

Phase II Environmental Site Assessment

Northern Part of 1919 Riverside Drive Ottawa, Ontario

Prepared for Schlegel Villages

Report: PE5409-2 August 11, 2022

TABLE OF CONTENTS

CUTIV	E SUMMARY	iii
INTR	ODUCTION	1
1.1	Site Description	1
1.2	Property Ownership	1
1.3	Current and Proposed Future Uses	2
1.4	Applicable Site Condition Standard	2
BAC		
2.1	Physical Setting	3
2.2	Past Investigations	3
SCO	PE OF INVESTIGATION	4
3.1	Overview of Site Investigation	4
3.2	Media Investigated	4
3.3	Phase I Conceptual Site Model	5
3.4	Deviations from Sampling and Analysis Plan	7
3.5	Impediments	7
INVE	STIGATION METHOD	7
4.1	Subsurface Investigation	7
4.2	Soil Sampling	7
4.3	Field Screening Measurements	8
4.4	Groundwater Monitoring Well Installation	8
4.5	Groundwater Sampling	9
4.6	Analytical Testing	9
4.7	Residue Management	10
4.8	Elevation Surveying	10
4.9	Quality Assurance and Quality Control Measures	10
REV	IEW AND EVALUATION	10
5.1	Geology	10
5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	11
5.3	Fine-Coarse Soil Texture	11
5.4	Soil: Field Screening	12
5.5	Soil Quality	12
5.6	Groundwater Quality	
5.7	Quality Assurance and Quality Control Results	16
5.8	Phase II Conceptual Site Model	17
CON		
6.1	Assessment	
6.4	Recommendations	23
STA	TEMENT OF LIMITATIONS	25
	INTR 1.1 1.2 1.3 1.4 BAC 2.1 2.2 SCO 3.1 3.2 3.3 3.5 INVE 4.1 4.2 4.3 4.4 4.5 4.7 4.9 REV 5.1 5.6 5.7 5.8 CO 6.1 6.4	1.2 Property Ownership 1.3 Current and Proposed Future Uses 1.4 Applicable Site Condition Standard BACKGROUND INFORMATION 2.1 Physical Setting 2.2 Past Investigations SCOPE OF INVESTIGATION 3.1 Overview of Site Investigation 3.2 Media Investigated 3.3 Phase I Conceptual Site Model 3.4 Deviations from Sampling and Analysis Plan 3.5 Impediments INVESTIGATION METHOD 4.1 Subsurface Investigation 4.2 Soil Sampling 4.3 Field Screening Measurements 4.4 Groundwater Monitoring Well Installation 4.5 Groundwater Sampling 4.6 Analytical Testing 4.7 Residue Management 4.8 Elevation Surveying 4.9 Quality Assurance and Quality Control Measures REVIEW AND EVALUATION 5.1 Geology 5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient 5.3 Fine-Coarse Soil Texture 5.4 Soil: Field Screening 5.5 Soil Quality 5.6 Groundwater Quality 5.7 Quality Assurance and Quality Control Results 5.8 Phase II Conceptual Site Model CONCLUSIONS 6.1 Assessment

List of Figures

Figure 1 - Key Plan

Drawing PE5409-1 -Site Plan

Drawing PE5409-2 - Surrounding Land Use Plan

Drawing PE5409-3 – Test Hole Location Plan & Groundwater Contour Plan

Drawing PE5409-4 – Analytical Testing Plan – Soil

Drawing PE5409-4A - Cross-section A - A' - Soil

Drawing PE5409-5 - Analytical Testing Plan - Groundwater

Drawing PE5409-5A – Cross-section A – A' – Groundwater

List of Appendices

Appendix 1 Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

Report: PE5409-2 Page ii

EXECUTIVE SUMMARY

Assessment

A Phase II ESA was conducted for the northern part of the property addressed 1919 Riverside Drive, in the Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II Property.

The subsurface investigation consisted of twelve (12) boreholes, three (3) of which were instrumented with groundwater monitoring wells. The general soil profile encountered during the field program consisted of either topsoil or an asphaltic concrete structure, followed by a fill material consisting of silty clay or silty sand to sandy silt with some gravel and traces of clay and/or organics with occasional cobbles, underlain by silty sand and silty clay and/or glacial till, followed by shale bedrock. The unknown quality of the fill material was considered an area of potential environmental concern (APEC).

Five (5) soil samples, including a duplicate sample, were submitted for laboratory analysis of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, Fractions F₁-F₄), polycyclic aromatic hydrocarbons (PAHs) and/or metals (including hydride forming compounds: arsenic (As), Antimony (Sb), Selenium (Se)). All of the soil results comply with MECP Table 3 Residential Standards.

Groundwater samples from monitoring wells BH8-22, BH9-22 and BH12-22 were collected during the July 7, 2022, sampling event. No free product or petroleum hydrocarbon sheen was noted on the purge water during the groundwater sampling events.

Groundwater samples were analyzed for BTEX and PHCs. No BTEX or PHCs were detected above the laboratory detection limits. The groundwater results comply with the MECP Table 3 Standards.

Based on the findings of the Phase II ESA, no further environmental investigation is recommended at this time.

Recommendations

It is our understanding that the Phase II Property will be redeveloped for residential purposes.

Any excess soil requiring off-site disposal during construction must be managed in accordance with Ontario Regulation 406/19 – On-site and Excess Soil Management.

It is recommended that additional analytical testing be carried out to determine the appropriate method of disposal for any soils deemed excess during the redevelopment of the site.

Monitoring Wells

If the monitoring wells installed on the Phase II Property are not going to be used in the future, or will be destroyed during site redevelopment, they should be abandoned according to Ontario Regulation 903. The wells will be registered with the MECP under this regulation. More information can be provided regarding the decommissioning of these wells.

1.0 INTRODUCTION

At the request of Schlegel Villages, Paterson Group (Paterson) conducted a Phase II Environmental Site Assessment for the northern part of 1919 Riverside Drive (the Phase II Property), in the City of Ottawa, Ontario. The purpose of this Phase II ESA has been to address areas of potential environmental concern (APECs) identified on the Phase II Property, during the Phase I ESA conducted by Paterson in October of 2021.

1.1 Site Description

Address: Norther Part of 1919 Riverside Drive, Ottawa, Ontario

Legal Description: Part of Lots 15 and 16, Junction Gore and Part of

Road allowance between Lots 15 and 16, in the City

of Ottawa, Ontario.

Location: The Phase II Property is located on the east side of

Riverside Drive, south of Smyth Road, in the City of Ottawa, Ontario. For the purpose of this assessment, Riverside Drive is considered to run in a north-south direction. The subject site is shown on Figure 1 - Key

Plan following the body of this report.

Latitude and Longitude: 45° 23' 51.31" N, 75° 40' 2.74" W.

Site Description:

Configuration: Irregular.

Site Area: 22,611 m² (approximate).

Zoning: I2F – Institutional Zone.

1.2 Property Ownership

Paterson was engaged to conduct this Phase II-ESA by Mr. Brad Schlegel of Schlegel Villages. The office of Schlegel Villages is located at 325 Max Beker Drive, Ottawa, Ontario.

1.3 Current and Proposed Future Uses

The Phase II Property exists as an asphaltic concrete paved parking lot associated with the Ottawa Hospital (Riverside Campus), which is considered institutional use.

It is our understanding that the Phase II Property will be redeveloped for residential purposes. A record of site condition (RSC) is not required.

1.4 Applicable Site Condition Standard

The site condition standards for the property were obtained from Table 3 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of Environment, Conservation and Parks (MECP), April 2011. The selected MECP Table 3 Standards are based on the following considerations:

Coarse-grained soil conditions
Full depth generic site conditions
Non-potable groundwater conditions
Residential land use

Section 35 of O.Reg. 153/04 does apply to the Phase II Property in that the property does not rely upon potable groundwater.

Section 41 of O.Reg. 153/04 does not apply to the Phase II Property, as the property is not within 30m of an environmentally sensitive area.

Section 43.1 of O.Reg. 153/04 does not apply to the Phase II Property in that the property is not a Shallow Soil property.

The intended use of the Phase II Property is residential therefore, the Residential Standards have been selected for the purpose of this Phase II ESA.

Additionally, the soil test results have been compared to the MECP Table 1 Standards, which are considered to be indicative of typical Ontario background concentrations, which are commonly used to assess whether soil is clean for off-site disposal purposes.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II Property exists as an asphaltic concrete parking lot associated with the Ottawa Hospital.

Site drainage consists primarily of sheet flow to catch basins located across the site and on the adjacent laneways.

The site topography is above the grade of Smyth Road and slopes down towards the south. The regional topography slopes down in a northwesterly/westerly direction towards the Rideau River.

2.2 Past Investigations

Paterson completed a Phase I ESA in October of 2021 for the Phase II Property. Based on the findings of the Phase I ESA, four (4) potentially contaminating activities (PCAs) were determined to result in areas of potential environmental concern (APECs) on the Phase II Property:

As per Column A of Table 2 of the O.Reg. 153/04, as amended, the following PCAs that generated APECs on the Phase I Property are:

J	PCA 28 – "Gasoline and Associated Products Storage in Fixed Tanks" associated with a historical UST and current AST on the adjacent property south of the Phase I Property (APEC 1).
3	PCA Other – "Diesel Spill" associated with a historical spill associated with the former UST on the adjacent property south of the Phase I Property (APEC 1).
J	PCA 46 – "Rail Yards, Tracks and Spurs," associated with the railway tracks present along the eastern property boundary of the Phase I Property (APEC 2).
J	PCA Other – "Use of Road Salt," associated with the use of road salt for vehicular and pedestrian safety on the Phase I Property (APEC 3).

Based on the findings of the Phase I ESA, it is more than likely that road salt was applied to the surface of the walkways, paved access lane and parking lot across the Phase I Property for the safety of vehicular and pedestrian traffic under conditions of ice and/or snow.

According to Section 49.1 of O.Reg. 153/04, if an applicable site condition standard is exceeded at a property solely because of the following reason, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act: "The qualified person has determined, based on a phase one environmental site assessment or a phase two environmental site assessment, that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both."

In accordance with Section 49.1 of O.Reg. 153/04, any EC and SAR concentrations on the subject property that exceed the MECP Table 3 standards for a residential/institutional land use are deemed not to be exceeded for the purpose of Part XV.1 of the Act. This exemption is being relied on for the use of road salt (APEC 3).

APECs 1 and 2 are shown on Drawing PE5409-1 – Site Plan, while the corresponding PCAs are shown in red on Drawing PE5409-2 – Surrounding Land Use Plan, in the Figures Section of the Phase I ESA report.

The rationale for identifying the above APECs is based on a review of fire insurance plans, aerial photographs, field observations, and personal interviews. A Phase II ESA was recommended to address the aforementioned APECs.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The subsurface investigation was conducted during the interim of July 20 to July 23, 2022. The field program consisted of drilling 12 boreholes across the Phase II Property to address the APECs identified in the Phase I ESA as well as to gain general coverage for a geotechnical investigation. Three (3) boreholes were completed with monitoring well installations. Boreholes were drilled to a maximum depth of 9.04 m below the ground surface (mbgs).

3.2 Media Investigated

During the subsurface investigation, soil samples and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing this media is based on the Contaminants of Potential Concern identified in the Phase I ESA.

Contaminants of potential concern on the Phase II Property include benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4) and polycyclic aromatic hydrocarbons (PAHs). These CPCs may be present in the soil and/or groundwater beneath the Phase II Property.

3.3 Phase I Conceptual Site Model

Geological and Hydrogeological Setting

Based on information from the Geological Survey of Canada mapping, drift thickness in the area of the subject site is on the order of 2 to 3 m across the site. The overburden consists of off-shore marine sediments. Bedrock in the area consists of shale of the Billings Formation.

Existing Buildings and Structures

There are no buildings present on the Phase I Property. Structures on-site include a parking meter, barricade and pole mounted lights as well as catch basins.

Subsurface Services and Utilities

The Phase I Property is situated in a municipally serviced area. Underground utilities and/or structures include electricity, water and sewer entering the site from Riverside Drive and passing through the central portion of the site to Balmoral Place.

Areas of Natural Significance and Water Bodies

No areas of natural significance were identified in the Phase I Study Area. The Rideau River is located approximately 225m west of the Phase I Property. No other natural water bodies were identified in the Phase I Study Area.

Drinking Water Wells

There are no potable water wells on the Phase I Property, nor are they expected to be present as the subject land is situated in a municipally serviced area.

Neighbouring Land Use

Neighbouring land use in the Phase I Study Area consists of residential and institutional land uses. Land use is shown on Drawing PE5409-2 - Surrounding Land Use Plan.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

As per Section 7.1 of the Phase I ESA report, three (3) off-site PCAs and the resultant APECs are summarized in Table 1, along with their respective locations and contaminants of potential concern (CPCs).

	Table 1: Potentially Contaminating Activities and Areas of Potential Environmental Concern							
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)			
APEC 1: Resulting from the former presence of a UST and current presence of an AST on the adjacent property to the south	Southeastern corner of the Phase I Property	PCA 28 – Gasoline and Associated Products Storage in Fixed Tanks	Off-site	BTEX PHCs (F ₁ -F ₄)	Soil and Groundwater			
APEC 1: Resulting from the former spill associated with the former UST on the adjacent to the south	Southeastern corner of the Phase I Property	PCA Other – Diesel Spill	Off-site	BTEX PHCs (F ₁ -F ₄)	Soil and Groundwater			
APEC 2: Resulting from the presence of a railway track along the eastern property boundary	Eastern side of the Phase I Property	PCA 46 – Rail Yards, Tracks and Spurs	Off-site	PHCs (F ₁ -F ₄) PAHs Metals	Soil and Groundwater			

Contaminants of Potential Concern

As per Section 7.1 of the Phase I ESA report, the contaminants of potential concern (CPCs) in soil and/or groundwater include benzene, toluene, ethylbenzene, and xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4), polycyclic aromatic hydrocarbons (PAHs) and metals.

Report: PE5409-2

August 144, 2000

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of the Phase I-ESA is considered to be sufficient to conclude that there are off-site PCAs that have resulted in APECs on the Phase I Property.

A variety of independent sources were consulted as part of this assessment, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

3.4 Deviations from Sampling and Analysis Plan

The placement of some boreholes was limited due to the underground utilities located along the central portion of the Phase II Property. There were no other deviations from the Sampling and Analysis Plan which is included in Appendix 1 of this report.

3.5 Impediments

With the exception of the some of the underground utilities, no other physical impediments were encountered during the Phase II ESA field program.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation conducted for this Phase II ESA consisted of drilling 12 boreholes (BH1-22 through BH12-22) across the Phase II Property. Three (3) boreholes were instrumented with monitoring well installations.

The boreholes were drilled to a maximum depth of 9.04 m below ground surface (mbgs) to intercept groundwater.

The boreholes were drilled using a low clearance track mounted drill rig operated by George Downing Estate Drilling of Hawkesbury, Ontario, under full-time supervision of Paterson personnel. The borehole locations are indicated on the attached Drawing PE5409-3 - Test Hole Location Plan.

4.2 Soil Sampling

A total of 82 soil samples and 14 rock core samples were obtained from the boreholes by means of auger sampling from auger flights/auger samples and split spoon sampling. Split spoon samples were taken at approximate 0.76 m intervals.

The depths at which grab samples, split spoon, and core samples were obtained from the boreholes are shown as "AU", "SS" and "RC", respectively on the Soil Profile and Test Data Sheets.

The borehole profiles generally consisted of either topsoil or an asphaltic concrete structure, followed by a fill material consisting of silty clay or silty sand to sandy silt with some gravel and traces of clay and/or organics with occasional cobbles, underlain by silty sand and silty clay and/or glacial till, followed by shale interbedded in limestone bedrock. Bedrock was encountered in boreholes BH6-22, BH7-22, BH9-22. BH10-22, BH11-22 and BH12-22 at depths ranging from approximately to 3.66 to 5.28 mbgs.

4.3 Field Screening Measurements

Soil samples recovered at the time of sampling were placed immediately into airtight plastic bags with nominal headspace. All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey. Allowing the samples to stabilize to room temperature ensures consistency of readings between samples.

To measure the soil vapours, the analyser probe is inserted into the nominal headspace above the soil sample. A photo ionization detector (PID) was used to measure the volatile organic vapour concentrations. The sample is agitated/manipulated gently as the measurement is taken. The peak reading registered within the first 15 seconds is recorded as the vapour measurement.

The PID readings were found to range from 2.0 to 104.8 ppm in the soil samples obtained. These results are not indicative of any potential for significant contamination from volatile contaminants. Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1. The results of the vapour survey are presented on the Soil Profile and Test Data sheets.

4.4 Groundwater Monitoring Well Installation

Three (3) groundwater monitoring wells were installed on the Phase II Property as part of the subsurface investigation. The monitoring wells consisted of 32 mm diameter, Schedule 40 threaded PVC risers and screens. Monitoring well construction details are listed below in Table 2 and are also presented on the Soil Profile and Test Data Sheets provided in Appendix 1.

Borehole locations and elevations were surveyed geodetically by Paterson personnel.

TABLE 2. Monitoring Well Construction Details							
Well ID	Ground Surface Elevation	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type	
BH8-22	69.70	6.99	3.99-6.99	3.28-6.99	0.18-3.28	Flushmount	
BH9-22	66.90	9.04	6.04-9.04	5.27-9.04	0.18-5.27	Flushmount	
BH12-22	67.37	7.49	5.99-7.49	5.80-7.49	0.18-5.80	Flushmount	

4.5 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, using dedicated sampling equipment. Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

4.6 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the following soil and groundwater samples, as well as analyzed parameters are presented in Tables 3 and 4.

TABLE 3: Soil Samples Submitted and Analyzed Parameters						
	Sample	Parameters Analyzed			5	
Sample ID	Depth / Stratigraphic Unit	ВТЕХ	PHCs (F1-F4)	PAHs	Metals	Rationale
June 21 to June	e 23, 2022					
BH7-22-SS2	0.76-1.37m Fill			Χ	Χ	Assess the fill material of unknown quality.
BH8-22-AU1	0.30-0.61m Fill			Χ	Х	
BH8-22-SS5	3.05-3.66m Native	Х	Х			Assess the potential impact in soil due to the former railway.
BH9-22-SS2	0.76-1.37m Fill	Х	Х	Χ	Χ	Assess the fill material of unknown quality as a result of a former roadway.
BH12-22-SS4	2.29-2.93m Fill	Х	Х			Assess the potential impact in due to the former UST and presence of an AST.
DUP	2.29-2.93m Fill	Х	Х			Duplicate soil sample (BH9-22-SS2) for QA/QC purposes.

Report: PE5409-2 August 11, 2022

TABLE 4: Groundwater Samples Submitted and Analyzed Parameters							
	_	Parameters Analyzed					
Sample ID	Screened Interval	ВТЕХ	PHCs (F1-F4)	Rationale			
July 7, 2022	July 7, 2022						
BH8-22-GW1	3.99-6.99m	Х	Х	Assess the potential impact due to the former railway.			
BH9-22-GW1	6.04-9.04m	Х	Х	Assess the potential impact due to former roadway.			
BH12-22-GW1	5.99-7.49m	Х	Х	Assess potential groundwater impacts from the UST on the adjacent property to the south.			
DUP	6.04-9.04m	Х	Х	Duplicate groundwater sample (BH9-22-GW1) for QA/QC purposes.			

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing.

Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

4.7 Residue Management

All soil cuttings, purge water and fluids from equipment cleaning were retained on-site.

4.8 Elevation Surveying

Boreholes were surveyed at geodetic elevations by Paterson personnel.

4.9 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, and custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

Site soils consisted of either topsoil or an asphaltic concrete structure including a granular engineered fill, followed by a fill material consisting of silty clay or silty

Page 11

sand to sandy silt with some gravel and traces of clay and/or organics with occasional cobbles, underlain by silty sand and silty clay and/or glacial till, followed by shale interbedded in limestone bedrock.

Fill material of unknown quality was encountered in some of the boreholes onsite during the field program and as such, it has been considered an APEC on the Phase II Property.

Bedrock was encountered at depths ranging from approximately 3.66 to 5.28 below grade. Bedrock was cored to a maximum depth of 9.04 m below grade.

Groundwater was encountered within the overburden at depths ranging from approximately 2.64 to 3.77 mbgs.

Site geology details are provided in the Soil Profile and Test Data Sheets provided in Appendix 1.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured during the groundwater sampling event on July 6, 2022, using an electronic water level meter. Groundwater levels are summarized below in Table 5.

TABLE 5:	Groundwater Lev	el Measurements		
Borehole Location	Ground Surface Elevation (m)	Water Level Depth (m below grade)	Water Level Elevation (m ASL)	Date of Measurement
BH8-22	69.70	3.77	65.93	July 6, 2022
BH9-22	66.90	3.10	63.80	July 6, 2022
BH12-22	67.37	2.64	64.73	July 6, 2022

Based on the groundwater elevations measured during the sampling events, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE5409-3.

Based on the contour mapping, groundwater flow at the subject site is in a westerly direction. A horizontal hydraulic gradient of approximately 0.03m/m was calculated.

5.3 Fine-Coarse Soil Texture

Coarse-grained soil standards are applicable to the Phase II Property.

Report: PE5409-2

5.4 Soil: Field Screening

Field screening of the soil samples collected during drilling resulted in vapour readings ranging from 2.0 to 104.8 ppm. Soil samples submitted for analytical testing were based on a combination of visual observations, vapour readings and location of the groundwater table. The field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 Soil Quality

Five (5) soil samples and a duplicate sample were submitted for BTEX, PHCs (F1-F4), PAHs and/or metals analysis. The results of the analytical testing are presented below in Tables 6, 7 and 8. The laboratory certificate of analysis is provided in Appendix 1.

TABLE 6: Ana BTEX and PH	•	est Results	s – Soil			
	MDL			ples (µg/g) - 23, 2022		MECP Table 3
Parameter	(µg/g)	BH8-22- SS5	BH9-22- SS2	BH12-22- SS4	DUP	Residential Standards (µg/g)
Benzene	0.02	nd	nd	nd	nd	0.21
Toluene	0.05	nd	nd	nd	nd	2.3
Ethylbenzene	0.05	nd	nd	nd	nd	2
Xylenes	0.05	nd	nd	nd	nd	3.1
PHC F ₁	7	nd	nd	nd	nd	55
PHC F ₂	4	(12)	nd	nd	5	98
PHC F ₃	8	13	40	nd	35	300
PHC F ₄	6	20	60	nd	22	2800

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- Parameter exceeds the MECP Table 1 Background Standards
- DUP (BH9-22-SS2)

No detectable BTEX parameters were identified in any of the soil samples analyzed. Concentrations of PHCs, F2-F4 were detected in three (3) of the soil samples analyzed. All of the identified concentrations comply with the MECP Table 3 Residential Standards.

PHC, fraction F2 in soil sample BH8-22-SS5 exceeds the MECP Table 1 Residential Standards.

Report: PE5409-2 Page 12

TABLE 7: Analytical Test Results – Soil PAHs						
MDL			MECP Table 3			
(µg/g)	BH7-22- SS2	BH8-22- AU1	BH9-22- SS2	Residential Standards (µg/g)		
0.02	nd	nd	nd	7.9		
0.02	nd	nd	0.02	0.15		
0.02	nd	nd	0.04	0.67		
0.02	nd	nd	0.06	0.5		
0.02	nd	nd	0.07	0.3		
0.02	nd	nd	0.06	0.78		
0.02	nd	nd	0.04	6.6		
0.02	nd	nd	0.04	0.78		
0.02	nd	nd	0.06	7		
0.02	nd	nd	nd	0.1		
0.02	nd	nd	0.11	0.69		
0.02	nd	nd	nd	62		
0.02	nd	nd	0.04	0.38		
0.02	nd	nd	nd	0.99		
0.02	nd	nd	nd	0.99		
0.04	nd	nd	nd	0.99		
0.01	nd	nd	nd	0.6		
0.02	nd	nd	0.05	6.2		
0.02	nd	nd	0.13	78		
	MDL (μg/g) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	MDL (μg/g) BH7-22-SS2 0.02 nd 0.03 nd 0.04 nd 0.04 nd	MDL (μg/g) BH7-22- BH8-22- AU1 0.02 nd nd nd 0.02 nd nd 0.03 nd nd 0.04 nd nd 0.05 nd nd 0.05 nd nd 0.06 nd nd 0.07 nd nd 0.08 nd nd 0.09 nd nd 0.09 nd nd 0.01 nd nd 0.02 nd nd 0.02 nd nd 0.03 nd nd 0.04 nd nd 0.05 nd nd 0.06 nd 0.07 nd nd 0.08 nd 0.09 nd nd 0.0	MDL (μg/g) BH7-22- SS2 BH8-22- AU1 SS2 SS2 SS2		

- MDL Method Detection Limit
- nd not detected above the MDL

PAH parameters were detected in one soil sample analyzed, while the remaining were undetected. All of the analyzed soil samples comply with the selected MECP Table 3 Residential Standards. These soil samples also comply with the MECP Table 1 Standards.

Report: PE5409-2 Page 13

TABLE 8: Analytical Test Results – Soil Metals						
Parameter	MDL (µg/g)		g) 2022	MECP Table 3 Residential		
		BH7-22-SS2	BH8-22-AU1	BH9-22-SS2	Standards (µg/g)	
Antimony	1.0	nd	nd	nd	7.5	
Arsenic	1.0	2.9	2.6	2.7	18	
Barium	1.0	139	51.1	115	390	
Beryllium	0.5	0.6	nd	0.5	4	
Boron	5.0	nd	nd	nd	120	
Cadmium	0.5	nd	nd	nd	1.2	
Chromium	5.0	44.8	28.1	35.8	160	
Cobalt	1.0	9.1	6.7	8.6	22	
Copper	5.0	20.6	9.7	19.3	140	
Lead	1.0	4.4	15.9	7.4	120	
Molybdenum	1.0	nd	nd	nd	6.9	
Nickel	5.0	24.5	14.4	20.7	100	
Selenium	1.0	nd	nd	nd	2.4	
Silver	0.3	nd	nd	nd	20	
Thallium	1.0	nd	nd	nd	1	
Uranium	1.0	nd	nd	nd	23	
Vanadium	10.0	42.6	33.2	38.9	86	
Zinc	20.0	42.9	47.9	44.3	340	
Notes: ■ MDL – M	ethod Detecti	on Limit				

- MDL Method Detection Limit
- nd not detected above the MDL

All of the soil samples comply with the selected MECP Table 3 Residential Standards. These soil samples also comply with the MECP Table 1 Standards.

The analytical results for BTEX, PHCs, PAHs and Metals tested in soil are shown on Drawing PE5409-4 – Analytical Testing Plan – Soil.

The maximum concentrations of analyzed parameters in the soil at the site are summarized below in Table 9.

Report: PE5409-2 Page 14

Parameter	Maximum Concentration (µg/g)	Borehole	Depth Interval (m BGS)
PHC F2	(13)	BH8-22-SS5	3.05-3.66m; Native
PHC F3	40		
PHC F4	60	BH9-22-SS2	0.76-1.37m; Fill
Acenaphthylene	0.02		
Anthracene	0.04		
Benzo[a]anthracene	0.06		
Benzo[a]pyrene	0.07		
Benzo[b]fluoranthene	0.06		
Benzo[g,h,i]perylene	0.04		
Benzo[k]fluoranthene	0.04		
Chrysene	0.06		
Fluoranthene	0.11		
Indeno [1,2,3-cd] pyrene	0.04		
Phenanthrene	0.05		
Pyrene	0.13		
Arsenic	2.9		
Barium	139	BH7-22-SS2	0.76-1.37m; Fill
Beryllium	0.6		,
Chromium	44.8		
Cobalt	9.1		
Copper	20.6		
Lead	15.9	BH8-22-AU1	0.3-0.61m; Fill
Nickel	24.5	DUZ 00 000	0.70.4.07
Vanadium	42.6	BH7-22-SS2	0.76-1.37m; Fill
Zinc	47.9	BH8-22-AU1	0.3-0.61m; Fill

No other parameters were identified above the laboratory method detection limits.

5.6 Groundwater Quality

Groundwater samples from monitoring wells installed in BH8-22, BH9-22 and BH12-22 were submitted for laboratory analysis of BTEX and PHCs (fractions, F1-F4 analyses. The groundwater samples were obtained from the screened intervals noted in Table 2. The results of the analytical testing are presented in Table 10. The laboratory certificates of analysis are provided in Appendix 1.

Report: PE5409-2 Page 15

TABLE 10: Analytical Test Results – Groundwater BTEX and PHCs						
Parameter	MDL	Groundwater Samples (μg/L)				MECP
	(µg/L)	July 7, 2022				Table 3
		BH8-22- GW1	BH9-22- GW1	BH12-22- GW1	DUP	Standards (µg/L)
Benzene	0.5	nd	nd	nd	nd	44
Toluene	0.5	nd	nd	nd	nd	18000
Ethylbenzene	0.5	nd	nd	nd	nd	2300
Xylenes	0.5	nd	nd	nd	nd	4200
PHC F ₁	25	nd	nd	nd	nd	750
PHC F ₂	100	nd	nd	nd	nd	150
PHC F ₃	100	nd	nd	nd	nd	500
PHC F ₄	100	nd	nd	nd	nd	500

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- DUP (BH9-22-GW1)

No detectable BTEX or PHC concentrations were identified in the groundwater samples analyzed. All of the groundwater results comply with the MECP Table 3 Standards.

The analytical results for BTEX and PHCs tested in groundwater are shown on Drawing PE5409-5–Analytical Testing Plan – Groundwater.

5.7 Quality Assurance and Quality Control Results

All samples submitted as part of the June 2022 sampling events were handled in accordance with the Analytical Protocol with respect to preservation method, storage requirement, and container type.

As per Subsection 47(3) of O.Reg. 153/04, as amended, under the Environmental Protection Act, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

A duplicate soil sample and groundwater sample (DUP) were obtained from BH2-22-SS2 and BH9-22-GW1, respectively, and analyzed for BTEX and PHCs.

Test results for the duplicate soil and RPD calculations are provided below in Table 11.

TABLE 11: QA/QC Results – Soil (PHCs)				
Parameter	BH9-22-SS2	DUP	RDP (%)	QA/QC Results
PHC, F3	40	35	13	Within the acceptable range
PHC, F4	60	22	92	Outside the acceptable range

Report: PE5409-2

Page 16

The relative percent different (RPD) for the original and the duplicate soil sample concentrations for PHCs, F3 and F4, were 13% and 92%, respectively. The RPD value above 20%, is considered outside the acceptable range. This occurs when smaller concentrations or low values yield a numerical difference that is considered large, relative to the original or duplicate value, which in turn, results in larger RPD value.

Therefore, RPD is not reliable measure, quantitatively, in a scenario where low concentrations yield a numerical difference that is relatively larger than the original or duplicate sample concentration.

The groundwater test results of the original sample and duplicate sample were all non-detect.

Based on the analytical laboratory results, it is our opinion that the overall quality of the field data collected during this Phase II-ESA is considered to be sufficient to meet the overall objectives of this assessment.

5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O.Reg. 153/04, as amended by the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Site Description

Potentially Contaminating Activity and Areas of Potential Environmental Concern

As per Section 3.3, three (3) off-site PCAs were considered to result in two (2) APECs on the Phase II Property; however, fill material was identified on the Phase II Property during the subsurface investigation. The unknown quality of the fill is considered to represent an APEC.

APECs on the Phase II Property are summarized in Table 12, along with their respective locations and contaminants of potential concern (CPCs).

Table 12: Potentially Contaminating Activities and					
Areas of Potential Environmental Concern					
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)
APEC 1: Resulting from the former presence of a UST and current presence of an AST on the adjacent south property	Southeastern corner of the Phase II Property	PCA 28 – Gasoline and Associated Products Storage in Fixed Tanks	Off-site	BTEX PHCs (F ₁ -F ₄)	Soil and Groundwater
APEC 1: Resulting from the former spill associated with the former UST on the adjacent south property	Southeastern corner of the Phase II Property	PCA Other – Diesel Spill	Off-site	BTEX PHCs (F ₁ -F ₄)	Soil and Groundwater
APEC 2: Resulting from the presence of a railway track along the eastern property boundary	Eastern side of the Phase II Property	PCA 46 – Rail Yards, Tracks and Spurs	Off-site	BTEX PHCs (F ₁ -F ₄) PAHs	Soil and Groundwater
APEC 3: Resulting from fill material of unknown quality	Northern and central reas of the on the Phase II Property	PCA 30 – Importation of Fill Material of Unknown Quality	On-site	Metals PAHs	Soil

Contaminants of Potential Concern

As per Section 3.3, in combination with the field observations, the contaminants of potential concern (CPCs) in soil and/or groundwater include benzene, toluene, ethylbenzene, and xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4) polycyclic aromatic hydrocarbons (PAHs) and metals (including arsenic (As), antimony (Sb) and selenium (Se).

Fill Material

The fill material consisted of silty clay or silty sand to sandy silt with some gravel and traces of clay and/or organics with occasional cobbles was identified in several boreholes and extended to depths of approximately 0.48 to 4.88 mbgs.

Report: PE5409-2 Page 18

Subsurface Structures and Utilities

The Phase II Property is situated in a municipally serviced area. Underground utilities and/or structures include electricity, water and sewer entering the site from Riverside Drive and passing through the central portion of the site to Balmoral Place.

Based on the findings of the analytical results, any former underground utilities are not expected to affect contaminant distribution and transport on the Phase II Property.

Physical Setting

Site Stratigraphy

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is illustrated on Drawings PE5409-4A and 5A. The stratigraphy consists of:

consi	Sts of:
	An asphaltic concrete structure of approximately 0.05 to 0.10m thick, overlying a granular fill material was encountered at BH4-22, BH5-22, BH6-22, BH7-22 BH9-22 and BH10-22, and extended to depths of 0.53 to 0.76 mbgs.
	Topsoil was encountered at BH1-22, BH2-22, BH3-22, BH8-22, BH11-22 and BH12-22, and extended to depths of 0.05 to 0.28 mbgs.
	Fill material consisting of silty clay or silty sand to sandy silt with some gravel and traces of clay and/or organics with occasional cobbles was encountered in BH2-22, BH3-22, BH6-22, BH7-22, BH8-22, BH9-22, BH10-22, BH11-22, and BH12-22, and extended to depths of approximately 0.48 to 4.88 mbgs. Groundwater was encountered in this layer at BH9-22.
	Silty Clay and/or silty sand was encountered in BH1-22, BH2-22, BH3-22, BH4-22, BH5-22, BH7-22, BH10-22, BH11-22 and BH11-22, and extended to depths of approximately 1.45 to 6.25mbgs.
	Glacial till consisting of silty clay to clayey silt or silty sand, with some sand, gravel, cobbles and boulders was encountered in all of the

boreholes at depths ranging from 1.09 to 6.25 mbgs. BH1-22, BH2-22, BH3-22, BH4-22, BH5-22, BH8-22 and BH11-22 were terminated in this layer at depths ranging from approximately 3.18 to 7.77 to mbgs.

Groundwater was encountered in this layer at BH8-22 and BH12-22.

Shale bedrock was encountered at BH6-22, BH7-22, BH9-22, BH10-22 and BH12-22, and terminated in this layer at depths ranging from approximately 7.49 to 9.04 mbgs.

Hydrogeological Characteristics

Groundwater at the Phase II Property was encountered in the overburden. During the most recent groundwater monitoring event, groundwater flow was measured in a westerly direction, with a hydraulic gradient of 0.03 m/m. Groundwater contours are shown on Drawing PE5409-3 – Test Hole Location Plan.

Approximate Depth to Bedrock

Bedrock was encountered during the drilling program at depths ranging from approximately 3.66 to 5.28 mbgs

Approximate Depth to Water Table

The depth to the water table at the Phase II Property varies between approximately 2.64 to 3.77 m below existing grade.

Sections 35, 41 and 43.1 of the Regulation

Section 35 of O.Reg. 153/04 does apply to the Phase II Property in that the property does not rely upon potable groundwater.

Section 41 of the Regulation does not apply to the Phase II Property, in that the subject property is not within 30m of an environmentally sensitive area.

Section 43.1 of the Regulation does not apply to the Phase II Property as bedrock is located more than 2 m below ground surface.

Existing Buildings and Structures

The Phase II Property exists as an asphaltic concrete paved parking lot associated with the Ottawa Hospital (Riverside Campus), which is classified as institutional use. Structures include entrance and exit barrier gates for vehicular parking. No other structures are present.

Proposed Buildings and Other Structures

The proposed site development for the Phase II Property will include two (2) residential apartment buildings and a community/recreational building.

Areas of Natural Significance

There are no areas of natural significance or no natural water bodies in the Phase I Study Area.

Natural Water Bodies

The Rideau River is located approximately 225m west of the Phase II Property. No other natural water bodies were identified in the Phase I Study Area.

Environmental Condition

Areas Where Contaminants are Present

Based on the analytical results for soil and groundwater, there are no contaminants present on or beneath the Phase II Property.

Types of Contaminants

Based on the analytical results for soil and groundwater, there are no contaminants on or beneath the Phase II Property.

Contaminated Media

Based on the analytical results for soil and groundwater, there is no contaminated media on the Phase II Property.

What Is Known About Areas Where Contaminants Are Present

Based on the findings of the Phase II ESA, there is no contaminated media on the Phase II Property.

Distribution and Migration of Contaminants

Based on the findings of the Phase II ESA, distribution and migration of contaminants is not considered to have occurred on the Phase II Property.

Discharge of Contaminants

Based on the findings of the Phase II ESA, discharge of contaminants is not considered to have occurred on the Phase II Property.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution.

Two (2) ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

Based on the analytical results, contaminant distribution is does not apply to the Phase II Property.

Potential for Vapour Intrusion

Based on the findings of the Phase II ESA, potential for vapour intrusion on the Phase II Property does not exist.

Report: PE5409-2 Page 22

6.0 CONCLUSIONS

6.1 Assessment

A Phase II ESA was conducted for the northern part of the property addressed 1919 Riverside Drive, in the Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II Property.

The subsurface investigation consisted of twelve (12) boreholes, three (3) of which were instrumented with groundwater monitoring wells. The general soil profile encountered during the field program consisted of either topsoil or an asphaltic concrete structure, followed by a fill material consisting of silty clay or silty sand to sandy silt with some gravel and traces of clay and/or organics with occasional cobbles, underlain by silty sand and silty clay and/or glacial till, followed by shale bedrock. The unknown quality of the fill material was considered an area of potential environmental concern (APEC).

Five (5) soil samples, including a duplicate sample, were submitted for laboratory analysis of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, Fractions F₁-F₄), polycyclic aromatic hydrocarbons (PAHs) and/or metals (including hydride forming compounds: arsenic (As), Antimony (Sb), Selenium (Se)). All of the soil results comply with MECP Table 3 Residential Standards.

Groundwater samples from monitoring wells BH8-22, BH9-22 and BH12-22 were collected during the July 7, 2022, sampling event. No free product or petroleum hydrocarbon sheen was noted on the purge water during the groundwater sampling events.

Groundwater samples were analyzed for BTEX and PHCs. No BTEX or PHCs were detected above the laboratory detection limits. The groundwater results comply with the MECP Table 3 Standards.

Based on the findings of the Phase II ESA, no further environmental investigation is recommended at this time.

6.4 Recommendations

It is our understanding that the Phase II Property will be redeveloped for residential purposes.

Any excess soil requiring off-site disposal during construction must be managed in accordance with Ontario Regulation 406/19 – On-site and Excess Soil Management. It is recommended that additional analytical testing be carried out to determine the appropriate method of disposal for any soils deemed excess during the redevelopment of the site.

Monitoring Wells

If the monitoring wells installed on the Phase II Property are not going to be used in the future, or will be destroyed during site redevelopment, they should be abandoned according to Ontario Regulation 903. The wells will be registered with the MECP under this regulation. More information can be provided regarding the decommissioning of these wells.

Report: PE5409-2 Page 24

7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared under the supervision of a Qualified Person, in general accordance with O.Reg. 153/04, as amended, and CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Schlegel Villages. Notification from Schlegel Villages and Paterson Group will be required to release this report to any other party.

Paterson Group Inc.

Mandy Witteman, M.A.Sc., P.Eng.

Mark D'Arcy, P.Eng., QPesa

M.S. D'ARCY BOOMAN ON THE STATE OF ON THE STAT

Report Distribution:

- Schlegel Villages
- Paterson Group

FIGURES

Figure 1 - Key Plan

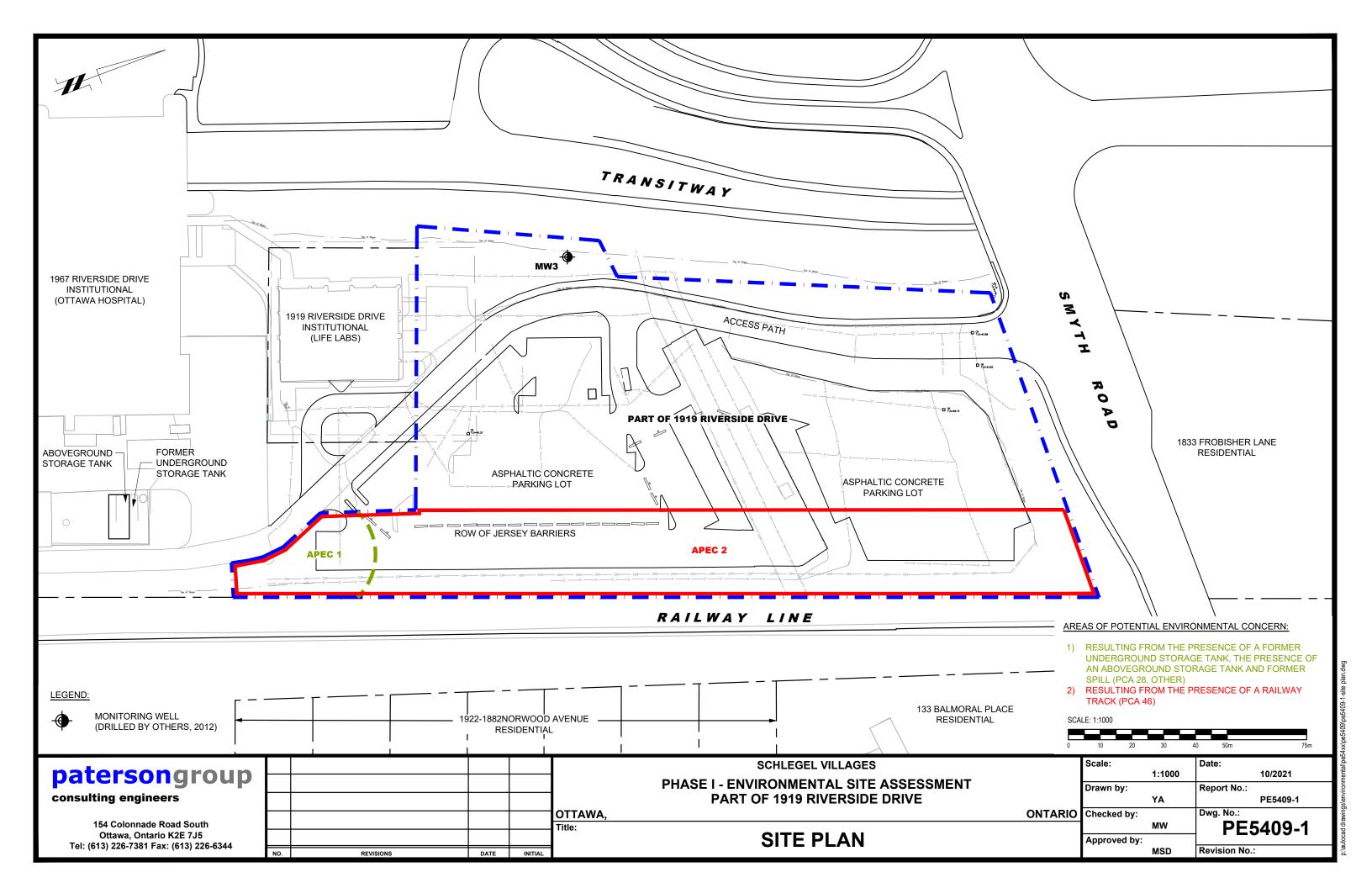
Drawing PE5409-1 -Site Plan

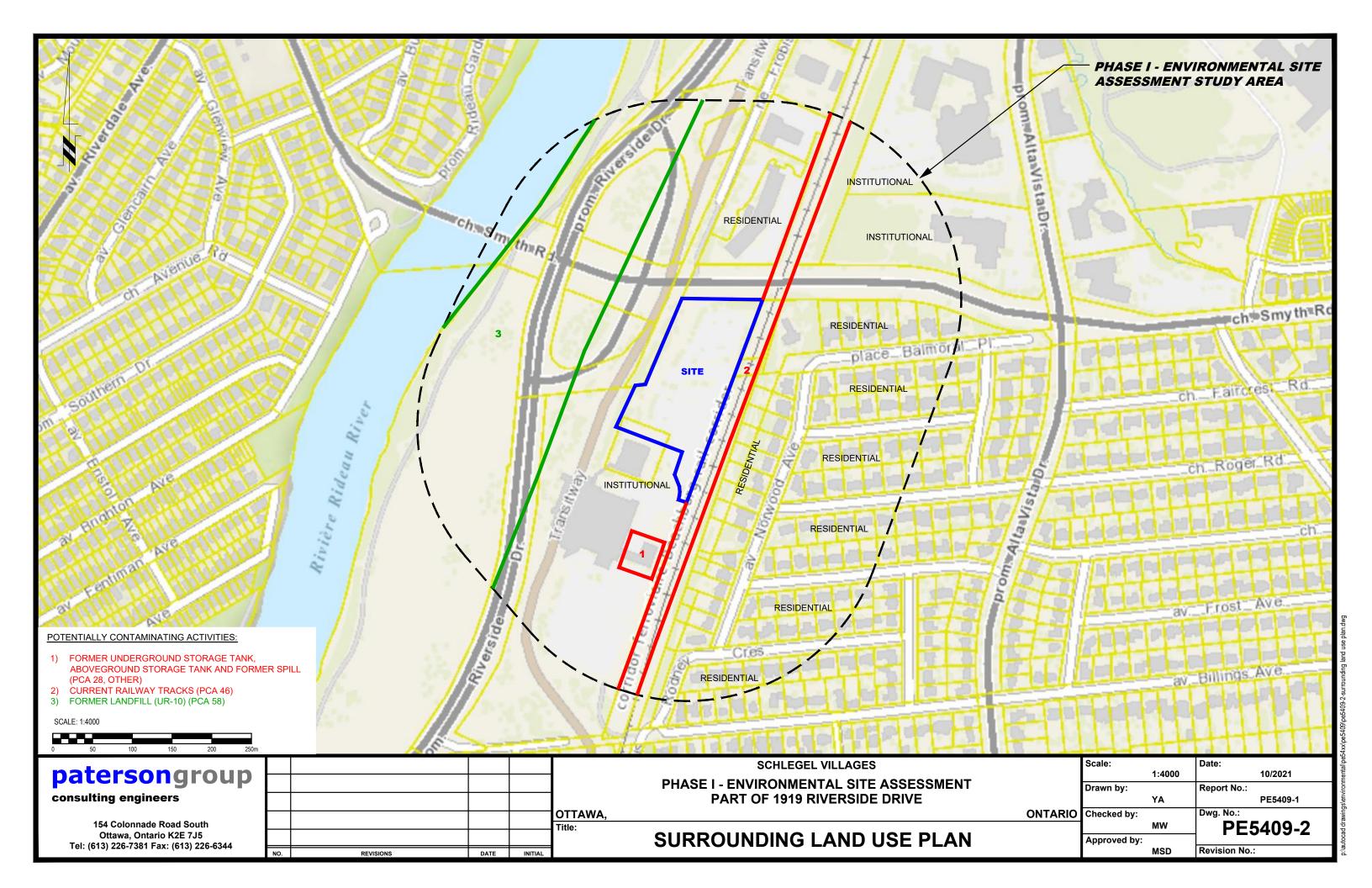
Drawing PE5409-2 – Surrounding Land Use Plan

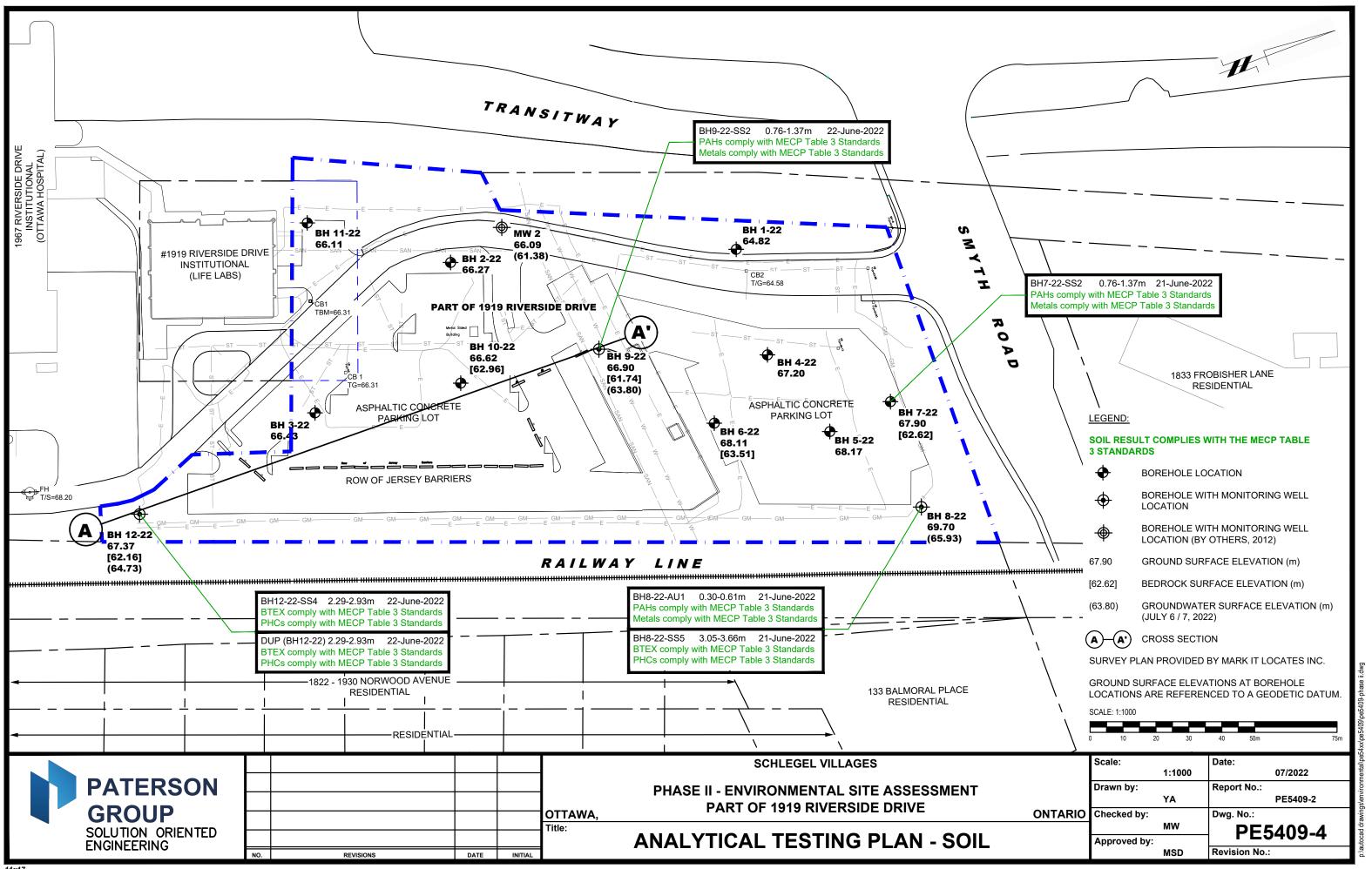
Drawing PE5409-3 – Test Hole Location Plan & Groundwater Contour Plan

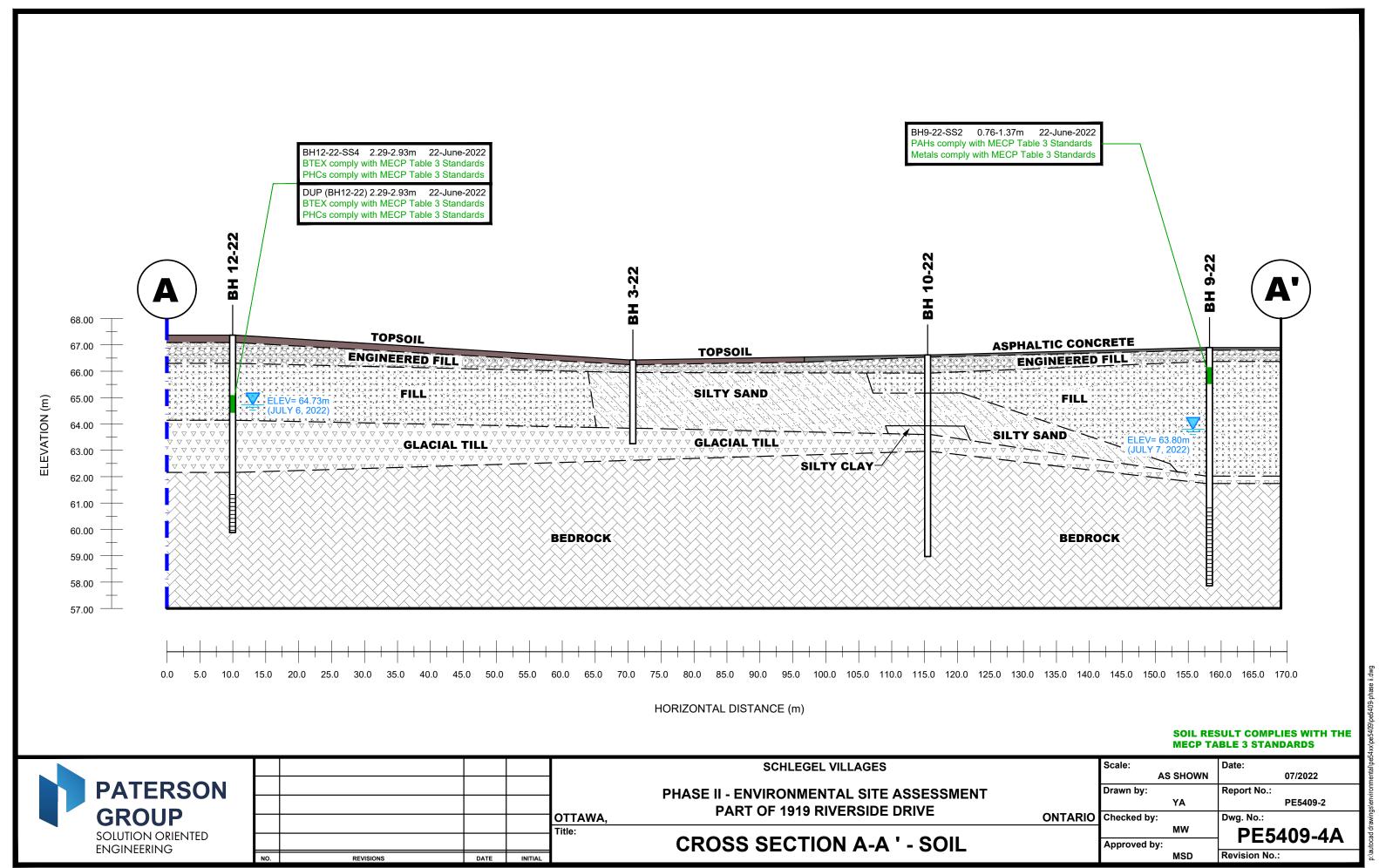
Drawing PE5409-4 – Analytical Testing Plan – Soil

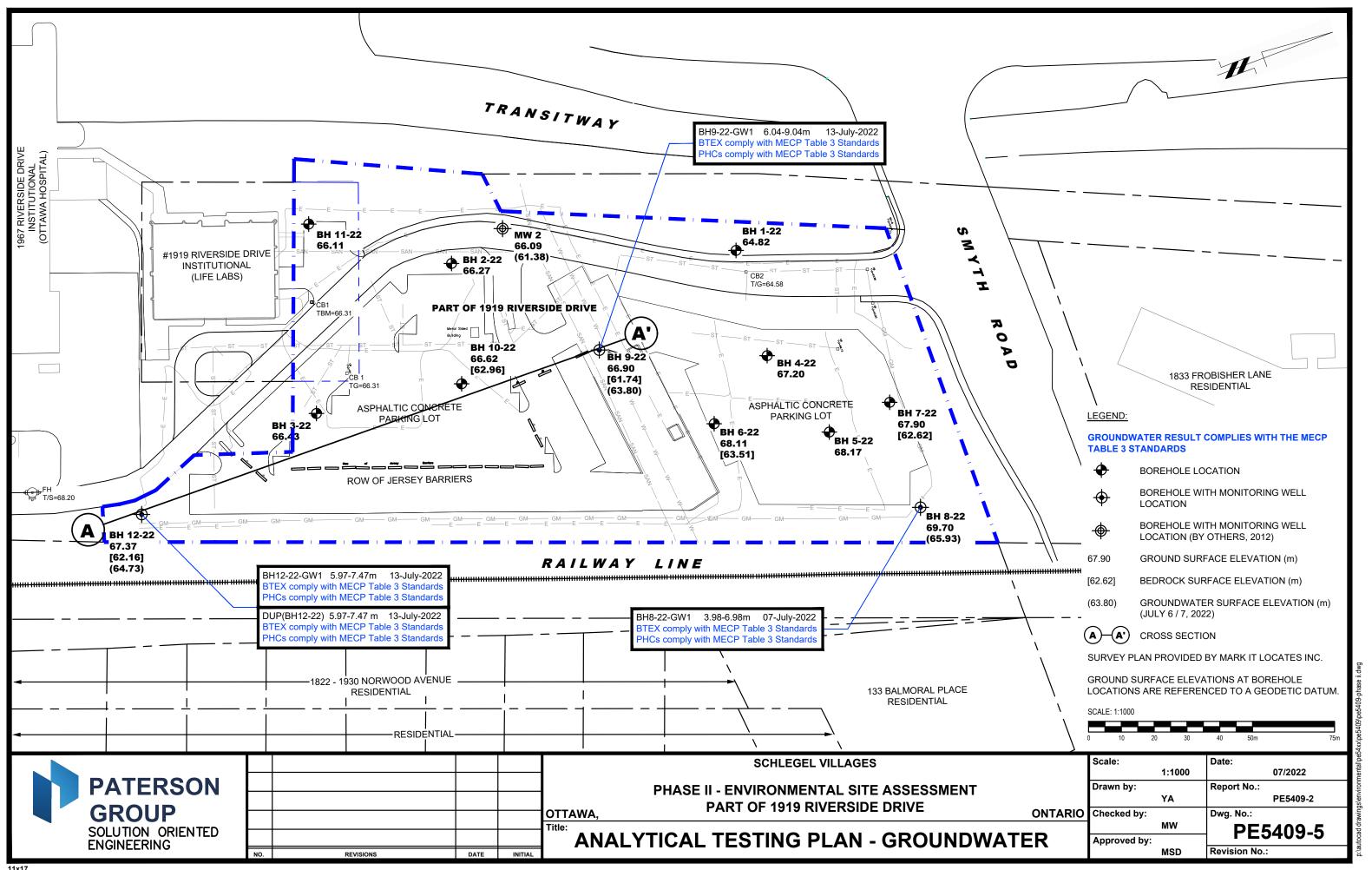
Drawing PE5409-4A - Cross-section A - A' - Soil

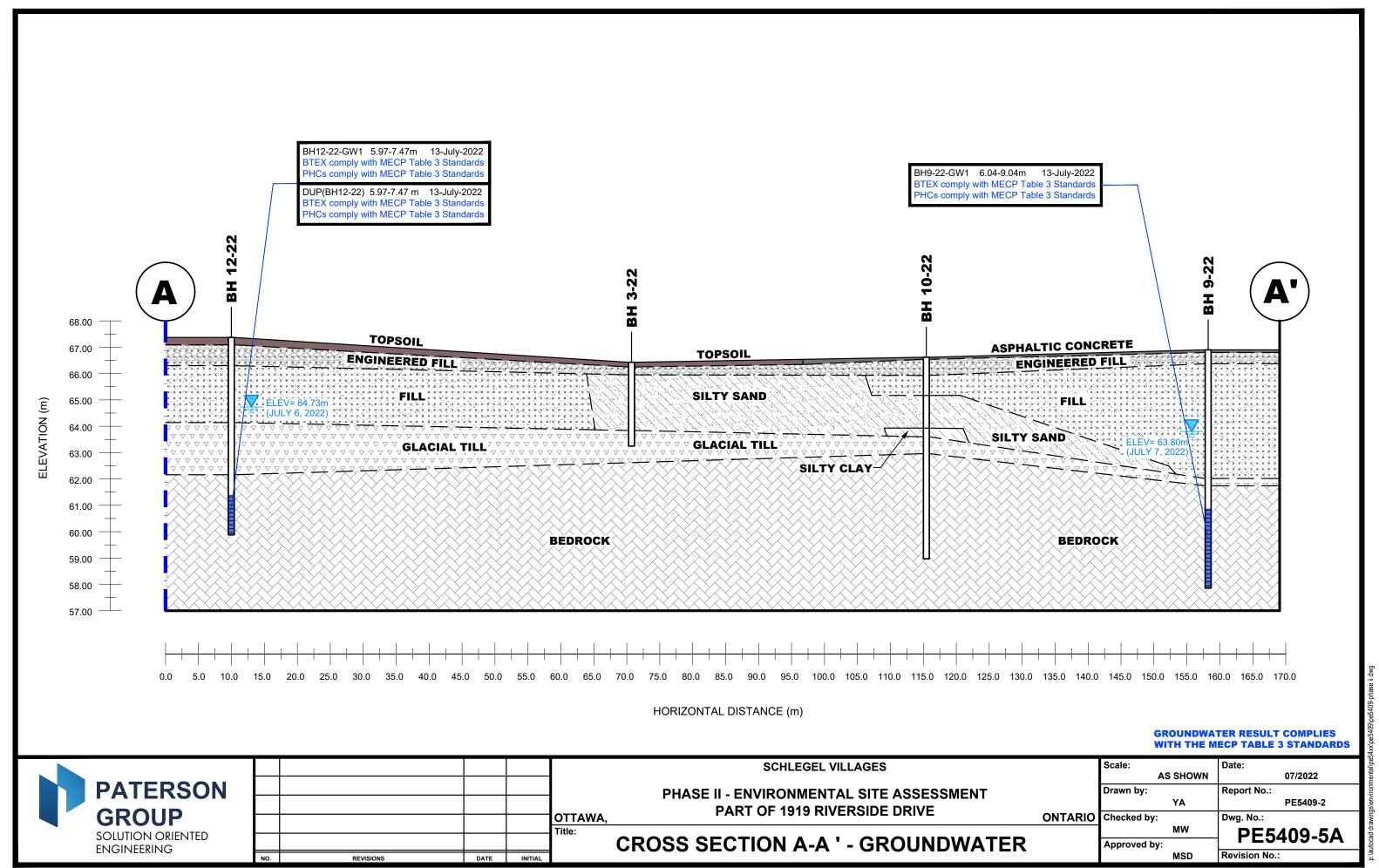

Drawing PE5409-5 – Analytical Testing Plan – Groundwater


Drawing PE5409-5A – Cross-section A – A' – Groundwater


FIGURE 1 KEY PLAN


patersongroup





APPENDIX 1

SAMPLING AND ANALYSIS PLAN

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS

Sampling and Analysis Plan

Phase II-Environmental Site Assessment Northern Part of 1919 Riverside Drive Ottawa, Ontario

Prepared for Schlegel Villages

Report: PE5409-SAP July 2022

TABLE OF CONTENTS

1.0	SAMPLING PROGRAM	
2.0	ANALYTICAL TESTING PROGRAM	2
3.0	STANDARD OPERATING PROCEDURES	3
	3.1 Environmental Drilling Procedure	
	3.2 Monitoring Well Installation Procedure	
	3.3 Monitoring Well Sampling Procedure	7
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	8
5.0	DATA QUALITY OBJECTIVES	g
6.0	PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN	10

SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Mr. Brad Schlegel of Schlegel Villages to conduct a Phase II Environmental Site Assessment (ESA) for the Phase II Property located at 1919 Riverside Drive, Ottawa, Ontario.

The Phase II ESA was carried out in conjunction with a geotechnical investigation and to address the APECs identified in the Paterson Phase I ESA, dated July 2022. The following subsurface investigation program was developed to identify any potential environmental concerns.

Borehole	Location & Rationale	Proposed Depth & Rationale				
BH1-22	Placed to gain overall coverage of the subject site.	Boreholes to be advanced to approximately 6.0m or until practical refusal is reached for geotechnical purposes.				
BH2-22	Placed to gain overall coverage of the subject site.					
BH3-22	Placed to gain overall coverage of the subject site.					
BH4-22	Placed to gain overall coverage of the subject site.					
BH5-22	Placed to gain overall coverage of the subject site.					
BH6-22	Placed to gain overall coverage of the subject site.					
BH7-22	Placed to gain overall coverage of the subject site.	Boreholes to be advanced to approximately 8.5 m and cored through bedrock for geotechnical purposes.				
BH8-22	Assess site conditions on the Phase II Property due to the former railway.	Boreholes to be advanced to approximately 7.0 m to intercept the groundwater table for monitoring well installation.				
BH9-22	Assess site conditions on the Phase II Property due the former roadway and quality of the fill material	Boreholes to be advanced to approximately 9.0 m to intercept the groundwater table for monitoring well installation.				
BH10-22	Placed to gain overall coverage of the subject site.	Boreholes to be advanced to approximately 7.6 m and cored through bedrock for geotechnical purposes.				
BH11-22	Placed to gain overall coverage of the subject site.	Boreholes to be advanced to approximately 7.6 m and cored through bedrock for geotechnical purposes.				
BH12-22	Assess site conditions on the Phase II Property due the former UST and current AST off-site.	Boreholes to be advanced to approximately 7.0 m to intercept the groundwater table for monitoring well installation.				

Report: PE5409-SAP

Page 1 July 2022

At each borehole, split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals until groundwater was intercepted.

All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following borehole drilling, monitoring wells will be installed in selected boreholes (as above) for the measurement of water levels and the collection of groundwater samples. Borehole locations are shown on the Test Hole Location Plan appended to the main report.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the subject site is based on the following general considerations:

ge	neral considerations:
	At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site.
	At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site.
	In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP's site condition standards.
	In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward.
	Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA.
	e analytical testing program for groundwater at the subject site is based on the owing general considerations:
	Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained).
	Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.

At least one groundwater monitoring well should be installed in a stratigraphic
unit below the suspected contamination, where said stratigraphic unit is water-
bearing.

Parameters analyzed should be consistent with the Contaminants of Concern
identified in the Phase I ESA and with the contaminants identified in the soi
samples.

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

glass soil sample jars
two buckets
cleaning brush (toilet brush works well)
dish detergent
methyl hydrate
water (if not available on site - water jugs available in trailer)
latex or nitrile gloves (depending on suspected contaminant)
RKI Eagle organic vapour meter or MiniRae photoionization detector
(depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Elevations were surveyed at geodetic elevations by Paterson personnel.

Report: PE5409-SAP Page 3

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

	Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.								
	Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen.								
	If sampling for VOCs, BTEX, or PHCs F1, a soil core from each soil sample which may be analyzed must be taken and placed in the laboratory-provided methanol vial.								
	Note all and any odours or discolouration of samples.								
	Split spoon samplers must be washed between samples.								
	If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated.								
	As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss).								
	If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination.								
Sp	oon Washing Procedure								
	sampling equipment (spilt spoons, etc.) must be washed between samples in ler to prevent cross contamination of soil samples.								
	Obtain two buckets of water (preferably hot if available) Add a small amount of dish soap to one bucket Scrub spoons with brush in soapy water, inside and out, including tip Rinse in clean water								
	Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well) Allow to dry (takes seconds)								

The methyl hydrate eliminates any soap residue that may be on the spoon, and is especially important when dealing with suspected VOCs.

☐ Rinse with distilled water, a spray bottle works well.

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

Samples should be brought to room temperature; this is specifically important
in colder weather. Soil must not be frozen.
Turn instrument on and allow to come to zero - calibrate if necessary
If using RKI Eagle, ensure instrument is in methane elimination mode unless
otherwise directed.
Ensure measurement units are ppm (parts per million) initially. RKI Eagle will
automatically switch to %LEL (lower explosive limit) if higher concentrations
are encountered.
Break up large lumps of soil in the sample bag, taking care not to puncture bag.
Insert probe into soil bag, creating a seal with your hand around the opening.
Gently manipulate soil in bag while observing instrument readings.
Record the highest value obtained in the first 15 to 25 seconds
Make sure to indicate scale (ppm or LEL); also note which instrument was used
(RKI Eagle 1 or 2, or MiniRae).
Jar samples and refrigerate as per Sampling and Analysis Plan.

Report: PE5409-SAP Page 5

3.2 Monitoring Well Installation Procedure

Equipment ☐ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC slotted well screen (5' x 1 1/4" [1.52 m x 32 mm] if installing in cored hole in bedrock) ☐ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC riser pipe (5' x 1 1/4" [1.52 m x 32 mm] if installing in cored hole in bedrock) ☐ Threaded end-cap ☐ Slip-cap or J-plug Asphalt cold patch or concrete ☐ Silica Sand ☐ Bentonite chips (Holeplug) Steel flushmount casing **Procedure** Drill borehole to required depth, using drilling and sampling procedures described above. ☐ If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination. Only one monitoring well should be installed per borehole. ☐ Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units. ☐ Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table. ☐ Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well. ☐ As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen. ☐ Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand. ☐ Backfill remainder of borehole with holeplug or with auger cuttings (if contamination is not suspected). Install flushmount casing. Seal space between flushmount and borehole

Report: PE5409-SAP Page 6

annulus with concrete, cold patch, or holeplug to match surrounding ground

surface.

3.3 Monitoring Well Sampling Procedure

Eq	uipment
	Water level metre or interface probe on hydrocarbon/LNAPL sites Spray bottles containing water and methanol to clean water level tape or interface probe Peristaltic pump Polyethylene tubing for peristaltic pump Flexible tubing for peristaltic pump Latex or nitrile gloves (depending on suspected contaminant) Allen keys and/or 9/16" socket wrench to remove well caps Graduated bucket with volume measurements pH/Temperature/Conductivity combo pen Laboratory-supplied sample bottles
Sa	mpling Procedure
	Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap. Measure water level, with respect to existing ground surface, using water level
	meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product. Measure total depth of well.
	Clean water level tape or interface probe using methanol and water. Change gloves between wells.
	Calculate volume of standing water within well and record. Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
	Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
	Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
	Replace well cap and flushmount casing cap.

July 2022

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:
 All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
 All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
 Where groundwater samples are to be analyzed for VOCs, one laboratory-provided trip blank will be submitted for analysis with every laboratory submission.
 Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
 Where combo pens are used to measure field chemistry, they will be calibrated

on an approximately monthly basis, according to frequency of use.

July 2022

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half (0.5 x) the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Ph	ysical impediments to the Sampling and Analysis plan may include:
	The location of underground utilities
	Poor recovery of split-spoon soil samples
	Insufficient groundwater volume for groundwater samples
	Breakage of sampling containers following sampling or while in transit to the laboratory
	Elevated detection limits due to matrix interference (generally related to soi colour or presence of organic material)
	Elevated detection limits due to high concentrations of certain parameters necessitating dilution of samples in laboratory
	Drill rig breakdowns
	Winter conditions
	Other site-specific impediments
	e-specific impediments to the Sampling and Analysis plan are discussed in the dy of the Phase II ESA report.

Report: PE5409-SAP Page 10

9 Auriga Drive, Ottawa, Ontario K2E 7T9

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Part of 1919 Riverside Drive Ottawa, Ontario

DATUM Geodetic FILE NO. PE5409 **REMARKS** HOLE NO. **BH 1-22** BORINGS BY CME-55 Low Clearance Drill **DATE** June 20, 2022 Monitoring Well Construction **SAMPLE Photo Ionization Detector** PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY VALUE r RQD STRATA NUMBER **Lower Explosive Limit %** N or v **GROUND SURFACE** 80 0+64.82**TOPSOIL** 0.13 FILL: Brown silty sand with topsoil 1 and organics 0.69 Very stiff to stiff, brown SILTY CLAY 1 + 63.82with sand SS 2 15 67 Compact, brown SILTY SAND Very stiff, brown SILTY CLAY with 67 SS 3 10 sand, trace gravel 2+62.82**GLACIAL TILL:** Dense to very SS 4 79 38 dense, brown silty clay to clayey silt with sand, gravel, cobbles and 3+61.82 boulders SS 5 100 24 - grey by 2.6m depth 3.66 End of Borehole 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

SOIL PROFILE AND TEST DATA

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Phase II - Environmental Site Assessment Part of 1919 Riverside Drive Ottawa, Ontario

DATUM Geodetic FILE NO. **PE5409 REMARKS** HOLE NO. **BH 2-22** BORINGS BY CME-55 Low Clearance Drill **DATE** June 20, 2022 Monitoring Well Construction **SAMPLE Photo Ionization Detector** PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD STRATA NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 0+66.27**TOPSOIL** 0.13 **FILL:** Brown silty sand with gravel 1 and crushed stone 0.69 1+65.27SS 2 9 83 Loose, brown SILTY SAND, some to trace clay SS 3 92 8 2 + 64.272.21 SS 4 75 12 Compact to loose, brown **SILTY SAND**, trace clay 3+63.273.35 5 67 6 GLACIAL TILL: Dense, grey silty 4 + 62.27sand to sandy silt with gravel, some SS 6 83 34 clay, cobbles and boulders SS 7 42 50 +5+61.275.21 End of Borehole Practical refusal to augering at 5.21m depth 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

SOIL PROFILE AND TEST DATA

200

RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

300

400

500

Phase II - Environmental Site Assessment Part of 1919 Riverside Drive

9 Auriga Drive, Ottawa, Ontario K2E 7T9 Ottawa, Ontario **DATUM** Geodetic FILE NO. **PE5409 REMARKS** HOLE NO. **BH 3-22** BORINGS BY CME-55 Low Clearance Drill **DATE** June 20, 2022 Monitoring Well Construction **SAMPLE Photo Ionization Detector** PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY STRATA VALUE r RQD NUMBER Lower Explosive Limit % N VZ **GROUND SURFACE** 80 0+66.43**TOPSOIL** 0.18 FILL: Brown silty sand, with grave 0.48 1 land crushed stone 1+65.43SS 2 14 58 Compact to loose, brown SILTY SAND SS 3 58 6 2 + 64.43- grey by 2.2m depth 2.59 SS 4 75 29 GLACIAL TILL: Compact to dense, grey silty sand with gravel, cobbles 3+63.43and boulders, trace clay 3.18 5 ∆Z.SS 40 50+ End of Borehole Practical refusal to augering at 3.18m depth

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Part of 1919 Riverside Drive Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM Geodetic

FILE NO.

PE5409

REMARKS BORINGS BY CME-55 Low Clearance D	Orill			D	ATE .	June 20, 2	2022		HOLE NO.	BH 4-2	22	
SOIL DESCRIPTION		FLOI SA			SAMPLE		ELEV.	Photo Ionization Detector Volatile Organic Rdg. (ppm)			Monitoring Well	
	STRATA E	TYPE	NUMBER	% RECOVERY	VALUE r RQD	VALUE RQD (M)	(m)	O Lower Explosive Limit %				
GROUND SURFACE	מ	-	Ħ	REC	N O C		67.00	20	40 60	80	Σ	
Asphaltic concrete 0.05 FILL: Crushed stone with silty sand 0.69		AU	1			0-	-67.20					
Loose, brown SILTY SAND , some to trace clay 1.45		ss	2	83	7	1-	-66.20	•				
		ss	3	100	17	2-	-65.20	•				
GLACIAL TILL: Dense to very dense, brown silty clay to clayey silt with sand, some gravel, cobbles and		ss	4	75	21			•				
boulders - grey by 2.2m depth		ss	5	2	25	3-	-64.20	•				
		ss	6	83	24	4-	-63.20	•				
End of Borehole	\^^^^	s-SS	7	33	50+							
Practical refusal to augering at 4.65m depth												
									200 300 agle Rdg. s Resp. △ N		00	

9 Auriga Drive, Ottawa, Ontario K2E 7T9

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Part of 1919 Riverside Drive Ottawa, Ontario

DATUM Geodetic FILE NO. **PE5409 REMARKS** HOLE NO. **BH 5-22** BORINGS BY CME-55 Low Clearance Drill **DATE** June 20, 2022 Monitoring Well Construction **SAMPLE Photo Ionization Detector** STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 0+68.17Asphaltic concrete 0.08 FILL: Crushed stone with sand 1 0.69 1 + 67.17Very stiff, brown SILTY CLAY, SS 2 31 67 some sand, trace gravel <u>1.6</u>0 SS 3 83 28 2 + 66.17**GLACIAL TILL:** Dense to very SS 4 67 21 dense, brown silty clay to clayey silt with sand, gravel, cobbles and 3 ± 65.17 boulders SS 5 67 27 4 + 64.17SS 6 100 32 7 4.75 \^(SS 50+ 86 End of Borehole Practical refusal to augering at 4.75m depth 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

9 Auriga Drive, Ottawa, Ontario K2E 7T9

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Part of 1919 Riverside Drive Ottawa, Ontario

DATUM Geodetic
REMARKS
FILE NO.
PE5409
HOLE NO.

BORINGS BY CME-55 Low Clearance [Orill			D	ATE .	June 21,	2022		HOLE N	IO. BH	6-22
SOIL DESCRIPTION	SAMPLE				ı	DEPTH ELEV.		Photo Ionization Detect Volatile Organic Rdg. (pg			> 7
GROUND SURFACE	STRATA B	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)			sive Limit	% Wonitoring
Asphaltic concrete 0.05		_		_		0-	-68.11	20	40	00 00	
FILL: Crushed stone with sand		./ AU	1								
FILL: Brown silty clay with sand and gravel		ss	2	50	10	1-	67.11	•			
1.65		ss	3	100	33	2-	-66.11		•		
GLACIAL TILL: Dense to very dense, grey silty clay to clayey silt with sand, some gravel, cobbles and		ss	4	83	20				•		
with sand, some gravel, cobbles and coulders grey by 3.0m depth		ss	5	75	18	3-	-65.11			•	1
silt content increasing with depth		ss	6	92	47	4-	-64.11			•	
4.60		⊒ ≅-SS	7	33	50+	5-	-63.11		•		
BEDROCK: Fair to good quality,		RC	1	100	50						
olack shale interlayered with grey limestone by		_				6-	-62.11				
6.4m depth		RC	2	100	88	7-	-61.11				
									Eagle Ro	300 400 dg. (ppm) △ Methane	

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Part of 1919 Riverside Drive Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Geodetic DATUM

FILE NO.

HOLE NO.

PE5409

REMARKS

BORINGS BY CME-55 Low Clearance	Drill			D	ATE .	June 21,	2022	,	BH 7-2	2
SOIL DESCRIPTION	PLOT		SAN	IPLE	ı	DEPTH	ELEV.		onization Detector tile Organic Rdg. (ppm)	Well
GROUND SURFACE	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		r Explosive Limit %	Monitoring Well Construction
Asphaltic concrete 0.05		,				0-	-67.90			
FILL: Crushed stone with silty sand 0.76		AU	1							
FILL: Brown silty clay, trace sand and gravel		ss	2	17	5	1 -	-66.90			
		ss	3	100	23	2-	-65.90		•	
Hard, brown SILTY CLAY to CLAYEY SILT, some sand and gravel		ss	4	100	25	3-	-64.90			
		ss	5	79	26	3	04.30		4	9
GLACIAL TILL: Very dense, grey silty clay with sand, some gravel, cobbles and boulders		ss	6	100	28	4-	-63.90		•	
5.28	\^^^^ \^^^^ B\^^^^	ss	7	50	50+	5-	-62.90			
		RC	1	100	0	6-	-61.90			
BEDROCK: Very poor to excellent quality, black shale		DC	0	100	00					
quality, black Shale		RC	2	100	98	7-	-60.90			
		RC	3	100	100	8-	-59.90			
End of Borehole	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
									200 300 400 500 Eagle Rdg. (ppm) as Resp. △ Methane Elim.	0

SOIL PROFILE AND TEST DATA

RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

Phase II - Environmental Site Assessment

Part of 1919 Riverside Drive

9 Auriga Drive, Ottawa, Ontario K2E 7T9 Ottawa, Ontario **DATUM** Geodetic FILE NO.

PE5409 REMARKS HOLE NO. **BH 8-22** BORINGS BY CME-55 Low Clearance Drill **DATE** June 21, 2022 Monitoring Well Construction **SAMPLE Photo Ionization Detector** PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY VALUE r RQD STRATA NUMBER **Lower Explosive Limit %** N o v **GROUND SURFACE** 80 0+69.70**TOPSOIL** 0.15 FILL: Brown silty clay with sand, ΑU 1 trace gravel FILL: Brown silty sand to sandy silt, some gravel, trace clay, occasional.09 1+68.70SS 2 83 13 cobbles SS 3 92 50+ 2 + 67.70SS 4 92 50 +3+66.70SS 5 67 39 **GLACIAL TILL:** Very dense to 4 + 65.70dense, brown silty sand to sandy silt SS 6 75 50 +with gravel, cobbles and boulders SS 7 50 50 +- grey by 4.5m depth 5+64.70SS 8 50 33 6 + 63.70SS 9 42 23 6.99 ∕⊠.SS 10 21 50 +End of Borehole Practical spilt spoon refusal at 6.99m depth (GWL @ 3.77m - July 7, 2022) 200 300 400 500

SOIL PROFILE AND TEST DATA

FILE NO.

PE5409

Part of 1919 Riverside Drive

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Geodetic

Phase II - Environmental Site Assessment Ottawa, Ontario

REMARKS

DATUM

REMARKS BORINGS BY CME-55 Low Clearance [Orill			D	ATE .	June 22, 2	2022		HOLE NO.	BH 9-2	22
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH	ELEV.		onization C		Well
	STRATA P	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Lower	r Explosive	Limit %	Monitoring Well Construction
GROUND SURFACE Asphaltic concrete 0.10 FILL: Brown silty sand with crushed 53		 ∑ AU	1	K	4	0-	-66.90	20	40 60	80	
¬stone		ss	2	58	7	1 -	-65.90			10	
FILL: Brown to grey silty clay, some sand, trace gravel and topsoil		ss	3	75	5	2-	-64.90		•		
		ss	4	54	5	3-	-63.90	•			
FILL: Brown to grey silty clay with sand, some gravel, cobbles, boulders, wood and concrete fragments		SS RC	5	27	0	4-	-62.90				
4.88 GLACIAL TILL: Very dense, grey 5.16 silty clay to clayey silt, some sand, \text{gravel, cobbles and boulders}		 ∫RC ∫	2	100	36	5-	-61.90				
		_				6-	-60.90				
BEDROCK: Poor to excellent quality, black shale		RC -	3	100	41	7-	-59.90				
		RC	4	100	93	8-	-58.90				
9.04 End of Borehole (GWL @ 3.10m - July 7, 2022)						9-	-57.90				
									200 300 Eagle Rdg. as Resp. △ M	(ppm)	00

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Part of 1919 Riverside Drive Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM Geodetic

FILE NO.

PE5409

REMARKS BORINGS BY CME-55 Low Clearance D	Orill			D	ATE .	June 22, 1	2022		HOLE NO	BH10-	-22
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)		onization tile Organic		g Well
	STRATA	TYPE	NUMBER	» RECOVERY	N VALUE or RQD	(111)	(111)	O Lowe	r Explosiv	/e Limit %	Monitoring Well
GROUND SURFACE	03		Z	EN EN	z o	0	-66.62	20	40 60	0 80	_≥`
Asphaltic concrete 0.08 FILL: Brown silty sand with gravel and crushed stone 0.69		AU	1			0-	-00.02			•	-
FILL: Brown silty sand, clay and gravel		ss	2	33	50+	1 -	-65.62		•		
Very loose to compact, brown SILTY SAND to SANDY SILT, trace clay		ss	3	50	1	2-	-64.62				6.3
Very stiff, grey SILTY CLAY to 3.02		ss	4	79	13	3-	-63.62			13	30.5
GLACIAL TILL: Very dense silty clay to clayey silt with sand, gravel cobbles and boulders		ss	5	54	50+						
		RC	1	100	49	4-	-62.62				
BEDROCK: Fair to good quality, black shale		RC	2	100	83	5-	-61.62				-
DIACK STIALE		-				6-	-60.62				
		RC	3	100	51	7-	-59.62				
											-
									200 30 Eagle Rdg as Resp. △		

9 Auriga Drive, Ottawa, Ontario K2E 7T9

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Part of 1919 Riverside Drive Ottawa, Ontario

DATUM Geodetic FILE NO. **PE5409 REMARKS** HOLE NO. BH11-22 BORINGS BY CME-55 Low Clearance Drill **DATE** June 23, 2022 **SAMPLE Photo Ionization Detector** Monitoring Well Construction PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY VALUE r RQD STRATA NUMBER Lower Explosive Limit % N o v **GROUND SURFACE** 80 0+66.11TOPSOIL 0.05 FILL: Crushed stone 1 0.69 FILL: Brown silty sand to sandy silt, 1+65.112 14 SS 50 some crushed stone and gravel FILL: Grey sandy silt, trace clay SS 3 75 10 2 + 64.11FILL: Brown silty clay, trace sand SS 4 71 7 FILL: Brown silty sand, some clay, 3+63.11 trace gravel SS 5 83 2 Loose, brown SILTY SAND, trace 4 + 62.11gravel SS 6 50 6 - some topsoil by 3.8m depth 7 SS 42 5 5+61.11- grey by 5.2m depth 5.59 SS 8 58 50 +Very stiff, grey SILTY CLAY 6+60.116.25 SS 9 42 33 GLACIAL TILL: Very dense, grey silty clay to clayey silt, some sand, 7 + 59.11gravel, cobbles and boulders SS 10 25 50+ 7.77 ∕⊠.SS 11 17 50 +End of Borehole Practical refusal to augering at 7.77m depth 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

9 Auriga Drive, Ottawa, Ontario K2E 7T9

SOIL PROFILE AND TEST DATA

▲ Full Gas Resp. △ Methane Elim.

Phase II - Environmental Site Assessment Part of 1919 Riverside Drive Ottawa, Ontario

DATUM Geodetic FILE NO. **PE5409 REMARKS** HOLE NO. BH12-22 BORINGS BY CME-55 Low Clearance Drill **DATE** June 23, 2022 **SAMPLE Photo Ionization Detector** Monitoring Well Construction PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD STRATA NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 0+67.37**TOPSOIL** 0.28 1 FILL: Brown silty sand with clay, some gravel 1.07 1+66.37SS 2 7 67 FILL: Grey silty clay with sand, 1.45 some gravel SS 3 83 13 2+65.37FILL: Grey to brown silty sand, some gravel, trace clay SS 4 42 1 3 + 64.373.23 SS 5 88 41 **GLACIAL TILL:** Dense to very 4 + 63.37dense, grey silty sand to sandy silt, SS 6 100 50+ some clay, gravel, cobbles and boulders SS 7 50 +21 5+62.37RC 1 100 71 6+61.37**BEDROCK:** Good to excellent quality, black shale RC 2 100 90 7 ± 60.37 End of Borehole (GWL @ 2.64m - July 6, 2022) 200 300 500 RKI Eagle Rdg. (ppm)

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value		
Very Soft	<12	<2		
Soft	12-25	2-4		
Firm	25-50	4-8		
Stiff	50-100	8-15		
Very Stiff	100-200	15-30		
Hard	>200	>30		

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, S_t , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC% - Natural water content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic Limit, % (water content above which soil behaves plastically)

PI - Plasticity Index, % (difference between LL and PL)

Dxx - Grain size at which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

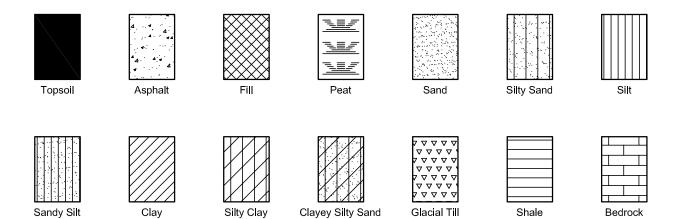
p'o - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

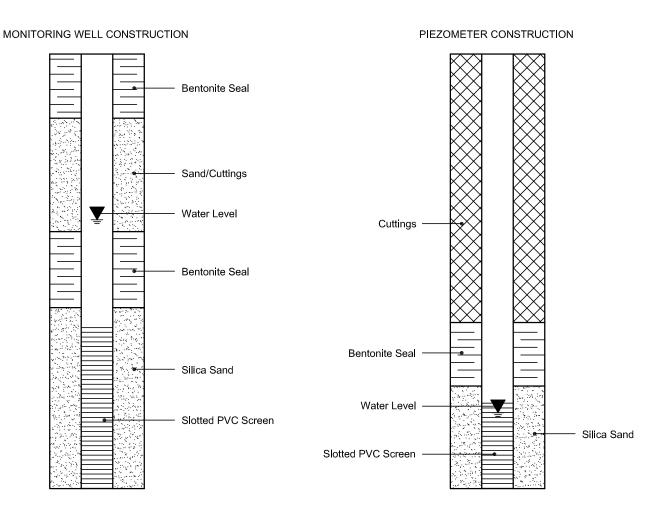
Ccr - Recompression index (in effect at pressures below p'c)
 Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'c / p'o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Mandy Witteman

Client PO: 55170 Project: PE5409 Custody: 136705

Report Date: 13-Jul-2022 Order Date: 4-Jul-2022

Order #: 2228146

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2228146-01	BH7-22-SS2
2228146-02	BH8-22-AU1
2228146-03	BH8-22-SS5
2228146-04	BH9-22-SS2
2228146-08	BH12-22-SS4
2228146 11	DLID

Approved By:

Dale Robertson, BSc **Laboratory Director**

Certificate of Analysis

Order #: 2228146

Report Date: 13-Jul-2022 Order Date: 4-Jul-2022

 Client:
 Paterson Group Consulting Engineers
 Order Date: 4-Jul-2022

 Client PO:
 55170
 Project Description: PE5409

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	5-Jul-22	5-Jul-22
PHC F1	CWS Tier 1 - P&T GC-FID	5-Jul-22	5-Jul-22
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	5-Jul-22	6-Jul-22
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	12-Jul-22	12-Jul-22
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	5-Jul-22	6-Jul-22
Solids, %	Gravimetric, calculation	6-Jul-22	7-Jul-22

Certificate of Analysis

Order #: 2228146

Report Date: 13-Jul-2022

Order Date: 4-Jul-2022

Client: Paterson Group Consulting Engineers

Client PO: 55170 **Project Description: PE5409**

BH8-22-AU1 Client ID: BH7-22-SS2 BH8-22-SS5 BH9-22-SS2 Sample Date: 21-Jun-22 09:00 21-Jun-22 09:00 21-Jun-22 09:00 22-Jun-22 09:00 2228146-01 2228146-02 2228146-03 2228146-04 Sample ID: MDL/Units Soil Soil Soil Soil **Physical Characteristics** 0.1 % by Wt. % Solids 78.9 82.9 90.5 84.8 Metals 1.0 ug/g dry Antimony <1.0 <1.0 <1.0 1.0 ug/g dry Arsenic 2.9 2.6 2.7 1.0 ug/g dry Barium 139 51.1 115 Beryllium 0.5 ug/g dry <0.5 0.6 0.5 5.0 ug/g dry Boron <5.0 <5.0 <5.0 0.5 ug/g dry Cadmium < 0.5 < 0.5 < 0.5 5.0 ug/g dry Chromium 28.1 35.8 44.8 1.0 ug/g dry Cobalt 9.1 6.7 8.6 5.0 ug/g dry Copper 20.6 9.7 19.3 1.0 ug/g dry Lead 4.4 15.9 7.4 1.0 ug/g dry Molybdenum <1.0 <1.0 <1.0 5.0 ug/g dry Nickel 24.5 14.4 20.7 1.0 ug/g dry Selenium <1.0 <1.0 <1.0 _ 0.3 ug/g dry Silver < 0.3 < 0.3 < 0.3 Thallium 1.0 ug/g dry <1.0 <1.0 <1.0 1.0 ug/g dry Uranium <1.0 <1.0 <1.0 10.0 ug/g dry Vanadium 42.6 33.2 38.9 20.0 ug/g dry Zinc 42.9 47.9 44.3 Volatiles 0.02 ug/g dry Benzene < 0.02 < 0.02 0.05 ug/g dry Ethylbenzene < 0.05 < 0.05 0.05 ug/g dry Toluene < 0.05 < 0.05 m,p-Xylenes 0.05 ug/g dry < 0.05 < 0.05 o-Xylene 0.05 ug/g dry < 0.05 < 0.05 0.05 ug/g dry Xylenes, total <0.05 < 0.05 Toluene-d8 Surrogate 121% 115% **Hydrocarbons** 7 ug/g dry F1 PHCs (C6-C10) <7 <7 4 ug/g dry F2 PHCs (C10-C16) 12 <4 F3 PHCs (C16-C34) 8 ug/g dry 13 40 6 ug/g dry F4 PHCs (C34-C50) 20 60 Semi-Volatiles Acenaphthene 0.02 ug/g dry < 0.02 <0.02 < 0.02

Order #: 2228146

Report Date: 13-Jul-2022

Order Date: 4-Jul-2022

Project Description: PE5409

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 55170

	Client ID: Sample Date: Sample ID: MDL/Units	BH7-22-SS2 21-Jun-22 09:00 2228146-01 Soil	BH8-22-AU1 21-Jun-22 09:00 2228146-02 Soil	BH8-22-SS5 21-Jun-22 09:00 2228146-03 Soil	BH9-22-SS2 22-Jun-22 09:00 2228146-04 Soil
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	-	0.02
Anthracene	0.02 ug/g dry	<0.02	<0.02	-	0.04
Benzo [a] anthracene	0.02 ug/g dry	<0.02	<0.02	-	0.06
Benzo [a] pyrene	0.02 ug/g dry	<0.02	<0.02	-	0.07
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	<0.02	-	0.06
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	<0.02	-	0.04
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	<0.02	-	0.04
Chrysene	0.02 ug/g dry	<0.02	<0.02	-	0.06
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	<0.02	-	<0.02
Fluoranthene	0.02 ug/g dry	<0.02	<0.02	-	0.11
Fluorene	0.02 ug/g dry	<0.02	<0.02	-	<0.02
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	<0.02	-	0.04
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	<0.02
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	<0.02
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	-	<0.04
Naphthalene	0.01 ug/g dry	<0.01	<0.01	-	<0.01
Phenanthrene	0.02 ug/g dry	<0.02	<0.02	-	0.05
Pyrene	0.02 ug/g dry	<0.02	<0.02	-	0.13
2-Fluorobiphenyl	Surrogate	72.9%	92.9%	-	74.4%
Terphenyl-d14	Surrogate	86.6%	111%	-	83.9%

Report Date: 13-Jul-2022

Order Date: 4-Jul-2022 **Project Description: PE5409**

Client: Paterson Group Consulting Engineers

Client PO: 55170

Certificate of Analysis

DUP Client ID: BH12-22-SS4 Sample Date: 23-Jun-22 09:00 23-Jun-22 09:00 2228146-08 2228146-11 Sample ID: Soil Soil MDL/Units **Physical Characteristics** 0.1 % by Wt. % Solids 76.3 85.3 Volatiles 0.02 ug/g dry Benzene < 0.02 < 0.02 0.05 ug/g dry Ethylbenzene < 0.05 < 0.05 0.05 ug/g dry Toluene < 0.05 < 0.05 0.05 ug/g dry m,p-Xylenes < 0.05 < 0.05 0.05 ug/g dry o-Xylene < 0.05 < 0.05 0.05 ug/g dry < 0.05 Xylenes, total < 0.05 115% Toluene-d8 Surrogate 141% -Hydrocarbons 7 ug/g dry F1 PHCs (C6-C10) <7 <7 4 ug/g dry 5 F2 PHCs (C10-C16) <4 8 ug/g dry 35 F3 PHCs (C16-C34) <8 6 ug/g dry 22 <6 F4 PHCs (C34-C50)

Order #: 2228146

Report Date: 13-Jul-2022 Order Date: 4-Jul-2022

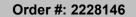
 Client:
 Paterson Group Consulting Engineers
 Order Date: 4-Jul-2022

 Client PO:
 55170
 Project Description: PE5409

Method Quality Control: Blank

Analyte	Pooult	Reporting	L la !4 -	Source	0/ DEO	%REC	DDD	RPD	Notas
Allalyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals			0.0						
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND ND	1.0							
Molybdenum	ND ND	1.0	ug/g ug/g						
Nickel	ND ND	5.0							
Selenium	ND ND	1.0	ug/g						
Silver	ND ND	0.3	ug/g						
Thallium	ND ND	1.0	ug/g						
			ug/g						
Uranium Vanadium	ND	1.0	ug/g						
	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	0.990		ug/g		74.2	50-140			
Surrogate: Terphenyl-d14	1.40		ug/g		105	50-140			
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	9.43		ug/g		118	50-140			

Order #: 2228146


Report Date: 13-Jul-2022 Order Date: 4-Jul-2022

 Client:
 Paterson Group Consulting Engineers
 Order Date: 4-Jul-2022

 Client PO:
 55170
 Project Description: PE5409

Method Quality Control: Duplicate

Analyte	ь	Reporting	_	Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
lydrocarbons									
F1 PHCs (C6-C10)	30	7	ug/g	25			16.4	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g ug/g	ND			NC	30	
Metals		-	J. J						
Antimony	4.2	1.0	110/0	ND			NC	30	
Arsenic	4.2 1.7	1.0	ug/g	1.5			12.1	30	
Barium	51.3	1.0	ug/g	43.6			16.2	30	
Beryllium	ND	0.5	ug/g ug/g	43.6 ND			NC	30	
Boron	ND	5.0	ug/g ug/g	ND			NC	30	
Cadmium	ND	0.5	ug/g ug/g	ND			NC	30	
Chromium	17.5	5.0	ug/g ug/g	14.5			18.5	30	
Cobalt	4.4	1.0	ug/g ug/g	3.7			18.0	30	
Copper	7.0	5.0	ug/g ug/g	5.9			17.4	30	
Lead	5.5	1.0	ug/g	4.8			14.3	30	
Molybdenum	ND	1.0	ug/g	ND			NC	30	
Nickel	8.2	5.0	ug/g	7.0			15.8	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	28.3	10.0	ug/g	23.7			17.8	30	
Zinc	34.4	20.0	ug/g	28.7			18.0	30	
Physical Characteristics									
% Solids	83.1	0.1	% by Wt.	83.0			0.2	25	
% Solids Semi-Volatiles	UJ. I	U. I	70 Dy VVI.	03.0			0.2	23	
								4.6	
Acenaphthene	ND	0.02	ug/g	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g	ND			NC	40	
Anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] pyrene	ND	0.02	ug/g	ND			NC	40 40	
Benzo [b] fluoranthene	ND	0.02	ug/g	ND			NC	40 40	
Benzo [g,h,i] perylene Benzo [k] fluoranthene	ND ND	0.02 0.02	ug/g	ND ND			NC NC	40 40	
Chrysene	ND ND	0.02	ug/g	ND ND			NC NC	40 40	
· ·	ND ND	0.02	ug/g	ND ND			NC NC	40 40	
Dibenzo [a,h] anthracene Fluoranthene	ND	0.02	ug/g ug/g	ND ND			NC NC	40	
Fluorene	ND	0.02		ND ND			NC NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g ug/g	ND			NC	40	
1-Methylnaphthalene	ND	0.02	ug/g ug/g	ND			NC	40	
2-Methylnaphthalene	ND	0.02	ug/g ug/g	ND			NC	40	
Naphthalene	ND	0.02	ug/g ug/g	ND			NC	40	
Phenanthrene	ND	0.01	ug/g ug/g	ND			NC	40	
Pyrene	ND	0.02	ug/g	ND			NC	40	
Surrogate: 2-Fluorobiphenyl	1.30	0.02	ug/g	110	94.5	50-140	110		
Surrogate: Terphenyl-d14	1.51		ug/g ug/g		110	50-140			
folatiles	1.01		ug/g		,,,	00 170			
		0.00		ND			N.O	50	
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes o-Xylene	ND	0.05	ug/g	ND			NC	50	

Client: Paterson Group Consulting Engineers

Client PO: 55170 Project Description: PE5409

Report Date: 13-Jul-2022 Order Date: 4-Jul-2022

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	175	7	ug/g	ND	87.7	80-120			
F2 PHCs (C10-C16)	91	4	ug/g	ND	110	60-140			
F3 PHCs (C16-C34)	231	8	ug/g	ND	114	60-140			
F4 PHCs (C34-C50)	137	6	ug/g	ND	107	60-140			
Metals									
Antimony	39.1	1.0	ug/g	ND	78.0	70-130			
Arsenic	42.7	1.0	ug/g	ND	84.1	70-130			
Barium	59.3	1.0	ug/g ug/g	17.4	83.7	70-130			
Beryllium	44.9	0.5	ug/g ug/g	ND	89.6	70-130			
Boron	42.2	5.0		ND	82.7	70-130			
Cadmium	38.2		ug/g			70-130			
		0.5	ug/g	ND 5.0	76.3				
Chromium	51.4	5.0	ug/g	5.8	91.1	70-130			
Copper	44.5	1.0	ug/g	1.5	86.0	70-130			
Copper	43.9	5.0	ug/g	ND 1.0	83.1	70-130			
Lead	42.5	1.0	ug/g	1.9	81.2	70-130			
Molybdenum	40.5	1.0	ug/g	ND	80.8	70-130			
Nickel	45.5	5.0	ug/g	ND	85.5	70-130			
Selenium	39.6	1.0	ug/g	ND	78.9	70-130			
Silver	34.7	0.3	ug/g	ND	69.3	70-130		(QM-07
Thallium	39.9	1.0	ug/g	ND	79.7	70-130			
Uranium	42.5	1.0	ug/g	ND	84.5	70-130			
Vanadium	54.9	10.0	ug/g	ND	90.9	70-130			
Zinc	52.3	20.0	ug/g	ND	81.5	70-130			
Semi-Volatiles									
Acenaphthene	0.152	0.02	ug/g	ND	88.6	50-140			
Acenaphthylene	0.143	0.02	ug/g	ND	83.0	50-140			
Anthracene	0.166	0.02	ug/g	ND	96.5	50-140			
Benzo [a] anthracene	0.137	0.02	ug/g	ND	80.0	50-140			
Benzo [a] pyrene	0.148	0.02	ug/g	ND	86.0	50-140			
Benzo [b] fluoranthene	0.188	0.02	ug/g	ND	109	50-140			
Benzo [g,h,i] perylene	0.130	0.02	ug/g	ND	75.7	50-140			
Benzo [k] fluoranthene	0.163	0.02	ug/g	ND	94.8	50-140			
Chrysene	0.150	0.02	ug/g	ND	87.6	50-140			
Dibenzo [a,h] anthracene	0.123	0.02	ug/g	ND	71.3	50-140			
Fluoranthene	0.143	0.02	ug/g	ND	83.5	50-140			
Fluorene	0.162	0.02	ug/g	ND	94.3	50-140			
Indeno [1,2,3-cd] pyrene	0.118	0.02	ug/g	ND	68.6	50-140			
1-Methylnaphthalene	0.134	0.02	ug/g	ND	77.9	50-140			
2-Methylnaphthalene	0.161	0.02	ug/g	ND	93.8	50-140			
Naphthalene	0.171	0.01	ug/g	ND	99.4	50-140			
Phenanthrene	0.116	0.02	ug/g ug/g	ND	67.7	50-140			
Pyrene	0.147	0.02	ug/g ug/g	ND	85.6	50-140			
Surrogate: 2-Fluorobiphenyl	1.08	0.02	ug/g ug/g	.10	78.9	50-140			
Surrogate: Z=Fluorobiphenyl Surrogate: Terphenyl-d14	1.27		ug/g ug/g		92.1	50-140 50-140			
ourrogate. respirence 14	1.21		~g/g		V2. 1	00 140			
	4.64	0.02	uala	ND	115	60 120			
Benzene	4.61	0.02	ug/g	ND	115	60-130			
Ethylbenzene	4.64	0.05	ug/g	ND	116	60-130			

Order #: 2228146

Report Date: 13-Jul-2022 Order Date: 4-Jul-2022

 Client:
 Paterson Group Consulting Engineers
 Order Date: 4-Jul-2022

 Client PO:
 55170
 Project Description: PE5409

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
m,p-Xylenes	7.40	0.05	ug/g	ND	92.5	60-130			
o-Xylene	4.21	0.05	ug/g	ND	105	60-130			
Surrogate: Toluene-d8	7.79		ug/g		97.3	50-140			

Client: Paterson Group Consulting Engineers

Order #: 2228146

Report Date: 13-Jul-2022 Order Date: 4-Jul-2022

Client PO: 55170 Project Description: PE5409

Qualifier Notes:

QC Qualifiers:

Certificate of Analysis

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

PARACE L LABORATORIES LTD.

Paracel ID: 2228146

Paracel Order Number (Lab Use Only) Chain Of Custody (Lab Use Only)

2228146

Nº 136705

Client Name: Paterson	-	Project Ref: PES409										Pag	e \	of \		7		
Contact Name: Haroly WHe	man		Quote	_				y''		Ž.		7.	1	urnar			1	
Address: 9 Auriga Dr Telephone: 613- (00-557)	. Otowa		PO#: E-mail:		5170 nwitternan	@ paterson	ng re	:up	col				1 day 2 day				□ 3 da	1
	Other Regulation	PWQO SW			S (Soil/Sed.) GW (Gro Nater) SS (Storm/San Paint) A (Air) O (Oth	itary Sewer)	EX			j	Re	quirec	Requi					
Table 3 Agri/Other SU- Table Mun: For RSC: Yes No Oth	Sani Su-Storm	trix	Air Volume	Containers	Sample ⁻	Taken	Os F1-F4+BT	S	-SH	tals by ICP		a a	B (HWS)	BTEX T		-		-
Sample ID/Location Name	•	Matrix	Air	0 #	Date	Time	P	VOCs	PAHS	Me	Ð	Cr.	B	187 PH				į
1 BH7-22-552	1	5		١	June 21/2022	- '			X	X						e.		
2 BH8-22-AU	a d	See Jago	ja -	4	June 21/2022		, -		X	Χ	1.					j.	, ,)
3 BH8-22-SS5				2	In 21/2022		χ									j.		1
4 BH9-22-552		-		٦	June 22/2022	7	X		Χ	X	- 11					10		
5 BH9-22-553		\dagger		ī	June 22/2022			-	X	Χ								
6 - BH11-22-555 8.				2	June 23/2022		Χ		-/\	41	0	1	D				_	
-		+			11		Λ.		n.	X		_	L	P		_		-
8 Bur -22 CEN		+		2	June 23/2022		X			_		0 0 L		net	nla"	1		1
DAIZ 22 - 539		-			Ine 23/2022		-			X	-	-	_	ne-v	45	701	14	7
Drie 200 200		1			June 23/2022		Χ	-	_	H	0	L	D					7
10 BHR-102-		5		-	June 23/2022		Ļ							X				_
Comments: BMII-22-656: Hold all;	BH12-22-ADII;	Holod	all	781	112-22-554:	Hold me	lods	0/1	4)	Meth	od of D	elivery			/		7
BHIZ 22-555: Hold all Relinquished By (Sign): no				icsd	rens/concer								AC)	905	_ (00	ICH	E
	Received By Di		epot:	1	COUR	Received at Lab:	0/M		Bh	110	Verifi		V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	34	MΛ		
Relinquished By (Print) Nurein Seif	Date/Time:	14	07	1/2	12311	ywou.	9099		0	4,8	Pate/	/Time:_	JUI-	1	70	<u> </u>	12:4	12
Date/Time: July 4th, 2022	Temperature:	-			" AL.	Temperature:	1.2	°C			pH V	erified:		Ву				
hain of Custody (Env) xlsx					Revision 4.0													

Paracel ID: 2228146

Paracel Order Number (Lab Use Only)

2228146

Chain Of Custody (Lab Use Only)

Nº 136709

Client Name: Dalance	- 14 F		Projec	t Ref:	DAT 11		00	0		7	\dashv			Page	of	1	2 52
Contact Name:			Quote	<u> </u>	PE 5 4	09		1	1	61.0	:	. 71	T		und Ti	<u>/</u> _	1
Contact Name: March Witter Address:	nas		PO#:		-1-0	3 (*)	3	1			<u>:</u>		1 day	IIIIaiO	unu	□ 3	day
9 Aurice De			E-mail	5	5170								,				egular
Telephone:	<u> </u>				Heman	100	nto.	(N	VI V	dir	,	п.	2 day			1	egular
ØREG 153/04 □ REG 406/19 □ Other	15	_	, ,		MCMU	109 pc	EIG	30	410	7	7	Date	Kequir	ea:			_
Other .	Regulation	1			S (Soil/Sed.) GW (Gr						Rec	quired	Analy	sis			
☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 ☐ Table 2 ☐ Ind/Comm ☐ Coarse ☐ CCME	□ pwqo	S	W (Su		Vater) SS (Storm/San aint) A (Air) O (Oth												
☐ Table 2 ☐ Ind/Comm ☐ Coarse ☐ CCME ☐ SU - Sani	☐ MISA				I		BTEX										1
Table Mun:	☐ SU-Storm			iners	Sample	Takon	-F4+E			ICP							
For RSC: Yes No Other:		×	lume	Containers	Sample	Idicii	E			ls by			(HWS)				1
Sample ID/Location Name		Matrix	Air Volume	# of c	Date	Time	PHCs	VOCs	PAHs	Metals	Β̈́	CrV	B (F				
1 DIP		C	_	2	Juezz		X			-	_		-		\top		1
2 BH9-22-552		ب برای		1	Servery 5	\. , .	$\sqrt{}$, ,	, .			,				.,,.	1
3		V					+^								+	+	+
4							+					, ,		n .	- 1	+	10
5							+					_		\dashv	+	+	+-
6							+								+	+	+
7							+							-	+	+	+
8							+							\dashv	+	+	+
9				-			-							\dashv	+	+	+
10							+-	_							+	+	- 5 - 19
omments:															\perp		1
											Metho	od of De	elivery:	A	1/1	I ILIS	-
elinquished By (Sign):	Received By Dr	river/De	pot:	192	waste and you a store of	Received at Lab:	da .	-	1		Verifie	ed By:		0	~		7 (
Ilinquished By (Print):			1	14	LOUNE	Junear		\(Blar	1161				\$	tu		
Mandy Witteman	Date/Time:	95/	10	7/2	Z 311	WVII5,)	14,	45	Date/	Hm ol (101-	05	5,77	1	7:25
July 5/0027	Temperature:	_			° ph.	Temperature	3 ,8	°C			pH Ve	rified:	Ш	By:			
nin of Custody (Env) xlsx					Revision 4.0												

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Mandy Witteman

Client PO: 55270 Project: PE5409

Custody:

Report Date: 20-Jul-2022 Order Date: 14-Jul-2022

Order #: 2229547

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 2229547-01
 BH8-22-GW1

 2229547-02
 BH9-22-GW1

 2229547-03
 BH12-22-GW1

2229547-04 DUP

Approved By:

Dale Robertson, BSc Laboratory Director

Client PO: 55270

Order #: 2229547

Report Date: 20-Jul-2022

Order Date: 14-Jul-2022
Project Description: PE5409

Analysis Summary Table

Client: Paterson Group Consulting Engineers

Method Reference/Description **Extraction Date** Analysis Analysis Date BTEX by P&T GC-MS EPA 624 - P&T GC-MS 18-Jul-22 18-Jul-22 PHC F1 CWS Tier 1 - P&T GC-FID 15-Jul-22 18-Jul-22 PHCs F2 to F4 CWS Tier 1 - GC-FID, extraction 20-Jul-22 20-Jul-22

Report Date: 20-Jul-2022

Order Date: 14-Jul-2022

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 55270 Project Description: PE5409

	Client ID:	BH8-22-GW1	BH9-22-GW1	BH12-22-GW1	DUP
	Sample Date:	07-Jul-22 09:00	13-Jul-22 09:00	13-Jul-22 09:00	13-Jul-22 09:00
	Sample ID:	2229547-01	2229547-02	2229547-03	2229547-04
	MDL/Units	Water	Water	Water	Water
Volatiles					
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene-d8	Surrogate	107%	107%	106%	107%
Hydrocarbons			•	•	•
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100

Report Date: 20-Jul-2022

Order Date: 14-Jul-2022
Project Description: PE5409

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 55270

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	89.5		ug/L		112	50-140			

Order #: 2229547

Report Date: 20-Jul-2022 Order Date: 14-Jul-2022

 Client:
 Paterson Group Consulting Engineers
 Order Date: 14-Jul-2022

 Client PO:
 55270
 Project Description: PE5409

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles									
Benzene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: Toluene-d8	87.9		ua/L		110	50-140			

Report Date: 20-Jul-2022 Order Date: 14-Jul-2022

Project Description: PE5409

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 55270

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2150	25	ug/L	ND	108	68-117			
F2 PHCs (C10-C16)	1660	100	ug/L	ND	103	60-140			
F3 PHCs (C16-C34)	4210	100	ug/L	ND	107	60-140			
F4 PHCs (C34-C50)	2110	100	ug/L	ND	85.0	60-140			
Volatiles									
Benzene	42.4	0.5	ug/L	ND	106	60-130			
Ethylbenzene	40.9	0.5	ug/L	ND	102	60-130			
Toluene	41.9	0.5	ug/L	ND	105	60-130			
m,p-Xylenes	79.1	0.5	ug/L	ND	98.9	60-130			
o-Xylene	42.1	0.5	ug/L	ND	105	60-130			
Surrogate: Toluene-d8	73.0		ug/L		91.2	50-140			

Client: Paterson Group Consulting Engineers

Order #: 2229547

Report Date: 20-Jul-2022 Order Date: 14-Jul-2022

Client PO: 55270 Project Description: PE5409

Qualifier Notes:

None

Sample Data Revisions

Certificate of Analysis

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Date/Time:

Chain of Custody (Blank).xlsx

Paracel ID: 2229547

St. Laurent Blvd Ontario K1G 4,8 749-1947 (laparacellabs.com

Paracel Order Number (Lab Use Only)

2229842

pH Verified:

Chain Of Custody (Lab Use Only)

Client Name: C						10	0	1) (/	in The				
Client Name: Paterson		Projec	t Ref:	PE5409								F	Page	of \	
Contact Name: Handy Wtenan Address:		Quote	#:											d Time	
Address:		PO#:	56	170								1 day			3 day
9 Auriga		E-mail									1	2 day			Regular
Telephone: 613 - 800 - 5575			M	nwitteman	Opoters	ongr	mp.	CO				Required:		12	regular
REG 153/04 ☐ REG 406/19 Other Regulation	T	Natriy T	vne:	S (Soil/Sed.) GW (Gr	ound Water		- (3910		TRY	330			7777	
☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 ☐ PWQO				Vater) SS (Storm/Sar						Re	quire	Analysis			
☐ Table 2 ☐ Ind/Comm ☐ Coarse ☐ CCME ☐ MISA			P (P	aint) A (Air) O (Oth	er)	×							T	П	
☐ SU - Sani ☐ SU - Storm			5			+BTE			٨						
☐ TableMun:		ne	Containers	Sample	Taken	1-F4			y ICF						
For RSC: Yes No Other:	ř	Air Volume	Con			PHCs F1-F4+BTEX	S.	s	Metals by ICP			(HWS)			
Sample ID/Location Name	Matrix	Air	# of	Date	Time	PH	VOCs	PAHs	Met	ΒĦ	CrVI	H)			
1 BHG-22-GWI	GW		3	My 7,2022		+							\top		+
2 BH9-22 GW	1		3	July 13,2022		X							+	\top	+
3 BH12-22-GW			3	1		X							+	\vdash	+
4 DUP \$	1		3	1		X						_	+-	+	+
5						Ť						_	+-	\vdash	+
6								_			_	_	+	+	+-
7						\vdash	_		\dashv			_	+	+	+
8													+		
9									_	_			\perp		
10													$\perp \perp$		
omments:															
										Metho	d of De	livery:	-	1	
elinquished By (Sign): Received By D.	river/De	pot:	/	_	Received at Lab:	00				Verifie		MEL	- 4	WE.	
elinquished By (Print): Nava Co. Date/Time:		1	4	ease	_	Sfe	m		300	verme	u by:	1	_		_

Revsion 4.0