.4600	0.5175	0.5750
	0.6325	0.6900	0.7475	0.8050	0.8625
	0.9200	0.9775	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
Transect Area:	6.40_ROW_1.4	_			
	0.0006	0.0026	0.0058	0.0104	0.0162
	0.0234	0.0318	0.0415	0.0526	0.0649
	0.0785	0.0935	0.1097	0.1272	0.1461
	0.1661	0.1864	0.2067	0.2269	0.2472
	0.2675	0.2878	0.3081	0.3284	0.3487
	0.3689	0.3895	0.4107	0.4325	0.4549
	0.4779	0.5015	0.5257	0.5505	0.5759
	0.6020	0.6286	0.6556	0.6825	0.7095
	0.7364	0.7634	0.7908	0.8189	0.8475
	0.8768	0.9067	0.9372	0.9683	1.0000
Hrad:	0.0144	0.0289	0.0433	0.0578	0.0722
Width.	0.0866	0.1011	0.1155	0.1300	0.1444
	0.1588	0.1733	0.1877	0.2022	0.2166
	0.2363	0.2647	0.2930	0.3212	0.3493
	0.3773	0.4052	0.4330	0.4607	0.4883
	0.5158	0.5431	0.5692	0.5942	0.6182
	0.6412	0.6633	0.6845	0.7049	0.7245
	0.7434	0.7616	0.7804	0.7996	0.8190
	0.8386	0.8586	0.8785	0.8977	0.9163
	0.9342	0.9514	0.9682	0.9843	1.0000
Width:	0.0406	0.0811	0.1217	0.1622	0.2028
	0.2433	0.2839	0.3244	0.3650	0.4055
	0.4461	0.4867	0.5272	0.5678	0.6083
	0.6337	0.6337	0.6337	0.6337	0.6337
	0.6337	0.6337	0.6337	0.6337	0.6337
	0.6337	0.6519	0.6709	0.6899	0.7089
	0.7279	0.7469	0.7659	0.7850	0.8040
	0.8230	0.8416	0.8416	0.8416	0.8416

	0.8416 0.9240	0.8479 0.9430	0.8669 0.9620	0.8859 0.9810	0.9050
Transect	6.40_ROW_1.6		0.9020	0.9010	1.0000
Area:					
	0.0006	0.0025	0.0056	0.0100	0.0156
	0.0225	0.0306	0.0400	0.0506	0.0625
	0.0756	0.0900	0.1056	0.1225	0.1406
	0.1600	0.1806	0.2025	0.2256	0.2500
	0.2750 0.4000	0.3000 0.4250	0.3250 0.4500	0.3500 0.4750	0.3750
	0.4000	0.4250	0.4500	0.4750	0.6250
	0.3230	0.6750	0.7000	0.7250	0.8230
	0.7750	0.8000	0.8250	0.8500	0.7300
	0.9000	0.9250	0.9500	0.9750	1.0000
Hrad:					
	0.0131	0.0262	0.0392	0.0523	0.0654
	0.0785	0.0915	0.1046	0.1177	0.1308
	0.1438	0.1569	0.1700	0.1831	0.1962
	0.2092	0.2223	0.2354	0.2485	0.2615
	0.2872	0.3129	0.3384	0.3639	0.3893
	0.4146	0.4399	0.4650	0.4901	0.5151
	0.5401	0.5650	0.5897	0.6145	0.6391
	0.6637	0.6882	0.7126	0.7369	0.7612
	0.7854 0.9053	0.8095 0.9291	0.8336 0.9528	0.8576 0.9764	0.8815
Width:	0.9055	0.9291	0.9320	0.9/64	1.0000
widen.	0.0500	0.1000	0.1500	0.2000	0.2500
	0.3000	0.3500	0.4000	0.4500	0.5000
	0.5500	0.6000	0.6500	0.7000	0.7500
	0.8000	0.8500	0.9000	0.9500	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
Transoct	6.40 ROW 2.0) V-Fall			
Area:	0.40_ROW_2.0	_X raii			
111 Ca •	0.0005	0.0021	0.0047	0.0083	0.0130
	0.0187	0.0254	0.0332	0.0420	0.0519
	0.0628	0.0748	0.0877	0.1017	0.1168
	0.1329	0.1500	0.1682	0.1874	0.2076
	0.2282	0.2488	0.2694	0.2904	0.3121
	0.3345	0.3577	0.3815	0.4060	0.4313
	0.4572	0.4838	0.5112	0.5388	0.5665
	0.5941	0.6218	0.6494	0.6771	0.7047
	0.7324	0.7600 0.9048	0.7877	0.8159	0.8448
Hrad:	0.8745	0.9040	0.9358	0.9676	1.0000
maa.	0.0155	0.0309	0.0464	0.0619	0.0773
	0.0928	0.1082	0.1237	0.1392	0.1546
	0.1701	0.1856	0.2010	0.2165	0.2320
	0.2474	0.2629	0.2783	0.2938	0.3120
	0.3422	0.3723	0.4024	0.4317	0.4597
	0.4863	0.5118	0.5361	0.5594	0.5818
	0.6032	0.6238	0.6436	0.6642	0.6852
	0.7066	0.7281	0.7499	0.7719	0.7940
	0.8162	0.8385	0.8610	0.8834	0.9048
747 A 4 3- 1-	0.9254	0.9452	0.9641	0.9824	1.0000
Width:	0 0217	0 0622	0 0050	0 1066	0 1500
	0.0317 0.1900	0.0633 0.2216	0.0950 0.2533	0.1266 0.2850	0.1583
	0.1900	0.3799	0.4116	0.4433	0.3100
	0.5066	0.5383	0.5699	0.6016	0.6275
	0.6275	0.6275	0.6303	0.6518	0.6732
	0.6946	0.7161	0.7375	0.7590	0.7804
	0.8018	0.8233	0.8431	0.8431	0.8431
	0.8431	0.8431	0.8431	0.8431	0.8431

	0.8431 0.9142	0.8431 0.9357	0.8499 0.9571	0.8714 0.9786	0.8928 1.0000
Transect Area:	6.40_ROW_2.3	3_X-Fall			
	0.0005	0.0018	0.0041	0.0074	0.0115
	0.0165	0.0225	0.0294	0.0372	0.0459
	0.0556	0.0662	0.0776	0.0900	0.1034
	0.1176	0.1328	0.1488	0.1657	0.1833
	0.2017	0.2207	0.2405	0.2610	0.2822
	0.3041	0.3267	0.3501	0.3741	0.3989
	0.4244	0.4507	0.4773	0.5039	0.5305
	0.5570	0.5840	0.6117	0.6401	0.6693
	0.6991	0.7297	0.7609	0.7929	0.8257
	0.8591	0.8932	0.9281	0.9637	1.0000
Hrad:					
	0.0180	0.0359	0.0539	0.0719	0.0898
	0.1078	0.1258	0.1438	0.1617	0.1797
	0.1977	0.2156	0.2336	0.2516	0.2695
	0.2875	0.3055	0.3237	0.3581	0.3904
	0.4209	0.4497	0.4770	0.5029	0.5276
	0.5510	0.5735	0.5949	0.6154	0.6351
	0.6541	0.6723	0.6924	0.7131	0.7344
	0.7560	0.7781	0.7992	0.8194	0.8388
	0.8575	0.8756	0.8929	0.9097	0.9260
	0.9417	0.9569	0.9717	0.9860	1.0000
Width:					
	0.0251	0.0501	0.0752	0.1002	0.1253
	0.1504	0.1754	0.2005	0.2255	0.2506
	0.2757	0.3007	0.3258	0.3508	0.3759
	0.4009	0.4260	0.4510	0.4706	0.4901
	0.5097	0.5293	0.5489	0.5685	0.5880
	0.6076	0.6272	0.6468	0.6663	0.6859
	0.7055	0.7251	0.7254	0.7254	0.7254
	0.7259 0.8238	0.7455 0.8434	0.7651 0.8630	0.7846	0.8042
	0.0236	0.9413	0.9608	0.8825 0.9804	1.0000
	0.9217	0.9413	0.9000	0.9004	1.0000
Transect	7.9 ROW 1.4	X-Fall			
Area:		-			
	0.0006	0.0024	0.0054	0.0096	0.0150
	0.0216	0.0294	0.0384	0.0486	0.0600
	0.0725	0.0863	0.1013	0.1175	0.1349
	0.1535	0.1733	0.1943	0.2164	0.2398
	0.2644	0.2898	0.3151	0.3405	0.3659
	0.3912	0.4166	0.4420	0.4673	0.4927
	0.5180	0.5434	0.5688	0.5941	0.6195
	0.6449	0.6702	0.6956	0.7210	0.7463
	0.7717	0.7971	0.8224	0.8478	0.8732
TT1.	0.8985	0.9239	0.9493	0.9746	1.0000
Hrad:	0 0122	0 0060	0 0205	0 0506	0 0 0 5 5 0
	0.0132	0.0263	0.0395 0.1053	0.0526	0.0658
	0.0789 0.1447	0.0921 0.1579	0.1711	0.1184 0.1842	0.1316 0.1974
	0.2105	0.2237	0.2368	0.2500	0.1974
	0.2763	0.3003	0.3261	0.3519	0.3777
	0.4033	0.4289	0.4545	0.4799	0.5053
	0.5307	0.5559	0.5811	0.6063	0.6314
	0.6564	0.6813	0.7062	0.7310	0.7558
	0.7805	0.8051	0.8297	0.8542	0.8787
	0.9031	0.9274	0.9517	0.9759	1.0000
Width:					
	0.0473	0.0945	0.1418	0.1891	0.2364
	0.2836	0.3309	0.3782	0.4255	0.4727
	0.5200	0.5673	0.6145	0.6618	0.7091
	0.7564	0.8036	0.8509	0.8982	0.9455
	0.9927	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Flow Units LPS

Process Models:

Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing YES
Ponding Allowed YES
Water Quality NO
Infiltration Method HORTON
Flow Routing Method DYNWAVE

Ending Date 07/23/2009 12:00:00

Antecedent Dry Days 0.0
Report Time Step 00:01:00
Wet Time Step 00:01:00

Surcharge Method SLOT

Dry Time Step 00:01:00 Routing Time Step 1.00 sec

Variable Time Step NO
Maximum Trials 8
Number of Threads 6

Head Tolerance 0.001500 \mbox{m}

******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.221	71.667
Evaporation Loss	0.000	0.000
Infiltration Loss	0.035	11.303
Surface Runoff	0.183	59.289
Final Storage	0.004	1.170
Continuity Error (%)	-0.133	
*******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.183	1.831
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.180	1.802
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.002	0.019
Continuity Error (%)	0.523	

Minimum Time Step : 1.00 sec
Average Time Step : 1.00 sec
Maximum Time Step : 1.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 2.00
Percent Not Converging : 0.01

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff LPS	Runoff Coeff
L101A	71.67	0.00	0.00	10.04	54.14	6.40	60.54	0.01	10.05	0.845
L102A	71.67	0.00	0.00	3.11	65.21	1.99	67.20	0.37	272.78	0.938
L103A	71.67	0.00	0.00	9.39	55.19	5.97	61.16	0.08	64.60	0.853
L104A	71.67	0.00	0.00	9.45	55.17	5.90	61.07	0.39	305.25	0.852
L105A	71.67	0.00	0.00	22.37	35.11	13.49	48.60	0.05	46.58	0.678
L105B	71.67	0.00	0.00	28.79	25.07	17.32	42.39	0.10	90.26	0.591
L105C	71.67	0.00	0.00	39.58	9.05	22.87	31.92	0.02	16.98	0.445
L108A	71.67	0.00	0.00	5.01	62.18	3.17	65.35	0.28	209.09	0.912
L110A	71.67	0.00	0.00	13.32	49.14	8.20	57.34	0.11	86.13	0.800
L110B	71.67	0.00	0.00	9.42	55.18	5.93	61.12	0.03	25.18	0.853
L110C	71.67	0.00	0.00	5.68	61.13	3.57	64.70	0.24	181.64	0.903
L110D	71.67	0.00	0.00	9.40	55.19	5.96	61.15	0.08	59.66	0.853
UNC-1	71.67	0.00	0.00	25.02	30.09	15.99	46.08	0.02	19.84	0.643
UNC-2	71.67	0.00	0.00	40.79	4.98	25.90	30.88	0.02	32.61	0.431
UNC-3	71.67	0.00	0.00	32.59	18.02	20.76	38.79	0.02	21.27	0.541

Node	Type	_	Maximum Depth Meters	HGL	Occu	of Max rrence hr:min	Reported Max Depth Meters
EX 109	OUTFALL	0.06	0.37	99.46	0	01:13	0.37
Greenbank Rd	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
Obsidian St 2	OUTFALL	0.00	0.00	105.59	0	00:00	0.00
Obsidian St 3	OUTFALL	0.00	0.00	102.98	0	00:00	0.00
Obsidian St-1	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
100	STORAGE	1.84	2.27	99.54	0	01:13	2.27
101	STORAGE	1.63	2.03	99.74	0	01:13	2.03
101A	STORAGE	0.03	1.43	103.32	0	01:10	1.42
102	STORAGE	2.52	2.76	100.83	0	01:21	2.76
102A	STORAGE	0.21	1.73	103.72	0	01:21	1.73
102A-Dummy	STORAGE	0.17	1.63	103.82	0	01:20	1.63
103	STORAGE	1.62	1.95	100.14	0	01:14	1.95
103A	STORAGE	0.09	1.54	103.77	0	01:11	1.54
104	STORAGE	1.71	2.07	100.95	0	01:14	2.07
104A	STORAGE	0.16	1.64	104.30	0	01:20	1.63
104A-Dummy	STORAGE	0.12	1.54	104.40	0	01:13	1.54
105	STORAGE	1.68	1.98	101.39	0	01:12	1.98
105A	STORAGE	0.15	1.90	105.22	0	01:20	1.90
105B	STORAGE	0.04	0.69	103.22	0	01:20	0.67
105C	STORAGE	0.02	1.05	104.87	0	01:10	1.05
106	STORAGE	0.00	0.00	101.50	0	00:00	0.00
107	STORAGE	1.68	1.93	101.82	0	01:17	1.93
108	STORAGE	1.94	2.27	102.01	0	01:16	2.27
108A	STORAGE	0.29	1.47	105.62	0	01:29	1.47
108A-Dummy	STORAGE	0.24	1.38	105.74	0	01:11	1.38
109	STORAGE	0.00	0.00	100.31	0	00:00	0.00

110	STORAGE	2.00	2.30	102.44	0	01:14	2.30
110A	STORAGE	0.08	1.54	105.81	0	01:11	1.54
110B	STORAGE	0.10	1.58	105.63	0	01:12	1.58
110C	STORAGE	0.29	1.65	105.62	0	01:29	1.65
110C-Dummy	STORAGE	0.25	1.53	105.70	0	01:14	1.53
110D	STORAGE	0.09	1.55	105.89	0	01:11	1.55
111	STORAGE	0.06	0.87	103.22	0	01:20	0.87

			Maximum		Lateral		Flow
		Lateral	Total				Balance
		Inflow	Inflow	Occurrence			Error
Node	Type	LPS	LPS	_	n 10^6 ltr	10^6 ltr	Percent
EX 109	OUTFALL	0.00	351.84	0 01:1		1.74	0.000
Greenbank Rd	OUTFALL	32.61	32.61	0 01:1	0.0235	0.0235	0.000
Obsidian St 2	OUTFALL	0.00	0.00	0 00:0	0 0	0	0.000 ltr
Obsidian St 3	OUTFALL	0.00	0.00	0 00:0	0 0	0	0.000 ltr
Obsidian St-1	OUTFALL	41.11	41.11	0 01:1	0.0387	0.0387	0.000
100	STORAGE	0.00	351.85	0 01:1	3 0	1.74	-0.007
101	STORAGE	0.00	351.84	0 01:1	3 0	1.74	0.004
101A	STORAGE	10.05	10.05	0 01:1	0.0127	0.0127	-0.001
102	STORAGE	0.00	59.07	0 01:2	1 0	0.371	0.025
102A	STORAGE	272.78	309.20	0 01:0	7 0.373	0.436	0.742
102A-Dummy	STORAGE	0.00	170.33	0 01:0		0.0623	-0.705
103	STORAGE	0.00	286.60	0 01:1	4 0	1.37	0.004
103A	STORAGE	64.60	64.60	0 01:1	0.0822	0.0822	0.036
104	STORAGE	0.00	261.44	0 01:1	2 0	1.28	-0.045
104A	STORAGE	305.25	348.71	0 01:0	6 0.392	0.446	1.007
104A-Dummy	STORAGE	0.00	165.49	0 01:0		0.0541	-0.341
105	STORAGE	0.00	183.43	0 01:1	2 0	0.9	0.056
105A	STORAGE	46.58	46.58	0 01:1			0.025
105B	STORAGE	90.26	90.26	0 01:1	0.0981	0.0981	-0.229
105C	STORAGE	16.98	16.98	0 01:1	0.0184	0.0184	0.001
106	STORAGE	0.00	0.00	0 00:0	0 0	0	0.000 ltr
107	STORAGE	0.00	129.89	0 01:1		0.731	0.062
108	STORAGE	0.00	129.89	0 01:1		0.734	0.068
108A	STORAGE	209.09	267.27	0 01:0	7 0.28	0.361	0.392
108A-Dummy	STORAGE	0.00	103.83	0 01:0		0.0738	-0.464
109	STORAGE	0.00	0.00	0 00:0	0 0	0	0.000 ltr
110	STORAGE	0.00	102.42	0 01:1	3 0	0.469	0.013
110A	STORAGE	86.13	86.13	0 01:1		0.107	0.012
110B	STORAGE	25.18	25.18	0 01:1	0.0321	0.0321	0.012
110C	STORAGE	181.64	233.46	0 01:1	0.242	0.317	0.300
110C-Dummy	STORAGE	0.00	91.19	0 01:0		0.0551	-0.490
110D	STORAGE	59.66	59.66	0 01:1		0.0759	0.030
111	STORAGE	0.00	75.19	0 01:0	9 0	0.0983	0.230

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Max. Height Above Crown Meters	Min. Depth Below Rim Meters
102A-Dummy	STORAGE	1.12	0.728	0.000
104A-Dummy	STORAGE	0.89	0.637	0.000
108A-Dummy	STORAGE	2.02	0.484	0.000
110C-Dummy	STORAGE	1.88	0.629	0.000

No nodes were flooded.

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Pcnt	Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pcnt Full	Occu	of Max rrence hr:min	Maximum Outflow LPS
100	0.002	31	0	0	0.003	38	0	01:13	351.84
101	0.002	27	0	0	0.002	34	0	01:13	351.85
101A	0.000	0	0	0	0.001	11	0	01:10	8.58
102	0.003	41	0	0	0.003	45	0	01:21	59.06
102A	0.005	1	0	0	0.095	26	0	01:21	215.97
102A-Dummy	0.000	11	0	0	0.000	100	0	01:07	36.90
103	0.002	28	0	0	0.002	34	0	01:14	286.60
103A	0.001	1	0	0	0.021	28	0	01:11	25.31
104	0.002	28	0	0	0.002	34	0	01:14	261.32
104A	0.004	1	0	0	0.097	18	0	01:20	224.73
104A-Dummy	0.000	8	0	0	0.000	100	0	01:07	63.20
105	0.002	28	0	0	0.002	33	0	01:12	183.33
105A	0.001	2	0	0	0.016	41	0	01:20	13.50
105B	0.000	2	0	0	0.001	31	0	01:20	75.19
105C	0.000	0	0	0	0.000	9	0	01:10	13.78
106	0.000	0	0	0	0.000	0	0	00:00	0.00
107	0.002	28	0	0	0.002	32	0	01:17	129.88
108	0.002	33	0	0	0.003	38	0	01:16	129.89
108A	0.010	6	0	0	0.095	60	0	01:29	125.70
108A-Dummy	0.000	18	0	0	0.000	100	0	01:09	60.75
109	0.000	0	0	0	0.000	0	0	00:00	0.00
110	0.002	36	0	0	0.003	41	0	01:14	102.41
110A	0.001	1	0	0	0.021	20	0	01:11	38.97
110B	0.000	1	0	0	0.008	36	0	01:12	9.02
110C	0.009	6	0	0	0.092	60	0	01:29	114.72
110C-Dummy	0.000	16	0	0	0.002	100	0	01:14	57.28
110D	0.000	1	0	0	0.018	28	0	01:11	25.36
111	0.000	2	0	0	0.001	32	0	01:20	28.86

Outfall Node	Flow Freq Pcnt	Avg Flow LPS	Max Flow LPS	Total Volume 10^6 ltr
EX 109	53.05	75.91	351.84	1.740
Greenbank Rd	23.11	2.35	32.61	0.024
Obsidian St 2	0.00	0.00	0.00	0.000
Obsidian_St_3	0.00	0.00	0.00	0.000
Obsidian_St-1	23.39	3.83	41.11	0.039
System	19.91	82.09	415.96	1.802

		Maximum	Time of Max	Maximum	Max/	Max/
		Flow	Occurrence	Veloc	Full	Full
Link	Type	LPS	days hr:min	m/sec	Flow	Depth
101-100	CONDUIT	351.85	0 01:13	1.73	0.58	0.55

102-101	101A-Obsidian_St_3 101-EX 109	CHANNEL CONDUIT	0.00 351.84	0	00:00 01:13	0.00 1.66	0.00	0.00
102A-Umb		CONDUIT		0	01:21	1.60	0.50	0.52
103-101	102A-101A	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
103A-101A	102A-Umb	CONDUIT	170.33	0	01:04	0.44	2.98	1.00
103A-101A	103-101	CONDUIT	286.60	0	01:14	2.12	0.67	0.60
104A-104B	103A-101A	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
104A-Umb	104-103	CONDUIT	261.32	0	01:14	1.93	0.60	0.60
105-104	104A-104B	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
105A-104A	104A-Umb	CONDUIT	165.49	0	01:03	0.47	2.59	1.00
105B-111	105-104	CONDUIT	183.33	0	01:12	1.89	0.64	0.59
105B-Obsidian_St_1 CHANNEL 0.00 0 00:00 0.00 0	105A-104A	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
105C-104A	105B-111	CONDUIT	75.19	0	01:09	0.49	0.08	0.86
106-105 CONDUIT 0.00 0 00:00 0.00 0.00 0.19 107-105 CONDUIT 129.88 0 01:17 1.70 0.46 0.50 108-107 CONDUIT 129.89 0 01:16 1.08 0.43 0.54 108A-Umb CONDUIT 103.83 0 01:03 0.24 1.50 1.00 109-107 CONDUIT 0.00 0 00:00 0.00 0.00 0.11 110-108 CONDUIT 102.41 0 01:14 1.21 0.51 0.52 110B-Obsidian_St_2 CHANNEL 0.00 0 00:00 0.00 0.00 0.00 110C-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00 110C-Umb CONDUIT 91.19 0 01:03 0.20 1.10 1.00 110C-Umb CONDUIT 91.19 0 01:03 0.20 1.10 1.00 110D-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00	105B-Obsidian_St_1	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
107-105 CONDUIT 129.88 0 01:17 1.70 0.46 0.50 108-107 CONDUIT 129.89 0 01:16 1.08 0.43 0.54 108A-Umb CONDUIT 103.83 0 01:03 0.24 1.50 1.00 109-107 CONDUIT 0.00 0 00:00 0.00 0.00 0.11 110-108 CONDUIT 102.41 0 01:14 1.21 0.51 0.52 110B-Obsidian_St_2 CHANNEL 0.00 0 00:00 0.00 0.00 0.00 110C-Umb CONDUIT 91.19 0 01:03 0.20 1.10 1.00 110C-Umb CHANNEL 0.00 0 00:00 0.00 0.00 0.00 0.00 102A	105C-104A	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
108-107 CONDUIT 129.89 0 01:16 1.08 0.43 0.54 108A-Umb CONDUIT 103.83 0 01:03 0.24 1.50 1.00 109-107 CONDUIT 0.00 0 00:00 0.00 0.00 0.11 110-108 CONDUIT 102.41 0 01:14 1.21 0.51 0.52 110B-Obsidian_St_2 CHANNEL 0.00 0 00:00 0.00 0.00 0.00 110C-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00 110C-Umb CONDUIT 91.19 0 01:03 0.20 1.10 1.00 110C-Umb CONDUIT 91.19 0 01:03 0.20 1.10 1.00 110C-Umb CONDUIT 91.19 0 01:03 0.20 1.10 1.00 110D-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00 103A-01 ORIFICE 59.07 0 01:21 1.00 1.00 104A-01 ORIFIC	106-105	CONDUIT	0.00	0	00:00	0.00	0.00	0.19
108A-Umb CONDUIT 103.83 0 01:03 0.24 1.50 1.00 109-107 CONDUIT 0.00 0 00:00 0.00 0.00 0.11 110-108 CONDUIT 102.41 0 01:14 1.21 0.51 0.52 110B-Obsidian_St_2 CHANNEL 0.00 0 00:00 0.00 0.00 0.00 110C-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00 110C-Umb CONDUIT 91.19 0 01:03 0.20 1.10 1.00 110D-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00 110D-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00 102A-01 ORIFICE 59.07 0 01:21 1.00 0.00 <	107-105	CONDUIT	129.88	0	01:17	1.70	0.46	0.50
109-107 CONDUIT 0.00 0 00:00 0.00 0.00 0.11 110-108 CONDUIT 102.41 0 01:14 1.21 0.51 0.52 110B-Obsidian_St_2 CHANNEL 0.00 0 00:00 0.00 0.00 0.00 110C-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00 110C-Umb CONDUIT 91.19 0 01:03 0.20 1.10 1.00 110D-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00 110D-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00 110D-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00 102A-01 ORIFICE 59.07 0 01:21 1.00 0.00 0.00 104A-01 ORIFICE 78.42 0 01:20 1.00 1.00 108A-01 ORIFICE 27.64 0 01:29 1.00 1.00 110C-01 ORIFICE 29.34 0 01:29 1.00 1.00 110D-01 ORIFICE </td <td>108-107</td> <td>CONDUIT</td> <td>129.89</td> <td>0</td> <td>01:16</td> <td>1.08</td> <td>0.43</td> <td>0.54</td>	108-107	CONDUIT	129.89	0	01:16	1.08	0.43	0.54
110-108	108A-Umb	CONDUIT	103.83	0	01:03	0.24	1.50	1.00
110B-Obsidian_St_2 CHANNEL 0.00 0 00:00 0.00	109-107	CONDUIT	0.00	0		0.00	0.00	0.11
110C-110B	110-108	CONDUIT	102.41	0	01:14	1.21	0.51	0.52
110C-Umb CONDUIT 91.19 0 01:03 0.20 1.10 1.00 110D-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00 102A-O1 ORIFICE 59.07 0 01:21 1.00 103A-O1 ORIFICE 25.31 0 01:11 1.00 104A-O1 ORIFICE 78.42 0 01:20 1.00 105C-O1 ORIFICE 13.78 0 01:10 1.00 108A-O1 ORIFICE 27.64 0 01:29 1.00 110A-O1 ORIFICE 38.97 0 01:11 1.00 110C-O1 ORIFICE 29.34 0 01:29 1.00 110D-O1 ORIFICE 25.36 0 01:11 1.00 111-O1 ORIFICE 28.86 0 01:20 1.00 108A-110C WEIR 23.82 0 01:11 0.52 110A-110D WEIR 0.00 00:00 101A-O1 DUMMY 8.58 0 01:10 105A-O1 DUMMY 13.50 0 01:20	110B-Obsidian_St_2	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
110D-110B CHANNEL 0.00 0 00:00 0.00 0.00 0.00 102A-01 ORIFICE 59.07 0 01:21 1.00 103A-01 ORIFICE 25.31 0 01:11 1.00 104A-01 ORIFICE 78.42 0 01:20 1.00 105C-01 ORIFICE 13.78 0 01:10 1.00 108A-01 ORIFICE 27.64 0 01:29 1.00 110A-01 ORIFICE 38.97 0 01:11 1.00 110C-01 ORIFICE 29.34 0 01:29 1.00 110D-01 ORIFICE 25.36 0 01:11 1.00 111-01 ORIFICE 28.86 0 01:20 1.00 108A-110C WEIR 23.82 0 01:11 0.52 110A-110D WEIR 0.00 00:00 0.00 101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20	110C-110B	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
102A-01 ORIFICE 59.07 0 01:21 1.00 103A-01 ORIFICE 25.31 0 01:11 1.00 104A-01 ORIFICE 78.42 0 01:20 1.00 105C-01 ORIFICE 13.78 0 01:10 1.00 108A-01 ORIFICE 27.64 0 01:29 1.00 110A-01 ORIFICE 38.97 0 01:11 1.00 110C-01 ORIFICE 29.34 0 01:29 1.00 110D-01 ORIFICE 25.36 0 01:11 1.00 111-01 ORIFICE 28.86 0 01:20 1.00 108A-110C WEIR 23.82 0 01:11 0.52 110A-110D WEIR 0.00 0 00:00 0.00 101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20	110C-Umb	CONDUIT	91.19	0	01:03	0.20	1.10	1.00
103A-01 ORIFICE 25.31 0 01:11 1.00 104A-01 ORIFICE 78.42 0 01:20 1.00 105C-01 ORIFICE 13.78 0 01:10 1.00 108A-01 ORIFICE 27.64 0 01:29 1.00 110A-01 ORIFICE 38.97 0 01:11 1.00 110C-01 ORIFICE 29.34 0 01:29 1.00 110D-01 ORIFICE 25.36 0 01:11 1.00 111-01 ORIFICE 28.86 0 01:20 1.00 108A-110C WEIR 23.82 0 01:11 0.52 110A-110D WEIR 0.00 0 00:00 0.00 101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20	110D-110B	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
104A-01 ORIFICE 78.42 0 01:20 1.00 105C-01 ORIFICE 13.78 0 01:10 1.00 108A-01 ORIFICE 27.64 0 01:29 1.00 110A-01 ORIFICE 38.97 0 01:11 1.00 110C-01 ORIFICE 29.34 0 01:29 1.00 110D-01 ORIFICE 25.36 0 01:11 1.00 111-01 ORIFICE 28.86 0 01:20 1.00 108A-110C WEIR 23.82 0 01:11 0.52 110A-110D WEIR 0.00 0 00:00 0.00 101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20	102A-01	ORIFICE	59.07	0	01:21			1.00
105C-01 ORIFICE 13.78 0 01:10 1.00 108A-01 ORIFICE 27.64 0 01:29 1.00 110A-01 ORIFICE 38.97 0 01:11 1.00 110C-01 ORIFICE 29.34 0 01:29 1.00 110D-01 ORIFICE 25.36 0 01:11 1.00 111-01 ORIFICE 28.86 0 01:20 1.00 108A-110C WEIR 23.82 0 01:11 0.52 110A-110D WEIR 0.00 0 00:00 0.00 101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20	103A-01	ORIFICE	25.31	0	01:11			1.00
108A-01 ORIFICE 27.64 0 01:29 1.00 110A-01 ORIFICE 38.97 0 01:11 1.00 110C-01 ORIFICE 29.34 0 01:29 1.00 110D-01 ORIFICE 25.36 0 01:11 1.00 111-01 ORIFICE 28.86 0 01:20 1.00 108A-110C WEIR 23.82 0 01:11 0.52 110A-110D WEIR 0.00 0 00:00 0.00 101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20	104A-01	ORIFICE		0	01:20			1.00
110A-01 ORIFICE 38.97 0 01:11 1.00 110C-01 ORIFICE 29.34 0 01:29 1.00 110D-01 ORIFICE 25.36 0 01:11 1.00 111-01 ORIFICE 28.86 0 01:20 1.00 108A-110C WEIR 23.82 0 01:11 0.52 110A-110D WEIR 0.00 0 00:00 0.00 101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20	105C-01	ORIFICE		0				
110C-01 ORIFICE 29.34 0 01:29 1.00 110D-01 ORIFICE 25.36 0 01:11 1.00 111-01 ORIFICE 28.86 0 01:20 1.00 108A-110C WEIR 23.82 0 01:11 0.52 110A-110D WEIR 0.00 0 00:00 0.00 101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20				0				
110D-01 ORIFICE 25.36 0 01:11 1.00 111-01 ORIFICE 28.86 0 01:20 1.00 108A-110C WEIR 23.82 0 01:11 0.52 110A-110D WEIR 0.00 0 00:00 0.00 101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20		ORIFICE						
111-01 ORIFICE 28.86 0 01:20 1.00 108A-110C WEIR 23.82 0 01:11 0.52 110A-110D WEIR 0.00 0 00:00 0.00 101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20	110C-01	ORIFICE	29.34	0	01:29			1.00
108A-110C WEIR 23.82 0 01:11 0.52 110A-110D WEIR 0.00 0 00:00 0.00 101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20	110D-01	ORIFICE	25.36	0	01:11			1.00
110A-110D WEIR 0.00 0 00:00 0.00 101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20		ORIFICE						
101A-01 DUMMY 8.58 0 01:10 105A-01 DUMMY 13.50 0 01:20								
105A-01 DUMMY 13.50 0 01:20		WEIR		0				0.00
110B-01 DUMMY 9.02 0 01:12								
	110B-01	DUMMY	9.02	0	01:12			

	Adjusted /Actual		 Up	Fract Down	ion of	Time Sup	in Flo Up	w Clas	s Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
101-100	1.00	0.05	0.00	0.00	0.00	0.04	0.00	0.91	0.00	0.00
101A-Obsidian_St_3	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
101-EX_109	1.00	0.05	0.00	0.00	0.80	0.15	0.00	0.00	0.00	0.00
102-101	1.00	0.05	0.00	0.00	0.00	0.00	0.00	0.95	0.00	0.00
102A-101A	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
102A-Umb	1.00	0.06	0.00	0.00	0.18	0.00	0.00	0.76	0.00	0.00
103-101	1.00	0.05	0.00	0.00	0.00	0.00	0.00	0.95	0.00	0.00
103A-101A	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
104-103	1.00	0.04	0.00	0.00	0.00	0.00	0.00	0.96	0.00	0.00
104A-104B	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
104A-Umb	1.00	0.06	0.00	0.00	0.13	0.00	0.00	0.80	0.00	0.00
105-104	1.00	0.05	0.00	0.00	0.00	0.07	0.00	0.88	0.03	0.00
105A-104A	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
105B-111	1.00	0.03	0.00	0.00	0.96	0.00	0.00	0.00	0.32	0.00
105B-Obsidian_St_1	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
105C-104A	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
106-105	1.00	0.90	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
107-105	1.00	0.05	0.00	0.00	0.00	0.07	0.00	0.88	0.06	0.00
108-107	1.00	0.05	0.00	0.00	0.95	0.00	0.00	0.00	0.76	0.00
108A-Umb	1.00	0.05	0.00	0.00	0.27	0.00	0.00	0.68	0.00	0.00

109-107	1.00	0.93	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00
110-108	1.00	0.04	0.00	0.00	0.00	0.00	0.00	0.96	0.00	0.00
110B-Obsidian St 2	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
110C-110B	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
110C-Umb	1.00	0.05	0.00	0.00	0.24	0.00	0.00	0.71	0.00	0.00
110D-110B	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

****** Conduit Surcharge Summary ******

Conduit	Both Ends	Hours Full Upstream		Hours Above Full Normal Flow	Hours Capacity Limited
102A-Umb	1.12	1.12	1.12	0.05	0.54
104A-Umb	0.88	0.89	0.88	0.04	0.43
108A-Umb	2.02	2.02	2.02	0.03	0.96
110C-Umb	1.88	1.88	1.88	0.01	0.91

Analysis begun on: Fri Nov 4 10:15:33 2022 Analysis ended on: Fri Nov 4 10:15:35 2022 Total elapsed time: 00:00:02

Appendix E External Reports

Appendix E EXTERNAL REPORTS

E.1 DESIGN BRIEF (SITE SERVICING STUDY) FOR THE RIDGE (BRAZEAU LANDS) BY DSEL (JULY 2020)

DESIGN BRIEF

FOR

CAIVAN GREENBANK DEVELOPMENT CORPORATION

THE RIDGE (BRAZEAU LANDS)

3809 BORRISOKANE ROAD
CITY OF OTTAWA

PROJECT NO.: 18-1030 JULY 27TH, 2020 4TH SUBMISSION © DSEL

DESIGN BRIEF FOR CAIVAN GREENBANK DEVELOPMENT CORPORATION

THE RIDGE (BRAZEAU LANDS)

PROJECT NO: 18-1030

TABLE OF CONTENTS

TAB	LES	2
1.0	INTRODUCTION	1
1.1	Existing Conditions	1
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	2
2.1	Existing Studies, Guidelines, and Reports	
3.0	WATER SUPPLY SERVICING	5
3.1	Existing Water Supply Services	5
3.2	Water Supply Servicing Design	5
3.3	Summary of Hydraulic Modeling Analysis	8
3.4	Fire Flows – Fire Underwriters Survey	8
3.5	Water Supply Conclusion	9
4.0	WASTEWATER SERVICING	10
4.1	Existing Wastewater Services	10
4.2	Wastewater Design	10
	4.2.1 Brazeau (The Ridge) Lands	
	4.2.2 Greenbank Road Sewer Alignment	
4.3	Wastewater Servicing Conclusion	
5.0	STORMWATER CONVEYANCE	13
5.1	Existing Stormwater Drainage	13
5.2	Proposed Stormwater Management Strategy	13
	5.2.1 Infiltration – Etobicoke Exfiltration System (EES)	
5.3	Post-Development Stormwater Management Targets	16
	5.3.1 Quality Control	

1	8-	1	0	3	C

5.4	_	ement Design				
5.5	Proposed Minor System					
5.6	Quality Control (OC	GS Units)				
5.7	Hydraulic Grade Li	ne Analysis22				
5.8	Proposed Major Sy	zstem22				
5.9	Stormwater Servici	ng Conclusions22				
6.0	PROPOSED GRAI	DING23				
7.0	EROSION AND SE	EDIMENT CONTROL23				
7.1	EES Protection Du	ring Construction24				
8.0	CONCLUSION AN	D RECOMMENDATIONS24				
		<u>TABLES</u>				
	Table 1A Table 1B Table 1C Table 2 Table 3	Water Supply Design Criteria (System Level Demands) Estimated Water Demands - Brazeau Land Updates Water Supply Design Criteria (Typical) Wastewater Design Criteria Storm Sewer Design Criteria				
		<u>APPENDICES</u>				
	Appendix A	Figure 1 – Key Plan Figure 2 - MPlan				
	Appendix B	Excerpts from JLR Master Servicing Study Boundary Condition Request Hydraulic Capacity and Modeling Analysis – GeoAdvice (Jul 2020) Figure WAT-1 (Watermain Servicing Plan)				
	Appendix C	Excerpts from JLR Master Servicing Study - Master Sanitary Drainage Area (MSAN) - MSS Table 6-3 & 6-4 and Figure 4-2 Sanitary Drainage Area Plans (The Ridge) Sanitary Design Sheet (DSEL, July 2020)				
	Appendix D	Excerpts from JLR Master Servicing Study - Figure 3-1 - Table 5-2 & 5-5 - Master Storm Drainage Plan (MST-2) Paterson – Groundwater Infiltration Review (Memo) The Ridge Phase 1 Subdivision (Brazeau) - LID Design Update (JFSA) Storm Drainage Area Plans (The Ridge)				

18-1030

Storm Design Sheet (DSEL, July 2020) SWM Pond Drawings (No. 77 to 80) OGS Unit Sizing Determinations OGS Drainage Area Figure C1

Excerpts from **BSUEA MSS** (Section 5 excerpts)

Appendix E Grading Plans

Figure 3, 3A, 3B and 3C – General Plan Overview

DESIGN BRIEF FOR CAIVAN GREENBANK DEVELOPMENT CORPORATION

THE RIDGE (BRAZEAU LANDS)

CITY OF OTTAWA PROJECT NO: 18-1030

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained to prepare the detailed design of the Brazeau Lands development area located at 3809 Borrisokane Road within the Barrhaven South Urban Expansion Area (*BSUEA*) on behalf of Caivan Greenbank Development Corporation (CGDC). This design brief is submitted in support of that development. The development is now being referred to as "The Ridge" Subdivision for marketing purposes.

The proposed development area is illustrated in *Figure 1* (see *Appendix A*) and is located north of Barnsdale Road, east of Highway 416 (and Borrisokane Road), south of Cambrian Road and west of the future New Greenbank Road alignment. The current zoning is Mineral Extraction (ME) and is amended to permit low-rise residential uses. The western portion of the property is outside of the urban boundary and will remain at the current zoning while the eastern side (approximately 24.7 ha) is within the urban boundary and is to be rezoned as noted above. The development will also include a 0.91 ha block for a road connection to Borrisokane Road, a future 0.89 ha right-of-way (ROW) area within the Drummond Lands (also owned by CGDC) for servicing outlets, and a 3.94 ha pond block within the Drummond Lands that will service both properties. The lands are planned to be developed with a mix of detached single homes, townhomes, park blocks, SWM blocks, open space and a road network (see *Figure 2* for the lotted legal plan in *Appendix A*).

This design brief is prepared to demonstrate conformance with the design criteria of the City of Ottawa, background studies, including the Master Servicing Study, and general industry practice.

1.1 Existing Conditions

The Ridge subdivision was previously an aggregate extraction pit operated in accordance with the Ontario Aggregate Resources Act and Regulations. Processes have been undertaken to remove this designation.

The property ground surface is significantly disturbed as a result of the mineral extraction activities that have occurred over the years with stockpiles of materials at

18-1030

various locations and elevations. The eastern portion of the site adjacent to the New Greenbank Road future alignment range in elevations from approximately 108.0m to 104.5m. On-site elevations vary due to the various stockpiles of materials but are general averaging about 99.0m. Drainage is generally conveyed westward towards Borrisokane Road which is owned by, and under the jurisdiction of, the Ministry of Transportation.

The property is within the Jock River watershed and is under the jurisdiction of the Rideau Valley Conservation Authority (RVCA).

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report.

- Ottawa Sewer Design Guidelines,
 City of Ottawa, SDG002, October 2012
 (Sewer Design Guidelines)
 - Technical Bulletin ISDTB-2014-01 City of Ottawa, February 5, 2014 (ITSB-2014-01)
 - Technical Bulletin PIEDTB-2016-01
 City of Ottawa, September 6, 2016
 (PIEDTB-2016-01)
 - Technical Bulletin ISTB-2018-01
 City of Ottawa, March 21, 2018
 (ISTB-2018-01)
 - Technical Bulletin ISTB-2018-04
 City of Ottawa, June 27, 2018
 (ISTB-2018-04)
- Ottawa Design Guidelines Water Distribution
 City of Ottawa, July 2010.
 (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2
 City of Ottawa, December 15, 2010.
 (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-2
 City of Ottawa, May 27, 2014.
 (ISDTB-2014-2)

- Technical Bulletin ISTB-2018-02
 City of Ottawa, March 21, 2018
 (ISTB-2018-02)
- Design Guidelines for Sewage Works, Ministry of the Environment, Conservation and Parks, 2008. (formerly MOECC) (MECP Design Guidelines)
- ➤ Highway Drainage Design Standards (MTO 2008)
- Drainage Management Manual (MTO 1997), Ministry of Transportation. (MTO Manuals)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- City of Ottawa Official Plan, adopted by Council 2003. (Official Plan)
- South Nepean Collector: Phase 2 Hydraulics Review / Assessment Technical Memorandum Novatech, August 2015 (Novatech SNC Memo)
- Master Servicing Study Barrhaven South Urban Expansion Area, J.L. Richards & Associates Limited, Revision 2, May 2018 (BSUEA MSS)
- Servicing Brief Quinn's Pointe Residential Stages 2, 3 & 4, J.L. Richards & Associates Limited, Revision 1, October 2018 (File No. 26610-001.1) (Quinn's Pointe Brief)
- Stormwater Management Report for Brazeau Subdivision, by J.F. Sabourin and Associates (July 2020) (JFSA SWM Report)
- Pond Design Brief for Brazeau Subdivision, by J.F. Sabourin and Associates (July 2020) (JFSA Pond Report)
- Caivan Brazeau/Drummond Development LID Design Update, by J.F. Sabourin and Associates (July 2020) (JFSA LID Analysis)

18-1030

- Geotechnical Investigation, Proposed Residential Development, Brazeau Lands
 Borrisokane Road, Paterson Group (January 2019)
 (Geotechnical Report)
- ➢ Groundwater Infiltration Review, Proposed Residential Development, Brazeau Pit and Drummonds Pit Borrisokane Road, Paterson Group (August 2019) (Infiltration Review)
- Supplemental Hydrogeological Review, Proposed Residential Development, The Ridge – Borrisokane Road, Paterson Group (March 4, 2020) (Hydrogeological Review)
- Borrisokane Ditch Erosion Assessment: The Ridge (Brazeau) Subdivision, J.F. Sabourin and Associates Inc. (June 2020) (JFSA Erosion Assessment)

18-1030

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The **BSUEA MSS** provided an overview of the existing watermain infrastructure associated with the BSUEA. The **BSUEA MSS** completed an overall assessment of the water supply for the area in order to examine the feasibility of the extension of existing infrastructure that would meet the required City and MECP criteria for the whole of the development area.

The 'Master Watermain' plan (Drawing MWM) from the **BSUEA MSS** is provided in **Appendix B** and illustrates the existing watermains in proximity to The Ridge development area. In addition, a conceptual watermain plan (Drawing CWM) from the preliminary Servicing Brief for Minto's Quinn's Pointe (Stages 2, 3 & 4) residential area is provided for reference. The proposed watermain servicing connections points for The Ridge development area are as follows:

- Existing 300mm diameter watermain terminating at Dundonald Drive and the future New Greenbank Road alignment;
- Proposed 300mm diameter watermain from the existing Cambrian Road 400mm diameter watermain forming part of the Tamarack Meadows development network located north of The Ridge and Drummond lands.

As adjacent developments to the east are advanced there will be a future required connection to the development from the existing 300mm diameter watermain on Kilbirnie Drive at Alex Polowin Avenue (or future extension location that is dependent upon the advancement of the Quinn's Pointe development).

3.2 Water Supply Servicing Design

The **BSUEA MSS** presents overall watermain infrastructure details for the BSUEA. The subject property was deemed serviceable and the **MSS** reviewed a number of servicing scenarios (i.e. existing and built-out conditions) that confirmed that the area could be adequately serviced conforming to relevant City and MECP Guidelines and Policies.

The water analysis contained in the **BSUEA MSS** utilized system level water demands as developed by the City due to the fact that the number of units and densities resulted in an overall population that would exceed 3,000. The excerpt of the system level demands listed in Table 7-1 of the **MSS** can be found in **Appendix B** and are summarized as follows:

18-1030

Table 1A: Water Supply Design Criteria (System Level Demands)

Land Use Type	Consumption Rate
JLR BSUEA MSS, May 2018 for Population Exceeding 300	0 Persons
Single Family Residential	180 L/cap/day
Multi-unit Residential (Townhouse / Back to Back)	198 L/cap/day
Apartment Residential	219 L/cap/day
Commercial	50,000 L/ha/day
Institutional	50,000 L/ha/day
Outdoor Water Demand	1049 L/unit/day (single detached)

The estimated water demands within the **BSUEA MSS** were summarized in Table 7-2 (excerpt found in **Appendix B**). The table summarized a total population of 1,194 for the Brazeau Lands development area along with some commercial and institutional components. Based on the current development concept the water demand table is refined to reflect a revised residential unit count and the removal of the commercial, institutional and high density components. Based on the development layout illustrated in **Figure 2** the development area will have 347 single family homes and 279 towns with associated populations of 1,180 and 754 respectively. The adjusted water demands for comparison purposes are summarized in the following table:

Table 1B: Estimated Water Demands - Brazeau Land Updates

Design Parameter	Area (ha)	Units	Pop.	ADD SFH 1	ADD MLT ²	ADD APT ³	ADD COM 4	ADD INS ⁵	Total BSDY	OWD	Total MXDY
From Table 7-2 of MSS	12.72	398	1194	1.56	0.87	0.17	0.39	0.85	3.84	2.67	6.51
Revised per Updated Development Plan (Residential Area)	23.83	626 ⁷	1934	2.45	1.73	0	0	0	4.18	4.21	8.39
		+228	+740						+0.34	+1.54	+1.88

¹ Daily Demand, Single Family Homes, L/s (see Table 1A for Consumption Rate)

With reference to Table 7-2, the overall Total BSDY increased by 0.34 L/s (to 19.00 L/s) which is a 1.8% increase over the previous 18.66 L/s. The total MXDY increases by 1.88 L/s which is a 5.9% increase over the previous 31.48 L/s.

The typical Water Supply Design Criteria used are as summarized in the following table:

² Average Daily Demand, Multi-Units (Townhouses and Back to Back Unit) L/s

³ Average Daily Demand, Apartment Units, L/s

⁴ Average Daily Demand, Commercial, L/s

⁵ Average Daily Demand, Institutional, L/s

⁶ Outdoor Water Demand, L/s, calculated as 1,049 L per SFH unit per day per MSS

⁷ Comprised of 347 Singles Family Homes and 279 Townhouses

18-1030

Table 1C: Water Supply Design Criteria

Design Parameter	Value				
Residential – Single Family	3.4 p/unit				
Residential – Semi-Detached	2.7 p/unit				
Residential – Townhome	2.7 p/unit				
Residential – Average Daily Demand	350 L/p/day				
Residential – Maximum Daily Demand	2.5 x Average Daily Demand				
Residential – Maximum Hourly Demand	2.2 x Maximum Daily Demand				
Residential – Minimum Hourly Demand	0.5 x Average Daily Demand				
Commercial / Institutional Average Daily Demand	50,000 L/ha/day				
Park Average Daily Demand	28,000 L/ha/day				
Commercial / Institutional / Park Maximum Daily Demand	1.5 x Average Daily Demand				
Commercial / Institutional / Park Maximum Hour Demand	1.8 x Maximum Daily Demand				
Commercial / Institutional / Park Minimum Hourly Demand	0.5 x Average Daily Demand				
Fire Flow	Calculated as per the Fire Underwriter's Survey 1999.				
Minimum Watermain Size	150 mm diameter				
Service Lateral Size	19 mm dia. Copper or equivalent				
Minimum Depth of Cover	2.4 m from top of watermain to finished				
Millimum Deput of Cover	grade				
Peak hourly demand operating pressure	275 kPa and 690 kPa				
Fire flow operating pressure minimum	140 kPa				
Extracted from Section 4: Ottawa Design Guidelines, Water Distribution (July 2010), ISDTB-2010-2					

A boundary condition request was submitted (provided in *Appendix B* for reference) in order to obtain water supply parameters for use in the hydraulic modelling assessment of the network. A hydraulic analysis was prepared for the water distribution network to confirm that water supply is available within the required pressure range, under the anticipated demand during average day, peak hour and fire flow conditions and was based on boundary conditions requested from the City of Ottawa. Refer to the *Hydraulic Capacity and Modeling Analysis, Brazeau Lands* prepared by *GeoAdvice Engineering Inc. dated June 10, 2020 (GeoAdvice Water Analysis)*, enclosed in *Appendix B.*

The proposed water layout is shown in the general plan of services overview presented in *Figures 3, 3A, 3B* at the back of this report as well as in the GeoAdvice report figures. The Ridge development will initially require a minimum of two watermain feeds to the service the property. Based on the nearby existing infrastructure, and surrounding development plans, it is proposed that an extension of the existing Dundonald Drive 300mm watermain will provide service to the northeast portion of the property. In addition, the second proposed feed to service The Ridge will be through the Drummond Lands from the proposed 300mm watermain that is being advanced for the Tamarack Meadows development north of the property. Ultimately there will be future connections to Greenbank Road and Kilbirnie Drive (to the south) when those development areas are advanced.

18-1030

3.3 Summary of Hydraulic Modeling Analysis

A complete watermain analysis has been prepared to confirm that the network is sized adequately, which is the greater of maximum day plus fire and maximum hour for both the Phase 1 and Phase 1&2 scenario. Refer to the **GeoAdvice Report**, enclosed in **Appendix B**.

System Pressures

The modeling indicates that the development can be adequately serviced by the proposed watermain network. Modeled service pressures for the development are summarized in the following table. The detailed pipe and junction tables are contained in the *GeoAdvice Report*, enclosed in *Appendix B*.

Table 1D: Summary of Available System Pressures

	Minimum Hour Demand Maximum Pressure		Peak Hour Demand Minimum Pressure	
	kPA	psi	kPA	psi
Phase 1	538	78	290	42
Phases 1&2	538	78	262	38

The generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi) as outlined in the City of Ottawa Design Guidelines. Low pressures (slightly below 40 psi) are predicted in the south and southeast area of the site due to higher ground elevations. However, this is without considering provision of the future watermain connection from the Quinn's Pointe development area. Per Section 4.1 of the **GeoAdvice Report**, this future additional connection (as required by the **BSUEA MSS**) will provide an additional head of up to seven meters and resolve this low pressure condition. Should the availability of the additional watermain feed not be in place during the advancement of Phase 2 of The Ridge, it would be recommended that oversized service laterals be provided in order to compensate. For now, the current design drawings have demonstrated the requirement of a 25mm water service lateral in the areas that are slightly below the 40psi threshold.

3.4 Fire Flows – Fire Underwriters Survey

Fire Flow requirements are established in the boundary condition request found in **Appendix B** as prepared by GeoAdvice. Calculations for the single detached dwellings and traditional townhomes reached the City of Ottawa's cap of 10,000 L/min (167 L/s) as outlined in *ISDTB-2014-02*. At this time, there is not enough information available to calculate the required fire flows of the park so a required fire flow of 250 L/s was assumed, which is a typical requirement for similar land uses. The fire flows are calculated in accordance with the Fire Underwriters Survey's Water Supply for Public

18-1030

Fire Protection Guideline (1999). Detailed FUS calculations can be found in the GeoAdvice reporting.

Available Fire Flows

The minimum allowable pressure under fire flow conditions is 140 kPa (20 psi) at the location of the fire. A summary of the available fire flows is presented in the following table. The detailed fire flow reports are found in the **GeoAdvice Report** enclosed in **Appendix B**.

1E: Summary	∕ of Available	Fire Flows
-------------	----------------	------------

	Required Fire Flow (L/s)	Minimum Available Flow (L/s)	Junction ID
Phase 1	167	177	J-45
	250	249	J-47
Phase 1 & 2	167	194	J-66
	250	269	J-47

As shown in the above table the model predicts the network will be able to provide all required fire flows within the development limits. Detailed results are included in the **GeoAdvice Report**, enclosed in **Appendix B**.

3.5 Water Supply Conclusion

The subject lands have been previously reviewed within the **BSUEA MSS** for the BSUEA development areas. The interim condition of The Ridge subdivision can be serviced by City of Ottawa infrastructure through the extension of the existing 300mm watermain from Dundonald Road from the east side of the property and a proposed connection north of the property, through the Drummond Lands, to a new 300mm watermain extension from Cambrian Road. In the interim condition for Phase 2 areas (i.e. only two feeds into the development area) there are pockets of low pressure (slightly below 40psi) areas along the southern boundary that are proposed to have 25mm water service laterals to compensate. Ultimately there will be additional connections to future watermains along Greenbank Road and Kilbirnie Drive (from the south as the Minto Quinn's Pointe development advances) that will alleviate the low pressure condition. See *Figure WAT-1* in *Appendix B* for the watermain network overview. These extensions are in accordance with the *MSS* projected infrastructure. The proposed water supply design conforms to all relevant City and MECP Guidelines and Policies.

18-1030

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

Sanitary flows from the **BSUEA** were proposed to outlet to the existing 900mm diameter Greenbank Road sanitary trunk sewer. The existing South Nepean Collector (SNC) will provide the sanitary outlet for the entire Barrhaven South Community, which includes the BSUEA development area.

Trunk sanitary sewers exist north of the Brazeau Lands area and are located along Cambrian Road (see JLR's *Master Sanitary Drainage Area* plan 'MSAN' in *Appendix* **C**). The outlet connection point to existing for the Brazeau Lands is as follows:

Existing 500 mm / 600 mm / 750 mm diameter sanitary trunk running east on Cambrian Road then extending north along existing Greenbank Road and east to the South Nepean Collector (SNC). The current sewer termination is at the New Greenbank Road alignment.

As per the **BSUEA MSS** the subject property is tributary to the existing sanitary trunk sewer along Cambrian Road.

4.2 Wastewater Design

The subject property will be serviced by an internal gravity sanitary sewer system that will generally follow the local road network with select servicing easements and land crossing permissions as required to achieve efficiencies in servicing and grading designs. The wastewater layout can be found in the general plan of services overview presented in *Figures 3, 3A and 3B* at the back of this report. The sanitary drainage area plans and design sheets, along with background *BSUEA MSS* information, can all be found in *Appendix C* for reference.

The **BSUEA MSS** proposed that the wastewater outlet from the Brazeau Lands would tie into the off-site Cambrian Road trunk sewer at existing sanitary 'EX MH57A' via the Future Greenbank Road alignment and that is now the intent of The Ridge (Brazeau) design. The *Master Sanitary Drainage Area* plan 'MSAN' from the **BSUEA MSS** is provided in **Appendix C** for reference. Sanitary flows from the adjacent Drummond Lands were originally proposed to be conveyed to Cambrian Road (MA11 to MA10) through Tamarack's "The Meadows Phase 7 & 8" (**Meadows**) development area at 3640 Greenbank Road (D07-16-18-0011) in the **BSUEA MSS**. Although there were prior concepts of bringing The Ridge sanitary flows through the Drummond/Tamarack properties, the current sanitary sewer alignments, that are in line with the **BSUEA MSS**, are proposed in order to minimize overall sewer depths and alleviate City concerns with alternate routing.

18-1030

4.2.1 Brazeau (The Ridge) Lands

In the **BSUEA MSS**, Table 6-3 (provided in **Appendix C**) summarized the anticipated flows from the "Brazeau Aggregate Extraction Area" lands (i.e. The Ridge development). With the more detailed development concept, the site statistics are refined and the sanitary design sheet found in **Appendix C** more accurately reflects the anticipated sanitary flows. As per Section 3.2 of this report, the anticipated unit count for The Ridge is 347 single family homes and 279 townhouse units.

When applying the City of Ottawa wastewater design criteria the estimated peak sanitary flows from The Ridge and other areas tributary to the sewer network results in the following:

- i) The Ridge residential area + 4.3 ha of Drummond lands (~31.06 L/s);
- ii) Drummond Lands (direct to Greenbank Road (~20.29 L/s);
- iii) Mattamy lands adjacent to Future Greenbank Road (residential area of 1.90 ha and commercial area of 2.99 ha) (~4.45 L/s);
- iv) Future Brazeau commercial area (13.83 ha) west of the subdivision (~9.05 L/s)
- v) Commercial area (ABIC) (~4.84 L/s)

For comparison to the *MSS* Table 6-3 values, criteria the estimated peak sanitary flows from The Ridge and Mattamy areas is approximately 49.38 L/s. This would be in comparison to the *MSS* sum of the 21.50 L/s (Brazeau Lands flow), 1.8 L/s Mattamy Commercial, and approximately 1.9 L/s Mattamy Residential. For comparison this would be 69.69 L/s versus the 25.2 L/s (i.e. +44.49 L/s) previously summarized in the JLR's Table 6-3.

Table 6-4 in the **BSUEA MSS** identified critical residual capacities in existing trunk sanitary sewers associated with the BSUEA area. Specifically, the Cambrian Road sewer is the outlet for the Brazeau Lands property and has a limiting pipe reach from existing MH13A to MH15A with a residual capacity of approximately 52.9 L/s. The additional 44.49 L/s of anticipated sanitary flows uses approximately ~84% of the residual capacity leaving 8.41 L/s. Review of the **BSUEA MSS** sanitary design sheet indicates that there are no other sanitary sewer constraints up to the SNC.

4.2.2 Greenbank Road Sewer Alignment

As noted, the sanitary outlet for The Ridge will be along the Future Greenbank Road EA alignment as per the **BSUEA MSS**. As per JLR's *Master Sanitary Drainage Area* plan 'MSAN' in **Appendix C** this alignment is represented by the sewer run from MH900 to EXMH57A on Cambrian Road ranging in size from 250mm to 375mm. The proposed design has a 375mm sanitary (capacities of the design can be seen in the sewer design sheet). MH900 would equate to the MH402A proposed within The Ridge design. Per Section 6.3.1.2 the depth of the sewer at this location was estimated to have a cover depth of approximately 7.43m. Based on The Ridge detailed design, which has taken into consideration all of the site grading and sewer crossing constraints that result from

18-1030

detailed design, the proposed cover is 8.5m at MH402A per the profile drawing for this trunk sewer (See Drawing 61 in *Appendix C*). The elevated EA road profile results in the greater depth of the sewer at this location. As the sewer progresses northward towards Cambrian Road the depth of cover is gradually reduced as the road profile drops down in elevation. The proposed sanitary sewer is set at either minimum slopes, to mitigate depth of cover, or at slopes to establish flow capacities that are approximately 75%-78% of the proposed sewer's capacity. See markups of the profile drawings in *Appendix C* for reference.

4.2.3 Wastewater Design Criteria

The following table summarizes the City design guidelines and criteria applied in the preliminary sanitary design information above and detailed in *Appendix C*.

Table 2: Wastewater Design Criteria

Design Parameter	Value		
	ign Guidelines		
Residential - Single Family / Townhome	3.4 p/unit & 2.7 p/unit respectively		
Residential – Apartment	1.8 p/unit		
Average Daily Demand	280 L/d/person		
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0		
Commercial / Institutional Flows	28,000 L/ha/day		
Commercial / Institutional Peak Factor	1.5		
Infiltration and Inflow Allowance	0.33 L/s/ha		
Park Flows	28,000 L/ha/d		
Park Peaking Factor	1.0		
Sanitary sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$		
Minimum Sewer Size	200mm diameter		
Minimum Manning's 'n'	0.013		
Minimum Depth of Cover	2.5m from crown of sewer to grade		
Minimum Full Flowing Velocity	0.6m/s		
Maximum Full Flowing Velocity	3.0m/s		
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, October 2012, and recent residential subdivisions in City of Ottawa.			

4.3 Wastewater Servicing Conclusion

The subject property will be serviced by local sanitary sewers which will outlet to the Future Greenbank Road ROW alignment via new sanitary sewers. The sewer will connect to existing sewers along Cambrian Road as demonstrated in the **BSUEA MSS** at 'EX MH57A' per JLR's *Drawing MSAN*. There is residual capacity in the downstream sewers providing sufficient capacity for the peak sanitary flows for the subject property.

5.0 STORMWATER CONVEYANCE

5.1 Existing Stormwater Drainage

The **BSUEA** is tributary to three sub-watersheds as depicted in the 'Figure 3-1' excerpt from the **BSUEA MSS** provided in **Appendix D**. The Brazeau Lands are within the Jock River Subwatershed.

Due to the recent land use for mineral extraction the majority of the land area is lower than the surrounding topography. As identified in the **BSUEA MSS**, the BSUEA *Existing Condition Report* identified that the original drainage pattern for the development area was northwards via overland flow paths with no defined channels. Per the existing topography characterized within available City of Ottawa base mapping, flows from the subject property will now be ultimately conveyed to the Jock River by storm systems (pipes and ditches as required) along Borrisokane Road.

5.2 Proposed Stormwater Management Strategy

The future flows from the land area are planned to meet the following criteria per the **BSUEA MSS**:

- Meet the existing flow in the downstream system;
- ➤ Meet the quality control target of 80% TSS removal as per the Jock River Reach One Subwatershed Study (Stantec, 2007); and,
- > Preserve pre-infiltration condition levels (Section 5.3.4 of **BSUEA MSS**)

In order to provide drainage conveyance to a Borrisokane Road storm outlet, the site grading will be adjusted to convey flows westward. As noted in the **BSUEA MSS**, the **Existing Conditions Report** for the BSUEA identified that the culvert downstream of the aggregate properties receives a pre-development flow of 1,300 L/s during the 1:100 year event (see Figure 3-1, and Tables 5-2 and 5-5 in **Appendix D** from the ECR noting the constrained culvert CVR-C1). Servicing of both The Ridge and Drummond properties have been developed such that the downstream pre-development flow is not exceeded. Any downstream systems should have sufficient capacity for the pre-development flow.

The **BSUEA MSS** conceptualized the following requirements for the development areas:

➤ The design of the storm drainage system has been undertaken using the dualdrainage approach. The **BSUEA MSS** sets out the design criteria for future draft plan and site plan applications for the BSUEA.

- Two (2) separate storm servicing solutions were developed; one conventional servicing strategy and one that incorporates the Etobicoke Exfiltration System (EES) or alternative, which was recommended (see **BSUEA MSS** Drawing MST-2 for details and Section 5.2.1 of this report for discussion).
- The downstream boundary conditions or flow criteria to achieve are developed in the **BSUEA MSS** and are used in the design constraints.
- Allowable minor system release rates were set at the required storm event and future design should maintain the same release rate criteria.
- Stormwater management facilities have been identified in the stormwater management solution for the aggregate extraction areas.

The stormwater management designs will consist of:

- A storm sewer system designed to capture at least the minimum design capture events required under PIETB-2016-01;
- One dry Stormwater Management (SWM) Pond designed to provide required quantity controls along with oil-grit separator (OGS) units that will provide an Enhanced Level of Protection [80% total suspended solids (TSS) removal] per MECP guidelines. The SWM pond will provide controls to levels which respect any downstream pre-development flows;
- ➤ An on-site road network designed to maximize the available storage in the onsite road network for the 100-year design event, where possible, with controlled release of stormwater to the minor storm system; and
- ➤ An overland flow route designed to safely convey stormwater runoff flows in excess of the on-site road storage.

5.2.1 Infiltration – Etobicoke Exfiltration System (EES)

Within the **BSUEA MSS**, Section 5.4.4 discussed the recommendation of distributed infiltration for development areas. An analysis was carried out and summarized in the *Existing Conditions Report* which determined the various contributions of the water budget based on long-term simulation.

The section also notes that the overall pre-development infiltration from the **BSUEA MSS** area was determined but that the aggregate extraction areas were excluded in that determination. Ongoing investigations for both the Brazeau and Drummond properties have been completed and are summarized in the attached "Groundwater Infiltration Review" memorandum completed by Paterson Group (see **Appendix D** for reference). The memorandum summarizes the estimate infiltration rates that could be anticipated throughout the sites for various soil type conditions that were found during their investigations. These values were used during the detailed design determinations.

18-1030

Section 5.5 of the **BSUEA MSS** discusses the various storm servicing strategies for the development areas. The section went through the various options to achieve the required infiltration targets with the preferred arrangement being the Etobicoke Exfiltration System (EES) Infiltration Strategy. Other alternatives were reviewed, however the EES system is the most suitable for the site and is proposed to be implemented in accordance with the City's preference.

A key point of note, as required by the *MSS*, is that capture of stormwater by the exfiltration system has strategically located insofar as the system is to be installed on local roads (where required to achieve the required infiltration levels) where the surface runoff is less impacted by the City's winter road salting program. Therefore collector and arterial roads will have conventional storm sewer installations that will convey flows to a proposed downstream oil-grit-separator (OGS) units and end-of-line dry pond facility. JFSA has prepared their *JFSA LID Analysis* design memo to assess the infiltration volumes anticipated for the EES system proposed. See *Appendix D* for the analysis. A visual representation of the EES system and drainage capture areas can be seen in the *Figure 2* of the JFSA technical memorandum and can also be seen in the Storm Drainage Area plans.

As summarized in the JFSA analysis, there will be a total of 24 EES systems implemented within the development area in order to meet the infiltration requirements. The EES units will be installed underneath storm sewers within the ROW in specific areas determined as being suitable based on site constraints. Each system will consist of one or two 250 mm diameter perforated pipes surrounded by a 0.85 m deep by 1.20 m wide clear stone trench. Goss traps will be installed in upstream catchbasins in order to prevent/mitigate debris and potential oils from entering the perforated pipe system. Detail drawings of the proposed EES units provided in Figure 1 of the *JFSA LID Analysis*. See *Appendix D* for the full summary of the design parameters for each EES in Tables A1 and A2 (pipe diameter, system lengths and volumes, inverts etc).

For protection measures of the EES system during construction see Section 7.1.

5.2.2 EES Temporary Monitoring

As per Section 5.5.1.8 of the **BSUEA MSS** there are requirements for temporary monitoring of the proposed infiltration system in order to assess and confirm that the EES operates as intended. The objectives of the monitoring will be to estimate the drawdown time of the EES (i.e. time for water levels to drop) to see if the infiltration values projected are in line with the results, and to determine the average rate of capture before runoff is conveyed by the traditional storm sewer system. The final locations and configuration will be coordinated with City staff through this detailed design process as it has been indicated that the City has vetted a "Smart Cover" arrangement through the advancement of the adjacent Minto development area.

18-1030

Proposed monitoring locations have been circulated to the City and are identified in a markup of the *Figure 2* from the *JFSA LID Analysis* provided in *Appendix D*. The City has concurred with the preliminary locations pending full acceptance of the EES design.

5.3 Post-Development Stormwater Management Targets

Stormwater management requirements for the proposed alternative Stormwater management scheme have been adopted from the *Jock River SWS*, *City Standards*, and the *MECP SWMP Manual*.

Given the general criteria mentioned above, the following specific standards are expected to be required for stormwater management within the subject property:

- Enhanced quality treatment will be provided for stormwater runoff from the subject property, corresponding to a long-term average TSS removal efficiency of 80%, as defined by the MECP prescribed treatment levels;
- Downstream receiving drainage features, culverts, and sewers will be assessed for responses to planned stormwater management outflows, and infrastructure rehabilitation or capacity improvement measures will be planned, as required;
- ➤ Storm sewers on local roads are to be designed to provide at least a 2-year level of service without any ponding per the City's latest Technical Bulletin PIEDTB-2016-01;
- ➤ Storm sewers on collector roads are to be designed to provide at least a 5-year level of service without any ponding per the City's latest Technical Bulletin PIEDTB-2016-01:
- For less frequent storms (i.e. larger than 2-year or 5-year), the minor system sewer capture will be restricted with the use of inlet control devices to prevent excessive hydraulic surcharges;
- ➤ Under full flow conditions, the allowable velocity in storm sewers is to be no less than 0.80 m/s and no greater than 6.0 m/s;
- ➤ For the 100-year storm and for all roads, the maximum depth of water (static and/or dynamic) on streets, rear yards, public space and parking areas shall not exceed 0.35 m at the gutter;
- ➤ The major system shall be designed with sufficient capacity to allow the excess runoff of a 100-year storm to be conveyed within the public right-of-way ROW, or adjacent to the ROW, provided the water level does not touch any part of the building envelope; must remain below all building openings during the stress test event (100-year + 20%); and must maintain 15 cm vertical clearance between spill elevation on the street and the ground elevation at the nearest building envelope;

- Flow across road intersections shall not be permitted for minor storms (generally 5-year or less);
- When catchbasins are installed in rear yards, safe overland flow routes are to be provided to allow the release of excess flows from such areas. A minimum of 30 cm of vertical clearance is required between the rear yard spill elevation and the ground elevation at the adjacent building envelope; and
- The product of the maximum flow depths on streets and maximum flow velocity must be less than 0.60 m²/s on all roads.

5.3.1 Quality Control

As per the **Jock River SWS**, Enhanced quality treatment will be provided for stormwater runoff from the subject property, corresponding to a long-term average Total Suspended Solid removal efficiency of 80%, as described by the MECP prescribed treatment levels. This will be achieved via the proposed EES system installations (where possible) and OGS unit(s) for all other areas. The location/details of the OGS units near the SWM pond inlet can be seen in 'Storm Drainage Plan' Drawing No. 88 and SWM Pond Drawings No. 77/79 found in **Appendix D**.

The **BSUEA MSS** reviewed the quality control aspects of the proposed EES installations. Section 5.5.1.3 of the **MSS** concludes that based on the EES sizing for the 22mm rainfall (i.e. 95th percentile rainfall event) the storage requirements satisfies the requirements for water quality control per the MECP land uses and further downstream control measures would not be required.

5.3.1.1 EES Infiltration Targets

As a part of the **BSUEA MSS** it was determined that pre-development infiltration within the study area accounted for 40% of the overall site's water budget. The City and RVCA determined that pre-development infiltration levels should be maintained under post-development conditions and that the infiltration should be provided across the development and not simply concentrated to one or two locations.

The EES is intended to capture frequent storm events and the initial "first flush" of large storm events by trapping flow in the perforated pipe sub drain and surrounding media. It is also intended to infiltrate runoff from frequent events into the surrounding soils, while runoff from larger events will overtop the capacity of the EES system and would then overflow to the conventional storm sewer system above

As specified by the Master Servicing Study, the proposed development should infiltrate 40% of the annual runoff. As the hourly rainfall data used in this simulation does not extend the full year, the infiltration target for this analysis has been assumed to be 40% of the average simulated rainfall volume (552.0 mm), which is calculated to be 220.8mm or 59,744 m³ based on the study area. See the **JFSA LID Analysis** for full details.

18-1030

5.3.2 Quantity Control – Dry Pond

The **BSUEA MSS** currently shows a stormwater pond servicing scenario on each of The Ridge and Brazeau Lands outside of the urban development area (refer to attached 'Barrhaven South Urban Expansion Area – Master Storm Drainage Plan EES') drawing from the **BSUEA MSS** for illustration). However, this two pond concept was proposed in the **BSUEA MSS** due to the desire at that time in order to not have the two properties 'linked' and therefore they would not be dependent upon one another in order to advance development.

As noted in prior sections of this report, the two properties have now coordinated servicing strategies to the benefit of both properties, as well as the City, as follows (refer to the Storm Drainage Area Plan and Pond Plan in *Appendix D*):

- The single pond option will be a dry facility with OGS units to treat stormwater requiring treatment. This is in line with the **MSS**;
- If a pond was proposed within the Brazeau Lands location shown in the *MSS*, it would have required a large box culvert outlet in order to convey emergency flow out to Borrisokane Road due to topography constraints. Based on an increase in elevation downstream of that outlet, the emergency flows could not be conveyed overland. With the single pond concept on the Drummond Lands, a box culvert would no longer be required due to the more suitable topography at the Drummond outlet and the associated availability of emergency relief;
- A single pond option keeps more infrastructure within the new development areas and minimizes infrastructure proposed within the Borrisokane Road rightof-way (ROW);
- In accordance with the City's typical preference, there will be a reduction in maintenance costs with one less facility to manage.

Similar to the changes associated with the sanitary outlet revision, the only impacted properties are those proponents that are directly benefitting from the changes and would be considered a Minor Change per Section 11.1.1 of the **BSUEA MSS**.

As noted in the *Jock River SWS*, quantity control is not required for the Jock River; however, based on past reports (*BSUEA MSS* and Existing Condition Report), the limited capacity of the ditch infrastructure along Borrisokane Road will require that the stormwater management facility provide a storage volume for quantity control. Any infrastructure upgrades or adjustments relating to the Borrisokane Road ROW will require appropriate permits and approvals from the Ministry of Transportation until such time as the ongoing process for the transfer of the roadway to be under the jurisdiction of the City of Ottawa is completed.

18-1030

5.3.2.1 Erosion Targets – Borrisokane Road ROW

As requested by City staff an erosion assessment has been completed for the Borrisokane Road ditch outlet. JFSA has prepared a technical memorandum under separate cover entitled "Borrisokane Ditch Erosion Assessment: The Ridge (Brazeau) Subdivision" (June 2020) which reviewed the pond outlet for the site (the west ditch of Borrisokane Road north of Cambrian Road). The study concluded that the critical erosion velocity of the receiver is approximately 1.2 m/s which was then converted to a critical discharge threshold using a 1D HEC-RAS model of the ditch which determined that the threshold ranges from 4.20 m³/s to 7.9 m³/s for the middle and lower reaches of the ditch. From JFSA's hydrologic modelling of the ditch, under proposed conditions, the peak flow is assessed at 3.82 m³/s for the 100-year 24-hour SCS event which is lower than the existing threshold range determined.

5.4 Stormwater Management Design

As shown in the *Storm Drainage Area Plan*, the proposed stormwater management design consists of OGS units for quality control and an end-of-line dry SWM pond for quantity control prior to discharge along Borrisokane Road. The pond will be located within the portion of the Drummond quarry land that is between the future Drummond residential area to be developed (within the urban boundary) and Borrisokane Road. The facility will be sized to meet the required level of quantity control based on a restricted outflow of 1,300 L/s as noted in Section 5.2. See the *JFSA Pond Report* under separate cover for full details of the SWM pond design.

In accordance with the Paterson *Hydrogeological Review* (under separate cover) for the area of the pond, the bottom elevation has been set at an elevation of 96.00m and will be lined as required to mitigate the inflow of perched groundwater in the area due to seasonal conditions.

The SWM pond will outlet to the Borrisokane Road roadside ditch. It is proposed that there will be a new 900mm/1200mm storm sewer installation along Borrisokane Road which extends northward to the vicinity of Cambrian Road where it discharges to the western roadside ditch. The proposed alignment was submitted via the City's Municipal Consent process at the City's request. No significant concerns were raised with the proposal.

5.4.1 Borrisokane Road – Ministry of Transportation Requirements

Borrisokane Road, along the frontage of The Ridge development area and northwards to Cambrian Road, is currently owned by, and under the jurisdiction of, the Ministry of Transportation. As such, any proposed underground stormwater infrastructure or grading/landscaping will require permits to facilitate the design and implementation of those works until such time that the process underway to transfer jurisdiction to the City of Ottawa is complete. We are working directly with MTO for the required permitting.

18-1030

Culverts:

For any stormwater flows outletting to any existing, or new, Borrisokane Road ROW culverts the stormwater management reporting will evaluate peak flow rates, velocities and headwater levels at pre- and post-development conditions for design and regulatory storms.

Ditches:

For any stormwater flows outletting to existing Borrisokane Road ROW ditches, the stormwater management reporting will evaluate peak flow rates, velocities and depth of flow at pre- and post-development conditions for design and regulatory storms.

Inlet Control Devices:

Insofar as the Ministry has indicated that they do not recognize any benefit from the attenuation of storm water runoff from inlet control devices. In the circumstance where on-site SWM measures do not operate as intended water from the pond will spill to the Borrisokane roadside ditch via a reinforced grassed emergency spillway as shown in the 'SWM Pond' Drawing No. 76.

5.5 Proposed Minor System

The subject property will be serviced by an internal gravity storm sewer system that follows the local road network and servicing easements as required. The drainage is conveyed within the underground piped sewer system to the proposed SWM pond with select areas of local streets that will have the EES installed to achieve infiltration targets.

Street catchbasins will collect drainage from the streets and front yards, while rear yard catchbasins will capture drainage from backyards. Perforated catch basin leads will be provided in rear yards, to add to the infiltration network, except the last segment where it connects to the right-of-way which will be solid pipe, per City standards.

The preliminary rational method design of the minor system captures drainage for storm events up to and including the 2-year (local) and 5-year (collector) event assuming the use of inlet control devices (ICD) for all catchbasins within the subject property. The peak design flows are calculated based on an average predicted runoff coefficient (C-value) ranging from 0.71 to 0.54 for most of the development area (see storm design sheet in *Appendix D* for details. The storm system has also been sized to consider the potential for future commercial lands to the west where required.

The following table summarizes the standards that will be employed in the detailed design of the storm sewer network. The drainage area information can be found in the *Storm Drainage Plans* and rational method design sheets provided in *Appendix D*.

Table 3: Storm Sewer Design Criteria

Design Parameter	Value
Minor System Design Return Period	1:2 yr (PIEDTB-2016-01) for local roads, without ponding 1:5 yr for collector roads, without ponding
Major System Design Return Period	1:100 year
Intensity Duration Frequency Curve (IDF) 2-year storm event: A=732.951 B=6.199 C=0.810 5-year storm event: A = 998.071 B = 6.053 C = 0.814	$i = \frac{A}{\left(t_c + B\right)^C}$
Minimum Time of Concentration	10 minutes
Rational Method	Q = CiA
Storm sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$
Runoff coefficient for paved and roof areas	0.9
Runoff coefficient for landscaped areas	0.2
Minimum Sewer Size	250 mm diameter
Minimum Manning's 'n' for pipe flow	0.013
Minimum Depth of Cover	1.5 m from crown of sewer to grade
Minimum Full Flowing Velocity	0.8 m/s
Maximum Full Flowing Velocity	6.0 m/s
Clearance from 100-Year Hydraulic Grade Line to Building Opening	0.30 m
Max. Allowable Flow Depth on Municipal Roads	35 cm above gutter (PIEDTB-2016-01)
Extent of Major System	Contained within the ROW, or adjacent to the ROW, provided that the water level not touch any part of the building envelope and remains below the lowest building opening during the stress test event (100-year + 20%) and 15cm vertical clearance is maintained between spill elevation on the street and the ground elevation at the building envelope (PIEDTB-2016-01)
Stormwater Management Model	DDSWMM (release 2.1), SWMHYMO (v. 5.02)
Model Parameters	Fo = 76.2 mm/hr, Fc = 13.2 mm/hr, DCAY = 4.14/hr, D.Stor.Imp. = 1.57 mm, D.Stor.Per. = 4.67 mm
Imperviousness	Based on runoff coefficient (C) where Percent Imperviousness = (C - 0.2) / 0.7 x 100%.
Design Storms	Chicago 3-hour Design Storms and 24-hour SCS Type II Design Storms. Max. Intensity averaged over 10 minutes.
Historical Events	July 1st, 1979, August 4th, 1988 and August 8th, 1996
Climate Change Street Test	20% increase in the 100-year, 3-hour Chicago storm
Design Parameter	Value
Extracted from City of Ottawa Sewer Design Guidelines,	October 2012, and ISSU,

18-1030

5.6 Quality Control (OGS Units)

Enhanced quality treatment for the development, corresponding to a long-term average Total Suspended Solid removal efficiency of 80%, will be achieved via the proposed EES system installations and two OGS unit(s). The location/details of the OGS units near the SWM pond inlet can be seen in 'Storm Drainage Plan' Drawing No. 88 and SWM Pond Drawings No. 77/79 found in **Appendix D** along with the details of the OGS unit sizing provided by Contech. The units have been configured as off-line units to allow for the bypass of larger flows.

5.7 Hydraulic Grade Line Analysis

A detailed hydraulic grade line (HGL) modelling analysis has been completed for the proposed system based on the 100-year 3-hour Chicago, 12-hour SCS, and 24-hour SCS design storms, including historical design storms and climate change stress test as required. The HGL is provided in the plan and profile drawings for the subdivision and details of the modelling can be found in the **JFSA SWM Report**.

5.8 Proposed Major System

Major system conveyance, or overland flow (OLF), is provided to accommodate flows in excess of the minor system capacity. OLF is accommodated by generally storing stormwater up to the 100-year design event in road sags then routing additional surface flow along the road network and service easements towards the proposed drainage features to the Jock River, as shown in the *Storm Drainage Plans*. Stormwater ultimately discharges to the Borrisokane Road ROW which will require appropriate permits and approvals from the Ministry of Transportation if the process to change the jurisdiction to the City of Ottawa does not occur.

5.9 Stormwater Servicing Conclusions

The stormwater runoff is designed to be captured by an internal gravity sewer system that is to convey flows to an end-of-line dry SWM pond facility and OGS units for the quality control treatment of stormwater flows that originate from collector and arterial roadways due to City salting procedures. An Enhanced Level of protection will be provided for stormwater runoff from the subject property before ultimately being discharged to the Jock River. Quantity control is not required for the Jock River, notwithstanding, some quantity control by on-site and SWM pond storage will be provided due to downstream infrastructure constraints.

Infiltration targets noted in the MSS will be achieved via the installation of the EES system within local ROWs which will also provide Enhanced Level quality control as detailed in the **MSS**.

6.0 PROPOSED GRADING

The grading design includes a saw-toothed road design with varying road grades in order to maximize available surface storage for management of flows up to the 100-year design event where possible. The proposed site grading has also been developed to optimize earthworks and provide major system conveyance to the end-of-line facility which eventually outlets to the Borrisokane Road ROW and then to the Jock River. Roadway connections to the future New Greenbank Road will be coordinated with that future design based on the Environmental Assessment Study profile for that roadway. Reduced size grading plans are found in *Appendix E* in order to provide an overview context for the proposed grading.

The geotechnical review of the site makes note of the significant grade raises that will be found within the development area. No grade raise restrictions are indicated for the site. However, an extensive earthworks program is being undertaken which will be continuously monitored by the geotechnical consultant in order to ensure that appropriate fill material, placement, and compaction are provided throughout the property. The monitoring program is based on the detailed grading proposed and will ultimately be reviewed and signed off by a licensed Geotechnical Engineer. Any grading onto adjacent properties has been coordinated with adjacent landowners for permissions and retaining walls will be implemented where required.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosions losses is exaggerated during construction where the vegetation has been removed and the top layer of soil is disturbed.

- Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.
- Limit extent of exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with plastic or synthetic mulches.
- Install silt fence to prevent sediment from entering existing ditches.
- No refueling or cleaning of equipment near existing watercourses.
- Provide sediment traps and basins during dewatering.
- Install filter cloth between catch basins and frames.
- Installation of mud mats at construction accesses.

7.1 EES Protection During Construction

From the Low Impact Development Stormwater Management Planning and Design Guide prepared by CVC and TRCA (ver 1.0, 2010):

- Prior to site works, the location of LIDs should be marked and vehicles are to avoid the area other than during the installation of the LID. Drainage not to be directed to the LID;
- To minimize siltation in the newly installed EES system, both the upstream and downstream ends of the EES system should be plugged immediately during the construction phase. The upstream plug is to be removed at approximately an occupancy of 80% similar to the Quinn's Pointe development;
- ➤ Upland drainage areas need to be properly stabilized with vegetation as soon as possible in order to reduce sediment loads;
- The facility should be excavated to design dimensions from the side using a backhoe or excavator. The base of the facility should be level or match the slope of the above storm sewer;
- The bottom of the facility should be scarified to improve infiltration; and
- Geotextile fabric should be correctly installed to optimize system function. When laying the geotextile, the width should include sufficient material to compensate for perimeter irregularities in the facility and a 150mm minimum top overlap.

8.0 CONCLUSION AND RECOMMENDATIONS

This report provides details on the planned on-site municipal services for the subject property and demonstrates that adequate municipal infrastructure capacity for the planned development of the subject property:

- The subject lands have been reviewed by the **BSUEA MSS** and has shown that water supply to the property can be provided. An analysis completed by GeoAdvice also documents the water supply network and results. The network will be expanded through neighboring properties to enhance/meet the water demands of the proposed development as adjacent properties are also developed.
- Sanitary service is to be provided to the subject property via connection to the sanitary sewer located along Cambrian Road through the Future Greenbank Road ROW as per the *MSS*. With the inclusion of the subject property, the existing downstream sewers have sufficient capacity to accommodate the subject property's proposed sanitary flows.

- Stormwater service is to be provided by capturing stormwater runoff via an internal gravity sewer system that will convey flows to a proposed end-of-line dry SWM pond facility for quantity control. Quality control will be provided for arterial and collector roadway (and select local roadway) drainage via the use of OGS units to an Enhanced Level of protection (80% TSS removal) prior to discharge to the SWM Pond. Quality control for local streets will be provided via the proposed Etobicoke Exfiltration System as documented in the MSS, as well as within the OGS units downstream. Quantity control is not required for the Jock River, however, some quantity control by on-site and SWM pond storage will be provided due to downstream infrastructure constraints. An erosion threshold assessment has been completed by JFSA for the Borrisokane Road west side ditch north of Cambrian Road (pond outlet) and has confirmed that the projected flows are lower than the threshold determined.
- > As suggested in the **BSUEA MSS** the infiltration will be achieved via use of the preferred EES system. The JFSA reporting demonstrates that the required infiltration targets are met.
- > Erosion and sediment control measures will be implemented and maintained throughout construction.
- ➤ The design of The Ridge has been completed in general conformance with the City of Ottawa Design Guidelines and criteria presented in other background study documents.

Prepared by,

David Schaeffer Tygineering Ltd.

Per: Kevin L. Murphy, P.Eng

© DSEL 2020-07-27_Brazeau_Servicing_Subm4.doc

Hydraulic Capacity and Modeling Analysis Brazeau Lands

Final Report

Prepared for:

David Schaeffer Engineering Ltd. 120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

Prepared by:

GeoAdvice Engineering Inc. Unit 203, 2502 St. John's Street Port Moody, BC V3H 2B4

Submission Date: July 28, 2020

Contact: Mr. Werner de Schaetzen, Ph.D., P.Eng.

Project: 2019-091-DSE

Copyright © 2020 GeoAdvice Engineering Inc.

Document History and Version Control

Revision No.	Date	Document Description	Revised By	Reviewed By
R0	November 7, 2019	Draft	Ben Loewen	Werner de Schaetzen
R1	December 20, 2019	Final	Ben Loewen	Werner de Schaetzen
R2	June 10, 2020	Updated Draft	Ferdinand de Schoutheete	Werner de Schaetzen
R3	July 28, 2020	Final	Ferdinand de Schoutheete	Werner de Schaetzen

Confidentiality and Copyright

This document was prepared by GeoAdvice Engineering Inc. for David Schaeffer Engineering Ltd. The material in this document reflects the best judgment of GeoAdvice in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. GeoAdvice accepts no responsibility for damages, if any, suffered by any third party as a result of decision made or actions based on this document. Information in this document is to be considered the intellectual property of GeoAdvice Engineering Inc. in accordance with Canadian copyright law.

Statement of Qualifications and Limitations

This document represents GeoAdvice Engineering Inc. best professional judgment based on the information available at the time of its completion and as appropriate for the project scope of work. Services performed in developing the content of this document have been conducted in a manner consistent with that level and skill ordinarily exercised by a member of the engineering profession currently practicing under similar conditions. No warranty, express or implied is made.

Project ID: 2019-091-DSE Page | 2

Contents

1	Int	roducti	ion	4
2	Mo	odeling	Considerations	6
	2.1	Wate	r Main Configuration	€
	2.2	Eleva	tions	€
	2.3	Consi	umer Demands	6
	2.4	Fire F	low Demand	8
	2.5	Boun	dary Conditions	g
3	Ну	draulic	Capacity Design Criteria	10
	3.1	Pipe (Characteristics	10
	3.2	Press	ure Requirements	10
4	Ну	draulic	Capacity Analysis	11
	4.1	Deve	lopment Pressure Analysis	11
	4.2	Deve	lopment Fire Flow Analysis	12
5	Otl	her Ser	vicing Considerations	14
	5.1	Wate	r Supply Security	14
	5.2	Valve	PS	14
	5.3	Hydra	ants	15
6	Co	nclusio	ns	16
Α	ppend	A xib	Domestic Water Demand Calculations and Allocation	
Α	ppend	dix B	FUS Fire Flow Calculations and Allocation	
Α	ppend	dix C	Boundary Conditions	
Α	ppend	dix D	Pipe and Junction Model Inputs	
Α	ppend	dix E	MHD and PHD Model Results	
Α	ppend	dix F	MDD+FF Model Results	

1 Introduction

GeoAdvice Engineering Inc. ("GeoAdvice") was retained by David Schaeffer Engineering Ltd. ("DSEL") to size the proposed water main network for the Brazeau Lands development ("Development") in the City of Ottawa, ON ("City").

Under existing conditions, the development will be serviced by the Barrhaven pressure zone; however, in the future, it will be serviced by pressure zone 3C.

There are 347 single detached dwellings, 279 traditional townhomes and 1 park serviced as part of the development.

The Brazeau Lands development will have three (3) connections to the City water distribution system:

- Connection 1: Apolune Street and Cambrian Road;
- Connection 2: Jackdaw Avenue and Future Greenbank Road; and
- Connection 3: Dundonald Drive and Future Greenbank Road.

The development site is shown in **Figure 1.1** on the following page, with the final recommended pipe diameters.

This report describes the assumptions and results of the hydraulic modeling and capacity analysis using InfoWater (Innovyze), a GIS water distribution system modeling and management software application.

The results presented in this memo are based on the analysis of steady state simulations. The predicted available fire flows, as calculated by the hydraulic model, represent the flow available in the water main while maintaining a residual pressure of 20 psi. No extended period simulations were completed in this analysis to assess the water quality or to assess the hydraulic impact on storage and pumping.

Client: David Schaeffer Engineering Ltd.

Date: June 2020 Created by: BL

Reviewed by: WdS

not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

Layout and Connection Points

Figure 1.1

2 Modeling Considerations

2.1 Water Main Configuration

The water main network was modeled based on the drawing prepared by DSEL (1030_Gen_Rev4.dwg) and provided to GeoAdvice on June 2nd, 2020.

2.2 Elevations

Elevations of the modeled junctions were assigned according to a site grading plan prepared by DSEL (1030 Grad Rev4.dwg) and provided to GeoAdvice on June 2nd, 2020.

2.3 Consumer Demands

Demand factors used for this analysis were taken according to the City of Ottawa 2010 Design Guidelines *Table 4.2 Consumption Rate for Subdivisions of 501 to 3,000 Persons*. Population densities were assigned according to *Table 4.1 Per Unit Populations* from the City of Ottawa Design Guidelines. A summary of these tables highlighting relevant data for this development is shown in **Table 2.1** below.

Table 2.1: City of Ottawa Demand Factors

Demand Type	Amount	Units
Average Day Demand		
Residential	350	L/c/d
Park	28,000	L/ha/d
Maximum Daily Demand		
Residential	2.5 x avg. day	L/c/d
Park	1.5 x avg. day	L/ha/d
Peak Hour Demand		
Residential	2.2 x max. day	L/c/d
Park	1.8 x max. day	L/ha/d
Minimum Hour Demand		
Residential	0.5 x avg. day	L/c/d
Park	0.5 x avg. day	L/ha/d

Table 2.2 and **Table 2.4** summarize the residential water demand calculations for the Brazeau Lands development.

Table 2.2: Development Population and Demand Calculations - Phase 1

Dwelling Type	Number of Units	Persons Per Unit*	Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)	Minimum Hour Demand (L/s)
Single Detached	172	3.4	585	2.37	5.92	13.03	1.18
Traditional Townhome	133	2.7	360	1.46	3.65	8.02	0.73

^{*}City of Ottawa Design Guidelines

Table 2.3: Development Population and Demand Calculations – Phases 1&2

Dwelling Type	Number of Units	Persons Per Unit*	Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)	Minimum Hour Demand (L/s)
Single Detached	347	3.4	1,180	4.78	11.95	26.29	2.39
Traditional Townhome	279	2.7	754	3.05	7.64	16.80	1.53

^{*}City of Ottawa Design Guidelines

Table 2.6 summarizes the non-residential water demand calculations for the Brazeau Lands development (included in both Phase 1 and Phases 1&2).

Table 2.4: Non-Residential Demand Calculations

Land Use Type	Area	Average Day	Maximum Day	Peak Hour	Minimum Hour
Land Ose Type		Demand	Demand	Demand	Demand
	(ha)	(L/s)	(L/s)	(L/s)	(L/s)
Park	1.72	0.56	0.84	1.51	0.28

Table 2.5 summarizes the demands for the Meadows Phases 7/8 subdivision development located north of the Brazeau Lands and downstream of Connections 1 and 2 (accounted for in the HGLs provided by the City in the boundary conditions request).

Table 2.5: The Meadows Phases 7/8

Average Day	Maximum	Peak	Minimum
Demand	Day	Hour	Hour
(L/s)	Demand	Demand	Demand
	(L/s)	(L/s)	(L/s)
6.20	13.50	28.50	3.10

Demands were grouped into demand polygons then uniformly distributed to the model nodes located within each polygon. Detailed calculations of demands as well as the illustrated allocation areas are shown in **Appendix A**.

2.4 Fire Flow Demand

Fire flow calculations were completed for all dwelling types in accordance with the Fire Underwriters Survey's (FUS) Water Supply for Public Fire Protection Guideline (1999) and City of Ottawa Technical Bulletin ISTB-2018-02 as summarized in **Appendix B**.

All the single detached dwellings have a minimum separation of 10 m between the backs of adjacent units and are, therefore, subject to the 10,000 L/min (167 L/s) cap outlined in City of Ottawa Technical Bulletin ISDTB-2014-02.

Most of the traditional townhouse dwellings comply with the City of Ottawa Technical Bulletin ISDTB-2014-02 and are, therefore, subject to the 10,000 L/min (167 L/s) cap.

The traditional townhouse dwellings located on Blocks 168 and 384 do not have a minimum separation of 10 m between the backs of adjacent units and therefore do not comply with the provisions under the City of Ottawa Technical Bulletin ISDTB-2014-02. The required fire flow for those blocks were calculated to be 167 L/s based on the Fire Underwriters Survey's (FUS) Water Supply for Public Fire Protection Guideline (1999). The agreement of this calculation with the City of Ottawa cap of 167 L/s is purely coincidental.

At this time, there is not enough information available to calculate the required fire flow of the park. As such, a required fire flow of 250 L/s was assumed for the park. This is a typical, conservative value for similar land use.

Fire flow simulations were completed at each model node in the Brazeau development. The locations of nodes do not necessarily represent hydrant locations.

Detailed FUS fire flow calculations as well as the illustrated spatial allocation of the required fire flows are shown in **Appendix B**.

2.5 Boundary Conditions

The boundary conditions were provided by the City of Ottawa in the form of Hydraulic Grade Line (HGL) at the following locations:

- Connection 1: Apolune Street and Cambrian Road;
- Connection 2: Jackdaw Avenue and Future Greenbank Road; and
- Connection 3: Dundonald Drive and Future Greenbank Road.

The above connection points are illustrated in **Figure 1.1**.

Boundary conditions were provided for Peak Hour, Maximum Day plus Fire and Minimum Hour (high pressure check) conditions.

Under existing conditions, the Brazeau Lands development will be serviced by the Barrhaven pressure zone; however, in the future, it will be serviced by pressure zone 3C. As such, boundary conditions were provided under the existing and future pressure zone configurations.

In total, two (2) sets of boundary conditions were provided by the City and can be found in **Appendix C**.

The boundary conditions for the existing pressure zone configuration are more conservative. As such, the results presented in this report are based on the boundary conditions for the existing pressure zone configuration.

Table 2.6 summarizes the boundary conditions used to size the Brazeau Lands water network.

Table 2.6: Existing Boundary Conditions

Condition	Connection 1 HGL (m)	Connection 2 HGL (m)	Connection 3 HGL (m)
Min Hour (max. pressure)	156.4	156.4	156.4
Peak Hour (min. pressure)	135.7	135.6	135.7
Max Day + Fire Flow (167 L/s)	144.0	141.2	142.0
Max Day + Fire Flow (250 L/s)	135.4	129.9	131.5

3 Hydraulic Capacity Design Criteria

3.1 Pipe Characteristics

Pipe characteristics of internal diameter (ID) and Hazen-Williams C factors were assigned in the model according to the City of Ottawa Design Guidelines for PVC water main material. Pipe characteristics used for the development are outlined in **Table 3.1** below.

Table 3.1: Model Pipe Characteristics

Nominal Diameter	ID PVC	Hazen Williams
(mm)	(mm)	C-Factor (/)
200	204	110
250	250	110
300	297	120

3.2 Pressure Requirements

As outlined in the City of Ottawa Design Guidelines, the generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way shall not exceed 552 kPa (80 psi). Pressure requirements are outlined in **Table 3.2.**

Table 3.2: Pressure Requirements

Damand Candition	Minimum Pressure		Maximum Pressure	
Demand Condition	(kPa)	(psi)	(kPa)	(psi)
Normal Operating Pressure (maximum daily flow)	350	50	480	70
Peak Hour Demand (minimum allowable pressure)	276	40	-	-
Maximum Fixture Pressure (Ontario Building Code)	-	-	552	80
Maximum Distribution Pressure (minimum hour check)	-	-	552	80
Maximum Day Plus Fire	140	20	-	-

4 Hydraulic Capacity Analysis

The proposed water mains within the development were sized to the minimum diameter which would satisfy the greater of maximum day plus fire and peak hour demand. Modeling was carried out for minimum hour, peak hour and maximum day plus fire flow using InfoWater. Only the existing pressure zone configuration was analyzed, since the boundary conditions are more conservative.

Detailed pipe and junction model input data can be found in **Appendix D**.

4.1 Development Pressure Analysis

Modeled service pressures for the development are summarized in **Table 4.1** below.

Table 4.1: Summary of the Brazeau Lands Available Service Pressures

Phase	Minimum Hour Demand Maximum Pressure	Peak Hour Demand Minimum Pressure
Phase 1	538 kPa (78 psi)	290 kPa (42 psi)
Phases 1&2	538 kPa (78 psi)	262 kPa (38 psi)

As outlined in the City of Ottawa Design Guidelines, the generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way shall not exceed 552 kPa (80 psi).

Low pressures are predicted at junctions J-66, J-70, J-71, J-72, J-73, J-74, J-75, J-76 and J-77 under peak hour demand. Those low pressures are due to high elevations in the southern part of the Brazeau Lands development and are within 5% of the minimum allowable pressure of 276 kPa (40 psi). The future Zone 3C boundary conditions will provide an additional head of about seven (7) meters at each connection point, and will thus resolve the low PHD pressures at the southern part of the Brazeau Lands development.

Detailed pipe and junction result tables and maps can be found in Appendix E.

4.2 Development Fire Flow Analysis

A summary of the minimum available fire flows in the Brazeau Lands development is shown below in **Table 4.2**.

Table 4.2: Summary of the Brazeau Lands Minimum Available Fire Flows

Phase	Required Fire Flow	Minimum Available Flow	Junction ID
Phase 1	167 L/s	177 L/s	J-45
Phase 1	250 L/s	249 L/s	J-47
Dhasas 19.3	167 L/s	194 L/s	J-66
Phases 1&2	250 L/s	269 L/s	J-47

As shown in the table above, the available fire flow is greater than the required fire flow under both Phase 1 and Phases 1&2 conditions.

A summary of the residual pressures in the Brazeau Lands is shown below in **Table 4.3**. The minimum allowable pressure under fire flow conditions is 140 kPa (20 psi) at the location of the fire.

Table 4.3: Summary of the Brazeau Lands Residual Pressures (MDD + FF)

Phase	Maximum Residual Pressure	Average Residual Pressure	Minimum Residual Pressure
Phase 1	365 kPa (53 psi)	296 kPa (43 psi)	140 kPa (20 psi)
Phases 1&2	365 kPa (53 psi)	296 kPa (43 psi)	159 kPa (23 psi)

There is sufficient residual pressure at all the junctions within the Brazeau Lands development.

Detailed fire flow results and figures illustrating the fire flow results can be found in **Appendix F**.

5 Other Servicing Considerations

5.1 Water Supply Security

The City of Ottawa Design Guidelines allow single feed systems for developments up to a total average day demand of 50 m³/day and require two (2) feeds if the development exceeds 50 m³/day for supply security, according to Technical Bulletin ISDTB-2014-02.

The Brazeau Lands services a total average day demand of 725 m³/day; as such, two (2) feeds are required.

5.2 Valves

No comment has been made in this technical memorandum with respect to exact placement of isolation valves within the distribution network for the Brazeau Lands other than to summarize the City of Ottawa Design Guidelines for number, location, and spacing of isolation valves:

- Tee intersection two (2) valves
- Cross intersection three (3) valves
- Valves shall be located 2 m away from the intersection
- 300 m spacing for 150 mm to 400 mm diameter valves
- Gate valves for 100 mm to 300 mm diameter mains
- Butterfly valves for 400 mm and larger diameter mains

Drain valves are not strictly required under the City of Ottawa Design Guidelines for water mains under 600 mm in diameter. The Guidelines indicate that "small diameter water mains shall be drained through hydrant via pumping if needed."

Air valves are not strictly required under the City of Ottawa Design Guidelines for water mains up to and including 400 mm in diameter. The Guidelines indicate that air removal "can be accomplished by the strategic positioning of hydrant at the high points to remove the air or by installing or utilizing available 50 mm chlorination nozzles in 300 mm and 400 mm chambers."

The detailed engineering drawings for the Brazeau Lands are expected to identify valves in accordance with the requirements noted above.

5.3 Hydrants

No comment has been made in this technical memorandum with respect to exact placement of hydrants within the distribution network for the Brazeau Lands other than to summarize the City of Ottawa Design Guidelines for maximum hydrant spacing:

- 125 m for single family unit residential areas on lots where frontage at the street line is
 15 m or longer
- 110 m for single family unit residential areas on lots where frontage at the street line is less than 15 m and for residential areas zoned for row housing, doubles or duplexes
- 90 m for institutional, commercial, industrial, apartments and high-density areas

The detailed engineering drawings for the Brazeau Lands development are expected to identify hydrants in accordance with the requirements noted above.

6 Conclusions

The hydraulic capacity and modeling analysis of Phase 1 of the Brazeau Lands development yielded the following conclusions:

- The proposed water main network can deliver all domestic flows, with service pressures expected to range between 290 kPa (42 psi) and 538 kPa (78 psi).
- The proposed water main network is able to deliver fire flows to all junctions.
- Hydraulic modeling was only completed for the existing pressure zone configuration since the boundary conditions are more conservative.

The hydraulic capacity and modeling analysis of Phases 1&2 of the Brazeau Lands development yielded the following conclusions:

- The proposed water main network can deliver all domestic flows except for junctions J-66, J-70, J-71, J-72, J-73, J-74, J-75, J-76 and J-77, with service pressures expected to range between 262 kPa (38 psi) and 538 kPa (78 psi).
- The junctions with low pressures are due to high elevations in the southern part of the Brazeau Lands development and are within 5% of the minimum allowable pressure of 276 kPa (40 psi).
- The future Zone 3C boundary conditions will provide an additional head of about seven (7) meters at each connection point, and will thus resolve the low PHD pressures at the southern part of the Brazeau Lands development.
- The proposed water main network is able to deliver fire flows to all junctions.
- Hydraulic modeling was only completed for the existing pressure zone configuration since the boundary conditions are more conservative.

Submission

Prepared by:

Ferdinand de Schoutheete

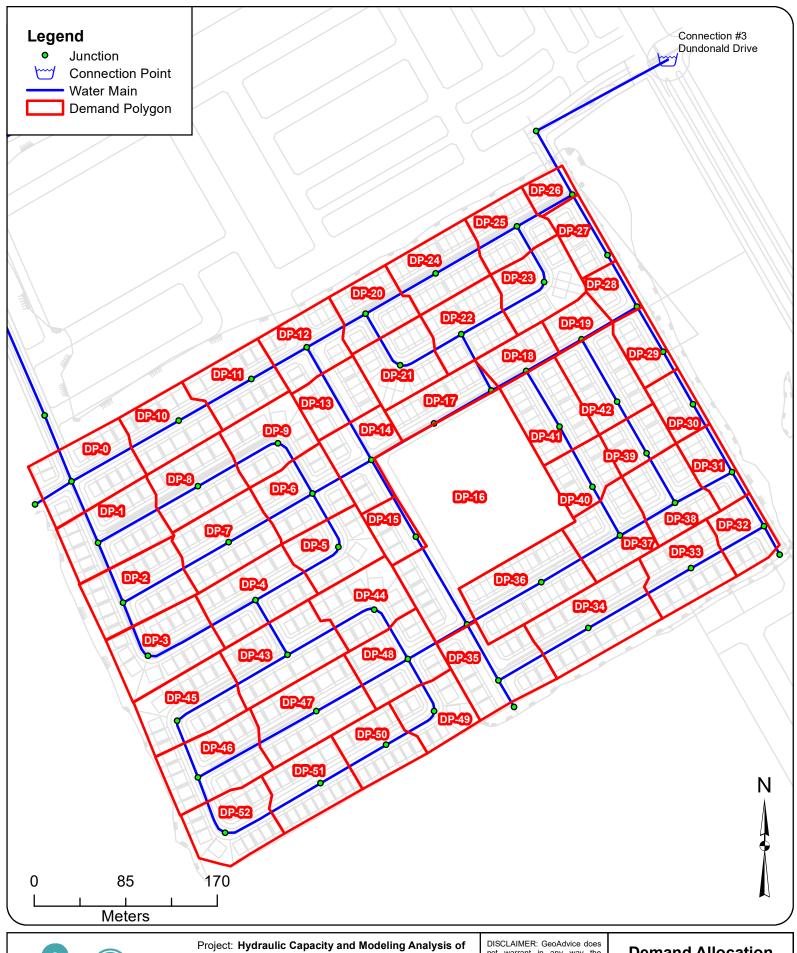
Hydraulic Modeler / Project Engineer

Approved by:

Werner de Schaetzen, Ph.D., R.Eng.

Senior Modeling Review Project Manager

Appendix A Domestic Water Demand Calculations and Allocation



Appendix A Domestic Water Demand Calculations and Allocation

the Brazeau Lands

Client: David Schaeffer Engineering Ltd.

Date: June 2020 Created by: BL

Reviewed by: WdS

not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

Demand Allocation Phases 1&2

Figure A.1

Consumer Water Demands

Phase 1 Residential Demands

Number		Population **		Average Day Demand		Max Day		Peak Hour	Min Hour	
Dwelling Type	Number of	Persons per	Population Per Dwelling	(1 /c/d)	(1 (4)	(1 /c)	2.5 x Avg. Day	Fire Flow	2.2 x Max Day	0.5 x Avg. Day
	Units	Unit	Туре	(L/c/d) (L/d)	(L/s) L,	(L/s)	(L/s)	(L/s)	(L/s)	
Single Detached	172	3.4	585	350	204,750	2.37	5.92	167*	13.03	1.18
Traditional Townhome	133	2.7	360	350	126,000	1.46	3.65	167*	8.02	0.73
Subtotal	305		945		330,750	3.83	9.57		21.05	1.91

Phases 1&2 Residential Demands

Nivenda	Number of	Population **		Average Day Demand		Max Day	Fire Flow	Peak Hour	Min Hour	
Dwelling Type	Type Number of Units Persons per Population Per Dwelling (L/c/d) (L/d) (L/	Persons per	Population Per Dwelling	(1 /c/d)	(1 /d)	(1 /d) (1 /o)	2.5 x Avg. Day		2.2 x Max Day	0.5 x Avg. Day
		(L/s)	(L/s)	(L/s)	(L/s)	(L/s)				
Single Detached	347	3.4	1,180	350	413,000	4.78	11.95	167*	26.29	2.39
Traditional Townhome	279	2.7	754	330	263,900	3.05	7.64	167*	16.80	1.53
Subtotal	626		1,934		676,900	7.83	19.59		43.09	3.92

Non Residential Demands

Property Type Area (ha)	Aroa	Average Day Demand		and	Max Day	Fire Flow	Peak Hour	Min Hour
	**	(1.7.1)	1.5 x Avg. Day (L/s)	1.8 x Max Day	0.5 x Avg. Day			
	(L/ha/d)	(L/d) (L/s)		(L/S)	(L/s)	(L/s)		
Park w/ Splash Pad	1.72	28,000	48,160	0.56	0.84	250**	1.51	0.28
Subtotal	1.72		48,160	0.56	0.84		1.51	0.28

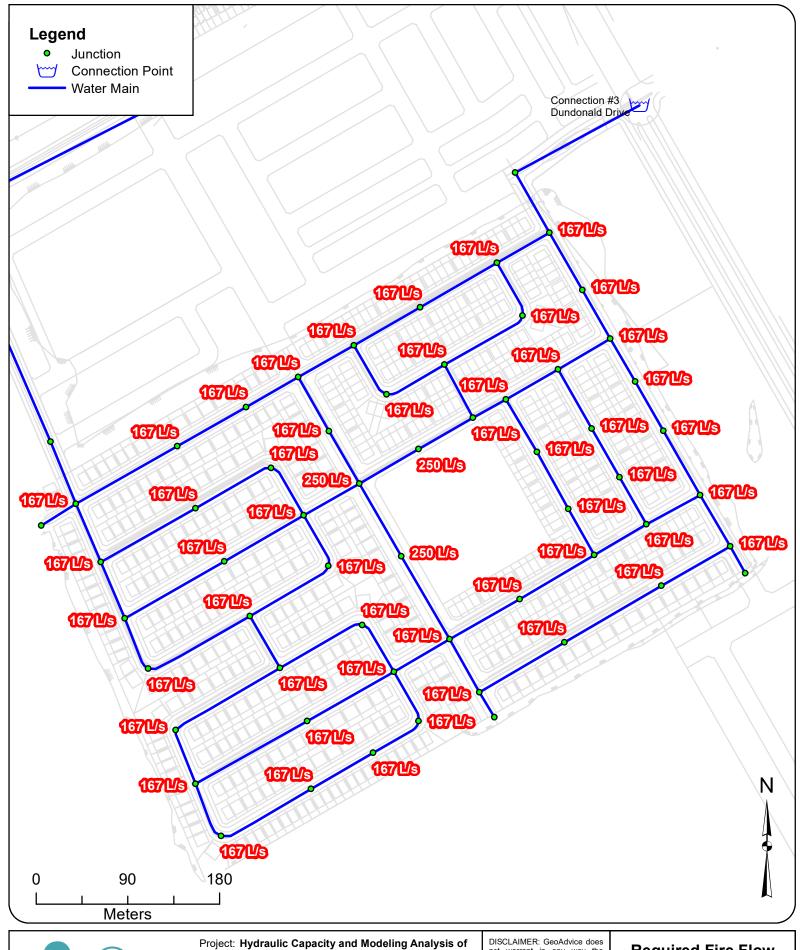
The Meadows Phases 7/8	ADD (L/s)	MDD (L/s)	PHD (L/s)	MHD (L/s)
Total Demand:	6.20	13.50	28.50	3.10

Without the Meadows Phases 7/8 Demands Phase 1 4.39 10.41 22.56 2.19 Phases 1&2 8.39 20.42 44.59 4.20			ADD (L/s)	MDD (L/s)	PHD (L/s)	MHD (L/s)
Phases 1&2 8.39 20.42 44.59 4.20	Without the Meadows Phases 7/8 Demands	Phase 1	4.39	10.41	22.56	2.19
		Phases 1&2	8.39	20.42	44.59	4.20

With the Meadows Phases 7/8 Demands	Phase 1	10.59	23.91	51.06	5.29
	Phases 1&2	14.59	33.92	73.09	7.30

^{*}Based on FUS fire flow calculation

^{**}Assumed based on similar information from previously completed projects, as agreed upon with DSEL



Appendix B FUS Fire Flow Calculations and Allocation

Project ID: 2019-091-DSE

the Brazeau Lands

Client: David Schaeffer Engineering Ltd.

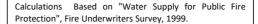
Date: June 2020 Created by: BL

Reviewed by: WdS

not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

Required Fire Flow Phases 1&2

Figure B.1


FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2019-091-DSE

Development: Brazeau Lands Blocks 300-313, Single Detached

Zoning: Multi Family Residential Date: November 6, 2019

23,970 L/min

A. Type of Construction: Wood Frame Construction 1927 **m² B. Ground Floor Area:** Note: The single detached dwellings are separated by less Note: ground floor area based on drawing provided to GeoAdvice on September 12, 2019. than 3 m; therefore, they must be considered as one fire area. The combined area of 14 units is considered in this C. Number of Storeys: Note: all buildings, including adjacent buildings, assumed to be 2 storeys. calculation. $F = 220C\sqrt{A}$ D. Required Fire Flow*: C: Coefficient related to the type of construction **C** = 1.5 A: Effective area 3854 **m**² (Combined area of 14 units) The total floor area in m² in the building being considered D = 20,000 L/min* F = 20,486L/min E. Occupancy Occupancy content hazard Limited Combustible -15 % of **D** -3,000 L/min E = 17,000 L/minF. Sprinkler Protection % of **E** Automatic sprinkler protection None L/min 17,000 L/min G. Exposures Separation Length-Height Factor -Side **Construction Type - Adjacent Structure** Distance **Adjacent Structure Exposure** West 20.1 to 30 m 8% 0-30 m-storeys Wood Frame or Non-Combustible East 20.1 to 30 m Wood Frame or Non-Combustible 8% 0-30 m-storeys North 10.1 to 20 m Wood Frame or Non-Combustible 15% Over 120 m-storeys South 20.1 to 30 m Over 120 m-storeys Wood Frame or Non-Combustible 10% Total 41% + 6,970 L/min 23,970 L/min

The required fire flow exceeds the cap in the City of Ottawa Technical Bulletin ISDTB-2014-02 4.2. The single detached dwellings comply with the provisions of the Bulletin; therefore, the required fire flow is:

 •		
Total Fire Flow Required	10,000	L/min*
	167	L/s
Required Duration of Fire Flow	2	Hrs
Required Volume of Fire Flow	1,200	m³

L/min

No

The Total Required Fire Flow for the Brazeau Lands development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

H. Wood Shake Charge

For wood shingle or shake roofs

^{*}Rounded to the nearest 1,000 L/min

^{*} The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

Type of Construction	Coefficient	Unit
Wood Frame Construction	1.5	-
Ordinary Construction	1	-
Non-Combustible Construction	0.8	-
Fire Resistive Construction (< 2 hrs)	0.7	-
Fire Resistive Construction (> 2 hrs)	0.6	-

Occupancy Fire Hazard	Factor	Unit
Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit
None	0	%
Automatic	-30	%
Automatic + Standard Supply	-40	%
Fully Supervised	-50	%
Fully Supervised + Fire Resistive	-70	%

Zoning
Single Family Residential
Multi Family Residential
Commercial
Institutional
Industrial

Wood Shake Charge	Factor	Unit
Yes	4000	L/min
No	0	L/min

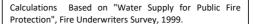
Required Duration of Fire Flow			
Fire Flow Required (L/min)	Duration (hours)		
2,000 or less	1.00		
3000	1.25		
4000	1.50		
5000	1.75		
6000	2.00		
7000	2.00		
8000	2.00		
9000	2.00		
10000	2.00		
11000	2.25		
12000	2.50		
13000	2.75		
14000	3.00		
15000	3.25		
16000	3.50		
17000	3.75		
18000	4.00		
19000	4.25		
20000	4.50		
21000	4.75		
22000	5.00		
23000	5.25		
24000	5.50		
25000	5.75		
26000	6.00		
27000	6.25		
28000	6.50		
29000	6.75		
30000	7.00		
31000	7.25		
32000	7.50		
33000	7.75		
34000	8.00		
35000	8.25		
36000	8.50		
37000	8.75		
38000	9.00		
39000	9.25		
40000 and over	9.50		

	Length-Height	Construction of Exposed Wall of Adjacent Structure			
Separation Distance	Factor of Exposed Wall of Adjacent Structure	Wood Frame or Non- Combustible	Ordinary or Fire- Resistive with Unprotected Openings	Ordinary or Fire- Resistive with Semi- Protected Openings	Ordinary or Fire- Resistive with Blank Wall
0.0 to 3 m	0-30 m-storeys	22%	21%	16%	0%
	31-60 m-storeys	23%	22%	17%	0%
	61-90 m-storeys	24%	23%	18%	0%
	91-120 m-storeys	25%	24%	19%	0%
	Over 120 m-storeys	25%	25%	20%	0%
3.1 to 10 m	0-30 m-storeys	17%	15%	11%	0%
	31-60 m-storeys	18%	16%	12%	0%
	61-90 m-storeys	19%	18%	14%	0%
	91-120 m-storeys	20%	19%	15%	0%
	Over 120 m-storeys	20%	19%	15%	0%
10.1 to 20 m	0-30 m-storeys	12%	10%	7%	0%
	31-60 m-storeys	13%	11%	8%	0%
	61-90 m-storeys	14%	13%	10%	0%
	91-120 m-storeys	15%	14%	11%	0%
	Over 120 m-storeys	15%	15%	12%	0%
20.1 to 30 m	0-30 m-storeys	8%	6%	4%	0%
	31-60 m-storeys	8%	7%	5%	0%
	61-90 m-storeys	9%	8%	6%	0%
	91-120 m-storeys	10%	9%	7%	0%
	Over 120 m-storeys	10%	10%	8%	0%
30.1 to 45 m	0-30 m-storeys	5%	5%	5%	0%
	31-60 m-storeys	5%	5%	5%	0%
	61-90 m-storeys	5%	5%	5%	0%
	91-120 m-storeys	5%	5%	5%	0%
	Over 120 m-storeys	5%	5%	5%	0%
Beyond 45 m	0-30 m-storeys	0%	0%	0%	0%
	31-60 m-storeys	0%	0%	0%	0%
	61-90 m-storeys	0%	0%	0%	0%
	91-120 m-storeys	0%	0%	0%	0%
	Over 120 m-storeys	0%	0%	0%	0%
Fire Wall	0-30 m-storeys	10%	10%	10%	10%
	31-60 m-storeys	10%	10%	10%	10%
	61-90 m-storeys	10%	10%	10%	10%
	91-120 m-storeys	10%	10%	10%	10%
	Over 120 m-storeys	10%	10%	10%	10%

Brazeau Lands - FUS Required Fire Flow Summary

Brazeau Lands		
Type of Construction	Wood Frame Construction	
Construction Coefficient	1.5	
Effective Total Area (m²)	3,854	
Required Fire Flow (L/min)	20,000	
Occupancy Charge	-15	
Sprinkler Protection Reduction	0	
Exposure (%)		
North (%)	8%	
East (%)	8%	
South (%)	15%	
West (%)	10%	
Total Exposure (%)	41%	
Wood Shake Charge (L/min)	0	
Total Required Fire Flow (L/min)	10,000	
Total Required Fire Flow (L/s)	167	

FUS Required Fire Flow Calculation


Client: David Schaeffer Engineering Ltd.

For wood shingle or shake roofs

Project: 2019-091-DSE

Development: Brazeau Lands Blocks 173, Traditional Townhouse

Zoning: Multi Family Residential Date: November 6, 2019

A. Type of Construction: Wood Frame Construction 474 m² **B.** Ground Floor Area: Note: The townhouse dwellings are separated by less Note: ground floor area based on drawing provided to GeoAdvice on September 12, 2019. than 3 m; therefore, they must be considered as one fire area. The combined area of 5 units is considered in this C. Number of Storeys: Note: all buildings, including adjacent buildings, assumed to be 2 storeys. calculation. $F = 220C\sqrt{A}$ D. Required Fire Flow*: C: Coefficient related to the type of construction **C** = A: Effective area 947 **m**² (Combined area of 5 units) The total floor area in m² in the building being considered D = 10,000 L/min* F = 10,156L/min E. Occupancy Occupancy content hazard Limited Combustible -15 % of **D** -1,500 L/min 8,500 L/min F. Sprinkler Protection % of **E** Automatic sprinkler protection None L/min 8,500 L/min G. Exposures Separation Length-Height Factor -Side **Construction Type - Adjacent Structure** Distance **Adjacent Structure Exposure** West 3.1 to 10 m 0-30 m-storeys Wood Frame or Non-Combustible 17% East 3.1 to 10 m Wood Frame or Non-Combustible 17% 0-30 m-storeys North 10.1 to 20 m Wood Frame or Non-Combustible 14% 61-90 m-storeys South 20.1 to 30 m Wood Frame or Non-Combustible 8% 31-60 m-storeys Total 56% + 4,760 L/min G = 13,260 L/min H. Wood Shake Charge L/min 13,260 L/min No

The required fire flow exceeds the cap in the City of Ottawa Technical Bulletin ISDTB-2014-02 4.2. The townhouse dwellings comply with the provisions of the Bulletin; therefore, the required fire flow is:

, , ,		
Total Fire Flow Required	10,000	L/min*
	167	L/s
Required Duration of Fire Flow	2	Hrs
Required Volume of Fire Flow	1,200	m³

^{*}Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Brazeau Lands development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

^{*} The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

Type of Construction	Coefficient	Unit
Wood Frame Construction	1.5	-
Ordinary Construction	1	-
Non-Combustible Construction	0.8	-
Fire Resistive Construction (< 2 hrs)	0.7	-
Fire Resistive Construction (> 2 hrs)	0.6	-

Occupancy Fire Hazard	Factor	Unit
Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit
None	0	%
Automatic	-30	%
Automatic + Standard Supply	-40	%
Fully Supervised	-50	%
Fully Supervised + Fire Resistive	-70	%

Zoning
Single Family Residential
Multi Family Residential
Commercial
Institutional
Industrial

Wood Shake Charge	Factor	Unit
Yes	4000	L/min
No	0	L/min

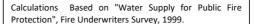
Required Duration of Fire Flow			
Fire Flow Required (L/min)	Duration (hours)		
2,000 or less	1.00		
3000	1.25		
4000	1.50		
5000	1.75		
6000	2.00		
7000	2.00		
8000	2.00		
9000	2.00		
10000	2.00		
11000	2.25		
12000	2.50		
13000	2.75		
14000	3.00		
15000	3.25		
16000	3.50		
17000	3.75		
18000	4.00		
19000	4.25		
20000	4.50		
21000	4.75		
22000	5.00		
23000	5.25		
24000	5.50		
25000	5.75		
26000	6.00		
27000	6.25		
28000	6.50		
29000	6.75		
30000	7.00		
31000	7.25		
32000	7.50		
33000	7.75		
34000	8.00		
35000	8.25		
36000	8.50		
37000	8.75		
38000	9.00		
39000	9.25		
40000 and over	9.50		

	Length-Height	Construction of Exposed Wall of Adjacent Structure			
Separation Distance	Factor of Exposed Wall of Adjacent Structure	Wood Frame or Non- Combustible	Ordinary or Fire- Resistive with Unprotected Openings	Ordinary or Fire- Resistive with Semi- Protected Openings	Ordinary or Fire- Resistive with Blank Wall
0.0 to 3 m	0-30 m-storeys	22%	21%	16%	0%
	31-60 m-storeys	23%	22%	17%	0%
	61-90 m-storeys	24%	23%	18%	0%
	91-120 m-storeys	25%	24%	19%	0%
	Over 120 m-storeys	25%	25%	20%	0%
3.1 to 10 m	0-30 m-storeys	17%	15%	11%	0%
	31-60 m-storeys	18%	16%	12%	0%
	61-90 m-storeys	19%	18%	14%	0%
	91-120 m-storeys	20%	19%	15%	0%
	Over 120 m-storeys	20%	19%	15%	0%
10.1 to 20 m	0-30 m-storeys	12%	10%	7%	0%
	31-60 m-storeys	13%	11%	8%	0%
	61-90 m-storeys	14%	13%	10%	0%
	91-120 m-storeys	15%	14%	11%	0%
	Over 120 m-storeys	15%	15%	12%	0%
20.1 to 30 m	0-30 m-storeys	8%	6%	4%	0%
	31-60 m-storeys	8%	7%	5%	0%
	61-90 m-storeys	9%	8%	6%	0%
	91-120 m-storeys	10%	9%	7%	0%
	Over 120 m-storeys	10%	10%	8%	0%
30.1 to 45 m	0-30 m-storeys	5%	5%	5%	0%
	31-60 m-storeys	5%	5%	5%	0%
	61-90 m-storeys	5%	5%	5%	0%
	91-120 m-storeys	5%	5%	5%	0%
	Over 120 m-storeys	5%	5%	5%	0%
Beyond 45 m	0-30 m-storeys	0%	0%	0%	0%
	31-60 m-storeys	0%	0%	0%	0%
	61-90 m-storeys	0%	0%	0%	0%
	91-120 m-storeys	0%	0%	0%	0%
	Over 120 m-storeys	0%	0%	0%	0%
Fire Wall	0-30 m-storeys	10%	10%	10%	10%
	31-60 m-storeys	10%	10%	10%	10%
	61-90 m-storeys	10%	10%	10%	10%
	91-120 m-storeys	10%	10%	10%	10%
	Over 120 m-storeys	10%	10%	10%	10%

Brazeau Lands - FUS Required Fire Flow Summary

Brazeau Lands		
Type of Construction	Wood Frame Construction	
Construction Coefficient	1.5	
Effective Total Area (m²)	947	
Required Fire Flow (L/min)	10,000	
Occupancy Charge	-15	
Sprinkler Protection Reduction	0	
Exposure (%)		
North (%)	17%	
East (%)	17%	
South (%)	14%	
West (%)	8%	
Total Exposure (%)	56%	
Wood Shake Charge (L/min)	0	
Total Required Fire Flow (L/min)	10,000	
Total Required Fire Flow (L/s)	167	

FUS Required Fire Flow Calculation


Client: David Schaeffer Engineering Ltd.

For wood shingle or shake roofs

Project: 2019-091-DSE Development: Brazeau Lands

Zoning: Multi Family Residential Blocks 384, Traditional Townhouse

Date: November 6, 2019

A. Type of Construction:	Wood Frame Construction		
B. Ground Floor Area: Note: ground floor area based on drawing pr	380 m ² ovided to GeoAdvice on September 12, 20	Note: The townhouse dwellings are s than 3 m; therefore, they must be co	•
C. Number of Storeys:	2	area. The combined area of 4 units is	considered in this
Note: all buildings, including adjacent buildin D. Required Fire Flow*:	gs, assumed to be 2 storeys. $F=220C\sqrt{A}$	calculation.	
C: Coefficient related to the type	of construction	C = 1.5	
A: Effective area The total floor area in m ² in the building	being considered	$A = \frac{1}{760} \text{ m}^2 \qquad \text{(Combine)}$	ned area of 4 units)
		F = 9,095 L/min	D = 9,000 L/min*
E. Occupancy Occupancy content hazard	Limited Combustible	15% of D1,350L/min	E = 7,650 L/min
F. Sprinkler Protection Automatic sprinkler protection	None		F = 7,650 L/min
G. Exposures			
Side Separation Distance	Length-Height Factor - Adjacent Structure	Construction Type - Adjacent Structure	Exposure
West 10.1 to 20 m	0-30 m-storeys	Wood Frame or Non-Combustible	12%
East Beyond 45 m	0-30 m-storeys	Wood Frame or Non-Combustible	0%
North 3.1 to 10 m	0-30 m-storeys	Wood Frame or Non-Combustible	17%
South 20.1 to 30 m	0-30 m-storeys	Wood Frame or Non-Combustible	8%
			Total 37%
		% of E <u>+ 2,831</u> L/min	G = 10,481 L/min
H. Wood Shake Charge	No	0L/min	H = 10,481 L/min

The required fire flow exceeds the cap in the City of Ottawa Technical Bulletin ISDTB-2014-02 4.2. The townhouse dwellings do not comply with the provisions of the Bulletin; therefore, the required fire flow is:

Total Fire Flow Required	10,000	L/min*
	167	L/s
Required Duration of Fire Flow	2	Hrs
Required Volume of Fire Flow	1,200	m³

^{*}Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Brazeau Lands development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

^{*} The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

Type of Construction	Coefficient	Unit
Wood Frame Construction	1.5	-
Ordinary Construction	1	-
Non-Combustible Construction	0.8	-
Fire Resistive Construction (< 2 hrs)	0.7	-
Fire Resistive Construction (> 2 hrs)	0.6	-

Occupancy Fire Hazard	Factor	Unit
Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit
None	0	%
Automatic	-30	%
Automatic + Standard Supply	-40	%
Fully Supervised	-50	%
Fully Supervised + Fire Resistive	-70	%

Zoning
Single Family Residential
Multi Family Residential
Commercial
Institutional
Industrial

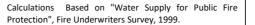
Wood Shake Charge	Factor	Unit
Yes	4000	L/min
No	0	L/min

Required Duration of Fire Flow				
Fire Flow Required (L/min)	Duration (hours)			
2,000 or less	1.00			
3000	1.25			
4000	1.50			
5000	1.75			
6000	2.00			
7000	2.00			
8000	2.00			
9000	2.00			
10000	2.00			
11000	2.25			
12000	2.50			
13000	2.75			
14000	3.00			
15000	3.25			
16000	3.50			
17000	3.75			
18000	4.00			
19000	4.25			
20000	4.50			
21000	4.75			
22000	5.00			
23000	5.25			
24000	5.50			
25000	5.75			
26000	6.00			
27000	6.25			
28000	6.50			
29000	6.75			
30000	7.00			
31000	7.25			
32000	7.50			
33000	7.75			
34000	8.00			
35000	8.25			
36000	8.50			
37000	8.75			
38000	9.00			
39000	9.25			
40000 and over	9.50			

	Length-Height		Construction of Exposed Wall of Adjacent Structure			
Separation Distance	Factor of Exposed Wall of Adjacent Structure	Wood Frame or Non- Combustible	Ordinary or Fire- Resistive with Unprotected Openings	Ordinary or Fire- Resistive with Semi- Protected Openings	Ordinary or Fire- Resistive with Blank Wall	
0.0 to 3 m	0-30 m-storeys	22%	21%	16%	0%	
	31-60 m-storeys	23%	22%	17%	0%	
	61-90 m-storeys	24%	23%	18%	0%	
	91-120 m-storeys	25%	24%	19%	0%	
	Over 120 m-storeys	25%	25%	20%	0%	
3.1 to 10 m	0-30 m-storeys	17%	15%	11%	0%	
	31-60 m-storeys	18%	16%	12%	0%	
	61-90 m-storeys	19%	18%	14%	0%	
	91-120 m-storeys	20%	19%	15%	0%	
	Over 120 m-storeys	20%	19%	15%	0%	
10.1 to 20 m	0-30 m-storeys	12%	10%	7%	0%	
	31-60 m-storeys	13%	11%	8%	0%	
	61-90 m-storeys	14%	13%	10%	0%	
	91-120 m-storeys	15%	14%	11%	0%	
	Over 120 m-storeys	15%	15%	12%	0%	
20.1 to 30 m	0-30 m-storeys	8%	6%	4%	0%	
	31-60 m-storeys	8%	7%	5%	0%	
	61-90 m-storeys	9%	8%	6%	0%	
	91-120 m-storeys	10%	9%	7%	0%	
	Over 120 m-storeys	10%	10%	8%	0%	
30.1 to 45 m	0-30 m-storeys	5%	5%	5%	0%	
	31-60 m-storeys	5%	5%	5%	0%	
	61-90 m-storeys	5%	5%	5%	0%	
	91-120 m-storeys	5%	5%	5%	0%	
	Over 120 m-storeys	5%	5%	5%	0%	
Beyond 45 m	0-30 m-storeys	0%	0%	0%	0%	
	31-60 m-storeys	0%	0%	0%	0%	
	61-90 m-storeys	0%	0%	0%	0%	
	91-120 m-storeys	0%	0%	0%	0%	
	Over 120 m-storeys	0%	0%	0%	0%	
Fire Wall	0-30 m-storeys	10%	10%	10%	10%	
	31-60 m-storeys	10%	10%	10%	10%	
	61-90 m-storeys	10%	10%	10%	10%	
	91-120 m-storeys	10%	10%	10%	10%	
	Over 120 m-storeys	10%	10%	10%	10%	

Brazeau Lands - FUS Required Fire Flow Summary

Brazeau Lands		
Type of Construction	Wood Frame Construction	
Construction Coefficient	1.5	
Effective Total Area (m²)	760	
Required Fire Flow (L/min)	9,000	
Occupancy Charge	-15	
Sprinkler Protection Reduction	0	
Exposure (%)		
North (%)	12%	
East (%)	0%	
South (%)	17%	
West (%)	8%	
Total Exposure (%)	37%	
Wood Shake Charge (L/min)	0	
Total Required Fire Flow (L/min)	10,000	
Total Required Fire Flow (L/s)	167	


FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2019-091-DSE
Development: Brazeau Lands

Zoning: Multi Family Residential Blocks 168, Traditional Townhouse

Date: November 6, 2019

A. Type of Construction:	Wood Frame Construction		
B. Ground Floor Area: Note: ground floor area based on drawing processing the state of the stat	380 m ²	Note: The townhouse dwellings are than 3 m; therefore, they must be c	• •
	•	area. The combined area of 4 units	
C. Number of Storeys:	2		s considered in this
Note: all buildings, including adjacent building	_ *	calculation.	
D. Required Fire Flow*:	$F = 220C\sqrt{A}$		
C: Coefficient related to the type	of construction	C = 1.5	
A: Effective area		$A = 760 \text{ m}^2 \qquad (Combi$	ned area of 4 units)
The total floor area in m ² in the building	being considered		
		F = 9,095 L/min	D = 9,000 L/min*
E. Occupancy			
Occupancy content hazard	Limited Combustible	15% of D -1,350 L/min	E = 7,650 L/min
F. Sprinkler Protection			
Automatic sprinkler protection	None	% of E0L/min	F = 7,650 L/min
G. Exposures			
Side Separation Distance	Length-Height Factor - Adjacent Structure	Construction Type - Adjacent Structure	Exposure
West 30.1 to 45 m	0-30 m-storeys	Wood Frame or Non-Combustible	5%
East 10.1 to 20 m	0-30 m-storeys	Wood Frame or Non-Combustible	12%
North 3.1 to 10 m	0-30 m-storeys	Wood Frame or Non-Combustible	17%
South Beyond 45 m	31-60 m-storeys	Wood Frame or Non-Combustible	0%
			Total 34%
		% of E <u>+ 2,601</u> L/min	G = 10,251 L/min
H. Wood Shake Charge	No	0 L/min	H = 10,251 L/min
For wood shingle or shake roofs			

The required fire flow exceeds the cap in the City of Ottawa Technical Bulletin ISDTB-2014-02 4.2. The townhouse dwellings do not comply with the provisions of the Bulletin; therefore, the required fire flow is:

Total Fire Flow Required	10,000	L/min*
	167	L/s
Required Duration of Fire Flow	2	Hrs
Required Volume of Fire Flow	1,200	m³

^{*}Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Brazeau Lands development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

^{*} The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

Type of Construction	Coefficient	Unit
Wood Frame Construction	1.5	-
Ordinary Construction	1	-
Non-Combustible Construction	0.8	-
Fire Resistive Construction (< 2 hrs)	0.7	-
Fire Resistive Construction (> 2 hrs)	0.6	-

Occupancy Fire Hazard	Factor	Unit
Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit
None	0	%
Automatic	-30	%
Automatic + Standard Supply	-40	%
Fully Supervised	-50	%
Fully Supervised + Fire Resistive	-70	%

Zoning
Single Family Residential
Multi Family Residential
Commercial
Institutional
Industrial

Wood Shake Charge	Factor	Unit
Yes	4000	L/min
No	0	L/min

Required Duration of Fire Flow				
Fire Flow Required (L/min) Duration (hour				
2,000 or less	1.00			
3000	1.25			
4000	1.50			
5000	1.75			
6000	2.00			
7000	2.00			
8000	2.00			
9000	2.00			
10000	2.00			
11000	2.25			
12000	2.50			
13000	2.75			
14000	3.00			
15000	3.25			
16000	3.50			
17000	3.75			
18000	4.00			
19000	4.25			
20000	4.50			
21000	4.75			
22000	5.00			
23000	5.25			
24000	5.50			
25000	5.75			
26000	6.00			
27000	6.25			
28000	6.50			
29000	6.75			
30000	7.00			
31000	7.25			
32000	7.50			
33000	7.75			
34000	8.00			
35000	8.25			
36000	8.50			
37000	8.75			
38000	9.00			
39000	9.25			
40000 and over	9.50			

	Length-Height	Construction of Exposed Wall of Adjacent Structure			
Separation Distance	Factor of Exposed Wall of Adjacent Structure	Wood Frame or Non- Combustible	Ordinary or Fire- Resistive with Unprotected Openings	Ordinary or Fire- Resistive with Semi- Protected Openings	Ordinary or Fire- Resistive with Blank Wall
0.0 to 3 m	0-30 m-storeys	22%	21%	16%	0%
	31-60 m-storeys	23%	22%	17%	0%
	61-90 m-storeys	24%	23%	18%	0%
	91-120 m-storeys	25%	24%	19%	0%
	Over 120 m-storeys	25%	25%	20%	0%
3.1 to 10 m	0-30 m-storeys	17%	15%	11%	0%
	31-60 m-storeys	18%	16%	12%	0%
	61-90 m-storeys	19%	18%	14%	0%
	91-120 m-storeys	20%	19%	15%	0%
	Over 120 m-storeys	20%	19%	15%	0%
10.1 to 20 m	0-30 m-storeys	12%	10%	7%	0%
	31-60 m-storeys	13%	11%	8%	0%
	61-90 m-storeys	14%	13%	10%	0%
	91-120 m-storeys	15%	14%	11%	0%
	Over 120 m-storeys	15%	15%	12%	0%
20.1 to 30 m	0-30 m-storeys	8%	6%	4%	0%
	31-60 m-storeys	8%	7%	5%	0%
	61-90 m-storeys	9%	8%	6%	0%
	91-120 m-storeys	10%	9%	7%	0%
	Over 120 m-storeys	10%	10%	8%	0%
30.1 to 45 m	0-30 m-storeys	5%	5%	5%	0%
	31-60 m-storeys	5%	5%	5%	0%
	61-90 m-storeys	5%	5%	5%	0%
	91-120 m-storeys	5%	5%	5%	0%
	Over 120 m-storeys	5%	5%	5%	0%
Beyond 45 m	0-30 m-storeys	0%	0%	0%	0%
	31-60 m-storeys	0%	0%	0%	0%
	61-90 m-storeys	0%	0%	0%	0%
	91-120 m-storeys	0%	0%	0%	0%
	Over 120 m-storeys	0%	0%	0%	0%
Fire Wall	0-30 m-storeys	10%	10%	10%	10%
	31-60 m-storeys	10%	10%	10%	10%
	61-90 m-storeys	10%	10%	10%	10%
	91-120 m-storeys	10%	10%	10%	10%
	Over 120 m-storeys	10%	10%	10%	10%

Brazeau Lands - FUS Required Fire Flow Summary

Brazeau Lands			
Type of Construction	Wood Frame Construction		
Construction Coefficient	1.5		
Effective Total Area (m²)	760		
Required Fire Flow (L/min)	9,000		
Occupancy Charge	-15		
Sprinkler Protection Reduction	0		
Exposure (%)			
North (%)	5%		
East (%)	12%		
South (%)	17%		
West (%)	0%		
Total Exposure (%)	34%		
Wood Shake Charge (L/min)	0		
Total Required Fire Flow (L/min)	10,000		
Total Required Fire Flow (L/s)	167		

Appendix C Boundary Conditions

Project ID: 2019-091-DSE

Boundary Conditions for HMB Phases 7 and 8 and Brazeau Lands

Information Provided:

Date provided: September 2019

	Demand		
Scenario	L/min L/s		
Average Daily Demand	846	14.10	
Maximum Daily Demand	1961	32.69	
Peak Hour	4224	70.40	
Fire Flow Demand #1	10000	166.67	
Fire Flow Demand #2	15000	250.00	
Fire Flow Demand #3	17000	283.33	

Location:

Results

Connection 1 - Cambrian Road

	Existing Barrhaven PZ		Future	Zone 3C
Demand Scenario	Head (m)	Pressure ¹ (psi)	Head (m)	Pressure ¹ (psi)
Maximum HGL	156.4	102.9	147.7	77.3
Peak Hour	135.7	60.4	142.8	70.4
Max Day plus Fire (#1)	144.0	72.2	140.0	66.4
Max Day plus Fire (#2)	135.4	59.9	134.9	59.2
Max Day plus Fire (#3)	133.7	57.4	132.5	55.7

¹ Ground Elevation = 93.3 m

Connection 2 - Brambling Way

	Existing Barrhaven PZ		Future	Zone 3C
Demand Scenario	Head (m)	Pressure ¹ (psi)	Head (m)	Pressure ¹ (psi)
Maximum HGL	156.4	100.1	147.7	74.6
Peak Hour	135.6	57.4	142.7	67.5
Max Day plus Fire (#1)	141.2	65.4	139.9	63.5
Max Day plus Fire (#2)	129.9	49.4	134.6	56.0
Max Day plus Fire (#3)	126.6	44.7	132.1	52.4

¹ Ground Elevation = 95.2 m

Connection 3 - Dundonald Drive

	Existing Barrhaven PZ		Future	Zone 3C
Demand Scenario	Head (m)	Pressure ¹ (psi)	Head (m)	Pressure ¹ (psi)
Maximum HGL	156.4	86.5	147.7	61.0
Peak Hour	135.7	43.9	142.6	53.7
Max Day plus Fire (#1)	142.0	52.9	138.6	48.1
Max Day plus Fire (#2)	131.5	38.0	132.2	38.9
Max Day plus Fire (#3)	128.7	34.0	128.9	34.3

¹ Ground Elevation = 104.8 m

Notes:

- 1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.

- b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.
- 2) A third pump was turned on during all fire simulations under Existing Barrhaven Pressure.
- 3) Future pipes were added to the water model as shown in the figure above.

Disclaimer

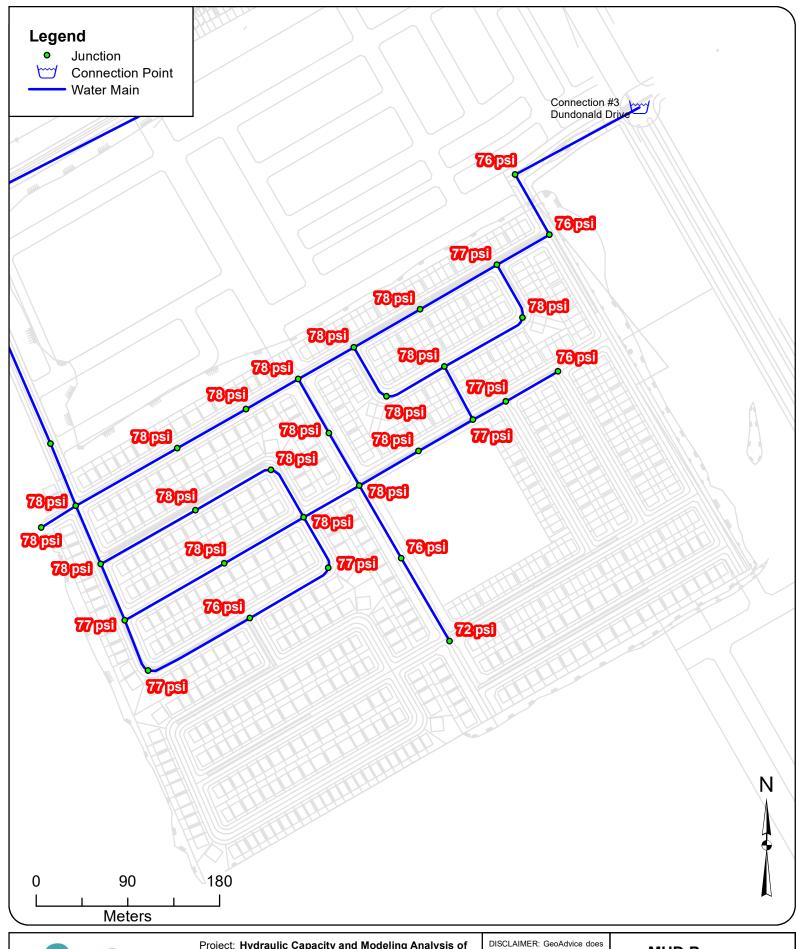
The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Appendix D Pipe and Junction Model Inputs

Project ID: 2019-091-DSE

P-100	ID	From	То	Length (m)	Diameter (mm)	Roughness ()
P-102						
P-103	P-101	J-83	J-46	60.03	204	110
P-104	P-102	J-79	J-84	53.32	204	110
P-105						
P-106						
P-107						
P-108						
P-109						
P-110						
P-111						
P-112						
P-43 J-33 J-35 114.35 297 120 P-44 J-35 J-36 77.83 297 120 P-46 J-37 J-38 62.88 297 120 P-46 J-37 J-38 62.88 297 120 P-47 J-38 J-39 74.92 297 120 P-48 J-39 J-40 87.18 297 120 P-49 J-40 J-41 59.39 297 120 P-50 J-41 J-60 CONNECTION 3 138.92 297 120 P-50 J-41 J-60 CONNECTION 3 138.92 297 120 P-51 J-60 CONNECTION 3 138.92 297 120 P-52 J-40 J-42 58.39 204 110 P-53 J-44 J-43 83.72 204 110 P-54 J-46 J-90 81.24 204 110 P		J-43	J-90	59.19	204	110
P-44 J-35 J-36 77.83 297 120 P-45 J-36 J-37 59.20 297 120 P-46 J-37 J-38 62.88 297 120 P-47 J-38 J-39 74.92 297 120 P-48 J-39 J-40 87.18 297 120 P-50 J-41 J-60 67.93 297 120 P-50 J-41 J-60 67.93 297 120 P-51 J-60 CONNECTION_3 138.92 297 120 P-51 J-60 CONNECTION_3 138.92 297 120 P-51 J-40 J-42 J-43 83.72 204 110 P-52 J-40 J-42 J-43 83.72 204 110 P-53 J-42 J-43 J-44 72.67 204 110 P-55 J-44 J-38 S8.67 204 110	P-42	J-33	J-34	40.11	297	120
P-45 J-36 J-37 J-38 62.88 297 120 P-46 J-37 J-38 62.88 297 120 P-48 J-39 J-40 87.18 297 120 P-49 J-40 J-41 59.39 297 120 P-50 J-41 J-60 67.93 297 120 P-51 J-60 CONNECTION_3 138.92 297 120 P-51 J-60 CONNECTION_3 138.92 297 120 P-52 J-40 J-42 58.39 204 110 P-53 J-42 J-43 83.72 204 110 P-54 J-43 J-44 72.67 204 110 P-55 J-44 J-38 58.67 204 110 P-57 J-46 J-90 81.24 204 110 P-57 J-46 J-90 81.24 204 110 P-59 J-48	P-43	J-33	J-35	114.35	297	120
P-46 J-37 J-38 J-39 74.92 297 120 P-47 J-38 J-39 74.92 297 120 P-48 J-39 J-40 87.18 297 120 P-50 J-41 J-60 G6.793 297 120 P-51 J-60 CONNECTION 3 138.92 297 120 P-52 J-40 J-42 58.39 204 110 P-53 J-42 J-43 83.72 204 110 P-53 J-42 J-43 83.72 204 110 P-55 J-44 J-38 58.67 204 110 P-55 J-44 J-38 58.67 204 110 P-55 J-44 J-38 58.67 204 110 P-57 J-46 J-90 81.24 204 110 P-57 J-46 J-90 81.24 204 110 P-59 J-48 <		J-35			297	120
P-47 J-38 J-39 J-40 87.18 297 120 P-48 J-39 J-40 87.18 297 120 P-50 J-41 J-60 67.93 297 120 P-51 J-60 CONNECTION_3 138.92 297 120 P-52 J-40 J-42 58.39 204 110 P-53 J-42 J-43 83.72 204 110 P-54 J-43 J-44 72.67 204 110 P-55 J-44 J-38 58.67 204 110 P-57 J-46 J-90 81.24 204 110 P-57 J-46 J-90 81.24 204 110 P-59 J-48 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
P-48						
P-49						
P-50 J-41 J-60 67.93 297 120 P-51 J-60 CONNECTION 3 138.92 297 120 P-52 J-40 J-42 58.39 204 110 P-53 J-42 J-43 83.72 204 110 P-54 J-43 J-44 72.67 204 110 P-55 J-44 J-38 58.67 204 110 P-55 J-44 J-38 58.67 204 110 P-55 J-46 J-90 81.24 204 110 P-57 J-46 J-90 81.24 204 110 P-58 J-47 J-48 84.62 204 110 P-59 J-48 J-61 J-57 60.99 297 120 P-60 J-61 J-37 60.99 297 120 P-61 J-59 J-58 94.07 297 120 P-62 J-53 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
P-51 J-60 CONNECTION_3 138.92 297 120 P-52 J-40 J-42 \$8.39 204 110 P-53 J-42 J-43 83.72 204 110 P-54 J-43 J-44 72.67 204 110 P-55 J-44 J-38 58.67 204 110 P-55 J-44 J-38 58.67 204 110 P-56 J-45 J-46 J-90 81.24 204 110 P-57 J-46 J-90 81.24 204 110 P-59 J-48 J-61 J-59.65 297 120 P-60 J-61 J-37 60.99 297 120 P-61 J-59 J-58 J-48 82.47 297 120 P-61 J-59 J-58 J-48 82.47 297 120 P-61 J-59 J-58 J-48 82.47 297 120 <						
P-52 J-40 J-42 J-83 83.72 204 110 P-53 J-42 J-43 83.72 204 110 P-54 J-43 J-44 72.67 204 110 P-55 J-44 J-38 58.67 204 110 P-55 J-45 J-46 J-90 81.24 204 110 P-57 J-46 J-90 81.24 204 110 P-58 J-47 J-88 84.62 204 110 P-59 J-48 J-61 J-59.65 297 120 P-60 J-61 J-37 60.99 297 120 P-61 J-59 J-58 J-48 82.47 297 120 P-61 J-59 J-58 J-48 82.47 297 120 P-61 J-59 J-58 J-48 82.47 297 120 P-62 J-58 J-48 82.47 297 1						
P-53 J-42 J-43 B3.72 204 110 P-54 J-43 J-44 72.67 204 110 P-55 J-44 J-38 58.67 204 110 P-55 J-46 J-90 81.24 204 110 P-57 J-46 J-90 81.24 204 110 P-57 J-46 J-90 81.24 204 110 P-57 J-46 J-90 81.24 204 110 P-59 J-48 J-61 59.65 297 120 P-60 J-51 J-37 60.99 297 120 P-61 J-59 J-58 J-40 7297 120 P-62 J-58 J-48 R-47 297 120 P-63 J-58 J-49 63.07 204 110 P-64 J-49 J-50 57.71 204 110 P-65 J-50 J-51 84.62 <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>	_					
P-54 J-43 J-44 72.67 204 110 P-55 J-44 J-38 58.67 204 110 P-56 J-45 J-46 59.20 204 110 P-57 J-46 J-90 81.24 204 110 P-58 J-47 J-48 84.62 204 110 P-58 J-47 J-48 84.62 204 110 P-59 J-48 J-61 59.65 297 120 P-60 J-61 J-37 60.99 297 120 P-61 J-59 J-58 94.07 297 120 P-61 J-59 J-58 94.07 297 120 P-62 J-58 J-48 82.47 297 120 P-63 J-58 J-48 82.47 297 120 P-64 J-49 J-50 57.71 204 110 P-65 J-50 J-51 84.62 </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			-			
P-56 J-45 J-46 J-90 81.24 204 110 P-57 J-46 J-90 81.24 204 110 P-58 J-47 J-48 84.62 204 110 P-58 J-47 J-48 84.62 204 110 P-59 J-48 J-61 59.65 297 120 P-60 J-61 J-37 60.99 297 120 P-61 J-59 J-58 94.07 297 120 P-61 J-59 J-58 94.07 297 120 P-62 J-58 J-48 82.47 297 120 P-62 J-58 J-48 82.47 297 120 P-63 J-50 J-51 84.62 204 110 P-64 J-49 J-50 57.71 204 110 P-65 J-51 J-52 106.76 204 110 P-66 J-51 J-53 </td <td></td> <td></td> <td></td> <td>72.67</td> <td></td> <td></td>				72.67		
P-57 J-46 J-90 81.24 204 110 P-58 J-47 J-48 84.62 204 110 P-59 J-48 J-61 59.65 297 120 P-60 J-61 J-37 60.99 297 120 P-61 J-59 J-58 94.07 297 120 P-62 J-58 J-48 82.47 297 120 P-63 J-48 J-49 63.07 204 110 P-63 J-48 J-49 J-50 57.71 204 110 P-65 J-50 J-51 84.62 204 110 P-66 J-51 J-52 106.76 204 110 P-67 J-33 J-52 62.05 204 110 P-67 J-33 J-52 J-53 60.2 204 110 P-69 J-53 J-54 112.78 204 110 P-70 J-54 </td <td>P-55</td> <td>J-44</td> <td>J-38</td> <td>58.67</td> <td>204</td> <td>110</td>	P-55	J-44	J-38	58.67	204	110
P-58 J-47 J-48 84.62 204 110 P-59 J-48 J-61 59.65 297 120 P-60 J-61 J-37 60.99 297 120 P-61 J-59 J-58 94.07 297 120 P-62 J-58 J-48 82.47 297 120 P-63 J-48 J-49 63.07 204 110 P-63 J-48 J-49 63.07 204 110 P-64 J-49 J-50 57.71 204 110 P-65 J-50 J-51 84.62 204 110 P-65 J-50 J-51 84.62 204 110 P-67 J-33 J-52 106.76 204 110 P-67 J-33 J-52 62.05 204 110 P-69 J-53 J-53 J-54 112.78 204 110 P-79 J-54 J-49<	P-56	J-45	J-46	59.20	204	110
P-59 J-48 J-61 59.65 297 120 P-60 J-61 J-37 60.99 297 120 P-61 J-59 J-58 94.07 297 120 P-62 J-58 J-48 82.47 297 120 P-63 J-48 J-49 63.07 204 110 P-64 J-49 J-50 57.71 204 110 P-65 J-50 J-51 84.62 204 110 P-66 J-51 J-52 106.76 204 110 P-66 J-51 J-52 106.76 204 110 P-68 J-52 J-53 60.2 204 110 P-68 J-52 J-53 60.2 204 110 P-69 J-53 J-54 112.78 204 110 P-70 J-54 J-49 90 204 110 P-71 J-49 J-57 56.32 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
P-60 J-61 J-37 60.99 297 120 P-61 J-59 J-58 94.07 297 120 P-62 J-58 J-48 82.47 297 120 P-63 J-48 J-49 63.07 204 110 P-64 J-49 J-50 57.71 204 110 P-65 J-50 J-51 84.62 204 110 P-66 J-51 J-52 106.76 204 110 P-67 J-33 J-52 62.05 204 110 P-67 J-33 J-52 62.05 204 110 P-69 J-53 J-53 60.2 204 110 P-70 J-54 J-49 90 204 110 P-71 J-49 J-57 56.32 204 110 P-72 J-57 J-56 92.28 204 110 P-73 J-53 J-55 55.27						
P-61 J-59 J-58 J-48 82.47 297 120 P-62 J-58 J-48 82.47 297 120 P-63 J-48 J-49 63.07 204 110 P-64 J-49 J-50 57.71 204 110 P-65 J-50 J-51 84.62 204 110 P-66 J-51 J-52 106.76 204 110 P-67 J-33 J-52 62.05 204 110 P-68 J-52 J-53 60.2 204 110 P-69 J-53 J-54 112.78 204 110 P-70 J-53 J-54 112.78 204 110 P-71 J-49 J-57 56.32 204 110 P-71 J-49 J-57 56.32 204 110 P-72 J-57 J-56 92.28 204 110 P-73 J-53 J-55<						
P-62 J-58 J-48 82.47 297 120 P-63 J-48 J-49 63.07 204 110 P-64 J-49 J-50 57.71 204 110 P-65 J-50 J-51 84.62 204 110 P-65 J-50 J-51 84.62 204 110 P-66 J-51 J-52 106.76 204 110 P-67 J-33 J-52 62.05 204 110 P-68 J-52 J-53 60.2 204 110 P-69 J-53 J-54 112.78 204 110 P-70 J-54 J-49 90 204 110 P-70 J-54 J-49 90 204 110 P-71 J-49 J-57 56.32 204 110 P-72 J-57 J-56 92.28 204 110 P-72 J-55 J-55 J-55.27						
P-63 J-48 J-49 63.07 204 110 P-64 J-49 J-50 57.71 204 110 P-65 J-50 J-51 84.62 204 110 P-66 J-51 J-52 106.76 204 110 P-67 J-33 J-52 62.05 204 110 P-68 J-53 J-54 112.78 204 110 P-69 J-53 J-54 112.78 204 110 P-70 J-54 J-49 90 204 110 P-71 J-49 J-57 56.32 204 110 P-71 J-49 J-55 55.27 204 110 P-72 J-57 J-56 92.28 204 110 P-73 J-53 J-55 55.27 204 110 P-74 J-55 J-56 113.38 204 110 P-75 J-63 J-64 56.35<						
P-64 J-49 J-50 57.71 204 110 P-65 J-50 J-51 84.62 204 110 P-66 J-51 J-52 106.76 204 110 P-67 J-33 J-52 62.05 204 110 P-68 J-52 J-53 60.2 204 110 P-69 J-53 J-54 112.78 204 110 P-70 J-54 J-49 90 204 110 P-70 J-54 J-49 90 204 110 P-71 J-49 J-57 56.32 204 110 P-71 J-49 J-55 55.27 204 110 P-72 J-57 J-56 92.28 204 110 P-72 J-57 J-56 92.28 204 110 P-73 J-53 J-55 J-55 202.28 204 110 P-74 J-53 J-56						
P-65 J-50 J-51 84.62 204 110 P-66 J-51 J-52 106.76 204 110 P-67 J-33 J-52 62.05 204 110 P-68 J-52 J-53 60.2 204 110 P-69 J-53 J-54 112.78 204 110 P-70 J-54 J-49 90 204 110 P-71 J-49 J-57 56.32 204 110 P-71 J-49 J-57 56.32 204 110 P-72 J-57 J-56 92.28 204 110 P-73 J-53 J-55 55.27 204 110 P-74 J-55 J-56 113.38 204 110 P-75 J-56 J-62 58.69 204 110 P-77 J-63 J-64 56.35 204 110 P-79 J-65 J-66 100.76 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
P-67 J-33 J-52 62.05 204 110 P-68 J-52 J-53 60.2 204 110 P-69 J-53 J-54 112.78 204 110 P-70 J-54 J-49 90 204 110 P-71 J-49 J-57 56.32 204 110 P-71 J-49 J-55 56.32 204 110 P-72 J-57 J-56 92.28 204 110 P-72 J-57 J-56 92.28 204 110 P-73 J-53 J-55 55.27 204 110 P-74 J-55 J-56 113.38 204 110 P-75 J-56 J-62 58.69 204 110 P-77 J-63 J-64 56.35 204 110 P-77 J-63 J-64 56.35 204 110 P-79 J-65 J-65 58.6	P-65					
P-68 J-52 J-53 60.2 204 110 P-69 J-53 J-54 112.78 204 110 P-70 J-54 J-49 90 204 110 P-71 J-49 J-57 56.32 204 110 P-72 J-57 J-56 92.28 204 110 P-73 J-53 J-55 55.27 204 110 P-74 J-55 J-56 91.38 204 110 P-74 J-55 J-56 113.38 204 110 P-74 J-55 J-56 113.38 204 110 P-76 J-62 J-63 119.4 204 110 P-77 J-63 J-64 56.35 204 110 P-78 J-64 J-65 58.6 204 110 P-79 J-65 J-66 100.76 204 110 P-81 J-70 J-71 55.7 <td>P-66</td> <td>J-51</td> <td>J-52</td> <td>106.76</td> <td>204</td> <td>110</td>	P-66	J-51	J-52	106.76	204	110
P-69 J-53 J-54 112.78 204 110 P-70 J-54 J-49 90 204 110 P-71 J-49 J-57 56.32 204 110 P-72 J-57 J-56 92.28 204 110 P-73 J-53 J-55 55.27 204 110 P-74 J-55 J-56 113.38 204 110 P-74 J-56 J-62 58.69 204 110 P-75 J-56 J-62 58.69 204 110 P-77 J-63 J-64 56.35 204 110 P-77 J-63 J-64 56.35 204 110 P-79 J-65 J-66 100.76 204 110 P-79 J-65 J-66 100.76 204 110 P-81 J-70 J-71 55.7 204 110 P-82 J-71 J-69 54.8 <td>P-67</td> <td>J-33</td> <td>J-52</td> <td>62.05</td> <td>204</td> <td>110</td>	P-67	J-33	J-52	62.05	204	110
P-70 J-54 J-49 90 204 110 P-71 J-49 J-57 56.32 204 110 P-72 J-57 J-56 92.28 204 110 P-73 J-53 J-55 55.27 204 110 P-74 J-55 J-56 113.38 204 110 P-75 J-56 J-62 58.69 204 110 P-76 J-62 J-63 119.4 204 110 P-76 J-63 J-64 56.35 204 110 P-77 J-63 J-64 56.35 204 110 P-78 J-64 J-65 58.6 204 110 P-79 J-65 J-66 100.76 204 110 P-80 J-66 J-70 70.42 204 110 P-81 J-70 J-71 55.7 204 110 P-82 J-71 J-69 54.8		J-52			204	110
P-71 J-49 J-57 56.32 204 110 P-72 J-57 J-56 92.28 204 110 P-73 J-53 J-55 55.27 204 110 P-74 J-55 J-56 113.38 204 110 P-75 J-56 J-62 58.69 204 110 P-76 J-62 J-63 119.4 204 110 P-76 J-63 J-64 204 110 P-77 J-63 J-64 56.35 204 110 P-79 J-63 J-64 56.35 204 110 P-79 J-65 J-66 100.76 204 110 P-80 J-66 J-70 70.42 204 110 P-81 J-70 J-71 55.7 204 110 P-82 J-71 J-69 54.8 204 110 P-83 J-64 J-67 125.85 204 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
P-72 J-57 J-56 92.28 204 110 P-73 J-53 J-55 55.27 204 110 P-74 J-55 J-56 113.38 204 110 P-75 J-56 J-62 58.69 204 110 P-76 J-62 J-63 119.4 204 110 P-77 J-63 J-64 56.35 204 110 P-78 J-64 J-65 58.6 204 110 P-79 J-65 J-66 100.76 204 110 P-79 J-66 J-70 70.42 204 110 P-80 J-66 J-70 70.42 204 110 P-81 J-70 J-71 J5.75 204 110 P-81 J-70 J-71 J5.75 204 110 P-82 J-71 J-69 54.8 204 110 P-83 J-64 J-67 125.85<						
P-73 J-53 J-55 55.27 204 110 P-74 J-55 J-56 113.38 204 110 P-75 J-56 J-62 58.69 204 110 P-76 J-62 J-63 119.4 204 110 P-77 J-63 J-64 56.35 204 110 P-78 J-64 J-65 58.6 204 110 P-79 J-65 J-66 100.76 204 110 P-80 J-66 J-70 70.42 204 110 P-81 J-70 J-71 55.7 204 110 P-81 J-70 J-71 J-59 54.8 204 110 P-81 J-70 J-71 J-59 54.8 204 110 P-82 J-64 J-67 125.85 204 110 P-83 J-64 J-67 125.85 204 110 P-84 J-67 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
P-74 J-55 J-56 113.38 204 110 P-75 J-56 J-62 58.69 204 110 P-76 J-62 J-63 119.4 204 110 P-77 J-63 J-64 56.35 204 110 P-78 J-64 J-65 58.6 204 110 P-79 J-65 J-66 100.76 204 110 P-80 J-66 J-70 70.42 204 110 P-81 J-70 J-71 55.7 204 110 P-81 J-70 J-71 J-69 54.8 204 110 P-82 J-71 J-69 54.8 204 110 P-83 J-64 J-67 125.85 204 110 P-84 J-67 J-68 92.12 204 110 P-85 J-62 J-68 92.12 204 110 P-86 J-68 J-69 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
P-75 J-56 J-62 58.69 204 110 P-76 J-62 J-63 119.4 204 110 P-77 J-63 J-64 56.35 204 110 P-78 J-64 J-65 58.6 204 110 P-79 J-65 J-66 100.76 204 110 P-80 J-66 J-70 70.42 204 110 P-81 J-70 J-71 55.7 204 110 P-81 J-70 J-71 55.7 204 110 P-82 J-71 J-69 54.8 204 110 P-83 J-64 J-67 125.85 204 110 P-84 J-67 J-69 97.99 204 110 P-85 J-62 J-68 92.12 204 110 P-85 J-68 J-69 56.42 204 110 P-87 J-69 J-79 59.77 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
P-76 J-62 J-63 119.4 204 110 P-77 J-63 J-64 56.35 204 110 P-78 J-64 J-65 58.6 204 110 P-79 J-65 J-66 100.76 204 110 P-80 J-66 J-70 70.42 204 110 P-81 J-70 J-71 55.7 204 110 P-82 J-71 J-69 54.8 204 110 P-82 J-71 J-69 54.8 204 110 P-83 J-64 J-67 125.85 204 110 P-84 J-67 J-69 97.99 204 110 P-85 J-62 J-68 92.12 204 110 P-86 J-68 J-69 56.42 204 110 P-87 J-69 J-79 63.46 204 110 P-88 J-59 J-72 J-73						
P-77 J-63 J-64 56.35 204 110 P-78 J-64 J-65 58.6 204 110 P-79 J-65 J-66 100.76 204 110 P-80 J-66 J-70 70.42 204 110 P-81 J-70 J-71 55.7 204 110 P-82 J-71 J-69 54.8 204 110 P-82 J-71 J-69 54.8 204 110 P-83 J-64 J-67 125.85 204 110 P-84 J-67 J-69 97.99 204 110 P-85 J-62 J-68 92.12 204 110 P-86 J-68 J-69 56.42 204 110 P-87 J-69 J-59 63.46 204 110 P-88 J-59 J-72 J-73 28.67 297 120 P-89 J-72 J-74						
P-78 J-64 J-65 58.6 204 110 P-79 J-65 J-66 100.76 204 110 P-80 J-66 J-70 70.42 204 110 P-81 J-70 J-71 55.7 204 110 P-82 J-71 J-69 54.8 204 110 P-83 J-64 J-67 125.85 204 110 P-84 J-67 J-69 97.99 204 110 P-84 J-67 J-69 97.99 204 110 P-85 J-62 J-68 92.12 204 110 P-86 J-68 J-69 56.42 204 110 P-87 J-69 J-59 63.46 204 110 P-88 J-59 J-72 59.77 297 120 P-88 J-59 J-72 J-73 28.67 297 120 P-90 J-72 J-74 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
P-80 J-66 J-70 70.42 204 110 P-81 J-70 J-71 55.7 204 110 P-82 J-71 J-69 54.8 204 110 P-83 J-64 J-67 125.85 204 110 P-84 J-67 J-69 97.99 204 110 P-85 J-62 J-68 92.12 204 110 P-86 J-68 J-69 56.42 204 110 P-87 J-69 J-59 63.46 204 110 P-88 J-59 J-72 59.77 297 120 P-89 J-72 J-73 28.67 297 120 P-89 J-72 J-74 96.85 297 120 P-90 J-72 J-74 96.85 297 120 P-91 J-74 J-75 110.13 297 120 P-92 J-75 J-76 78.16 </td <td>P-78</td> <td>J-64</td> <td>J-65</td> <td></td> <td>204</td> <td>110</td>	P-78	J-64	J-65		204	110
P-81 J-70 J-71 55.7 204 110 P-82 J-71 J-69 54.8 204 110 P-83 J-64 J-67 125.85 204 110 P-84 J-67 J-69 97.99 204 110 P-85 J-62 J-68 92.12 204 110 P-86 J-68 J-69 56.42 204 110 P-87 J-69 J-59 63.46 204 110 P-88 J-59 J-72 59.77 297 120 P-89 J-72 J-73 28.67 297 120 P-90 J-72 J-74 96.85 297 120 P-91 J-74 J-75 110.13 297 120 P-91 J-74 J-75 110.13 297 120 P-92 J-75 J-76 78.16 297 120 P-94 J-76 J-78 58.2 </td <td></td> <td></td> <td></td> <td></td> <td>204</td> <td></td>					204	
P-82 J-71 J-69 54.8 204 110 P-83 J-64 J-67 125.85 204 110 P-84 J-67 J-69 97.99 204 110 P-85 J-62 J-68 92.12 204 110 P-86 J-68 J-69 56.42 204 110 P-87 J-69 J-59 63.46 204 110 P-88 J-59 J-72 59.77 297 120 P-89 J-72 J-73 28.67 297 120 P-90 J-72 J-74 96.85 297 120 P-91 J-74 J-75 110.13 297 120 P-92 J-75 J-76 78.16 297 120 P-93 J-77 J-76 30.34 297 120 P-94 J-76 J-78 58.2 297 120 P-95 J-78 J-79 59.97 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
P-83 J-64 J-67 125.85 204 110 P-84 J-67 J-69 97.99 204 110 P-85 J-62 J-68 92.12 204 110 P-86 J-68 J-69 56.42 204 110 P-87 J-69 J-59 63.46 204 110 P-88 J-59 J-72 59.77 297 120 P-89 J-72 J-73 28.67 297 120 P-90 J-72 J-74 96.85 297 120 P-91 J-74 J-75 110.13 297 120 P-92 J-75 J-76 78.16 297 120 P-93 J-77 J-76 30.34 297 120 P-94 J-76 J-78 58.2 297 120 P-95 J-78 J-79 59.97 204 110 P-96 J-79 J-80 59.39<						
P-84 J-67 J-69 97.99 204 110 P-85 J-62 J-68 92.12 204 110 P-86 J-68 J-69 56.42 204 110 P-87 J-69 J-59 63.46 204 110 P-88 J-59 J-72 59.77 297 120 P-89 J-72 J-73 28.67 297 120 P-90 J-72 J-74 96.85 297 120 P-91 J-74 J-75 110.13 297 120 P-91 J-75 J-76 78.16 297 120 P-92 J-75 J-76 78.16 297 120 P-93 J-77 J-76 30.34 297 120 P-94 J-76 J-78 58.2 297 120 P-95 J-78 J-79 59.97 204 110 P-96 J-79 J-80 59.39 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
P-85 J-62 J-68 92.12 204 110 P-86 J-68 J-69 56.42 204 110 P-87 J-69 J-59 63.46 204 110 P-88 J-59 J-72 59.77 297 120 P-89 J-72 J-73 28.67 297 120 P-90 J-72 J-74 96.85 297 120 P-91 J-74 J-75 110.13 297 120 P-92 J-75 J-76 78.16 297 120 P-93 J-77 J-76 30.34 297 120 P-94 J-76 J-78 58.2 297 120 P-95 J-78 J-79 59.97 204 110 P-96 J-79 J-80 59.39 204 110 P-98 J-81 J-59 79.25 204 110						
P-86 J-68 J-69 56.42 204 110 P-87 J-69 J-59 63.46 204 110 P-88 J-59 J-72 59.77 297 120 P-89 J-72 J-73 28.67 297 120 P-90 J-72 J-74 96.85 297 120 P-91 J-74 J-75 110.13 297 120 P-92 J-75 J-76 78.16 297 120 P-93 J-77 J-76 30.34 297 120 P-94 J-76 J-78 58.2 297 120 P-95 J-78 J-79 59.97 204 110 P-96 J-79 J-80 59.39 204 110 P-97 J-80 J-81 85.15 204 110 P-98 J-81 J-59 79.25 204 110						
P-87 J-69 J-59 63.46 204 110 P-88 J-59 J-72 59.77 297 120 P-89 J-72 J-73 28.67 297 120 P-90 J-72 J-74 96.85 297 120 P-91 J-74 J-75 110.13 297 120 P-92 J-75 J-76 78.16 297 120 P-93 J-77 J-76 30.34 297 120 P-94 J-76 J-78 58.2 297 120 P-95 J-78 J-79 59.97 204 110 P-96 J-79 J-80 59.39 204 110 P-97 J-80 J-81 85.15 204 110 P-98 J-81 J-59 79.25 204 110						
P-88 J-59 J-72 59.77 297 120 P-89 J-72 J-73 28.67 297 120 P-90 J-72 J-74 96.85 297 120 P-91 J-74 J-75 110.13 297 120 P-92 J-75 J-76 78.16 297 120 P-93 J-77 J-76 30.34 297 120 P-94 J-76 J-78 58.2 297 120 P-95 J-78 J-79 59.97 204 110 P-96 J-79 J-80 59.39 204 110 P-97 J-80 J-81 85.15 204 110 P-98 J-81 J-59 79.25 204 110						
P-89 J-72 J-73 28.67 297 120 P-90 J-72 J-74 96.85 297 120 P-91 J-74 J-75 110.13 297 120 P-92 J-75 J-76 78.16 297 120 P-93 J-77 J-76 30.34 297 120 P-94 J-76 J-78 58.2 297 120 P-95 J-78 J-79 59.97 204 110 P-96 J-79 J-80 59.39 204 110 P-97 J-80 J-81 85.15 204 110 P-98 J-81 J-59 79.25 204 110						
P-90 J-72 J-74 96.85 297 120 P-91 J-74 J-75 110.13 297 120 P-92 J-75 J-76 78.16 297 120 P-93 J-77 J-76 30.34 297 120 P-94 J-76 J-78 58.2 297 120 P-95 J-78 J-79 59.97 204 110 P-96 J-79 J-80 59.39 204 110 P-97 J-80 J-81 85.15 204 110 P-98 J-81 J-59 79.25 204 110	P-89	J-72	J-73		297	
P-92 J-75 J-76 78.16 297 120 P-93 J-77 J-76 30.34 297 120 P-94 J-76 J-78 58.2 297 120 P-95 J-78 J-79 59.97 204 110 P-96 J-79 J-80 59.39 204 110 P-97 J-80 J-81 85.15 204 110 P-98 J-81 J-59 79.25 204 110	P-90	J-72	J-74		297	120
P-93 J-77 J-76 30.34 297 120 P-94 J-76 J-78 58.2 297 120 P-95 J-78 J-79 59.97 204 110 P-96 J-79 J-80 59.39 204 110 P-97 J-80 J-81 85.15 204 110 P-98 J-81 J-59 79.25 204 110						
P-94 J-76 J-78 58.2 297 120 P-95 J-78 J-79 59.97 204 110 P-96 J-79 J-80 59.39 204 110 P-97 J-80 J-81 85.15 204 110 P-98 J-81 J-59 79.25 204 110						
P-95 J-78 J-79 59.97 204 110 P-96 J-79 J-80 59.39 204 110 P-97 J-80 J-81 85.15 204 110 P-98 J-81 J-59 79.25 204 110						
P-96 J-79 J-80 59.39 204 110 P-97 J-80 J-81 85.15 204 110 P-98 J-81 J-59 79.25 204 110						
P-97 J-80 J-81 85.15 204 110 P-98 J-81 J-59 79.25 204 110						
P-98 J-81 J-59 79.25 204 110						
IP-99 J-80 J-82 51.74 204 110	P-99	J-81	J-82	51.74	204	110

ID	Elevation (m)	ADD (L/s)
J-33	101.29	0.18
J-34	101.41	0.00
J-35	101.33	0.16
J-36	101.25	0.16
J-37	101.64	0.06
J-38	101.46	0.14
J-39	101.83	0.20
J-40	101.96	0.14
J-41	102.65	0.04
J-42	101.87	0.16
J-43	101.72	0.18
J-44	101.59	0.16
J-45	103.27	0.06
J-46	102.38	0.08
J-47	101.77	0.12
J-48	101.83	0.06
J-49	101.74	0.14
J-50	101.40	0.12
J-51	101.41	0.18
J-52	101.35	0.20
J-53	102.22	0.20
J-54	101.87	0.20
J-55	102.52	0.20
J-56	103.00	0.20
J-57	103.00	0.12
J-58	102.95	0.06
J-59	105.68	0.64
J-60	102.80	0.04
J-61	101.51	0.06
J-62	104.21	0.00
J-63	106.39	0.20
J-64	106.74	0.20
J-65	107.17	0.20
J-66	107.78	0.18
J-67	106.62	0.20
J-68	106.02	0.22
J-69	107.07	0.14
J-70	107.07	0.14
J-70 J-71	108.43	0.14
J-71	107.85	0.12
J-72	107.83	0.12
J-74	107.68	0.00
J-74 J-75	107.08	0.00
J-75 J-76	108.00	0.24
J-76 J-77	108.27	0.10
_	106.93	
J-78 J-79		0.00
	105.57 105.54	
J-80		0.18
J-81	105.54	0.18
J-82	104.30	0.28
J-83	103.10	0.12
J-84	104.73	0.20
J-85	103.68	0.12
J-86	105.81	0.20
J-87	105.51	0.08
J-88	104.78	0.08
J-89	103.69	0.04
J-90	102.07	0.08



Appendix E MHD and PHD Model Results

Project ID: 2019-091-DSE

Project: Hydraulic Capacity and Modeling Analysis of

the Brazeau lands

Date: June 2020 Created by: BL

Reviewed by: WdS

GeoAdvice Engineering Inc.

Client: David Schaeffer Engineering Ltd.

not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

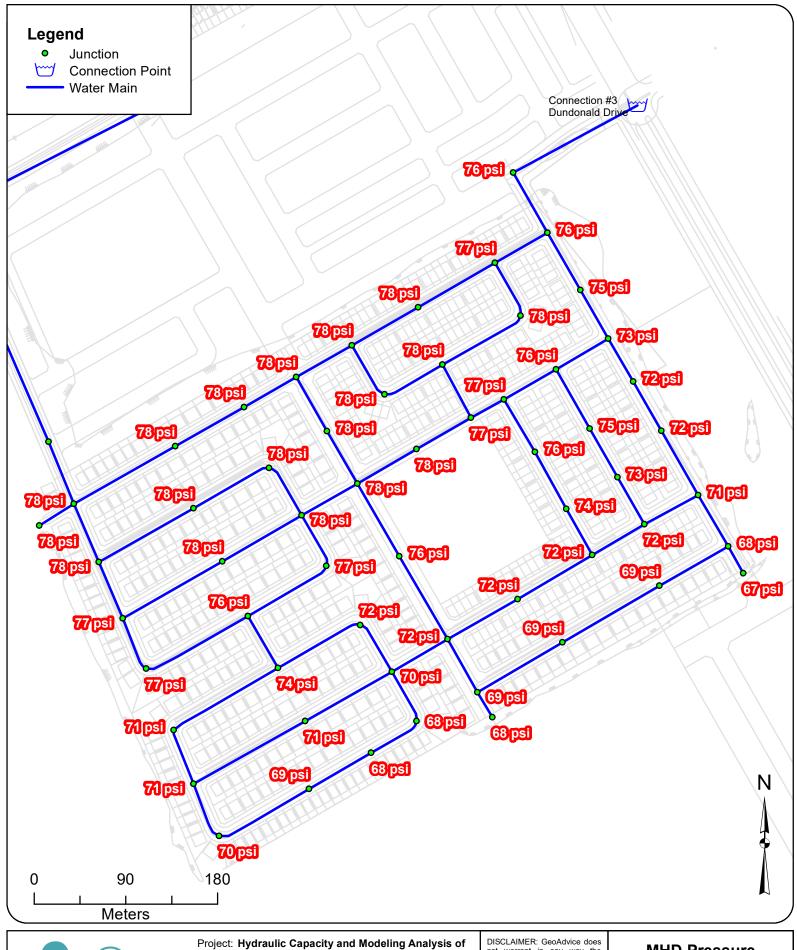

MHD Pressure Results - Phase 1

Figure E.1

Minimum Hour Demand Modeling Results - Phase 1

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/km)
P-42	J-33	J-34	40.11	297	120	0.00	0.00	0.00	0.00
P-43	J-33	J-35	114.35	297	120	-0.09	0.00	0.00	0.00
P-44	J-35	J-36	77.83	297	120	-0.16	0.00	0.00	0.00
P-45	J-36	J-37	59.20	297	120	-0.25	0.00	0.00	0.00
P-46	J-37	J-38	62.88	297	120	-0.88	0.01	0.00	0.00
P-47	J-38	J-39	74.92	297	120	-1.05	0.02	0.00	0.00
P-48	J-39	J-40	87.18	297	120	-1.15	0.02	0.00	0.00
P-49	J-40	J-41	59.39	297	120	-1.68	0.02	0.00	0.00
P-50	J-41	J-60	67.93	297	120	-1.69	0.02	0.00	0.00
P-51	J-60	CONNECTION_3	138.92	297	120	-1.69	0.02	0.00	0.00
P-52	J-40	J-42	58.39	204	110	0.45	0.01	0.00	0.00
P-53	J-42	J-43	91.90	204	110	0.37	0.01	0.00	0.00
P-54	J-43	J-44	64.49	204	110	-0.02	0.00	0.00	0.00
P-55	J-44	J-38	58.67	204	110	-0.10	0.00	0.00	0.00
P-56	J-45	J-46	59.20	204	110	-0.03	0.00	0.00	0.00
P-57	J-46	J-90	37.06	204	110	-0.08	0.00	0.00	0.00
P-58	J-47	J-48	67.31	204	110	0.16	0.00	0.00	0.00
P-59	J-48	J-61	59.65	297	120	-0.58	0.01	0.00	0.00
P-60	J-61	J-37	60.99	297	120	-0.61	0.01	0.00	0.00
P-61	J-59	J-58	94.07	297	120	-0.32	0.00	0.00	0.00
P-62	J-58	J-48	82.47	297	120	-0.35	0.01	0.00	0.00
P-63	J-48	J-49	63.07	204	110	0.36	0.01	0.00	0.00
P-64	J-49	J-50	57.71	204	110	0.04	0.00	0.00	0.00
P-65	J-50	J-51	84.62	204	110	-0.02	0.00	0.00	0.00
P-66	J-51	J-52	106.76	204	110	-0.11	0.00	0.00	0.00
P-67	J-33	J-52	62.05	204	110	0.42	0.01	0.00	0.00
P-68	J-52	J-53	60.20	204	110	0.21	0.01	0.00	0.00
P-69	J-53	J-54	112.78	204	110	-0.01	0.00	0.00	0.00
P-70	J-54	J-49	90.00	204	110	-0.10	0.00	0.00	0.00
P-71	J-49	J-57	56.32	204	110	0.14	0.00	0.00	0.00
P-72	J-57	J-56	92.28	204	110	0.08	0.00	0.00	0.00
P-73	J-53	J-55	55.27	204	110	0.12	0.00	0.00	0.00
P-74	J-55	J-56	113.38	204	110	0.02	0.00	0.00	0.00
P-111	J-90	J-47	61.51	204	110	0.22	0.01	0.00	0.00
P-112	J-43	J-90	59.19	204	110	0.30	0.01	0.00	0.00

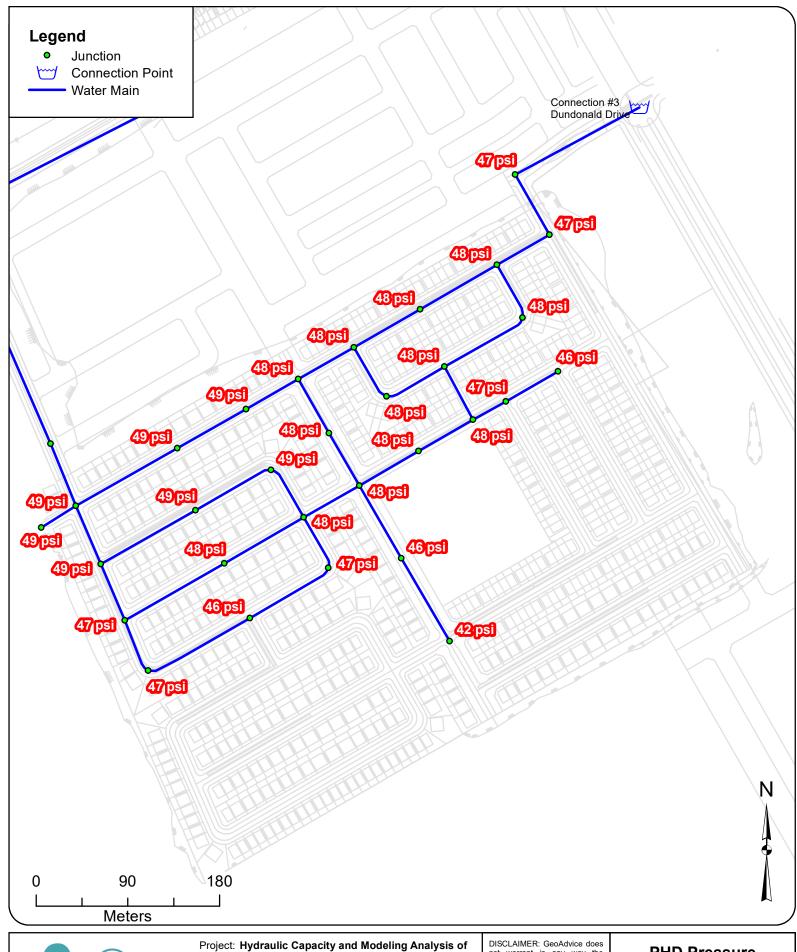
ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-33	0.09	101.29	156	78
J-34	0.00	101.41	156	78
J-35	0.08	101.33	156	78
J-36	0.08	101.25	156	78
J-37	0.03	101.64	156	78
J-38	0.07	101.46	156	78
J-39	0.10	101.83	156	78
J-40	0.07	101.96	156	77
J-41	0.02	102.65	156	76
J-42	0.08	101.87	156	78
J-43	0.09	101.72	156	78
J-44	0.08	101.59	156	78
J-45	0.03	103.27	156	76
J-46	0.04	102.38	156	77
J-47	0.06	101.77	156	78
J-48	0.03	101.83	156	78
J-49	0.07	101.74	156	78
J-50	0.06	101.40	156	78
J-51	0.09	101.41	156	78
J-52	0.10	101.35	156	78
J-53	0.10	102.22	156	77
J-54	0.10	101.87	156	78
J-55	0.10	102.52	156	77
J-56	0.10	103.00	156	76
J-57	0.06	102.46	156	77
J-58	0.03	102.95	156	76
J-59	0.32	105.68	156	72
J-60	0.00	102.80	156	76
J-61	0.03	101.51	156	78
J-90	0.00	102.07	156	77

the Brazeau Lands

Client: David Schaeffer Engineering Ltd.

Date: June 2020 Created by: BL

Reviewed by: WdS


not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

MHD Pressure Results - Phases 1&2

Figure E.2

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/km)
P-42	J-33	J-34	40.11	297	120	0.00	0.00	0.00	0.00
P-43	J-33	J-35	114.35	297	120	0.35	0.01	0.00	0.00
P-44	J-35	J-36	77.83	297	120	0.28	0.00	0.00	0.00
P-45	J-36	J-37	59.20	297	120	0.20	0.00	0.00	0.00
P-46 P-47	J-37	J-38	62.88	297 297	120	-0.73	0.01	0.00	0.00
P-47 P-48	J-38 J-39	J-39 J-40	74.92 87.18	297	120 120	-0.95 -1.05	0.01	0.00	0.00
P-49	J-40	J-40 J-41	59.39	297	120	-1.56	0.02	0.00	0.00
P-50	J-40	J-60	67.93	297	120	-3.05	0.02	0.00	0.01
P-51	J-60	CONNECTION 3	138.92	297	120	-3.05	0.04	0.00	0.01
P-52	J-40	J-42	58.39	204	110	0.44	0.01	0.00	0.00
P-53	J-42	J-43	83.72	204	110	0.35	0.01	0.00	0.00
P-54	J-43	J-44	72.67	204	110	-0.07	0.00	0.00	0.00
P-55	J-44	J-38	58.67	204	110	-0.15	0.00	0.00	0.00
P-56	J-45	J-46	59.20	204	110	0.21	0.01	0.00	0.00
P-57	J-46	J-90	81.24	204	110	-0.10	0.00	0.00	0.00
P-58	J-47	J-48	84.62	204	110	0.18	0.01	0.00	0.00
P-59	J-48	J-61	59.65	297	120	-0.87	0.01	0.00	0.00
P-60	J-61	J-37	60.99	297	120	-0.90	0.01	0.00	0.00
P-61 P-62	J-59 J-58	J-58 J-48	94.07 82.47	297 297	120 120	-0.53 -0.56	0.01	0.00	0.00
P-63	J-38	J-48 J-49	63.07	204	110	0.45	0.01	0.00	0.00
P-64	J-49	J-49 J-50	57.71	204	110	-0.03	0.00	0.00	0.00
P-65	J-50	J-51	84.62	204	110	-0.09	0.00	0.00	0.00
P-66	J-51	J-52	106.76	204	110	-0.18	0.01	0.00	0.00
P-67	J-33	J-52	62.05	204	110	0.62	0.02	0.00	0.00
P-68	J-52	J-53	60.20	204	110	0.33	0.01	0.00	0.00
P-69	J-53	J-54	112.78	204	110	-0.03	0.00	0.00	0.00
P-70	J-54	J-49	90.00	204	110	-0.13	0.00	0.00	0.00
P-71	J-49	J-57	56.32	204	110	0.28	0.01	0.00	0.00
P-72 P-73	J-57 J-53	J-56 J-55	92.28 55.27	204 204	110	0.22	0.01	0.00	0.00
P-73 P-74	J-53 J-55	J-55 J-56	113.38	204	110 110	0.26 0.17	0.01	0.00	0.00
P-111	J-90	I-47	61.51	204	110	0.17	0.01	0.00	0.00
P-112	J-43	J-90	59.19	204	110	0.33	0.01	0.00	0.00
P-75	J-56	J-62	58.69	204	110	0.29	0.01	0.00	0.00
P-76	J-62	J-63	119.4	204	110	0.19	0.01	0.00	0.00
P-77	J-63	J-64	56.35	204	110	0.10	0.00	0.00	0.00
P-78	J-64	J-65	58.6	204	110	0.09	0.00	0.00	0.00
P-79	J-65	J-66	100.76	204	110	0.00	0.00	0.00	0.00
P-80	J-66	J-70	70.42	204	110	-0.10	0.00	0.00	0.00
P-81	J-70	J-71	55.7	204	110	-0.18	0.01	0.00	0.00
P-82 P-83	J-71 J-64	J-69 J-67	54.8 125.85	204 204	110 110	-0.24 -0.09	0.01	0.00	0.00
P-84	J-64 J-67	J-67 J-69	97.99	204	110	-0.09	0.00	0.00	0.00
P-85	J-62	J-68	92.12	204	110	0.00	0.00	0.00	0.00
P-86	J-68	J-69	56.42	204	110	-0.07	0.00	0.00	0.00
P-87	J-69	J-59	63.46	204	110	-0.59	0.02	0.00	0.00
P-88	J-59	J-72	59.77	297	120	-0.29	0.00	0.00	0.00
P-89	J-72	J-73	28.67	297	120	0.00	0.00	0.00	0.00
P-90	J-72	J-74	96.85	297	120	-0.37	0.01	0.00	0.00
P-91	J-74	J-75	110.13	297	120	-0.49	0.01	0.00	0.00
P-92	J-75	J-76	78.16	297	120	-0.57	0.01	0.00	0.00
P-93	J-77	J-76	30.34	297	120	0.00	0.00	0.00	0.00
P-94 P-95	J-76 J-78	J-78 J-79	58.2 59.97	297 204	120 110	-0.61 0.21	0.01	0.00	0.00
P-95 P-96	J-78 J-79	J-79 J-80	59.97	204	110	0.21	0.01	0.00	0.00
P-96 P-97	J-79 J-80	J-80 J-81	85.15	204	110	0.22	0.01	0.00	0.00
P-98	J-81	J-59	79.25	204	110	0.09	0.00	0.00	0.00
P-99	J-80	J-82	51.74	204	110	-0.10	0.00	0.00	0.00
P-100	J-82	J-83	63.79	204	110	-0.16	0.00	0.00	0.00
P-101	J-83	J-46	60.03	204	110	-0.26	0.01	0.00	0.00
P-102	J-79	J-84	53.32	204	110	-0.09	0.00	0.00	0.00
P-103	J-84	J-85	55.04	204	110	-0.15	0.00	0.00	0.00
P-104	J-85	J-45	66.63	204	110	-0.25	0.01	0.00	0.00
P-105	J-78	J-86	72.81	297	120	-0.86	0.01	0.00	0.00
P-106	J-86	J-87	55.9	297	120	-0.89	0.01	0.00	0.00
P-107	J-87	J-88	48.49	297	120	-0.93	0.01	0.00	0.00
P-108	J-45	J-88	59.54	204 297	110	-0.49	0.01	0.00	0.00
P-109 P-110	J-88 J-89	J-89 J-41	55.04 65.11	297	120 120	-1.44 -1.48	0.02	0.00	0.00
r-110	1-99	J-41	05.11	297	120	-1.48	0.02	0.00	0.00

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-33	0.09	101.29	156	78
J-34	0.00	101.41	156	78
J-35	0.08	101.33	156	78
J-36	0.08	101.25	156	78
J-37	0.03	101.64	156	78
J-38	0.07	101.46	156	78
J-39	0.10	101.83	156	78
J-40	0.07	101.96	156	77
J-41	0.02	102.65	156	76
J-42	0.08	101.87	156	78
J-43	0.09	101.72	156	78
J-44	0.08	101.59	156	78
J-45	0.03	103.27	156	76
J-46	0.04	102.38	156	77
J-47	0.06	101.77	156	78
J-48	0.03	101.83	156	78
J-49	0.07	101.74	156	78
J-50	0.06	101.40	156	78
J-51	0.09	101.41	156	78
J-52	0.10	101.35	156	78
J-53	0.10	102.22	156	77
J-54	0.10	101.87	156	78
J-55	0.10	102.52	156	77
J-56	0.10	103.00	156	76
J-57	0.06	102.46	156	77
J-58	0.03	102.95	156	76
J-59	0.32	105.68	156	72
J-60	0.00	102.80	156	76
J-61	0.03	101.51	156	78
J-90	0.00	102.07	156	77
J-62	0.10	104.21	156	74
J-63	0.10	106.39	156	71
J-64	0.10	106.74	156	71
J-65	0.09	107.17	156	70
J-66	0.10	107.78	156	69
J-67	0.11	106.62	156	71
J-68	0.07	106.00	156	72
J-69	0.07	107.07	156	70
J-70	0.08	108.43	156	68
J-71	0.06	108.62	156	68
J-72	0.08	107.85	156	69
J-73	0.00	108.47	156	68
J-74	0.12	107.68	156	69
J-75	0.08	108.00	156	69
J-76	0.04	108.27	156	68
J-77	0.00	108.93	156	67
J-78	0.03	106.17	156	71
J-79	0.09	105.57	156	72 72
J-80	0.09	105.54	156	
J-81 J-82	0.14	105.54	156 156	72 74
	0.06	104.30		
J-83	0.10	103.10	156	76
J-84	0.06	104.73	156	73
J-85	0.10	103.68	156	75
J-86 J-87	0.04	105.81	156 156	72
J-88	0.04	105.51 104.78	156	72 73
J-88	0.02	104.78	156	73 75
2-03	0.04	103.03	130	/3

the Brazeau Lands

Client: David Schaeffer Engineering Ltd.

Date: June 2020 Created by: BL

Reviewed by: WdS

not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

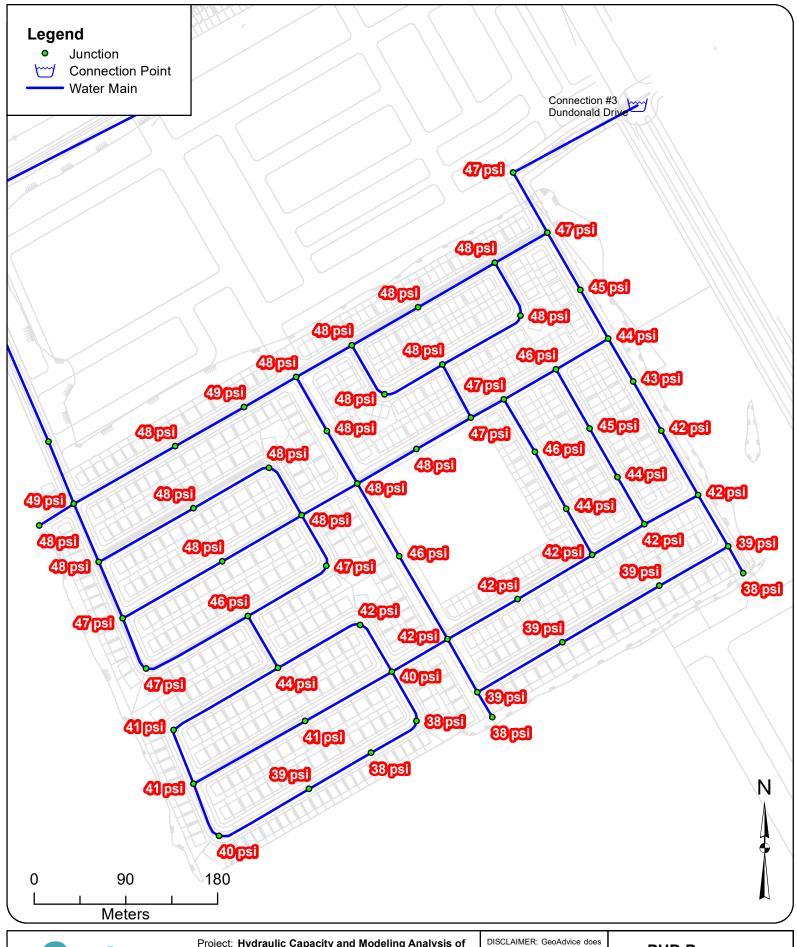

PHD Pressure Results - Phase 1

Figure E.3

Peak Hour Demand Modeling Results - Phase 1

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/km)
P-42	J-33	J-34	40.11	297	120	0.00	0.00	0.00	0.00
P-43	J-33	J-35	114.35	297	120	-2.53	0.04	0.00	0.01
P-44	J-35	J-36	77.83	297	120	-3.36	0.05	0.00	0.01
P-45	J-36	J-37	59.20	297	120	-4.27	0.06	0.00	0.02
P-46	J-37	J-38	62.88	297	120	-10.16	0.15	0.01	0.11
P-47	J-38	J-39	74.92	297	120	-11.85	0.17	0.01	0.15
P-48	J-39	J-40	87.18	297	120	-13.00	0.19	0.02	0.18
P-49	J-40	J-41	59.39	297	120	-18.81	0.27	0.02	0.35
P-50	J-41	J-60	67.93	297	120	-18.99	0.27	0.02	0.36
P-51	J-60	CONNECTION_3	138.92	297	120	-18.99	0.27	0.05	0.36
P-52	J-40	J-42	58.39	204	110	5.02	0.15	0.01	0.23
P-53	J-42	J-43	91.90	204	110	4.12	0.13	0.01	0.16
P-54	J-43	J-44	64.49	204	110	-0.06	0.00	0.00	0.00
P-55	J-44	J-38	58.67	204	110	-0.91	0.03	0.00	0.01
P-56	J-45	J-46	59.20	204	110	-0.36	0.01	0.00	0.00
P-57	J-46	J-90	37.06	204	110	-0.84	0.03	0.00	0.01
P-58	J-47	J-48	67.31	204	110	1.65	0.05	0.00	0.03
P-59	J-48	J-61	59.65	297	120	-5.28	0.08	0.00	0.03
P-60	J-61	J-37	60.99	297	120	-5.59	0.08	0.00	0.04
P-61	J-59	J-58	94.07	297	120	-1.96	0.03	0.00	0.01
P-62	J-58	J-48	82.47	297	120	-2.26	0.03	0.00	0.01
P-63	J-48	J-49	63.07	204	110	4.29	0.13	0.01	0.17
P-64	J-49	J-50	57.71	204	110	0.63	0.02	0.00	0.00
P-65	J-50	J-51	84.62	204	110	-0.06	0.00	0.00	0.00
P-66	J-51	J-52	106.76	204	110	-1.04	0.03	0.00	0.01
P-67	J-33	J-52	62.05	204	110	4.28	0.13	0.01	0.17
P-68	J-52	J-53	60.20	204	110	2.10	0.06	0.00	0.04
P-69	J-53	J-54	112.78	204	110	-0.21	0.01	0.00	0.00
P-70	J-54	J-49	90.00	204	110	-1.27	0.04	0.00	0.02
P-71	J-49	J-57	56.32	204	110	1.63	0.05	0.00	0.03
P-72	J-57	J-56	92.28	204	110	0.95	0.03	0.00	0.01
P-73	J-53	J-55	55.27	204	110	1.17	0.04	0.00	0.02
P-74	J-55	J-56	113.38	204	110	0.11	0.00	0.00	0.00
P-111	J-90	J-47	61.51	204	110	2.31	0.07	0.00	0.05
P-112	J-43	J-90	59.19	204	110	3.16	0.10	0.01	0.10

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-33	0.99	101.29	136	49
J-34	0.00	101.41	136	49
J-35	0.83	101.33	136	49
J-36	0.91	101.25	136	49
J-37	0.30	101.64	136	48
J-38	0.78	101.46	136	49
J-39	1.15	101.83	136	48
J-40	0.78	101.96	136	48
J-41	0.18	102.65	136	47
J-42	0.90	101.87	136	48
J-43	1.02	101.72	136	48
J-44	0.84	101.59	136	48
J-45	0.36	103.27	136	46
J-46	0.48	102.38	136	47
J-47	0.66	101.77	136	48
J-48	0.38	101.83	136	48
J-49	0.76	101.74	136	48
J-50	0.68	101.40	136	49
J-51	0.99	101.41	136	49
J-52	1.14	101.35	136	49
J-53	1.14	102.22	136	47
J-54	1.06	101.87	136	48
J-55	1.06	102.52	136	47
J-56	1.06	103.00	136	46
J-57	0.68	102.46	136	47
J-58	0.30	102.95	136	46
J-59	1.96	105.68	136	42
J-60	0.00	102.80	136	47
J-61	0.30	101.51	136	48
J-90	0.00	102.07	136	48

Project: Hydraulic Capacity and Modeling Analysis of the Brazeau Lands

Client: David Schaeffer Engineering Ltd.

Date: June 2020 Created by: BL

Reviewed by: WdS

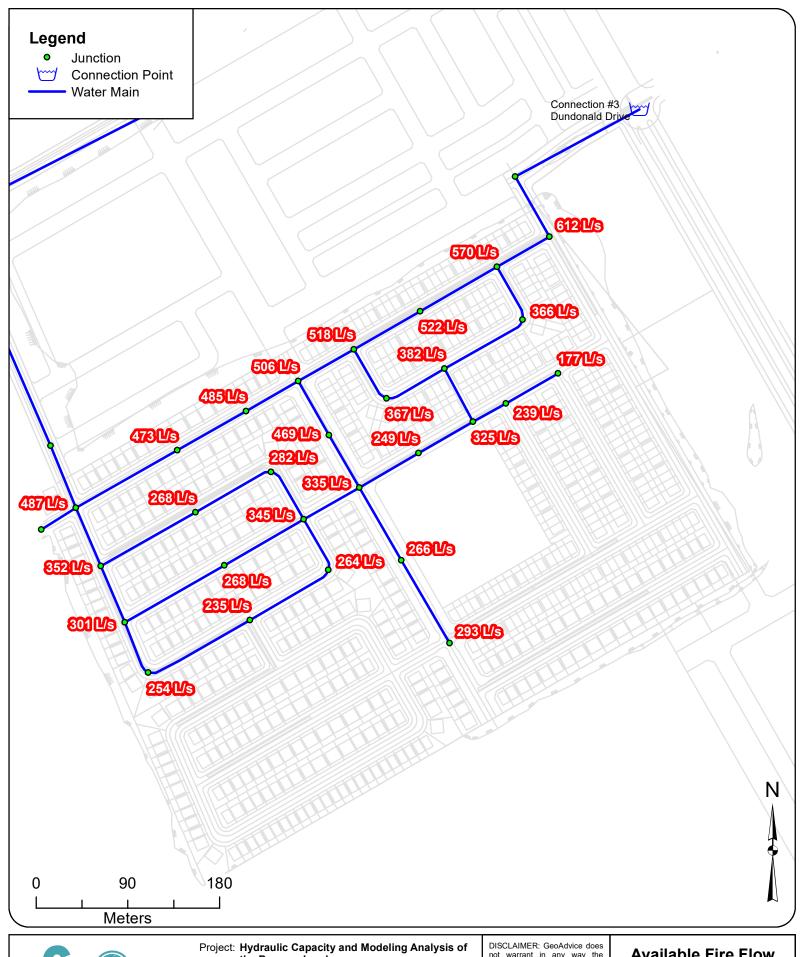
not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

PHD Pressure Results - Phases 1&2

Figure E.4

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/km)
P-42	J-33	J-34	40.11	297	120	0.00	0.00	0.00	0.00
P-43	J-33	J-35	114.35	297	120	3.16	0.05	0.00	0.01
P-44	J-35	J-36	77.83	297	120	2.33	0.03	0.00	0.01
P-45	J-36	J-37	59.20	297	120	1.42	0.02	0.00	0.00
P-46	J-37	J-38	62.88	297 297	120	-8.04	0.12	0.00	0.07
P-47 P-48	J-38 J-39	J-39 J-40	74.92 87.18	297	120 120	-10.35 -11.49	0.15 0.17	0.01	0.12
P-49	J-40	J-41	59.39	297	120	-17.00	0.17	0.01	0.14
P-50	J-41	J-60	67.93	297	120	-33.05	0.48	0.02	1.01
P-51	J-60	CONNECTION 3	138.92	297	120	-33.05	0.48	0.14	1.01
P-52	J-40	J-42	58.39	204	110	4.72	0.14	0.01	0.20
P-53	J-42	J-43	83.72	204	110	3.82	0.12	0.01	0.14
P-54	J-43	J-44	72.67	204	110	-0.68	0.02	0.00	0.01
P-55	J-44	J-38	58.67	204	110	-1.52	0.05	0.00	0.02
P-56	J-45	J-46	59.20	204	110	2.27	0.07	0.00	0.05
P-57	J-46	J-90	81.24	204	110	-0.92	0.03	0.00	0.01
P-58	J-47	J-48	84.62	204	110	1.88	0.06	0.00	0.04
P-59	J-48	J-61	59.65	297	120	-8.86	0.13	0.01	0.09
P-60	J-61	J-37	60.99	297	120	-9.16 -4.98	0.13	0.01	0.09
P-61 P-62	J-59 J-58	J-58 J-48	94.07 82.47	297 297	120 120	-4.98 -5.28	0.07	0.00	0.03
P-62 P-63	J-58 J-48	J-48 J-49	63.07	297	110	5.08	0.08	0.00	0.03
P-64	J-49	J-50	57.71	204	110	-0.22	0.01	0.00	0.00
P-65	J-50	J-51	84.62	204	110	-0.90	0.03	0.00	0.01
P-66	J-51	J-52	106.76	204	110	-1.89	0.06	0.00	0.04
P-67	J-33	J-52	62.05	204	110	6.57	0.20	0.02	0.37
P-68	J-52	J-53	60.20	204	110	3.54	0.11	0.01	0.12
P-69	J-53	J-54	112.78	204	110	-0.41	0.01	0.00	0.00
P-70	J-54	J-49	90.00	204	110	-1.48	0.05	0.00	0.02
P-71	J-49	J-57	56.32	204	110	3.06	0.09	0.01	0.09
P-72 P-73	J-57 J-53	J-56 J-55	92.28	204 204	110	2.38	0.07	0.01	0.06
P-73 P-74	J-53 J-55	J-56	55.27 113.38	204	110 110	2.82 1.76	0.09	0.00	0.08
P-111	J-90	J-30 J-47	61.51	204	110	2.55	0.03	0.00	0.06
P-112	J-43	J-90	59.19	204	110	3.47	0.11	0.01	0.11
P-75	J-56	J-62	58.69	204	110	3.08	0.09	0.01	0.09
P-76	J-62	J-63	119.4	204	110	2.11	0.06	0.01	0.05
P-77	J-63	J-64	56.35	204	110	1.05	0.03	0.00	0.01
P-78	J-64	J-65	58.6	204	110	0.97	0.03	0.00	0.01
P-79	J-65	J-66	100.76	204	110	-0.01	0.00	0.00	0.00
P-80	J-66	J-70	70.42	204	110	-1.15	0.04	0.00	0.01
P-81	J-70	J-71	55.7	204	110	-2.06	0.06	0.00	0.04
P-82 P-83	J-71 J-64	J-69 J-67	54.8 125.85	204 204	110 110	-2.67 -1.06	0.08	0.00	0.07 0.01
P-83 P-84	J-64 J-67	J-69	97.99	204	110	-2.27	0.03	0.00	0.01
P-85		J-68	92.12	204	110	-0.17	0.07	0.00	0.00
P-86	J-62 J-68	J-69	56.42	204	110	-0.17	0.01	0.00	0.01
P-87	J-69	J-59	63.46	204	110	-6.63	0.20	0.02	0.38
P-88	J-59	J-72	59.77	297	120	-2.83	0.04	0.00	0.01
P-89	J-72	J-73	28.67	297	120	0.00	0.00	0.00	0.00
P-90	J-72	J-74	96.85	297	120	-3.74	0.05	0.00	0.02
P-91	J-74	J-75	110.13	297	120	-5.03	0.07	0.00	0.03
P-92	J-75	J-76	78.16	297	120	-5.93	0.09	0.00	0.04
P-93	J-77	J-76	30.34	297	120	0.00	0.00	0.00	0.00
P-94	J-76	J-78	58.2	297	120	-6.39	0.09	0.00	0.05
P-95 P-96	J-78 J-79	J-79 J-80	59.97 59.39	204 204	110 110	2.36	0.07	0.00	0.06 0.05
P-96 P-97	J-79 J-80	J-80 J-81	59.39 85.15	204	110	2.34	0.07	0.00	0.05
P-98	J-80 J-81	J-59	79.25	204	110	0.78	0.07	0.00	0.03
P-98	J-80	J-82	51.74	204	110	-0.96	0.02	0.00	0.01
P-100	J-82	J-83	63.79	204	110	-1.63	0.05	0.00	0.03
P-101	J-83	J-46	60.03	204	110	-2.71	0.08	0.00	0.07
P-102	J-79	J-84	53.32	204	110	-0.94	0.03	0.00	0.01
P-103	J-84	J-85	55.04	204	110	-1.54	0.05	0.00	0.03
P-104	J-85	J-45	66.63	204	110	-2.62	0.08	0.00	0.07
P-105	J-78	J-86	72.81	297	120	-9.11	0.13	0.01	0.09
P-106	J-86	J-87	55.9	297	120	-9.53	0.14	0.01	0.10
P-107	J-87	J-88	48.49	297	120	-9.95	0.14	0.01	0.11
P-108	J-45	J-88	59.54	204	110	-5.25	0.16	0.01	0.24
		J-89	55.04	297	120	-15.45	0.22	0.01	0.25
P-109 P-110	J-88 J-89	J-41	65.11	297	120	-15.87	0.23	0.02	0.26

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-33	0.99	101.29	135	49
J-34	0.00	101.41	135	48
J-35	0.83	101.33	135	49
J-36	0.91	101.25	135	49
J-37	0.30	101.64	135	48
J-38	0.78	101.46	135	48
J-39	1.15	101.83	135	48
J-40	0.78	101.96	135	48
J-41	0.18	102.65	135	47
J-42	0.90	101.87	135	48
J-43	1.02	101.72	135	48
J-44	0.84	101.59	135	48
J-45	0.36	103.27	135	46
J-46	0.48	102.38	135	47
J-47	0.66	101.77	135	48
J-48	0.38	101.83	135	48
J-49	0.76	101.74	135	48
J-50	0.68	101.40	135	48
J-51	0.99	101.41	135	48
J-52	1.14	101.35	135	48
J-53	1.14	102.22	135	47
J-54	1.06	101.87	135	48
J-55	1.06	102.52	135	47
J-56	1.06	103.00	135	46
J-57	0.68	102.46	135	47
J-58	0.30	102.95	135	46
J-59	1.96	105.68	135	42
J-60	0.00	102.80	136	47
J-61	0.30	101.51	135	48
J-90	0.00	102.07	135	47
J-62	1.14	104.21	135	44
J-63	1.06	106.39	135	41
J-64	1.14	106.74	135	41
J-65	0.98 1.14	107.17	135 135	40 39
J-66 J-67	1.14	107.78 106.62	135	41
				42
J-68 J-69	0.76 0.76	106.00 107.07	135 135	40
J-70	0.70	108.43	135	38
J-71	0.61	108.43	135	38
J-72	0.91	107.85	135	39
J-73	0.00	108.47	135	38
J-74	1.29	107.68	135	39
J-75	0.91	108.00	135	39
J-76	0.45	108.27	135	39
J-77	0.00	108.93	135	38
J-78	0.36	106.17	135	42
J-79	0.96	105.57	135	42
J-80	0.96	105.54	135	43
J-81	1.56	105.54	135	42
J-82	0.66	104.30	135	44
J-83	1.08	103.10	135	46
J-84	0.60	104.73	135	44
J-85	1.08	103.68	135	45
J-86	0.42	105.81	135	42
J-87	0.42	105.51	135	43
J-88 J-89	0.24 0.42	104.78 103.69	135 135	44 45
1-09	0.42	103.03	133	43

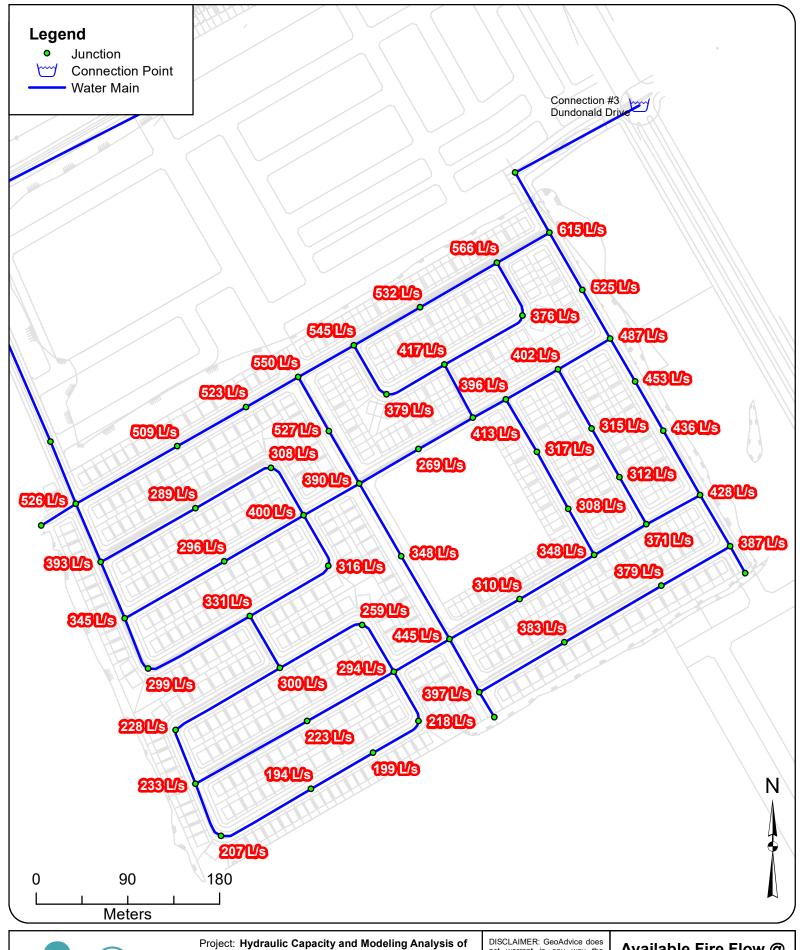


Appendix F MDD+FF Model Results

Project ID: 2019-091-DSE

the Brazeau Lands

Client: David Schaeffer Engineering Ltd.

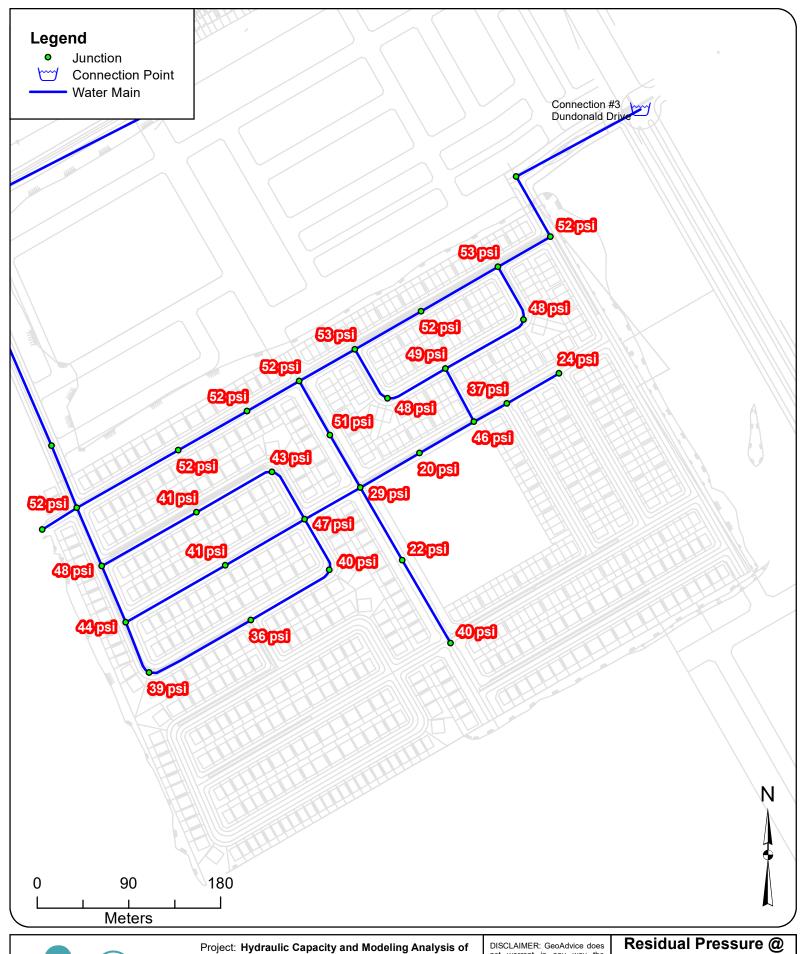

Date: June 2020 Created by: BL

Reviewed by: WdS

not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

Available Fire Flow @ 20 psi - Phase 1

Figure F.1



Date: June 2020 Created by: BL

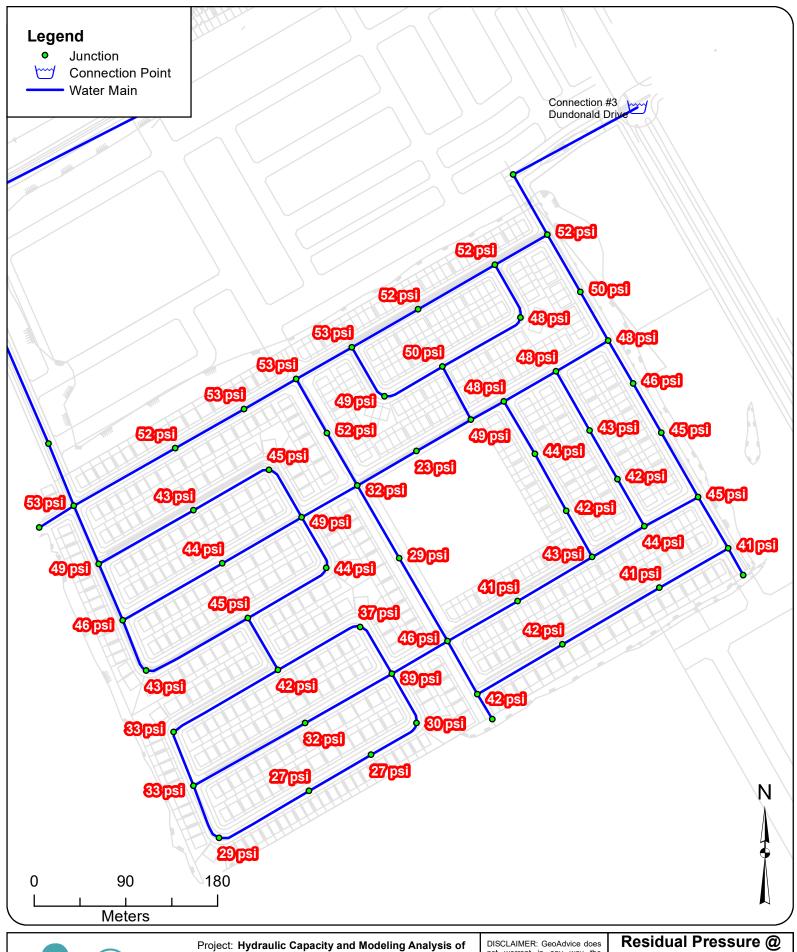
Reviewed by: WdS GeoAdvice Engineering Inc.

the Brazeau Lands Client: David Schaeffer Engineering Ltd. not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of Available Fire Flow @ 20 psi - Phases 1&2

Figure F.2

the Brazeau Lands

Client: David Schaeffer Engineering Ltd.


Date: June 2020 Created by: BL

Reviewed by: WdS

not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

Required Fire Flow -Phase 1

Figure F.3

the Brazeau Lands

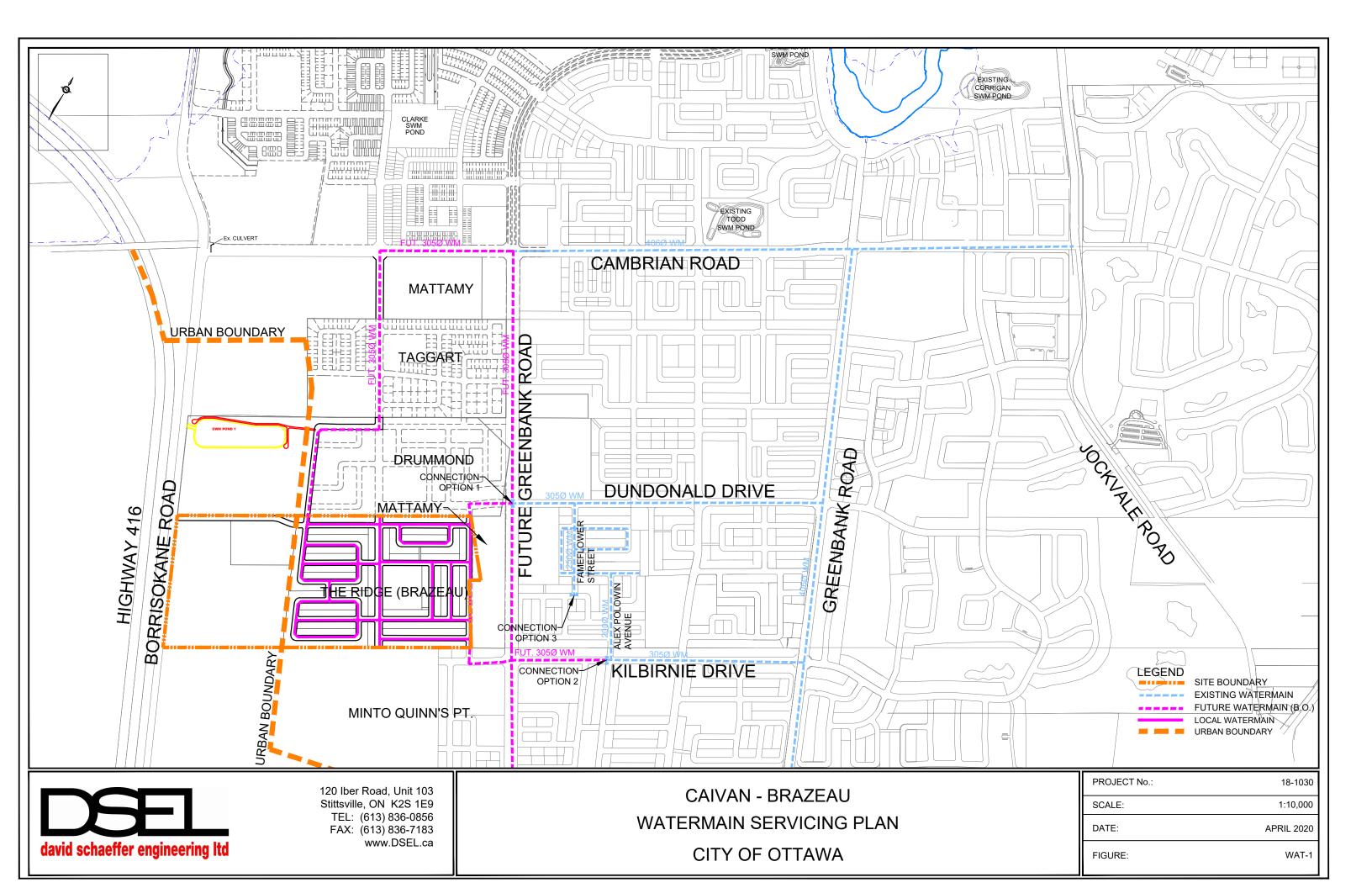
Client: David Schaeffer Engineering Ltd.

Date: June 2020 Created by: BL

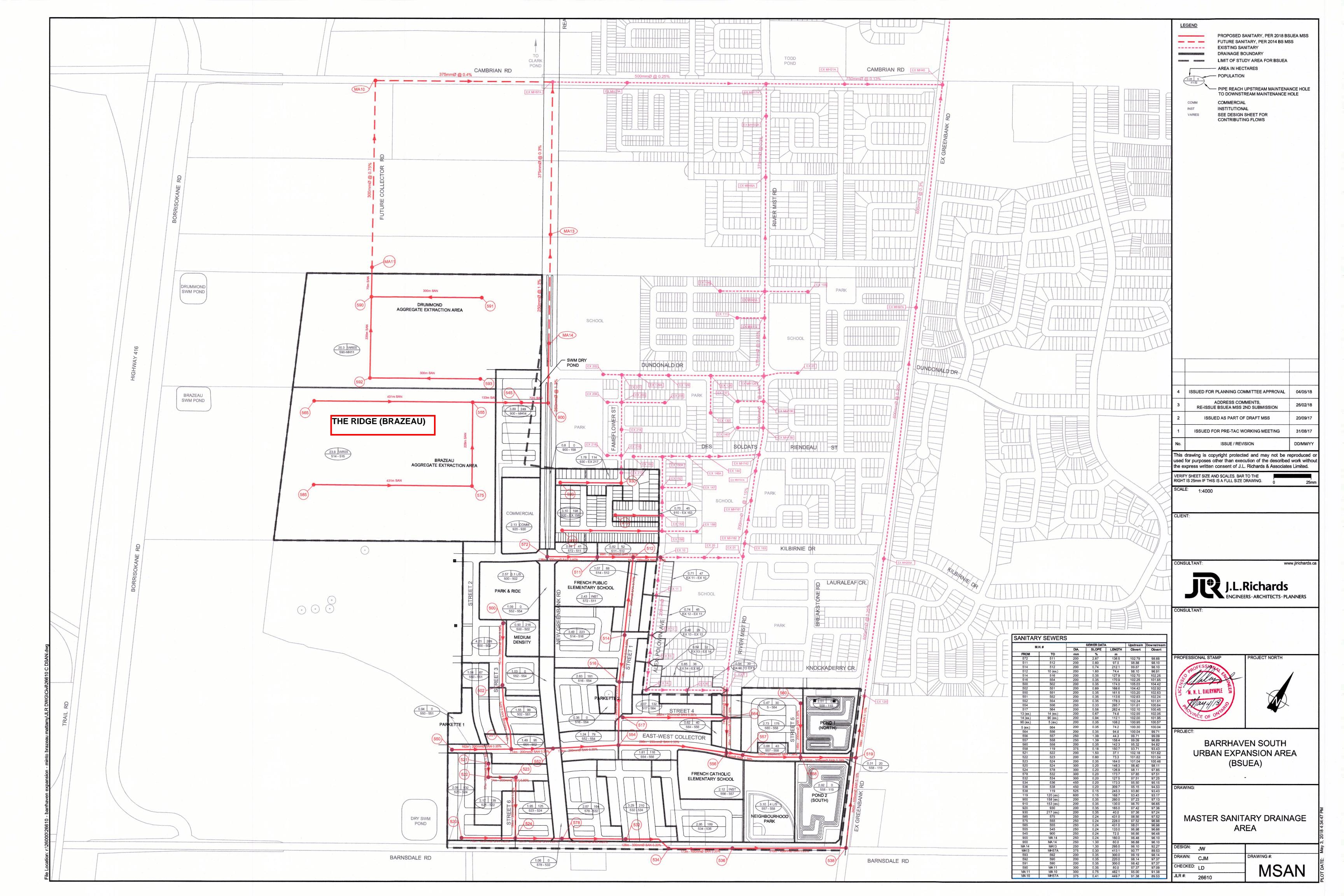
Reviewed by: WdS

not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of Required Fire Flow -Phases 1&2

Figure F.4


Fire Flow Modeling Results - Phase 1

ID	Static Demand (L/s)	Fire-Flow Demand (L/s)	Residual Pressure (psi)	Available Flow at Hydrant (L/s)	Available Flow Pressure (psi)
J-33	0.45	167	52	487	20
J-35	0.38	167	52	473	20
J-36	0.41	167	52	485	20
J-37	0.14	167	52	506	20
J-38	0.36	167	53	518	20
J-39	0.52	167	52	522	20
J-40	0.36	167	53	570	20
J-41	0.08	167	52	612	20
J-42	0.41	167	48	366	20
J-43	0.47	167	49	382	20
J-44	0.38	167	48	367	20
J-45	0.16	167	24	177	20
J-46	0.22	167	37	239	20
J-49	0.34	167	47	345	20
J-50	0.31	167	43	282	20
J-51	0.45	167	41	268	20
J-52	0.52	167	48	352	20
J-53	0.52	167	44	301	20
J-54	0.48	167	41	268	20
J-55	0.48	167	39	254	20
J-56	0.48	167	36	235	20
J-57	0.31	167	40	264	20
J-59	1.04	167	40	293	20
J-61	0.14	167	51	469	20
J-90	0.00	167	46	325	20
J-47	0.30	250	20	249	20
J-48	0.17	250	29	335	20
J-58	0.14	250	22	266	20


ID	Static Demand (L/s)	Fire-Flow Demand (L/s)	Residual Pressure (psi)	Available Flow at Hydrant (L/s)	Available Flow Pressure (psi)
J-33	0.45	167	53	526	20
J-35	0.38	167	52	509	20
J-36	0.41	167	53	523	20
J-37	0.14	167	53	550	20
J-38	0.36	167	53	545	20
J-39	0.52	167	52	532	20
J-40	0.36	167	52	566	20
J-41	0.08	167	52	615	20
J-42	0.41	167	48	376	20
J-43	0.47	167	50	417	20
J-44	0.38	167	49	379	20
J-45	0.16	167	48	402	20
J-46	0.22	167	48	396	20
J-49	0.34	167	49	400	20
J-50	0.31	167	45	308	20
J-51	0.45	167	43	289	20
J-52	0.52	167	49	393	20
J-53	0.52	167	46	345	20
J-54	0.48	167	44	296	20
J-55	0.48	167	43	299	20
J-56	0.48	167	45	331	20
J-57	0.31	167	44	316	20
J-59	1.04	167	46	445	20
J-61	0.14	167	52	527	20
J-62	0.52	167	42	300	20
J-63	0.48	167	33	228	20
J-64	0.52	167	33	233	20
J-65	0.45	167	29	207	20
J-66	0.52	167	27	194	20
J-67	0.55	167	32	223	20
J-68	0.34	167	37	259	20
J-69	0.34	167	39	294	20
J-70	0.41	167	27	199	20
J-71	0.28	167	30	218	20
J-72	0.41	167	42	397	20
J-74	0.58	167	42	383	20
J-75 J-76	0.41 0.21	167 167	41 41	379 387	20 20
J-78 J-79	0.16 0.44	167 167	45 44	428 371	20 20
J-79 J-80	0.44	167	43	349	20
J-80 J-81	0.71	167	41	310	20
J-81 J-82	0.71	167	42	308	20
J-82	0.49	167	44	317	20
J-84	0.49	167	42	317	20
J-84 J-85	0.49	167	43	315	20
J-85	0.19	167	45	436	20
J-80	0.19	167	46	453	20
J-88	0.11	167	48	487	20
J-89	0.19	167	50	525	20
J-90	0.00	167	49	413	20
J-47	0.30	250	23	269	20
J-48	0.17	250	32	390	20
J-58	0.14	250	29	348	20
					· · ·

Connection point 1: Existing watermain node off Haiku/ Obsidian street intersection fronting Block 1.

Connection point 2: Existing watermain node on Obsidian street

APPENDIX C

was assumed to have 4 washbasins that deliver 375 L/d and four (4) water closets that generate 150 L/hr for 10 hr/day resulting in a total flow of 7500 L/day.

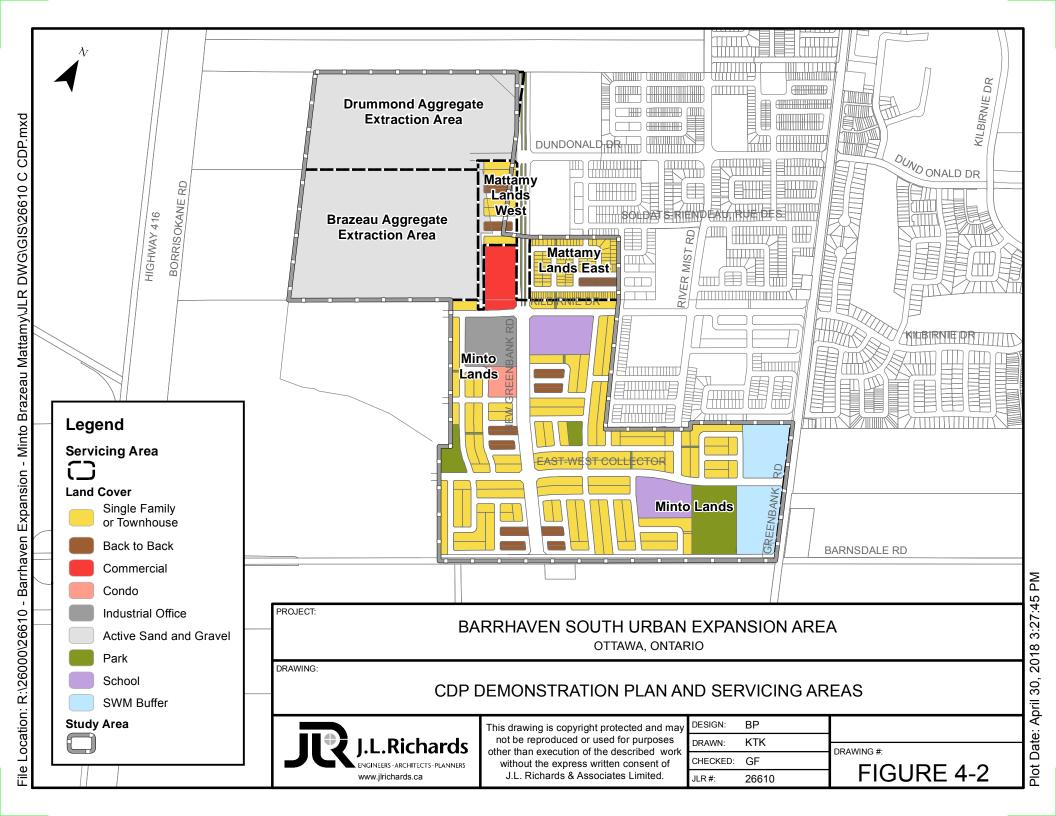
Table 6-3: Land Use and Theoretical Wastewater Flows

Schools 28,000 L/ha/d 4.55	Land Use	Flow Rate	Area (ha)	Units	Pop.	Average Flow (L/S)	Peak Factor	Infiltrati on	Total Flows (L/s)
Park Block	Minto and Mattamy Lands	s							
Commercial 28,000 L/ha/d 2.13 0.70 1.5 0.70 1.8 Low-Medium density Residential 280 l/c/d 35.26 1080 3378 11.0 2.92 11.64 43.6 High Density Residential 280 l/c/d 0.90 120 216 0.7 3.51 0.30 2.8 Roads - 27.00 - 1 8.91 8.9 Park and Ride 2.57 0.1 1 0.85 1.0 Total 76.8 1200 3594 17.95 25.35 67.4 Brazeau Aggregate Extraction Area Schools 28,000 L/ha/d 1.47 0.48 1.5 0.49 1.2 Commercial 28,000 L/ha/d 0.67 0.22 1.5 0.22 0.6 Low-Medium Density Residential 280 l/c/d 10.27 360 1126 3.65 3.21 3.39 15.1 High Density Residential 280 l/c/d 0.28 38 68 0.22 3.63 0.09	Schools	28,000 L/ha/d	4.55			1.50	1.5	1.50	3.8
Low-Medium density Residential 280 l/c/d 35.26 1080 3378 11.0 2.92 11.64 43.6	Park Block	4 L/s	4.39			4.0	1	1.45	5.5
Residential 280 l/c/d 0.90 120 216 0.7 3.51 0.30 2.8	Commercial	28,000 L/ha/d	2.13			0.70	1.5	0.70	1.8
Roads		280 l/c/d	35.26	1080	3378	11.0	2.92	11.64	43.6
Park and Ride 2.57 0.1 1 0.85 1.0 Total 76.8 1200 3594 17.95 25.35 67.4 Brazeau Aggregate Extraction Area Schools 28,000 L/ha/d 1.47 0.48 1.5 0.49 1.2 Commercial 28,000 L/ha/d 0.67 0.22 1.5 0.22 0.6 Low-Medium Density Residential 280 l/c/d 10.27 360 1126 3.65 3.21 3.39 15.1 High Density Residential 280 l/c/d 0.28 38 68 0.22 3.63 0.09 0.9 Roads - 7.95 1 2.62 2.6 Park Block - 1.48 1 0.49 0.5 Pond Blocks - 1.78 1 0.59 0.6 Total 23.9 1194 4.57 7.89 21.5 Drummond Aggregate Extraction Area Schools 28,000 L/ha/d 1.25 0.41	High Density Residential	280 l/c/d	0.90	120	216	0.7	3.51	0.30	2.8
Total 76.8 1200 3594 17.95 25.35 67.4 Brazeau Aggregate Extraction Area Schools 28,000 L/ha/d 1.47 0.48 1.5 0.49 1.2 Commercial 28,000 L/ha/d 0.67 0.22 1.5 0.22 0.6 Low-Medium Density Residential 280 l/c/d 10.27 360 1126 3.65 3.21 3.39 15.1 High Density Residential 280 l/c/d 0.28 38 68 0.22 3.63 0.09 0.9 Roads - 7.95 1 2.62 2.6 Park Block - 1.48 1 0.49 0.5 Pond Blocks - 1.78 1 0.59 0.6 Total 23.9 1194 4.57 7.89 21.5 Drummond Aggregate Extraction Area Schools 28,000 L/ha/d 1.25 0.41 1.5 0.41 1.0	Roads	-	27.00				1	8.91	8.9
Brazeau Aggregate Extraction Area Schools 28,000 L/ha/d 1.47 0.48 1.5 0.49 1.2 Commercial 28,000 L/ha/d 0.67 0.22 1.5 0.22 0.6 Low-Medium Density Residential 280 l/c/d 10.27 360 1126 3.65 3.21 3.39 15.1 High Density Residential 280 l/c/d 0.28 38 68 0.22 3.63 0.09 0.9 Roads - 7.95 1 2.62 2.6 Park Block - 1.48 1 0.49 0.5 Pond Blocks - 1.78 1 0.59 0.6 Total 23.9 1194 4.57 7.89 21.5 Drummond Aggregate Extraction Area Schools 28,000 L/ha/d 1.25 0.41 1.5 0.41 1.0	Park and Ride		2.57			0.1	1	0.85	1.0
Schools 28,000 L/ha/d 1.47 0.48 1.5 0.49 1.2 Commercial 28,000 L/ha/d 0.67 0.22 1.5 0.22 0.6 Low-Medium Density Residential 280 l/c/d 10.27 360 1126 3.65 3.21 3.39 15.1 High Density Residential 280 l/c/d 0.28 38 68 0.22 3.63 0.09 0.9 Roads - 7.95 1 2.62 2.6 Park Block - 1.48 1 0.49 0.5 Pond Blocks - 1.78 1 0.59 0.6 Total 23.9 1194 4.57 7.89 21.5 Drummond Aggregate Extraction Area Schools 28,000 L/ha/d 1.25 0.41 1.5 0.41 1.0	<u>Total</u>		76.8	1200	3594	17.95		25.35	67.4
Commercial 28,000 L/ha/d 0.67 0.22 1.5 0.22 0.6 Low-Medium Density Residential 280 l/c/d 10.27 360 1126 3.65 3.21 3.39 15.1 High Density Residential 280 l/c/d 0.28 38 68 0.22 3.63 0.09 0.9 Roads - 7.95 1 2.62 2.6 Park Block - 1.48 1 0.49 0.5 Pond Blocks - 1.78 1 0.59 0.6 Total 23.9 1194 4.57 7.89 21.5 Drummond Aggregate Extraction Area Schools 28,000 L/ha/d 1.25 0.41 1.5 0.41 1.0	Brazeau Aggregate Extra	ction Area							
Low-Medium Density Residential 280 l/c/d 10.27 360 1126 3.65 3.21 3.39 15.1 High Density Residential 280 l/c/d 0.28 38 68 0.22 3.63 0.09 0.9 Roads - 7.95 1 2.62 2.6 Park Block - 1.48 1 0.49 0.5 Pond Blocks - 1.78 1 0.59 0.6 Total 23.9 1194 4.57 7.89 21.5 Drummond Aggregate Extraction Area Schools 28,000 L/ha/d 1.25 0.41 1.5 0.41 1.0	Schools	28,000 L/ha/d	1.47			0.48	1.5	0.49	1.2
Residential 280 l/c/d 10.27 360 1126 3.65 3.21 3.39 15.1 High Density Residential 280 l/c/d 0.28 38 68 0.22 3.63 0.09 0.9 Roads - 7.95 1 2.62 2.6 Park Block - 1.48 1 0.49 0.5 Pond Blocks - 1.78 1 0.59 0.6 Total 23.9 1194 4.57 7.89 21.5 Drummond Aggregate Extraction Area Schools 28,000 L/ha/d 1.25 0.41 1.5 0.41 1.0	Commercial	28,000 L/ha/d	0.67			0.22	1.5	0.22	0.6
Roads - 7.95 1 2.62 2.6 Park Block - 1.48 1 0.49 0.5 Pond Blocks - 1.78 1 0.59 0.6 Total 23.9 1194 4.57 7.89 21.5 Drummond Aggregate Extraction Area Schools 28,000 L/ha/d 1.25 0.41 1.5 0.41 1.0	,	280 l/c/d	10.27	360	1126	3.65	3.21	3.39	15.1
Park Block - 1.48 1 0.49 0.5 Pond Blocks - 1.78 1 0.59 0.6 Total 23.9 1194 4.57 7.89 21.5 Drummond Aggregate Extraction Area Schools 28,000 L/ha/d 1.25 0.41 1.5 0.41 1.0	High Density Residential	280 l/c/d	0.28	38	68	0.22	3.63	0.09	0.9
Pond Blocks - 1.78 1 0.59 0.6 Total 23.9 1194 4.57 7.89 21.5 Drummond Aggregate Extraction Area Schools 28,000 L/ha/d 1.25 0.41 1.5 0.41 1.0	Roads	1	7.95				1	2.62	2.6
Total 23.9 1194 4.57 7.89 21.5 Drummond Aggregate Extraction Area Schools 28,000 L/ha/d 1.25 0.41 1.5 0.41 1.0	Park Block	1	1.48				1	0.49	0.5
Drummond Aggregate Extraction Area Schools 28,000 L/ha/d 1.25 0.41 1.5 0.41 1.0	Pond Blocks	-	1.78				1	0.59	0.6
Schools 28,000 L/ha/d 1.25 0.41 1.5 0.41 1.0	<u>Total</u>		23.9		1194	4.57		7.89	21.5
	Drummond Aggregate Ex	traction Area							
Commercial 28 000 L/ha/d 0.57 0.18 1.5 0.19 0.5	Schools	28,000 L/ha/d	1.25			0.41	1.5	0.41	1.0
20,000 Enard 0.07	Commercial	28,000 L/ha/d	0.57			0.18	1.5	0.19	0.5
Low-Medium Density Residential 280 l/c/d 8.72 288 900 2.92 3.26 2.88 12.4		280 l/c/d	8.72	288	900	2.92	3.26	2.88	12.4
High Density Residential 280 l/c/d 0.24 32 58 0.19 3.64 0.08 0.8	High Density Residential	280 l/c/d	0.24	32	58	0.19	3.64	0.08	0.8
Roads - 6.75 1 2.23 2.2	Roads	-	6.75				1	2.23	2.2

May 4, 2018 Revision: 2

Land Use	Flow	Area (ha)	Units	Pop.	Average Flow (L/S)	Peak Factor	Infiltrati on	Total Flows (L/s)
Park Blocks	-	1.26				1	0.42	0.4
Pond Blocks	-	1.51				1	0.50	0.5
<u>Total</u>		20.3		958	3.70		6.71	17.8
Barrhaven South Urban I	Expansion Area	a Totals						
<u>Total</u>		121.0		5746	26.22		40.0	106.7

Based on the land uses presented on the Demonstration Plan (Figure 4-2), the BSUEA would generate a peak wastewater flow of approximately 106.7 L/s.


6.3 Wastewater Collection System Strategy

6.3.1 Proposed Sewer System Layout and Sizing

A trunk sanitary sewer system layout was developed based on the ROW corridors identified on the BSUEA Demonstration Plan for the purposes of demonstrating the feasibility of providing wastewater servicing for the BSUEA lands, refer to the Key Servicing Plans. Proposed trunk sanitary sewers were sized based on the aforementioned design criteria and the drainage areas depicted on the Master Sanitary Drainage Area Drawing MSAN, refer to the BSUEA Sanitary Sewer Design Sheet (Appendix J) for detailed calculations. Final configuration and sizing of the wastewater collection system will be confirmed at detailed design of each subdivision stage. At such time, refinements may be implemented.

The proposed BSUEA trunk sanitary sewers will discharge to existing/planned sanitary sewers at the following six (6) locations, as shown on Figure 6-2:

- 1. The Future Collector Road
- 2. New Greenbank Road
- 3. Flameflower Street
- 4. Alex Polowin Avenue
- 5. Kilbirnie Drive
- 6. Greenbank Road

It is noted that the residual capacity in the River Mist Road trunk sanitary sewer has in fact increased with the addition of the BSUEA peak flows. This is the result of adding a relatively small tributary area while reducing the average daily residential flow from 350 L/cap to 280 L/cap combined with diverting some existing drainage areas, located in Quinn's Pointe, away from the outlet.

Table 6-4: Residual Capacity Comparison in the BSC Trunk Sanitary Sewers

Existing Trunk Sanitary Sewer	Limiting Pipe reach	Current Minimum Residual Capacity	Proposed BSUEA Tributary Lands	Proposed BSUEA Tributary Area	Revised Minimum Residual Capacity with inclusion of BSUEA Peak Flow
Cambrian Road	MH 13A to MH15A	51.4 L/s	Drummond, Brazeau, Mattamy West (Residential only)	48 ha	52.9 L/s 《
River Mist Road	MH 102A to MH 17A	14.4 L/s	Mattamy East, Mattamy West (Commercial only), Northwest corner of Minto	12 ha	30.5 L/s
River Mist Road	MH 1 to MH 163	5.58 L/s	Minto	5 ha	4.63 L/s
Greenbank Road	MH 45 to MH 435A	295.4 L/s	Minto	60 ha	283.2 L/s

With the addition of the BSUEA lands, a total theoretical peak wastewater flow of 403.7 L/s was calculated at the most downstream maintenance hole in the BSC (MH 501A on Greenbank Road), as indicated in the Sanitary Sewer Design Sheet in Appendix J. This calculated theoretical peak flow is less than the 590 L/s allocated for all of the BSC in Stantec's City-wide 2013 Wastewater Collection System Assessment. In this assessment, Stantec created a hydrodynamic model of trunk sanitary sewers (450 mm in diameter and greater) which demonstrated that the existing downstream trunk system could accommodate the theoretical flow of 590 L/s generated by the BSC with no risk of surcharging or basement flooding. Consequently, Stantec concluded that system upgrades were not required to accommodate the anticipated growth in the BSC. Since the Stantec assessment considered a peak flow that was 186 L/s greater than that calculated for the BSC and the BSUEA combined, it is understood that the existing trunk sanitary sewers located downstream of the BSC can accommodate the additional flows generated by the BSUEA.

BSUEA SANITARY SEWER DESIGN SHEET

CITY OF OTTAWA

Designed by: A.T Checked by: H.M

MINTO COMMUNITIES INC. JLR NO. 26610

J.L.Richards ENGINEERS - ARCHITECTS - PLANNERS

				DESIGN F	ARAMETERS											M	IINTO		INITIES II	NC.											Checked by	y: H . M			
Single Famil Semi-Detached/Townhouse (row		pers/unit pers/unit		q =		280 0.330		L/cap/day L/s/ha										JLR NO.	26610												Data : Eshe				
Apt Units		pers/unit		Inst. =		28000		L/ha/day																							Date : Febr	uary 2018			
Manning's Coeff. N	0.013				g Factor* =	1.0/1.5																													
				*ICI Peakir	ng Factor = 1.5 if			0%, 1.0 if ICI	in contributin	ng area is <2	0%																								
	1		-		NUMBER OF I		ESIDENTIAL	СОМО	ATIVE	PEAK I NG	POPUL.	CC	MMERCIA CUMM.	L INST.	INS	TITUTIONAL CUMM.		(Infilitration) PEAK EXTR.	PLUG	PEAK DES.	ı	SE	WER DATA		RESIDU/	L I	UPS'	TREAM		DOWNST	REAM		li e	CI Peaking F	actor
STREET	FROM	H.#	SING.	MULT.	APT.	AREA	POPUL.	POPUL.	AREA	FACTOR	FLOW	AREA	AREA	FLOW	AREA	AREA	FLOW	FLOW	FLOW	FLOW		SLOPE %		VEL. LENG		Center	Obvert	Invert	Cover	Center	Obvert	Invert	Cover		P.F
MINTO LANDS WITHIN BSUEA (OUTLET						ha	peop.	peop.	ha		l/s	ha	ha	l/s	ha	ha	l/s	l/s	l/s	l/s	mm	%	/s	m/s m	I/s	Line				Line				TOTAL	
Kilbirnie Dr.	572	511		10		0.64	27	27	0.64	3.69	0.32		0.00	0.00	2.43	2.43	1.18	1.01		2.52	200	2.87	57.9	1.79 136.		107.40	102.79	102.59	4.61	103.50	98.88	98.68	4.62	0.79	1.50
Kilbirnie Dr.	511	512		27		0.82	73	100	1.46	3.59	1.16	0.00	0.00	0.00	0.00	2.43	0.79	1.28		3.24	200	0.80	30.6	0.94 97.5	27.37	103.50	98.88	98.68	4.62	103.40	98.10	97.90	5.30	0.00	1.00
Street 1	514	512	21			1.07	71	71	1.07	3.62	0.84	0.00	0.00	0.00	0.00	0.00	0.00	0.35		1.19	200	0.74	29.4	0.91 212.	6 28.24	105.60	99.67	99.47	5.93	103.40	98.10	97.90	5.30	0.00	1.00
Kilbirnie Dr.	512	10 (ex.)					0	171	2.53	3.54	1.96	0.00	0.00	0.00	0.00	2.43	0.79	1.64		4.39	200	1.60	43.3	1.33 74.4	1 38.89	103.40	98.10	97.90	5.30	101.18	96.91	96.71	4.27	0.00	1.00
MINTO LANDS WITHIN BSUEA (OUTLET	S TO EXISTING	GREENBANK)																																
Street 1	514	516	14	104		3.49	328	328	3.49	3.45	3.67		0.00	0.00			0.00	1.15		4.82				0.62 127.						105.40	102.25		3.15		1.00
Street 1	516	554	20	54		3.18	214	542	6.67	3.36	5.91		0.00	0.00		0.00	0.00	2.20		8.11	200	0.35	20.2	0.62 170.	0 12.13	105.40	102.25	102.05	3.15	105.20	101.65	101.45	3.55	0.00	1.00
Street 3	500	502	25	70	115	7.16	481	481	7.16	3.39	5.28		0.00	0.00		0.00	0.00	2.36	0.10	7.74	200	0.35	20.2	0.62 174.	2 12.50	108.10	105.03	104.827	3.07	107.90	104.42	104.218	3.48	0.00	1.00
Street 3	502	551	8	44		1.55	146	627	8.71	3.34	6.78		0.00	0.00		0.00	0.00	2.87		9.76	200	0.89	32.3	1.00 168.	0 22.52	107.90	104.42	104.218	3.48	105.90	102.92	102.717	2.98	0.00	1.00
East-West Collector	550	551	20			1.98	68	68	1.98	3.63	0.80		0.00	0.00		0.00	0.00	0.65		1.45	200	0.35	20.2	0.62 161.	4 18.79	105.50	103.20	103.00	2.30	105.90	102.63	102.43	3.27	0.00	1.00
East-West Collector East-West Collector	551 552	552 554	22 12	20		1.49 3.36	75 95	770 865	12.18 15.54	3.30 3.27	8.23 9.17		0.00	0.00			0.00	4.02 5.13		12.34 14.40	200 200	0.35 0.35		0.62 113 0.62 178		105.90 106.15			3.27 3.91	106.15 105.20	102.24 101.61	102.03 101.41			1.00
	554	556																																	
East-West Collector			11	34		1.81	129	1536		3.14	15.62		0.00	0.00			0.00	7.93		23.65				0.70 295						103.55	100.64	100.38			1.00
Street 4	517	564	20	35		2.07	163	163	2.07	3.54	1.87		0.00	0.00			0.00	0.68		2.55	200	0.58		0.81 282.			102.10		3.20	103.65	100.45	100.25	3.20		1.00
Alex Polowin Ave. Alex Polowin Ave.	13 (ex.) 14 (ex.)	14 (ex.) 90 (ex.)	12 13			0.54 0.65	41 44	41 85	0.54 1.19	3.67 3.61	0.49		0.00	0.00		0.00	0.00	0.18 0.39		0.67 1.39	200 200	0.67 0.94	33.2	0.86 74.5 1.02 112.		105.00		101.80	3.00	105.52 103.96	102.05 101.95	101.85 101.75		0.00	1.00
Russet Terrace River Mist Rd.	90 (ex.) 5 (ex.)	5 (ex.) 564	6 8			0.54	20 27	105 132	1.73 2.20	3.59 3.57	1.22		0.00	0.00			0.00	0.57		1.79 2.25	200 200	0.35		0.62 108 0.62 74.3				100.75 100.10		103.80 103.80	100.57 100.04	100.37 99.84	3.23 3.76		1.00
70707 11007 110	0 (0/4)	001																																	
River Mist Rd.	564	556	7	9		0.64	48	343	4.91	3.44	3.83		0.00	0.00		0.00	0.00	1.62		5.55	200	0.35	20.2	0.62 94.5	14.70	103.65	100.04	99.84	3.61	103.55	99.71	99.51	3.84	0.00	1.00
East-West Collector	556	557					0	1879	28.93	3.09	18.79		0.00	0.00	2.20		0.71	10.27		29.87	250	1.39		1.44 44.2				99.46	3.84	102.78	99.09	98.84	3.69		1.00
East-West Collector	557	558	6			1.12	20	1899	30.05	3.08	18.97		0.00	0.00	2.86		1.64	11.59	4.00	36.30	250	1.39		1.44 158.			99.09	98.84	3.69	99.90	96.89	96.64	3.01		1.00
Street 5	560	558	50			3.09	170	170	3.09	3.54	1.95		0.00	0.00		0.00	0.00	1.02		2.97	200	0.35	20.2	0.62 142.	7 17.27	98.80	95.32	95.12	3.48	99.90	94.82	94.62	5.08	0.00	1.00
East-West Collector	558	119				5.74	0	2069	38.88	3.06	20.51		0.00	0.00		5.06	1.64	14.50		40.75	375	0.18	77.6	0.68 150.	1 36.85	99.90	93.71	93.32	6.20	99.55	93.43	93.05	6.12	0.00	1.00
Street 6	521 522	522 523	24	33		2.17	171 0	171 171	2.17 2.17	3.54 3.54	1.96 1.96		0.00	0.00			0.00	0.72		2.68 2.68	200 200	1.50 0.80		1.29 37.0 0.94 73.2			102.18 101.62		3.00 2.88	104.50 105.11	101.62 101.04	101.42 100.83	2.88 4.07		1.00
	523	524		71		1.95	192	363	4.12	3.43	4.04		0.00	0.00		0.00	0.00	1.36		5.40	200	0.35	20.2	0.62 164.	0 14.84	105.11	101.04	100.83	4.07	103.50	100.46	100.26	3.04	0.00	1.00
Adjacent to Barnsdale Rd	520	524	41			2.06	139	139	2.06	3.56	1.60		0.00	0.00		0.00	0.00	0.68		2.28	300	0.20	45.1	0.62 146.	5 42.83	102.80	98.40	98.10	4.40	103.50	98.11	97.80	5.39	0.00	1.00
Adjacent to Barnsdale Rd Adjacent to Barnsdale Rd	524 578	578 532		87		3,63	0 235	502 737	6.18 9.81	3.38	5.50 7.89		0.00	0.00			0.00	2.04		7.54 11.13	300 300	0.20		0.62 126. 0.62 173.			98.11 97.85	97.80 97.55	5.39 7.07	104.92 103.80	97.85 97.51	97.55 97.20	7.07 6.29		1.00
Adjacent to Barnsdale Rd Adjacent to Barnsdale Rd Adjacent to Barnsdale Rd	532 534	534 536	50 55	26		3.29	240 187	977 1164	13.10 16.06	3.25 3.21	10.27		0.00	0.00		0.00	0.00	4.32 5.30		14.60 17.39		0.20	45.1	0.62 127 0.81 173	5 30.52	103.80	97.51	97.20	6.29 7.50	103.00	97.25 95.15		5.75 6.41	0.00	1.00
Easement (Barnsdale to E-W Collector)	536	538	55			2.90	0	1164	16.06	3.21	12.09		0.00	0.00		0.00	0.00	5.30		17.39 17.39	450	0.20	133.0	0.81 309.	3 115.63	101.56	95.15	94.70	6.41	99.75	94.53	94.08	5.22	0.00	1.00
	538	119					U	1164	16.06	3.21	12.09		0.00	0.00			0.00	5.30					173.8						5.95	99.55	93.43		6.12		1.00
Ex. Greenbank Rd.	119	120 (ex.)					0	3233	54.94	2.93	30.72		0.00	0.00		5.06	1.64	19.80		56.26	600		248.1	0.85 168.	6 191.83	99.55	93.43	92.82	6.12		93.17	92.57		0.00	1.00
MATTAMY LANDS EAST OUTLETS TO D			DATS			T		I				I	T	I		-	П					T	Т		Т	Т	Т	T	T	I	I			\equiv	
	900	158 (ex.)	31	51		3.10	243	243	3.10	3.49	2.75	0.00	0.00	0.00		0.00	0.00	1.02		3.77	200	0.35	20.2	0.62 280.	0 16.47	106.62	97.23	97.02	9.39	101.03	97.13	97.13	3.90	0.00	1.00
	910	153 (ex.)		28		0.71	76	76	0.71	3.62	0.89	0.00	0.00	0.00		0.00	0.00	0.23		1.12	200	0.35	20.2	0.62 130.	0 19.12	104.00	96.70	96.49	7.30	100.35	96.65	96.65	3.70	0.00	1.00
	920 930	930 217 (ex.)	36			1.81	122	122 122	1.81 1.81	3.57 3.57	1.42		2.13	1.04 1.04			0.00	1.30 1.30		3.75 3.75	200 200	0.35 0.35		0.62 165 0.62 40.0			97.42 97.36	97.21 97.16	8.65 4.34	101.70 101.70	97.36 97.24	97.16 97.04	4.34 4.46		1.50 1.50
BRAZEAU AGGREGATE EXTRACTION A			ENBANK I	ROAD*																															
	585	575	179	236	37	21 77	1309	1309	21.77	3.18	13.48	0.68	0.68	0.22	1,45	1.45	0.47	7.89		22.06	250	0.24	30.4	0.60 431.	0 8.34		98.56	98.30			97.52	97.27		0.09	1.00
	575	555	.,,,	230		21,17	0	1309	21.77	0.10	0.00	0.00	0.68	0.22	1.40		0.47	7.89		8.58			30.4				97.52				96.98	96.72			1.00
	565	555					0	0	0.00		0.00		0.00	0.00		0.00	0.00	0.00		0.00	250	0.24	30.4	0.60 431	0 30.39		98.01	97.76			96.98	96.72		0.00	1.00
	555	545					0	1309			0.00		0.68	0.22			0.47	7.89		8.58				0.60 133.			96.98	96.72	L	405.55	96.66	96.40	0.55		1.00
	545 900	900 MA 14					0	1309	21.77		0.00		0.68	0.22		1.45	0.47	7.89		8.58			30.4 30.4	0.60 72.0 0.60 160			96.66 96.48		7.65	103.00	96.48 96.10	96.23 95.85	6.52	0.03	1.00
MATTAMY LANDS WEST OUTLETS TO M	IEW GREENBA	NK RD	<u> </u>				<u> </u>														<u> </u>					<u> </u>				<u> </u>					
Realigned Greenbank Rd.	900	MA 14	8	102		3,89	303	1612	25.66	3.13	16.32	0.00	0.68	0.22	0.00		0.47	9.17		26.18	250	1.30	70.7	1.40 60.0		104.31	96.88	96,63	7.43	103.00	96.10	95,85	6.90		1.00
	MA 14 MA13	MA13 MH57A				0.00	0	1612	25.66 25.66	3.13 3.13	16.32 16.32		0.68 0.68	0.22 0.22	0.00	1.45	0.47 0.47	9.17 9.17		26.18 26.18	250	1.30	70.7 100.2	1.40 295.		103.00		95.85	6.90	95.20 93.60	92.27	92.02 89.15			1.00
DRUMMOND AGGREGATE EXTRACTION			SED COLL	LECTOR P	D.*							1																							
	593	592											\neg	\neg		\neg	\neg				200	0.35	20.2	0.62 300.	0 20,24	1	99,19	98,99			98,14	97.94		=	1.00
	592	590																						0.62 220			98.14				97.37			#	1.00
	591	590																			200	0.35	20.2	0.62 300.	0 20.24		98.42	98,22			97,37	97.17		=	1,00
	590	MA 11	151	226	31	18.48	1179	1179	18.48	3.20	12.24	0.58	0.58	0.19	0.40		0.13	6.42		18.98				0.82 80.0			97.37	97.07		100.00	97.09	96.79			1.00
	MA 11 MA 10	MA 10 MH57A					0	1179 1179	18.48 18.48		12,24 12,24		0.58 0.58	0.19 0.19		0.40 0.40		6.42 6.42		18.85 18.85			87.4 117.3						5.00 2.12	93,50 93,60		91.08 89.15			1.00
	1	1	1	1 1		1	0	1								1					1		1	1	1		1	1	1	1	1	1			1

CITY OF OTTAWA MINTO COMMUNITIES INC.

JLR NO. 26610

roposed by Others

Existing

BARRHAVEN SOUTH SANITARY SEWER DESIGN SHEET

TOTAL PEAK FLOW TO MH57A = 112.80 L/s (USING CUMULATIVE AREAS,

Checked by:HM

POPULATIONS AND PEAK FACTORS)

				PROPOSED	AND BSUEA DESIG	N PARAMETERS
Single Family	3.4	pers/unit		q =	280	L/cap/day
Semi-Detached/Townhouse (row)	2.7	pers/unit		I =	0.330	L/s/ha
Apt Units	1.8	pers/unit	Inst./0	Comm. =	28000	L/ha/day
Manning's Coeff. N =	0.013		Comr	merial PF*=	1.0/1.5	
			*1.5 it	f ICI in contrib	uting area is >20%,	1.0 if ICI in contributing

area is <20% Sources: Half Moon Bay South Subdivision - Phase 4 - Excluding Arterials- Sanitary sewer design sheet prepared by Stantec (2015) Quinn's Pointe - Excluding Arterials-Sanitary sewer design sheet prepared by J.L Richards (2015) Barrhaven South Master Servicing Study Addendum - Sanitary sewer design sheet prepared Stantec (2014)

Date: February 2018 RESIDENTIAL INSTITUTIONAL GREEN/UNUSED COMMERCIAL NUMBER OF UNITS AREA POPULATION CUMULATIVE EWER DATA RESIDUAL PEAKING CUMM. CUMM. PEAK EXTR M.H.# STREET SOURCE SING. APT. TOTAL TOTAL POPUL AREA FACTOR FLOW AREA AREA FLOW AREA AREA FLOW AREA AREA FLOW FLOW FLOW LENGTH CAP. ICI/ MULT. FROM TO TOTAL Factor peop. IAN ROAD OUTLET VIA FUTURE REALI and Aggregate Extraction Are MA11 MA10 14.23 1523 2702 32.71 2.98 26.13 0.58 0.19 2.80 4.03 1.31 2,50 13,14 40,77 87.4 1.20 482,10 46.60 0.12 1.00 3.11
 0.68
 0.22
 1.45
 1.45
 0.47

 0.68
 0.33
 7.45
 8.90
 4.33
 MA14 368 25 66 1603 1693 25.66 9 17 26.9 70.7 1 40 350 00 43.80 250 1.30 70.7 1.40 295.00 31.12 0.24 1.50 2206 30.45 MA14 MA13 513 21.75 0.00 13.21 New Greenbank Road 4.79 39.61 Cambrian Road Stantec 458 7913 91.25 3.44 4.70 1.52 0.00 20.15 44.09 500 0.25 197.0 0.97 216.50 77.01 0.19 MH13A 6.21 5.61 634 870 8547 97.46 9417 103.07 2.62 2.58 72.51 78.87 4.70 4.70 1.52 1.52 0.00 20.15 20.15 6.53 6.53 17.52 17.52 46.14 48.00 126.70 134.92 176.2 0.87 165.20 49.46 231.0 0.79 202.00 96.04 0.18 0.17 1.00 600 0.13 Cambrian Road Stantec MH15A MH17A JINN'S POINTE OUTLET TO MH163 RIVER MIST RD. 1.01 1.28 3.69 3.59 1.46 30.6 0.94 0.00 0.00 3.63 0.62 512 0.82 100 2.43 1.18 0.00 0.80 97.50 1.50 Kilbirnie Drive Future Collector Road 514 512 1.07 1.07 3.63 0.83 0.00 0.00 0.00 0.00 0.00 0.35 1.19 200 0.74 29.4 0.91 212.10 28.25 0.00 1.00 3.54 1.96 0.00 0.00 0.00 1.64 0.49 1.50 512 0.00 1.18 4.78 1.60 43.3 74.00 38.50 Kilbirnie Drive EX10 River Mist Road 3.67 0.00 0.18 0.67 200 0.33 EX101 EX100 0.57 0.24 0.00 1.00 3.65 0.00 0.00 0.81 14 0.00 Boddington Street 0.38 **Boddington Street** 0.74 River Mist Road EX4 EX3 0.53 41 2.24 3.55 1.81 0.00 0.00 0.00 0.00 0.00 2.54 19.4 0.60 74.95 0.00 1.00 200 0.32 34.8 1.07 76.25 0.00 0.00 0.20 1.00 Clonfadda Terrace EX111 EX110 13 0.62 44 0.62 3.66 0.00 0.00 0.00 200 1.04 0.00 3.60 0.42 51 95 0.00 0.83 31.2 0.96 108.32 29.67 1.00 EX110 EX3 0.00 Clonfadda Terrace 20.2 0.62 100.22 3.48 River Mist Road River Mist Road EX2 EX1 0.55 300 0.00 0.00 0.00 0.00 0.00 45.5 1.40 112.11 40.65 0.00 200 0.15 0.74 3.58 0.00 0.00 200 2.14 50.1 1.54 107.77 0.00 0.63 Alex Polowin Avenue EX11 EX10 0.71 3.53 2.03 0.00 0.00 0.00 0.00 2,66 1.65 44.0 1.36 103.97 0.00 0.57 3.42 4.28 0.00 0.00 2.46 7.92 19.3 0.60 1.50 Kilbirnie Drive EX10 EX20 386 5.01 2.43 1.18 0.00 200 0.32 118.98 11.42 0.33 Block 251 (School) EX20 0.00 0.00 3.80 0.00 0.00 0.00 2.83 1.38 0.00 0.93 2.31 0.32 19.3 0.60 16.99 1.00 4.71 3.57 10.84 0.54 427 5.55 3.41 0.00 0.00 0.00 19.4 0.60 106.01 0.49 1.50 EX20 EX1 5.26 2.56 200 0.32 8.52 Kilbirnie Drive 0.08 727 10.00 3.31 7.79 0.00 0.00 5.26 2.56 0.00 5.04 15.39 200 0.32 19.3 0.60 39.41 0.34 1,50 River Mist Road EX1 MH163 3.96 1163 TO MH17A RIVERMIST ROAD OUTLETS VIA CAMBRIAN ROA MH163 EX162 EX162 EX161 727 10.08 3.31 3.31 0.00 0.00 0.00 0.00 5.26 2.56 5.26 2.56 5.06 5.13
 15.41
 250
 0.85
 57.2
 1.13
 36.30
 41.78
 0.34
 1.50

 15.48
 250
 1.15
 66.5
 1.31
 44.40
 51.05
 0.34
 1.50
 10.28 0.00 0.20 River Mist Road 0.00 3.80 0.00 0.00 0.00 0.00 0.00 0.91 0.30 15.9 0.87 15.59 0.00 1.00 0.00 0.91 0.30 150 1.00 14.00 EX161A EX161 River Mist Road 10.47 0.00 0.00 15.84 River Mist Road EX161 151 0.19 727 3.31 7.79 5.26 2.56 0.91 5.49 250 1.15 66.5 1.31 57.70 50.69 0.32 1.50 EX151A 0.00 3.80 0.00 0.00 0.00 0.00 0.91 2.26 1.50 River Mist Road 6.44 119.4 1.64 17.90 EX151 0.00 3.31 7.79 8.03 6.44 18.13 44.40 0.41 River Mist Road 101.23 Buffalograss Cres. Stantec (2015) EX159 EX158 3.63 0.77 0.00 0.00 0.00 0.00 0.00 0.18 0.95 200 0.40 21.6 0.67 95.50 0.00 1.00 2.75 3.49 0.00 0.00 0.00 1.02 3.77 0.00 1.00 Mattamy Lands East 900 EX158 3.10 243 243 3.10 0.00 0.00 200 0.35 20.2 0.62 280.00 16.46 0.00 EX158 EX153 0 0.13 308 3.79 3.46 3.45 0.00 0.00 0.00 0.00 1,25 4.70 200 0.40 21.6 0.67 45.00 16.94 0.00 1.00 Alex Polowin ave. 0.71 0.00 0.89 0.00 0.23 Mattamy Lands East EX153 EX152 384 4.62 4.26 0.00 0.00 1.52 5.79 0.80 30.6 0.94 24.82 0.00 Alex Polowin ave. Alex Polowin ave. 0.00 384 4.62 3.42 4.26 0.00 0.00 0.00 0.00 0.00 1.52 5.79 0.80 30.6 0.94 85.70 0.00 Rue Des Soldats Riendeau St. EX165 EX150 0.67 58 0.67 3.64 0.68 0.00 0.00 0.00 0.00 0.00 0.22 0.91 1.50 41.9 1.29 101.20 41.00 0.00 1.00 5.08 0.00 6.93 0.00 Rue Des Soldats Riendeau St. Stantec (2015) EX150 EX146 0.30 462 5.59 3.39 0.00 0.00 0.00 0.00 1.84 200 0.80 30.6 0.94 72.00 23.68 1.00

CITY OF OTTAWA MINTO COMMUNITIES INC.

JLR NO. 26610

BARRHAVEN SOUTH SANITARY SEWER DESIGN SHEET

Designed by: AT Checked by:HM

PROPOSED AND BSUEA DESIGN PARAMETERS Single Family Semi-Detached/Townhouse (row) 3.4 pers/unit 280 L/cap/day 2.7 **|** = 0.330 L/s/ha pers/unit Apt Units pers/unit nst./Comm. = 28000 L/ha/day Commerial PF*= Manning's Coeff. N = 0.013 1.0/1.5

Sources:

*1.5 if ICI in contributing area is >20%, 1.0 if ICI in contributing area is <20%

Half Moon Bay South Subdivision - Phase 4 - Excluding Arterials - Sanitary sewer design sheet prepared by Stantec (2015)

Quinn's Pointe - Excluding Arterials-Sanitary sewer design sheet prepared by J.L Richards (2015)

Barrhaven South Master Servicing Study Addendum - Sanitary sewer design sheet prepared Stantec (2014)

Legend Proposed Proposed by Others Existing

Existing

Date: February 2018

# PROFESS 1									RE	SIDENTIAL				С	OMMERCI	AL	INS	STITUTION	AL	GREEN	UNUSED								Date. 1 e	bruary 2018		
Seer-ty			1		NUN	IBER OF	UNITS	AREA	POPULATION	I CUMI	JLATIVE	PEAKING	POPUL.		CUMM.	INST.		CUMM.	INST.		CUMM.	PEAK EXTR.	PLUG	PEAK DES.			SEWER D	ATA		RESIDUAL		ICI*
Part	STREET	SOURCE	IVI.	п. #	SING.	MULT.	APT.	TOTAL	TOTAL	POPUL.	AREA	FACTOR	FLOW	AREA	AREA	FLOW	AREA	AREA	FLOW	AREA	AREA	FLOW	FLOW	FLOW	DIA.	SLOPE	CAPAC	VEL.	LENGTH	CAP.	ICI/	Peaking
Part			FROM	то				ha	peop.	peop.	ha		l/s	ha	ha	l/s	ha	ha	Vs	ha	ha	l/s	I/s	l/s	mm	%	l/s	m/s	m	l/s	TOTAL	Factor
Professional Pro	Remora Way		EX147	EX146	20			0.94	68	68	0.94	3.63	0.80		0.00	0.00		0.00	0.00		0.00	0.31		1.11	200	1.00	34.2	1.06	78.20	33.11	0.00	1.00
Professional Pro	B - B - Odd - B' - d - O		EV440	EVAAE				0.00	7	507	0.04	0.07	F 00		0.00	0.00		0.00	0.00		0.00	0.40		0.04	000	0.50	04.0	0.75	40.00	40.45	0.00	1.00
March Content No. 10		1							7																							
Second Research Second Res					9																											
Birth Birt																																
Birth Birt																																
Resident Res	River Mist Road		MH142	EX139	3			0.26	10	1305	18.04	3.18	13.44		0.00	0.00		8.03	3.90		0.91	8.90		26.25	300	0.40	63.8	0.87	74.80	37.56	0.30	1.50
Resident Res			EV440	EV400	7			0.40	24	24	0.40	2.70	0.00		0.00	0.00		0.00	0.00		0.00	0.40		0.40	200	0.05	07.0	0.05	67.70	07.47	0.00	1.00
Mind Marked Marke			EX140	EX139	- '			0.40	24	24	0.40	3.70	0.29		0.00	0.00		0.00	0.00		0.00	0.13		0.42	200	0.65	27.0	0.85	67.70	21.11	0.00	1.00
Mind Marked Marke	River Mist Road)/	EX139	EX136	10			0.47	34	1363	18.91	3.17	13.99		0.00	0.00		8.03	3.90		0.91	9.19		27.08	300	0.41	64.6	0.89	64.70	37.51	0.29	1.50
Hear Main Read																																
Mattery Level East			EX137	EX136	15			0.84	51	51	0.84	3.65	0.60		0.00	0.00		0.00	0.00		0.00	0.28		0.88	200	0.65	27.6	0.85	67.80	26.71	0.00	1.00
Mattery Level East																																
Matterly Lange Fast 498 55/75	River Mist Road		EX136	MH126	4			0.29	14	1428	20.04	3.16	14.60		0.00	0.00		8.03	3.90		0.91	9.56		28.07	300	0.41	64.6	0.89	78.90	36.52	0.28	1.50
Matterly Lange Fast 498 55/75	Matterny Lands Fact		020	030	36			1.03	122	122	1 93	3.50	1./1	2.13	2.12	1.04		0.00	0.00		0.00	1 21		3.76	200	0.35	20.2	0.62	165.00	15.50	0.54	1.50
Fired Horse St. Color Co					30			1.00						2.13																		
Flamelbuser St. EX215 EX214 15 10 0.34 41 177 2.41 3.53 2.23 2.33 1.04 0.00 0.00 0.00 1.50 4.66 200 4.66 2.00 4.64 1.69 73.50 4.343 0.47 1.50 Flamelbuser St. EX216 EX227 15 10 0.35 41 2.23 2.76 3.51 2.48 2.13 1.04 0.00 0.00 0.00 0.00 1.50 1.50 2.00 4.64 1.69 73.50 43.63 0.47 1.50 Parameter St. EX226 EX221 1 0 0.05 1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00								0.05								1.04																
Flamelbuser St. EX215 EX214 15 10 0.34 41 177 2.41 3.53 2.23 2.33 1.04 0.00 0.00 0.00 1.50 4.66 200 4.66 2.00 4.64 1.69 73.50 4.343 0.47 1.50 Flamelbuser St. EX216 EX227 15 10 0.35 41 2.23 2.76 3.51 2.48 2.13 1.04 0.00 0.00 0.00 0.00 1.50 1.50 2.00 4.64 1.69 73.50 43.63 0.47 1.50 Parameter St. EX226 EX221 1 0 0.05 1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00																																
Flamethewer St. Excit Exci	Flameflower St.	Stantec (2015)	EX216	EX215		5		0.19	14	14	0.19	3.72	0.17		0.00	0.00		0.00	0.00		0.00	0.06		0.23	200	0.65	27.6	0.85	45.20	27.35	0.00	1.00
Flamethewer St. Excit Exci	51 4 0		EVOLE	E)/044		45		0.04		477	0.44	0.50	0.00		0.40	4.04		0.00	0.00		0.00	4.50		4.50	000	0.00	40.4	1.10	70.00	40.00	0.47	4.50
Descriptions: EX291 EX292 EX2																																
Example Exam	i jamerjower St.		LAZ14	LAZ03		10		0.55	41	210	2.70	3.31	2.40		2.10	1.04		0.00	0.00		0.00	1.01		3.13	200	2.00	40.4	1.43	75.50	45.20	0.44	1.50
Flamethower St. EX203 EX201	Devario Cres.		EX204	EX203				0.54	62	62	0.54	3.64	0.73		0.00	0.00		0.00	0.00	3.10	3.10	1.20		1.93	200	1.50	41.9	1.29	36.50	39.97	0.00	1.00
Flamethower St. EX203 EX201																																
Durdoneld Dr. EX202 EX201 4 0.53 14 14 0.53 3.72 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.34 200 3.25 61.7 1.90 50.00 61.34 0.00 1.00 0.00	Devario Cres.		EX208	EX203				2.50	187	187	2.50	3.53	2.14		0.00	0.00		0.00	0.00		0.00	0.83		2.96	200	0.40	21.6	0.67	120.00	18.68	0.00	1.00
Durdoneld Dr. EX202 EX201 4 0.53 14 14 0.53 3.72 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.34 200 3.25 61.7 1.90 50.00 61.34 0.00 1.00 0.00	Flowedlesses Ct		EV202	EV204				0.12	0	467	E 00	2.20	F 10		0.10	0.60		0.00	0.00		2.40	2.60		0.50	200	0.40	24.6	0.67	70.70	10.14	0.10	1.00
Dundonald Dr. EX201 EX202 EX120 St. St	Fjamerjower St.		EX203	EX201				0.12	U	467	5.92	3.38	5.13		2.13	0.09		0.00	0.00		3.10	3.00		9.50	200	0.40	21.0	0.67	73.70	12.14	0.19	1.00
Dundonald Dr. EX129A EX129 18 0.75 61 552 7.41 3.36 6.01 2.13 0.69 0.00	Dundonald Dr.		EX202	EX201	4			0.53	14	14	0.53	3.72	0.17		0.00	0.00		0.00	0.00		0.00	0.17		0.34	200	3.25	61.7	1.90	50.00	61.34	0.00	1.00
Dundonald Dr. EX129A EX129 18 0.75 61 552 7.41 3.36 6.01 2.13 0.69 0.00																																
Dundonald Dr. Exizer Exiz																																
Lamprey St. Extract E																																
Dundonald Dr. EX128 EX127 MH126 13 0.66 44 749 10.18 3.30 8.01 2.13 0.69 0.00 0.00 3.50 5.00 13.26 20 0.50 24.2 0.75 49.80 10.93 0.14 1.00 0.00 0.00 0.00 0.00 0.00 0.00	Dundonald Dr.		EX129	EX128	11			0.58	3/	589	7.99	3.35	6.39		2.13	0.69		0.00	0.00		3.10	4.36		11.45	200	0.40	21.6	0.67	91.70	10.19	0.16	1.00
Dundonald Dr. EX128 EX127 MH126 13 0.66 44 749 10.18 3.30 8.01 2.13 0.69 0.00 0.00 3.50 5.00 13.26 20 0.50 24.2 0.75 49.80 10.93 0.14 1.00 0.00 0.00 0.00 0.00 0.00 0.00	Lamprey St		FX130	FX128				1.16	85	85	1.16	3.61	0.99		0.00	0.00		0.00	0.00	0.40	0.40	0.51		1.51	200	0.50	24.2	0.75	96.50	22.69	0.00	1.00
Dundonald Dr. EX127 MH126 13 0.66 44 749 10.18 3.30 8.01 2.13 0.69 0.00	ap. 0, 0.		2,1,20																1,							1,						
Dundonald Dr. EX23 MH126																																
School EX123A EX123	Dundonald Dr.		EX127	MH126	13			0.66	44	749	10.18	3.30	8.01		2.13	0.69		0.00	0.00		3.50	5.22		13.92	200	0.32	19.4	0.60	97.80	5.43	0.13	1.00
School EX123A EX123	Dundanald Dr		EVaa	MUIOC				1.06	71	71	1.06	2.62	0.93		0.00	0.00		0.00	0.00		0.00	0.25		1.10	200	1.47	41.5	1 20	90.30	40.20	0.00	1.00
River Mist. Dr. MH126 EX123 5 0.29 14 2262 31.57 3.03 22.25 2.13 1.04 8.03 3.90 4.41 15.23 42.41 375 0.45 122.7 1.08 122.00 80.29 0.22 1.50 River Mist. Rd. EX123 MH112 7 0.34 19 2281 31.91 3.03 22.42 2.13 1.04 10.09 4.90 4.41 16.02 44.38 375 0.42 118.5 1.04 90.30 74.16 0.25 1.50	Dundonald Dr.		EA23	IVIT120				1.00	/1	/1	1.00	3.03	0.83		0.00	0.00		0.00	0.00		0.00	0.35		1.10	200	1.47	41.5	1.20	09.30	40.30	0.00	1.00
River Mist. Dr. MH126 EX123 5 0.29 14 2262 31.57 3.03 22.25 2.13 1.04 8.03 3.90 4.41 15.23 42.41 375 0.45 122.7 1.08 122.00 80.29 0.22 1.50 River Mist. Rd. EX123 MH112 7 0.34 19 2281 31.91 3.03 22.42 2.13 1.04 10.09 4.90 4.41 16.02 44.38 375 0.42 118.5 1.04 90.30 74.16 0.25 1.50	School		EX123A	EX123				0.00	0	0	0.00	3.80	0.00		0.00	0.00	2.06	2.06	1.00		0.00	0.68		1.68	250	0.89	58.5	1.16	15.80	56.85	1.00	1.50
River Mist. Rd. EX123 MH112 7 0.34 19 2281 31.91 3.03 22.42 2.13 1.04 10.09 4.90 4.41 16.02 44.38 375 0.42 118.5 1.04 90.30 74.16 0.25 1.50																																
	River Mist. Dr.		MH126	EX123		5		0.29	14	2262	31.57	3.03	22.25		2.13	1.04		8.03	3.90		4.41	15.23		42.41	375	0.45	122.7	1.08	122.00	80.29	0.22	1.50
	D: 15:15:		EV400	101445		-		0.04	40	0004	04.04	0.00	00.40		0.40	101		40.00	4.00			10.00		11.00	0.75	0.46	440.5	1.04	00.00	74.46	0.05	4.50
White Artric Ave	River Mist. Rd.		EX123	MH112		/		0.34	19	2281	31.91	3.03	22.42		2.13	1.04		10.09	4.90		4.41	16.02		44.38	3/5	0.42	118.5	1.04	90.30	/4.16	0.25	1.50
	White Arctic Ave.		EX111	MH112				3.39	378	378	3.39	3.43	4.20		0.00	0.00		0.00	0.00		0.00	1.12		5.32	200	0.32	19.4	0.60	74.80	14.04	0.00	1.00

CITY OF OTTAWA
MINTO COMMUNITIES INC.
JLR NO. 26610

BARRHAVEN SOUTH SANITARY SEWER DESIGN SHEET

Designed by: AT Checked by:HM

PROPOSED AND BSUEA DESIGN PARAMETERS Single Family 3.4 pers/unit 280 L/cap/day 2.7 I = 0.330 L/s/ha pers/unit Apt Units pers/unit nst./Comm. = 28000 L/ha/day Manning's Coeff. N = 0.013 Commerial PF*= 1.0/1.5

Sources:

*1.5 if ICI in contributing area is >20%, 1.0 if ICI in contributing area is <20%

Half Moon Bay South Subdivision - Phase 4 - Excluding Arterials- Sanitary sewer design sheet prepared by Stantec (2015)

Quinn's Pointe - Excluding Arterials-Sanitary sewer design sheet prepared by J.L Richards (2015)

Barrhaven South Master Servicing Study Addendum - Sanitary sewer design sheet prepared Stantec (2014)

Legend	Proposed
	Proposed by Others
	Existing

Property									DI	ESIDENTIAL				_	OMMERCI	Δι	INS	STITUTION	ΔΙ	GREEN/UNUSED	٦							Date: Fe	bruary 2018		
Series (1964) (1			ı		NU	MBER OF	UNITS	AREA				PEAKING	POPUL		_		INC	_				PLUG	PEAK DES.	I		SEWER DA	TA		RESIDUAL		ICI*
Mariy Mari	STREET	SOURCE	M.I	H.#										AREA			AREA							DIA.				LENGTH		ICI/	Peaking
**************************************			FROM	TO	7																									TOTAL	Factor

Marche Ma	River Mist. Rd.		MH112	EX102				0.14	0	2659	35.44	2.99	25.76		2.13	1.04		10.09	4.90	4.41	17.18		48.88	375	0.31	101.8	0.89	68.00	52.96	0.23	1.50
Marche Ma	Dutchmans Way		FX103	FX102	18			0.80	61	61	0.80	3.64	0.72		0.00	0.00		0.00	0.00	0.00	0.26		0.98	200	2.02	48.6	1.50	120.00	47.65	0.00	1.00
Part	Batoninane vvay		271100	EXTIGE	,,,			0.00			0.00	0.0	3.1.2		0.00	0.00		0.00	0.00	0.00	0.20		0.00			10.0	1,00	120.00		0.00	
March Marc	Song Sparrow St.		EX104	EX102				3.83	386	386	3.83	3.42	4.28		0.00	0.00		0.00	0.00	0.00	1.26		5.55	200	0.44	22.7	0.70	114.60	17.15	0.00	1.00
March Marc	Diver Mist Deed	Ott (0045)	EV400	EV404				0.07	0	2400	40.44	2.04	20.62		0.40	4.04		40.00	4.00	1.44	40.72		F4 20	275	0.00	00.5	0.00	24.00	44.00	0.00	4.50
Column C	River Mist Road																													0.22	1.50 1.50
March Marc		Startes (2011)																												0.19	1.00
Column C									0			2.91																		0.19	1.00
THE PART OF THE PA																														0.19	1.00
See Marke Ma									562																						1.00
The standard of the standard o									0																					0.17	1.00
Service of	River Mist Road	Stantec (2014)																												0.16	1.00
Service of																															
Secretary Secret		-			_																										
Company Comp																	2.96													0.16	1.00
Figure F	Cambrian Rd.	Stantec (2014)	MITZIA	IVITI45				7.04	400	10221	190.40	2.14	144.25		0.03	2.21		33.20	10.76	0.00 20.03	76.04		235.26	750	0.13	419.5	0.92	211.00	104.24	0.15	1.00
Figure F	INTO LANDS WITHIN BSUEA OUT	LETS TO 120 (QUINN'S POINTE) EX	ISTING GREENBA	NK RD.				196.46																							
Figs - Colored State Sta		j ,																													
Figs - Colored State Sta	F.t 0			F.12	1.0	101		0.10	005	005	1 10	0.45	674		0.00	0.00	0.00	0.00	0.00	2.55	4.5		4.00	000	0.05	00.0	0.00	407.00	45.05	0.00	4.00
Part Californ 1																														0.00	1.00
Fig. Color 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			310	334	20	34		3.10	214	343	0.07	3.30	5.50		0.00	0.00		0.00	0.00	0.00	2.20		0.10	200	0.55	20.2	0.02	170.50	12.00	0.00	1.00
Fire Children 50 50 50 5 5 6 4 4 1, 16 48 67 17 34 6.72 5 70 34 6.72																															
Conference Section S							115															0.10								0.00	1.00
Endinticidation 101 103 103 103 103 103 104 105 105 105 105 105 105 105 105 105 105	Future Collector		502	551	8	44		1,55	146	627	8.71	3.34	6.78		0.00	0.00	0.00	0.00	0.00	0.00	2.87		9.76	200	0.88	32.1	0.99	171.30	20.22	0.00	1.00
Endinticidation 101 103 103 103 103 103 104 105 105 105 105 105 105 105 105 105 105	Fact West Collector		550	551	20			1.08	68	68	1 08	3 63	0.80		0.00	0.00	0.00	0.00	0.00	0.00	0.65		1.45	200	0.35	20.2	0.62	99.90	18 73	0.00	1.00
Seather Collector 552 54 72 72 1.00 1	Last-West Collector		330	331	20			1.50	- 00	00	1.30	3.03	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.03		1.45	200	0.55	20.2	0.02	33.30	10.75	0.00	1.00
Face-Ward California	East-West Collector		551	552	22	0		1.49	75	770	12.18	3.30	8.23		0.00	0.00	0.00	0.00	0.00	0.00	4.02		12.34	200	0.35	20.2	0.62	175.00	7.90	0.00	1.00
Frame Calebook	East-West Collector		552	554	12	20		3.36	95	865	15.54	3.27	9.17		0.00	0.00	0.00	0.00	0.00	0.00	5.13		14.40	200	0.35	20.2	0.62	178.30	3.37	0.00	1.00
Frame Calebook	Fast West Callaster		EE 1	EEC	11	24		1.01	120	1510	24.02	2.44	15.60		0.00	0.00	0.00	0.00	0.00	0.00	7.02		00.74	250	0.22	25.6	0.70	205.60	0.15	0.00	1.00
Also Policies And Mar. Also Policies And Ass. Ass. Ass. Also Policies And Ass.	East-West Collector		554	556	- ''	34		1.01	129	1343	24.02	3.14	15.00		0.00	0.00	0.00	0.00	0.00	0.00	7.93		23.71	250	0.55	33.0	0.70	295.60	9.10	0.00	1.00
Hels-Rown-No 14 50 13 0 155 44 55 179 351 309 300	Future Collector		517	564	20	35		2.07	163	163	2.07	3.54	1.87		0.00	0.00	0.00	0.00	0.00	0.00	0.68		2.55	200	0.59	26.3	0.81	280.00	23.71	0.00	1.00
Hels-Rown-No 14 50 13 0 155 44 55 179 351 309 300																															
Ales Problems Ave. Part Mark No. 90 5						_																								0.00	1.00
Rever Mind Roads																														0.00	1.00
Service Flood			5						0																					0.00	1.00
East-West Collector	River Mist Road		563		8			0.47	27			3.55	1.72							0.00	0.73		2.44	200						0.00	1.00
East-West Collector					1 _																				1						
East-West Collector	River Mist Road		564	556	7	9		0.64	48	360	4.91	3.43	4.01		0.00	0.00		0.00	0.00	0.00	1.62		5.63	200	0.35	20.2	0.62	95.00	14.62	0.00	1.00
East-West Collector	East-West Collector		556	557						1903	28.93	3.08	19.01		0.00	0.00	2.20	2.20	0.71	0.00	10.27		30.09	300	1.39	118.9	1.63	44.30	84.53	0.07	1.00
East-West Collector					6			1,12	20													4.00								0.14	1.00
East-West Collector																															
Future Collector	Future Collector		560	558	50	0		3.09	170	170	3.09	3.54	1.95		0.00	0.00		0.00	0.00	0.00	1.02		2.97	200	0.35	20.2	0.62	150.00	17.27	0.00	1.00
Future Collector	Fast-West Collector		558	119				5.74	0	2093	38.88	3.06	20.73		0.00	0.00		5.06	1 64	0.00	14.50	1	40.97	450	0.13	107.2	0.65	150.00	63.75	0.12	1.00
Future Collector S24 S23 S24 41 S26 S29 S24 S26 S			555	1	1				Ť		1	2.00		l	1					5.50				1.00	1	1			22.70		
Future Cellector	Future Collector				24	33		2.17	171			3.54	1.96								0.72		2.68	200	1.26	38.4	1.18	230.00	35.74	0.00	1.00
Future Collector					1	74		1.05	400					.							1			1	1	1	ļ			0.00	4.00
Future Collector 524 578 0 0 0.00 0 502 6.18 3.38 5.50 0.00 0.00 0.00 0.00 0.00 0.00 0.0			523	524	1	/1		1.95	192	363	4.12			 	0.00	0.00		0.00	0.00	0.00	1	 		1	1	1		1		0.00	1.00
Future Collector 524 578 0 0 0.00 0 502 6.18 3.38 5.50 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Future Collector		520	524	41	1	1	2.06	139	139	2.06	3,56	1.60	 	0.00	0.00		0.00	0.00	0.00	0.68		2.28	200	0.26	17.4	0.54	72.20	15.16	0.00	1.00
Future Collector 578 532 87 3.63 235 737 9.81 3.31 7.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0																															
Future Collector 532 534 50 26 3.29 240 977 13.10 3.25 10.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00																														0.00	1.00
Future Collector 534 536 55 2.96 187 1164 16.06 3.21 12.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00					50		-							ļ																0.00	1.00 1.00
Future Collector 536 538 0.00 0.00 0 1164 16.06 3.21 12.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00						20								 																0.00	1.00
Greenbank Rd. 119 EX120 119 EX120 1 0.02 0 3257 54.94 2.93 30.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00					1 00									l			0.00													0.00	1.00
QUINN'S POINTE OUTLETS TO MH205A EXISTING GREENBANK RD. 54,94 3257 Greenbank Road EX120 EX121 0.22 0 3257 55.16 2.93 30.92 0.00 0.00 0.00 5.06 1.64 0.00 19.87 56.53 600 0.16 259.0 0.89 58.09 202.51 0.08					0				0																					0.00	1.00
QUINN'S POINTE OUTLETS TO MH205A EXISTING GREENBANK RD. 54,94 3257 Greenbank Road EX120 EX121 0.22 0 3257 55.16 2.93 30.92 0.00 0.00 0.00 5.06 1.64 0.00 19.87 56.53 600 0.16 259.0 0.89 58.09 202.51 0.08					1						<u> </u>		1								1					1					
Greenbank Road EX120 EX121 0.22 0 3257 55.16 2.93 30.92 0.00 0.00 5.06 1.64 0.00 19.87 56.53 600 0.16 259.0 0.89 58.09 202.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Greenbank Rd.		119	EX120	1	1			0	3257	54.94	2.93	30.92	-	0.00	0.00		5.06	1.64	0.00	19.80		56.46	600	0.15	248.1	0.85	168.66	18 <i>7</i> .53	0.08	1.00
Greenbank Road EX120 EX121 0.22 0 3257 55.16 2.93 30.92 0.00 0.00 5.06 1.64 0.00 19.87 56.53 600 0.16 259.0 0.89 58.09 202.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	UINN'S POINTE OUTLETS TO MH2	205A EXISTING GREENBANK PD	_		+			54 94	3257	7				Ь					_		1			_							
	S O . Optil 2 SOTEET O TO MITE	DATE OF THE PARTY OF							0201																						
Greenbank Road EX121 EX122 0.28 0 3640 61.99 2.90 34.16 0.00 0.00 0.00 6.63 2.15 0.00 22.64 63.05 600 0.33 369.2 1.27 75.27 306.17 0.10	Greenbank Road		EX120	EX121				0.22	0	3257	55.16	2.93	30.92		0.00	0.00	0.00	5.06	1.64	0.00	19.87	4.10	56.53	600	0.16	259.0	0.89	58.09	202.51	0.08	1.00
GENERAL EALEZ U.20 U 3040 U1.93 2.90 34,10 U.00 U.00 U.00 U.00 U.00 U.00 U.00 U.	Groonbank Boad		EV494	EV422				0.30	0	3640	61.00	2.00	24.16		0.00	0.00	0.00	6.62	2.15	0.00	22.64	4.40	63.05	600	0.22	360.3	1.27	7F 27	306.17	0.10	1.00
	Greenbank Road		EXT2T	EX122				0.28	U	3640	01.99	2.90	34.10		0.00	0.00	0.00	0.03	2.15	0.00	22.04	4, 10	63.05	600	0.33	309.2	1.27	15.21	300.17	0.10	1.00

CITY OF OTTAWA
MINTO COMMUNITIES INC.

JLR NO. 26610 BARRHAVEN SOUTH SANITARY SEWER DESIGN SHEET

Designed by: AT Checked by:HM

			PROPOSED AI	ND BSUEA DESIGN	PARAMETERS
Single Family	3.4	pers/unit	q =	280	L/cap/day
Semi-Detached/Townhouse (row)	2.7	pers/unit	I=	0.330	L/s/ha
Apt Units	1.8	pers/unit	Inst./Comm. =	28000	L/ha/day
Manning's Coeff. N =	0.013		Commerial PF*=	1.0/1.5	

Sources:

Half Moon Bay South Subdivision - Phase 4 - Excluding Arterials- Sanitary sewer design sheet prepared by Stantec (2015)

Quinn's Pointe - Excluding Arterials-Sanitary sewer design sheet prepared by Stantec (2015)

Barrhaven South Master Servicing Study Addendum - Sanitary sewer design sheet prepared Stantec (2014)

Proposed by Others Existing

Date: February 2018

				RESIDENTIAL NUMBER OF UNITS AREA POPULATION CUMULATIVE PEAKING POPUL							(COMMERC	AL	IN	STITUTION	AL	GREEN	/UNUSED													
		м	H. #	NUN	MBER OF	UNITS	AREA	POPULATION	CUMU	JLATIVE	PEAKING	POPUL.		CUMM.	INST.		CUMM.	INST.		CUMM.	PEAK EXTR.	PLUG	PEAK DES.			SEWER DA	TA		RESIDUAL		iCl*
STREET	SOURCE	W.	n. #	SING.	MULT.	APT.	TOTAL	TOTAL	POPUL.	AREA	FACTOR	FLOW	AREA	AREA	FLOW	AREA	AREA	FLOW	AREA	AREA	FLOW	FLOW	FLOW	DIA.	SLOPE	CAPAC.	VEL.	LENGTH	CAP.	ICI/	Peaking
		FROM	TO				ha	peop.	peop.	ha		V s	ha	ha	l/s	ha	ha	Vs	ha	ha	l/s	l/s	l/s	mm	%	l/s	m/s	m	l/s	TOTAL	Factor
Greenbank Road		EX122	EX123R				0.45	0	3640	62.44	2.90	34.16		0.00	0.00	0.00	6.63	2.15		0.00	22.79	4.10	63.20	600	0.21	291.1	1.00	121.02	227.90	0.10	1.00
Easement		EX44	EX123R				0.00	0	259	2.62	3.48	2.93		0.00	0.00	0.00	0.00	0.00		0.00	0.86		3.79	300	0.35	59.9	0.82	19.00	56.12	0.00	1.00
Greenbank Road		EX123R	MH205A				0.43	0	3899	65.49	2.87	36.32		0.00	0.00	0.00	6.63	2.15		0.00	23.80	4.10	66.37	600	0.25	319.2	1.09	120.80	252.85	0.09	1.00
Kilbirnie Drive	JLR (2016)	EX24	MH205A		3		0.11	8	224	2.15	3.50	2.54		0.00	0.00	0.00	0.00	0.00		0.00	0.71		3.25	200	0.71	28.8	0.89	28.70	25.59	0.00	1.00
Existing Greenbank Road		MH205A	EX98A					0	4123	67.64	2.86	38.18		0.00	0.00	0.00	6.63	2.15		0.00	24.51	4.10	73.94	600	0.25	320.3	1.10	126.00	246.34	0.09	1.00
EXISTING GREENBANK RD, FROM M							6.15	484																							
Existing Greenbank Road	IBI	EX98A	MH99A				0.00	0	4123	67.64	2.86	38.18		0.00	0.00		6.63	2.15		0.00	24.51	4.10	73.94	600	0.25	320.3		125.00	246.34	0.09	1.00
Existing Greenbank Road	IBI	MH99A	MH100A				0.00	0	4123	67.64	2.86	38.18		0.00	0.00		6.63	2.15		0.00	24.51	4.10	73.94	600	0.25	320.3		108.00	246.34	0.09	1.00
Existing Greenbank Road	IBI	MH100A	MH204A				0.00	0	4123	67.64	2.86	38.18		0.00	0.00		6.63	2.15		0.00	24.51	4.10	73.94	600	0.25	320.3		105.00	246.34	0.09	1.00
Existing Greenbank Road	IBI	MH204A	MH206A				0.00	0	4123	67.64	2.86	38.18		0.00	0.00		6.63	2.15		0.00	24.51	4.10	73.94	600	0.25	320.3		103.00	246.34	0.09	1.00
Existing Greenbank Road	IBI	MH206A	MH97A				0.00	0	4123	67.64	2.86	38.18		0.00	0.00		6.63	2.15		0.00	24.51	4.10	73.94	600	0.25	320.3		125.00	246.34	0.09	1.00
Existing Greenbank Road	IBI	MH97A	MH96A				19.95	1631	5754	87.59	2.75	51.29		0.00	0.00		6.63	2.15	0.81	0.81	31.36	4.10	93.90	600	0.30	350.8		98.00	256.95	0.07	1.00
Existing Greenbank Road	IBI	MH96A	MH95A				0.00	0	5754	87.59	2.75	51.29		0.00	0.00		6.63	2.15		0.81	31.36	4.10	93.90	600	0.30	350.8		129.00	256.95	0.07	1.00
Existing Greenbank Road	IBI	MH95A	MH201A				0.00	0	5754	87.59	2.75	51.29		0.00	0.00		6.63	2.15		0.81	31.36	4.10	93.90	600	0.30	350.8		123.00	256.95	0.07	1.00
Existing Greenbank Road	IBI	MH201A	MH201B				12.13	787	6541	99.72	2.71	57.40		0.00	0.00		6.63	2.15		0.81	35.36	4.10	104.01	600	0.30	350.8		124.00	246.83	0.06	1.00
Existing Greenbank Road	IBI	MH201B	MH200A				0.00	0	6541 6541	99.72 99.72	2.71 2.71	57.40		0.00	0.00		6.63	2.15		0.81 0.81	35.36	4.10	104.01	600 600	0.30	350.8		68.00	246.83 348.93	0.06	1.00 1.00
Existing Greenbank Road Existing Greenbank Road	IBI	MH200A	MH200C		-		0.00	0	6541	99.72	2.71	57.40 57.40		0.00	0.00		6.63	2.15		0.81	35.36 35.36	4.10	104.01 104.01	600	0.50	452.9 221.9		48.00 26.00	117,88	0.06	
Existing Greenbank Road	IBI	MH200C	MH45				0.00	U	0041	99.72	2./ 1	57.40		0.00	0.00		6.63	2.15		0.81	35.36	4.10	104.01	600	0.12	221.9		26.00	117.00	0.06	1.00
Existing Greenbank Road	Stantec (2014)	MH45	MH435A				5.12	548	23310	301,30	2,27	171,38		6.83	2.21		39.83	12.91	0.00	29,44	124.54	4.10	320.14	900	0.10	597.2		296.00	277.08	0.12	1.00
North	Stantec (2014)	IVII I=S	IVII I433A				0.12	340	20010	301.50	2.21	171.00		0.00	2.21		33.00	12.51	0.00	25.77	124.04	7.10	320.14	300	0.10	001.2		230.00	277.00	0.12	1.00
TVOT III		MA9	MA8				22,23	2378	2378	22.23	3.02	23,28	0.00	0.00	0.00	2.45	2.45	0.79	9.54	9.54	11,29		35.37	450	0.11	98.4		507.50	63.03	0.07	1.00
		MA8	MA7				2.88	308	2686	25.11	2.99	25.99	0.00	0.00	0.00	0.00	2.45	0.79	0.78	10.32	12.50		39.29	450	0.11	98.4		317.10	59.11	0.06	1.00
		MA7	MA6				18.50	1979	4665	43.61	2.82	42.61	0.00	0.00	0.00	0.00	2.45	0.79	0.00	10.32	18.61		62.01	450	0.11	98.4		573.10	36.39	0.04	1.00
Realigned Greenbank Road		MA6	MA5				21.68	2320	6985	65.29	2.69	60.80	0.00	0.00	0.00	0.00	2.45	0.79	0.00	10.32	25.76		87.36	525	0.10	140.5		473.90	53.14	0.03	1.00
Realigned Greenbank Road		MA5	MA4				9.53	1020	8005	74.82	2.64	68.49	0.00	0.00	0.00	0.00	2.45	0.79	0.00	10.32	28.90		98.19	525	0.10	140.5		439.40	42.31	0.03	1.00
Realigned Greenbank Road		MA4	MH521A				8.07	863	8868	82.89	2.61	74.87	0.00	0.00	0.00	0.00	2.45	0.79	2.42	12.74	32.37		108.03	525	0.10	140.5		530.70	32.47	0.02	1.00
		MH521A	MH522A				3.80	231	9099	86.69	2.60	76.56	0.00	0.00	0.00	0.00	2.45	0.79	0.02	12.76	33.63		110,98	600	0.10	201.5		49.90	90.52	0.02	1.00
	<u> </u>	MH522A	MH435A				0.00	0	9099	86.69	2.60	76.56	0.00	0.00	0.00	0.00	2.45	0.79	0.00	12.76	33.63		110.98	600	0.10	201.5		11.10	90.52	0.02	1.00
		MH435A	MH501A				0.00	0	32409	387.99	2.16	226.39	0.00	6.83	2.21	0.00	42.28	13.70	0.00	42.20	158.17	4.10	409.57	900	0.10	597.0		13.30	187.43	0.10	1.00

Sanitary design calculation for the proposed HMB phase 8 site by DSEL (2020)

SANITARY SEWER CALCULATION SHEET

Ottawa

Manning's n=0.013 RESIDENTIAL AREA AND POPULATION COMM INSTIT INFILTRATION FLOW AREA AREA AREA FLOW AREA AREA M.H. M.H. Singles AREA POP. FACT. FLOW FLOW (FULL) Q act/Q cap (FULL) (l/s) (ha) (ha) (l/s) (l/s) (m/s) (m/s) Drummond Future Road 305A 0.70 1.08 8 0 0.06 0.62 0.33 0.89 0.80 67 0.00 0.89 0.29 200 To Expansion Road, Pipe 305A - 306A 0.89 67 0.00 0.00 0.89 Future Residential Ctrl 3A 109A 1.90 162 3.54 1.86 1.90 0.63 2.49 11.0 200 0.35 19.40 0.13 0.62 0.42 1.90 162 0.00 0.00 0.00 0.00 1.90 162 1.90 Focality Crescent 107A 0.14 0.14 0.00 0.00 0.00 0.14 0.14 0.05 200 2.45 51.34 108A 0.17 14 0.31 23 3.70 0.28 0.00 0.00 0.00 0.00 0.17 0.31 0.10 0.38 50.5 200 0.35 19.40 To Haiku Street, Pipe 110A - 1100A 23 0.00 0.31 0.00 0.31 0.00 0.00 0.00 0.45 0.45 0.15 200 0.70 27.44 0.45 0.45 49 0.00 0.43 16 16 0.88 93 3.60 1.09 0.00 0.00 0.00 0.43 0.88 0.29 1.38 200 0.35 19.40 0.07 0.62 0.36 114A 0.00 0.00 0.12 1.00 0.33 200 0.35 19.40 114A 5 14 1.18 116 3.58 1.35 0.00 0.00 0.00 0.18 1.18 0.39 1.74 50.5 200 0.40 20.74 0.08 0.66 0.40 115A 0.18 0.00 o Haiku Street, Pipe 115A - 111A 1.18 116 0.00 0.00 1.18 Sturnidae Street
 200
 0.65
 26.44
 0.04
 0.84
 0.39

 200
 0.35
 19.40
 0.08
 0.62
 0.37
 124A 125A 0.60 0.50 0.60 62 3.64 0.73 1.10 103 3.59 1.20 0.00 0.00 0.00 0.60 0.60 0.20 0.00 0.00 0.50 1.10 0.36 0.93 1.56 101.0 125A 126A 18 12 12 0.00 91.0 Contribution From Montology Way, Pipe 123A - 126A 0.81 63 1.91 166 3.54 1.91 0.00 0.00
 0.00
 0.81
 1.91

 0.00
 0.00
 1.91
 0.63
 2.54
 106A 63.0 200 0.35 19.40 0.13 0.62 0.42 Го Elevation Road, Pipe 106A - 116A 1.91 166 0.00 1 91 Ctrl 4A 104A 0.00 0.00 1.72 1.72 0.19 1.72 1.72 0.57 0.75 10.5 200 0.35 19.40 0.04 0.62 0.29 0.00 To Chillerton Drive, Pipe 104A - 106A 0.00 0.00 0.00 1.72 1.72 Canadensis Lane 73.5 90.0 200 2.00 46.38 200 3.00 56.81 0.42 0.00 0.00 0.00 0.42 0.42 0.14 0.63 0.42 0.48 90 3.60 1.05 0.00 0.00 0.48 0.90 0.30 1.35 0.90 To Chillerton Drive, Pipe 103A - 104A 90 0.00 0.90 0.00 0.00 0.90 Surface Lane 200 2.00 46.38 200 0.85 30.24 0.47 0.48 0.95 98 0.00 0.00 0.00 0.48 0.95 0.31 1.46 90.0 To Chillerton Drive, Pipe 102A - 103A 98 0.00 0.95 0.00 0.95 Chillerton Drive 101A 102A 0.14 0.14 0.00 0.00 0.00 0.00 0.14 0.14 0.05 0.16 200 2.60 52.89 Contribution From Surface Lane, Pipe 228A - 102A 0.95 98 1.31 126 0.00 0.95 1.09 0.00 0.22 1.31 0.43 103A 0.22 1.46 0.00 1.89 59.0 1.70 42.76 Contribution From Canadensis Lane, Pipe 230A - 103A 0.90 0.00 0.00 0.00 0.90 2.21 103A 104A 0.46 14 14 2.67 254 3.49 2.87 0.00 0.00 0.00 0.00 0.46 2.67 0.88 3.75 120.0 200 0.50 23.19 0.74 0.54 Contribution From Park, Pipe 4A - 104A 0.00 0.00 0.00 1.72 1.72 4.39 2.90 106A 0.08 2.75 257 0.00 0.00 1.72 0.19 0.08 4.47 1.48 4.56 200 0.35 19.40 0.24 0.62 0.50 To Elevation Road, Pipe 106A - 116A 257 1.72 2.75 0.00 0.00 4.47 DESIGN PARAMETERS Ciavan Communities - Brazeau Phase 1 9300 L/ha/da Average Daily Flow = 280 Industrial Peak Factor = as per MOE Graph I/n/day Comm/Inst Flow = 28000 0.330 L/s/ha LOCATION: I /ha/da 0.3241 I/s/Ha Extraneous Flow = Checked: City of Ottawa ndustrial Flow = 35000 L/ha/da 0.40509 l/s/Ha Minimum Velocity = 0.600 m/s Max Res. Peak Factor = 0.013 (Pvc) 3.80 Manning's n = Commercial/Inst./Park Peak Factor = 1.00 Townhouse coeff= Dwg. Reference: ile Ref nstitutional = Single house coeff= Sanitary Drainage Plan, Dwgs. No. 80-83 27 Jul 2020

SANITARY SEWER CALCULATION SHEET Manning's n=0 013

Manning's n=	0.013																											LULIVI	A.	
	LOCATION							POPULATION						ММ		STIT	PA		C+I+I		INFILTRATIO						PIPE			
	STREET	FROM	то	AREA	UNITS	UNITS	UNITS	POP.		JLATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VELUL V	
		M.H.	M.H.	(ha)		Singles	Townhouse		AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha)	AREA (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
- 10: 1													ļ								ļ									
Epoch Street		220A	221A	0.42	10		10	27	0.42	27	3.69	0.32	-	0.00	-	0.00		0.00	0.00	0.42	0.42	0.14	0.46	77.5	200	0.95	31.97	0.01	1.02	0.35
-		221A	221A 222A	0.42	18		18	49	0.42	76	3.62		1	0.00		0.00		0.00	0.00	0.42	0.42	0.14	1.19	93.0	200	0.95	19.40	0.01	0.62	0.34
		222A	223A	0.52	20		20	54	1.43	130	3.57			0.00	1	0.00		0.00	0.00	0.52	1.43	0.47	1.98	100.5	200	0.35	19.40	0.10	0.62	0.40
To Elevation F	Road, Pipe 223A - 105A	2227	ZZON	0.02	20		20	04	1.43	130	0.07	1.00		0.00		0.00		0.00	0.00	0.02	1.43	0.47	1.50	100.0	200	0.00	10.40	0.10	0.02	0.40
Eminence Str	reet														+															
		215A	216A	0.49	12	12		41	0.49	41	3.67	0.49		0.00		0.00		0.00	0.00	0.49	0.49	0.16	0.65	75.5	200	0.85	30.24	0.02	0.96	0.39
		216A	217A	0.72	17	17		58	1.21	99	3.60			0.00		0.00		0.00	0.00	0.72	1.21	0.40	1.55	113.5	200	0.35	19.40	0.08	0.62	0.37
		217A	219A	0.45	12	12		41	1.66	140	3.56			0.00		0.00		0.00	0.00	0.45	1.66	0.55	2.16	83.5	200	0.35	19.40	0.11	0.62	0.41
To Elevation F	Road, Pipe 219A - 223A								1.66	140				0.00		0.00		0.00			1.66									
Elevation Roa	ad	0404	0404	0.46	<u> </u>	_			0.40		0.7:	0.00	<u> </u>	0.00	<u> </u>	0.00		0.00	0.00	0.46	0.46	0.04	0.40	04.6	200	0.05	50.00	0.00	4.70	0.05
0 17 5 -		218A	219A	0.13	2	2		7	0.13	7	3.74	0.08	 	0.00	<u> </u>	0.00		0.00	0.00	0.13	0.13	0.04	0.13	24.0	200	2.65	53.39	0.00	1.70	0.35
Contribution F	rom Eminence Street, P			0.00	4	4	-	4.4	1.66	140	251	1.05	 	0.00	+	0.00		0.00	0.00	1.66	1.79	0.07	2.50	50.0	200	0.05	20.04	0.00	0.00	0.50
Contribution	rom Epoch Street, Pipe	219A	223A	0.23	4	4	-	14	2.02 1.43	161 130	3.54	1.85	!	0.00	 	0.00		0.00	0.00	0.23 1.43	2.02 3.45	0.67	2.52	59.0	200	0.85	30.24	0.08	0.96	0.58
Contribution	Torri Epocri Street, Pipe .	223A	105A	0.42	6	6		21	3.87	312	3.46	3.50	1	0.00	1	0.00		0.00	0.00	0.42	3.45	1.28	4.77	82.5	200	0.70	27.44	0.17	0.87	0.65
		105A	105A	0.42	7	7		24	4.29	336	3.45			0.00		0.00		0.00	0.00	0.42	4.29	1.42	5.17	94.0	200	1.30	37.40	0.17	1.19	0.83
Contribution F	rom Chillerton Drive, Pip			0.42		+		24	2.75	257	3.43	3.73		0.00		0.00		1.72	0.00	4.47	8.76	1.42	3.17	34.0	200	1.50	37.40	0.14	1.10	0.00
	rom Sturnidae Street, Pi								1.91	166				0.00		0.00		0.00		1.91	10.67									
Containation	Tom otaniado otroot, i i	120/1 101	1	0.35	11		11	30	9.30	789				0.00		0.00		1.72		0.35	11.02									
		106A	116A	0.35	8	8		28	9.65	817	3.28	8.69		0.00		0.00		1.72	0.19	0.35	11.37	3.75	12.63	118.0	200	0.35	19.40	0.65	0.62	0.66
To Haiku Stree	et, Pipe 116A - 1160A								9.65	817				0.00		0.00		1.72			11.37									
				1.57				118	1.57	118				0.00		0.00		0.00		1.57	1.57									
		309A	310A	5.67				595	7.24	713	3.31	7.65		0.00		0.00		0.00	0.00	5.67	7.24	2.39	10.04	15.0	250	0.25	29.73	0.34	0.61	0.55
To Expansion	Road, Pipe 310A - 1311	IA				-			7.24	713				0.00		0.00		0.00		-	7.24				-					
Drummond F	uture Road												1								1				1					
2.4		301A	302A	1.27				95	1.27	95	3.60	1.11		0.00		0.00		0.00	0.00	1.27	1.27	0.42	1.53	94.5	200	0.35	19.40	0.08	0.62	0.36
To Expansion	Road, Pipe 302A - 1180								1.27	95				0.00		0.00		0.00			1.27									
,																														
Drummond F	uture Road																													
				0.22				23	0.22	23				0.00		0.00	1.45	1.45		1.67	1.67									
		1303A	3031A	0.61				46	0.83	69	3.63	0.81		0.00		0.00		1.45	0.16	0.61	2.28	0.75	1.72	108.0	200	0.35	19.40	0.09	0.62	0.38
To Expansion	Road, Pipe 3031A - 302	2A							0.83	69				0.00		0.00		1.45			2.28									
Evnancian Ba		-	-		1								1								1									
Expansion Ro	Jau			0.16				17	0.16	17	-			0.00	 	0.00		0.00		0.16	0.16						ļ			
-		303A	3031A	0.19				14	0.16	31	3.68	0.37	1	0.00		0.00		0.00	0.00	0.19	0.16	0.12	0.49	65.0	200	0.65	26.44	0.02	0.84	0.32
Contribution F	I rom Drummond Future F			0.18		+		14	0.83	69	5.00	0.31	 	0.00	1	0.00		1.45	0.00	2.28	2.63	0.12	0.48	00.0	200	0.00	20.44	0.02	0.04	0.32
		3031A	302A	0.22		1		17	1.40	117	3.58	1.36	†	0.00	1	0.00		1.45	0.16	0.22	2.85	0.94	2.45	59.0	200	0.35	19.40	0.13	0.62	0.42
Contribution F	rom Expansion Road, Pi			T		1			1.27	95	1	1	1	0.00	1	0.00		0.00	1	1.27	4.12		1	1	1		1			
	, ,	302A	1180A	0.20				15	2.87	227	3.50	2.58		0.00		0.00		1.45	0.16	0.20	4.32	1.43	4.16	49.5	200	0.35	19.40	0.21	0.62	0.49
	_	1180A	118A						2.87	227	3.50	2.58	<u> </u>	0.00		0.00		1.45	0.16	0.00	4.32	1.43	4.16	11.0	200	0.35	19.40	0.21	0.62	0.49
To Haiku Stree	et, Pipe 118A - 117A								2.87	227				0.00		0.00		1.45			4.32									
<u> </u>			ļ	1		1			1			1	1		1					1	1	1		1	1		1			1
-		L	l .	J	DESIGN	PARAME	TERS	l	l	l	1	1	J	1	1	Designe	d·	l .	<u> </u>	1	PROJEC	I.	<u> </u>	1	1	<u> </u>	I	l		
Park Flow =		9300	L/ha/da	0.10764	DEGIGIN	I/s/Ha	LILINO									Designed	u .				I INOUEC			Ciava	n Commi	ınities - E	Brazeau P	hase 1		
Average Daily F	Flow =	280	I/p/day	207		,			Industrial	Peak Facto	r = as ne	r MOE Gra	aph							SLM	1									
Comm/Inst Flov		28000	L/ha/da	0.3241		I/s/Ha			Extraneou		po		L/s/ha			Checked	d:				LOCATIO	N:								
Industrial Flow :		35000	L/ha/da	0.40509		I/s/Ha			Minimum			0.600														City of	Ottawa			
Max Res. Peak		3.80	· · ·						Manning's		(Conc)			0.013						ADF	1					.,				
Commercial/Ins	t./Park Peak Factor =	1.00							Townhous			2.7				Dwg. Re					File Ref:				Date:			Sheet		2
Institutional =		0.32	I/s/Ha						Single hor	use coeff=		3.4				Sanitary I	Drainage F	lan, Dwgs	. No. 80-8	3				18-1030		27 Jul 202	0		of	6

SANITARY SEWER CALCULATION SHEET Manning's n=0.013 RESIDENTIAL AREA AND POPULATION COMM INSTIT INFILTRATION STREET UNITS CUMULATIVE ACCU AREA ACCU AREA ACCU. мн M.H. Singles ΔRFΔ POP. FACT. FLOW ΔRFΔ ΔRFΔ ΔRFΔ FLOW ΔRFΔ ΔRFΔ FLOW FLOW (FULL) Q act/Q cap (FULL) (ACT.) (ha) (ha) (l/s) (ha) (ha) (ha) (ha) (ha) (l/s) (l/s) (%) (I/s) (m/s) (m/s) 0.19 20 0.19 20 0.00 0.00 0.19 0.19 303A 0.21 16 0.40 36 3.67 0.43 0.00 0.00 0.00 0.00 0.21 0.40 0.13 0.56 69.5 200 2.45 51.34 0.01 1.63 0.52 ontribution From Drummond Future Road, Pipe 1305A - 305A 67 0.89 0.00 0.00 0.00 0.89 1.29 0.13 1.42 117 0.00 0.00 0.00 0.13 1.42 305A 306A 0.16 12 1.58 129 3.57 1.49 0.00 0.00 0.00 0.00 0.16 1.58 0.52 2.01 53.5 200 0.35 19.40 0.10 0.62 0.40 306A 307A 0.13 1.71 139 3.56 1.60 0.00 0.00 0.00 0.13 1.71 0.56 10.5 200 0.35 19.40 0.11 0.62 0.41 0.00 2.17 307A 308A 0.41 31 2.12 170 3.54 1.95 0.00 0.00 0.00 0.00 0.41 2.12 0.70 2.65 78.0 200 0.35 19.40 0.14 0.62 0.43 308A 3033A 0.39 29 2.51 199 3.52 2.27 0.00 0.00 0.00 0.00 0.39 2.51 0.83 3.10 67.0 200 0.35 19.40 0.16 0.62 0.45 200 0.40 20.74 0.17 0.66 0.49 3033A 310A 0.31 23 2.82 222 3.50 2.52 0.00 0.00 0.00 0.00 0.31 2.82 0.93 3.45 62.0 Contribution From Drummond Future Road, Pipe 309A - 310A 0.00 7 24 713 00 0.00 0.00 7 24 0.00 10.13 940 0.00 0.00 0.07 10.13 310A 11.35 1068 3.23 11.16 0.00 0.00 1.22 11.35 3.75 1311A 1.22 128 0.00 14 91 111.5 0.50 0.61 0.61 0.00 250 0.25 29.73 1311A 1312A 11.35 1068 3.23 11.16 0.00 0.00 0.00 0.00 0.00 11.35 3.75 14.91 111.0 250 0.25 29.73 0.50 0.61 0.61 15.39 1492 3.14 15.21 1312A 1313A 4 04 424 0.00 0.00 0.00 0.00 4.04 15.39 5.08 20 29 108.5 250 0.25 29.73 0.68 0.61 0.65 1313A 405A 15.39 1492 0.00 0.00 0.00 0.00 0.00 15.39 5.08 20.29 89.0 250 0.25 29.73 0.68 0.61 0.65 To Future Greenbank Road, Pipe 405A - 406A 15.39 1492 0.00 15.39 0.00 0.00 Drummond Commercial 1321A 3211A 0.00 7.40 7.40 0.00 0.00 2.40 7.40 7.40 2.44 4.84 11.0 200 0.50 23.19 0.21 0.74 To Haiku Street, Pipe 3211A - 133A 0.00 7.40 0.00 0.00 7.40 Brazeau Commercial Ctrl 1A 132A 0.00 13.83 0.00 0.00 4.48 13.83 13.83 4.56 9.05 15.5 200 0.35 19.40 To Haiku Street, Pipe 132A - 3211A 0.00 0.00 13.83 0.00 13.83 Haiku Street Contribution From Brazeau Commercial, Pipe 1A - 132A 0.00 13.83 0.00 13.83 13.83 132A 3211A 0.00 4.48 0.69 14.52 4.79 0.69 13.83 0.00 200 0.35 19.40 Contribution From Drummond Commercial, Pipe 1321A - 3211A 0.00 7.40 0.00 0.00 7.40 21.92 3211A 133A 0.69 0 21.23 0.00 0.00 6.88 0.00 21.92 7.23 14 11 9.5 200 0.35 19.40 0.73 0.62 0.67 133A 134A 0.16 0.85 21 23 0.00 0.00 6.88 0.16 22.08 7 29 14.17 61.5 200 0.35 19.40 0.73 0.62 0.67 0.00 6.88 0.06 22.14 7.31 134A 135A 0.06 0.91 21.23 0.00 14.19 39.5 200 0.35 19.40 0.73 0.62 To Haiku Street, Pipe 135A - 118A 0.91 21.23 0.00 0.00 22.14 lontology Way 1260A 0.24 0.24 0.00 0.00 0.00 0.24 0.24 0.08 0.65 26.44 0.84 127A 128A 0.13 2 2 0.37 18 3.71 0.22 0.00 0.00 0.00 0.00 0.13 0.37 0.12 0.34 12.5 200 0.35 19.40 0.02 0.62 0.23 128A 129A 0.48 12 12 41 0.85 59 3.64 0.70 0.00 0.00 0.00 0.00 0.48 0.85 0.28 0.98 76.5 200 0.35 19.40 0.05 0.62 0.32 129A 130A 0.60 17 17 58 1.45 117 0.00 0.00 0.00 0.00 0.60 1.45 0.48 1.84 102.0 200 0.35 19.40 0.09 0.62 0.39 130A 131A 1.45 117 3.58 0.00 0.00 0.00 0.00 0.00 1.45 0.48 1.84 7.5 200 0.35 19.40 0.09 0.62 To Montology Way, Pipe 131A - 135A 1.45 117 0.00 0.00 0.00 1.45 Rugosa Street 211A 12 0.00 0.00 0.49 0.49 0.16 0.49 0.49 41 3.67 0.49 0.00 0.00 0.80 29.34 204A 205A 0.74 19 19 65 1.23 106 3.59 1.23 0.00 0.00 0.00 0.00 0.74 1.23 0.41 1.64 200 0.35 19.40 0.08 0.62 0.37 120.0 205A 206A 1.23 106 3.59 1.23 0.00 0.00 0.00 0.00 0.00 1.23 0.41 1.64 13.5 200 0.35 19.40 0.08 0.62 0.37 To Appalachian Circle, Pipe 206A - 207A 106 1.23 0.00 0.00 0.00 1.23 DESIGN PARAMETERS Park Flow = 9300 L/ha/da 0.10764 I/s/Ha Ciavan Communities - Brazeau Phase 1 verage Daily Flow = 280 Industrial Peak Factor = as per MOE Graph 28000 0.3241 LOCATION: Comm/Inst Flow = L/ha/da I/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: Industrial Flow = 35000 L/ha/da 0.40509 l/s/Ha Minimum Velocity = 0.600 m/s City of Ottawa Max Res. Peak Factor = 3.80 Manning's n = 0.013 (Pvc) (Conc) ADF ile Ref: Commercial/Inst./Park Peak Factor = Townhouse coeff= Dwg. Reference: 1.00 2.7

Single house coeff=

34

Sanitary Drainage Plan Dwgs No. 80-83

18-1030

27 Jul 2020

nstitutional =

0.32

I/s/Ha

of 6

SANITARY SEWER CALCULATION SHEET

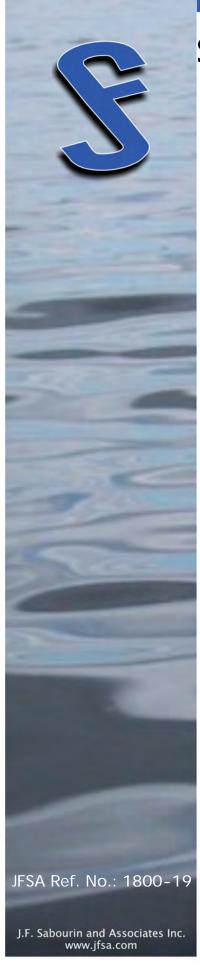
Manning's n=0.013																											llavv	И	
LOCATION					RESIDENT	IAL AREA AND	POPULATION					COI	MM	INS	STIT	PAI	RK	C+I+I		INFILTRATIO	N					PIPE			
STREET	FROM	то	AREA	UNITS	UNITS	UNITS	POP.		LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO		EL.
	M.H.	M.H.	(ha)		Singles	Townhouse		AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha)	AREA (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
1			(III)					(Hu)			(1/3)	(IIII)	(IIII)	(IIII)	(Ha)	(Ha)	(Ha)	(1/3)	(na)	(na)	(1/3)	(1/3)	(111)	(11111)	(70)	(1/3)		(111/3)	(111/3)
Appalachian Circle																													
The state of the s	209A	210A	0.08	1	1		4	0.08	4	3.76	0.05		0.00		0.00		0.00	0.00	0.08	0.08	0.03	0.08	12.5	200	2.95	56.33	0.00	1.79	0.29
	210A	211A	0.20	4	4		14	0.28	18	3.71	0.22		0.00		0.00		0.00	0.00	0.20	0.28	0.09	0.31	50.5	200	3.80	63.94	0.00	2.04	0.52
	211A	212A	0.19	4	4		14	0.47	32	3.68	0.38		0.00		0.00		0.00	0.00	0.19	0.47	0.16	0.54	50.0	200	0.45	22.00	0.02	0.70	0.29
	212A	213A	0.09	1	1		4	0.56	36	3.67	0.43		0.00		0.00		0.00	0.00	0.09	0.56	0.18	0.61	12.5	200	1.55	40.83	0.02	1.30	0.47
	213A	214A	0.53	14	14		48	1.09	84	3.61	0.98		0.00		0.00		0.00	0.00	0.53	1.09	0.36	1.34	86.5	200	2.35	50.28	0.03	1.60	0.68
To Foundation Lane, Pipe 214A - 119A	١							1.09	84				0.00		0.00		0.00			1.09									
	209A	201A	0.58	18	18		62	0.58	62	3.64	0.73		0.00		0.00		0.00	0.00	0.58	0.58	0.19	0.92	93.5	200	0.65	26.44	0.03	0.84	0.39
+	209A 201A	201A 202A	0.56	22	22		75	1.27	137	3.56	1.58		0.00		0.00		0.00	0.00	0.69	1.27	0.19	2.00	116.5		0.05	31.97	0.03	1.02	0.56
	201A 202A	202A 203A	0.09	3	3		11	1.45	148	3.55	1.70		0.00		0.00		0.00	0.00	0.09	1.45	0.42	2.18	13.5	200	0.80	29.34	0.07	0.93	0.54
	203A	206A	0.17	4	4		14	1.62	162	3.54	1.86		0.00		0.00		0.00	0.00	0.17	1.62	0.53	2.40	50.5	200	1.10	34.40	0.07	1.09	0.62
Contribution From Rugosa Street, Pipe								1.23	106	T		1	0.00		0.00		0.00		1.23	2.85	1	1	1	1	1	1	1	1	1
	206A	207A	0.20	5	5		17	3.05	285	3.47	3.21		0.00		0.00		0.00	0.00	0.20	3.05	1.01	4.21	50.5	200	0.35	19.40	0.22	0.62	0.49
	207A	208A	0.12	2	2		7	3.17	292	3.47	3.28		0.00		0.00		0.00	0.00	0.12	3.17	1.05	4.33	12.0	200	0.35	19.40	0.22	0.62	0.50
	208A	214A	0.65	18	18		62	3.82	354	3.44	3.94		0.00		0.00		0.00	0.00	0.65	3.82	1.26	5.20	112.5	200	1.90	45.21	0.12	1.44	0.95
To Unknown Road1 - 07, Pipe 214A -	119A							3.82	354	<u> </u>			0.00		0.00		0.00		 	3.82			1	1	1	1	1	!	
Foundation Long					 							1			 				<u> </u>	+	-		1	1	1	1	-	 	
Foundation Lane Contribution From Appalachian Circle,	Dina 2004 2	111						3.82	354	<u> </u>			0.00		0.00		0.00		3.82	3.82			-	-				1	<u> </u>
Contribution From Apparachian Circle, Contribution From Apparachian Circle,								1.09	84				0.00		0.00		0.00		1.09	4.91									1
Contribution From Apparachian Circle,	214A	119A	0.08				0	4.99	438	3.40	4.83		0.00		0.00		0.00	0.00	0.08	4.99	1.65	6.48	59.0	200	0.35	19.40	0.33	0.62	0.55
To Montology Way, Pipe 119A - 120A	21.01	11071	0.00					4.99	438	0.10	1.00		0.00		0.00		0.00	0.00	0.00	4.99	1.00	0.10	00.0	200	0.00	10.10	0.00	0.02	0.00
3, ,, ,																													
Travertine Way																													
	119A	122A	0.52	13	13		45	0.52	45	3.66	0.53		0.00		0.00		0.00	0.00	0.52	0.52	0.17	0.71	86.5	200	0.65	26.44	0.03	0.84	0.36
	122A	123A	0.09	1	1		4	0.61	49	3.65	0.58		0.00		0.00		0.00	0.00	0.09	0.61	0.20	0.78	12.5	200	1.50	40.17	0.02	1.28	0.50
	123A	126A	0.20	4	4		14	0.81	63	3.63	0.74		0.00		0.00		0.00	0.00	0.20	0.81	0.27	1.01	50.0	200	3.20	58.67	0.02	1.87	0.70
To Sturnidae Street, Pipe 126A - 106A	0111							0.81	63				0.00		0.00		0.00		4.00	0.81									ļ
Contribution From Foundation Lane, P	119A	120A	0.60	17	17		58	4.99 5.59	438 496	3.38	5.43		0.00		0.00		0.00	0.00	4.99 0.60	4.99 5.59	1.84	7.28	103.5	200	0.35	19.40	0.38	0.62	0.57
	120A	121A	0.00	2	2		7	5.73	503	3.38	5.51		0.00		0.00		0.00	0.00	0.00	5.73	1.89	7.40	13.5	200	0.35	19.40	0.38	0.62	0.57
	121A	131A	0.43	10	10		34	6.16	537	3.37	5.86		0.00		0.00		0.00	0.00	0.43	6.16	2.03	7.89	110.0	200	0.90	31.12	0.25	0.99	0.82
Contribution From Montology Way, Pip								1.45	117				0.00		0.00		0.00		1.45	7.61					-				
3, ,,	131A	135A	0.19	4	4		14	7.80	668	3.32	7.20		0.00		0.00		0.00	0.00	0.19	7.80	2.57	9.77	58.5	200	0.35	19.40	0.50	0.62	0.62
To Haiku Street, Pipe 135A - 118A								7.80	668				0.00		0.00		0.00			7.80									
Haiku Street																													ļ
Contribution From Montology Way, Pip		١						7.80	668				0.00		0.00		0.00		7.80	7.80									ļ
Contribution From Haiku Street, Pipe 1	135A	118A						0.91 8.71	668	3.32	7.20		21.23		0.00		0.00	6.88	22.14 0.00	29.94	9.88	23.96	6.5	250	0.25	29.73	0.81	0.61	0.67
Contribution From Expansion Road, Pi								2.87	227	3.32	1.20		0.00		0.00		1.45	0.00	4.32	34.26	9.00	23.90	0.5	230	0.23	29.13	0.01	0.01	0.07
Contribution From Expansion Road, 11	118A	117A						11.58	895	3.26	9.47		21.23		0.00		1.45	7.04	0.00	29.94	9.88	26.38	119.0	300	0.20	43.25	0.61	0.61	0.64
Contribution From Haiku Street - Local								0.70	65	0.20			0.00		0.00		0.00			0.70									
	117A	116A						12.28	960	3.25	10.11		21.23		0.00		1.45	7.04	0.00	30.64	10.11	27.26	125.5	375	0.15	67.91	0.40	0.61	0.58
Contribution From Elevation Road, Pip	e 106A - 116A							9.65	817				0.00		0.00		1.72		11.37	42.01									
	116A	1160A						21.93	1777	3.10	17.85		21.23		0.00		3.17	7.22	0.00	42.01	13.86	38.94	17.0	375	0.15	67.91	0.57	0.61	0.63
To Haiku Street, Pipe 1160A - 1150A								21.93	1777				21.23		0.00		3.17		ļ	42.01			ļ	1		1		ļ	!
				DEGICAL	PARAME	TEDE									Doolar	d.			<u> </u>	DBO IEC	<u> </u>		1	1	l .	1	l	l	L
Park Flow =	9300	L/ha/da	0.10764	DESIGN	I/s/Ha	IEKO									Designed	u.				PROJEC	1.		Ciava	n Comm	unitiae E	Brazeau P	hasa 1		
Average Daily Flow =	280	I/p/day	0.10704		i/5/∏d			Industrial !	Peak Factor	= ac po	MOE Co	anh			l				SLM				Ciava	50111111	uues - E	Ji dzeau P	11436 1		
Comm/Inst Flow =	28000	L/ha/da	0.3241		I/s/Ha			Extraneou		- as per	0.330				Checked	l:			JLIVI	LOCATIO	N:								
Industrial Flow =	35000	L/ha/da	0.40509		I/s/Ha			Minimum '			0.600									3,	-				City of	Ottawa			
Max Res. Peak Factor =	3.80							Manning's		(Conc)	0.013		0.013		l				ADF						, •.				
Commercial/Inst./Park Peak Factor =	1.00							Townhous	e coeff=	· -/	2.7	` '			Dwg. Re					File Ref:				Date:			Shee	t No.	4
Institutional =	0.32	I/s/Ha						Single hou	se coeff=		3.4				Sanitary [Drainage P	lan, Dwgs.	. No. 80-83	3				18-1030		27 Jul 202	0		of	6

SANITARY SEWER CALCULATION SHEET

Manning's n=0.013

Manning's n=0.																									LULIYI				
	LOCATION		,				TIAL AREA ANI				匚		COI		INSTIT	工	PARK	C+I+I		INFILTRATIO						PIPE			
8	STREET	FROM	то	AREA	UNITS	UNITS	UNITS	POP.		JLATIVE	PEAK	PEAK	AREA	ACCU.			AREA ACCU		TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VE	
		M.H.	M.H.	(ha)		Singles	Townhouse		AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha)	AREA (ha)		REA ha) (l	(ha) (ha)		AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
				(1.0)					(1.0)		\vdash	(1/0)	(110)	(1.0)	(11.0) (11		(na) (na)	(,,,,	(1.0)	(1.0)	(00)	(1/0)	(,	()	(,,,)	(,,0)		(,0)	(11110)
Haiku Street - Lo	ocal Sewer																												
		109A	1100A	0.20	6		6	17	0.20	17	3.71	0.20		0.00	0.	.00	0.00	0.00	0.20	0.20	0.07	0.27	55.5	200	1.00	32.80	0.01	1.04	0.30
To Haiku Street,	Pipe 1100A - 109A								0.20	17				0.00	0.	.00	0.00	j		0.20									
											<u> </u>		<u> </u>	1	\vdash											<u> </u>	<u> </u>		
		1150A	1160A	0.24	6		6	17	0.24	17	3.71	0.20	┷	0.00		.00	0.00		0.24	0.24	0.08	0.28	41.5	200	0.65	26.44	0.01	0.84	0.27
To Haiku Street,	Pipe 1160A - 115A								0.24	17	 '			0.00	10.0	.00	0.00		+	0.24	igwdown	+	<u> </u>		├	├	 		
-		110A	111A	0.41	16		16	44	0.41	44	3.66	0.52	$\vdash \!$	0.00	0	.00	0.00	0.00	0.41	0.41	0.14	0.66	74.5	200	0.65	26.44	0.02	0.84	0.35
To Haiku Street.	Pipe 111A - 110A	110/1	1117	0.41	10		- 10		0.41	44	0.00	0.02	\vdash	0.00		.00	0.00		0.41	0.41	0.14	0.00	74.0	200	0.00	20.44	0.02	0.04	0.00
									+		T		\vdash			-	- 1111		+	1	1				 	†			
		111A	115A	0.49	19		19	52	0.49	52	3.65	0.61		0.00	0.	.00	0.00	0.00	0.49	0.49	0.16	0.78	87.5	200	0.65	26.44	0.03	0.84	0.37
To Haiku Street,	Pipe 115A - 111A								0.49	52				0.00	0.	.00	0.00)		0.49	0.49								
															\vdash										1				
		118A	117A	0.70	19	19		65	0.70	65	3.63	0.77	Щ-	0.00		.00	0.00		0.70	0.70	0.23	1.00	119.0	200	0.65	26.44	0.04	0.84	0.40
To Haiku Street,	Pipe 117A - 116A					1			0.70	65	↓ —-'		igwdapsilon	0.00	0.0	.00	0.00	4	+	0.70	+	⊢—		₩	₩	 	 	₩	
—		1170	1164	0.67	15	15		E1	0.67	E1	2.65	0.60	$\vdash \!$	0.00		00	0.00	0.00	0.67	0.67	0.22	0.00	10F F	200	0.65	26.44	0.03	0.04	0.30
To Haiku Street	Pipe 116A - 1160A	117A	116A	0.67	15	15	1	51	0.67 0.67	51 51	3.65	0.00	$\vdash \vdash$	0.00		.00	0.00		0.67	0.67	0.22	0.82	125.5	200	0.65	26.44	0.03	0.84	0.38
TO HAIKU SHEEL,	1 Ipo 110A - 1100A		 	 		1			0.07	31	+-		$\vdash \vdash \vdash$	0.00	10.0	-	0.00	+	+	0.07	\vdash		 	\vdash	+	+	 	$\vdash \vdash \vdash$	-
Haiku Street									+		+		$\vdash \!$	1	\vdash	-	-	+	+	+	\vdash	—			+	+	—	 	1
	m Haiku Street, Pipe 1	16A - 1160A							22.60	1828	T		\vdash	21.23	0.	.00	3.17	, —	42.68	42.68	1				 	†			
	m Haiku Street - Local		1150A - 1160A	\ \					0.24	17.00				0.00	0.	.00	0.00		0.00	0.24									
		1160A	1150A						22.84	1845	3.09	18.48		21.23	0.	.00	3.17	7 7.22	0.00	42.92	14.16	39.86	41.5	375	0.15	67.91	0.59	0.61	0.64
		1150A	115A						22.84	1845	3.09	18.48	<u> </u>	21.23		.00	3.17		0.00	42.92	14.16	39.86	4.5	375	0.15	67.91	0.59	0.61	0.64
	m Focality Crescent, P								1.18	116			<u> </u>	0.00		.00	0.00		1.18	44.10									
Contribution From	m Haiku Street - Local								0.67	51.00	<u> </u>		<u> </u>	0.00		.00	0.00		0.00	0.67						<u> </u>	<u> </u>		
		115A	111A						24.69	2012	3.07	20.00	┷	21.23		.00	3.17			44.77	14.77	41.99	87.5	375	0.15	67.91	0.62	0.61	0.65
Contribution From	m Haiku Street - Local	111A	110A - 111A 110A			-			0.70 25.39	65.00 2077	3.06	20.59	$\vdash \!$	0.00 21.23		.00	0.00 3.17		0.00	0.70 45.47	15.01	42.81	74.5	375	0.15	67.91	0.63	0.61	0.65
Contribution Fro	m Focality Crescent, P								0.31	23	3.00	20.59	igwdot	0.00		.00	0.00		0.00	45.78	15.01	42.01	74.5	3/3	0.15	67.91	0.03	0.01	0.65
Continuation Flor	III Focality Crescent, F	110A	1100A						25.70	2100	3.06	20.79	$\vdash \vdash \vdash$	21.23		.00	3.17		0.00	45.78	15.11	43.12	4.0	375	0.15	67.91	0.64	0.61	0.65
Contribution Fro	m Haiku Street - Local								0.20	17.00	0.00	20.10	\vdash	0.00		.00	0.00		0.00	0.20		10.12		0.0			0.01	0.01	0.00
		1100A	109A						25.90	2117	3.05	20.95		21.23		.00	3.17	7 7.22	0.00	45.98	15.17	43.34	55.5	375	0.15	67.91	0.64	0.61	0.65
To Obsidian Stre	eet, Pipe 109A - 400A								25.90	2117				21.23	0.	.00	3.17	/		45.98									
Future Commer	rcial										<u> </u>		<u> </u>	1	\vdash											<u> </u>	<u> </u>		
		2A	2250A						0.00	<u> </u>	₩-		2.99			.00	0.00		2.99	2.99	0.99	1.96	11.0	200	0.35	19.40	0.10	0.62	0.39
To Obsidian Stre	eet, Pipe 2250A - 226A					-			0.00	0	 		$\vdash \!$	2.99	0.0	.00	0.00		+	2.99						+	-	\vdash	
Obsidian Street	•								++	\vdash	+		$\vdash \vdash \vdash$	\vdash	\vdash	+	-+	+	+	+	\vdash	 	 	\vdash	+	+	 	$\vdash \vdash \vdash$	
Obsidian Otrect	•	224A	225A	0.33	9		9	25	0.33	25	3.69	0.30	$\vdash \vdash \vdash$	0.00	0.	.00	0.00	0.00	0.33	0.33	0.11	0.41	75.0	200	0.65	26.44	0.02	0.84	0.30
		225A	2250A	0.27	8	1	8	22	0.60	47	3.66	0.56		0.00		.00	0.00		0.27	0.60	0.20	0.75	67.5	200	0.90	31.12	0.02	0.99	0.41
Contribution From	m Future Commercial,	Pipe 2A - 225	50A						0.00	0	1			2.99	0.	.00	0.00)	2.99	3.59			1	1	1				
	i	2250A	226A	0.15	3		3	9	0.75	56	3.64	0.66		2.99	0.	.00	0.00		0.15	3.74	1.23	2.86	46.0	200	1.40	38.81	0.07	1.24	0.71
		226A	109A	0.34	9		9	25	1.09	81	3.61	0.95		2.99		.00	0.00		0.34	4.08	1.35	3.26	92.0	200	1.60	41.49	0.08	1.32	0.78
	m Haiku Street, Pipe 1		L						25.90	2117	 _'		└	21.23		.00	3.17		45.98	50.06	↓ '	└	<u> </u>	↓	↓	 	 '	↓	
Contribution From	m Future Residential, F			0.00		1			1.90	162	- 0.00	00.46	₩	0.00		.00	0.00		1.90	51.96	17.10	10.16	00.6	075		07.01	0.74	L	0.07
T- D	oten Deed Die 100	109A	400A	0.09		1		0	28.98	2360	3.02	23.12	igwdapsilon	24.22		.00	3.17		0.09	52.05	17.18	48.49	63.0	375	0.15	67.91	0.71	0.61	0.67
10 Drummond Fi	uture Road , Pipe 400	4 - 401A	l	<u> </u>	DESIGN	PARAME	TEDS	<u> </u>	28.98	2360			لــــــا	24.22		.00	3.17		—	52.05 PROJECT				Ь			Ц	لـــــــــا	<u> </u>
Park Flow =		9300	L/ha/da	0.10764	DESIGN	I/s/Ha	LILINO								Desi	signed:				ROJECI	4.		Ciavar	a Commi	unities - ſ	Brazeau P	hase 1		
Average Daily Flow	w =	280	I/p/day	5.10704		1/3/1 Id			Industrial	Peak Factor	r = 9e ro	MOE Gra	anh						SLM				Jiavaii	. 50	4111000 - L	nuLoau F	1436 1		
Comm/Inst Flow =		28000	L/ha/da	0.3241		I/s/Ha			Extraneou		- as per		L/s/ha		Che	ecked:			SLIVI	LOCATIO	N:								
Industrial Flow =		35000	L/ha/da	0.40509		I/s/Ha			Minimum \			0.600			3110										City of	Ottawa			
	actor =	3.80	Li i i i i i	3. 10000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Manning's		(Conc)	0.013		0.013					ADF						2, 01				
IMax Res. Peak Fa											()		/		<u> </u>					+				-					-
Max Res. Peak Fa Commercial/Inst./F		1.00 0.32							Townhous	e coeff=		2.7			Dwg	g. Refere	ence:			File Ref:				Date:			Sheet	No.	5

SANITARY SEWER CALCULATION SHEET


Manning's n=0 013

Manning's n=0.013																											CULLYY	/L	
LOCATI							POPULATION						ММС	4	STIT	PA		C+I+I		INFILTRATIO						PIPE			
STREET	FROM M.H.	TO M.H.	AREA	UNITS	UNITS	UNITS	POP.	AREA	JLATIVE	PEAK FACT.	PEAK FLOW	AREA	ACCU. AREA	AREA	ACCU. AREA	AREA	ACCU. AREA	PEAK	TOTAL	ACCU. AREA	INFILT.	TOTAL FLOW	DIST	DIA	SLOPE	CAP.	RATIO		/EL.
	M.H.	M.H.	(ha)		Singles	Townhouse		(ha)	POP.	FACT.	(I/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	FLOW (I/s)	AREA (ha)	(ha)	FLOW (I/s)	(I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
Drummond Future Road		+																								-		 	+
Contribution From Obsidian Street,	Pipe 109A - 400)A						28.98	2360				24.22		0.00		3.17		52.05	52.05									+
	400A	401A	0.24				25	29.22	2385	3.02	23.34		24.22		0.00		3.17	8.19	0.24	52.29	17.26	48.79	72.5	375	0.15	67.91	0.72	0.61	0.67
	401A	402A	0.14				15	29.36	2400	3.02	23.48		24.22		0.00		3.17	8.19	0.14	52.43	17.30	48.97	62.0	375	0.15	67.91	0.72	0.61	0.67
To future Greenbank Road, Pipe 40	2A - 403A							29.36	2400				24.22		0.00		3.17			52.43									
			1		-			ļ						<u> </u>						ļ								<u> </u>	
Future Greenbank Road Contribution From Drummond Future	- Daniel Dina 4	24.4 400.4			+			20.20	2400	1			24.22	-	0.00		3.17		52.43	52.43					1	├		├	-
Contribution From Drummona Futul	402A	403A	0.38				0	29.36 29.74	2400	3.02	23.48		24.22	+	0.00		3.17	8.19	0.38	52.43	17.43	49.09	80.0	375	0.15	67.91	0.72	0.61	0.67
	403A	404A	0.33		1		0	30.07	2400	3.02			24.22		0.00		3.17		0.33	53.14	17.54	49.20	80.0	375	0.15	67.91	0.72	0.61	0.67
	404A	405A	0.33				0	30.40	2400	3.02			24.22		0.00		3.17		0.33	53.47	17.65	49.31	81.0	375	0.15	67.91	0.73	0.61	0.67
Contribution From Expansion Road							0	15.39	1492				0.00		0.00		0.00		0.00	15.39									
·	405A	406A	0.25				0	46.04	3892	2.88	36.26		24.22		0.00		3.17	8.19	0.25	69.11	22.81	67.26	59.5	375	0.25	87.67	0.77	0.79	0.87
	406A	407A	0.35				0	46.39	3892	2.88			24.22	6.06	6.06		3.17	10.15	6.41	75.52	24.92	71.34	83.5	375	0.30	96.03	0.74	0.87	0.95
	407A	408A	0.46				0	46.85	3892	2.88			24.22		6.06		3.17		0.46	75.98	25.07	71.49	110.0	375	0.30	96.03	0.74	0.87	0.95
	408A	409A	0.40				0	47.25	3892	2.88		ļ	24.22	1	6.06		3.17		0.40	76.38	25.21	71.62	96.5	375	0.30	96.03	0.75	0.87	0.95
<u> </u>	409A	410A	0.51				0	47.76	3892	2.88			24.22		6.06		3.17	10.15	0.51	76.89	25.37	71.79	120.0	375	0.30	96.03	0.75	0.87	0.95
	410A	570A	0.30				0	48.06	3892	2.88	36.26		24.22		6.06		3.17	10.15	0.30	77.19	25.47	71.89	63.0	375	0.30	96.03	0.75	0.87	0.95
	570A	57A	-	-				48.06	3892	2.88	36.26		24.22	 	6.06		3.17	10.15	0.00	77.19	25.47	71.89	15.0	375	0.50	123.98	0.58	1.12	1.16
		+			+					1				1												+	 	 	+
														1														<u> </u>	
		+			-															1						+		├ ──	+
																												+	
																				ļ								<u> </u>	++
+								1						+						1									+
																										1			1
										1																		<u> </u>	
		-	-	-				-						 						<u> </u>								├──	+
					1															1				1		+	 	 	1
										1																		<u> </u>	
	_	+	+	-				 	-	-	-	-	1	+				-	-	-					1	-	\vdash	-	++
	+	+	+	 	+			 			 	 	1	+				 	 	-				1	 	+	\vdash	\vdash	+
		1																						<u> </u>					
																										1	L		
		+	1		1			 			ļ	 	1	1				ļ	ļ					1	ļ	₩	₩	—	+
 		+	+	1	+			1		1	1	1	1	+	1	-	H	1	1	 				1	1	+	\vdash		+
		1	1		1					1				1												†			
				DESIGN	I PARAME	TERS									Designe	d:				PROJEC*	Γ:								
Park Flow =	9300	L/ha/da	0.10764		I/s/Ha																		Ciavaı	n Commı	ınities - E	Brazeau P	hase 1		ļ
Average Daily Flow =	280	I/p/day							Peak Factor	r = as pe									SLM										
Comm/Inst Flow =	28000	L/ha/da	0.3241		I/s/Ha			Extraneou				L/s/ha			Checked	d:				LOCATIO	N:								
Industrial Flow =	35000	L/ha/da	0.40509		I/s/Ha			Minimum		(0	0.600		0.010												City of	Ottawa			
Max Res. Peak Factor = Commercial/Inst./Park Peak Factor =	3.80 1.00							Manning's Townhous		(Conc)	0.013 2.7	(Pvc)	0.013		Dwg. Re	ference:			ADF	File Ref:				Date:			Sheet	No	6
Institutional =	0.32	I/s/Ha						Single ho			3.4						lan. Dwas	s. No. 80-8	3	i lie ixel.			18-1030	Date.	27 Jul 202	.0	Sileet	of	-
ionaronal -	0.02	,, Jri iu						Cirigic Ho			5.4				Samual y	S. amaye F	, Dwys	J. 140. 00=0		1			.0-1000	1	_ / Oui 202	<u></u>			

Appendix E External Reports

E.2 STORMWATER MANAGEMENT REPORT FOR THE RIDGE (BRAZEAU LANDS) BY JFSA (JULY 2020)

Stormwater Management Report for The Ridge (Brazeau) Subdivision

City of Ottawa

Prepared for: David Schaeffer Engineering Ltd.

Prepared by:

Stormwater Management Report for The Ridge (Brazeau) Subdivision

in the City of Ottawa

July 2020

Prepared for:

David Schaeffer Engineering Ltd.

Prepared by:

Jonathon Burnett, B.Eng., P.Eng.

JFSA Ref. No.: 1800-19

Stormwater Management Report for The Ridge (Brazeau) Subdivision in the City of Ottawa

TABLE OF CONTENTS

1	INTRODU	JCTION AND OBJECTIVES	1
2	DESIGN (CRITERIA AND GUIDELINES	4
	2.1 Minor	System	4
	2.2 Major	System	5
3	ASSUMPT	TIONS AND SOURCE OF DATA USED IN THIS STUDY	6
4	PROPOSE	ED MINOR AND MAJOR SYSTEM DRAINAGE	7
	4.1 Major 4.2 Minor	System and SWM Analysis	9
5		AND SEDIMENT CONTROL DURING AND AFTER CONSTRUCTION	
6		Y, CONCLUSIONS AND RECOMMENDATIONS	
A	PPENDIC	<u>CES</u>	
	pendix A:	Rational Method Design Sheets (as per DSEL)	
	ppendix B: ppendix C:	Inlet Control Devices Manhole Loss Coefficient Nomograph and Table; Pipe Data and Hydraulic Simula	tion Doculte
	pendix C.	Tables and Calculation Sheets	non Results
-	ck Pocket:	CD with PCWMM and SWMHYMO Modelling Files	
LI	IST OF TA	ABLES	
Tal	ble 1:	Summary of Major System Results for the 100-Year 3-Hour Chicago Storm	Page 11
	ble 2: ble 3:	Comparison of Minor System Flows to the Pond	
1 a	ole 3.	Composite rightaunic Grade Line Results for 100- Fear Design Storins	Fage 14
LI	IST OF FI	<u>GURES</u>	
	gure 1:	General Site Location	C
	gure 2:	Proposed Minor System	
	gure 3:	Proposed Major System	
_	gure 4:	Extent of Surface Storage	
_	gure 5:	Silt Control Measures during Construction (Silt fences)	
Fig	gure 6:	Silt Control Measures during Construction (Catchbasin protection)	Page 23

Stormwater Management Report for The Ridge (Brazeau) Subdivision in the City of Ottawa July 2020

1 INTRODUCTION AND OBJECTIVES

J.F. Sabourin and Associates Inc. (JFSA) were retained by David Schaeffer Engineering Ltd. (DSEL) to prepare a Stormwater Management (SWM) Plan for the Ridge (Brazeau) Subdivision, located within the City of Ottawa. As shown by the image provided on the cover page, the future development is located east of Borrisokane and Highway 416, and south of Cambrian Road. The proposed development will be serviced by a dry SWM pond that will be implemented in the northwest corner of the development and will discharge to the Jock River via an existing ditch on the west side of Borrisokane Road. The proposed development will also be serviced by two oil-and-grit separators that discharge to the SWM pond, that have been sized to ensure 80% Total Suspended Solids (TSS) removal, for more details regarding the OGS units with the development please refer to JFSA's July 2020, Pond Design Brief for the Ridge (Brazeau) Subdivision. As documented in the Barrhaven South Urban Expansion Area Master Servicing Study, by J. L Richards 2018, the development will also have Etobicoke Exfiltration Systems (EES) implemented within this subdivision. These EES will be installed within local roadways of the subdivision, to exfiltrate runoff from the development for the more frequent events. To ensure that the SWM analysis is conservative, these EES's have not been included in this detailed analysis. Please refer to JFSA's "The Ridge (Brazeau) LID Design Report" July 2020 for full details regarding the operations and benefits of the proposed Etobicoke Exfiltration Systems within the site.

The Ridge (Brazeau) development has a total drainage area of 37.03 ha, including a 3.94 ha pond block, a 1.72 ha park block, 2.68 ha of commercial blocks and 28.69 ha of residential development. The proposed development will be treated by the dry pond, along with 21.21 ha of external future commercial development and 13.5 ha of external residential development, for a total drainage area of 71.75 ha. Figure 1 provides an overview of the location of these respective blocks within the subdivision.

The purpose of this report is to evaluate the major and minor system flows of the proposed development with respect to new proposed stormwater management guidelines and to check the adequacy of the proposed pipe sizes to convey the 2-year (5-year on collector and 10-year on arterial roads) and the 100-year storm flows from within the development and from external areas. Background documents that were reviewed in preparing this report include the following:

- Stormwater Management Planning and Design Manual, Ministry of the Environment, March 2003.

- Jock River Flood Risk Mapping (within the City of Ottawa) Hydraulics Report, PSR Group Ltd. and J.F. Sabourin and Associates Inc., November 2004.
- Erosion and Sediment Control Guidelines for Urban Construction, Conservation Halton et al., December 2006.
- Draft City of Ottawa Stormwater Management Facility Design Guidelines, IBI Group, April 2012.
- City of Ottawa Sewer Design Guidelines, City of Ottawa, October 2012.
- Technical Bulletin ISDTB-2014-01, Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, February 2014.
- City of Ottawa Technical Bulletin PIEDTB-2016-01, City of Ottawa, September 2016.
- City of Ottawa Technical Bulletin ISTB-2018-04, City of Ottawa, June 2018.
- Functional Servicing Report for Caivan Communities, Brazeau Lands, 3809 Borrisokane Road, David Schaeffer Engineering Limited, September 2019.
- Design Brief for the Stormwater Management Pond for the Ridge (Brazeau) Subdivision, David Schaeffer Engineering Limited and J.F. Sabourin and Associates Inc., April 2020.

As per the new approach formalized in the September 2016 *City of Ottawa Technical Bulletin PIEDTB-2016-01*, the proposed subdivision has been designed with a 2-year minor system level of service on local roads and 5-year level of service on collector roads (Elevation Road). Where possible with grading and minor system capture limitations, road ponding areas up to 35 cm deep were used to contain the 100-year major system flows.

The SWMHYMO and PCSWMM computer programs were used to model the major and minor systems, to ensure that all the new stormwater management requirements are satisfied. The general SWM design criteria and guidelines that are to be met are described in Section 2.

Figure 1: General Site Location

2 DESIGN CRITERIA AND GUIDELINES

The design criteria and guidelines used for the stormwater management of the subject subdivision are those that were developed in the background documents, as well as those provided in the October 2012 *City of Ottawa Sewer Design Guidelines* and subsequent technical memorandums, and generally accepted stormwater management design guidelines.

The detailed design of the proposed development determined that the 37.03 ha subdivision has an average imperviousness of 54%. The total 71.75 ha drainage area to the dry pond has an average imperviousness of 64%.

A detailed analysis of the proposed dual drainage system was required to confirm that the following general design criteria and guidelines for the minor and major systems would be met.

2.1 Minor System

- a) Storm sewers are to be designed to provide a minimum 2-year level of service, plus 5-year inflows on collector roads (Elevation Road) and 10-year inflows on arterial roads.
- b) The 100-year hydraulic grade line (HGL) within the development minor systems must be maintained at least 0.3 m below the underside of footing elevation where gravity house connections are installed.
- c) For less frequent storms (i.e. larger than 1:2 year or 1:5 year on collector / 1:10 year on arterial roads), the minor system shall, if required, will be limited with the use of inlet control devices to prevent excessive hydraulic surcharges and to maximize the use of surface storage on the road where desired.
- d) Catchbasins on the road are to be equipped with City standard type S19 (fish) grates or City standard type S22 side inlets, and grates for catchbasins in rear yards, park and open spaces with pedestrian traffic are to be City standard type S19, S30 and S31.
- e) Single catchbasins are to be equipped with 200 mm minimum lead pipes, and double catchbasins are to be equipped with 250 mm minimum lead pipes.
- f) Rearyard catchbasins are to be equipped with 250 mm minimum lead pipes. Catchbasins installed on the street, where rearyard catchbasins connect to the main storm sewer through the catchbasin, are to be equipped with 250 mm minimum lead pipes for both single and double catchbasins.
- g) Under full flow conditions, the allowable velocity in storm sewers is to be no less than 0.80 m/s and no greater than 3.0 m/s. Where velocities over 3.0 m/s are proposed,

provisions shall be made to protect against displacement of sewers by sudden jarring or movement. Velocities greater than 6 m/s are not permitted.

2.2 Major System

- a) The major system shall be designed with enough road surface storage to allow the excess runoff of a 100-year storm to be retained within road ponding areas where desired.
- b) Inlet control devices should be sized such that they do not create surface ponding on the road during the 2-year design storm on local roads (5-year design storm on collector and 10-year design storm on arterial roads); it should be noted that surface ponding over grates is present during rainfall under any design, as an appropriate depth of water is required for runoff to enter the grate (refer to Tables D-6 of Appendix D).
- c) Roof leaders shall be installed to direct the runoff to splash pads and on to grassed areas.
- d) For the 100-year storm, the maximum total depth of water (static + dynamic) on all roads shall not exceed 35 cm at the gutter.
- e) During the 100-year + 20% stress test, the maximum extent of surface water on streets, rearyards, public space and parking areas shall not touch the building envelope.
- f) When catchbasins are installed in rear yards, safe overland flow routes are to be provided to allow the release of excess flows from such areas.
- g) The product of the maximum flow depths on streets and maximum flow velocity must be less than 0.60 m²/s on all roads.
- h) The excess major system flows up to the 100-year return period are to be retained on-site in development blocks such as parks, schools, commercial, etc.
- i) There must be at least 15 cm of vertical clearance between the spill elevation on the street and the ground elevation at the nearest building envelope that is in the proximity of the flow route or ponding area.
- j) There must be at least 30 cm of vertical clearance between the rearyard spill elevation and the ground elevation at the adjacent building envelope.

3 ASSUMPTIONS AND SOURCE OF DATA USED IN THIS STUDY

Sources of information and assumptions made in this study are listed below:

- Stormwater management model: SWMHYMO (version 5.50), and PCSWMM (version 7.2)

- Minor system design: 1:2 year, plus 1:5-year inflows on collector roads and

1:10 year on arterial roads. See the Rational Method

Calculations in Appendix A.

- Major system design: 1:100 year

- Max. 100-yr water depth on roads: 35 cm above the gutter

- Extent of the major system: Shall not touch the building envelope during the 100-year

+ 20% stress test

- PCSWMM model parameters: Fo = 76.2 mm/hr, Fc = 13.2 mm/hr, DCAY = 4.14/hr,

 $D.Stor.Imp. = 1.57 \, mm, \, D.Stor.Per. = 4.67 \, mm \, (as per)$

2012 City of Ottawa Sewer Design Guidelines)

Detailed Area Imperviousness: based on development layout. Lumped Area Imperviousness: based on runoff coefficient (C) where C = 0.7 x imperviousness ratio + 0.2.

- Design storms: 2-, 5-, 10- and 100-year 3-hour Chicago and 100-year 24-

hour SCS Type II storms as per 2012 City of Ottawa Sewer Design Guidelines; peak averaged over 10 minutes.

- Historical Events: July 1st, 1979; August 4th, 1988; and August 8th, 1996

events as per 2012 City of Ottawa Sewer Design

Guidelines.

- Stress Test: 20% increase in the 100-year 3-hour Chicago storm.

- Street catchbasin covers: City Standard Type S19 (fish) or City Standard Type S22

(side inlet). Type S19 approach flow-capture curves as per MTO design charts (equivalent to OPSD 400.010). Type S22 approach flow-capture curves as per the 2004 City of

Ottawa Guidelines.

- Rearyard catchbasin covers: City Standard Type S19, S30 and S31

- Curb and gutter: City Standard SC1.3 (mountable) and SC1.1 (barrier). In

the absence of flow capture curves for these curbs and gutters, OPSD 600.010 curb and gutters are assumed.

Same is, of 52 oot, of and same is are the

- Manning's' roughness coeff.: 0.013 for concrete and PVC pipes (free flow).

- Minor system losses: Refer to Appendix C for maintenance hole loss

coefficients.

- Underside of footing elevations: As provided by DSEL.

- Freeboard in HGL analysis: 0.3 m between the underside of footing elevation and 100-

year hydraulic gradeline.

- Inlet Control Devices: Refer to Appendix B for Plas-Tech ICD details.

Depth of backyard swales: As per DSEL's Grading Plan
 Street and pipe dimensions: As per DSEL's Plan and Profiles
 Right-of-way characteristics: As per DSEL's Details of Roads

- Downstream HGL: 92.5 m based on the top of bank elevation of the ditch that

the SWM pond will outlet to.

4 PROPOSED MINOR AND MAJOR SYSTEM DRAINAGE

The proposed minor and major system drainage routes are shown in plan view in Figures 2 and 3. The residential areas where enough detail was available were modelled in PCSWMM. External or large undetailed future development areas within the subdivision were modelled in SWMHYMO based on the preliminary design information available. The hydrographs generated by SWMHYMO were then read into the PCSWMM model as external hydrographs.

Per the new proposed standards, the minor system has been designed to accommodate a minimum of the 2-year post-development flows from within the site and from external areas, plus 5-year inflows on collector roads (Elevation Road) and 10-year inflows on arterial roads. A Rational Method design was conducted by DSEL (refer to Appendix A) to estimate minor system flows based on the City of Ottawa IDF relationship and selected runoff coefficients.

The minor system release rates from the parklands were set to the 5-year flow based on the rational method, with onsite storage provided up to the 100-year event. The east most commercial lands were limited to the 2-year rational method, with onsite storage provided up to the 100-year event. The ABIC commercial lands were limited to the 2-year pre-development flow per the rational method, and the Brazeau Commercial site limited to maximum flow 1.8m³/s (as per the most recent analysis for the Commercial Brazeau lands), with both sites assumed to have onsite storage provided to the 100-year event. Refer to DSEL's June 2020 Site Plan Report for more details regarding the ABIC site. The collector roads (Elevation Road) were limited to the 5-year rational method as per the City guidelines. The residential lands were limited to 2-year Chicago 3-hour flow + 14% (as calculated by SWMHYMO) to account for additional capture during the 100-year storm as a result of increased head over the catchbasins and lead pipes or inlet control devices, with onsite storage provided to the 100-year event.

For these residential lands under the stress test scenario (100-year Chicago 3-hour +20%) it was assumed that the minor system was set at 107% of 100-year capture, and 100-year + 20% stress test storage set to 145% of 100-year storage. This approach for the residential lands is based on the Abbottsville Crossing was a pilot project. Which looked at the 2-year capture on local road and containment of excess 100-year flows in road ponding areas. Minor system capture during the 100-year + 20% stress test at the detailed design stage for a subdivision or site plan can be evaluated based on the actual design information, e.g. catch basin grate and ICD head-capture relationships, surface storage volumes, simulated water depth, etc. However, there is no set standard or easy rule of thumb for excess capture through catch basin grates, lead pipes and Inlet Control Devices (ICDs) during the 100-year + 20% stress test for undetailed future development areas, where these details don't exist yet. As such, the detailed modelling for the Abbottsville Crossing pilot project has been used as a reference to create a rule of thumb for undetailed areas. As shown in Table D-8 of Appendix D of the September 2018 SWM Report for the Abbottsville Crossing subdivision, minor system capture in the detailed subdivision modelling during the 100-year + 20% storm was 107% greater than the 100-year capture. Similarly, 100-year + 20% surface storage volumes used were 155% greater than those used during the 100-year storm. This was reduced to 145% to be conservative for preliminary

modelling of undetailed areas. Refer to Table D-3C in Appendix D for the simulated release rates for the various undetailed lands for the full suite of return periods based on the SWMHYMO modelling.

As noted earlier in this report, where possible with grading limitations, road ponding areas up to 35 cm deep were used to contain the 100-year major system flows in the development. Note that rearyard catchbasins were connected to catchbasins on the road where possible, to allow rearyard runoff access to the storage in road ponding areas at regular intervals. In a design of this type where lots are serviced by gravity house connections, inlet control devices (ICDs) can be used to limit minor system capture at each catchbasin to the appropriate level of service.

Within the development, circular orifice plate type Inlet Control Devices (ICDs) of City standard diameters 83 mm, 94 mm, 102 mm, 108 mm, 127 mm, 152 mm and 178 mm will be used to limit minor system capture to a minimum of the 2-year flow (refer to Appendix B for Plas-Tech ICD details), allowing for sub-surface storage of 0.5 m³ in single catchbasins, 1.0 m³ in double catch basins, and 1.9 m³ in catchbasin manholes. Note that this subsurface catchbasin storage has not been included in the modelling to be conservative.

The street segments within the proposed development have been designed using a 'saw tooth' or 'sagged' road profile. The runoff from within these segments will be conveyed to catchbasins located at the lowest point within the street segment. Flows more than the catchbasin capture rate will be temporarily stored within the 'sagged' street segments and released slowly to the storm sewers, up to the 100-year design storm. When the storage on a specific street segment is surpassed due to blockage or an event greater than the 100-year storm, the excess water will flow towards the next downstream street sag, and eventually to the pond. It should be noted that the major system would outlet during the 100-year + 20% stress test without flooding any of the properties within the subdivision.

If the drainage system's capacity to capture surface flows is exceeded, Figure 4 presents the maximum extent of static surface ponding and volume on the streets based on grading. Additionally, surface storage volumes that may exist in the rear yards have not been considered in this model, and runoff from these areas have been directed straight to the catchbasin that the rear yard swale will discharge to. This has been completed to ensure that the peak flows and ponding volumes calculated in the model are conservative.

The SWMHYMO and PCSWMM analyses, discussed in Sections 4.1 and 4.2, have demonstrated that the proposed drainage system for the subdivision will have sufficient capacity to control the excess flow during a 100-year storm and safely capture and convey the 2-year (plus 5-year on collector roads and 10-year on arterial roads) flow to the pond.

4.1 Major System and SWM Analysis

The PCSWMM and SWMHYMO computer programs were used to model the major and minor system flows within the proposed development and from external areas. As noted above, as the PCSWMM program is most appropriate for use in modelling small urban drainage areas, most undetailed future development areas were instead modelled using SWMHYMO.

The PCSWMM and SWMHYMO models were developed based on the information provided in Figures 2 and 3. Nine (9) simulations were conducted, one for each of the following rainfall events:

- i) The 25 mm, 3-hour Chicago storm;
- ii) the 2-year, 3-hour Chicago storm;
- iii) the 5-year, 3-hour Chicago storm;
- iv) the 100-year, 3-hour Chicago storm;
- v) the 100-year, 24-hour SCS Type II storm
- vi) the July 1st, 1979 historical event;
- vii) the August 4th, 1988 historical event;
- viii) the August 8th, 1996 historical event; and
- ix) the 100-year, 3-hour Chicago storm +20%.

Note that the purpose of simulating the 100-year, 3-hour Chicago storm with a 20% increase is to stress test the drainage system for potential flooding, as per the October 2012 *City of Ottawa Sewer Design Guidelines*.

The depression storage and infiltration parameters in both the PCSWMM and SWMHYMO models are as per the October 2012 *City of Ottawa Sewer Design Guidelines*. The percent imperviousness of the detailed drainage areas was measured based on the proposed development layout. The proposed development layouts have been established based on zoning requirements and represent the largest allowable footprint on each lot. DSEL have measured the impervious area in each catchment discreetly, and as such, the percent impervious values can be considered to be based on zoning. The percent imperviousness of undetailed (lumped/external) drainage areas were calculated based on the runoff coefficient (C), where C = 0.7 x imperviousness ratio + 0.2. Figure 1 provides an overview of the subcatchments, and Table D-3A and D-3B provide a full summary of all subcatchment parameters modelled in PCSWMM and SWMHYMO respectively.

The approach flow/capture curves applied in the PCSWMM model were based on the values outlined in the City of Ottawa Sewer Design Guidelines (Appendix 7-A.13). These approach flow/capture curves were converted to a depth/capture curve using PCSWMM's diversion node and kinematic wave equations. A depth/capture curve was derived for each of the cross-section profiles and the various slopes. Where required inflows are limited by circular orifice plate type Inlet Control Devices (ICDs) of City standard diameters 83 mm, 94 mm, 102 mm, 108 mm, 127 mm, 152 mm and 178 mm. Note that 200 mm diameter lead pipes were assumed and are

required between single catchbasins and the storm sewers, and 250 mm diameter lead pipes were assumed and are required between rearyard catchbasins or single catchbasin manholes and the storm sewers. Double catchbasins and double catchbasin maintenance holes are to be equipped with 250 mm diameter lead pipes. No temporary CBs are required within the development. Refer to Table D-4A in Appendix D for the depth/capture curves applied in the model for catch basins on a constant slope, and Table D-4B for catchbasins at localized depressions with ICD's.

Within the proposed subdivision, the dynamic flow depth on the road (at the gutter) will be minimal during the 100-year Chicago storm, as the 100-year flows are mostly retained within the road ponding areas and do not accumulate as in a typical subdivision design. Furthermore, it was determined that for the 100-year storm at all major system segments, the product of the depth of water (m) at the gutter multiplied by the velocity of flow (m/s) will not exceed the maximum allowable 0.6 m²/s (refer to Table D-8 of Appendix D, where the calculated maximum was determined to be 0.56 m²/s). Table D-9 of Appendix D presents the stress test results for dynamic flow depth on the road based on a 20% increase in the 100-year storm, as per the October 2012 *City of Ottawa Sewer Design Guidelines*. As shown in Table D-9, the maximum dynamic flow depth under these conditions is calculated as 0.48 cm, and the product of the depth of water at the gutter multiplied by the velocity of flow is 0.59 m²/s. Refer below for an assessment of the ponding depth on the road.

Details of the 100-year street maximum water depth and surf elevations are provided in Table D-7 of Appendix D. Based on DSEL's grading the major system has approximately 896 m³ of storage at these localized low points throughout the development. Depths calculated by the PCSWMM model demonstrates that a total 100-year depth of water (static and dynamic) on the street at these ponding areas will not exceed the maximum depth of 35 cm.

Table D-7 of Appendix D also presents the street storage stress test results based on a 20% increase in the 100-year storm, as per the October 2012 *City of Ottawa Sewer Design Guidelines*. As shown in Table D-7, the maximum depth of water (static + dynamic overflow) at any ponding area under these conditions is calculated as 48 cm. The maximum extent of surface water during the 100-year + 20% stress test will not touch the building envelopes, refer to DSEL drawings number 95-97 for the flood extent of these ponding depths.

An overland flow route is to be provided on Expansion Road in the subdivision to safely convey flows to the pond (Junction C144). This overflow has been set that the crest of the spill elevation and has been represented in the model as a 5m wide open rectangular cross-section. The curb cut and overland flow route are to be constructed as required to convey the 100-year major system flow without exceeding 35 cm during the 100-year storm, and without touching the building envelopes during the 100-year + 20% stress test. Based on the PCSWMM model the overland flow route will have a maximum normal flow depth of 5 cm during the 100-year 3-hour Chicago storm and 6 cm during the 100-year + 20% stress test. Table 1 presents a summary of the major system results simulated in PCSWMM during the 100-year Chicago storm.

Table 1: Summary of Major System Results for the 100-Yea

Table 1: Su		lajor System Resu	
Catch	Flow	Approach	Captured
Basin ID	Depth	Flow	Flow
Dasiii ID	(cm)	(m³/s)	(m³/s)
CB_001	20	0.032	0.021
CB 002	20	0.032	0.019
CB_003	28	0.222	0.099
CB_004	28	0.222	0.045
CB_005	21	0.132	0.044
CB_006	21	0.132	0.071
CB_007	10	0.180	0.038
CB_008	9	0.133	0.034
CB_009	9	0.133	0.034
CB_010	7	0.070	0.020
CB_010	7	0.070	0.020
CB_011	15	0.043	
			0.031
CB_013	15	0.043	0.018
CB_014	5	0.048	0.014
CB_015	5	0.048	0.014
CB_016	5	0.064	0.016
CB_017	9	0.747	0.195
CB_018	10	0.414	0.036
CB_019	10	0.453	0.034
CB_020	9	0.406	0.033
CB_021	27	0.120	0.033
CB_022	27	0.120	0.033
CB_023	13	0.085	0.021
CB_024	29	0.177	0.073
CB_025	29	0.177	0.046
CB_026	23	0.077	0.019
CB_027	23	0.077	0.024
CB_028	23	0.076	0.032
CB_029	23	0.076	0.019
CB_030	28	0.204	0.051
CB_031	28	0.204	0.073
CB 032	20	0.101	0.070
CB_033	20	0.101	0.019
CB_034	5	0.054	0.011
CB_035	4	0.056	0.012
CB_036	8	0.113	0.026
CB_037	8	0.113	0.026
CB_038	9	0.249	0.025
CB_039	25	0.190	0.033
CB_039	25	0.190	0.064
CB_040	7	0.190	0.023
CB_041 CB_042	7	0.112	
CB_042 CB_043			0.023
	9	0.192	0.030
CB_044	9	0.192	0.030
CB_045	27	0.197	0.089
CB_046	27	0.197	0.065
CB_047	29	0.307	0.090
CB_048	29	0.307	0.090
CB_049	27	0.168	0.045
CB_050	27	0.168	0.072
CB_051	29	0.192	0.073
CB_052	29	0.192	0.046
CB_053	10	0.496	0.033
CB_054	9	0.412	0.029
CB_055	12	0.428	0.042

Table 1: Summary of Major System Results for the 100-Yea

Table 1: Su		lajor System Resu	
Catch	Flow	Approach	Captured
Basin ID	Depth	Flow	Flow
Dasiii iD	(cm)	(m³/s)	(m³/s)
CB_056	9	0.130	0.030
CB_057	9	0.130	0.030
CB_058	10	0.273	0.039
CB_059	8	0.210	0.029
CB 060	8	0.210	0.029
CB 061	6	0.112	0.022
CB_062	6	0.112	0.022
CB_065	3	0.032	0.006
CB_066	6	0.047	0.016
CB_067	6	0.047	0.016
CB_068	6	0.074	0.017
CB_069	6	0.074	0.017
CB_070	6	0.067	0.018
CB_071	6	0.067	0.018
CB_071	6	0.133	0.020
CB_072	35	0.133	0.074
CB_073	35	0.278	0.067
CB_074	13	0.273	0.043
CB_076	13	0.273	0.043
CB_076	8	0.273	0.043
CB_077	28	0.204	0.029
	28	0.204	
CB_079 CB_080	35	0.225	0.029
	35		0.101
CB_081		0.225	0.091
CB_082	29	0.165	0.066
CB_083	29	0.165	0.100
CB_084	34	0.172	0.034
CB_085	34 21	0.172 0.141	0.046
CB_086	21	0.141	0.071
CB_087	31		0.044
CB_088 CB_089	31	0.109 0.109	0.020
			0.046
CB_090	4	0.058	0.011
CB_091	6	0.101	0.018
CB_092	6	0.101	0.018
CB_093	8	0.234	0.025
CB_095	9	0.135	0.036
CB_096	9	0.135	0.036
CB_097	6	0.059	0.018
CB_098	6	0.059	0.018
CB_099	27	0.146	0.045
CB_100	27	0.146	0.050
CB_101	3	0.016	0.004
CB_102	31	0.178	0.073
CB_103	31	0.178	0.020
CB_104	9	0.060	0.029
CB_105	9	0.060	0.029
CB_106	30	0.199	0.066
CB_107	30	0.199	0.100
CB_108	8	0.164	0.028
CB_109	6	0.152	0.023
CB_111	29	0.182	0.046
CB_112	9	0.062	0.028
CB_113	9	0.062	0.028
CB_114	26	0.181	0.072
	-		

Table 1: Summary of Major System Results for the 100-Yea

Table 1: 50		lajor System Resu						
Catch	Flow	Approach	Captured					
Basin ID	Depth	Flow	Flow					
	(cm)	(m³/s)	(m³/s)					
CB_115	26	0.181	0.072					
CB_116	12	0.071	0.043					
CB_118	19	0.059	0.027					
CB_119	19	0.059	0.024					
CB_120	19	0.112	0.070					
CB_121	19	0.112	0.044					
CB_123	12	0.071	0.048					
CB_124	16	0.050	0.035					
CB_125	16	0.050	0.018					
CB_126	19	0.069	0.021					
CB_127	19	0.069	0.032					
CB_128	10	0.180	0.038					
CB_129	6	0.045	0.015					
CB_130	6	0.045	0.015					
CB_131	11	0.402	0.037					
CB_201	0	0.012	0.012					
CB_203	11	0.103	0.020					
CB_204	0	0.014	0.014					
CB_205	14	0.146	0.048					
CB_206	16	0.090	0.021					
CB_207	16	0.086	0.021					
CB_208	0	0.018	0.018					
DCB_063	28	0.170	0.033					
DCB_064	28	0.170	0.051					
DCB_110	29	0.182	0.073					
DCB_117	5	0.160	0.082					
DCB_122	5	0.160	0.042					
DICB_1	22	0.052	0.019					
DICB_2	22	0.052	0.019					
DICB_3	25	0.097	0.025					
DICB_4	25	0.097	0.025					

4.2 Minor System and Hydraulic Grade line Analysis

The minor system analysis was completed using the PCSWMM program based on the peak flows captured during the rainfall events. Note that the storm sewer design is as provided by DSEL, and a Manning's roughness coefficient of 0.013 was used for concrete and PVC storm sewer pipes. Refer to Appendix C for maintenance hole loss coefficients used in the PCSWMM model.

The minor system performance was analyzed under restrictive downstream conditions. Restrictive downstream conditions for the pond are based on the approximate top of bank elevation of 92.5 m at the existing Borrisokane Road ditch that the storm sewer will outlet too. Table 2 presents the peak minor system outflows obtained with the above-mentioned simulations.

		inputition of training by		
	DSEL Rational	2-Year PCSWMM/	5-Year PCSWMM/	100-Year PCSWMM/
Location	Method Flow	SWMHYMO Flow	SWMHYMO Flow	SWMHYMO Flow
	(m^3/s)	(m^3/s)	(m^3/s)	(m^3/s)
MH 501 to Pond	1.028	2.924	3.966	5.175
MH 401 to Pond	4.787	2.836	4.252	5.737
Total (1)	5.815	5.76	8.218	10.912

Table 2: Comparison of Minor System Flows to the Pond

Table 2 shows that the total 2-year flows simulated by the PCSWMM/SWMHYMO models are similar to the values calculated by DSEL's Rational Method calculations. Although there is a difference in the individual flows calculated at MH 401 and MH 501 between the Rational method and PCSWMM results. This can be explained by the fact that these two branches will be connected upstream at MH 313 and MH 307 to make full use of the OGS units and minor system infrastructure; this connection has been represented in the PCSWMM modelling but not in the Rational Method calculations.

The PCSWMM/SWMHYMO simulations have determined that for the selected 2-, 5- and 100-year storms, the total minor system flows would be 5.76 m³/s, 8.218 m³/s and 10.912 m³/s, respectively. Note that the values above are simply a summation of peak flows from MH 501 and MH 401 and do not consider the timing of peaks. Although the 100-year flow will surcharge most parts of the minor system, a freeboard of 0.3 m between the 100-year hydraulic grade line and the underside of footings has been provided throughout the proposed development.

⁽¹⁾ The total flow is taken as the direct summation of peak inflows and does not consider the difference in the timing of peaks

The proposed development will provide 80% TSS removal through the use of 2 OGS units, that will treat runoff from high pollutant areas. The total area directed to the OGS units is equal to 60.42 ha, note this does not include the Pond Block or ABIC lands which would not contribute to the OGS. The two OGS units (manufacturer: CDS model: PMSU5668_10) will be implemented within this development downstream of MH 313 and MH 307. Each unit will have a total holding capacity of 25,960 L, a sump capacity of 8,896 L and an oil capacity of 4,435 L. Note that the two units are identical as the flow to each unit will be close to equal for a given event due to the upstream flow connection, and have been sized based on this consideration. Full details of the OGS unit sizing and specifications can be found in JFSA's July 2020 Pond Design Brief for the Ridge (Brazeau) subdivision. Refer to DSEL drawing sheet number 79 for detailed drawings of the proposed OGS units.

A portion of the Ridge development will also be treated for water quality via EES units that will capture and infiltrate runoff from local street roads. For full details regarding the EES units within the development refer to JFSA July 2020 LID Memo for the Ridge (Brazeau) Development. Catchbasins that capture runoff to these EES units will be fitted with Goss traps. It has been assumed that the surrounding future lands will have independent water quality measures on-site, whether that be by way of OGS or EES units or SWM ponds.

Tables C-1A and C-1E of Appendix C summarizes the pipe data and hydraulic simulation results for the 100-year 3-hour Chicago storm, 100-year 24-hour SCS Type II storm and the three historical events. Note that a minimum freeboard of 0.3 m between the hydraulic grade line and the underside of footings has been provided throughout the proposed developments for the 100-year storms, and a minimum freeboard of 0 m has been provided throughout the proposed development for the historical events. Additionally, note that the majority of the flowing full pipe velocities are no less than 0.80 m/s and no greater than 3.0 m/s for all proposed pipes with the exception of 4 locations. Where velocities over 3.0 m/s are proposed, provisions shall be made to protect against displacement of sewers by sudden jarring or movement. Velocities greater than 6 m/s are not permitted.

Table C-1F of Appendix C presents the climate change stress test results for the hydraulic grade line analysis based on a 20% increase in the 100-year storm, as per the October 2012 *City of Ottawa Sewer Design Guidelines*. Under these conditions, no locations within the proposed developments have a USF freeboard less than 0 m.

Table 3 presents the composite hydraulic grade line results for the 100-year 3-hour Chicago and 100-year 24-hour SCS Type II design storms. Note to simplify this analysis, the highest HGL and the lowest USF on a single pipe length are compared, if it is found that the freeboard between these two locations is either less than 0.3m or less than 0.0m this location is flagged yellow or red respectively. This flag then initiates a detailed analysis for this segment, where the HGL is interpolated along the full length of the pipe and then compared with the individual USF along with the distance, to confirm whether there is an HGL issue along that segment.

U/S	D/S	Max.	Max.	Lot	USF	Freeboard		nterpolated F	lGL
MH	MH	U/S	D/S	Number		(2)	Length	Dist. From	HGL
		HGL	HGL				HGL	D/S MH	
		(m)	(m)		(m)	(m)	(m)	(m)	(m)
MH_401	POND	96.930	96.730	#N/A	#N/A	#N/A			
MH_501	POND	96.920	96.730	#N/A	#N/A	#N/A			
MH_1002	MH_1003	95.200	94.592	#N/A	#N/A	#N/A			
MH_1003	MH_1004	94.592	93.316	#N/A	#N/A	#N/A			
MH_1004	MH_1005	93.316	92.923	#N/A	#N/A	#N/A			
MH_1005	MH_1006	92.923	92.831	#N/A	#N/A	#N/A			
MH_1006	MH_1007	92.831	92.740	#N/A	#N/A #N/A	#N/A			
MH_1007	MH_1008	92.740	92.580	#N/A	#N/A #N/A	#N/A #N/A			
MH_1008	MH_1009	92.580	92.500	#N/A	#N/A	#N/A			
MH_101 MH_102	MH_102 MH_103	100.935 100.197	100.197 99.575	174-2 172-5	101.41 100.47	0.475 0.273			
IVII 1_ 1 U Z	IVIII_103	100.197	99.575	172-5	100.47	0.822	59.0	6.9	99.648
				172-3	100.47	1.014	59.0 59.0	18.1	99.766
				173-1	100.78	0.930	59.0	26.1	99.850
				173-3	100.70	1.174	59.0	33.3	99.926
				173-4	101.1	1.090	59.0	41.3	100.010
				173-4	101.1	1.009	59.0	48.9	100.010
				174-1	101.41	1.241	59.0	56.3	100.169
MH 103	MH_104	99.575	99.245	169-2	99.81	0.235	33.0	55.5	
				169-2	99.81	0.558	120.0	2.7	99.252
				169-3	99.81	0.538	120.0	10	99.273
				169-4	99.81	0.516	120.0	18	99.295
				170-1	99.93	0.606	120.0	28.6	99.324
				170-2	99.93	0.584	120.0	36.6	99.346
				170-3	99.93	0.563	120.0	44.2	99.367
				171-1	99.99	0.594	120.0	54.9	99.396
				171-2	99.99	0.572	120.0	62.9	99.418
				171-3	99.99	0.552	120.0	70.1	99.438
				171-4	99.99	0.530	120.0	78.1	99.460
				172-1	100.47	0.961	120.0	96.1	99.509
				172-2	100.47	0.939	120.0	104.1	99.531
				172-3	100.47	0.919	120.0	111.3	99.551
1411 404	1411 400	00.045		172-4	100.47	0.903	120.0	117	99.567
MH_104	MH_106	99.245	99.115	169-1	99.81	0.565			
MH_105	MH_106	100.002	99.115	148	100.03	0.028	04.0	40.0	00.000
				148	100.03	0.792	91.0	12.6	99.238
				147	100.16	0.803	91.0	24.8	99.357
				146 145	100.3	0.844	91.0	35 46.2	99.456 99.565
				145 144	100.42 100.56	0.855 0.856	91.0 91.0	46.2 60.4	99.565 99.704
				144	100.56	1.092	91.0	74.2	99.704 99.838
				143	100.93	1.518	91.0	88.9	99.838
MH_106	MH_116	99.115	98.880	166-1	99.53	0.415	31.0	50.9	00.002
MH_107	MH_108	99.460	99.478	176-1	100.1	0.640			
MH_107	MH_112	99.460	99.411	185-1	99.89	0.430			
MH_108	MH_110	99.478	99.456	175-1	100.15	0.672			
MH_109	MH_110	99.691	99.456	164-2	100.01	0.319			
				164-2	100.01	0.549	60.0	1.2	99.461
				164-3	100.25	0.768	60.0	6.7	99.482
				164-4	100.25	0.736	60.0	14.7	99.514
				165-1	100.42	0.865	60.0	25.3	99.555
				165-2	100.93	1.345	60.0	32.9	99.585
				165-3	100.93	1.314	60.0	40.9	99.616
MH_110	MH_111	99.456	99.235	162-1	99.69	0.234			
				188-4	99.86	0.619	75.0	2	99.241
				162-1	99.69	0.436	75.0	6.3	99.254

U/S	D/S	Max.	Max.	Lot	USF	Freeboard		nterpolated H	lGL
MH	MH	U/S	D/S	Number		(2)	Length	Dist. From	HGL
		HGL	HGL				HGL	D/S MH	
		(m)	(m)	400.0	(m)	(m)	(m)	(m)	(m)
				188-3 162-2	99.86 99.69	0.598 0.413	75.0 75.0	9.2 14.3	99.262 99.277
				188-2	99.86	0.413	75.0 75.0	14.3 17.2	99.277
				162-3	99.69	0.391	75.0 75.0	21.6	99.299
				188-1	99.86	0.552	75.0	24.8	99.308
				162-4	99.69	0.362	75.0	31.6	99.328
				187-4	99.86	0.520	75.0	35.5	99.340
				163-1	99.77	0.417	75.0	40.2	99.353
				187-3	99.86	0.497	75.0	43.5	99.363
				163-2	99.77	0.394	75.0	47.8	99.376
				187-2	99.86	0.476	75.0	50.7	99.384
				163-3 187-1	99.77 99.86	0.371 0.452	75.0 75.0	55.8 58.7	99.399 99.408
				164-1	100.01	0.432	75.0 75.0	66.5	99.408
MH_111	MH_115	99.235	99.046	159-1	99.58	0.345	70.0	00.0	00. 1 01
MH_112	MH_113	99.411	99.214	183-1	99.74	0.329			
MH_113	MH_114	99.214	99.146	181-1	99.85	0.636			
MH_1	MH_133	98.777	98.629	Est. Fut	99.86	1.083			
MH_114	MH_115	99.146	99.046	182-1	99.58	0.434			
MH_115	MH_116	99.046	98.880	157-1	99.46	0.414			
MH_116	MH_117	98.880	98.727	30	99.32	0.440			
MH_117	MH_118	98.727	98.545	20 18	99.11 99.18	0.383 0.628	121.0	4.4	98.552
				2	99.16	0.603	121.0	7.7	98.557
				406	99.18	0.611	121.0	16.1	98.569
				404	99.18	0.604	121.0	20.3	98.576
				407	99.16	0.576	121.0	25.7	98.584
				405	99.18	0.589	121.0	30.5	98.591
				19	99.16	0.558	121.0	37.9	98.602
				3	99.14	0.534	121.0	40.7	98.606
				20	99.11	0.493	121.0	48.1	98.617
				4 21	99.14 99.12	0.518 0.486	121.0 121.0	51.2 59.3	98.622 98.634
				5	99.12	0.480	121.0	62.1	98.638
				22	99.21	0.557	121.0	71.5	98.653
				6	99.23	0.575	121.0	73.3	98.655
				23	99.22	0.550	121.0	82.9	98.670
				7	99.24	0.563	121.0	87.8	98.677
				24	99.28	0.589	121.0	97.3	98.691
				8	99.31	0.610	121.0	102.8	98.700
				25 9	99.36 99.4	0.645 0.677	121.0 121.0	113.1 118.2	98.715 98.723
MH_118	MH_136	98.545	98.434	#N/A	#N/A	#N/A	121.0	110.2	30.123
MH_119	MH_120	100.114	99.688	101	100.65	0.536			
MH_119	MH_122	100.114	99.693	#N/A	#N/A	#N/A			
MH_120	MH_121	99.688	99.310	116	101.03	1.342			
MH_121	MH_132	99.310	98.588	106	99.54	0.230			
				106	99.54	0.906	114.0	7.2	98.634
				107	99.71	0.999	114.0	19.4	98.711
				108	99.88	1.098	114.0	30.6	98.782
				109 110	100.05 100.15	1.204	114.0 114.0	40.8 53.4	98.846 98.926
				110 111	100.15	1.224 1.322	114.0	53.4 64.8	98.926 98.998
				112	100.32	1.322	114.0	04.6 77	96.996 99.076
				113	100.40	1.423	114.0	88.2	99.147
				114	100.57	1.359	114.0	98.4	99.211

U/S	D/S	Max.	Max.	Lot	USF	Freeboard	I	nterpolated F	HGL
MH	MH	U/S	D/S	Number		(2)	Length	Dist. From	HGL
		HGL	HGL				HGL	D/S MH	
		(m)	(m)		(m)	(m)	(m)	(m)	(m)
				115	100.65	1.373	114.0	108.8	99.277
MH_122	MH_123	99.663	99.517	131	100.61	0.947			
MH_123	MH_127	99.517	99.112	135	99.89	0.373			
MH_124	MH_125	99.469	99.331	72 82	99.77 99.89	0.301 0.552	101.0	5.4	99.338
				69	99.84	0.332	101.0	8.4	99.342
				70	99.78	0.424	101.0	18.6	99.356
				81	99.89	0.532	101.0	19.6	99.358
				71	99.78	0.408	101.0	29.7	99.372
				80	99.92	0.547	101.0	31	99.373
				72	99.77	0.384	101.0	39.9	99.386
				79	100.04	0.645	101.0	46.9	99.395
				73	99.82	0.419	101.0	51.1	99.401
				78	100.04	0.635	101.0	54.4	99.405
				74 77	99.88	0.465	101.0	61.3	99.415
				77 413	100 99.93	0.581 0.499	101.0 101.0	64.6 73.4	99.419 99.431
				413	99.93 100.08	0.499 0.646	101.0	73.4 75.2	99.431 99.434
				412	99.98	0.537	101.0	82.3	99.443
				414	100.1	0.651	101.0	86.4	99.449
				75	99.98	0.521	101.0	94	99.459
				76	100.16	0.695	101.0	98.1	99.465
MH_125	MH_127	99.331	99.112	65	99.58	0.249			
				88	99.82	0.670	91.5	16	99.150
				63	99.59	0.438	91.5	16.6	99.152
				87	99.82	0.637	91.5	29.7	99.183
				64	99.59	0.405	91.5	30.3	99.185
				86 65	99.65 99.58	0.440 0.363	91.5 91.5	41.1 43.9	99.210 99.217
				85	99.74	0.303	91.5	43.9 55.5	99.217
				66	99.69	0.438	91.5	58.6	99.252
				84	99.76	0.477	91.5	71.3	99.283
				67	99.78	0.490	91.5	74.4	99.290
				83	99.89	0.573	91.5	85.7	99.317
				68	99.84	0.515	91.5	88.8	99.325
MH_126	MH_127	100.307	99.112	#N/A	#N/A	#N/A			
MH_127	MH_128	99.112	99.004	47 45	99.56	0.448			
MH_128	MH_129	99.004	98.958	45 42	99.49	0.486			
MH_129 MH_130	MH_130 MH_131	98.958 98.842	98.842 98.616	43 33	99.41 99.18	0.452 0.338			
MH 1302	MH 302	98.440	98.370	Est. Fut	99.16	0.336			
MH_1303	MH_303	98.435	98.291	Est. Fut	99.30	0.920			
MH_1304	MH_304	98.185	98.086	Est. Fut	98.86	0.675			
MH_131	MH_132	98.616	98.588	#N/A	#N/A	#N/A			
MH_1312	MH_310	97.937	97.853	Est. Fut	99.14	1.203			
MH_132	MH_136	98.588	98.434	103	99.33	0.742			
MH_133	MH_134	98.629	98.573	#N/A	#N/A	#N/A			
MH_134	MH_135	98.573	98.511	#N/A	#N/A	#N/A			
MH_135	MH_136	98.511	98.434	#N/A	#N/A	#N/A			
MH_136	MH_302	98.434	98.370	1	99.38	0.946			
MH_201	MH_202	105.434	104.453	321	105.28	-0.154	110.5	0 5	104 500
				321 430	105.28 107.31	0.757 2.770	119.5 119.5	8.5 10.6	104.523 104.540
				430	107.31	2.770	119.5	16.3	104.540
				428	107.37	0.725	119.5	22.2	104.635
				233	107.4	2.705	119.5	29.5	104.695
						55			

U/S	D/S	Max.	Max.	Lot	USF	Freeboard	I	nterpolated F	lGL
MH	MH	U/S	D/S	Number		(2)	Length	Dist. From	HGL
		HGL	HGL				HGL	D/S MH	
		(m)	(m)	400	(m)	(m)	(m)	(m)	(m)
				429 234	105.37 107.46	0.658 2.718	119.5 119.5	31.5 35.2	104.712 104.742
				320	107.40	0.638	119.5	43.7	104.742
				235	107.5	2.655	119.5	47.7	104.845
				319	105.56	0.657	119.5	54.8	104.903
				236	107.62	2.716	119.5	54.9	104.904
				318	105.66	0.673	119.5	65	104.987
				237	107.69	2.685	119.5	67.3	105.005
				238	107.8	2.748	119.5	73	105.052
				317 239	105.77 107.87	0.691 2.709	119.5 119.5	76.2 86.2	105.079 105.161
				316	107.87	0.721	119.5	88.4	105.101
				240	107.99	2.783	119.5	91.9	105.173
				315	106.02	0.748	119.5	99.8	105.272
				241	108.06	2.744	119.5	105.1	105.316
				242	108.16	2.797	119.5	110.8	105.363
				314	106.13	0.741	119.5	114	105.389
MH_202	MH_203	104.453	104.385	230	105.39	0.937			
MH_203 MH_204	MH_206 MH_205	104.385 103.979	103.787 103.873	225 285	104.9 104.64	0.515 0.661			
MH_205	MH_206	103.979	103.787	#N/A	#N/A	#N/A			
MH_206	MH_207	103.787	103.339	221	104.52	0.733			
MH_207	MH_208	103.339	103.021	219	104.39	1.051			
MH_208	MH_215	103.021	101.393	212	102.46	-0.561			
				271	102.46	0.938	112.0	8.9	101.522
				212	102.46	0.882	112.0	12.7	101.578
				270 213	102.67 102.68	0.941 0.927	112.0 112.0	23.1 24.8	101.729 101.753
				213	102.89	0.927	112.0	35	101.733
				269	102.93	1.015	112.0	35.9	101.915
				215	103.1	1.035	112.0	46.2	102.065
				268	103.18	1.099	112.0	47.3	102.081
				216	103.36	1.118	112.0	58.4	102.242
				267	103.42	1.162	112.0	59.5	102.258
				217	103.62	1.212	112.0	69.8	102.408
				266 423	103.68 103.94	1.259 1.371	112.0 112.0	70.7 80.9	102.421 102.569
				421	103.94	1.245	112.0	82	102.585
				422	104.04	1.310	112.0	92	102.730
				420	104.04	1.294	112.0	93.1	102.746
				265	104.35	1.450	112.0	103.7	102.900
NUL OCC	L MIL OC.	10= 0==	10= 1= :	218	104.3	1.372	112.0	105.6	102.928
MH_209	MH_201	105.833	105.434	313	106.24	0.407			
MH_209 MH_210	MH_210 MH_212	105.833 105.596	105.596 103.579	254 258	108.31 105.12	2.477 -0.476			
1411 1_2 10	1411 1_4 14	100.000	100.013	258	105.12	0.955	54.0	15.7	104.165
				257	105.54	0.938	54.0	27.4	104.602
				256	106.05	1.025	54.0	38.7	105.025
NALL O44	NALL 040	404040	400.570	255	106.58	1.178	54.0	48.8	105.402
MH_211	MH_212	104.040 103.579	103.579	#N/A	#N/A 104.71	#N/A 1.131			
MH_212 MH_212	MH_204 MH_213	103.579	103.979 103.233	284 203	104.71 104.1	0.521			
MH_213	MH_214	103.379	103.253	203	104.1	0.321			
MH_214	MH_215	103.053	101.393	272	102.37	-0.683			
				272	102.37	0.841	90.0	7.4	101.529
				211	102.46	0.776	90.0	15.8	101.684

U/S	D/S	Max.	Max.	Lot	USF	Freeboard		Interpolated H	HGL
MH	MH	U/S	D/S	Number		(2)	Length	Dist. From	HGL
		HGL	HGL				HGL	D/S MH	
		(m)	(m)		(m)	(m)	(m)	(m)	(m)
				273	102.59	0.799	90.0	21.6	101.791
				210	102.68	0.771	90.0	28	101.909
				274	102.86	0.788	90.0	36.8	102.072
				209	102.89	0.792	90.0	38.2	102.098
				275	103.11	0.828	90.0	48.2	102.282
				208	103.15	0.846	90.0	49.4	102.304
				276 207	103.37 103.4	0.863 0.834	90.0 90.0	60.4 63.6	102.507 102.566
				207 277	103.4	0.634	90.0	67.9	102.566
				206	103.55	0.884	90.0	75	102.043
				278	103.55	0.613	90.0	83.7	102.770
				205	103.83	0.860	90.0	85.5	102.970
MH_215	MH_119	101.393	100.114	#N/A	#N/A	#N/A	00.0	66.6	102.010
MH_216	MH_217	105.511	105.093	346	105.85	0.339			
MH_217	MH_218	105.093	104.927	356	105.71	0.617			
MH_218	MH_220	104.927	104.166	357	105.75	0.823			
MH_219	MH_220	105.649	104.166	#N/A	#N/A	#N/A			
MH_220	MH_224	103.894	102.523	259	104.74	0.846			
MH_221	MH_222	103.088	102.811	396-1	103.56	0.472			
MH_222	MH_223	102.811	102.698	366-1	103.37	0.559			
MH_2	MH_2260	102.506	102.126	Est. Fut	103.49	0.984			
MH_223	MH_224	102.698	102.523	365-1	103.42	0.722			
MH_224	MH_105	102.025	100.067	141	101.9	-0.125		T	
				141	101.9	1.561	82.0	11.4	100.339
				140	102.18	1.502	82.0	25.6	100.678
				139	102.55	1.602	82.0	36.9	100.948
				138	102.92	1.728	82.0	47.1	101.192
				137 136	103.3 103.81	1.843 2.029	82.0 82.0	58.2 71.8	101.457 101.781
MH_225	MH_226	103.572	103.053	388-3	103.75	0.178	02.0	71.0	101.761
IVII 1_223	WII 1_220	103.372	103.033	389-2	103.75	0.667	99.5	5.8	103.083
				389-1	103.75	0.610	82.0	13.8	103.140
				388-3	103.75	0.543	82.0	24.4	103.207
				388-2	103.88	0.624	82.0	32.1	103.256
				388-1	103.88	0.573	82.0	40.1	103.307
				387-4	104.02	0.646	82.0	50.7	103.374
				387-3	104.02	0.595	82.0	58.7	103.425
				387-2	104.02	0.550	82.0	65.9	103.470
				387-1	104.02	0.499	82.0	73.9	103.521
MH_2260	MH_227	102.126	101.119	392-1	102.46	0.334			
MH_226	MH_2260	103.053	102.126	391-3	103.08	0.027	04.0	0.0	400 450
				391-3	103.08	0.921	64.0	2.3	102.159
				391-2	103.45	1.185	64.0	9.6	102.265
				391-1	103.45	1.069	64.0	17.6	102.381
				390-3 390-2	103.58 103.58	1.046 0.930	64.0 64.0	28.2 36.2	102.534 102.650
				390-2 390-1	103.58	0.930	64.0 64.0	36.2 43.8	102.650
				389-4	103.56	0.835	64.0	43.6 54.5	102.760
				389-3	103.75	0.833	64.0	62.5	102.913
MH_227	MH_109	101.119	99.691	394-3	100.86	-0.259	3	02.0	
			20.001	394-4	100.86	0.874	93.0	19.2	99.986
				394-3	100.86	0.751	93.0	27.2	100.109
				394-2	101.26	1.039	93.0	34.5	100.221
				394-1	101.26	0.916	93.0	42.5	100.344
				393-3	101.49	0.968	93.0	54.1	100.522
				393-2	101.81	1.172	93.0	61.7	100.638
							_	_	

U/S	D/S	Max.	Max.	Lot	USF	Freeboard		nterpolated F	HGL
MH	MH	U/S	D/S	Number		(2)	Length	Dist. From	HGL
		HGL	HGL				HGL	D/S MH	
		(m)	(m)		(m)	(m)	(m)	(m)	(m)
				393-1	101.81	1.049	93.0	69.7	100.761
				392-4	102.21	1.269	93.0	81.4	100.941
MH_228	MH_229	102.612	101.073	392-3 384-3	102.21 102.12	1.146 -0.492	93.0	89.4	101.064
IVII 1_220	1011 1_229	102.012	101.073	384-3	102.12	0.997	74.5	2.4	101.123
				379-2	102.14	0.997	74.5	3.4	101.143
				384-4	102.12	0.832	74.5	10.4	101.288
				379-1	102.14	0.832	74.5	11.4	101.308
				385-1	102.35	0.843	74.5	21	101.507
				378-3	102.57	1.043	74.5	22	101.527
				385-2	102.65	0.986	74.5	28.6	101.664
				378-2	102.67	0.983	74.5	29.7	101.687
				385-3	102.65	0.821	74.5	36.6	101.829
				378-1 386-1	102.67 102.73	0.818 0.680	74.5 74.5	37.7 47.3	101.852 102.050
				377-4	102.73	0.860	74.5 74.5	47.3 48.3	102.030
				386-2	103.02	0.865	74.5	55.3	102.071
				377-3	103.28	1.044	74.5	56.3	102.236
				377-2	103.34	0.955	74.5	63.5	102.385
				377-1	103.34	0.790	74.5	71.5	102.550
MH_229	MH_102	101.073	100.197	381-1	101.35	0.277			
				382-1	101.52	1.184	86.5	13.7	100.336
				381-4	101.35	1.004	86.5	14.7	100.346
				382-2	101.52	1.103	86.5	21.7	100.417
				381-3	101.35	0.923	86.5	22.7 28.9	100.427
				382-3 381-2	101.52 101.35	1.030 0.849	86.5 86.5	30	100.490 100.501
				382-4	101.52	0.049	86.5	36.9	100.501
				381-1	101.35	0.768	86.5	38	100.582
				383-1	101.62	0.941	86.5	47.6	100.679
				380-3	101.59	0.901	86.5	48.6	100.689
				383-2	101.62	0.860	86.5	55.6	100.760
				380-2	101.59	0.820	86.5	56.6	100.770
				383-3	101.62	0.783	86.5	63.2	100.837
				380-1	101.59	0.743	86.5	64.2	100.847
				384-1 379-4	101.95	1.006	86.5 86.5	73.8 74.9	100.944 100.956
				379-4 384-2	101.96 101.95	1.004 0.925	86.5	81.8	100.936
				379-3	101.96	0.923	86.5	82.9	101.023
MH_230	MH_231	102.557	100.982	374-3	102.03	-0.527	00.0	02.0	1011001
_	_			374-3	102.03	0.994	73.5	2.5	101.036
				368-3	102.24	1.151	73.5	5	101.089
				374-4	102.03	0.823	73.5	10.5	101.207
				368-2	102.24	0.979	73.5	13	101.261
				368-1	102.24	0.817	73.5	20.6	101.423
				375-1	102.4	0.964	73.5	21.2	101.436
				375-2 367-3	102.57 102.71	0.971 1.057	73.5 73.5	28.8 31.3	101.599 101.653
				367-3 375-3	102.71	0.799	73.5 73.5	31.3 36.8	101.653
				367-2	102.37	0.799	73.5	39.3	101.771
				367-1	102.71	0.723	73.5	46.9	101.987
				376-1	103	1.002	73.5	47.4	101.998
				376-2	103	0.831	73.5	55.4	102.169
				376-3	103.37	1.044	73.5	62.7	102.326
				376-4	103.37	0.873	73.5	70.7	102.497
MH_231	MH_103	100.982	99.575	371-1	100.56	-0.422			

U/S	D/S	Max.	Max.	Lot	USF	Freeboard	ı	Interpolated HGL			
MH	MH	U/S	D/S	Number		(2)	Length	Dist. From	HGL		
		HGL	HGL				HĞL	D/S MH			
		(m)	(m)		(m)	(m)	(m)	(m)	(m)		
				371-3	100.56	0.775	87.0	13	99.785		
				372-1	100.95	1.150	87.0	13.9	99.800		
				371-2	100.56	0.645	87.0	21	99.915		
				372-2	100.95	1.021	87.0	21.9	99.929		
				371-1	100.56	0.522	87.0	28.6	100.038		
				372-3	100.95	0.903	87.0	29.2	100.047		
				372-4	100.95	0.773	87.0	37.2	100.177		
				370-3	101.09	0.879	87.0	39.3	100.211		
				370-2	101.09	0.750	87.0	47.3	100.340		
				373-1	100.97	0.622	87.0	47.8	100.348		
				370-1	101.09	0.627	87.0	54.9	100.463		
				373-2	101.32	0.843	87.0	55.8	100.477		
				373-3	101.32	0.720	87.0	63.4	100.600		
				369-3	101.61	0.976	87.0	65.5	100.634		
				369-2	101.61	0.846	87.0	73.5	100.764		
				374-1	101.56	0.787	87.0	74.1	100.773		
				369-1	101.61	0.722	87.0	81.2	100.888		
MII. 000	MIL 000	00.070	00.004	374-2	101.56	0.657	87.0	82.1	100.903		
MH_302	MH_303	98.370	98.291	#N/A	#N/A	#N/A #N/A					
MH_303	MH_304	98.291	98.086	#N/A	#N/A	#N/A					
MH_304	MH_306TEE	98.086	97.813	#N/A	#N/A	#N/A					
MH_306TEE	MH_307	97.813 97.449	97.550 97.550	#N/A	#N/A #N/A	#N/A #N/A					
MH_313 MH_307	MH_307 MH_400	97.449 97.550	97.530 97.537	#N/A #N/A	#N/A #N/A	#N/A #N/A					
MH_309	MH_310	97.550 97.979	97.853	#N/A #N/A	#N/A #N/A	#N/A #N/A					
MH_310	MH_311	97.853	97.779	#N/A #N/A	#N/A #N/A	#N/A #N/A					
MH_3	MH_109	99.716	99.691	#N/A	#N/A	#N/A					
MH_3111TEE	MH_312	97.671	97.526	#N/A	#N/A	#N/A					
MH_311	MH_3111TEE	97.779	97.671	#N/A	#N/A	#N/A					
MH_312	MH_313	97.526	97.449	#N/A	#N/A	#N/A					
MH_313	MH 500	97.449	97.416	#N/A	#N/A	#N/A					
MH_400	OGS_1	97.537	97.517	#N/A	#N/A	#N/A					
OGS_1	OGS_1-Out	97.517	97.265	#N/A	#N/A	#N/A					
OGS_1-Out	MH_401	97.265	96.930	#N/A	#N/A	#N/A					
MH_4	MH_104 99		99.245	#N/A	#N/A	#N/A					
MH_500	OGS_2	97.416	97.406	#N/A	#N/A	#N/A					
OGS_2	OGS_2-Out			#N/A	#N/A	#N/A					
OGS_2-Out	MH_501	97.174	96.920	#N/A	#N/A	#N/A					

⁽²⁾ Conservative estimate of freeboard based on U/S HGL and lowest USF connected to pipe. Actual HGL / freeboard at all connecting lots interpolated where conservative estimate does not meet freeboard requirements.

 $^{^{(3)}}$ Future USF elevations estimated as 1.8 m below the upstream top of manhole elevations.

5 EROSION AND SEDIMENT CONTROL DURING AND AFTER CONSTRUCTION

Silt and erosion control strategies shall be implemented during construction activities to minimize the transfer of silt off-site. The following measures should be implemented:

- i) Silt control fences shall be installed as required to prevent the movement of silt off-site during rainfall events.
- ii) Construction of a mud mat shall be installed at the site entrance to promote self-cleaning of truck tires when leaving the site.
- iii) All catch basins shall be equipped with a crushed stone filter to prevent the capture of silt in the storm sewer system.
- iv) Regular cleaning of the adjacent roads shall be undertaken during the construction activities.
- v) Regular inspection and maintenance of the silt control measures shall be undertaken until the site has been stabilized.
- vi) The erosion and sediment control devices shall be removed after the site has been stabilized.

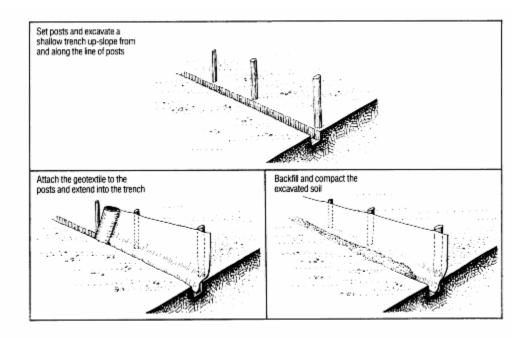
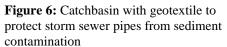



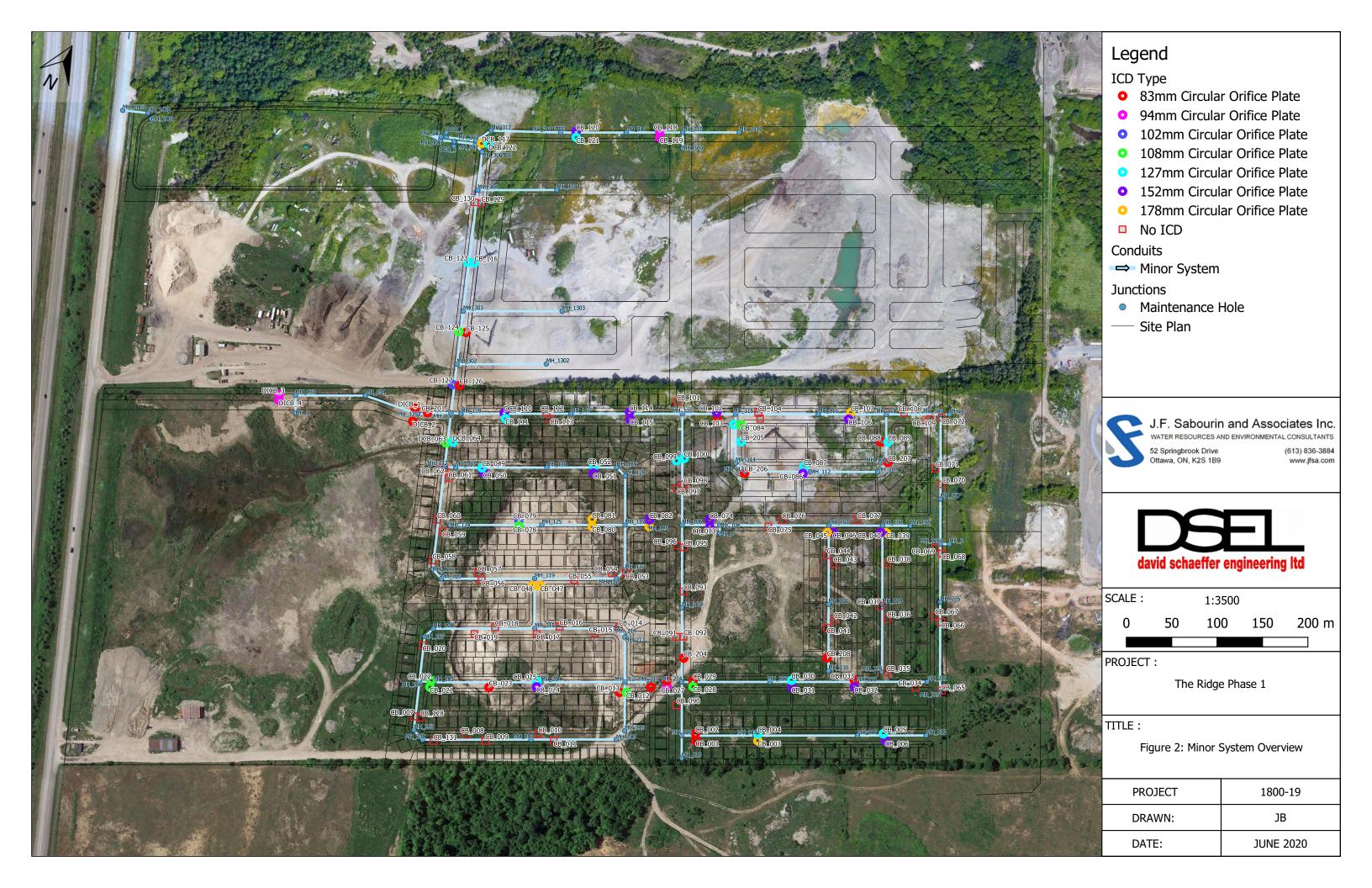
Figure 5: Typical installation of silt fences

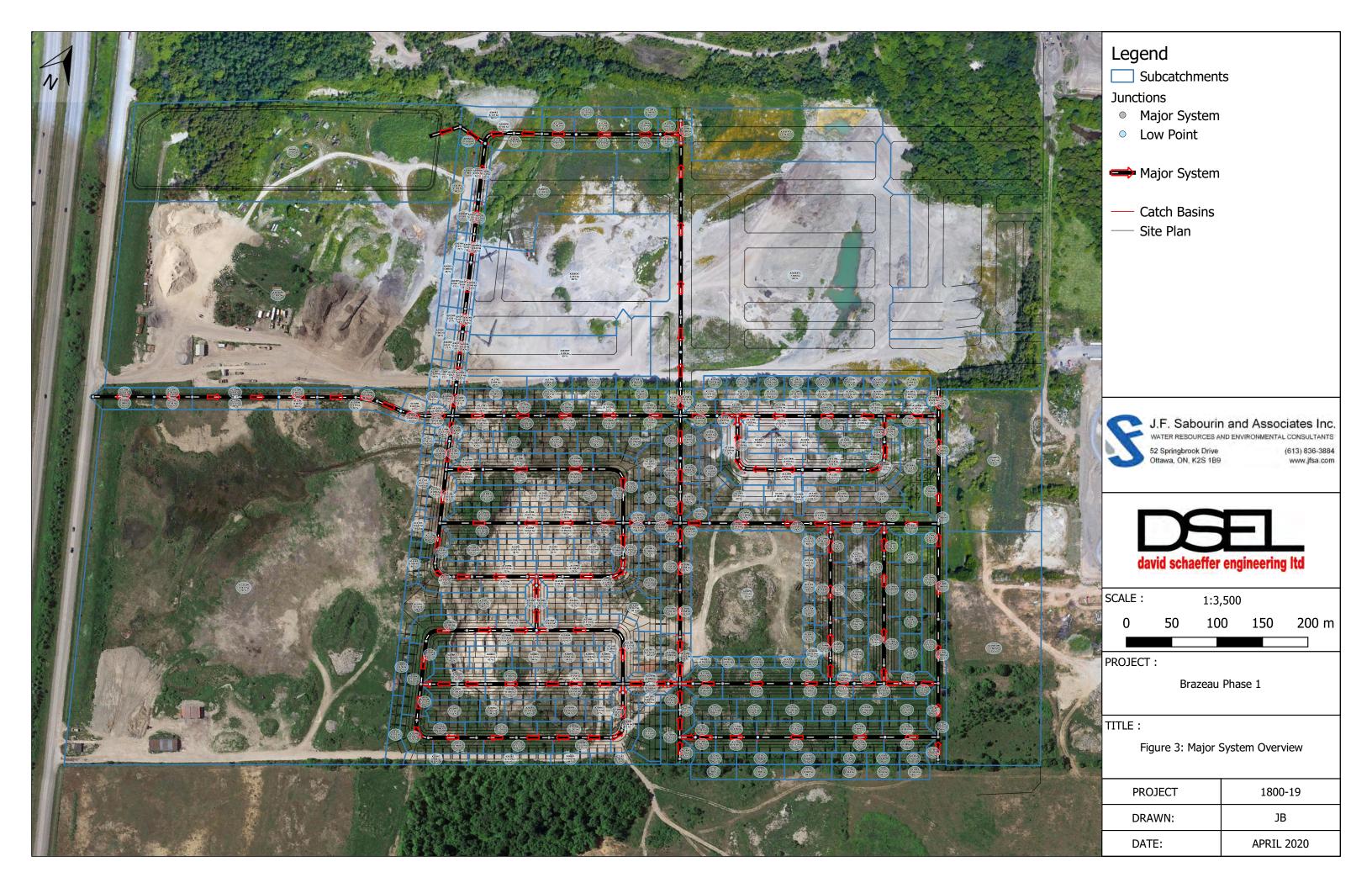
6 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

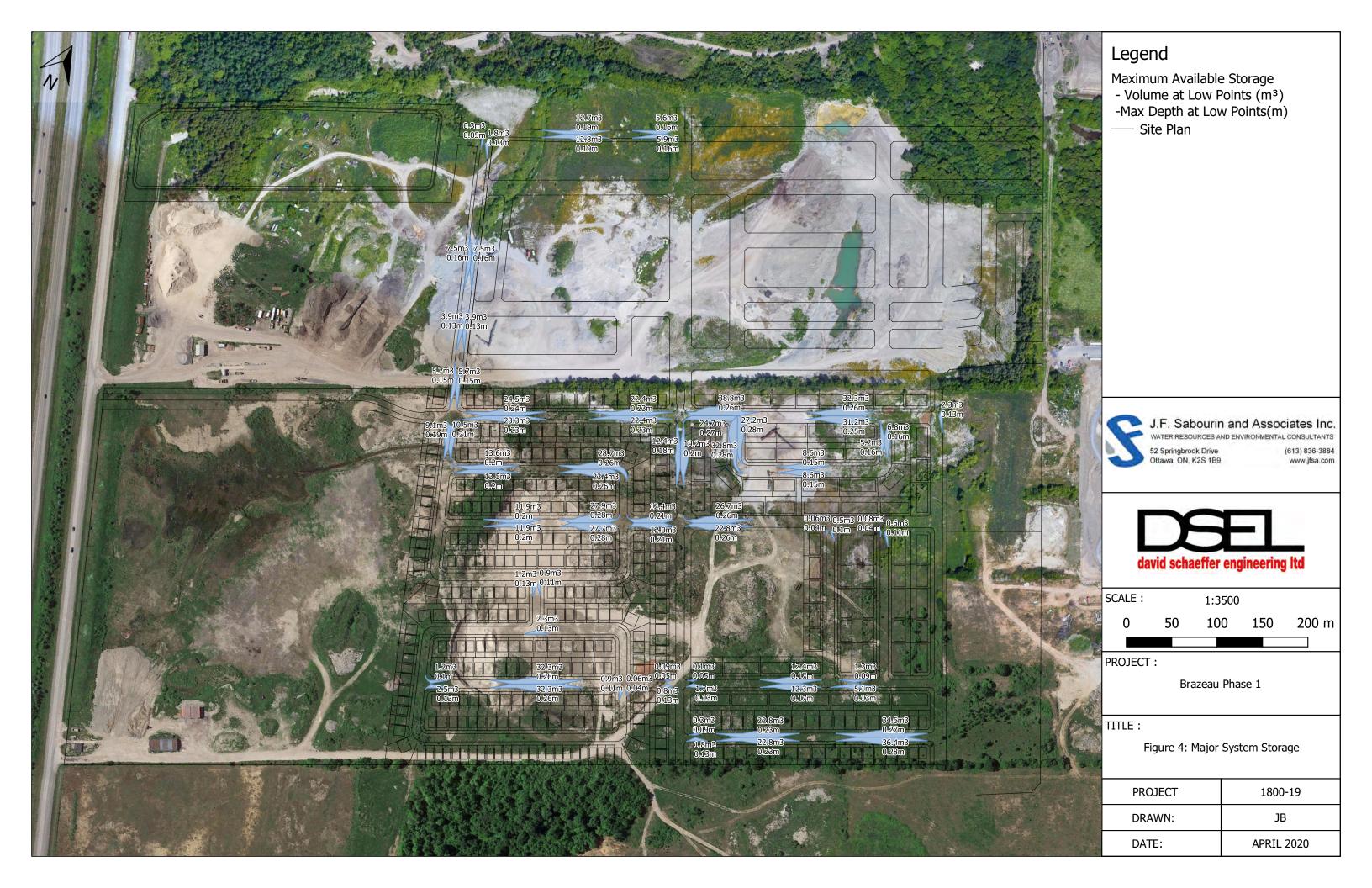
The Ridge (Brazeau) development is in the City of Ottawa, east of Borrisokane and Highway 416, and south of Cambrian Road. The development has a total drainage area of 37.03 ha, which will be treated by two oil-and-grit separators for quality control, which then discharges to a dry SWM pond. The dry SWM pond discharges to the Jock River through an existing ditch running north, parallel to Borrisokane Road. The development will also have Etobicoke Exfiltration Systems (EES) implemented within this subdivision. These EES will be installed within local roadways of the subdivision, to exfiltrate runoff from the development for the more frequent events.

Per the City of Ottawa design guidelines, the minor system has been designed to accommodate a minimum of the 2-year post-development flows from within the site and from external areas (plus 5-year flows on collector and 10-year flows on arterial roads). The combined SWMHYMO / PCSWMM model analyses have determined that the minor system will surcharge in most parts of the system. However, with the use of Inlet Control Devices, a minimum freeboard of 0.3 m is provided between the 100-year hydraulic grade line and the underside of footings throughout the subdivision.

The PCSWMM/SWMHYMO simulations have determined that for the selected 2-, 5- and 100-year storms, the total minor system flows would be 5.76 m³/s, 8.218 m³/s and 10.912 m³/s, respectively.


Within the subdivision, the peak water depths do not exceed the maximum allowable 35 cm depth at the gutter for the simulated 100-year storm (Table D-7 of Appendix D). Furthermore, it was determined that for the 100-year event, the product of the velocity and depth of flow does not exceed the maximum allowable $0.60~\text{m}^2/\text{s}$. Also as required, the maximum extent of surface water during the 100-year + 20% stress test will not touch the building envelopes.


Table C-1A- C1F of Appendix C summarizes the hydraulic grade line analysis for the various storm. Note that the full pipe velocities are generally no less than 0.80 m/s and no greater than 3.0 m/s for the proposed pipes. Where velocities over 3.0 m/s are proposed, provisions shall be made to protect against displacement of sewers by sudden jarring or movement.


Stress test results for the major and minor drainage systems based on a 20% increase in the 100-year storm, as per the October 2012 *City of Ottawa Sewer Design Guidelines*, are summarized in Section 4.

Recommendations for silt and erosion control strategies to be implemented during construction are presented in Section 6.

In conclusion, the proposed design satisfies all selected design guidelines and requirements.

Rational Method Design Sheets (as per DSEL)

Water Resources and **Environmental Consultants**

STORM SEWER CALCULATION SHEET (RATIONAL METHOD) Local Roads Return Frequency = 2 years

Collector Roads Return Frequency = 5 years Arterial Roads Return Frequency = 10 years

Manning 0.013			Roads Retur oads Return																									111		MVV	1
		7 II terrar Te	ouds Return	11 requency	- 10 years				AREA (Ha)										FL	LOW							SEWER DAT	Ā			
LOCA	TION		2 Y	'EAR			5 Y	EAR		10 YI	EAR			100	YEAR		Time of	Intensity	Intensity	Intensity	Intensity	Peak Flow	DIA. (mm)	DIA. (mm)	TYPE	SLOPE	LENGTH	CAPACITY	VELOCITY	TIME OF	RATIC
	T	AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum. AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	Conc.	2 Year	5 Year			0.41	(, 1)	(1)		(0/)		<i>a</i> 1 2		T OXX (:	0/0.6.1
Location From Node	To Node	(Ha)		2.78 AC	2.78 AC	(Ha)		2.78 AC	2.78 AC (Ha)		2.78 AC	2.78 AC	(Ha)		2.78 AC	2.78 AC	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	Q (l/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (min	Q/Q ful
FUTURE ROAD (DRUMMO	ND LAND)																														
Plug	304	1.20	0.65	2.17	2.17			0.00	0.00		0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	167	600	600	CONC	0.20	10.0	274.6	0.97	0.17	0.61
To Expansion Road, Pipe 3	04 - 306TEE				2.17				0.00			0.00				0.00	10.17														
		1.00	0.05	4.04	1.81	<u> </u>	1	0.00	0.00	+	0.00	0.00		<u> </u>	0.00	0.00	45.00		<u> </u>	+	1										
		1.00	0.65	1.81 0.00	1.81	1.45	0.40	1.61	0.00 1.61	1	0.00	0.00			0.00	0.00	15.00 15.00			1											
Plug	303			0.00	1.81	1.40	0.40	0.00	1.61		0.00	0.00			0.00	0.00	15.11	61.51	83.20	97.44	142.28	245	750	750	CONC	0.15	10.5	431.2	0.98	0.18	0.57
To Expansion Road, Pipe 3	03 - 304				1.81				1.61			0.00				0.00	15.29														
																				1											
Plug	302	0.99	0.65	1.79 0.00	1.79 1.79			0.00	0.00	+ +	0.00	0.00			0.00	0.00	10.00	76.81	104.10	122.14	178.56	137	525	525	CONC	0.20	10.5	192.3	0.89	0.20	0.71
To Expansion Road, Pipe 3				0.00	1.79			0.00	0.00		0.00	0.00			0.00	0.00	10.00	70.01	104.19	122,14	170.00	131	525	525	CONC	0.20	10.5	192.3	0.69	0.20	0.71
To Expandion Houd, 1 ipo o				†	1.70				0.00	†		0.00				0.00	10.20			1											
COMMERCIAL BLOCK - SO	HTUC																														
		10.00		00.5:	00.0:			0.00			0.00				0.00	0.00	10.00			1											
CTRL MH 1	133	13.83	0.75	28.84	28.84 28.84	1		0.00	0.00		0.00	0.00		 	0.00	0.00	13.00 13.00	66.93	90.63	106.17	155.11	1930	1500	1500	CONC	0.20	19.0	3161.3	1.79	0.18	0.61
To Haiku Street, Pipe 133 -				0.00	28.84	 		0.00	0.00		0.00	0.00		 	0.00	0.00	13.00	00.83	30.03	100.17	100.11	1930	1300	1300	CONC	0.20	13.0	5101.3	1.13	0.10	0.01
	<u>- </u>																														
Haiku Street																															
COMMERCIAL BLOCK - SO	OUTH, Pipe				28.84				0.00			0.00				0.00	13.18					0.1.0.10									
From ABIC Property 133	134	7.39 0.58	0.30	1.45	30.29			0.00	0.00		0.00	0.00			0.00	0.00	13.18	66.43	89.95	105.37	153.93	210.40 2222	1500	1500	CONC	0.15	77.0	2737.8	1.55	0.83	0.81
134	135	0.31	0.90	0.78	31.06			0.00	0.00		0.00	0.00			0.00	0.00	14.01	64.22	86.91	103.37	148.69	2205	1500	1500	CONC	0.15	61.0	2737.8	1.55	0.66	0.81
		0.05	0.54	0.08	31.14			0.00	0.00		0.00	0.00			0.00	0.00	14.01							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.110					
135	136	0.18	0.71	0.36	31.49			0.00	0.00		0.00	0.00			0.00	0.00	14.01	64.22	86.91	101.80	148.69	2233	1650	1650	CONC	0.10	37.0	2882.2	1.35	0.46	0.77
To Expansion Road, Pipe 1	36 - 302 I				31.49				0.00			0.00				0.00	14.46														
Sturnidae Street			1	+			1							<u> </u>					<u> </u>	+	+										
Otarmaac Otrect				0.00	0.00	0.03	0.71	0.06	0.06		0.00	0.00			0.00	0.00															
		0.10	0.54	0.15	0.15			0.00	0.06		0.00	0.00			0.00	0.00															
126	127	0.19	0.71	0.38	0.53			0.00	0.06		0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	47	300	300	PVC	0.40	28.5	61.2	0.87	0.55	0.76
To Montology Way, Pipe 12	7 - 128 I		ļ	<u> </u>	0.53				0.06			0.00				0.00	10.55			1											
		0.23	0.54	0.35	0.35			0.00	0.00		0.00	0.00			0.00	0.00															
124	125	0.36	0.71	0.71	1.06			0.00	0.00		0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	81	375	375	PVC	0.35	101.0	103.7	0.94	1.79	0.78
		0.21	0.54	0.32	1.37			0.00	0.00		0.00	0.00			0.00	0.00															
125	127	0.34	0.71	0.67	2.04			0.00	0.00		0.00	0.00			0.00	0.00	11.79	70.55	95.59	112.01	163.68	144	600	600	CONC	0.25	91.5	307.0	1.09	1.40	0.47
To Montology Way, Pipe 12	7 - 128 T				2.04				0.00			0.00				0.00	13.20														
Montology Way			1	+																+	1										
Contribution From Travertin	e Way, Pipe	123 - 127	7		1.33				0.00			0.00				0.00	12.08														
Contribution From Sturnidae	· •				2.04				0.00			0.00				0.00	13.20														
Contribution From Sturnidae	Street, Pip 128	e 126 - 12	? <i>(</i> T	0.00	0.53 3.90	1		0.00	0.06		0.00	0.00		-	0.00	0.00	10.55 13.20	66.38	89.87	105.28	153.80	264	675	675	CONC	0.20	54.0	375.9	1.05	0.86	0.70
127	128			0.00	3.90			0.00	0.06		0.00	0.00		 	0.00	0.00	14.05	64.10	86.74	105.28		255	675	675	CONC	0.20	13.5	460.4	1.05	0.86	0.70
		0.25	0.54	0.38	4.27			0.00	0.06		0.00	0.00			0.00	0.00															
129	130	0.40	0.71	0.79	5.06			0.00	0.06		0.00	0.00			0.00	0.00	14.23	63.65	86.14	100.88	147.35	327	750	750	CONC	0.15	77.0	431.2	0.98	1.31	0.76
100	404	0.18	0.54	0.27	5.33			0.00	0.06		0.00	0.00			0.00	0.00	45.54	00.51	04.04	05.00	400.00	075	750	750	CONO	0.45	400.5	404.0	0.00	4 70	0.07
130 131	131 132	0.40	0.71	0.79	6.12 6.12			0.00	0.06		0.00	0.00		-	0.00	0.00	15.54 17.26	60.51 56.90	81.84 76.90	95.83 90.03	139.93 131.41	375 353	750 1200	750 1200	CONC	0.15 0.15	100.5 12.0	431.2 1510.0	0.98 1.34	1.72 0.15	0.87 0.23
To Travertine Way, Pipe 13				0.00	6.12			0.00	0.06		0.00	0.00			0.00	0.00	17.20	50.50	70.30	30.03	101.41	JJJ	1200	1200	CONC	0.10	14.0	1010.0	1.04	0.13	0.23
-7/1- #3 13																	-														
Rugosa Street																				1											
To Appalachian Circle Pine	212 - 213	0.26	0.54	0.39	0.39	1		0.00	0.00		0.00	0.00		-	0.00	0.00	10.00	76.81	104.19	122.14	178.56	30	300	300	PVC	0.35	26.5	57.2	0.81	0.55	0.52
To Appalachian Circle, Pipe	212-213			1	0.39				0.00			0.00		 		0.00	10.55		 	1											
212	204			0.00	0.00			0.00	0.00		0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	0	300	300	PVC	0.50	92.5	68.4	0.97	1.59	0.00
		0.49	0.54	0.74	0.74			0.00	0.00		0.00	0.00			0.00	0.00															
204	205	0.50	0.71	0.99	1.72			0.00	0.00		0.00	0.00			0.00	0.00	11.59	71.18	96.47	113.04	165.19	123	525	525	CONC	0.20	118.0	192.3	0.89	2.21	0.64
				+		1	1	-	 			-		-					-	1	+					+					
Definitions:	<u> </u>		<u> </u>	1	1	<u> </u>	1	I	<u> </u>			I	I	<u> </u>	<u> </u>			<u> </u>	<u> </u>	1	1	Designed:	<u> </u>	<u> </u>	PROJECT	<u>Ι</u> Γ:			<u> </u>	<u> </u>	
O = 2.78 AIP where									Notas													CI M				- •	Cia	van Commi	mitico Duo	naou Phon	- 1

I = Rainfall Intensity (mm/h)

R = Runoff Coefficient

Q = 2.78 AIR, where

Q = Peak Flow in Litres per second (L/s)

A = Areas in hectares (ha)

Notes:

1) Ottawa Rainfall-Intensity Curve 2) Min. Velocity = 0.80 m/s

SLM Ciavan Communities - Brazeau Phase 1 Checked: LOCATION: ADF City of Ottawa Dwg. Reference: File Ref: Date: Sheet No. 18-1030 1 OF 6 Storm Drainage Plan 84-87 15-Jun-20

STORM SEWER CALCULATION SHEET (RATIONAL METHOD) Local Roads Return Frequency = 2 years Collector Roads Return Frequency = 5 years

Manning 0.013 Arterial Roads Return Frequency = 10 years

	0.013		touds Itelai	n i requency	y = 10 years			ΔRF	A (Ha)							F	LOW			1				SEWER DA	ТΔ			
	LOCATION		2	YEAR			5 YEAR	71112		10 YEAR		100 YEAR		Time of	Intensity		Intensity	Intensity	Peak Flow	DIA. (mm)	DIA. (mm) TYPE			CAPACITY	Y VELOCIT	TIME OF	RATIO
		AREA		Indiv.	Accum.	AREA	_ Indiv	. Accum.	AREA	ndiv.	Accum. A	REA B Ind	. Accum	Conc.	2 Year	5 Year	10 Year					/						
Location From	m Node To I	lode (Ha)	"	2.78 AC	2.78 AC	(Ha)	2.78 A	C 2.78 AC	(Ha)	2.78 AC		la) R 2.78	AC 2.78 AC	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	Q (1/s)	(actual)	(nominal))	(%)	(m)	(l/s)	(m/s)	LOW (mi	n Q/Q fu
2	205 20	0.25	0.71	0.49	2.22		0.00	0.00		0.00	0.00	0.0	0.00	13.81	64.73	87.62	102.63	149.91	143	525	525	CONC	0.20	16.0	192.3	0.89	0.30	0.75
To Appalachian Circl	le, Pipe 206 -	207			2.22			0.00			0.00		0.00	14.11														
Appalachian Circle														10.00		10110	100.11	1-0-0				5) (0	0.10	40.0				
	209 2			0.00	0.00		0.00			0.00	0.00	0.0		10.00			122.14	_	0	300	300	PVC	2.40	13.0	149.8	2.12	0.10	0.0
	210 2°		0.71	0.39	0.39		0.00		+	0.00	0.00	0.0		10.10		103.66	121.51	177.63	30	300	300	PVC	3.80	54.0	188.5	2.67	0.34	0.1
Contribution From Ru			2	0.00	0.39		0.00	0.00	+	0.00	0.00	0.0	0.00	10.55 10.55		101.10	118.85	173.72	50	275	275	PVC	0.45	40 F	117.6	1.06	0.77	0.5
	212 2 ² 213 2 ²		0.71	0.00	1.02	 	0.00		+	0.00	0.00	0.0		11.32		_	114.49		59 74	375 375	375 375	PVC	0.45 1.00	49.5 13.5	175.3	1.59	0.77	0.50
	213 2	0.36	0.71	0.24	1.56		0.00			0.00	0.00	0.0		11.32	72.00	91.10	114.49	107.33	74	3/3	3/3	FVC	1.00	13.5	175.5	1.59	0.14	0.4
	214 2 ⁻		0.71	0.87	2.43		0.00			0.00	0.00	0.0		11.46	71.61	97.06	113 74	166.21	174	375	375	PVC	2.35	90.0	268.8	2.43	0.62	0.6
To Foundation Lane,			0.7 1	0.07	2.43		0.00	0.00		0.00	0.00	0.0	0.00	12.08		07.00	110.71	100.21	.,,	0.0	0.0	1 10	2.00	00.0	200.0	2.10	0.02	0.0
To roundation Earle,	,				21.10			0.00			0.00		0.00	12.00							1					+		
		0.07	0.54	0.11	0.11	 	0.00	0.00	† †	0.00	0.00	0.0	0.00	1						1	1	†				1	1	
2	209 20		0.71	0.49	0.60		0.00			0.00	0.00	0.0		10.00	76.81	104.19	122.14	178.56	46	300	300	PVC	0.55	94.0	71.7	1.01	1.54	0.64
		0.10	0.54	0.15	0.75		0.00		1	0.00	0.00	0.0																
	201 20	0.37	0.71	0.73	1.48		0.00			0.00	0.00	0.0		11.54	71.34	96.69	113.30	165.58	106	375	375	PVC	0.90	119.5	166.3	1.51	1.32	0.6
2	202 20	3		0.00	1.48		0.00	0.00		0.00	0.00	0.0	0.00	12.87	67.31	91.15	106.78	156.00	100	450	450	CONC	0.20	14.0	127.5	0.80	0.29	0.7
		0.20	0.54	0.30	1.78		0.00			0.00	0.00	0.0																
	203 20		0.71	0.39	2.17		0.00			0.00	0.00	0.0		13.16		90.02	105.46	154.06	145	450	450	CONC	0.45	54.5	191.3	1.20	0.76	0.70
Contribution From Ru	ugosa Street,				2.22			0.00			0.00		0.00	14.11														
		0.08	0.54	0.12	4.51		0.00			0.00	0.00	0.0																
	206 20		0.71	0.28	4.79		0.00			0.00	0.00	0.0		14.11		86.56	101.38		306	600	600	CONC	0.40	49.5	388.3	1.37	0.60	0.79
2	207 20			0.00	4.79		0.00			0.00	0.00	0.0		14.71	62.47	84.51	98.98	144.54	299	600	600	CONC	1.90	12.5	846.4	2.99	0.07	0.3
	200	0.12	0.54	0.18	4.97		0.00			0.00	0.00	0.0		4470	00.00	04.00	00.70	44445	0.40	000	000	00110	4.00	440.0	0.40.4		0.00	0.4
	208 2°		0.71	0.63	5.60		0.00			0.00	0.00	0.0		14.78		84.28	98.70	144.15	349	600	600	CONC	1.90	112.0	846.4	2.99	0.62	0.4
To Foundation Lane,	, Pipe 215 - 1 T	19			5.60			0.00			0.00		0.00	15.40														
Foundation Lane						 								+		+				1	 					+		
Contribution From Ap	nnalachian Ci	rle Pine 208	<u> </u>		5.60			0.00			0.00		0.00	15.40							1					+		
Contribution From Ap		•			2.43			0.00			0.00		0.00	12.08		+				+	+					+		
	215 1		0.71	0.39	8.42		0.00			0.00	0.00	0.0		15.40		82.28	96.35	140.69	512	675	675	CONC	1.60	55.0	1063.3	2.97	0.31	0.48
To Travertine Way, F			1	0.00	8.42		0.00	0.00		0.00	0.00	<u> </u>	0.00	15.71		02:20	00.00	1 10100	0.2	0.0	0.0	00110	1100	00.0	100010	1 2.07	0.01	0111
Travertine Way																										1		
		0.15	0.54	0.23	0.23		0.00	0.00		0.00	0.00	0.0	0.00															
1	119 12	2 0.21	0.71	0.41	0.64		0.00	0.00		0.00	0.00	0.0	0.00	10.00	76.81	104.19	122.14	178.56	49	300	300	PVC	0.55	90.0	71.7	1.01	1.48	0.69
		0.13	0.71	0.26	0.90		0.00			0.00	0.00	0.0	0.00															
	122 12		0.54	0.44	1.33		0.00			0.00	0.00	0.0		11.48					95	300	300	PVC	1.55	13.0	120.4	1.70	0.13	0.79
	123 12			0.00	1.33		0.00			0.00	0.00	0.0		11.61		96.41	112.98	165.10	95	300	300	PVC	1.60	49.5	122.3	1.73	0.48	0.7
To Montology Way, F	•		1		1.33			0.00			0.00		0.00	12.08														
Contribution From Fo	oundation Lar			0.11	8.42			0.00			0.00		0.00	15.71														
	110	0.21	0.71	0.41	8.84		0.00		 	0.00	0.00	0.0		45.74	00.11	04.00	05.00	400.05	F07	000	000	00110	0.00	400.0	000.0	107	4.05	
	119 12		0.54	0.59	9.42		0.00		1	0.00	0.00	0.0		15.71				_	567	900	900	CONC	0.20	103.0	809.6	1.27	1.35	0.7
1	120 12		0.54	0.00	9.42 9.74	+	0.00		+	0.00	0.00	0.0		17.06	57.30	77.45	90.67	132.35	540	900	900	CONC	0.20	14.0	809.6	1.27	0.18	0.6
	121 13	0.21	0.54	0.32 1.03	10.77	+ +	0.00		+ +	0.00	0.00	0.0		17.24	56.94	76 OF	00.00	131.50	612	900	900	CONC	1.10	114.0	1898.7	2.98	0.64	0.32
Contribution From M	<u> </u>			1.03	6.12	+ +	0.00	0.00	+ +	0.00	0.00	0.0	0.00	17.24		70.95	90.08	131.30	013	900	300	CONC	1.10	114.0	1090.7	2.98	0.04	0.3
		0.17	0.71	0.34	17.22	+ +	0.00		+ +	0.00	0.00	0.0		17.41								1				+	1	
1	132 13		0.71	0.63	17.22	 	0.00		+ +	0.00	0.00	0.0		17.88	55.71	75.28	88.12	128.62	999	1200	1200	CONC	0.20	59.5	1743.6	1.54	0.64	0.5
I Го Expansion Road,			1 3.54	0.00	17.85	 	0.00	0.06	† †	0.00	0.00	0.0	0.00	18.52	_	7 0.20	55.12	120.02	- 555	1200	1200	33110	0.20	55.5	17 40.0	1.04	1 0.04	0.07
Aparioloff Rodu,		-	1		17.00	 		0.00	† †				0.00	10.02						1	1	1				+		
Focality Crescent			1			 			† †		+ +															+		1
	107 10	8	1	0.00	0.00	 	0.00	0.00	† †	0.00	0.00	0.0	0.00	10.00	76.81	104.19	122.14	178.56	0	300	300	PVC	0.65	13.0	78.0	1.10	0.20	0.0
		0.28	0.72	0.56	0.56		0.00		† †	0.00	0.00	0.0		1								1				1	1	
1	108 1 ⁻		0.58	0.55	1.11		0.00		1	0.00	0.00	0.0		10.20	76.06	103.17	120.93	176.78	84	450	450	CONC	0.20	54.0	127.5	0.80	1.12	0.6
To Haiku Street, Pipe	e 110 - 111		1		1.11			0.00			0.00		0.00	11.32			<u></u>			<u></u>	L_	<u>L</u>					L_	
Definitions:													 						Designed:			PROJECT	`: <u> </u>				-	

Q = 2.78 AIR, where

Q = Peak Flow in Litres per second (L/s)

R = Runoff Coefficient

A = Areas in hectares (ha) I = Rainfall Intensity (mm/h)

Notes:

1) Ottawa Rainfall-Intensity Curve

2) Min. Velocity = 0.80 m/s

Designed: SLM PROJECT: Ciavan Communities - Brazeau Phase 1 Checked: LOCATION: ADF City of Ottawa Dwg. Reference: Sheet No. File Ref: Date: Storm Drainage Plan 83-86 2 OF 6 18-1030 15-Jun-20

STORM SEWER CALCULATION SHEET (RATIONAL METHOD) Local Roads Return Frequency = 2 years

Collector Roads Return Frequency = 5 years
Arterial Roads Return Frequency = 10 years 0.013

1	Manning	0.013		Arterial Ro	ads Return	Frequency	= 10 years												_														
Color Property P		LOCA	TION		0.74	EAD		ı	E VEAD	AREA	(Ha)	40.7/2.4	. D		Т	400 \/E	TAD.		Tr: 6	1.1.1			1.1	D 1 E1	DIA	IDIA ()	TYPE				Z ZEL OCIE	TD 4E OF	DATIO
The Name				ΔRFΔ	2 YI		Accum	ΔRFΔ		Accum	ΔΡΕΔ			Accum	ΔREΔ			Accum		,		,	,		DIA. (mm))DIA. (mm)) IYPE	SLOPE	LENGIH	CAPACITY	VELOCII	TIME OF	RATIO
The column The	Location	From Node	To Node	- I	R																				(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (mir	Q/Q full
Comparing Comp																							, ,										
Company Comp																																	
2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		107	112	0.04	0.72														10.00	76.81	104.19	122.14	178.56	0	300	300	PVC	0.35	74.0	57.2	0.81	1.52	0.00
																										1							
111 114																																	
1 1 1 1 1 1 1 1 1 1		112	113	0.33	0.72	0.66							0.00				0.00								450	450					_	1.53	0.75
March Marc		113	114																13.05	66.78	90.43	105.94	154.76	89	450	450	CONC	0.20	13.0	127.5	0.80	0.27	0.70
Commercial Information Commercial Informat		111	115																12.22	66.03	90.40	104.72	152.00	167	675	675	CONC	0.40	540	F24 6	1 10	0.61	0.21
Composition	To Haiku Stree			0.34	0.58	0.55			0.00				0.00				0.00			66.03	89.40	104.73	152.98	167	6/5	6/5	CONC	0.40	54.0	531.6	1.49	0.61	0.31
268 C73 C70	TO HAIRA OHEC	T, r ipc r ro					2.00			0.00				0.00				0.00	10.00														
CRIS MAT 2002 10	COMMERCIAL	BLOCK - EA	AST																														
**************************************				2.68	0.75																												
Company	T 01 : 1: 0:					0.00			0.00				0.00				0.00			68.38	92.61	108.51	158.53	382	675	675	CONC	0.40	10.0	531.6	1.49	0.11	0.72
	i o Obsidian Sti	reet, Ριρε 22 Τ	ου - 22 <i>1</i>				5.59			0.00				0.00				0.00	12.61							<u> </u>							
	Obsidian Stree	et								+ +	+				+ +	+			+	+	 			 		†			+ +			 	
Part			226	0.27	0.72	0.54	0.54		0.00	0.00			0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	42	300	300	PVC	0.50	99.5	68.4	0.97	1.71	0.61
200 227 190 028 077 079									0.00				0.00				0.00			70.79	95.93	112.41	164.27	67	300	300	PVC	1.05	64.0	99.1	1.40	0.76	0.67
Part	From COMMER			22, Pipe C	TRL MH 2								0.00				0.00			00.0=	00.15	10= 5=	4== ==		0==		00115	4 ==	10 -	1010 =	0.05	2.25	0.15
To Fishel State				0.26	0.72																1										_	0.28 0.52	0.42 0.45
Second Control 19	To Haiku Stree			0.26	0.72	0.52			0.00				0.00				0.00			07.23	91.04	100.00	100.02	4/4	6/3	0/5	CONC	1.60	93.0	1003.3	2.97	0.52	0.45
1	TO Haika Olice	1, 1 100 100					7.00			0.00				0.00				0.00	10.42														
Continuing Fixed Piles 27 198	Haiku Street																																
Continue Note				1.93	0.68																												
19	0 (1 (5			207 400		0.00			0.00				0.00				0.00			71.49	96.89	113.54	165.92	261	600	600	CONC	0.40	10.0	388.3	1.37	0.12	0.67
Contribution From Fourily Conserner Page 109=110 1.11 1 1 0.00	Contribution Fro		T			0.26			0.00				0.00				0.00			65.79	90.05	104.21	152.20	727	750	750	CONC	0.70	60.0	021 /	2 11	0.47	0.78
1	Contribution Fro					0.36			0.00				0.00				0.00			03.76	69.05	104.31	102.30	121	750	730	CONC	0.70	60.0	931.4	2.11	0.47	0.76
Part 10	Contribution	The obtaining to	1	 		0.26			0.00				0.00				0.00		11.02														
111													0.00																				
Contribution Front Front		<u> </u>																														0.69	0.75
Note 10 10 10 10 10 10 10 1	Operately attack Fo					0.36			0.00				0.00				0.00			62.77	84.92	99.46	145.25	863	975	975	CONC	0.20	91.0	1002.2	1.34	1.13	0.86
Carlot C	Contribution Fro	om Focality (rescent, Pi	pe 114 - 11 I	15	0.00		0.04	0.72 0.08				0.00				0.00		13.93							<u> </u>							
March Marc				0.15	0.58			0.04											1					<u> </u>		1						<u> </u>	
To Insibering Street, Pipe 116 - 117																										1							
PARK BLOCK CTRL MH 4 104		115	116	0.19	0.72	0.38	17.16		0.00	0.08			0.00	0.00			0.00	0.00	15.71	60.13	81.32	95.22	139.03	1038	1050	1050	CONC	0.50	59.0	1930.9	2.23	0.44	0.54
CTRL MH 4	To Inselberg St	treet, Pipe 11	6 - 117				17.16			0.08				0.00				0.00	16.16							ļ							
CTRL MH 4	DARK BLOCK																																
To Chillerton Drive, Pipe 104 - 106	PARK BLUCK		104			0.00	0.00	1 72	0.40 1.91	1 91			0.00	0.00			0.00	0.00	10.00	76.81	104 19	122 14	178 56	199	525	525	CONC	0.40	9.5	272 0	1 26	0.13	0.73
Canadensis Lane	To Chillerton D					0.00		1.72	0.40 1.01				0.00				0.00			70.01	104.13	122.17	170.00	100	020	020	00110	0.40	0.0	212.0	1.20	0.10	0.70
Company Comp																																	
Composition	Canadensis La	ane																															
Column C																																ļ	
Second Column Col															 						-											-	
230 231 0.19 0.72 0.38 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.0											-				+ +																		
Second Column		230	231																10.00	76.81	104.19	122.14	178.56	59	300	300	PVC	2.00	73.5	136.8	1.93	0.63	0.43
231 103 0.41 0.72 0.82 2.12 0.00 0.00 0.00 0.00 0.00 0.00 0.0				0.12	0.58	0.19	0.96		0.00	0.00			0.00	0.00			0.00	0.00															
To Chillerton Drive, Pipe 103 - 104		25:																			100.00	445.5	4=6 ==				00::=						
Definitions: Q = 2.78 AIR, where Designed: SLM SLM Ciavan Communities - Brazea	To Chilloge D			0.41	0.72	0.82			0.00				0.00				0.00			74.46	100.96	118.34	172.97	158	525	525	CONC	2.00	87.0	608.2	2.81	0.52	0.26
Q = 2.78 AIR, where Notes: Ciavan Communities - Brazea	10 Chillerton D	nive, Pipe 103	o - 104				2.12			0.00				0.00	 			0.00	11.15		1			 		1						 	
Q = 2.78 AIR, where Ciavan Communities - Brazea										+ +					+ +					1	<u> </u>					†			 			 	
Q = 2.78 AIR, where Ciavan Communities - Brazea											†																						
		·-			·				<u> </u>			•		·	· ·	•									·	·	PROJECT	:					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.07.7									•															1.00.	A.Y.	Cia	van Comm	unities - Br	azeau Phas	se 1
Q = Peak Flow in Litres per second (L/s) A = Areas in hectares (ha) Checked: LOCATION: ADF City of Ottawa	-	•	cond (L/s)							,		•															LOCATIO	PIN:		City of	Ottawa		

2) Min. Velocity = 0.80 m/s

R = Runoff Coefficient

A = Areas in hectares (ha)= Rainfall Intensity (mm/h)

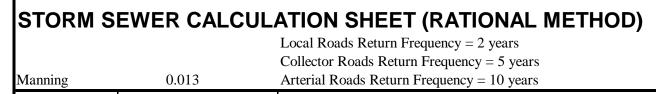
Design Data for HMB ph 8 storm outlet point (MH 3)

3 OF 6

Sheet No.

City of Ottawa

15-Jun-20


Date:

ADF

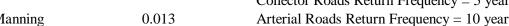
Dwg. Reference:

Storm Drainage Plan 83-86

File Ref:

Manning 0.013			n Frequency	,			AREA (I	Ha)							F	LOW							SEWER DA	TA			
LOCATION		2	YEAR		5	YEAR		10 YEA	AR		100 YEAR		Time of	Intensity	_	Intensity	Intensity	Peak Flow	DIA. (mm	DIA. (mm)	TYPE			CAPACITY	VELOCITY	TIME OF	RATIO
	AREA		Indiv.	Accum.	ΔΡΕΔ	Indiv. Accu	um.		Indiv.	Accum. AREA		Accum.	Conc.						(, = == == (=====)							
Location From Node To I		R		2.78 AC	(Ha)	2.78 AC 2.78				2.78 AC (Ha)		2.78 AC				(mm/h)		Q (1/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (min	Q/Q full
																,											
Surface Lane																											
	0.17	0.58	0.27	0.27		0.00 0.0	00		0.00	0.00	0.00	0.00															
228 22	29 0.31	0.72	0.62	0.89		0.00 0.0	00		0.00	0.00	0.00	0.00	10.00	76.81	104.19	122.14	178.56	69	300	300	PVC	2.00	74.5	136.8	1.93	0.64	0.50
	0.20	0.58	0.32	1.22		0.00 0.0	00		0.00	0.00	0.00	0.00															
229 10	0.39	_	0.78	2.00		0.00 0.0			0.00	0.00	0.00	0.00	10.64	74.43	100.92	118.29	172.90	149	525	525	CONC	0.85	86.5	396.5	1.83	0.79	0.37
To Chillerton Drive, Pipe 102 - 103	3			2.00		0.0	00			0.00		0.00	11.43														
Chillerton Drive																											
101 10)2		0.00	0.00		0.00 0.0	00		0.00	0.00	0.00	0.00	10.00	76.81	104.19	122.14	178.56	0	300	300	PVC	2.60	30.5	155.9	2.21	0.23	0.00
Contribution From Surface Lane,	Pipe 229 - 102	2		2.00		0.0	00			0.00		0.00	11.43														
102 10	0.13	0.72	0.26	2.26		0.00 0.0	00		0.00	0.00	0.00	0.00	11.43	71.72	97.21	113.91	166.47	162	525	525	CONC	1.55	59.0	535.4	2.47	0.40	0.30
Contribution From Canadensis La	ne, Pipe 231	103		2.12		0.0	00			0.00		0.00	11.15														
103 10	0.19	0.72	0.38	4.76		0.00 0.0	00		0.00	0.00	0.00	0.00	11.83	70.44	95.44	111.84	163.43	335	750	750	CONC	0.40	120.0	704.1	1.59	1.25	0.48
From PARK BLOCK - 123, Pipe C	TRL MH 4 - 1	04		0.00		1.9	91			0.00		0.00	10.13														
104 10	0.26	0.72	0.52	5.28		0.00 1.9	91		0.00	0.00	0.00	0.00	13.08	66.70	90.32	105.80	154.56	525	1050	1050	CONC	0.15	41.5	1057.6	1.22	0.57	0.50
To Elevation Road, Pipe 106 - 116				5.28		1.9				0.00		0.00	13.65														
' '																											
Epoch Street																											
221 22	22 0.09	0.72	0.18	0.18		0.00 0.0	00		0.00	0.00	0.00	0.00	10.00	76.81	104.19	122.14	178.56	14	300	300	PVC	0.50	77.5	68.4	0.97	1.34	0.20
	0.11	0.58	0.18	0.36		0.00 0.0			0.00	0.00	0.00	0.00															
	0.22	0.72	0.44	0.80		0.00 0.0			0.00	0.00	0.00	0.00															
	0.31	0.54	0.47	1.26		0.00 0.0			0.00	0.00	0.00	0.00															
	0.31	0.58	0.50	1.76		0.00 0.0			0.00	0.00	0.00	0.00					1										
222 2	23 0.40		0.80	2.56		0.00 0.0			0.00	0.00	0.00	0.00	11.34	72.03	97.63	114.41	167.21	185	600	600	CONC	0.15	95.5	237.8	0.84	1.89	0.78
			0.00	2.56	0.07 0.71	0.14 0.1			0.00	0.00	0.00	0.00					1										
223 22	24 0.13	0.72	0.26	2.82		0.00 0.1			0.00	0.00	0.00	0.00	13.23	66.29	89.76	105.15	153.60	200	600	600	CONC	0.20	97.0	274.6	0.97	1.66	0.73
To Elevation Road, Pipe 224 - 109				2.82		0.1				0.00		0.00	14.89	_			1										
																	1										
Eminence Street																	1										
	0.09	0.54	0.14	0.14		0.00 0.0	00		0.00	0.00	0.00	0.00															
	0.11	0.54	0.17	0.30		0.00 0.0			0.00	0.00	0.00	0.00															
216 2	17 0.39	0.71	0.77	1.07		0.00 0.0			0.00	0.00	0.00	0.00	10.00	76.81	104.19	122.14	178.56	82	375	375	PVC	0.60	75.5	135.8	1.23	1.02	0.61
	0.25	0.54	0.38	1.45		0.00 0.0			0.00	0.00	0.00	0.00	10100	1 1111	1		1,0100					1		10010	1		
	0.32		0.48	1.93		0.00 0.0			0.00	0.00	0.00	0.00															
217 2			0.91	2.83		0.00 0.0			0.00	0.00	0.00	0.00	11.02	73.09	99.08	116.12	169.72	207	600	600	CONC	0.20	113.0	274.6	0.97	1.94	0.75
			0.00	2.83	0.04 0.71	0.08 0.0			0.00	0.00	0.00	0.00						-						_			
218 22	20 0.10	0.71	0.20	3.03		0.00 0.0			0.00	0.00	0.00	0.00	12.96	67.04	90.78	106.34	155.36	210	600	600	CONC	0.20	80.5	274.6	0.97	1.38	0.77
To Elevation Road, Pipe 220 - 224		 • • • • • • • • • • • • • • • • • • •	1 0.20	3.03		0.0			0.00	0.00	3.55	0.00	14.34		1	100.01	100.00			1	00.10	1	00.0		1		• • • • • • • • • • • • • • • • • • • •
10 210 valion (10 au, 1 10 220 22				0.00		1 0.0				0.00		0.00	1														
Elevation Road		1				1		+				1			1		1										
		1	0.00	0.00				 				1	†		1		1 1			1	1						
Plug East 3	1.22	0.65	2.20	2.20		0.00 0.0	00	 	0.00	0.00	0.00	0.00	14.71	62.46	84.51	98.97	144.53	138	750	750	CONC	0.20	9.5	497.9	1.13	0.14	0.28
To Elevation Road, Pipe 310 - 31		1		2.20		0.0		+	2.20	0.00	1 0.00	0.00	14.85		1	33.37	7			1	23.10			.5	5		5.20
		1	1	† -				 				1	†		1		1			1	1						
			0.00	0.00	2.56 0.65	0.00 0.0	00	 	0.00	0.00	0.00	0.00	16.00														
	5.09	0.65	0.00	0.00		0.00 0.0			0.00	0.00	0.00	0.00	16.00		1		1			1					1		
Plug South 3		1	9.20	9.20		4.63 4.6			0.00	0.00	0.00	0.00	16.00		80.46	94.21	137.55	919	1050	1050	CONC	0.15	17.5	1057.6	1.22	0.24	0.87
To Elevation Road, Pipe 310 - 311		1	1 3.20	9.20		4.6		 		0.00	1 1 0.00	0.00	16.24		1		121.55	· •	1,500	1		1	1			·	
		1	1	<u> </u>				 				1	† · · · ·		1		1			1	1						
219 22	20		0.00	0.00		0.00 0.0	00	+	0.00	0.00	0.00	0.00	10.00	76.81	104.19	122.14	178.56	0	300	300	PVC	2.65	25.0	157.4	2.23	0.19	0.00
Contribution From Eminence Stree		220	1 0.00	3.03		0.0			0.00	0.00	3.55	0.00	14.34		1		110100				1				1 -:		0.00
		Ī	0.00	3.03	0.05 0.71	0.10 0.1		+	0.00	0.00	0.00	0.00	1		1		1										
	0.06	0.71	0.12	3.15		0.00 0.1			0.00	0.00	0.00	0.00															
220 22			0.00	3.15	0.12 0.71	0.24 0.4			0.00	0.00	0.00	0.00	14.34	63.36	85.74	100.42	146.66	235	600	600	CONC	1.90	59.0	846.4	2.99	0.33	0.28
			0.00	0.10	0112	0.2.			0.00	0.00	0.00	0.00	1	00.00	00.7.1	100112	1 10100				00.10	1.00	00.0	0.0	2.00	0.00	0.20
	+				† †	+ +		+ +			1	1	1		1												
 				1	 	+		+			1	1	+		+		†								1		
 		+	+	1	+ +	+		+			+ +	†	+		+	+	† †			1	†						
 		+		+	 	+ + + + + + + + + + + + + + + + + + + +		+			+ +	+	+		+		+			+		1					
Definitions:	l			<u>i</u>	1 1	1				<u> </u>	1	1					1	Designed:	<u> </u>	<u> </u>	PROJECT	<u>.</u>	<u> </u>	<u> </u>	1		<u> </u>
Definitions.																		Dongilea.			LINOSECI	•		_			

Q = 2.78 AIR, where
Q = Peak Flow in Litres per second (L/s)
A = Areas in hectares (ha)
I = Rainfall Intensity (mm/h)
R = Runoff Coefficient


Notes:

1) Ottawa Rainfall-Intensity Curve

2) Min. Velocity = 0.80 m/s

SLM Ciavan Communities - Brazeau Phase 1 Checked: LOCATION: ADF City of Ottawa Dwg. Reference: Date: Sheet No. File Ref: 18-1030 4 OF 6 Storm Drainage Plan 83-86 15-Jun-20

STORM SEWER CALCULATION SHEET (RATIONAL METHOD) Local Roads Return Frequency = 2 years Collector Roads Return Frequency = 5 years Arterial Roads Return Frequency = 10 years

LOCATIO	ON -		2 YE	ΔΡ					AREA	(Ha)								FL	OW							SEWER DAT	ΓΑ			
			2 YE	ΔR									1					1												
				-////			5 Y	EAR			10 YEAR			100 YEAR		Time of	Intensity	,	Intensity	,	Peak Flow	DIA. (mm)	DIA. (mm)	TYPE	SLOPE	LENGTH	CAPACITY	VELOCITY	TIME OF	RATIO
		AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	AREA	R Indiv.	Accum.	AREA	R Indiv.	Accum.	Conc.	2 Year			100 Year										
m Node	To Node	(Ha)	11	2.78 AC	2.78 AC	(Ha)	111	2.78 AC	2.78 AC	(Ha)	2.78 AC	2.78 AC	(Ha)	2.78 AC	2.78 AC	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	Q (1/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (min	Q/Q full
	- (Di 00	0 004			0.00				0.44			0.00			0.00	44.00														
poch Stree	et, Pipe 22	3 - 224		0.00		0.02	0.50	0.05			0.00			0.00		14.89														
		0.06	0.71			0.03	0.58																							
-																														
224	105	0.11	0.54			0.16	0.71					1				14.90	62.02	92.01	00.26	1/2 50	165	600	600	CONC	1.00	92.0	946 4	2.00	0.46	0.55
																														0.53
		104 - 106		0.00		0.55	0.7 1	0.09			0.00			0.00			00.90	02.43	90.55	140.30	314	073	073	CONC	1.40	31.0	334.0	2.70	0.55	0.52
IIIIGITOIT DI	iive, i ipe		0.58	0.32				0.00			0.00	1		0.00		13.03														
		0.20	0.50			0.21	0.72																							
106	116															15.80	50 73	80.77	94 58	138 00	1062	1350	1350	CONC	0.20	122.5	2387.0	1 67	1 22	0.44
				0.00		0.22	0.7 1	0.43			0.00			0.00			33.73	00.11	34.50	130.03	1002	1330	1330	CONC	0.20	122.0	2307.0	1.07	1.22	0.44
5 110 - 11	'				11.00				4.57			0.00			0.00	17.12														
levation P	<u> </u>	<u> </u>			11.86				4.37			0.00			0.00	17 12														
ZING OUGG	., i ipo i i	, 110		0.00		0.04	0.71	0.08			0.00			0.00		10.10	<u> </u>													
		0.13	0.54			5.57	0.7 1										<u> </u>													
																														
-+																														
116	117															17 12	57 18	77 28	90 47	132.07	2092	1650	1650	CONC	0.10	122.5	2882 2	1.35	1 51	0.73
+																2	37.10	20	55.17	. 52.07	_552	. 555	. 555	55110	5.10	,	_002.2	1.00	1.51	5.70
																														
117	118															18 63	54 34	73 40	85 91	125 38	2066	1650	1650	CONC	0.10	121 0	2882 2	1.35	1.50	0.72
118		0.40	0.71																											0.72
				0.00				0.00			0.00			0.00			01.02	00.07	01.00	110.10	1070	1000	1000	00110	0.10	11.0	1100.0	1.01	0.12	0.11
1 100 100	002				01.00				1.00			0.00			0.00	20.20														
levation R	oad. Plug	East - 310			2.20				0.00			0.00			0.00	14.85														
												1																		
		1		0.00		0.06	0.54	0.09			0.00			0.00																
		0.09	0.54		-	0.00	0.0 .																							
-																														
310	311															16.24	58.99	79.76	93.38	136.34	1094	1200	1200	CONC	0.15	62.5	1510.0	1.34	0.78	0.72
///	011															10121	00.00	7 011 0	00.00	100.01	1001	.200	1200	00110	0110	02.0	10.00	1101	00	<u> </u>
311 3	111TFF															17.02	57.38	77.56	90.79	132.54	1110	1200	1200	CONC	0.15	72.0	1510.0	1.34	0.90	0.74
11TEE		0.20	0.7 1																											0.71
312		0.06	0.54																											0.69
		0.00	0.01	0.00				0.00			0.00			0.00			00.02	7 2.00	00.21	12 1.00	1010	1200	1200	00110	0.10	21.0	1010.0	1.01	0.21	0.00
10,1.900	.0 000				10.07							0.00			0.00	10111														
aiku Stree	t. Pipe 118	3 - 136			31.89				4.53			0.00			0.00	20.25														
	•											1																		
					31.49				0.00			0.00			0.00	14.46	<u> </u>													
	<u>, ı </u>		0.54	0.05				0.00			0.00			0.00			51.63	69.70	81.57	119.01	4727	2250	2250	CONC	0.10	54.0	6590.6	1.66	0.54	0.72
					1.79						1.00			1 3.55			1 11													_
<u> </u>		0.06	0.54	0.09	83.16			0.00	4.59		0.00	0.00		0.00	0.00															
302	303	0.16	0.71	0.32	83.48			0.00	4.59		0.00	0.00		0.00	0.00	20.79	50.79	68.55	80.22	117.03	4765	2250	2250	CONC	0.10	59.0	6590.6	1.66	0.59	0.72
					1.81				1.61			0.00		225	0.00	15.29	<u> </u>									-				
		0.09	0.54	0.14	85.42			0.00	6.21		0.00	0.00		0.00	0.00															
303	304	0.22	0.71	0.43	85.85			0.00	6.21		0.00	0.00		0.00	0.00	21.39	49.90	67.35	78.80	114.95	4912	2250	2250	CONC	0.10	134.5	6590.6	1.66	1.35	0.75
D (DRUM	MOND LAI				2.17				0.00			0.00			0.00	10.17														
		0.10	0.54	0.15	88.17			0.00	6.21		0.00	0.00		0.00	0.00															
304 3	306TEE	0.28	0.71	0.55	88.72			0.00			0.00	0.00		0.00	0.00	22.74	48.00	64.76	75.76	110.49	4871	2250	2250	CONC	0.10	42.5	6590.6	1.66	0.43	0.74
			2 -														12.00	, y	3					•					- · · •	•
1 .50 0001					30.72				J.21			1 3.50			0.00															
xpansion !	Road Pine	312 - 313	3		13.07				4.72			0.00			0.00	19.14														
313	<u> </u>	1	-	0.00				0.00			0.00			0.00			53 46	72.19	84 49	123.30	1039	2250	2250	CONC	0.10	33.5	6590 6	1.66	0.34	0.16
	HW501			0.00	13.07			0.00	4.72		0.00	0.00		0.00	0.00	19.48	52.89					2250			0.10	5.0	6590.6		0.05	0.16
								1				1		3.55	2.00	131.0			22.00											
2211(h) 11 lee le a	224 05 nillerton D 06 2116 - 11 22 24 05 nillerton D 06 2116 - 11 24 25 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	224 105 05 106 nillerton Drive, Pipe 06 116 e116 - 117 evation Road, Pipe 115 niku Street, Pipe 115 17 118 18 136 Pipe 136 - 302 evation Road, Plug evation Road, Pipe evation Road, Plug evation Road, Plu	106	0.06 0.71 0.11 0.54 0.54 0.55 106 0.66 116 0.20 0.58 0.66 116 0.116 0.17 0.13 0.54 0.13 0.54 0.13 0.54 0.13 0.54 0.13 0.54 0.13 0.54 0.13 0.54 0.13 0.54 0.13 0.54 0.13 0.54 0.15 0.54 0.16 0.15 0.54 17 118 0.49 0.71 18 136 Pipe 136 - 302 0.016 0.71 0.16 0.71 0.17 0.18 0.90 0.90 0.54 0.10 311 0.16 0.71 0.16 0.71 0.17 0.18 0.21 0.54 0.19 0.90 0.54 0.10 311 0.16 0.71 0.11 0.16 0.71 0.11 0.16 0.71 0.11 0.16 0.71 0.11 0.16 0.71 0.10 311 0.16 0.71 0.10 311 0.16 0.71 0.10 311 0.16 0.71 0.10 311 0.16 0.71 0.10 0.11 0.16 0.71 0.10 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.54 0.10 0.10 0.10 0.54	0.06 0.71 0.12 0.11 0.54 0.17 0.24 105 0.00 0.06 0.71 0.54 0.17 0.24 105 0.00 0.08 0.00 0.09 0.58 0.32 0.00 0.68 0.00 0.16 0.17 0.00 0.17 0.00 0.18 0.00 0.00 0.19 0.19 0.00 0.13 0.54 0.20 0.13 0.54 0.20 0.13 0.54 0.20 0.13 0.54 0.20 0.13 0.54 0.20 0.15 0.54 0.21 16 117 0.31 0.71 0.61 0.16 0.54 0.24 17 118 0.49 0.71 0.97 18 136 0.00 0.09 0.54 0.14 0.16 0.71 0.32 0.16 0.71 0.32 0.17 0.18 0.00 0.09 0.54 0.14 0.16 0.71 0.32 0.17 0.18 0.00 0.18 0.19 0.54 0.32 0.19 313 0.06 0.54 0.09 0.09 0.54 0.09 0.09 0.54 0.09 0.19 313 0.06 0.54 0.09 0.10 0.00 0.54 0.09 0.10 0.00 0.54 0.09 0.11 0.11 0.15 0.54 0.09 0.12 313 0.06 0.54 0.09 0.13 0.06 0.54 0.09 0.06 0.54 0.09 0.07 0.08 0.54 0.05 0.08 0.09 0.54 0.15 0.09 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.00 0.54 0.15 0.01 0.54 0.15 0.02 0.03 0.16 0.71 0.55 0.03 0.04 0.22 0.71 0.43 0.04 0.05 0.05 0.05 0.06 0.54 0.15 0.01 0.05 0.05 0.02 0.06 0.54 0.15 0.03 0.04 0.22 0.71 0.55 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.54 0.15 0.01 0.05 0.05 0.02 0.03 0.16 0.71 0.55 0.03 0.04 0.22 0.71 0.55 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.54 0.15 0.07 0.05 0.05 0.08 0.08 0.08 0.09 0.05 0.05 0.00 0.00 0	0.06 0.71 0.12 6.09	0.06	0.06		0.06		0.06 0.71 0.12 6.09 0.00				0						1	1	Column C					The color The	

Q = 2.78 AIR, where Q = Peak Flow in Litres per second (L/s)

A = Areas in hectares (ha)
I = Rainfall Intensity (mm/h)
R = Runoff Coefficient

1) Ottawa Rainfall-Intensity Curve 2) Min. Velocity = 0.80 m/s

Designed: SLM Ciavan Communities - Brazeau Phase 1 Checked: LOCATION: ADF City of Ottawa Dwg. Reference: Storm Drainage Plan 83-86 File Ref: Date: Sheet No. 18-1030 5 OF 6 15-Jun-20

STORM SEWER CALCULATION SHEET (RATIONAL METHOD)

R = Runoff Coefficient

Local Roads Return Frequency = 2 years
Collector Roads Return Frequency = 5 years
Arterial Roads Return Frequency = 10 years

Manning	0.013		Arterial Ro	oads Return Frequenc	ey = 10 years										1						T								
	LOCA	TION		2 YEAR		1	5 YEAR	ARE	A (Ha)	10 YEAR			100 YEAR		Time of	Intonsiti		Low	Intonait:	Doels Elem	DIA (man)	DIA (TVDE		SEWER DA	ATA CAPACITY	VELOCITY	TIME OF	DATIO
			AREA	2 YEAR Indiv.	Accum.		Indiv.	Accum.	AREA	IN YEAR Indiv.	Accum.	AREA	Indiv.	Accum.	Conc.				100 Year	Peak Flow	DIA. (IIIII)	DIA. (IIIII) ITPE	SLOPE	LENGTH	CAPACITY	VELOCITY	TIME OF	RATIO
Location	From Node	To Node		I R	2.78 AC	_		2.78 AC		~	2.78 AC	_	· · · · · · · · · · · · · · · · · · ·	2.78 AC		_		_	(mm/h)	Q (1/s)	(actual)	(nominal))	(%)	(m)	(l/s)	(m/s)	LOW (mir	Q/Q full
																	1				T	1		Т	-	1		T	T
Contribution	From Expansion				88.72		0.00	6.21		0.00	0.00		0.00	0.00	23.17	47.44	00.00	74.05	100.17	4000	2250	2050	CONC	0.40	40.0	0500.0	4.00	0.40	0.70
	306TEE 307	307 400	0.18	0.71 0.36 0.00	89.08 89.08		0.00	6.21 6.21		0.00	0.00		0.00	0.00	23.17	47.44 47.27	63.99 63.76	74.85 74.58	109.17 108.77	4833 4817	2250 2250	2250 2250	CONC		13.0 23.5	6590.6 6590.6	1.66 1.66	0.13 0.24	0.73
				0.00		+																							
	400	HW401	1	0.00	89.08		0.00	6.21		0.00	0.00		0.00	0.00	23.53	46.96	63.34	74.09	108.05	4787	2250	2250	CONC	0.10	15.5	6590.6	1.66	0.16	0.73
POND OUTL	_ET - CONSTAN	NT FLOW	 RATE 1300																										
			0.00	0.00 0.00	_		0.00	0.00		0.00	0.00		0.00	0.00						1300									
	HW OUT	1002		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00	10.00	76.81		122.14		1300	900	900	CONC		7.5	1402.3	2.20	0.06	0.93
To BORRISC	1002 DKANE - 190, P	1003 ipe 1003		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00	10.06	76.59	103.89	121.79	178.04	1300 1300	900	900	CONC	0.60	28.0	1402.3	2.20	0.21	0.93
	ANE ROAD - CC																												
Contribution	From POND OL		192, Pipe 10		0.00			0.00			0.00		<u> </u>	0.00	10.27		1	1		1300		1 -	1	_			<u> </u>		_
	1003	1004		0.00			0.00	0.00	 	0.00	0.00		0.00	0.00	10.27	75.79		120.50		1300	900	900	CONC			1402.3	2.20	0.82	0.93
	1004	1005		0.00	0.00		0.00	0.00	 	0.00	0.00		0.00	0.00	11.09	72.86	98.77	115.76		1300	975	975	CONC		106.0	1417.4	1.90	0.93	0.92
	1005 1006	1006 1007		0.00	0.00	+	0.00	0.00	+	0.00	0.00		0.00	0.00	12.02 13.17	69.83 66.47	94.61	110.86 105.42	161.99 154.01	1300 1300	1200 1200	1200 1200	CONC		106.0 106.0	1743.6 1743.6	1.54 1.54	1.15 1.15	0.75 0.75
	1007	1007		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00	14.31	63.44	85.85	100.55		1300	1200	1200	CONC		88.0	1743.6	1.54	0.95	0.75
	1007	HW100	9	0.00			0.00	0.00		0.00	0.00		0.00	0.00	15.26	61.15		96.86	141.45	1300	1200	1200	CONC	_	14.5	1743.6	1.54	0.93	0.75
	1000	1100100		0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00	10.20	01.10	02.72	00.00	111.10	1000	1200	1200	00110	0.20	11.0	17 10.0	1.01	0.10	0.70
																									<u> </u>				
																									<u> </u>				
																	1					<u> </u>			 				
																									<u> </u>				
											+											1			+		+		
											+											+			+		+		
																									 		+		
																											†		
																									<u> </u>				
																													
											+											1					+		
											+											+			+		+		
																						<u> </u>			+		+		
																									+		+		
																											†		
				<u> </u>		<u> </u>											<u>L</u>					L_	<u>L</u>						
				 					 		1		<u> </u>		1	1	1	1			ļ	1						ļ	
													 												 	<u> </u>			
									 						1	1	1	1			<u> </u>	1						-	
	+					+ + -			+	- 			+ + +		1	+	+	+				+		1	+		+		
	+			 		+ +			+ +				+ + + + + + + + + + + + + + + + + + + +			+	+	+				+	+	+	+		+		
	+		+			+ + + -				- 			 		1	+	†	1			<u> </u>	1	1		+		+		
																	1					1			†		1		
																1	1	1											
Definitions:	.		•	•	•	, ,	ļ	,	· '	•	•	•	. !	-	•	·	-	*	•	Designed:	-	•	PROJECT	Γ:	-	-	-	-	-
Q = 2.78 AIR,								Notes:												SLM					Ci	avan Commu	unities - Bra	azeau Phas	se 1
-	w in Litres per seco	ond (L/s)						,	Rainfall-Intensi	•										Checked:			LOCATIO	ON:				·	
A = Areas in h								2) Min. Ve	elocity = 0.80 m	/s										ADF							Ottawa	T	
	itensity (mm/h)																			Dwg. Refe			File Ref:		10 1055	Date:		Sheet No.	
R = Runoff Co	oetticient																			Storm Drain	nage Plan 83	3-86			18-1030	15-Ju	un-20	ı 60	OF 6

1030_Stm_SLM.xlsx

6 OF 6

15-Jun-20

18-1030

Storm Drainage Plan 83-86

Appendix E External Reports

E.3 GEOTECHNCIAL INVESTIGATION REPORT BY PATERSON INC. (MARCH 2020)

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Noise and Vibration Studies

patersongroup

Geotechnical Investigation

Proposed Mixed Use Development Half Moon Bay South - Phase 8 3718 Greenbank Road - Ottawa

Prepared For

Mattamy Homes

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca March 30, 2021

Report: PG5690-1

Ottawa

Table of Contents

	Pa	ge
1.0	Introduction	. 1
2.0	Proposed Development	. 1
3.0	Method of Investigation3.1 Field Investigation3.2 Field Survey3.3 Laboratory Testing3.4 Analytical Testing	. 3
4.0	Observations 4.1 Surface Conditions	. 4
5.0	Discussion5.1Geotechnical Assessment5.2Site Grading and Preparation5.3Foundation Design5.4Design of Earthquakes5.5Basement Slab/Slab-on-grade construction5.6Pavement Structure	. 7
6.0	Design and Construction Precautions 6.1 Foundation Drainage and Backfill 6.2 Protection Against Frost Action 6.3 Excavation Side Slopes 6.4 Pipe Bedding and Backfill 6.5 Groundwater Control 6.6 Winter Construction 6.7 Corrosion Potential and Sulphates	11 11 12 13
7.0	Recommendations	15
8.0	Statement of Limitations	16

Ottawa North Bay

Proposed Mixed Use Development Half Moon Bay South - Phase 8 - 3718 Greenbank Road - Ottawa

Appendices

Appendix 1 Soil Profile and Test Data Sheets

Symbols and Terms

Grain Size Distribution Test Results

Analytical Testing

Appendix 2 Figure 1 - Key Plan

Figure 2 to 5 - Aerial Photographs

Drawing PG5690-1 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Mattamy Homes to conduct a geotechnical investigation for Phase 8 of Half Moon Bay South development located at 3718 Greenbank Road, in the City of Ottawa (refer to Figure 1 - Key Plan presented in Appendix 2).

The objective of the investigation was to:

	e the subsoil program.	and groundwater	condition	ons at th	is site	by m	eans of	а
•	•	recommendation the results of the			•			

The following report has been prepared specifically and solely for the aforementioned project which is described herein. The report contains our findings and includes geotechnical recommendations pertaining to the design and construction of the proposed development as understood at the time of this report.

2.0 Proposed Development

available.

It is understood that the current phase of the proposed development will consist of residential condominium blocks with or without basements and commercial areas consisting of slab on grade buildings. Associated driveways, local roadways and landscaping areas are also anticipated as part of the proposed development.

It is further understood that the proposed development will be serviced by future municipal water, sanitary and storm services.

3.0 Method of Investigation

3.1 Field Investigation

The field program for the current geotechnical investigation was carried out between February 17 and 23, 2021 and consisted of advancing a total of 12 boreholes to a maximum depth of 9.8 m below existing grade. Previous investigations were completed within the general area and surroundings of the subject site and consisted of a series of boreholes and test pits advanced to a maximum depth of 9.1 m below ground surface. The borehole locations were distributed in a manner to provide general coverage of the subject site and taking into consideration current site conditions. The test holes locations are shown on Drawing PG5690-1 - Test Hole Location Plan included in Appendix 2.

The test holes were completed using a track mounted drill operated by a two-person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The drilling procedure consisted of drilling to the required depths at the selected locations, and sampling and testing the overburden.

Sampling and In Situ Testing

Soil samples were collected from the boreholes using a 50 mm diameter split-spoon (SS) sampler. All soil samples were visually inspected and initially classified on site. The auger, split-spoon and grab samples were placed in sealed plastic bags and transported to the our laboratory for examination and classification. The depths at which the auger, and split-spoon samples were recovered from the test holes are shown as AU, and SS, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

The thickness of the silty sand deposit was evaluated by a dynamic cone penetration testing (DCPT) completed at BH 7-21. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

The subsurface conditions observed at the test hole locations were recorded in detail in the field. Our findings are presented in the Soil Profile and Test Data sheets in Appendix 1.

Groundwater Monitoring

All boreholes were fitted with flexible piezometers to allow groundwater level monitoring. The groundwater observations are discussed in Subsection 4.3 and presented in the Soil Profile and Test Data sheets in Appendix 1.

Sample Storage

All samples from the current investigation will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The test hole locations were determined by Paterson personnel and surveyed in the field by Paterson using a handheld, high precision GPS. The ground surface elevation at each test hole location is referenced to a geodetic datum. The locations of the boreholes are presented on Drawing PG5690-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples were collected from the subject site during the investigation and were visually examined in our laboratory to review the results of the field logging. Three grain size distribution analyses were completed on selected soil samples. The results of our testing are presented in Subsection 4.2 and on Grain Size Distribution Analysis sheets presented in Appendix 1.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the sample. The results are presented in Appendix 1 and are discussed further in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is a former agricultural land. The bulk of the current phase of the proposed development has been recently cleared of topsoil and peat which has been stockpiled in several piles across the site. Generally, the ground surface across the subject site is relatively flat within the central portion and slopes up towards the edges. It should be noted that parts of the subject site had undergone excavation and in-filling activities as part of a previous sand extraction operation. Historical aerial photographs of the site indicating fill movement activities since 1976 are presented in Appendix 2. The area to the south is significantly elevated. The area to the north and west also present a steep slope where fill was encountered.

The site is bordered to the south by a park and vacant land and to the north and west by future residential developments and the east by the future Greenbank Road.

4.2 Subsurface Profile

Generally, the subsurface profile across the subject site consists of varying amounts of fill consisting of silty sand mixed with occasional silty clay, gravel and cobbles. It should be noted that the fill thickness within BH 9-21, BH 10-21 and BH 11-21 ranged from 4.5 m and up to 8.23 m below ground surface.

A deep deposit of compact to dense brown silty sand to underlain the fill layer. Gravel and cobbles were occasionally encountered within the silty sand layer. The silty sand was observed to be underlain by a glacial till deposit composed of dense brown sandy silt to silty sand with gravel, cobbles and boulders within BH 3-21.

Practical refusal to augering was encountered at a range between 4.6 m and 8.3 m below existing ground surface. Practical refusal to DCPT was encountered at 9.8 m below existing ground surface at BH 7-21.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location.

Bedrock

Based on available geological mapping, the bedrock in the subject area consists of Paleozoic interbedded Sandstone and Dolomite from the March formation, with an overburden drift thickness of 10 to 15 m depth.

Grain Size Distribution and Hydrometer Testing

Grain size distribution (sieve and hydrometer analysis) testing was completed on three selected soil samples. The results of the grain size analysis are summarized in Table 1 and presented on the Grain-Size Distribution and Hydrometer Testing Results sheets in Appendix 1.

Table 1 - Grain	Size Distribution	on		
Borehole	Sample	Gravel (%)	Sand (%)	Silt and Clay (%)
BH2-21	SS3 & SS4	1.8	89.4	8.8
BH4-21	SS4 & SS5	0	88.9	11.1
BH8-21	SS4 & SS5	46.9	43.1	10

4.3 Groundwater

Groundwater levels were measured in the groundwater monitoring wells on March 4, 2021. The piezometers in BH 7-21, BH 11-21 and BH 12-21 were damaged or buried and could not be recorded. The remaining boreholes were dry upon completion.

Long-term groundwater level can also be estimated based on the observed moisture levels, colour and consistency of the recovered soil samples. Based on these observations, the long-term groundwater table can be expected well below 8 m below existing ground surface. It should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater level could vary at the time of construction.

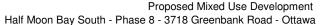
Report: PG5690-1 March 30, 2021

Proposed Mixed Use Development Half Moon Bay South - Phase 8 - 3718 Greenbank Road - Ottawa

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is suitable for the proposed mixed-use development. It is anticipated that the proposed buildings will be founded over conventional footings placed over an undisturbed compact to dense silty sand or dense glacial till bearing surface or an engineered fill pad over an approved fill subgrade bearing medium.


To adequately distribute the foundation loads in areas where the existing fill is encountered below the building footprint, a woven geotextile liner, such as Terratrack 200 or equivalent, should be placed 500 mm below design underside of footing level and extend at least 1 m horizontally beyond the footing face. A biaxial geogrid, such as Terrafix TBX2500 or equivalent, should be placed over the woven geotextile liner. A minimum 500 mm thick pad, consisting of a Granular B Type II, compacted to 98% of its SPMDD should be placed up to design underside of footing level. Prior to placement of the abovenoted engineered fill pad, it is recommended that a proof-rolling program be completed by a vibratory roller making several passes and approved by Paterson personnel over the sub-excavated area below the proposed footings.

For areas where a fill layer is encountered below the granular layer for the floor slab, it is recommended to sub-excavate 500 mm below the underside of floor slab granulars and place a woven geotextile liner, such as Terratrack 200W or equivalent, and a biaxial geogrid, such as Terrafix TBX2500 or equivalent. It is recommended that a proof-rolling program be completed by a vibratory roller making several passes and approved by Paterson personnel prior to placement of the geotextile liner and biaxial geogrid. Any poor performing areas should be removed and reinstated with a select subgrade fill compacted to 98% of its SPMDD under dry and above freezing temperatures.

The proof-rolling program should also be completed across paved areas to ensure that any poor performing soils are removed prior to pavement structure placement.

Due to the absence of a silty clay deposit, the aforementioned site will not be subjected to permissible grade raise restrictions. Also, no tree planting setback restrictions are required for the subject phase of the proposed development due to the absence of a silty clay deposit.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding and other settlement sensitive structures.

Fill Placement

Fill used for grading beneath the proposed building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. The fill should be placed in lifts of 300 mm thick or less and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the building areas should be compacted to at least 99% of the Standard Proctor Maximum Dry Density (SPMDD).

Non-specified existing fill along with site-excavated soil can be used as general landscaping fill and beneath parking areas where settlement of the ground surface is of minor concern. In landscaped areas, these materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of the SPMDD.

Non-specified existing fill and site-excavated soils are not suitable for use as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

Proof Rolling

Proof rolling of the subgrade is required in areas where the existing fill, free of significant amounts of organics and deleterious materials, is encountered. It is recommended that the subgrade surface be proof-rolled **under dry conditions and in above freezing temperatures** by an adequately sized roller making several passes to achieve optimum compaction levels. The compaction program should be reviewed and approved by the geotechnical consultant at the time of construction.

Proposed Mixed Use Development Half Moon Bay South - Phase 8 - 3718 Greenbank Road - Ottawa

5.3 Foundation Design

Conventional Spread Footings

Footings placed directly on an undisturbed, compact silty sand or glacial till bearing surface can be designed using a bearing resistance value at serviceability limit states (SLS) of **150 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **225 kPa**. A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance value at ULS.

Footings placed over a minimum 500 mm thick geogrid reinforced engineered pad, consisting of a Granular A or Granular B Type II or approved granular fill alternative placed in maximum 300 mm loose lifts and compacted to 98% of its SPMDD, placed over a subgrade soil approved by the Paterson personnel at the time of construction, can be designed using a bearing resistance value at SLS of **150 kPa** and a factored bearing resistance value at ULS of **250 kPa**.

An undisturbed soil bearing surface consists of a surface from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

Footings placed on a soil bearing surface and designed using the bearing resistance values at SLS given above will be subjected to potential post construction total and differential settlements of 25 and 20 mm, respectively.

Where the silty sand subgrade is found to be in a loose state, the contractor should compact the subgrade under dry conditions and above freezing temperatures, using suitable compaction equipment, making several passes and approved by Paterson.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to the in-situ bearing medium soils above the groundwater table when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil.

Ottawa

Design for Earthquakes 5.4

The site class for seismic site response can be taken as Class D. Based on the current information, including the level of groundwater table and compactness of the underlying sand layer, the soil underlying the subject site is not susceptible to liquefaction. Reference should be made to the latest revision of the 2012 Ontario Building Code for a full discussion of the earthquake design requirements.

5.5 Basement Slab / Slab-on-Grade Construction

With the removal of all topsoil and fill, containing significant amounts of deleterious or organic materials, the native soil and/or approved fill pad (placed as per Subsection 5.0) will be considered to be an acceptable subgrade surface on which to commence backfilling for the floor slab. Any poor performing areas should be removed and reinstated with an engineered fill, such as Granular B Type II.

For slab-on-grade areas, it is recommended that the upper 200 mm of sub-slab fill consist OPSS Granular A crushed stone. For basement slabs, it is recommended that the upper 200 mm of sub-floor fill consist of 19 mm clear crushed stone

5.6 **Pavement Structure**

Driveways, local residential roadways, heavy truck parking/loading areas and roadways with bus traffic are anticipated at this site. The proposed pavement structures are shown in Tables 2, 3 and 4.

ded Pavement Structure - Driveways and at-grade car parking
Material Description
Wear Course - HL 3 or Superpave 12.5 Asphaltic Concrete
BASE - OPSS Granular A Crushed Stone
SUBBASE - OPSS Granular B Type II

SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill

March 30, 2021 Page 9 Ottawa North Bay

Table 3 - Recommend Heavy Truck Parking	ded Pavement Structure - Local Residential Roadways and / Loading Areas
Thickness (mm)	Material Description
40	Wear Course - Superpave 12.5 Asphaltic Concrete
50	Binder Course - Superpave 19.0 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
400	SUBBASE - OPSS Granular B Type II
SUBGRADE - Either fill, i	n situ soil or OPSS Granular B Type I or II material placed over in situ soil

Table 4 - Recommend	led Pavement Structure - Roadways with Bus Traffic
Thickness mm	Material Description
40	Wear Course - Superpave 12.5 Asphaltic Concrete
50	Upper Binder Course - Superpave 19.0 Asphaltic Concrete
50	Lower Binder Course - Superpave 19.0 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
600	SUBBASE - OPSS Granular B Type II
SUBGRADE - Either in	n situ soil or OPSS Granular B Type II material placed over in situ soil

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 100% of the material's SPMDD using suitable vibratory equipment. Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

Foundation Drainage

A perimeter foundation drainage system is recommended for proposed structures. The system should consist of a 100 to 150 mm diameter, geotextile-wrapped, perforated, corrugated, plastic pipe, surrounded on all sides by 150 mm of 10 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of free-draining, non frost susceptible granular materials. The site materials will be frost susceptible and, as such, are not recommended for re-use as backfill unless a composite drainage system (such as system Delta Drain 6000 or Miradrain G100N) connected to a perimeter drainage system is provided.

6.2 Protection Against Frost Action

Perimeter footings of heated structures are required to be insulated against the deleterious effect of frost action. A minimum 1.5 m thick soil cover should be provided for adequate frost protection of heated structured, or an equivalent combination of soil cover and foundation insulation.

Exterior unheated footings, such as those for isolated exterior piers and loading docks, are more prone to deleterious movement associated with frost action than the exterior walls of the heated structure and require additional protection, such as soil cover of 2.1 m or an equivalent combination of soil cover and foundation insulation.

6.3 Excavation Side Slopes

The side slopes of the excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is expected that sufficient room will be available for the greater part of the excavation to be undertaken by opencut methods (i.e. unsupported excavations).

Proposed Mixed Use Development Half Moon Bay South - Phase 8 - 3718 Greenbank Road - Ottawa

Unsupported Excavations

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or shallower. The shallower slope is required for excavation below groundwater level. The subsoil at this site is considered to be mainly Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications & Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

At least 150 mm of OPSS Granular A should be used for pipe bedding for sewer and water pipes. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe, should consist of OPSS Granular A or Granular B Type II with a maximum size of 25 mm. The bedding and cover materials should be placed in maximum 225 mm thick lifts compacted to 98% of the material's SPMDD.

It should generally be possible to re-use the site excavated materials above the cover material if the operations are carried out in dry weather conditions.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone, (about 1.5 m below finished grade) and above the cover material should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 225 mm thick lifts and compacted to 95% of the materials SPMDD.

North Bay

Proposed Mixed Use Development Half Moon Bay South - Phase 8 - 3718 Greenbank Road - Ottawa

6.5 **Groundwater Control**

It is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

Permit to Take Water

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum of 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project, where excavations are completed in proximity of existing structures which may be adversely affected due to the freezing conditions.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the installation of straw, propane heaters and tarpaulins or other suitable means. The base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Proposed Mixed Use Development Half Moon Bay South - Phase 8 - 3718 Greenbank Road - Ottawa

Trench excavations and pavement construction are difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be considered if such activities are to be completed during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results on analytical testing show that the sulphate content is less than 0.1%. The results are indicative that Type 10 Portland Cement (normal cement) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a very low to slightly aggressive corrosive environment.

7.0 Recommendations

It is recommended that the following be completed once the master plan and site development are determined:

Review detailed grading plan(s) from a geotechnical perspective.
Observation of all bearing surfaces prior to the placement of concrete.
Sampling and testing of the concrete and fill materials used.
Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
Observation of all subgrades prior to placing backfilling materials.
Field density tests to determine the level of compaction achieved.
Sampling and testing of the bituminous concrete including mix design

A report confirming that these works have been conducted in general accordance with Paterson's recommendations could be issued upon request, following the completion of a satisfactory material testing and observation program by the geotechnical consultant.

Ottawa

North Bay

Statement of Limitations 8.0

The recommendations made in this report are in accordance with Paterson's present understanding of the project. Paterson requests permission to review the grading plan once available. Paterson's recommendations should be reviewed when the drawings and specifications are complete.

The client should be aware that any information pertaining to soils and the test hole log are furnished as a matter of general information only. Test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests to be notified immediately in order to permit reassessment of the recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Mattamy Homes or their agent(s) is not authorized without review by this firm for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Faisal I. Abou-Seido, P.Eng

David J. Gilbert, P.Eng.

Report Distribution:

- Mattamy Homes (1 digital copy)
- Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS
SYMBOLS AND TERMS
GRAIN SIZE DISTRIBUTION ANALYSIS
ANALYTICAL TESTING

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

Geotechnical Investigation Proposed Mixed Use Development

3718 Greenbank Road - Ottawa, Ontraio **DATUM** Geodetic FILE NO. PG5690 **REMARKS** HOLE NO. **BH 1-21 BORINGS BY** CME 55 Power Auger DATE 2021 February 17 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER **Water Content % GROUND SURFACE** 80 20 0+103.45ΑU 1 Compact to dense, brown SILTY

SAND 1+102.45SS 2 75 17 SS 3 75 14 2 + 101.45SS 4 83 17 3+100.45- Trace gravel by 3.0 m depth SS 5 83 13 4+99.45SS 6 25 67 SS 7 75 11 5+98.45SS 8 75 20 6 + 97.45SS 9 27 83 7+96.45SS 10 92 35 SS 11 83 24 8 + 95.45SS 12 83 32 8.99 End of Borehole (Piezometer dry - March 4, 2021) 40 60 80 100 Shear Strength (kPa)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation
Proposed Mixed Use Development
3718 Greenbank Road - Ottawa, Ontraio

		or to discondant tiod	u Ottuii	a, Ontidio	
DATUM	Geodetic			FILE NO. PG5690	
REMARKS				HOLE NO	-
BORINGS BY	CME 55 Power Auger DA	TE 2021 February 17		BH 2-21	_

BORINGS BY CME 55 Power Auger				D	ATE 2	2021 Feb	ruary 17	BH 2-21	
SOIL DESCRIPTION	PLOT		SAN	IPLE	T	DEPTH	ELEV.	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone	_ 5
GROUND SURFACE	STRATA B	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Water Content %	Piezometer Construction
Compact to dense, brown SILTY		AU	1			0-	102.61		
SAND		ss	2	75	25	1-	-101.61		
		ss	3	75	19	2-	-100.61		
		ss	4	75	56	3-	-99.61		
		ss	5	83	32	3	33.01		
		ss 7	6	67	39	4-	-98.61		
		ss 7	7	75	28	5-	-97.61		
		ss 7	8	75	32	6-	-96.61		
		ss 7	9	75	33	7-	-95.61		
- Trace gravel by 7.5 m depth		SS 7	10	75	30	,	33.01		
		∬ SS		75	37	8-	-94.61		
		SS	12	75	30				
(Piezometer dry - March 4, 2021)									
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded	D

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation
Proposed Mixed Use Development
3718 Greenbank Road - Ottawa, Ontraio

6 + 101.88

40

▲ Undisturbed

Shear Strength (kPa)

60

80

△ Remoulded

100

DATUM Geodetic FILE NO. **PG5690 REMARKS** HOLE NO. **BH 3-21 BORINGS BY** CME 55 Power Auger DATE 2021 February 18 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+107.88FILL: Brown silty sand, some crushed 1 stone and gravel Dense brown SILTY SAND some gravel 1+106.88SS 2 +50 33 **GLACIAL TILL:** Dense brown sandy silt to silty sand with gravel, cobbles SS 3 25 +50 and boulders 2 + 105.88SS 4 50 +503+104.88SS 5 50 +50 4 + 103.88SS 6 33 +50 SS 7 42 +505+102.88SS 8 33 +50

SS

6.86

9

+50

42

End of Borehole

Practical refusal to augering at 6.86 m depth

(Piezometer dry - March 4, 2021)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

DATUM Geodetic

REMARKS

BORINGS BY CME 55 Power Auger

DATE 2021 February 18

FILE NO.

PG5690

HOLE NO.

BH 4-21

BORINGS BY CME 55 Power Auger					D	ATE 2	2021 Feb	ruary 18				BH 4	I-Z I	
SOIL DESCRIPTION	PC.19	101. 		SAN	IPLE	ı	DEPTH	ELEV.	Pen. R ● 5	esist. 0 mm				_
GROUND SURFACE	STRATA		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		Vater C				Piezometer
					2	4	0-	-105.21	20	40	60	80)	
FILL: Brown silty sand some clay, gravel, cobbles, trace topsoil	76		AU	1										
Compact to dense, brown SILTY SAND			SS	2	50	14	1-	-104.21						
			SS	3	50	27	2-	-103.21						
			SS	4	83	28	3-	-102.21						
			SS	5	83	25		102.21						
			SS	6	83	30	4-	-101.21						
			SS	7	83	28	5-	-100.21						
			SS	8	83	34	6	-99.21						
			SS	9	83	35	0	99.21						
			SS	10	83	29	7-	-98.21						
			SS	11	75	25	8-	-97.21						l:::E
8.	99		SS	12	58	31								
End of Borehole			·-											
Piezometer dry - March 4, 2021)														
									20 Shea	40 ar Stre		80 (kPa))	00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

DATUM Geodetic

REMARKS

BORINGS BY CME 55 Power Auger

DATE 2021 February 18

FILE NO. PG5690

HOLE NO. BH 5-21

ORINGS BY CME 55 Power Auger				ט	ATE 2	2021 Feb	ruary 18	BH 5-21
SOIL DESCRIPTION			SAN	IPLE		DEPTH (m)	ELEV.	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone
ROUND SURFACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(111)	(m)	● 50 mm Dia. Cone ○ Water Content % 20 40 60 80
ILL: Brown silty sand with clay, ravel, trace topsoil		AU	1			0-	-105.57	
0.8 ompact to dense, reddish brown ILTY SAND		ss	2	58	25	1-	-104.57	
		ss	3	58	7	2-	-103.57	
Brown by 2.2 m depth		ss	4	83	14	3-	-102.57	
		ss	5	83	9			
		ss	6	58	18	4-	-101.57	
		ss	7	83	32	5-	-100.57	
		ss T	8	100	16	6-	-99.57	
		ss 7	9	83	11	7-	-98.57	
		ss 7	10	75	19	,	30.57	
		ss 7	11	75	23	8-	-97.57	
nd of Borehole 8.9	9	SS SS	12	75	24			
Piezometer dry - March 4, 2021)								
								20 40 60 80 10

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

DATUM Geodetic

REMARKS

BORINGS BY CME 55 Power Auger

DATE 2021 February 19

BH 6-21

BORINGS BY CME 55 Power Auger		CVI	D (IPLE	Pan Pa	Resist. Blows/0.3m						
SOIL DESCRIPTION	PLOT		JAN			DEPTH (m)	ELEV. (m)		mm Dia		
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	()	(,	O Wa	ater Con	tent %	Piezometer
GROUND SURFACE	,		~	2	Z	0-	-103.25	20	40 6	0 80	i i
FILL: Brown silty sand	1	AU	1				. 55.25				
Compact to dense brown SILTY		ss	2	75	46	1-	-102.25				
		ss	3	58	22	2-	-101.25				
		ss	4	75	25						
		ss	5	75	23	3-	-100.25				
		ss	6	67	29	4-	-99.25				
		ss	7	67	28	5-	-98.25				
		ss	8	67	26						
		ss	9	75	27	6-	-97.25				
		ss	10	67	22	7-	-96.25				
		ss	11	67	22	8-	-95.25				
0.0		ss	12	67	20						
	9 1 1 1	·./_									<u>: : 534</u>
Piezoemter dry - March 4, 2021)											
								20 Shear ▲ Undistu	40 6 Strengt		100

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation
Proposed Mixed Use Development
3718 Greenbank Road - Ottawa, Ontraio

DATUM Geodetic FILE NO. PG5690 **REMARKS** HOLE NO. **BH 7-21 BORINGS BY** CME 55 Power Auger DATE 2021 February 19 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER **Water Content % GROUND SURFACE** 80 20 0+103.78FILL: Brown silty sand, some gravel 1 0.84 1+102.78SS 2 50 25 Compact to dense, brown SILTY SAND SS 3 75 28 2 + 101.78**Dynamic Cone Penetration Test** commenced at 2.13 m depth. SS 4 75 17 3+100.78SS 5 75 17 4 + 99.78SS 6 20 67 - Trace gravel by 4.5 m depth SS 7 67 53 5+98.78SS 8 45 67 6 + 97.78SS 9 23 67 - Some gravel by 6.7 m depth 7 + 96.78SS 10 75 49 SS 11 67 83 8 + 95.78

SS

9.75

Practical refusal to augering 8.99 m

Practical refusal to DCPT at 9.75 m

depth

depth

End of Borehole

12

75

57

9 + 94.78

40

▲ Undisturbed

Shear Strength (kPa)

60

△ Remoulded

100

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation
Proposed Mixed Use Development
3718 Greenbank Road - Ottawa, Ontraio

DATUM Geodetic FILE NO. **PG5690 REMARKS** HOLE NO. **BH 8-21 BORINGS BY** CME 55 Power Auger DATE 2021 February 22 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+106.13FILL: Brown silty sand with gravel 1 and crushed stone <u>0.6</u>1 Compact to dense, brown SILTY 1+105.13SS 2 75 47 **SAND** with gravel and cobbles SS 3 75 55 2 + 104.13SS 4 50 45 3+103.13SS 5 50 51 4+102.13SS 6 56 50 SS 7 49 33 5 ± 101.13 SS 8 50 61 6 + 100.13SS 9 24 50 7 + 99.13SS 10 33 31 SS 11 50 51 8 + 98.138.38 End of Borehole Practical refusal to augering at 8.38 m depth (Piezometer dry - March 4, 2021) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

DATUM Geodetic									FILE NO.	PG5690	
REMARKS				_		2001 Fab	w		HOLE NO	D. BH 9-21	
BORINGS BY CME 55 Power Auger	_		041		ATE 2	2021 Feb	ruary 22		: DI		
SOIL DESCRIPTION	A PLOT			IPLE	H۵	DEPTH (m)	ELEV. (m)		esist. Bid 0 mm Dia	ows/0.3m a. Cone	ster
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			0 V	Vater Con	itent %	Piezometer Construction
GROUND SURFACE		-	-	2	Z	0-	109.17	20		80	i C
ORGANICS 0.05 FILL: Brown silty sand with gravel 0.69		AU	1								
FILL: Brown silty clay with sand, gravel, cobbles, trace topsoil		ss	2	17	21	1-	108.17				
		ss	3	25	11	2-	-107.17				
		ss	4	8	4	3-	106.17				
		ss	5	50	7						
4.57		ss	6	17	26	4-	105.17				
End of Borehole											
Practical refusal to augering at 4.57 m depth											
(Piezometer dry - March 4, 2021)											
								20 Shea ▲ Undist	ar Strengt	50 80 10 th (kPa) Remoulded)0

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

DATUM Geodetic

REMARKS

BORINGS BY CME 55 Power Auger

DATE 2021 February 23

FILE NO. PG5690

HOLE NO. BH10-21

BORINGS BY CME 55 Power Auger				0	ATE 2	2021 Feb	ruary 23		HOL	E NO.	H10-21	1
SOIL DESCRIPTION	PLOT		SAN	IPLE	T	DEPTH	ELEV.			Blows		
GROUND SURFACE	STRATA I	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)			Conten		Piezometer
TOPSOIL 0.05			1			0-	-107.98	20				
FILL: Brown to grey silty clay with sand, gravel, cobbles, trace topsoil		SS	2	42	12	1 -	-106.98					
			۷	42	12	•						
		ss	3	42	5	2-	-105.98					
		ss	4	17	3							
		ss	5	33	5	3-	-104.98					
		ss	6	25	5	4-	-103.98					
		ss	7	50	10	5-	-102.98					_
FILL: Brown silty sand, some gravel		ss	8	33	7	6-	-101.98					
FILL: Brown to grey silty clay with sand, gravel, trace wood and organics		ss	9	42	8							
		ss	10	33	6	7-	-100.98					日の日
8.23 End of Borehole		ss	11	4	9	8-	-99.98					
(Piezometer dry - March 4, 2021)												
(Fiezometer dry March 4, 2021)												
								20 Shea ▲ Undist		60 ength (I		⊣ 100

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

DATUM Geodetic

REMARKS

BORINGS BY CME 55 Power Auger

DATE 2021 February 23

BATE 2021 February 23

BH11-21

BORINGS BY CME 55 Power Auger				D	ATE 2	2021 Feb	ruary 23				BH1	11-21	
SOIL DESCRIPTION	PLOT		SAN	IPLE	T	DEPTH	ELEV.	Pen. R		-	ws/0.5 . Cone	_	
GROUND SURFACE	STRATA I	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0 V	Vater	Con	tent %	.	Piezometer
FOPSOIL 0.05	XXX			- н		0-	105.87	20	40	60	U 8	0	"
FILL: Brown silty clay some sand, gravel, trace topsoil		& AU ₩	1										
Wood fragments present at 0.9 m lepth		ss	2	50	4	1-	104.87						
		ss	3	33	5	2-	103.87						
		ss	4	50	6		100.07						
<u>3.51</u>		ss	5	42	23	3-	-102.87						
FILL: Brown silty sand with gravel, race clay		ss	6	8	28	4-	-101.87						
<u>5</u> .03		ss	7	33	21	5-	100.87						
FILL: Brown silty clay with sand, gravel, cobbles, trace organics		ss	8	25	11								
Increasing sand with depth		ss	9	33	5	6-	-99.87						
-		ss	10	17	+50	7-	-98.87						
7.54 FILL: Brown silty sand with gravel, race topsoil 8.23		ss	11	42	28	8-	-97.87						
Compact brown SILTY SAND with gravel, trace cobbles		ss	12	42	67								
9.14 End of Borehole		ss	13	0	+50	9-	96.87						
Piezometer destroyed - March 4, 021)													
								20 She ▲ Undis		_	0 8 h (kPa Remou	1)	00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

DATUM Geodetic					'					FI	LE NO	PG	5690	
REMARKS						2004 5 1				н	OLE NO	D. RH	12-21	
BORINGS BY CME 55 Power Auger					ATE 2	2021 Feb	ruary 23							
SOIL DESCRIPTION	PLOT			SAMPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone				ter		
		STRATA		% RECOVERY	N VALUE or RQD				o \	Vate	er Coi	ntent %	, o	Piezometer Construction
GROUND SURFACE	0)	~	NUMBER	R	z o	0-	101.30		20	40) (50 8	80	i <u>r</u> O
FILL: Brown silty sand with gravel, trace clay		AU	1											
		ss	2	50	64	1-	100.30							
		$\left\langle \cdot \right\rangle$												
		ss	3	50	69	2-	-99.30							
			4	40	00									
2.90	\bowtie	ss	4	42	28									
End of Borehole														
(Piezometer destroyed - March 4, 2021)														
									20	40) '	50 8	30 10	 00
									She Undis	ar S	treng	th (kPa Remou	a)	U

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation **Barrhaven South Urban Expansion** Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. **RH 5-15**

BORINGS BY CME 75 Power Auger				D	ATE	Decembe	r 10, 201	5			BH 5-	15
SOIL DESCRIPTION	DESCRIPTION E SAMPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone			ı =				
GROUND SURFACE		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		Vater (Monitoring Well
<u> </u>						0-	-108.75					
		ss	1	42	13	1-	-107.75	0				
		ss	2	25	21	2-	-106.75	ο				
		ss	3	33	5		105.75					
		ss	4	42	4	3-	-105.75	0				
FILL: Grey silty sand with clay, gravel and wood		ss	5	42	3	4-	-104.75	Φ				
		ss	6	42	3	5-	-103.75	0				
		ss	7	17	5	6-	-102.75	0				
		ss	8	25	37							
		- SS	9	0	50+	7-	-101.75					
		ss	10	58	9	8-	-100.75	0:1				
9.1	4	ss	11	0	1	9-	-99.75					
End of Borehole												
BH dry to 9.14m depth - July 28, 2016)												
								20	40	60	80	100
									ar Stre	ength		

Geotechnical Investigation

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 1-15 **BORINGS BY** Backhoe DATE December 2, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction 50 mm Dia. Cone **SOIL DESCRIPTION** (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 + 105.10**TOPSOIL** 0.10 1 + 104.10Compact, brown SILTY SAND, trace boulders and cobbles G 2 2 + 103.103.00 3+102.10End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

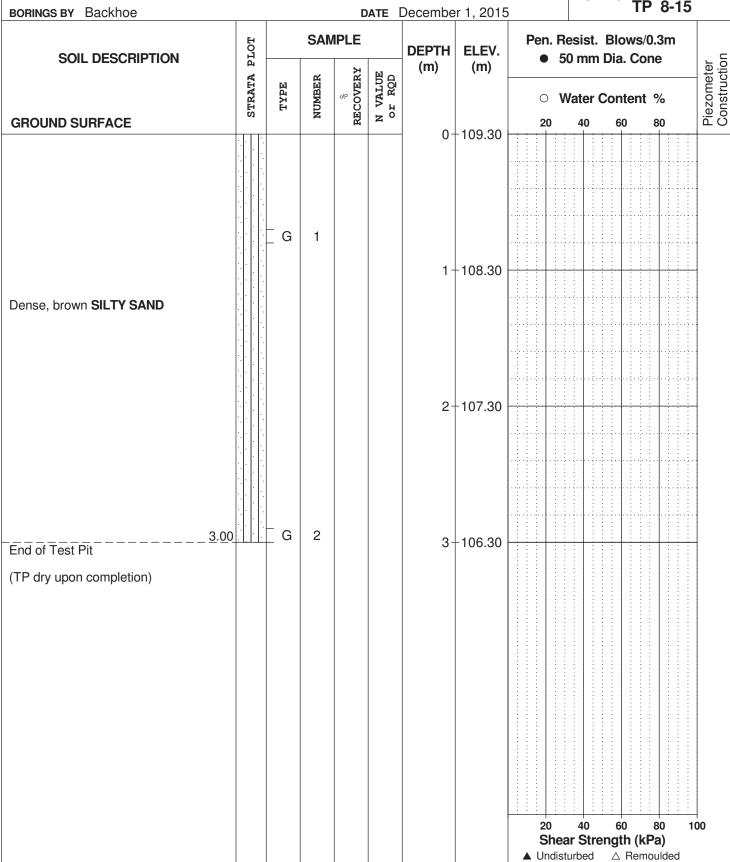
SOIL PROFILE AND TEST DATA

Geotechnical Investigation

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 2-15 **BORINGS BY** Backhoe DATE December 2, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction • 50 mm Dia. Cone **SOIL DESCRIPTION** (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 + 106.80**TOPSOIL** 0.10 G 1 1 + 105.80Compact, brown SILTY SAND 2 + 104.802 G 3.00 3+103.80End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded


Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. **TP 8-15 BORINGS BY** Backhoe DATE December 1, 2015

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. **TP 9-15 BORINGS BY** Backhoe DATE December 2, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction 50 mm Dia. Cone **SOIL DESCRIPTION** (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+108.40**TOPSOIL** <u>0</u>.20 G 1 1 + 107.40Brown SILTY SAND, trace cobbles 2 + 106.403.00 2 3+105.40End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa)

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %		
Very Loose	<4	<15		
Loose	4-10	15-35		
Compact	10-30	35-65		
Dense	30-50	65-85		
Very Dense	>50	>85		

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value		
Very Soft	<12	<2		
Soft	12-25	2-4		
Firm	25-50	4-8		
Stiff	50-100	8-15		
Very Stiff	100-200	15-30		
Hard	>200	>30		

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, S_t , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC% - Natural water content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic Limit, % (water content above which soil behaves plastically)

PI - Plasticity Index, % (difference between LL and PL)

Dxx - Grain size at which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

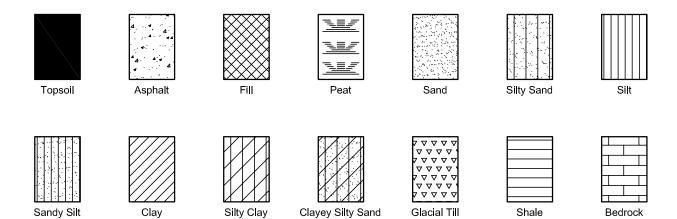
p'o - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

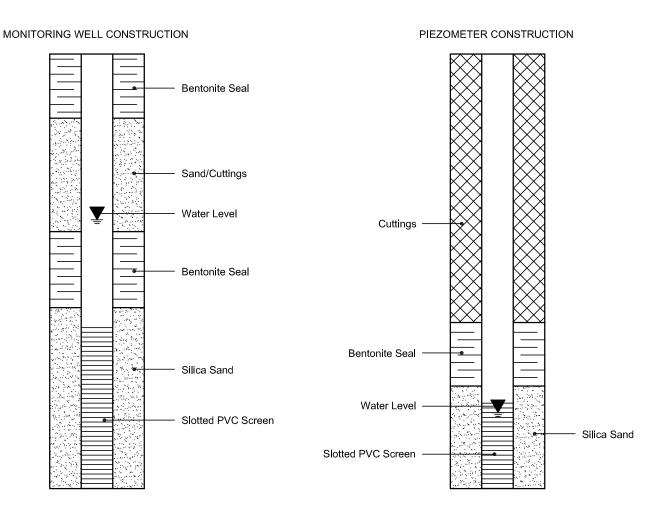
Ccr - Recompression index (in effect at pressures below p'c)
 Cc - Compression index (in effect at pressures above p'c)

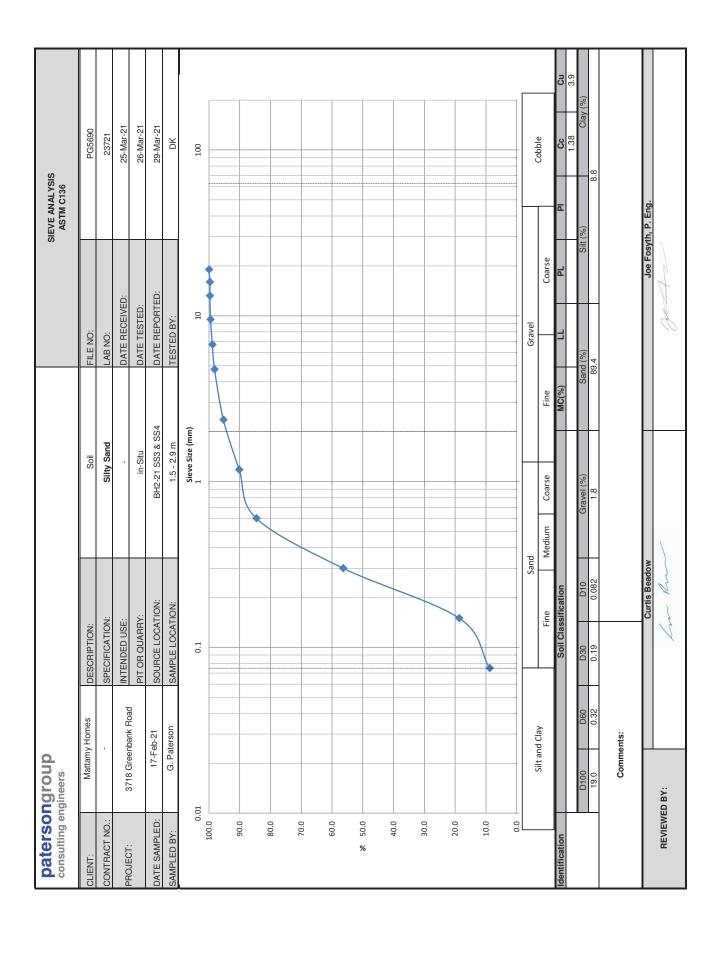
OC Ratio Overconsolidaton ratio = p'c / p'o

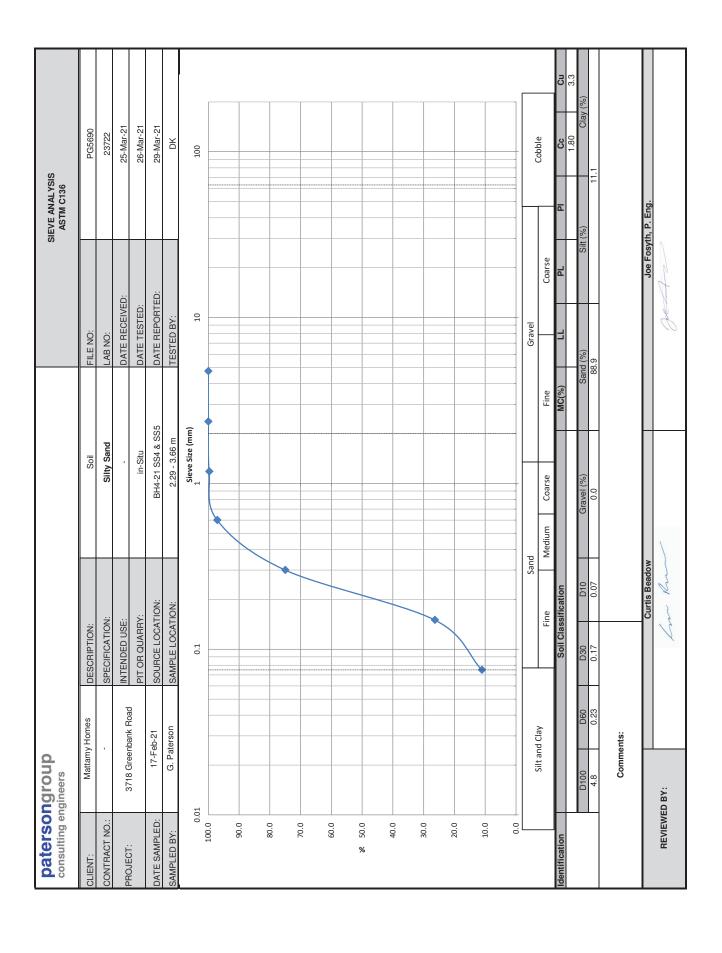
Void Ratio Initial sample void ratio = volume of voids / volume of solids

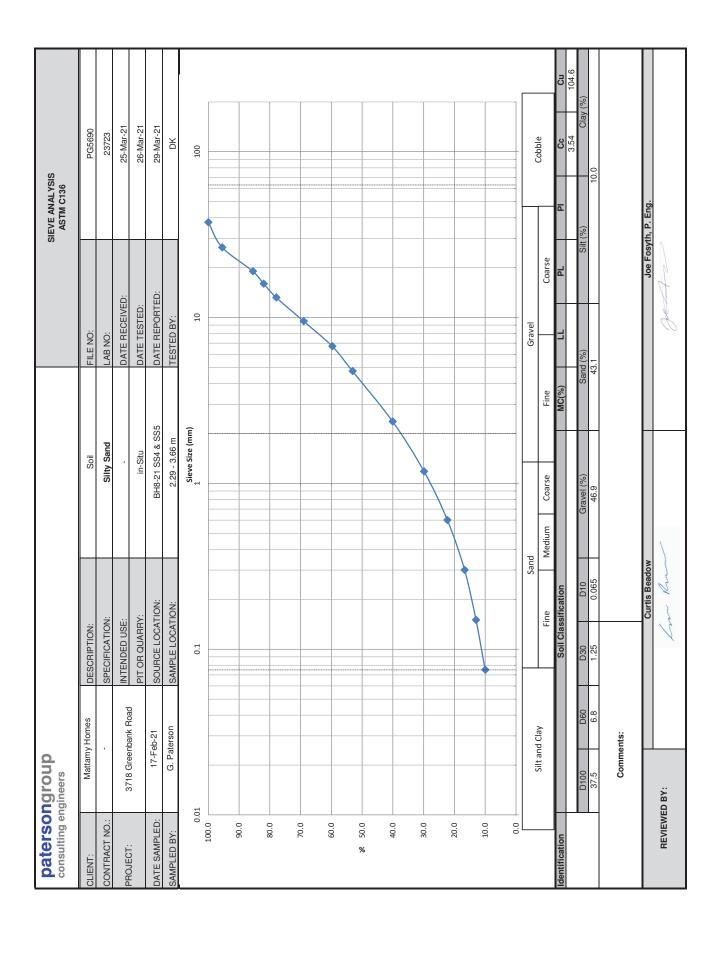

Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.


SYMBOLS AND TERMS (continued)


STRATA PLOT



MONITORING WELL AND PIEZOMETER CONSTRUCTION

Order #: 2108430

Certificate of Analysis Report Date: 25-Feb-2021

 Client:
 Paterson Group Consulting Engineers
 Order Date: 19-Feb-2021

 Client PO:
 31927
 Project Description: PG5690

	Client ID:	BH7-21-SS5	-	-	-	
	Sample Date:	19-Feb-21 09:00	-	-	-	
	Sample ID:	2108430-01	-	-	-	
	MDL/Units	Soil	-	-	-	
Physical Characteristics			•		-	
% Solids	0.1 % by Wt.	95.7	-	-	-	
General Inorganics	•				_	
pH	0.05 pH Units	7.30	-	-	-	
Resistivity	0.10 Ohm.m	143	-	-	-	
Anions						
Chloride	5 ug/g dry	7	-	-	-	
Sulphate	5 ug/g dry	<5	-	-	-	

APPENDIX 2

FIGURE 1 - KEY PLAN

FIGURE 2 TO 5 - AERIAL PHOTOGRAPHS

DRAWING PG5690-1 - TEST HOLE LOCATION PLAN

FIGURE 1

KEY PLAN

FIGURE 2

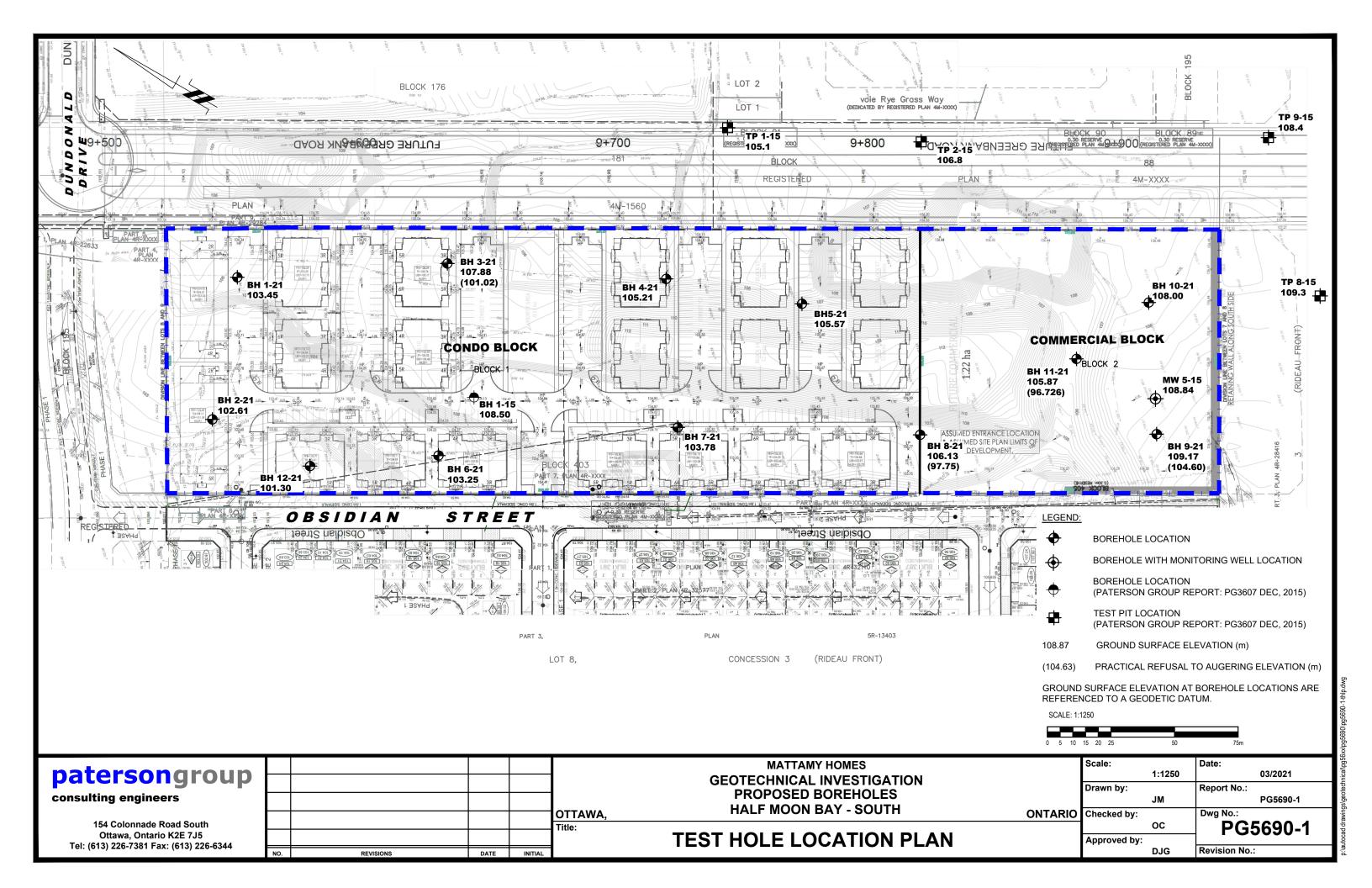

FIGURE 3

FIGURE 4

FIGURE 5

3718 GREENBANK ROAD: SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix F Drawings

Appendix F DRAWINGS

