

TECHNICAL MEMORANDUM

DATE December 12, 2022 **Project No.** 21493887

TO City of Ottawa

Public Works Department

FROM Caitlin Cooke EMAIL ccooke@golder.com

RESAMPLING RESULTS, WELL PW11-1, AND UPDATED TERRAIN ANALYSIS HYDRO ONE ORLEANS OC, PHASE 2 3440 FRANK KENNY ROAD, OTTAWA, ONTARIO

Golder Associates Ltd. (Golder) was retained by J.L. Richards & Associates Ltd. (JLR) to collect a water sample from supply well PW11-1 at the proposed Hydro One Operations Centre (OC), Phase 2, located at 3440 Frank Kenny Road in Ottawa, Ontario. The purpose of the work was to evaluate the water quality at PW11-1, which is currently being used to supply the temporary building on the site. Well PW11-1 (well tag A116305) was constructed in 2011 by a licensed well contractor. A well inspection by a licensed geoscientist or engineer was not conducted at that time. The water quality at PW11-1 was previously reported in the February 2012 Golder report entitled "Hydrogeology, Terrain Analysis and Impact Assessment Study, 3406-3450 Frank Kenny Road."

This memorandum is an addendum to the February 2012 Golder report (included as Attachment 1) and this current memorandum considers the City of Ottawa's *Hydrogeological and Terrain Analysis Guidelines*, dated March 2021 and the Ontario Building Code.

Method

On March 9, 2022, a sample was collected from an untreated port (by bypassing the water softener and other treatment equipment) at the temporary building. Water was purged from the nearest tap (the kitchen sink) for approximately 10 minutes prior to the collection of the sample. The water sample was collected in laboratory supplied bottles and analyzed for the "subdivision suite" of parameters and filtered at the laboratory to be analysed for trace metals. Once collected, the sample was packed in a cooler with ice packs and was delivered to Eurofins Environment Testing (Eurofins) in Ottawa, Ontario for analysis.

On August 30, 2022 a second sample was collected from the same tap using the same sampling and purging methods. The water sample was collected in laboratory supplied bottles and analyzed for volatile organic compounds (VOC). Once collected, the sample was packed in a cooler with ice packs and was delivered to Eurofins in Ottawa, Ontario for analysis. The temperature, pH and conductivity of the water sample were measured in the field, and other sample observations, including colour, were noted.

Results

On the attached Table 1, the analytical results for the subdivision suite of parameters are compared to the Ontario Drinking-Water Quality Standards (ODWQS, Ontario Regulation 169/03) and to the standards (MAC), objectives

Golder Associates Ltd. 1931 Robertson Road, Ottawa, Ontario, K2H 5B7, Canada

T: +1 613 592 9600 F: +1 613 592 9601

(AO) and guidelines (OG) of the "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines" (Ontario Ministry of the Environment, Conservation and Parks (MECP); Revised June, 2006). Table 1 also contains historic data collected during 2011 from PW11-1. The laboratory certificates of analysis (including the trace metals and VOC analyses) are also included (Attachment 2).

Analytical results of the groundwater sample collected from PW11-1 on March 9, 2022 indicate an AO exceedance for colour, which was measured to be 96 TCU, above the AO of 5 TCU (MECP, 2006). The sample was described as being clear and colourless when collected. The sample collected on August 30, 2022 was also described as clear and colourless. In accordance with Procedure D-5-5, the treatability limit for colour is 7 TCU; however, higher, iron-related colour may be removed by manganese greensand treatment.

As commonly found in this area of Ontario, the concentration of hardness was 305 mg/L, above the OG of 100 mg/L (MECP, 2006). Hardness in this concentration can be treated with conventional water softening equipment.

The laboratory-measured concentration of hydrogen sulphide was 0.21 mg/L, above the AO of 0.05 mg/L (MECP, 2006). Hydrogen sulphide is typically removed from water by aeration or by chemical oxidation.

The turbidity concentration measured in the sample was 13.2 NTU, greater than the AO of 5 mg/L (applicable at the point of consumption). In accordance with Procedure D-5-5, the treatability limit for turbidity is 5 NTU for non-disinfected water supplies.

The sodium concentration was 46 mg/L, which is below the aesthetic objective for sodium in drinking water of 200 mg/L. However, in accordance with Procedure D-5-5, the local Medical Officer of Health should be notified when the sodium concentration exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets.

The iron concentration was 1.63 mg/L, above the AO of 0.30 mg/L. In accordance with Procedure D-5-5, the treatability limit for iron is 10 mg/L. Iron in this concentration can be treated with conventional water softening equipment or manganese greensand filters.

The manganese concentration was 0.06 mg/L, slightly above the AO of 0.05 mg/L. In accordance with Procedure D-5-5, the treatability limit for manganese is 1.0 mg/L. Manganese in this concentration can be treated with conventional water softening equipment or manganese greensand filters.

All of the other results of chemical analysis for PW11-1 were below the respective MACs and AOs (see Table 1). The concentrations of trace metals were below the applicable MAC, AO or OG (see lab report 1976973 in Attachment 2).

No VOCs were detected above their respective detection limits.

Based on information provided by JLR, HONI plans to install the following water treatment equipment: two parallel iron/sulphur filters (duty), one water softener, two parallel cartridge filters (one duty, one stand-by), and one ultraviolet (UV) disinfection unit. A cartridge filter will be installed at the facility bottle fill station and a point-of-use reverse osmosis (RO) unit will be installed at a dedicated kitchen sink tap for additional taste/odour treatment that may not be fully addressed by the water treatment system.

Discussion

The groundwater quality at well PW11-1 indicates that the water quality continues to meet applicable standards or objectives for the analyzed parameters, with the exception of colour, hydrogen sulphide, turbidity, iron, and manganese. Treatment may be necessary to reduce the levels of colour, hydrogen sulphide, turbidity, iron and manganese below the AOs. Common techniques for treating hydrogen sulphide, iron and manganese include water softeners, manganese greensand filters or other oxidizing media. Field assessment of colour has consistently shown that the water from this well is clear and colourless upon sample collection. The elevated colour level measured in the laboratory is assumed to be attributed to the elevated iron concentration, and treatment for iron is likely to be effective at reducing the colour level potentially to below the AO.

Turbidity was previously elevated in the samples collected in 2011 from PW11-1. Based on these elevated levels, a strategy was developed to reduce the turbidity of the groundwater at this well to below 1 NTU in order to meet the health-related objective under Table 2 of Procedure D-5-5. On December 22, 2011, the well was surged by the well driller and pumped at a rate of approximately 53 L/min (14 US GPM) for 6.5 hours. Just before pump shut-off, the field turbidity was measured to be 0.72 NTU, below the health-related objective under Procedure D-5-5. While repeating this approach could potentially reduce the 2022 turbidity levels to below 1 NTU, treatment using a carbon filtration system or reverse osmosis may be better suited to this site based on the reported low water use from this well.

Golder's 2012 report concluded that well PW11-1 was capable of supplying at least 16,350 L/day (i.e., more than the current estimated daily water demand for Phase 2 of the site). This capacity remains sufficient to provide water supply to Phase 2 of the development.

The water supply well formerly used for residential water supply at the now-demolished residence should be decommissioned in accordance with Ontario Regulation 903.

Updated Terrain Analysis

The February 2012 Golder report included a terrain analysis based on a preliminary design concept. The design has since progressed and the total daily design sanitary sewage flow has been refined from the assumptions in the February 2012 report to be up to 10,000 L/day. The following discussion presents an updated terrain analysis that incorporates the new total daily design sanitary sewage flow.

A nitrate dilution model was utilized to assess the potential impact of septic effluent on the properties adjoining 3440 Frank Kenny Road. The net potential infiltration was based on the regional climatic data for the Ottawa area provided by Environment Canada. A maximum of 35 employees was assumed based on information provided by Hydro One. The background nitrate concentration was assumed to be less than 0.1 mg/L based on the groundwater sample taken from borehole BH11-5 (Golder, 2012), and the nitrate concentration of the effluent was assumed to be 40 mg/L as per the guidance in MECP Guideline D-5-4. A nitrate pre-treatment system is being designed for the operations facility, and the treatment unit will be constructed as a double-pass system. As per literature from Waterloo Biofilter, a double-pass system can achieve between 50 to 65% nitrogen reduction. A 50% reduction in nitrogen concentrations is therefore assumed for the purposes of this impact assessment. The site area used in the assessment was 2.6 hectares. The nitrate dilution calculation is provided in Attachment 3.

With regard to treatment and dispersal of effluent from the leaching beds, the maximum nitrate concentration at the property boundary was calculated to be 8.7 mg/L, less than the ODWQS of 10 mg/L. It should be noted that this calculation is conservative because many of the 35 employees will spend the majority of their workday away

from the operations facility, and the number of full-day equivalent employees at the facility will be less than 10. It is concluded that the impact of the proposed operations facility on groundwater at the downgradient property boundary is considered acceptable in accordance with MECP Guideline D-5-4.

The source protection mapping in the Source Protection Information Atlas¹ illustrates that the site does not fall within a significant groundwater recharge area. The site does fall within an area marked as a vulnerable aquifer. Based on the results of the impact assessment, no potential impacts to nearby off-site groundwater users were identified.

Percolation/infiltration testing is not deemed to be required at this site. Based on the existing identified soils, a percolation rate (T) of 50 min/cm was estimated for the purposes of the septic design. Because this is the maximum value used in determining the size of the proposed leaching bed, it is considered a conservative estimate

Conclusions

Apart from the updated information presented here, the remaining conclusions and recommendations in the February 2012 Golder report (included in Attachment 1) remain valid.

Closure

Should you have any questions or require further information, please do not hesitate to contact the undersigned.

Golder Associates Ltd.

Caitlin Cooke, M.Sc., P.Geo.

Lead Hydrogeologist

CAMC/rk

Jaime Oxtobee, M.Sc., P.Geo. Senior Hydrogeologist/Associate

Attachments: Table 1 – Summary of Water Quality Results

Attachment 1 - February 2012 Golder Report

CAITLIN A. MARTIN COOKE PRACTISING MEMSER 1481

Attachment 2 - Water Quality Summary and Lab Reports 1973087,1976973 and 1985044

Attachment 3 – Updated Nitrate Dilution Calculation

https://golderassociates.sharepoint.com/sites/152302/project files/6 deliverables/well sampling/21493887-tm-rev3-well resampling_2022-12-12.docx

References

Golder Associates Ltd., 2012. Hydrogeology, Terrain Analysis and Impact Assessment Study, 3406-3450 Frank Kenney Road. Report No. 11-1122-0129(3000), February 2012.

Ontario Ministry of the Environment, Conservation and Parks, 2006. Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, PIBS 4449e01.

¹ https://www.lioapplications.lrc.gov.on.ca/SourceWaterProtection/index.html?viewer=SourceWaterProtection.SWPViewer&locale=en-CA

City of Ottawa Project No. 21493887
Public Works Department December 12, 2022

TABLE 1

Summary of Water Quality Results

Table 1 Summary of Water Quality Results

		ODWQS			PW11-1	PW11-1	PW11-1	PW11-1
		(169/03)-	ODWQS-	ODWQS-	07-Nov-2011	07-Nov-2011	22-Dec-2011	09-Mar-2022
Parameter	Unit	Health (1)	AO (2)	OG (3)	S-1	S-4	PW11-1	HYDRO
Bacterial								_
Escherichia coli	cfu/100ml	0			0	0		0
Fecal Coliform	cfu/100ml				0	0		0
Fecal Streptococci, Kf Agar	cfu/100ml				0	0		
Heterotrophic Plate Count	cfu/ml			⁽⁴⁾	12	12		0
Total Coliform	cfu/100ml	0			5	2		0
General Chemistry	0.0., 1001111					_		
Alkalinity (Total as CaCO3)	mg/l			500	284	295		290
Ammonia Nitrogen	mg/l				0.76	0.70		0.502
Chloride	mg/l		250		89	90		61
Chlorine, Total (Field)	mg/l				0.01	0		
Chlorine, Free (Field)	mg/l				0	0		
Color	color unit		5		<2	<2		96
Conductivity	uS/cm				848	853		747
Conductivity (Field)	uS/cm				823	813		2848
Dissolved Organic Carbon	mg/l		5		1.5	1.2		1.6
Fluoride	mg/l	1.5			0.29	0.27		0.27
Hardness, Calcium Carbonate	mg/l			100	297	279		305
Hydrogen Sulfide	mg/l		0.05		2.88	<0.10		0.21
Hydrogen Sulfide (Field)	mg/l		0.05		2	2		
Ion Balance	no units				1.04	0.94		1.00
Nitrate as N	mg/l	10.0			0.14	<0.10		<0.10
Nitrite as N	mg/l	1.0			<0.10	<0.10		<0.10
Nitrogen, Total Kjeldahl	mg/l				0.74	0.87		0.629
pH	-			8.5	7.96	8.03		7.82
pH (Field)	-			8.5	7.6	7.5		7.15
Sulphate	mg/l		500 ⁽⁵⁾		22	22		35
Tannin & Lignin	ma/l				<0.1	<0.1		<1.0
Temperature (Field)	deg c		15		11.4	11		11
Total Dissolved Solids	mg/l		500		551	554		486
Turbidity	ntu		5 ⁽⁶⁾	 ⁽⁷⁾	102	37.1		13.2
Turbidity (Field)	ntu		5 ⁽⁶⁾	⁽⁷⁾	91.9	26.9	0.72	
Metals			<u> </u>				***	
Calcium	mg/l				76	74		94
Iron	mg/l		0.3		1.48	0.35		1.63
Magnesium	mg/l				26	23		17
Manganese	mg/l		0.05		0.05	0.03		0.06
Potassium	mg/l				8	6		5
Sodium	mg/l		200 (8)		66	60		46
Phenois			200		30			
Phenolics, Total Recoverable	mg/l	- -			0.002	<0.001		<0.001
Friendics, Total Recoverable	mg/i				0.002	~ 0.001		~ 0.001

City of Ottawa Project No. 21493887

Public Works Department December 12, 2022

ATTACHMENT 1

February 2012 Golder Report

REPORT ON

Hydrogeology, Terrain Analysis and Impact Assessment Study 3406-3450 Frank Kenny Road

Submitted to:

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, Ontario K1Z 5M2

REPORT

Report Number: 11-1122-0129 (3000)

Distribution:

1 copy - J.L. Richards & Associates Limited 1 e-copy - J.L. Richards & Associates Limited

1 copy - Hydro One Networks Inc.

5 copies - City of Ottawa

1 copy - Bradley Bus Lines

2 copies - Golder Associates Ltd.

Table of Contents

1.0	INTRO	INTRODUCTION1						
	1.1	Scope of Work	1					
	1.2	Impact Assessment	2					
	1.3	Applicable Environmental Criteria	2					
2.0	ВАСКО	GROUND INFORMATION	3					
	2.1	Surficial Geology	3					
	2.2	Bedrock Geology	3					
	2.3	Hydrogeology	3					
3.0	TERRA	IN ANALYSIS	5					
	3.1	Field Investigation Program	5					
	3.2	Subsurface Conditions	5					
	3.3 Class IV Sewage Disposal Systems							
4.0	HYDROGEOLOGY STUDY							
	4.1	Field Investigation Program	7					
	4.1.1	Health and Safety	7					
	4.1.2	Well Construction	7					
	4.1.3	Pumping Test	7					
	4.1.4	Groundwater Sampling	8					
	4.2	Field Investigation Results	8					
	4.2.1	Subsurface Conditions	8					
	4.2.2	Pumping Test and Observation Wells	8					
	4.2.3	Groundwater Analytical Results	g					
	4.2.3.1	PW11-1 (S-1 and S-4)	g					
	4.2.3.2	Residential Well (S-2)						
	4.2.3.3	Bradley Bus Well (S-3)	11					
5.0	IMPAC	T ASSESSMENT	13					
6.0	SUMMA	ARY AND CONCLUSIONS	14					
7.0		TIONS AND USE OF REPORT						

8.0	CLOSURE	. 16
REF	ERENCES	17

TABLES

Table 1: Summary of Groundwater Analytical Results, 3406 and 3450 Frank Kenny Road

FIGURES

Figure 1: Key Plan

Figure 2: Site Plan

Figure 3: Surficial Geology

Figure 4: Trend in Depth to Bedrock

Figure 5: Bedrock Geology

Figure 6: Groundwater Level Drawdown, PW11-1

Figure 7: Groundwater Level Drawdown, Bradley Bus Well and Residential Well

APPENDICES

APPENDIX A

Water Well Record, Bradley Bus Well

APPENDIX B

Records of Boreholes BH11-3, BH11-4, BH11-5, BH11-6 and BH11-7 and Test Pits TP11-1, TP11-2, TP11-3 and TP11-4

APPENDIX C

Ontario Building Code Tables (Sewage Systems)

APPENDIX D

Water Well Record, PW11-1

APPENDIX E

Raw Pumping Test Data and Transmissivity Calculations

APPENDIX F

Laboratory Certificates of Analysis

APPENDIX G

Nitrate Dilution Calculation

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by J.L. Richards & Associates Limited (JLR), on behalf of 743120 Ontario Inc., to conduct a hydrogeology, terrain analysis and impact assessment study in support of a proposed site of the future Hydro One Networks Inc. (HONI) Orleans Service Centre in Ottawa, Ontario (Figure 1). The property is comprised of two civic addresses, 3406 and 3450 Frank Kenny Road Site (see Figure 2), and is located in an industrial/agricultural area adjacent to the Village of Navan. The property is 5.32 hectares (13.16 acres) in area and is topographically flat. The northern part of the Site (3406 Frank Kenny Drive) is 2.53 hectares (6.26 acres) in area and is currently occupied by M. L. Bradley Bus Lines (Bradley), while the southern portion of the Site (3450 Frank Kenny Drive) is 2.79 hectares (6.9 acres) in area and is occupied by a residential bungalow and agricultural land (leased to a tenant by Bradley). HONI will initially lease a small portion of the south parcel of the Site (agricultural land). HONI will eventually lease to own 2.90 hectares south of the bus operation.

HONI proposes to build an operations facility on the south parcel. We understand that the proposed operations facility building will be approximately 30,000 square feet in size and will house up to 35 employees. It is proposed that water supply to the operations facility will be provided by a new water supply well. This study has been prepared based on estimates of the future staffing levels provided to Golder, with the estimated water demand equal to approximately 5,000 L/day.

The purpose of the hydrogeology and terrain analysis study is to determine the following:

- If adequate quantities of potable water are available for the proposed development;
- If the soils are suitable for the installation of an on-site sewage disposal system; and,
- If the impact from the sewage system on downgradient water resources is within acceptable limits.

1.1 Scope of Work

The scope of work for the hydrogeology and terrain analysis study was based on the work program outlined in the Golder proposal to JLR, dated June 17, 2011. The hydrogeology study consisted of the following:

- Collection of background information for the site and surrounding area;
- Drilling of one test well on the site to determine the quality and quantity of groundwater available for water supply;
- Conducting a pumping test on the test well consisting of a pumping phase (6 hours) followed by a recovery phase (up to 10 hours);
- Monitoring of groundwater levels during the pumping and recovery phases in the pumping well and in existing water wells located at the Bradley office and at the nearby residence;
- Collection of groundwater samples from the pumping well after one hour of pumping and just before pump shut-off;
- Collection of groundwater samples at the residence and at the Bradley office; and,

Submission of these groundwater samples for the analysis of chemical, physical and bacteriological parameters standard to subdivision supply requirements.

The terrain analysis consisted of the following:

- The excavation of four test pits and an inspection of the materials encountered;
- A review of materials encountered during drilling of seven boreholes completed as a part of the geotechnical investigation for the site (Golder, 2012); and,
- Installation of a shallow monitoring well in the clay overburden, collection of a groundwater sample and submission of this sample for analysis of nitrate.

1.2 Impact Assessment

A groundwater impact assessment was conducted in accordance with MOE Procedure D-5-4 (MOE, 1996b). Although Procedure D-5-4 does not strictly apply to this type of development, the City of Ottawa requested, during the Pre-Application consultation meeting held October 18, 2011, that the hydrogeological report incorporate an impact assessment of groundwater resources with respect to hazardous materials storage at the site.

1.3 Applicable Environmental Criteria

The procedures for the assessment of potential groundwater impact generally followed the MOE Guideline entitled "Technical Guideline for Individual On-site Sewage Systems: Water Quality Impact Risk Assessment", dated August 1996 (Guideline D-5-4). It is assumed that the sewage system will be designed to be a small sewage system (handling no more than 10,000 L/day of effluent). The terrain analysis was not intended to provide specific design of the on-site sewage disposal system, but provided general recommendations for the type of system that would be appropriate for the site.

The procedures for the assessment of water supply for the site generally followed the Ministry of the Environment (MOE) guideline entitled, "Technical Guideline for Private Wells: Water Supply Assessment," dated August 1996 (MOE Procedure D-5-5).

2.0 BACKGROUND INFORMATION

2.1 Surficial Geology

Published geological mapping indicates that in the area of 3450 Frank Kenny Road, surficial materials consist of offshore marine deposits (clay, silty clay and silt) and glacial till (see Figure 3, Surficial Geology). In the wider area, organic deposits, deltaic and estuary deposits and exposed bedrock are also present. Published geological mapping also indicates that the depth to bedrock is expected to be approximately 2 to 15 metres (Figure 4).

The well record from the existing water supply well at the Bradley office described 5.8 metres of clay underlain by 3.7 metres of glacial till (hardpan) over shale bedrock (Appendix A). At PW11-1, based on the well record, 8.9 metres of silty clay was found to overlie shale bedrock.

2.2 Bedrock Geology

Two bedrock units are indicated to be exposed in the area of the site: the Lindsay Formation and the overlying Billings Formation which are both Upper Ordovician in age (see Figure 5, Bedrock Geology). The Lindsay Formation consists of fossiliferous limestone with shaley partings while the Billings Formation consists of non-calcareous shale with thin limestone interbeds (Williams, 1991). Aquifers in the Lindsay Formation are restricted to seams that are in the calcareous shale layers (GSC, 2004). In the Billings Formation, supply is generally sufficient for domestic use with thick sections with no water. The quality is generally poor with mineral content in excess of accepted levels; aquifers commonly yield saline and sulfurous water (GSC, 2004).

2.3 Hydrogeology

A hydrogeological investigation of the Navan area water supply was conducted by Golder (Golder, 2001). The geology was found to consist of up to 10 m of clay followed by a glacial till aquifer underlain by bedrock of the Billings Formation shale (and/or dark grey to black limestone of the Eastview formation), underlain by the Gull River Formation limestone. Background information indicated that the gravel till was the best source of water and that the shale and limestone were poor water quality producers.

Golder also conducted a desktop review to assess the potential for provision of public water and wastewater services to all privately serviced villages in the City of Ottawa, including the village of Navan (Golder, 2007). The assessment was conducted for the area within 1 kilometre of the village boundaries, and examined information sources such as City of Ottawa base mapping, Ministry of Environment (MOE) water well information system (WWIS) and available mapping of topography, surficial and bedrock geology, drift thickness and surface water bodies. Municipal water supply and waste water services are not available at the site.

Based on an analysis of the WWIS for wells located within 1 km of the village of Navan, 81 overburden wells and 216 bedrock wells were identified. The well depths were reported to be up to 100 metres, with 88% of wells being 30 metres deep or less. Of the overburden wells, 90% reported well yields of 20 L/min/m or less; 36% of wells were reported as having fresh water and 64% of wells had salty water. Of the bedrock wells, 91% reported well yields of 20 L/min/m or less; 54% of wells were reported as having fresh water and 46% of wells had salty water.

Groundwater use within the vicinity of the site is limited to private water supply wells for residences and small businesses. Four groundwater users were identified within 500 metres of the site:

1) The Bradley Bus office well (3406 Frank Kenny Road);

- 2) On-site residential well (3450 Frank Kenny Road);
- 3) Private well at the property immediately north of the site (3372 Frank Kenny Road); and,
- 4) Private well located south of the site (1533 Colonial Road).

3.0 TERRAIN ANALYSIS

3.1 Field Investigation Program

Test pits TP11-1, TP11-2, TP11-3 and TP11-4 and boreholes BH11-4 and BH11-5 were advanced in the area of the proposed on-site sewage disposal system. Details of the subsurface conditions at each location are presented on the Record of Test Pits in Appendix B. The locations of the test pits are shown on Figure 2.

A groundwater sample was collected from the standpipe installed in borehole BH11-5 and submitted for analysis of nitrate in order to determine the background nitrate concentration.

3.2 Subsurface Conditions

This section provides a summarized account of the subsurface soils and groundwater conditions on the site based on the information obtained from the test pits completed on October 31, 2011. It is noted that in some cases the stratigraphic boundaries within the overburden represent a transition between soil types rather than an exact plane of geologic change.

Brown topsoil with a thickness of 0.15 metres was encountered at ground surface at all four test pit locations. Grey brown silty clay was found below the topsoil at all test pit locations. At test pit TP11-2, 1.40 metres of grey brown silty sand with some gravel and clay, with cobbles, and boulders (glacial till) was encountered below the silty clay; however, the sample taken from this layer was found to have a high clay content and was too fine for grain size analysis. The test pits were all terminated in the silty clay at depths of 1.60 to 2.00 mbgs, with the exception of test pit TP11-2 which was terminated in the glacial till at 2.40 mbgs. Groundwater seepage was observed in the test pits at depths of 1.50 to 2.00 mbgs.

Shale was encountered at depths of 3.1 to 4.3 mbgs in boreholes BH11-4, BH11-5, BH11-6 and BH11-7.

A nitrate concentration of less than 0.1 mg/L was measured in the groundwater sample collected from borehole BH11-5.

3.3 Class IV Sewage Disposal Systems

The following sewage system recommendations are based on a conventional Class IV Sewage System comprised of a septic tank and an absorption trench leaching bed. Design parameters contained in this section are derived from the 2006 Ontario Building Code (OBC), and are intended as guidelines only with respect to the feasibility of constructing a system at the proposed operations building. Prior to construction of a sewage system, the system will be designed for the proposed operations building.

For the purpose of demonstrating that this site has adequate land area for sewage disposal, the most conservative soil conditions and largest treatment and disposal area requirements were assumed. It is our understanding that total sewage flows are estimated to be in the range of 3,000 L/day to 5,000 L/day, based on estimates of future staffing levels of 35 employees.

The shallow soil profile in the majority of the site is characterized by a topsoil layer followed by a silty clay unit to at least 1.40 mbgs. Groundwater was encountered below the topsoil layer in the test pits at depths of 1.50 to 2.00 mbgs.

Due to the low permeability native soils present at the site a raised to partially raised leaching bed will be required. Imported sand is required for the construction of raised leaching beds. A minimum of 500 metres of distribution piping is required for conventional leaching bed construction based on the following formula:

$$L = \frac{QT}{200}$$

where:

- L = total length of the distribution pipe in metres;
- Q = the total daily design sanitary sewage flow in litres (5,000 L/day, assuming that the sewage system will be designed to be a small sewage system; and,
- T = the design percolation time imported sand (assumed to be 10 minutes (OBC Table 2)).

The clearances around the distribution piping are to be a minimum of those shown in the OBC Table 8.2.1.6 B. The leaching bed area should be chosen such that the bed is at no steeper grade than 1V:4H, and not in an area prone to flooding. The bed area should be backfilled so as not to settle and create any depressions. The bed should be shaped to shed water, and should be protected from erosion and any compaction, stress or pressure that could negatively impact the bed.

The percolation time of the silty clay encountered below the topsoil across most of the site will exceed 50 minutes per centimetre (see OBC Table 3). The loading rate corresponding to this percolation time is equal to 4 L/m^2 /day (see OBC Table 8.7.4.1.A). Therefore, the leaching bed area required for a total daily design sanitary sewage flow of 5,000 L/day is 1,250 m².

The grassed area east of the proposed building footprint, adjacent to Frank Kenny Road is approximately $4,900 \text{ m}^2$. The $1,250 \text{ m}^2$ sewage disposal footprint can be accommodated on this area of the site.

4.0 HYDROGEOLOGY STUDY

It should be noted that the hydrogeology study was completed in conjunction with a Phase I ESA and geotechnical program. Results of these investigations are provided under separate cover (Golder 2011 and 2012).

4.1 Field Investigation Program

4.1.1 Health and Safety

Prior to initiating the fieldwork, Golder developed and implemented site-specific protocols to protect the health and safety of its employees and subcontractors through the preparation of a site-specific Health and Safety Plan.

Underground Services Locators Ltd. (a private service utility locator) was retained to coordinate utility clearances with the local utility companies, and to clear the proposed borehole location prior to the initiation of the fieldwork.

4.1.2 Well Construction

A new well, PW11-1, shown on Figure 2, was drilled on November 4, 2011 by Bourgeois Well Drilling Ltd. of St. Albert, Ontario. The installation of the well casing was monitored by Golder field staff to ensure that appropriate grouting procedures were followed.

4.1.3 Pumping Test

A pumping test of approximately 360 minutes in duration was conducted on PW11-1 from approximately 9:30 am until 4 pm on November 7, 2011. The well was pumped at a rate of approximately 15.1 L/min (4 US GPM) for the first 32 minutes of the test, after which the rate was reduced to approximately 9.5 L/min (2.5 US GPM) due to the large amount of drawdown observed in the pumping well. At the 40-minute mark, the rate was increased to 10.2 L/min (2.7 US GPM) and at 66 minutes, increased again to 11.3 L/min (3 US GPM) for the remainder of the test. The pumping rates used in the test are summarized in the following table.

Time Period of Pumping Test	Approximate Pumping Rate
0 to 32 minutes	15.1 L/min
32 to 40 minutes	9.5 L/min
40 to 66 minutes	10.2 L/min
66 minutes to end of test	11.3 L/min

During the test, a total of 4,328 L of water was extracted from the aguifer.

The water levels were measured in PW11-1 and at two observation wells (the nearby residential well and the Bradley Bus well) manually, using an electric water level tape, and electronically, using pressure transducer loggers which took measurements at appropriate intervals. The residential well and the Bradley Bus well are located approximately 60 metres and 220 metres from PW11-1, respectively. A barometric pressure logger was used on-site for post-processing barometric compensation. Following the cessation of pumping, groundwater levels in PW11-1 and the observation wells were measured until water levels had recovered to pre-pumping levels.

Pumped water was discharged to the roadside ditch located approximately 90 metres southeast of PW11-1.

4.1.4 Groundwater Sampling

Two samples of the pumped groundwater were collected from PW11-1 (labelled S-1 and S-4) and submitted to Exova Laboratories of Ottawa for analysis of chemical, physical and microbiological analyses of parameters commonly used to evaluate water quality for residential subdivision developments. The first sample was collected 70 minutes after the start of pumping on November 11, 2011, and the second sample was collected just prior to the end of pumping.

The two existing water supply wells at the site (at the residence (labelled S-2), and at the bus company (labelled S-3)) were sampled after approximately 3.5 hours and 4 hours into the pumping test, respectively, and submitted to Exova Laboratories for chemical, physical and microbiological analyses of parameters standard to subdivision supply requirements.

The turbidity of the discharge water was monitored periodically in the field during the pumping test. Field measurements of temperature, pH, conductivity, chlorine residual, turbidity and hydrogen sulphide were taken at PW11-1 and the observation wells at the time of sampling. All analyses were compared to the applicable maximum acceptable concentrations (MAC), interim maximum acceptable concentrations (IMAC), or aesthetic objectives (AO) found in the Technical Support Document for Ontario Drinking Water Quality Standards, Objectives and Guidelines (ODWQS) (MOE, 2006).

4.2 Field Investigation Results

4.2.1 Subsurface Conditions

Based on the water well record, the 152 millimetre diameter well was completed at a depth of 24.3 metres. During drilling, silty clay overburden was encountered to a depth of 8.9 metres where shale bedrock was encountered. PW11-1 was cased to a depth of 10.9 metres using steel casing. At the end of drilling, the groundwater level in PW11-1 was 9.5 metres below the top of the steel casing. The groundwater level on November 7, 2011, prior to the start of the pumping test, was 1.72 metres below the top of the steel casing. The water well record for PW11-1 is located in Appendix D.

4.2.2 Pumping Test and Observation Wells

The drawdown observed at PW11-1 during the November 2011 pumping test is illustrated on Figure 6, and the drawdown observed at the observation wells is illustrated on Figure 7. The two observation wells were in use during the pumping test on PW11-1 and the abrupt changes in the amount of drawdown measured in these wells were attributed to coincidental pumping from these wells during the pumping test. The general downward trend in measured water levels in the observation wells were assumed to represent the response from pumping PW11-1.

The water level recovery in PW11-1 achieved 95% recovery approximately 26 minutes following the cessation of pumping. The drawdown in the observation wells was small relative to the precision of the pressure transducer loggers and the manual water level tape, and relative to the drawdown caused by coincidental water usage at these wells during the pumping test. As a result, it was difficult to calculate the percent recovery at these wells following the cessation of the pumping test. The residual drawdown measured at the residential well 23 minutes after the end of pumping was 0.04 metres, and at the Bradley Bus well 53 minutes after the end of pumping was 0.02 metres.

Aquifer transmissivity was estimated using the Cooper and Jacob drawdown method (Cooper and Jacob, 1946) and the Theis recovery method (Theis, 1935) to interpret drawdown data collected during the pumping test at PW11-1 (see Appendix E). The water levels at the residential well and at the Bradley Bus well exhibited a decrease of approximately 0.06 metres and 0.03 metres, respectively, in response to pumping at PW11-1. Based on pumping well and observation well data, the aquifer transmissivity is indicated to range from approximately 0.5 to 99 m²/day, and the storativity is indicated to range from approximately 1.1x10⁻⁴ to 2.6x10⁻⁴.

The wide range in transmissivity calculated from the data can be attributed to an imperfect hydraulic connection between the pumping well and the observation wells.

Based on the data obtained during the pumping test, it can be concluded that PW11-1 is capable of supplying at least 11.3 L/min (16,350 L/day). During the course of the six hour pumping test period, about 31 percent of the available drawdown was utilized while pumping at an average rate of 11.3 L/min. As such, the yield of PW11-1 considerably exceeds the assumed water usage for the new operations facility of 5,000 L/day.

Additional surging followed by pumping was performed on PW11-1 to reduce turbidity (Section 4.2.3.1). This additional well development not only reduced the turbidity, it substantially increased the yield of the well. The well maintained a pumping rate of 53 L/min for 6.5 hours and the water level measured at the end of pumping was 1.86 metres below the top of the well casing. A total of 20,700 L of water were extracted during this operation.

4.2.3 Groundwater Analytical Results

The field observations and the results of the laboratory microbiological, chemical and physical analyses for the groundwater samples collected from PW11-1, the Bradley Bus well and the residential well are summarized in Table 1 following the text of this report. The certificates of laboratory analyses are included in Appendix F.

All laboratory results were compared to the applicable maximum acceptable concentrations (MAC), interim maximum acceptable concentrations (IMAC), aesthetic objectives (AO) found in the Technical Support Document for Ontario Drinking Water Quality Standards (MOE, 2006).

4.2.3.1 PW11-1 (S-1 and S-4)

Analytical results of the groundwater samples collected from PW11-1 on November 7, 2011 indicate an AO exceedance for the total dissolved solids (TDS) concentration, which was measured to be 551 mg/L after 70 minutes of pumping and 554 mg/L after 6.3 hours of pumping, just before pump shut-off. The AO for TDS is 500 mg/L (MOE, 2006). The potential for corrosion or encrustation problems associated with elevated TDS was assessed by calculating the Langelier Saturation Indices (LSI) for the 70-minute and 6.3-hour samples, which were 0.1 and 0, respectively. These LSI values are within the range generally considered stable (between -0.5 and +0.5) and indicate that corrosion or encrustation problems are unlikely.

The field hydrogen sulphide concentrations measured in the samples collected after 70 minutes and 6.3 hours of pumping were 2 mg/L and 2 mg/L, respectively, greater than the AO of 0.05 mg/L. Laboratory measured concentrations of hydrogen sulphide were 2.88 mg/L (initial) and non-detectable at the end of the test. Hydrogen sulphide in these concentrations can be treated with conventional water treatment equipment.

The field turbidity concentrations measured in the samples collected after 70 minutes and 6.3 hours of pumping were 91.9 NTU and 26.9 NTU, respectively, greater than the AO of 5 mg/L (applicable at the point of

consumption). In accordance with Procedure D-5-5, the treatability limit for turbidity is 5 NTU for non-disinfected water supplies.

Based on the elevated levels of turbidity measured in the samples taken from PW11-1, a strategy was developed to reduce the turbidity of the groundwater at this well to below 1 NTU in order to meet the health-related objective under Table 2 of Procedure D-5-5. On December 22, 2011, the well was surged by the well driller and pumped at a rate of approximately 53 L/min (14 US GPM) for 6.5 hours. Just before pump shut-off, the field turbidity was measured to be 0.72 NTU, below the health-related objective under Procedure D-5-5.

The sodium concentration measured in the samples collected after 70 minutes and 6.3 hours of pumping, was 66 mg/L and 60 mg/L, respectively, which is below the aesthetic objective for sodium in drinking water of 200 mg/L. However, in accordance with Procedure D-5-5, the local Medical Officer of Health should be notified when the sodium concentration exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets.

The iron concentrations measured in the samples collected after 70 minutes and 6.3 hours of pumping were 1.48 mg/L and 0.35 mg/L, respectively, slightly greater than the AO of 0.30 mg/L. In accordance with Procedure D-5-5, the treatability limit for iron is 10 mg/L. Iron in these concentrations can be treated with conventional water treatment equipment.

All of the bacteriological parameters with the exception of the heterotrophic plate count and total coliforms were measured below the laboratory method detection limits for the samples collected after 70 minutes and 6.3 hours of pumping. Heterotrophic plate counts of 12 and 12 cfu/mL were measured in the samples collected after 70 minutes and 6.3 hours of pumping, respectively. The presence of heterotrophic bacteria is not considered a health concern.

Total coliforms of 5 and 2 cfu/100mL were measured in the samples collected after 70 minutes and 6.3 hours of pumping, respectively, above the health-related ODWQS of 0 cfu/100mL established for water systems that are disinfected. In accordance with Procedure D-5-5, a total coliform count of less than 6 cfu/100mL is considered as indicative of acceptable water quality for a raw groundwater supply. However, despite acceptable raw water bacteriological quality, Hydro One has a policy that all groundwater supplies that service their facilities are equipped with disinfection equipment. This policy will apply to both the permanent facility and any temporary facility used by Hydro One.

All of the other results of chemical analysis for PW11-1 were below the respective MACs and AOs (see Table 1).

4.2.3.2 Residential Well (S-2)

Analytical results of the groundwater sample collected from the residential well on November 7, 2011 indicate an AO exceedance for the total dissolved solids (TDS) concentration, which was measured to be 645 mg/L. The AO for TDS is 500 mg/L (MOE, 2006). The potential for corrosion or encrustation problems associated with elevated TDS was assessed by calculating the Langelier Saturation Index (LSI), which was 0.3. This LSI value is within the range generally considered stable (between -0.5 and +0.5) and indicates that corrosion or encrustation problems are unlikely.

The field hydrogen sulphide concentration measured in the sample was 0.1 mg/L, greater than the AO of 0.05 mg/L, but within treatable limits.

The field turbidity concentration measured in the sample was 14.1 NTU, greater than the AO of 5 NTU. In accordance with Procedure D-5-5, the treatability limit for turbidity is 5 NTU. Elevated turbidity is frequently a function of insufficient well development.

The sodium concentration measured in the sample was 41 mg/L, which is below the aesthetic objective for sodium in drinking water of 200 mg/L. However, in accordance with Procedure D-5-5, the local Medical Officer of Health should be notified when the sodium concentration exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets.

The iron concentration measured in the sample collected was 1.86 mg/L, respectively, greater than the AO of 0.30 mg/L. In accordance with Procedure D-5-5, the treatability limit for iron is 10 mg/L.

The manganese concentration measured in the sample collected was 0.08 mg/L, respectively, greater than the AO of 0.05 mg/L. In accordance with Procedure D-5-5, the treatability limit for manganese is 1.0 mg/L.

All of the other results of chemical analysis for the residential well were below the respective MACs and AOs (see Table 1).

All of the bacteriological parameters with the exception of the total coliforms and heterotrophic plate count were measured below the laboratory method detection limits for the sample collected. Total coliforms of 12 cfu/100mL were measured, above the health-related ODWQS of 0 cfu/100mL established for water systems that are disinfected. A total coliforms count of less than 6 cfu/100mL is generally considered acceptable for untreated supplies. A heterotrophic plate count of 5 cfu/mL was measured. The presence of heterotrophic bacteria is not considered a health concern. The owner of the well was notified of the coliform result. It is also noted that when the site is developed, the residence will be demolished and the residential well will be abandoned in accordance with O. Reg. 903.

The presence of elevated bacterial levels in groundwater is usually specific to a particular well, as opposed to a wider problem within a water supply aquifer. Although a determination of the reason for elevated bacterial levels at the residential well is outside the scope of this study, bacteria may be present in a well due to reasons such as improper well construction, deteriorating well casing, contamination during pump maintenance, etc. No information was provided on the construction of the residential well. The slightly elevated bacterial levels detected in the residential well would not be expected to affect the water quality at PW11-1, as demonstrated by the excellent bacteriological results obtained from this well.

4.2.3.3 Bradley Bus Well (S-3)

Analytical results of the groundwater sample collected from the Bradley Bus well on November 7, 2011 indicate an AO exceedance for the total dissolved solids (TDS) concentration, which was measured to be 650 mg/L. The AO for TDS is 500 mg/L (MOE, 2006). The potential for corrosion or encrustation problems associated with elevated TDS was assessed by calculating the Langelier Saturation Index (LSI), which was 0.1. This LSI value is within the range generally considered stable (between -0.5 and +0.5) and indicates that corrosion or encrustation problems are unlikely.

The laboratory-measured turbidity concentration measured in the sample was 7.6 NTU, greater than the AO of 5 NTU; however, the field turbidity concentration measured at the time of sampling was 3.77 NTU. In accordance with Procedure D-5-5, the treatability limit for turbidity is 5 NTU.

The sodium concentration measured in the sample was 51 mg/L, which is below the aesthetic objective for sodium in drinking water of 200 mg/L. However, in accordance with Procedure D-5-5, the local Medical Officer of Health should be notified when the sodium concentration exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets.

The iron concentration measured in the sample collected was 0.82 mg/L, respectively, greater than the AO of 0.30 mg/L. In accordance with Procedure D-5-5, the treatability limit for iron is 10 mg/L.

All of the bacteriological parameters with the exception of the heterotrophic plate count were measured below the laboratory method detection limits for the sample collected. A heterotrophic plate count of 18 cfu/mL was measured. The presence of heterotrophic bacteria is not considered a health concern.

All of the other results of chemical analysis for the Bradley Bus well were below the respective MACs and AOs (see Table 1).

5.0 IMPACT ASSESSMENT

A nitrate dilution model was utilized to assess the potential impact of septic effluent on the properties adjoining 3450 Frank Kenny Road, The net potential infiltration was based on the regional climatic data for the Ottawa area provided by Environment Canada. The daily effluent loading was based on 125 L/day per employee, assuming that showers would be built in the operations centre. A maximum of 35 employees was assumed based on information provided by HONI. The background nitrate concentration was assumed to be less than 0.1 mg/L based on the groundwater sample taken from borehole BH11-5, and the nitrate concentration of the effluent was assumed to be 40 mg/L. The site area was assumed to be 2.90 hectares. The nitrate dilution calculation is provided in Appendix G.

With regard to treatment and dispersal of effluent from the leaching beds, the maximum nitrate concentration at the property boundary was calculated to be 9.4 mg/L, less than the ODWQS of 10 mg/L. It should be noted that this calculation is conservative since many of the 35 employees will spend the majority of their work day away from the operations facility, and the number of full-day equivalent employees at the facility will be less than 10. Nevertheless, a nitrate pre-treatment system may be considered for the operations facility, if required. It is concluded that the impact of the proposed operations facility on groundwater at the downgradient property boundary is considered acceptable in accordance with MOE Guideline D-5-4.

It is understood that the operations facility will include limited hazardous materials storage (e.g. PCBs). HONI has established procedures and guidelines for storage of hazardous materials that meet applicable provincial environmental requirements.

6.0 SUMMARY AND CONCLUSIONS

Based on the terrain evaluation and groundwater supply investigation carried out by Golder Associates at the site, the following summary and conclusions are provided:

- a) A septic system at the site must be constructed in accordance with the 2006 Ontario Building Code (OBC). Section 3.3 provides general septic leaching bed design considerations. Based on these considerations, the site can accommodate a septic field for the proposed operations centre. Prior to construction of a septic system, detailed design will be required;
- b) According to the nitrate dilution calculation, maximum nitrate concentration at the property boundary was calculated to be 9.4 mg/L, less than the maximum of 10 mg/L under Procedure D-5-4. It is concluded that the impact of the proposed operations facility on groundwater at the downgradient property boundary is considered acceptable;
- c) It is understood that the operations facility will include limited hazardous materials storage (e.g. PCBs). It is recommended that any hazardous materials storage on the site incorporate measures to prevent release of these materials to the environment, to prevent contamination of the aquifer from sources located at ground surface. HONI has established procedures and guidelines for storage of hazardous materials that meet applicable provincial environmental requirements;
- d) The pumping test conducted at well PW11-1 suggests that a sufficient quantity of water is available in the bedrock to satisfy a daily water consumption of 16,350 L/day, above the assumed water usage for the new operations facility of 5,000 L/day or less based on 35 employees at the proposed operations centre;
- e) The groundwater quality at well PW11-1 indicates that the water quality meets applicable standards or objectives for the analyzed parameters, with the exception of TDS, iron, hydrogen sulphide and total coliforms. Treatment may be necessary to reduce the iron and hydrogen sulphide concentrations below the AOs. Common techniques for iron include water softeners, manganese greensand filters or other oxidizing media. Corrosion or encrustation problems associated with TDS are considered unlikely. Total coliforms were measured to be 5 and 2 cfu/100mL in raw samples from the well, slightly above the health-related ODWQS of 0 cfu/100mL established for water systems that are disinfected; however, in accordance with Procedure D-5-5, a total coliform count of less than 6 cfu/100mL is considered as indicative of acceptable water quality; and,
- f) Based on the small amount of drawdown measured at the observation wells, located approximately 61 and 220 metres from PW11-1, it is not expected that the proposed use of PW11-1 would adversely affect other nearby groundwater users, including the nearby residence and the Bradley Bus office.

7.0 LIMITATIONS AND USE OF REPORT

This letter report was prepared for the exclusive use of the J.L. Richards & Associates, 743120 Ontario Inc. and Hydro One Networks Inc. Should additional parties require reliance on this report, written authorization from Golder Associates Ltd. would be required. The report, which specifically includes all tables, figures and attachments is based on data and information collected during the hydrogeology assessment conducted by Golder Associates Ltd. and is based solely on the conditions of the property at the time of the field investigation, supplemented by historical information and data obtained by Golder Associates Ltd. as described in this report.

The services performed as described in this letter report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this letter report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this letter.

The content of this letter report is based on information collected during our investigation, our present understanding of the site conditions, and our professional judgement in light of such information at the time of this letter report. This letter report provides a professional opinion and therefore no warranty is either expressed, implied, or made as to the conclusions, advice and recommendations offered in this letter report. This letter report does not provide a legal opinion regarding compliance with applicable Canadian laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

The findings and conclusions of this letter report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings, or other studies, Golder Associates Ltd. should be requested to re-evaluate the conclusions of this letter report, and to provide amendments as required. The groundwater supply well installed during the course of this investigation has been left in place. This well is the property of the owner/client and not Golder Associates Ltd.

CLOSURE 8.0

We trust this report satisfies your current needs. If you have any questions regarding this report, please contact the undersigned.

GOLDER ASSOCIATES LTD. CAITLIN A. MARTIN COOKE phen R. Wilson, P.Geo. Caitlin Cooke, M.Sc., P.Geo Senior Hydrogeologist/Associate Hydrogeologist 1481

0.8/12 NTARI

CAMC/SRW/sg
n:\active\2011\1122 - contaminated lands\11-1122-0129 hydro one frank kenny road\hydrogeology\report - final\rpt frank kenny rd hydrogeology study 2012-02-07 final.docx

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

REFERENCES

- Cooper, H.H. and C.E. Jacob, 1946. A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., vol. 27, pp. 526-534.
- Geological Survey of Canada. 2004. Urban Geology of the National Capital Area, Online Data, http://gsc.nrcan.gc.ca/urbgeo/natcap/index_e.php. Last accessed November 8, 2011.
- Golder Associates Ltd., 2001. Hydrogeological Investigation, Navan Area, Water Supply, City of Ottawa, Ontario, Report No. 011-2912. September 2001.
- Golder Associates Ltd., 2007. Draft Report on Assessment of Potential for Provision of Public Water and Wastewater Services to Privately Serviced Villages, City Of Ottawa, Ontario. Report No. 07-1122-0029. April 2007.
- Golder Associates Ltd., 2011. Phase I Environmental Site Assessment, 3406/3450 Frank Kenny Road, Ottawa (Orleans), Ontario. Report No. 11-1122-0129(1000). September 2011.
- Golder Associates Ltd., 2012. Geotechnical Investigation, Proposed Hydro One Operations Facility, 3406-3450 Frank Kenny Road, Ottawa, Ontario. Report No. 11-1122-0129-2000. January 2012.
- Ministry of the Environment, 1996a. Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment, Revised August 1996. Ontario Ministry of the Environment.
- Ministry of the Environment, 1996b. Procedure D-5-4, Technical Guideline for Individual On-site Sewage Systems: Water Quality Impact Risk Assessment, Revised August 1996. Ontario Ministry of the Environment.
- Ministry of the Environment, 2006. Ontario Drinking Water Quality Standards, Objectives and Guidelines, June 2003, Revised June 2006. Ontario Ministry of the Environment.
- Ministry of Municipal Affairs and Housing. 2006. 2006 Building Code Compendium.
- Theis, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Trans. Amer. Geophys. Union, Vol. 16, pp. 519-524.
- Williams, D.A., 1991. Paleozoic Geology of the Ottawa-St Lawrence Lowland, Southern Ontario; Ontario Geological Survey, Open File Report 5770, 292p.

Summary of Groundwater Analytical Results 3406 and 3450 Frank Kenny Road

		(2) (1)	(4) (3)	(6) (5)	PW11-1	PW11-1	PW11-1
		ODWQS(169/03)-	ODWQS-	MOE			12/22/2011
Parameter	Unit	Health	AO	D-5-5	S-1	S-4	PW11-1
Bacterial							
Coliform	cfu/100ml	0			5	2	
Escherichia coli	cfu/100ml	0			0	0	
Fecal Coliform	cfu/100ml				0	0	
Fecal Streptococci, Kf Agar	cfu/100ml				0	0	
Heterotrophic Plate Count	cfu/ml				12	12	
General Chemistry							
Alkalinity as CaCO3	mg/l				284	295	
Ammonia Nitrogen	mg/l				0.76	0.70	
Chloride	mg/l		250	250	89	90	
Chlorine, Total (Field)	mg/l				0.01	0	
Chlorine, Free (Field)	mg/l				0	0	
Color	color unit		5	7	<2	<2	
Conductivity	uS/cm				848	853	
Conductivity (Field)	uS/cm				823	813	
Dissolved Organic Carbon	mg/l		5	10	1.5	1.2	
Fluoride	mg/l	1.5			0.29	0.27	
Hardness, Calcium Carbonate	mg/l				297	279	
Hydrogen Sulfide	mg/l		0.05		2.88	<0.10	
Hydrogen Sulfide (Field)	mg/l		0.05		2	2	
Ion Balance	-				1.04	0.94	
Nitrate as N	mg/l	10			0.14	<0.10	
Nitrite as N	mg/l	1			<0.10	<0.10	
Nitrogen, Total Kjeldahl	mg/l				0.74	0.87	
pH	-				7.96	8.03	
pH (Field)	-				7.6	7.5	
Sulfate	mg/l		500(8)	500	22	22	
Tannin & Lignin	mg/l				<0.1	<0.1	
Temperature (Field)	deg c		15		11.4	11	
Total Dissolved Solids	mg/l		500	(13)	<u>551</u>	<u>554</u>	
Turbidity	ntu		5 (9)	5	102	<u>37.1</u>	
Turbidity (Field)	ntu		5 (9)	5	91.9	26.9	0.72
Metals							
Calcium	mg/l				76	74	
Iron	mg/l		0.3	5 (12)	1.48	0.35	
Magnesium	mg/l				26	23	
Manganese	mg/l		0.05	1	0.05	0.03	
Potassium	mg/l				8	6	
Sodium	mg/l		200 (11)	200	66	60	
Phenols							
Phenolics, Total Recoverable	mg/l				0.002	<0.001	

Summary of Groundwater Analytical Results 3406 and 3450 Frank Kenny Road

Date Date			(2) (1)	(4) (3)	DOMESTIC WELL
Parameter			ODWQS(169/03)-	opwos-	
Coliform	Parameter	Unit			
Coliform		- Oille	Hount	710	<u> </u>
Escherichia coli		cfu/100ml	0		12
Fecal Coliform cfu/100ml 0 Fecal Streptococci, Kf Agar cfu/100ml 0 Heterotrophic Plate Count cfu/ml 5 General Chemistry 312 Ammonia Nitrogen mg/l 0.14 Chloride mg/l 0 Chlorine, Total (Field) mg/l 0 Chlorine, Free (Field) mg/l 0 Chlorine, Free (Field) mg/l 0 Color color unit 5 <2					
Fecal Streptococci, Kf Agar					0
Heterotrophic Plate Count Cfu/ml 5					
Alkalinity as CaCO3 mg/l 312 Ammonia Nitrogen mg/l 0.14 Chloride mg/l 250 80 Chlorine, Total (Field) mg/l 0 Chlorine, Free (Field) mg/l 0 Chlorine, Free (Field) mg/l 0 Color color unit 5 <2 Conductivity uS/cm 992 Conductivity (Field) uS/cm 992 Conductivity (Field) uS/cm 992 Conductivity (Field) uS/cm 940 Dissolved Organic Carbon mg/l 5 1.3 Fluoride mg/l 1.5 0.11 Hardness, Calcium Carbonate mg/l 471 Hydrogen Sulfide mg/l 0.05 0.14 Hydrogen Sulfide (Field) mg/l 0.05 0.1 Ion Balance 1.08 Nitrate as N mg/l 10 <0.10 Nitrite as N mg/l 1 <0.10 Nitrogen, Total Kjeldahl mg/l 7.91 pH (Field) 7.91 pH (Field) 500 645 Tannin & Lignin mg/l 500 645 Turbidity ntu 500 645 Turbidity Field mg/l 169 Iron mg/l 169 Iron mg/l 12 Manganese mg/l 3 Sodium mg/l 3 Sodium mg/l 3 Sodium mg/l 3 Sodium mg/l 3 Sodium mg/l 3					
Alkalinity as CaCO3 mg/l 312 Ammonia Nitrogen mg/l 0.14 Chloride mg/l 250 80 Chlorine, Total (Field) mg/l 0 Chlorine, Free (Field) mg/l 0 Chlorine, Free (Field) mg/l 0 Color color unit 5 < <2 Conductivity (Field) uS/cm 992 Conductivity (Field) uS/cm 992 Conductivity (Field) uS/cm 992 Dissolved Organic Carbon mg/l 5 1.3 Fluoride mg/l 1.5 0.11 Hardness, Calcium Carbonate mg/l 471 Hydrogen Sulfide mg/l 0.05 0.14 Hydrogen Sulfide (Field) mg/l 0.05 0.1 Ion Balance 1.08 Nitrate as N mg/l 10 0.05 0.1 Nitrate as N mg/l 1 0.26 pH 0.26 pH 7.91 pH (Field) 7.41 Sulfate mg/l 500 645 Tannin & Lignin mg/l 500 645 Turbidity ntu 500 645 Turbidity field) ntu 169 Iron mg/l 12 Metals Calcium mg/l 169 Iron mg/l 12 Manganese mg/l 0.05 0.08 Potassium mg/l 12 Manganese mg/l 12 Modulina 12 Manganese mg/l 12 Modulina 12 Modulina 12 Modulina 12 Manganese mg/l 200(10) All Dehenols		0.0,			
Ammonia Nitrogen mg/l 0.14 Chloride mg/l 250 80 Chlorine, Total (Field) mg/l 0 Chlorine, Free (Field) mg/l 0 Color color unit 0 Conductivity uS/cm 992 Conductivity (Field) uS/cm 940 Dissolved Organic Carbon mg/l 5 1.3 Fluoride mg/l 1.5 0.11 Hardness, Calcium Carbonate mg/l - 471 Hydrogen Sulfide mg/l 471 Hydrogen Sulfide (Field) mg/l 1.08 Nitrate as N mg/l 10 1.08 Nitrate as N mg/l 1 1.08 Nitrite as N mg/l 1 <t< td=""><td></td><td>ma/l</td><td></td><td></td><td>312</td></t<>		ma/l			312
Chloride mg/l 250 80 Chlorine, Total (Field) mg/l 0 Chlorine, Free (Field) mg/l 0 Color color unit 5 <2		_			
Chlorine, Total (Field) mg/l 0 Chlorine, Free (Field) mg/l 0 Color color unit 5 <2		_		250	
Chlorine, Free (Field) mg/l 0 Color color unit 5 <2					
Color color unit 5 <2 Conductivity (Field) uS/cm 992 Conductivity (Field) uS/cm 940 Dissolved Organic Carbon mg/l 940 Dissolved Organic Carbon mg/l 5 1.3 Fluoride mg/l 1.5 0.11 Hardness, Calcium Carbonate mg/l 471 Hydrogen Sulfide mg/l 0.05 0.14 Hydrogen Sulfide (Field) mg/l 0.05 0.1 Ion Balance - 1.08 Nitrate as N mg/l 10 <0.10					
Conductivity uS/cm 992 Conductivity (Field) uS/cm 940 Dissolved Organic Carbon mg/l 940 Dissolved Organic Carbon mg/l 5 1.3 Fluoride mg/l 5 1.3 Fluoride mg/l 0.11 Hardness, Calcium Carbonate mg/l 471 Hydrogen Sulfide mg/l 0.05 0.14 Hydrogen Sulfide (Field) mg/l 0.05 0.1 Ion Balance - 1.08 Nitrate as N mg/l 10 <0.10				5	
Conductivity (Field) uS/cm 940 Dissolved Organic Carbon mg/l 5 1.3 Fluoride mg/l 1.5 0.11 Hardness, Calcium Carbonate mg/l 471 Hydrogen Sulfide mg/l 0.05 0.14 Hydrogen Sulfide (Field) mg/l 0.05 0.1 Ion Balance - 1.08 Nitrate as N mg/l 10 <0.10					
Dissolved Organic Carbon mg/l 1.5 5 1.3					
Fluoride mg/l 1.5 0.11 Hardness, Calcium Carbonate mg/l 471 Hydrogen Sulfide mg/l 0.05 0.14 Hydrogen Sulfide (Field) mg/l 0.05 0.1 Ion Balance 1.08 Nitrate as N mg/l 10 0.10 Nitrite as N mg/l 1 0.26 pH 7.91 pH (Field) 7.91 pH (Field) 7.41 Sulfate mg/l 500 95 Tannin & Lignin mg/l 0.1 Temperature (Field) deg c 15 11.4 Total Dissolved Solids mg/l 500 645 Turbidity ntu 5 169 Iron mg/l 0.3 1.86 Magnesium mg/l 12 Manganese mg/l 3 Sodium mg/l 200 (11) Hardness 12 Mary 12 Mendals Sodium mg/l 200 (11) Hardness 12 Mary 13 Sodium mg/l 200 (11) Hardness 12 Mary 13 Sodium mg/l 13 Sodium mg/l 13 Sodium mg/l 10.05 0.08 Potassium mg/l 10.05 0.08 Potential Turbidity 10.05 0.08 Potassium mg/l 10.05 0.08 Potassium mg/l 10.05 0.08 Potassium mg/l 10.05 0.08				5	
Hardness, Calcium Carbonate mg/l			1.5		
Hydrogen Sulfide mg/l 0.05 0.14 Hydrogen Sulfide (Field) mg/l 0.05 0.1 Ion Balance - 1.08 Nitrate as N mg/l 10 <0.10					
Hydrogen Sulfide (Field) mg/l 0.05 0.1 Ion Balance - 1.08 Nitrate as N mg/l 10 <0.10 Nitrite as N mg/l 1 <0.10 Nitrogen, Total Kjeldahl mg/l 0.26 pH - 7.91 pH (Field) - 7.41 Sulfate mg/l 500 95 Tannin & Lignin mg/l <0.1 Temperature (Field) deg c 15 11.4 Total Dissolved Solids mg/l 500 645 Turbidity ntu 5 28.4 Turbidity (Field) ntu 5 9 14.1 Metals				0.05	
Ion Balance					
Nitrate as N mg/l 10 <0.10 Nitrite as N mg/l 1 <0.10 Nitrogen, Total Kjeldahl mg/l 0.26 pH 7.91 pH (Field) 7.41 Sulfate mg/l 500(8) 95 Tannin & Lignin mg/l <0.1 Temperature (Field) deg c 15 11.4 Total Dissolved Solids mg/l 500 645 Turbidity ntu 5(8) 28.4 Turbidity (Field) ntu 5(9) 14.1 Metals Calcium mg/l 169 Iron mg/l 0.3 1.86 Magnesium mg/l 12 Manganese mg/l 0.05 0.08 Potassium mg/l 3 Sodium mg/l 200(11) Phenols	, ,	- -			
Nitrite as N mg/l 1 <0.10 Nitrogen, Total Kjeldahl mg/l 0.26 pH 7.91 pH (Field) 7.41 Sulfate mg/l 500 95 Tannin & Lignin mg/l <0.1 Temperature (Field) deg c 15 11.4 Total Dissolved Solids mg/l 500 645 Turbidity ntu 500 645 Turbidity (Field) ntu 500 14.1 Metals Calcium mg/l 169 Iron mg/l 0.3 1.86 Magnesium mg/l 12 Manganese mg/l 0.05 0.08 Potassium mg/l 3 Sodium mg/l 2 Phenols		ma/l	10		
Nitrogen, Total Kjeldahl mg/l 0.26 pH - 7.91 pH (Field) - 7.41 Sulfate mg/l 500 (8) 95 Tannin & Lignin mg/l <0.1					
pH - 7.91 pH (Field) - 7.41 Sulfate mg/l 500 (8) 95 Tannin & Lignin mg/l <0.1					
pH (Field) - 7.41 Sulfate mg/l 500 (8) 95 Tannin & Lignin mg/l <0.1	•	-			
Sulfate mg/l 500 (8) 95 Tannin & Lignin mg/l <0.1	<u>.</u>	1-			
Tannin & Lignin mg/l <0.1 Temperature (Field) deg c 15 11.4 Total Dissolved Solids mg/l 500 645 Turbidity ntu 5 (9) 28.4 Turbidity (Field) ntu 5 (9) 14.1 Metals Calcium mg/l 169 Iron mg/l 0.3 1.86 Magnesium mg/l 12 Manganese mg/l 0.05 0.08 Potassium mg/l 3 3 Sodium mg/l 200(11) 41		ma/l		500 ⁽⁸⁾	
Temperature (Field) deg c 15 11.4 Total Dissolved Solids mg/l 500 645 Turbidity ntu 5 (9) 28.4 Turbidity (Field) ntu 5 (9) 14.1 Metals 169 Iron mg/l 169 Iron mg/l 12 Mangnesium mg/l 12 Manganese mg/l 3 Sodium mg/l 3 Phenols 200(11) 41					
Total Dissolved Solids mg/l 500 645 Turbidity ntu 5 (9) 28.4 Turbidity (Field) ntu 5 (9) 14.1 Metals 169 Calcium mg/l 169 Iron mg/l 0.3 1.86 Magnesium mg/l 12 Manganese mg/l 0.05 0.08 Potassium mg/l 3 Sodium mg/l 200(11) 41 Phenols 41				15	
Turbidity ntu 5 (9) 28.4 Turbidity (Field) ntu 5 (9) 14.1 Metals 169 Calcium mg/l 169 Iron mg/l 0.3 1.86 Magnesium mg/l 12 Manganese mg/l 0.05 0.08 Potassium mg/l 3 Sodium mg/l 200 (11) 41 Phenols	` ` ` ` ` `				
Turbidity (Field)					
Metals mg/l 169 Iron mg/l 0.3 1.86 Magnesium mg/l 12 Manganese mg/l 0.05 0.08 Potassium mg/l 3 Sodium mg/l 200(11) 41 Phenols 41				_	
Calcium mg/l 169 Iron mg/l 0.3 1.86 Magnesium mg/l 12 Manganese mg/l 0.05 0.08 Potassium mg/l 3 Sodium mg/l 200(11) 41 Phenols					
Iron mg/l 0.3 1.86 Magnesium mg/l 12 Manganese mg/l 0.05 0.08 Potassium mg/l 3 Sodium mg/l 200(11) 41 Phenols		ma/l			169
Magnesium mg/l 12 Manganese mg/l 0.05 0.08 Potassium mg/l 3 Sodium mg/l 200 (**) 41 Phenols		 			
Manganese mg/l 0.05 0.08 Potassium mg/l 3 Sodium mg/l 200 (11) 41 Phenols		_			
Potassium mg/l 3 Sodium mg/l 200 (***) 41 Phenols 41		_			
Sodium mg/l 200 (11) 41 Phenols 41					
Phenois					
		9/.		200	r i
Phenolics. Total Recoverable Img/l I I I <0.001	Phenolics, Total Recoverable	mg/l			<0.001

Summary of Groundwater Analytical Results 3406 and 3450 Frank Kenny Road

	1	(2) (1)	(4) (3)	BUS DEPOT WELL
		ODWQS(169/03)-	ODWOS-	
Parameter	Unit	Health	AO	S-3
Bacterial	Offic	Health	AO	0.0
Coliform	cfu/100ml	0		0
Escherichia coli	cfu/100ml	0		0
Fecal Coliform	cfu/100ml			0
Fecal Streptococci, Kf Agar	cfu/100ml			0
Heterotrophic Plate Count	cfu/1001111			18
	CIU/IIII			10
General Chemistry Alkalinity as CaCO3				222
	mg/l			332
Ammonia Nitrogen	mg/l			0.07
Chloride	mg/l		250	104
Chlorine, Total (Field)	mg/l			0.02
Chlorine, Free (Field)	mg/l			0.01
Color	color unit		5	2
Conductivity	uS/cm			1000
Conductivity (Field)	uS/cm			964
Dissolved Organic Carbon	mg/l		5	1.6
Fluoride	mg/l	1.5		<0.10
Hardness, Calcium Carbonate	mg/l			439
Hydrogen Sulfide	mg/l		0.05	<0.01
Hydrogen Sulfide (Field)	mg/l		0.05	0
Ion Balance	-			1.06
Nitrate as N	mg/l	10		<0.10
Nitrite as N	mg/l	1		<0.10
Nitrogen, Total Kjeldahl	mg/l			<0.10
рН	-			7.90
pH (Field)	-		-	7.23
Sulfate	mg/l		500(8)	43
Tannin & Lignin	mg/l			<0.1
Temperature (Field)	deg c		15	13.2
Total Dissolved Solids	mg/l		500	<u>650</u>
Turbidity	ntu		5 (9)	<u>7.6</u>
Turbidity (Field)	ntu		5 (9)	3.77
Metals				
Calcium	mg/l			156
Iron	mg/l		0.3	0.82
Magnesium	mg/l			12
Manganese	mg/l		0.05	0.05
Potassium	mg/l			2
Sodium	mg/l		200 (11)	51
Phenois	1119/1			J 1
Phenolics, Total Recoverable	ma/l			<0.001
rnenolics, rotal Recoverable	mg/l			<0.001

Footnotes:

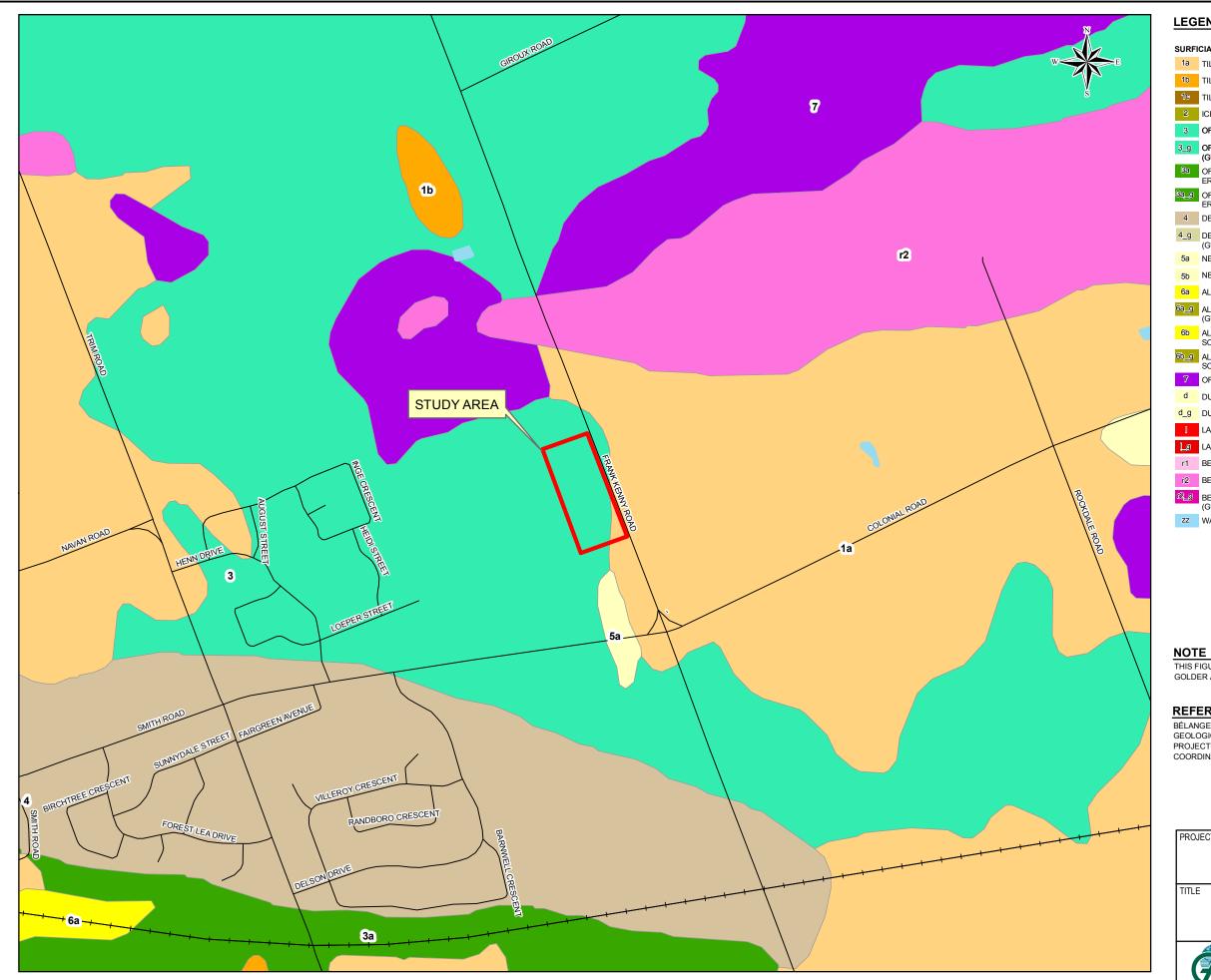
Tables should be read in conjunction with the accompanying document.

- < value = Indicates parameter not detected above laboratory method detection limit
- > value = Indicates parameter detected above equipment analytical range
- -- Chemical not analyzed or criteria not defined
- (01) Ontario Drinking Water Quality Standards Health Based Standards
- (02) Bold = Parameter concentration greater than ODWQS(169/03)-Health
- (03) Ontario Drinking Water Quality Standards Aesthetic Objectives. Aesthetic Objectives are established for parameters that may impair the taste, odour or colour of water or which may interfere with good water quality control practices. For certain parameters, both aesthetic objectives and health-related MACs have been derived.
- (04) Underline = Parameter concentration greater than ODWQS-AO
- (05) Maximum concentration considered reasonably treatable for several aesthetic parameters as found in MOE Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment, Last Revision August 1996.
- (06) Italic = Parameter concentration greater than MOE D-5-5
- (07) Increases in HPC concentrations above baseline levels are considered undesirable.
- (08) There may be a laxative effect in some individuals when sulphate levels exceed 500 mg/L.
- (09) Applicable for all waters at the point of consumption.
- (10) The Operational Guidelines for filtration processes are provided as performance criteria in the Procedure for Disinfection of Drinking Water in Ontario.
- (11) The aesthetic objective for sodium in drinking water is 200 mg/L. The local Medical Officer of Health should be notified when the sodium concentration exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets.
- (12) iron concentrations up to up to 5.0 mg/L treatable with water softeners or manganese greensand filters; iron concentrations between 5.0 to 10.0 mg/L treatable by oxidation with filtration through proprietary filter media or chlorination followed by sand or multimedia filtration
- (13) requires written rationale that corrosion, encrustation or taste problems will not occur

TERRAIN ANALYSIS AND HYDROGEOLOGICAL STUDY

3406-3450 FRANK KENNY ROAD, OTTAWA, ONTARIO

FIGURE 2


SCALE

AS SHOWN

REV.

REVIEW

SRW

LEGEND

SURFICIAL GEOLOGY

1a TILL, PLAIN WITH LOCAL RELIEF <5m

1b TILL, DRUMLINIZED

10 TILL, HUMMOCKY TO ROLLING WITH LOCAL RELIEF 5 TO 10 m

2 ICE CONTACT STRATIFIED DRIFT: GRAVEL & SAND

3 OFFSHORE MARINE DEPOSITS: CLAY, SILTY CLAY & SILT

3_g OFFSHORE MARINE DEPOSITS: CLAY, SILTY CLAY & SILT (GULLIES & RAVINES)

3a OFFSHORE MARINE DEPOSITS: CLAY & SILT UNDERLYING **EROSIONAL TERRACES**

34_9 OFFSHORE MARINE DEPOSITS: CLAY & SILT UNDERLYING EROSIONAL TERRACES (GULLIES & RAVINES)

4 DELTAIC AND ESTUARY DEPOSITS: MEDIUM TO FINE GRAINED SAND

4_9 DELTAIC AND ESTUARY DEPOSITS: MEDIUM TO FINE GRAINED SAND (GULLIES & RAVINES)

5a NEARSHORE SEDIMENTS: GRAVEL, SAND & BOULDERS

NEARSHORE SEDIMENTS: FINE TO MEDIUM GRAINED SAND

6a ALLUVIAL DEPOSITS: SILTY SAND, SILT, SAND & CLAY

@______ ALLUVIAL DEPOSITS: SILTY SAND, SILT, SAND & CLAY (GULLIES & RAVINES)

6b ALLUVIAL DEPOSITS: MEDIUM GRAINED STRATIFIED SAND WITH SOME SILT

ALLUVIAL DEPOSITS: MEDIUM GRAINED STRATIFIED SAND WITH SOME SILT (GULLIES & RAVINES)

7 ORGANIC DEPOSITS: MUCK & PEAT

d DUNE

d_g DUNE (GULLIES & RAVINES)

LANDSLIDE AREA

LANDSLIDE AREA (GULLIES & RAVINES)

r1 BEDROCK: INTRUSIVE & METAMORPHIC

r2 BEDROCK: LIMESTONE, DOLOMITE, SANDSTONE & LOCAL SHALE

BEDROCK: LIMESTONE, DOLOMITE, SANDSTONE & LOCAL SHALE (GULLIES & RAVINES)

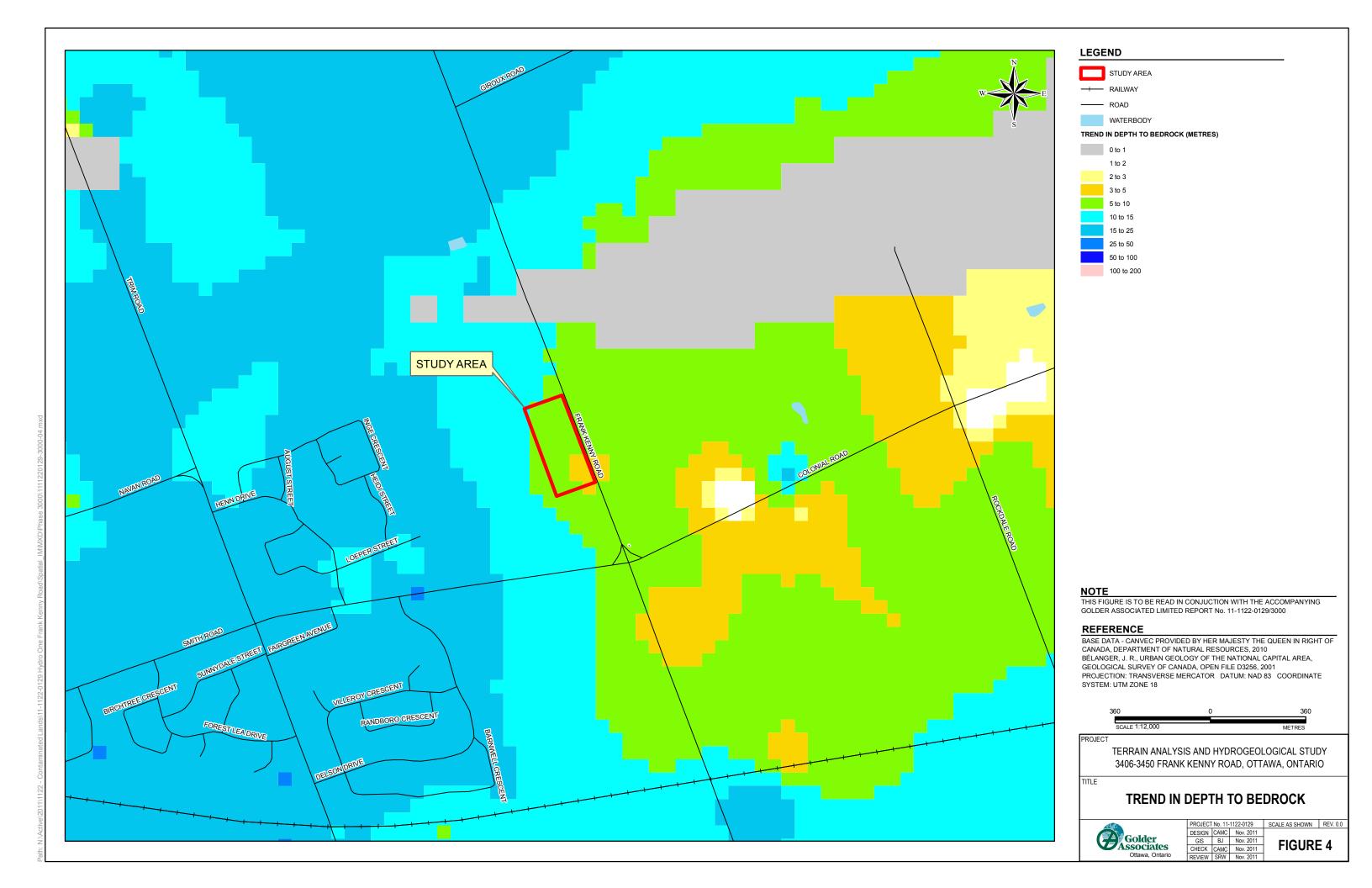
zz WATER

THIS FIGURE IS TO BE READ IN CONJUNCTION WITH THE ACCOMPANYING GOLDER ASSOCIATES LTD. REPORT No. 11-1122-0129/3000

REFERENCE

BÉLANGER, J. R., URBAN GEOLOGY OF THE NATIONAL CAPITAL AREA, GEOLOGICAL SURVEY OF CANADA, OPEN FILE D3256, 2001 PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM: UTM ZONE 18

PROJECT


TERRAIN ANALYSIS AND HYDROGEOLOGICAL STUDY 3406-3450 FRANK KENNY ROAD, OTTAWA, ONTARIO

TITLE

SURFICIAL GEOLOGY

PROJECT	Γ No. 11	-122-0129	SCALE AS SHOWN	REV. 0				
DESIGN	CAMC	Nov. 2011						
GIS	BJ	Nov. 2011	FIGURE 3					
CHECK	CAMC	Nov. 2011	FIGURE 3					
REVIEW	SRW	Nov. 2011						

LEGEND

- QUEENSTON FORMATION: RED TO LIGHT GREENISH GRAY SILTSTONE AND SHALE, WITH INTERBEDS OF SILTY BIOCLASTIC LIMESTONE IN LOWER BART
- 12 CARLSBAD FORMATION: INTERBEDDED DARK GRAY SHALE, FOSSILIFEROUS CALCAREOUS SILTSTONE, AND SILTY BIOCLASTIC LIMESTONE
- 11 BILLINGS FORMATION: DARK BROWN TO BLACK SHALE, WITH LAMINATIONS OF CALCAREOUS SILTSTONE
- 10 EASTVIEW FORMATION: INTERBEDDED SUBLITHOGRAPHIC TO FINE CRYSTALLINE LIMESTONE AND DARK BROWN TO DARK GREY SHALE

MIDDLE TO UPPER ORDOVICIAN

- 9 LINDSAY FORMATION: SUBLITHOGRAPHIC TO FINE CRYSTALLINE LIMESTONE, NODUALAR IN PART, WITH INTERBEDS OF CALCARENITE AND SHALE
- 8 VERULAM FORMATION: INTERBEDDED BIOCLASTIC LIMESTONE,
- 7 BOBCAYGEON FORMATION: INTERBEDDED SILTY DOLOMITE, LITHOGRAPHIC TO FINE CRYSTALLINE LIMESTONE, OOLITIC LIMESTONE, SHALE, AND FINE-GRAINED CALCAREOUS QUARTZ SANDSTONE
- GULL RIVER FORMATION: INTERBEDDED SILTY DOLOMITE, LITHOGRAPHIC TO FINE CRYSTALLINE LIMESTONE, OOLITIC LIMESTONE, SHALE, AND FINE-GRAINED CALCAREOUS QUARTZ SANDSTONE
- PROCKCLIFFE FORMATION: INTERBEDDED FINE-GRAINED LIGHT GREENISH GREY QUARTZ SANDSTONE, SHALEY LIMESTONE AND SHALE, LOCALLY CONGLOMERATE AT BASE, INTERBEDS OF CALCARENITE (ST. MARTIN MEMBER, 5A) AND SILTY DOLOSTONE IN LIDDED BADT

LOWER ORDOVICIAN

- 4 OXFORD FORMATION: SUBLITHOGRAPHIC TO FINE CRYSTALLINE
- 4* ALTERED FROM PUBLISHED MAPPING
- 3 MARCH FORMATION: INTERBEDDED QUARTZ SANDSTONE, SANDY DOLOSTONE, AND DOLOSTONE

CAMBRIO ORDOVICIAN

- 2 NEPEAN FORMATION: FINE TO COARSE GRAINED QUARTZ
- COVEY HILL FORMATION: NONCALCAREOUS FELDSPATHIC, FINE TO COARSE GRAINED QUARTZ SANDSTONE AND QUARTZ PEBBLE CONGLOMERATE

UNCONFORMITY

RECAMBRIAN


PC UNDIFFERENTIATED METAMORPHIC AND IGNEOUS ROCKS

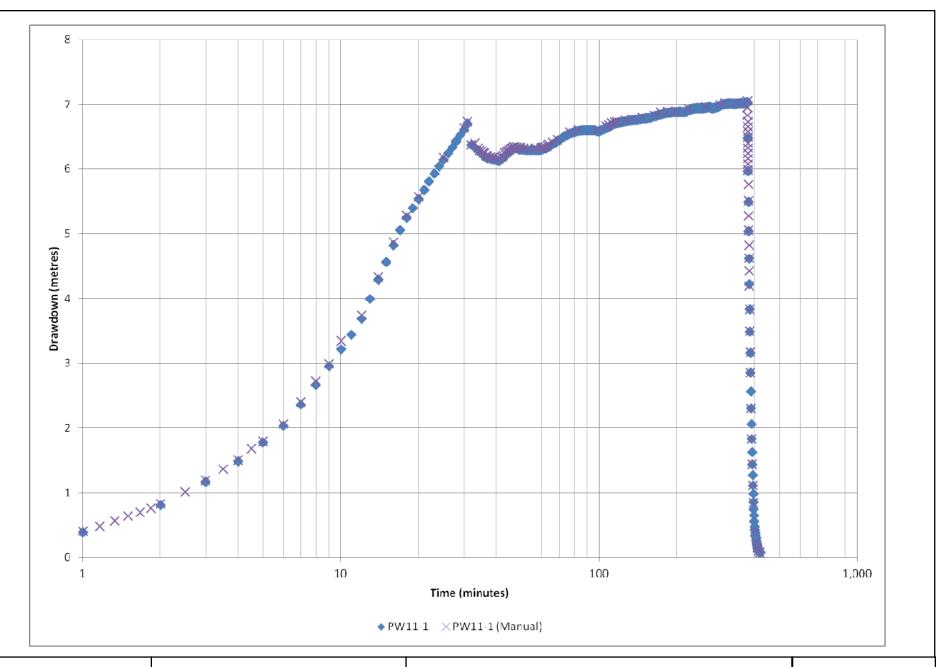
NOTE

THIS FIGURE IS TO BE READ IN CONJUNCTION WITH THE ACCOMPANYING GOLDER ASSOCIATES LTD. REPORT No. 11-1122-0129/3000

REFERENCE

BÉLANGER, J. R., URBAN GEOLOGY OF THE NATIONAL CAPITAL AREA, GEOLOGICAL SURVEY OF CANADA, OPEN FILE D3256, 2001 PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM: UTM ZONE 18

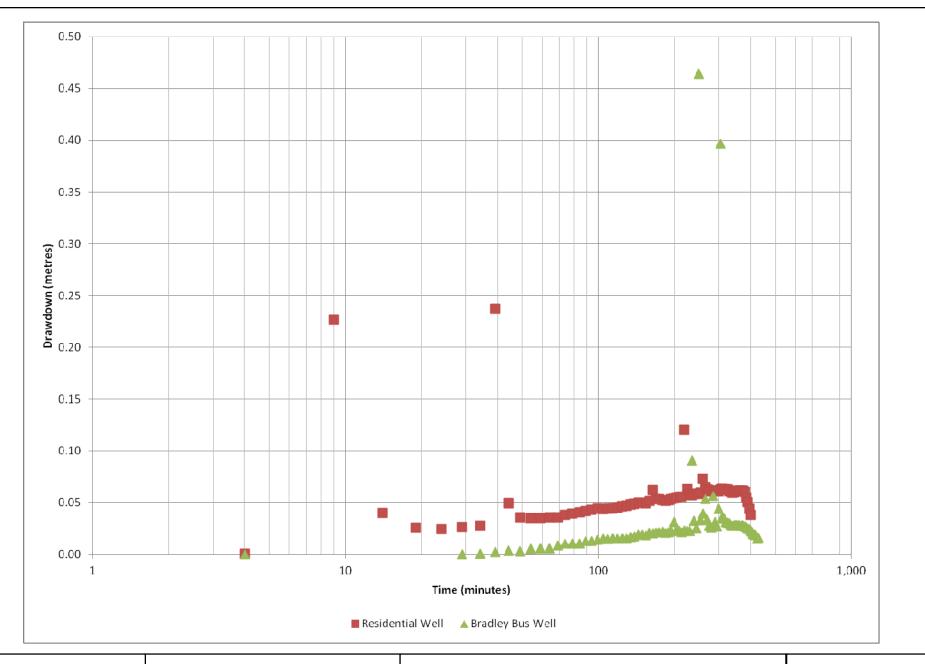
PROJECT


TERRAIN ANALYSIS AND HYDROGEOLOGICAL STUDY 3406-3450 FRANK KENNY ROAD, OTTAWA, ONTARIO

TITLE

BEDROCK GEOLOGY

PROJECT	No. 11	-1122-0129	SCALE AS SHOWN	REV. 0				
DESIGN	CAMC	Nov. 2011						
GIS	BJ	Nov. 2011	FIGURE 5					
CHECK	CAMC	Nov. 2011	FIGURE	- J				
REVIEW	SRW	Nov. 2011						



Date: November 2011 Drawn: DH
Project: 11-1122-0129 Chkd: CAMC

GROUNDWATER LEVEL DRAWDOWN PW11-1

FIGURE 6

Date: November 2011 Drawn: DH
Project: 11-1122-0129 Chkd: CAMC

GROUNDWATER LEVEL DRAWDOWN BRADLEY BUS WELL AND RESIDENTIAL WELL

FIGURE 7

APPENDIX A

Water Well Record, Bradley Bus Well

The Ontario Water Resources Act WATER WELL RECORD

Ontariò'	I, PRINT ONLY IN S								
COUNTY OR DISTRICT	ż. CHECK 🗵 CORRE	TOWNSHIP, BOROUGH, CITY,	TOWN, VILLAGE			CON BLOCK, TRACT.	SURVEY ETC		101
OWNER ISURNAME FIR	CARLETON	CUMARRI	9110			PART	9 1 10	2 Con	<u></u>
OWNER ISURNAME FIR	ST)	CUM A FRI				7	DAT	V ST HO]	y* 3/
DALOUS	BUS JAKE		r, n				, 5%		
	LO	G OF OVERBURDEN	. 3270	300	KMATERIA		***	, 0	SPTH - FEET
GENERAL COLOUR	COMMON MATERIAL	OTHER MATE	RIALS		_	GENERAL DESCRIPTI		FROM	10
BROWN	CLAY							- 0	19
BLACK	HARD PAN	BOUL DER	3						3/
BLACK	316112							31	
				č					
	33								
		0.00	*					æ	
WA"	TER RECORD	CASING & C	PEN HOL			Z ISLOT NO I		DIAM(TER	LENGTH
WATER FOUND AT - FEET	KIND OF WATER	INSIDE MATERIAL	THICKNESS INCHIS	PRA	PTH - FILT	MATERIAL AND TYPE		DEFIT TO	107
	FRESH SULPHUR OMINERALS OGAS	DETELL				Š			rees
	FRESH DSULPHUR	G CONCRETE DOPEN HOLE DPLASTIC	1.45	0	3'	PLUG	GING &	SEALING RE	CORD
1	FRESH USULPHUR	OSTEEL DGALVANIZED				DEPTH SET AT TEET	MATER		CLMENT GROUT
	SALTY GAS	OCONCRETE DOPEN HOLE DOPEN HOLE				4 20	16	1517 G	20UT
	SALTY OGAS	DSTEEL DGALVANIZED					1 2		
	J FRESH DSOLPHUR DMINERALS DGAS	O CONCRETE DOPEN HOLE DPLASTIC							
PUMPING TEST ME	THOD PUMPING RATE	DURATION OF PU	HPING			LOCATIO	N OF V	NELL	
□ FUMF	D BAILER	19 CPHHOUT	20.	14	IN DI	AGRAM BELOW SHOW DIS	TANCES OF	WELL FROM RO	AO ANO
STATIC LEVEL	END OF WATER L	EVELS DURING . ()	PUMPING RECOVERY		LOY				
TEST	1 28 FEET 25 PE		1	-			A .(-	.	
TECOMMENDED AL	PEMP INTAKE	SET AT HATER AT END O	F TEST		1		4-) C = 1 1
NECOMMENDED AL	GPH RECOMMENDED	35 ILLI CI CLEAR	−.	ĭ	1		1-0	eanik 1	a D
D SHALLOW	W DEEP SETTING	35 reet PATE	10 "				15r		to angle
				۱)	ซึ่ เ			
FINAL	OBSERVATION WEL			Y	-	, Aac		W	
OF WELL	☐ TEST HOLE ☐ RECHARGE WELL	O DEWATERING			Jan	- 3/4" =>			
	○ DOMESTIC □ STOCK	O MUNICIPAL			NA	- //			_
USE	☐ IRRIGATION ☐ INDUSTRIAL	COOLING OR AIR CONDI			100	E 3/4 MILE >			
	OOTHER		usco						
METHOD	CABLE TOOL O ROTARY (CONVEN								1545 - Scored - NOSA - 4286 - 5560 - 1
OF CONSTRUCTI		D DRIVING			*				67193
	AIR PERCUSSION	Diegine	OTHER		DRILLERS REMAR	KS .			
NAME OF WELL	A Marie	WELL LIGEN	CONTRACTOR	. 5	ONLY				
ADDRESS		7	-	7	ш	*		• • • • • • • • • • • • • • • • • • •	
HAME OF WE	LL TECHNICIAN TO MA		TECHNICIAN	3	Sn				
SONTATURE OF WE NAME OF WE	F TECHNICIAN/CONTRACTOR	CUEMISSION DATE	0789	4	OFFICE				
Maria	Lucy	DAYNO /	vr/	4	9				and the state of t
OWNER'S	COFY 74	04-5710		- 9				FORM NO. O	506 (11/86) FÖRM

APPENDIX B

Records of Boreholes BH11-3, BH11-4, BH11-5, BH11-6 and BH11-7 and Test Pits TP11-1, TP11-2, TP11-3 and TP11-4

LIST OF ABBREVIATIONS

The abbreviations commonly employed on Records of Boreholes, on figures and in the text of the report are as follows:

I.	SAMPLE TYPE	III.	SOIL DESCRIPTION	
AS	Auger sample		(a)	Cohesionless Soils
BS	Block sample			
CS	Chunk sample	Density In		N
DO	Drive open	(Relative I	Density)	Blows/300 mm
DS	Denison type sample			Or Blows/ft.
FS	Foil sample	Very loose		0 to 4
RC	Rock core	Loose		4 to 10
SC	Soil core	Compact		10 to 30
ST	Slotted tube	Dense		30 to 50
TO	Thin-walled, open	Very dense		over 50
TP	Thin-walled, piston		(1.)	Calarda Calla
WS	Wash sample	a • •	(b)	Cohesive Soils
DT	Dual Tube sample	Consistenc	Y	C_u or S_u
II.	PENETRATION RESISTANCE		<u>Kpa</u>	<u>Psf</u>
		Very soft	0 to 12	0 to 250
Standard	Penetration Resistance (SPT), N:	Soft	12 to 25	250 to 500
	The number of blows by a 63.5 kg. (140 lb.)	Firm	25 to 50	500 to 1,000
	hammer dropped 760 mm (30 in.) required	Stiff	50 to 100	1,000 to 2,000
	to drive a 50 mm (2 in.) drive open	Very stiff	100 to 200	2,000 to 4,000
	Sampler for a distance of 300 mm (12 in.)	Hard	Over 200	Over 4,000
	DD- Diamond Drilling			
Dynamic	Penetration Resistance; N _d :	IV.	SOIL TESTS	
	The number of blows by a 63.5 kg (140 lb.)			
	hammer dropped 760 mm (30 in.) to drive	W	water content	
	Uncased a 50 mm (2 in.) diameter, 60^0 cone	W_p	plastic limited	
	attached to "A" size drill rods for a distance	\mathbf{w}_1	liquid limit	
	of 300 mm (12 in.).	C	consolidaiton (oedometer)	
		CHEM	chemical analysis (refer to	
PH:	Sampler advanced by hydraulic pressure	CID	consolidated isotropically	
PM:	Sampler advanced by manual pressure	CIU	consolidated isotropically	
WH:	Sampler advanced by static weight of hammer		with porewater pressure m	
WR:	Sampler advanced by weight of sampler and	D_R	relative density (specific g	ravity, G _s)
	rod	DS	direct shear test	
		M	sieve analysis for particle	
Peizo-Co	ne Penetration Test (CPT):	MH	combined sieve and hydro	
	An electronic cone penetrometer with	MPC	modified Proctor compacti	
	a 60° conical tip and a projected end area	SPC	standard Proctor compaction	on test
	of 10 cm ² pushed through ground	OC	organic content test	
	at a penetration rate of 2 cm/s. Measurements	SO_4	concentration of water-sol	
	of tip resistance (Q_t) , porewater pressure	UC	unconfined compression to	
	(PWP) and friction along a sleeve are recorded	UU	unconsolidated undrained	
	Electronically at 25 mm penetration intervals.	V	field vane test (LV-laborat	cory vane test)
		γ	unit weight	

Note:

1. Tests which are anisotropically consolidated prior shear are shown as CAD, CAU.

LIST OF SYMBOLS

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL		(a) Index Properties (cont'd.)
π	= 3.1416	w	water content
ln x, natural lo	garithm of x	\mathbf{w}_1	liquid limit
	logarithm of x to base 10	W_p	plastic limit
g	Acceleration due to gravity	I_p	plasticity Index=(w ₁ -w _p)
t	time	$\mathbf{w}_{\mathbf{s}}$	shrinkage limit
F	factor of safety	${ m I_L}$	liquidity index= $(w-w_p)/I_p$
V	volume	I_c	consistency index= $(w_1-w)/I_p$
W	weight	e_{max}	void ratio in loosest state
		e_{min}	void ratio in densest state
II.	STRESS AND STRAIN	I_D	density index- $(e_{max}-e)/(e_{max}-e_{min})$ (formerly relative density)
γ	shear strain		
$\Delta _{arepsilon}$	change in, e.g. in stress: $\Delta \sigma'$ linear strain		(b) Hydraulic Properties
$\varepsilon_{ m v}$	volumetric strain	h	hydraulic head or potential
η	coefficient of viscosity	q	rate of flow
ν	Poisson's ratio	v	velocity of flow
σ	total stress	i	hydraulic gradient
σ'	effective stress ($\sigma' = \sigma''$ -u)	k	hydraulic conductivity (coefficient of permeability)
σ'_{vo}	initial effective overburden stress	j	seepage force per unit volume
$\sigma_1\sigma_2\sigma_3$	principal stresses (major, intermediate,		
	minor)		(c) Consolidation (one-dimensional)
$\sigma_{ m oct}$	mean stress or octahedral stress		
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	C_{c}	compression index (normally consolidated range)
τ	shear stress	C_{r}	recompression index (overconsolidated range)
u	porewater pressure	$C_{\rm s}$	swelling index
E	modulus of deformation	C_a	coefficient of secondary consolidation
G	shear modulus of deformation	$m_{\rm v}$	coefficient of volume change
K	bulk modulus of compressibility	c_{v}	coefficient of consolidation
	~~~	$T_{v}$	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		$\sigma'_p$	pre-consolidation pressure
	(a) Index Properties	OCR	Overconsolidation ratio= $\sigma'_p/\sigma'_{vo}$
ρ(γ)	bulk density (bulk unit weight*)		(d) Shear Strength
$\rho_{\rm d}(\gamma_{\rm d})$	dry density (dry unit weight)		
$\rho_{\rm w}(\gamma_{ m w})$	density (unit weight) of water	$\tau_p \tau_r$	peak and residual shear strength
$\rho_s(\gamma_s)$	density (unit weight) of solid particles	φ'	effective angle of internal friction
γ'	unit weight of submerged soil $(\gamma'=\gamma-\gamma_w)$	δ	angle of interface friction
$D_R$	relative density (specific gravity) of	μ	coefficient of friction= $\tan \delta$
	solid particles ( $D_R = p_s/p_w$ ) formerly ( $G_s$ )	c'	effective cohesion
e	void ratio	$c_{u,s_u}$	undrained shear strength (φ=0 analysis)
n	porosity	p	mean total stress $(\sigma_1 + \sigma_3)/2$
S	degree of saturation	p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
		q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma_3)/2$
*	Density symbol is p. Unit weight	$q_{\rm u}$	compressive strength $(\sigma_1$ - $\sigma_3)$
	symbol is $\gamma$ where $\gamma$ =pg(i.e. mass	$S_{t}$	sensitivity
	density x acceleration due to gravity)		
			Notes: 1. $\tau = c'\sigma' \tan \beta'$
			2. Shear strength=(Compressive strength)/2

#### RECORD OF BOREHOLE: 11-1

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: See Site Plan

BORING DATE: October 31, 2011

∐ - - - -	НОБ	SOIL PROFILE	1.		SA	MPLE		DYNAMI RESISTA	C PEN ANCE,	ETRA1 BLOW	TON S/0.3m	λ,	HYDR	AULIC C k, cm/s	ONDUC	ΓΙVITY,		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	SHEAR S		IO NGTH	nat V.	80 + Q - ● ⊕ U - ○	W	ATER C	ONTEN		10 ⁻³ ENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
j _	BORI		STRA	DEPTH (m)	Š	<u>-</u>	BLOV	Сu, кРа 20		10	rem v.	⊕ U-O 80	VV		→W 40 (	60	<b>-I</b> WI 80	LAE	
0		GROUND SURFACE	· · ·	86.36															
		Dark brown silty fine sand, trace organic matter (FILL)	/‱	0.00 0.08 86.05		50													
		Loose brown fine sand (FILL)  Very stiff to stiff brown to grey brown		0.31	1	50 DO	6												
		Very stiff to stiff brown to grey brown SILTY CLAY (Weathered Crust)																	
1					2	50 DO	12							0					
					3	50 DO	5								0				
2																			
					4	50 DO	3												
3	(mets	Firm grey SILTY CLAY		83.31 3.05															
	Power Auger	g. o, o.z o.z			5	50 DO	1							l _⊢			<del>-</del>		
	wer Au					DO								,					
	P. P.																		
4	200							Φ	+										
								Φ	+										
5					6	50 DO	WH												
								₽	+										
								Φ		+									
6								Ψ		_									
					7	50 DO	wн										9		
-				79.40															
7		End of Borehole		6.96															
8																			
9																			
10																			
		SCALE							G Ass										GGED: HEC

#### RECORD OF BOREHOLE: 11-2

SHEET 1 OF 1

BORING DATE: October 31, 2011 LOCATION: See Site Plan DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

щ		Q	SOIL PROFILE			SA	.MPL	ES	DYNAMIC PE RESISTANC	ENETRAT E, BLOWS	ION S/0.3m	7	HYDRA	AULIC C k, cm/s	ONDUC	ΓΙVITY,		٥٦	PIEZOMETER
DEPTH SCALE METRES		BORING METHOD		STRATA PLOT	ELEV.	3ER	Щ	/0.3m	20			30	10	) ⁻⁶ 1		0-4 1	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
DEPT		SORING	DESCRIPTION	TRATA	DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR STR Cu, kPa				Wp	·—	O ^W		WI	ADD LAB.	INSTALLATION
	t		GROUND SURFACE	.S	85.78			-	20	40	60 8	30	2	0 4	10 6	50	80		
- o	<b> </b>	$\prod$	TOPSOIL  Very stiff to stiff grey brown SII TY CLAY		0.00														
- - -		Ê	Very stiff to stiff grey brown SILTY CLAY (Weathered Crust)			1	50 DO	12											=
_	ē	200 mm Diam. (Hollow Stem)																	-
- - 1	Power Auger	am. (Ho				2	50 DO	7											=
_	P	mm Dia																	=
-		200				3	50 DO	4											=
[ - ,					83.80		DO												-
— 2 - -			End of Borehole		1.98														
- - 3																			
<u>-</u> -																			1
- - 4																			
-																			1
_																			=
_																			-
<u> </u>																			=
_																			=
_																			
_ 																			=
_																			-
																			1
																			1
— 7 - -																			-
-																			
- - 8																			-
_																			]
_																			]
_ _ 9																			
۔ ا																			
																			]
_ 10																			-
	1_				<u> </u>										L			1	
			CALE					(		olde soci	r								DGGED: HEC ECKED: SD
	: 50								AS	SUCI:	<u>aics</u>							СП	LUNED. JU

MIS-BHS 001 1111220129.GPJ GAL-MIS.GDT 1/12/12 JEM

#### RECORD OF BOREHOLE: 11-3

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: See Site Plan

BORING DATE: November 1, 2011

,	ДQ	SOIL PROFILE			SAM	PLES	DYNA RESIS	MIC PEN STANCE,	BLOWS	ION S/0.3m		HYDRAULIC k, cr	CONDUC n/s	TIVITY,		교	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT	E. E. /	띪.	J.3m	2		1	1	80	10 ⁻⁶			10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
MET	SING	DESCRIPTION	ATA	ELEV. DEPTH	NUMBER	BLOWS/0.3m	SHEA Cu, kF	R STREI Pa	NGTH	nat V. + rem V. €	Q - • U - O		CONTEN			AB. TI	INSTALLATION
i	BOF		STR	(m)	ž	BLC					80	Wp <b></b> 20			WI 80	~ _	
0		GROUND SURFACE		85.48													
U		TOPSOIL		0.00													
		Very stiff to stiff grey brown SILTY CLAY (Weathered Crust)		0.13													
1					1 0	iO 5							0				
				-													
				ŀ													
					2 5	i0 2									b		
																	Native Backfill
2																	
	á				٦	50 .								,			
	a   8				3 5	1	1		1						1		
	Power Auger			82.58	$\dashv$		1		1								
3	Powe	Firm grey SILTY CLAY		2.90													
	1 000				4 5	io WH	1					+			101		
	6	Į					1										
							L										
				04 10			⊕	+									Bentonite Seal
4		Compact to dense dark grey to black		81.42 4.06													Bornorino Godi
		Compact to dense dark grey to black SILTY SAND, some gravel, with shale fragments, cobbles, and boulders															Silica Sand
		(GLACIAL TILL)			_												Standpipe :
					5 0	iO 17											
5				ŀ													
					6 5	iO 38											W.L. in Standning
				79.84	1	0											W.L. in Standpipe at Elev. 84.38 m on Nov. 14, 2011
		End of Borehole	אאאא	5.64			1										
6																	
7																	
							1										
							1										
8																	
							1										
							1										
_							1										
9							1										
							1										
							1										
10							1										
							<u> </u>										
							-3.	4									

SAMPLER HAMMER, 64kg; DROP, 760mm

#### RECORD OF BOREHOLE: 11-3A

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: See Site Plan

BORING DATE: November 2, 2011

Y FE	1 의	SOIL PROFILE	L		SAN			DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	₽₽	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT  Wp   W   W	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
נ	BO		STR	(m)	z		BE	20 40 60 80	20 40 60 80		
0		GROUND SURFACE TOPSOIL	    EE=	85.48 0.00	$\downarrow$	$\perp$	$\downarrow$			++	
1		Very stiff to stiff grey brown SILTY CLAY (Weathered Crust)		0.15							
2	Power Auger 200 mm Diam. (Hollow Stem)	Firm grey SILTY CLAY		82.74 2.74	1 .	73 TP	РН				
					2	73 TP F	PH				
					_	"					
4					3 1	50 DO	VН				
				80.73							
_		Compact dark grey to black SILTY SAND, with shale fragments (GLACIAL		4.75	4	50 DO	6				
5		TILL) End of Borehole	PAXA.	80.43 5.05							
		Note: Shallow portion of stratigraphy inferred from BH 11-3									
		inferred from BH 11-3									
6											
7											
8											
0											
9											
10											
							_				
DE	ртц (	SCALE						Golder Associates		1.00	GED: HEC

LOCATION: See Site Plan

MIS-BHS 001 1111220129.GPJ GAL-MIS.GDT 1/12/12 JEM

#### RECORD OF BOREHOLE: 11-4

SHEET 1 OF 1 BORING DATE: November 2, 2011 DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

SA	IVIPL	LER HAMMER, 64kg; DROP, 760mm												PEI	NETRA	TION TE	ST HAI	MMER,	64kg; DROP, 760mm
э-	QQ	SOIL PROFILE			SA	MPL	ES	DYNAMIC RESISTA	PENETR NCE, BLO	ATION	N .3m	/	HYDRA	AULIC Co k, cm/s	ONDUCT	IVITY,		G G	DIEZOMETED
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT		H.		.3m	20	40	60	8	0	10	) ⁻⁶ 1	O ⁻⁵ 10	0 ⁻⁴ 1	0 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR
PTH	SING	DESCRIPTION	ATA P	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR S Cu, kPa	TRENGTH	l na	t V. + n V. ⊕	Q - • U - O		ATER C	ONTENT	PERCE		B. TE	STANDPIPE INSTALLATION
DE	BOF		STR/	(m)	ž	ľ	BLO	20	40	60			Wp 2		0 6		WI 30	4 4	
— o		GROUND SURFACE		85.90						Ĭ									
- "		Dark brown clayey topsoil (FILL)  Grey crushed stone (FILL)	***************************************	0.00 0.15															-
Ε		Grey brown SILTY CLAY (Disturbed)																	-
Ē																			=
-					1	50 DO	6												-
— 1 -				84.68		БО													-
Ē		Stiff grey brown SILTY CLAY (Weathered Crust)		1.22															=
-		(Viculiared Grast)			2	50 DO	,												=
Ē		Stem.)				DO	3	Φ	+							'	<b>D</b>		=
2 _	ger	s wollo						⊕			+								_
Ε	Power Auger	) (子)				50		⊕			+								-
Ē	Po	Compact dark grey to black SILTY SAND, with shale fragments, cobbles,		83.36 2.54	3	50 DO	16										1		]
ļ.		SAND, with shale fragments, cobbles, and boulders (GLACIAL TILL)		2.04	_														- -
_ _ 3		and boulders (GLACIAL TILL)				1													-
Ė					4	50 DO	12												-
Ė						-													=
-																			=
- - 4					5	50 DO	16												-
-				81.63															-
		Highly weathered black SHALE BEDROCK		4.27 81.38	6	50 DO	>50												-
-		End of Borehole Sampler Refusal		4.52															= =
- - 5		·																	
-																			-
-																			-
																			=
-																			=
— 6 -																			-
_																			-
-																			- -
E																			=
— 7 -																			=
Ē																			=
ļ.																			-
Ė																			= = = = = = = = = = = = = = = = = = = =
- 8																			
<u> </u>																			=
E																			]
ļ.																			=
- - 9																			=
Ė																			
<b>-</b>																			=
E																			]
- 10																			-
L	L																		
	ידם	LOCALE																	OCCED: LIEC
		H SCALE					(	Ð.	Gold	ler									OGGED: HEC
1:	JU							A	<u> </u>	JAI	<u>es</u>							CHI	ECKED: SD

LOCATION: See Site Plan

#### RECORD OF BOREHOLE: 11-5

BORING DATE: November 1, 2011

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

DATUM: Geodetic

Щ	HOD	SOIL PROFILE		_	SAM	PLES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	BI OWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT  Wp   OW   WI	PIEZOMETER OR STANDPIPE INSTALLATION
	BK	CDOLIND SUBFACE	STI		+	<u> </u>	20 40 60 80	20 40 60 80	
0	$\top$	GROUND SURFACE TOPSOIL	ESS	85.64 0.00	+	+			<b>─</b>
		Very stiff to stiff grey brown SILTY CLAY (Weathered Crust)		0.15	1 5	60 9		0	
1					2 5	i0 7			
	er Iow Stem)				3 5	50 2			Native Backfill
2	Power Auger 200 mm Diam. (Hollow Stem)	Compact dark grey to black SILTY SAND, some gravel, with cobbles.		83.51 2.13					
	200 m	SAND, some gravel, with cobbles, boulders, and shale fragments (GLACIAL TILL)			4 5	iO 11			
3					5 5	50 16			Bentonite Seal Silica Sand
		Highly weathered black SHALE		81.83 3.81		50 >5			Standpipe
4	$\perp$	BEDROCK End of Borehole	===	81.58 4.06	° c	0 2			
6									
7									
8									
9									
10							Golder		

#### RECORD OF BOREHOLE: 11-6

SHEET 1 OF 1

CHECKED: SD

LOCATION: See Site Plan

1:50

BORING DATE: November 1, 2011

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT BLOWS/0.3m STANDPIPE INSTALLATION NUMBER ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH OW. Wp -(m) GROUND SURFACE 85.44 TOPSOIL 0.00 Very stiff to stiff brown SILTY CLAY 0.15 (Weathered Crust) 50 DO 50 DO 2 2 50 DO 7 3 82.70 2.74 Compact dark grey to black SILTY SAND, with shale fragments (GLACIAL TILL) 3.05 Highly weathered black SHALE BEDROCK 50 DO 21 81.78 End of Borehole MIS-BHS 001 1111220129.GPJ GAL-MIS.GDT 1/12/12 JEM 9 10 DEPTH SCALE LOGGED: HEC Golder

LOCATION: See Site Plan

#### RECORD OF BOREHOLE: 11-7

SHEET 1 OF 1 BORING DATE: November 1, 2011 DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

S	THOD	SOIL PROFILE	<u> </u>	1		MPLE	_	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	,	HYDRAULIC CONDUCTIVITY, k, cm/s	AAL ING	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 5 SHEAR STRENGTH nat V. + rem V. €	Q - • U - O	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT  Wp   ———————————————————————————————————	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		GROUND SURFACE	S				В	20 40 60	0	20 40 60 80	+	
0	Т	TOPSOIL		85.42 0.00								
1		Very stiff to stiff grey brown SILTY CLAY (Weathered Crust)		0.15	1	50 DO	5					
2	Stem)	Conservated and a resource bloods CN TV		83.44 1.98	2	50 DO	2					
	Power Auger 200 mm Diam. (Hollow Stem)	Compact dark grey to black SILTY SAND, with shale fragments, cobbles, and boulders (GLACIAL TILL)		1.96	3	50 DO	16					
3	200			81.91 3.51	4	50 DO	17					
4		Highly weathered SHALE BEDROCK		3.51	5	50 DO	20					
				1	6	50 DO	>50					
		End of Borehole		80.70 4.72		+	$\dashv$					
6												
7												
8												
9												
10 DE	PTH (	SCALE						<b>Golder</b> Associates			LO	GGED: HEC

#### RECORD OF BOREHOLE: MW11-1

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: See Site Plan

BORING DATE: October 31, 2011

ا ب	OD.	SOIL PROFILE			SAI	MPLES	3   5	DYNAMIC RESISTA	PENI NCF	ETRATI BLOWS	ON 3/0.3m	1	HYDRAU k	LIC CON , cm/s	DUCT	IVITY,		יט,	
METRES	BORING METHOD		TO.		~	1		20	4		60	80	10-6	10 ⁻⁵	10		0-3	ADDITIONAL LAB. TESTING	PIEZOMETER OR
#   E	₹ E	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	5 S					H Q- ● H U- O	WAT	ER CON	TENT	PERCE		1 <u>E</u> E	STANDPIPE INSTALLATION
	ORIN	BEGGIN HOIV	RAT	DEPTH (m)	Š	<u>}</u>   ₹	5 0	Cu, kPa			rem V. 6	Ð U- O	Wp F		OW		WI	ADI	INSTALLATION
	ă		ST	(m)		0	Ĭ	20	4	0	60	80	20	40	60		80		
0		GROUND SURFACE		85.96															
Ī		Grey crushed stone (FILL)	$\otimes$	0.00															Gravel
			$\otimes$	3	1	50 DO 2	2												
			-	85.35															
		Very stiff to stiff grey brown SILTY CLAY (Weathered Crust)		0.61															Bentonite Seal
1		(Troubles Grading			2	50 DO	3												
																			$\nabla$
	(E)																		Silica Sand
	ĭ S S S S				3	50 DO	5												
	Auge (Holl																		
2	ower Diam.																		
-	Power Auger 200 mm Diam. (Hollow Stem)				4	50 DO 4	1												l lâ
	200	L		83.52															
		Firm grey SILTY CLAY		2.44	Ī												1		51 mm Diam. PVC #10 Slot Screen
					5	50 DO	1										1		77.10 GIOL GUIGEII
3																	1		
					Ī												1		
					6	50 DO	1										1		
	$\perp$			82.30															
		End of Borehole		3.66	Ī												1		
4																	1		W.L. in Screen at Elev. 84.77 m on
																	1		November 4, 2011
																	1		
																	1		
																	1		
5																	1		
																	1		
																	1		
																	1		
																	1		
6																			
																	1		
																	1		
																	1		
																	1		
7																			
8																	1		
																	1		
																	1		
																	1		
_																	1		
9																	1		
																	1		
																	1		
																	1		
10																	1		
IU																	1		
			1									1					1	I	
							_	1											

## TABLE 1 RECORD OF TEST PITS

Test Pit Number (Elevation)	<u>Depth</u> (metres)	<u>Description</u>
11-1	0.00 - 0.15	TOPSOIL
(85.74 metres)	0.15 - 2.00	Grey brown SILTY CLAY (Weathered Crust)
	2.00	END OF TEST PIT
		Note: Groundwater seepage at 2.00 metres depth
		Sample Depth (m) 1 1.00
11-2	0.00 - 0.15	TOPSOIL
(85.72 metres)	0.15 - 1.00	Grey brown SILTY CLAY (Weathered Crust)
	1.00 – 2.40	Grey brown SILTY SAND, some gravel and clay, with cobbles and boulders (GLACIAL TILL)
	2.40	END OF TEST PIT
		Note: Groundwater seepage at 2.00 metres depth
		Sample Depth (m) 1 2.00
11-3	0.00 - 0.15	TOPSOIL
(85.90 metres)	0.15 - 2.00	Grey brown SILTY CLAY (Weathered Crust)
	2.00	END OF TEST PIT
		Note: Groundwater seepage at 2.00 metres depth
11-4	0.00 - 0.15	TOPSOIL
(85.08 metres)	0.15 – 1.60	Grey brown SILTY CLAY (Weathered Crust)
	1.60	END OF TEST PIT
		Note: Groundwater seepage at 1.50 metres depth
		Sample         Depth (m)           1         0.50           2         1.00

November 2011 11-1122-0129



## **APPENDIX C**

**Ontario Building Code Tables (Sewage Systems)** 



(4) Where an *occupancy* is not listed in Table 8.2.1.3.B., the highest of metered flow data from at least 3 similar establishments shall be acceptable for determining total daily design *sanitary sewage* flow.

## Table 8.2.1.3.A. Residential Occupancy Forming Part of Sentence 8.2.1.3.(1)

Residential Occupancy	Volume, litres
Apartments, Condominiums, Other Multi-family Dwellings - per person ⁽¹⁾	275
Boarding Houses	
(a) Per person,	
i) with meals and laundry facilities, or,	200
ii) without meal or laundry facilities, and	150
(b) Per non-resident staff per 8 hour shift	40
Boarding School - per person	300
Dwellings	·
(a) 1 bedroom dwelling	750
(b) 2 bedroom dwelling	1100
(c) 3 bedroom dwelling	1600
(d) 4 bedroom dwelling	2000
(e) 5 bedroom dwelling	2500
(f) Additional flow for ⁽²⁾	
i) each bedroom over 5,	500
ii) A) each 10 m² (or part of it) over 200 m² up to 400 m² (3),	100
B) each 10 m² (or part of it) over 400 m² up to 600 m² (3), and	75
C) each 10 m² (or part of it) over 600 m² (3), or	50
iii) each fixture unit over 20 fixture units	50
lotels and Motels (excluding bars and restaurants)	
(a) Regular, per room	250
(b) Resort hotel, cottage, per person	500
(c) Self service laundry, add per machine	2500
ork Camp/Construction Camp, semi-permanent per worker	250
Column 1	2

#### Notes to Table 8.2.1.3.A.:

- (1) The occupant load shall be calculated using Subsection 3.1.17.
- (2) Where multiple calculations of sewage volume is permitted the calculation resulting the highest flow shall be used in determining the design daily sanitary sewage flow.
- (3) Total finished area, excluding the area of the finished basement.



## Table 8.2.1.3.B. Other Occupancies Forming Part of Sentence 8.2.1.3.(2)

Establishments ⁽¹⁾	Volume, litres
Airports, Bus Terminals, Train Stations, Dock/Port Facilities (Food Services excluded)	
(a) Per passenger, and	20
(b) Per employee per 8 hour shift	40
Assembly Hall - per seat	
(a) No food service, or	8
(b) Food service provided	36
Barber Shop/Beauty Salon - per service chair	650
Bowling Alleys (Food Service not included) - per lane	400
Churches and Similar Places of Worship - per seat	
(a) No kitchen facilities, or	8
(b) Kitchen facilities provided	36
Country Club (excluding Food Service)	
(a) Per resident,	375
(b) Per employee per 8 hour shift, and	50
(c) Per member or patron	40
Day Care Facility per person (staff and children)	75
Dentist Office	
(a) Per wet service chair, and	275
(b) Per dry service chair	190
Doctors Office	
(a) Per practitioner, and	275
(b) Per employee per 8 hour shift	75
Factory (excluding process or cleaning waters) - per employee per 8 hour shift	
(a) No showers, or	75
(b) Including showers	125
Flea Markets ⁽²⁾ (open not more than 3 days per week)	
(a) Per non-food service vendor space,	60
(b) Per food service establishment / 9.25 m ² of floor space, and	190
(c) Per limited food service outlet	95
Column 1	2



## Table 8.2.1.3.B. (Cont'd) Other Occupancies Forming Part of Sentence 8.2.1.3.(2)

Establishments(1) Volume, litres Food Service Operations (a) Restaurant (not 24 hour), per seat 125 (b) Restaurant (24 hour), per seat 200 (c) Restaurant on controlled access highway, per seat 400 (d) Paper service restaurant, per seat 60 (e) Donut shop, per seat 400 (f) Bar and cocktail lounge, per seat 125 (g) Drive-in restaurant per parking space 60 (h) Take-out restaurant (no seating area) i) per 9.25 m² of floor area, and 190 ii) per employee per 8 hour shift 75 (i) Cafeteria - per meal 12 (i) Food outlet i) excluding delicatessen, bakery and meat department, per 9.25 m² of floor space, 40 ii) per 9.25 m² of delicatessen floor space 190 iii) per 9.25 m² of bakery floor space 190 iv) per 9.25 m² of meat department floor space, and 380 v) per water closet 950 Hospitals - per bed (a) Including laundry facilities, or 750 (b) Excluding laundry facilities 550 Nursing Homes, Rest Homes, etc. - per bed 450 Office Building(3) (a) Per employee per 8 hour shift, or 75 (b) Per each 9.3 m² of floor space 75 Public Parks (a) With toilets only per person, or 20 (b) With bathhouse, showers, and toilets per person 50 Recreational Vehicle or Campground Park (a) Per site without water or sewer hook-up, or 275 (b) Per site with water and sewer hook-up 425 Column 1 2



## Table 8.2.1.3.B. (Cont'd) Other Occupancies Forming Part of Sentence 8.2.1.3.(2)

Establishments ⁽¹⁾	Volume, litres
Schools - per student	
(a) Day school,	30
(b) With showers,	30
(c) With cafeteria, and	30
(d) Per non-teaching employee per 8 hour shift	50
Service Stations (no vehicle washing) ⁽³⁾	
(a) Per water closet, and	950
i) per fuel outlet ⁽⁴⁾ , or	560
ii) per vehicle served	. 20
Shopping Centre (excluding food and laundry) - per 1.0 m ² of floor space	5
Stadiums, Race Tracks, Ball Parks - per seat	20
Stores ⁽³⁾	
(a) Per 1.0 m ² of floor area, or	5
(b) Per water closet	1230
Swimming and Bathing Facilities (Public) - per person	40
Theatres	
(a) Indoor, auditoriums per seat,	20
(b) Outdoor, drive-ins per space, or	40
(c) Movie theatres per seat	15
Veterinary Clinics	
(a) Per practitioner,	275
(b) Per employee per 8 hour shift, and	75
(c) Per stall, kennel, or cage if floor drain connected	75
Warehouse	
(a) Per water closet, and	950
(b) Per loading bay	150
Column 1	2

#### Notes to Table 8.2.1.3.B.:

- (1) The occupant load shall be calculated using Subsection 3.1.17.
- (2) Flea markets open more than 3 days per week shall be assessed using the volumes stated under the heading "Stores".
- (3) Where multiple calculations of sanitary sewage volume is permitted the calculation resulting in the highest flow shall be used in determining the design daily sanitary sewage flow.
- (4) The number of fuel outlets is considered the maximum number of gas nozzles that could be in use at the same time.



Table 8.2.1.6.A.

Minimum Clearances for Treatment Units
Forming Part of Sentence 8.2.1.6.(1)

Object	Minimum Clearance, m		
Structure	1.5		
Well	15		
Lake	15		
Pond	15		
Reservoir	15		
River	15		
Spring	15		
Stream	15		
Property Line	3		
Column 1	2		

(2) Except as provided in Sentences 8.2.1.4.(1) and (2), a distribution pipe shall not be located closer than the minimum horizontal distances set out in Table 8.2.1.6.B. and these distances shall be increased when required by Sentence 8.7.4.2.(9).

Table 8.2.1.6.B.

Minimum Clearances for Distribution Piping
Forming Part of Sentence 8.2.1.6.(2)

Object	Minimum Clearance, m
Structure	5
Well with a watertight casing to a depth of 6 m	15
Any other well	30
Lake	15
Pond	15
Reservoir	15
River	15
Spring not used as a source of potable water	15
Stream	15
Property Line	3
Column 1	2

⁽³⁾ Except as provided in Sentences 8.2.1.4.(1) and (2), a *holding tank* shall not be located closer than the minimum horizontal distances set out in Table 8.2.1.6.C.

#### Table 8.7.3.3.A. Septic Stone

Forming Part Of Sentence 8.7.3.3.(5)

Gradation of	Septic Stone
Particle Size	Percent Passing
53 mm	100
19 mm	0-5
75 µm	0-1
Column 1	2

#### 8.7.4. Fill Based Absorption Trenches

#### 8.7.4.1. Loading Requirements

(1) The area described in Sentence 8.7.4.2.(1) shall be designed such that the *loading rate* does not exceed, for *soil* having a *percolation time* set out in Column 1 of Table 8.7.4.1.A., the maximum value set out opposite it in Column 2 of Table 8.7.4.1.A.

Table 8.7.4.1.A.
Loading Rates for Fill Based Absorption Trenches and Filter Beds
Forming Part of Sentences 8.7.4.1.(1) and 8.7.5.2.(2)

Percolation Time (T) of Soil, min/cm	Loading Rates, (L/m²)/day
1 < T ≤ 20	10
20 < T ≤ 35	8
35 < T ≤ 50	6
T > 50	4
Column 1	2

#### 8.7.4.2. Construction Requirements (See Appendix A.)

- (1) A leaching bed comprised of absorption trenches may be constructed in leaching bed fill if unsaturated soil or leaching bed fill complying with Clause 8.7.2.1.(1)(b) extends,
- (a) to a depth of at least 250 mm over the area covered by the leaching bed fill, and
- (b) for at least 15 m beyond the outer distribution pipes in any direction in which the effluent entering the soil or leaching bed fill will move horizontally.
- (2) If the unsaturated *soil* or *leaching bed fill* described in Sentence (1) has a *percolation time* greater than 15 minutes, any *leaching bed fill* added to form the *leaching bed* shall have a *percolation time* not less than 75% of the *percolation time* of the unsaturated *soil* or *leaching bed fill*.
- (3) Leaching bed fill that does not meet the requirements of Sentence (2) may be used to form the leaching bed if,
- (a) the distance from the bottom of the absorption trench to native soil is not less than 900 mm, or
- (b) where the distance from the bottom of the absorption trench to native soil is less than 900 mm, the percolation time of the least permeable soil or leaching bed fill within 900 mm from the bottom of the absorption trench is used to calculate the length of the distribution pipe under Article 8.7.3.1.



# SB-6 Percolation Time and Soil Descriptions

#### **ESTIMATION OF PERCOLATION TIME**

- (a) The purpose of this Section and the associated Tables and Charts is to provide assistance to those who must decide on the percolation time(s) to be used in design. Suggested relationships between percolation time, coefficient of permeability and soils of various types are given. IT MUST BE EMPHASIZED THAT, PARTICULARLY FOR FINE GRAINED SOILS, THERE IS NO CONSISTENT RELATIONSHIP DUE TO THE MANY FACTORS INVOLVED. The following guidance is presented for the soil types outlined in the Unified Soil Classification System (Table 1). In order to assess a particular soil.
  - (i) Table 2 and Table 3 Approximate relationship of soil types to permeability and percolation time.
  - (ii) Charts 1 to 14 Typical grain size distribution curves for soil types in the Unified Soil Classification System.
- (b) In Table 2 and Table 3, a range of values of "K" and of "T" are given for various soil descriptions. The principal modifiers which will influence selection of a "T" value within the range given are:
  - (i) The structure "massive" fine-grained soils have high values of "T".
  - (ii) The density For a given soil higher density produces a higher value of "T".
  - (iii) The percentage of clay the higher the percentage the higher the value of "T".
  - (iv) The mineralogy of the clay portion The more it "swells" the higher the value of "T".
  - (v) The plasticity of the soil The higher the plasticity index the higher the value of "T".
  - (vi) Liquid Limit the higher the liquid limit the higher the value of "T".
  - (vii) Organic content The presence of fine organic particles, detectable by colouration and odour, can significantly reduce the permeability and raise the value of "T".

Table 1
Unified Soil Classification

	Coarse - Grained Soils	Fine - Grained Soils			
Group Symbols	Typical Names	Group Symbols	Typical Names		
GW	Well-graded gravels, gravel-sand mixtures, little or no fines	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity		
GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays		
GM	Silty gravels, gravel-sand-silt mixtures	OL	Organic silts and organic silty clays of low plasticity		
GC	Clayey gravels, gravel-sand-clay mixtures	МН	Inorganic silts, micoceous or diatomaceous fine sandy or silty soils, elastic silts		
SW	Well-graded sands, gravelly sands, little or no fines	CH	Inorganic clays of high plasticity, fat clays		
SP	Poorly-graded sands, gravelly sands, little or no fines	ОН	Organic clays of medium to high plasticity, organic silts		
SM	Silty sands, sand-silt mixtures				
SC	Clayey sands, sand-clay mixtures	PT (highly organic soils)	Peat and other highly organic soils		
Column 1	2	3	4		



Table 2
Approximate Relationship of Coarse Grained Soil Types to Permeability and Percolation Time

Soil Type (Unified Soil Classification)	Coefficient of Permeability,	Percolation Time,	Comment	
Coarse Grained More than 50% Larger than #200	K - cm/sec	T - mins/cm		
G.W Well graded gravels, gravel-sand mixtures, little or no fines.	10 ⁻¹	<1	very permeable unacceptable	
G.P Poorly graded gravels, gravel-sand mixtures, little or no fines.	10 ⁻¹	<1	very permeable unacceptable	
G.M Silty gravels, gravel-sand-silt mixtures.	10 ⁻² - 10 ⁻⁴	4 - 12	Permeable to medium permeable depending on amount of silt.	
G.C Clayey gravels, gravel-sand-clay mxtures.	10 ⁻⁴ - 10 ⁻⁶	12 - 50	Important to estimate amount of silt and clay	
S.W Well graded sands, gravelly sands little orno fines.	10 ⁻¹ - 10 ⁻⁴	2 - 12	medium permeability	
S.P Poorly graded sands, gravelly sand, little or no fines.	10 ⁻¹ - 10 ⁻³	2-8	medium permeability	
S.M Silty sands, sand-silt mixtures.	10 ⁻³ - 10 ⁻⁵	8 - 20	medium to low permeability	
S.C Clayey sands, sand-clay mixtures.	10 ⁻⁴ - 10 ⁻⁶	12 - 50	medium to low permeability depending on amount of clay	
Column 1	2	3	4	



Table 3
Approximate Relationship of Fine Grained Soil Types to Permeability and Percolation Time

	Soil Type (Unified Soil Classification)	Coefficient of Percolation Time		Comment
	Fine Grained More than 50% Passing #200	K - cm/sec	1 - Hiil 13/0iti	
M.L	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, clayey silts with slight plasticity	10 ⁻⁵ - 10 ⁻⁶	20 - 50	medium to low permeability
C.L	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	10 ⁻⁶ and less	over 50	unacceptable
O.L	Organic silts, organic silty clays of low plasticity; liquid limit less than 50	10 ^{-s} and less	20 - over 50	acceptable depends on clay content
M.H	Inorganic silts, micareaous or diatomageous fine sandy or silty soils, elastic silts	10 ⁻⁶ and less	over 50	unacceptable
C.H	Inorganic clays of medium to high plasticity, organic silts	10 ⁻⁷ and less	over 50	unacceptable
O.H	Organic clays of medium to high plasticity organic silt; liquid limit over 50	-10 ⁻⁶ and less	over 50	unacceptable
	Column 1	2	3	4

#### SELECTION OF "T" TIME FROM THE ABOVE TABULATION

A range of "T" times for each soil type is shown above. Select from within this range by determining if the soil is within the low, middle or high part of the range considering the soil identifiers and soil characteristics. Consider structure, density, colour, prevalence or organics, the clay content and mineralogy, the plasticity index and liquid limit and the functioning of existing systems in similar soils in the area.

#### Notes:

The following Ministry of the Environment Reports provide further information on the relationship between grain size, coefficient of permeability and percolation time.

- "Study on the Feasibility of Correlating Percolation Time with Laboratory Permeability" 1975 Research Report No. S56 by H. T. Chan, PhD., P.Eng.
- 2. "Study of Conventional Tile Fields in Fine-Grained Soils" 1979 Research Report 74 by H. T. Chan, PhD., P.Eng.



## **APPENDIX D**

Water Well Record, PW11-1





### **APPENDIX E**

**Raw Pumping Test Data and Transmissivity Calculations** 



Datalogger installed at 10.7 m below top of casing

Static WL 1.715 m below top of casing

nd of Test		11/7/2011 15:52				
	<u>Time</u>	<b>Pumping Rate</b>	<u>Datalogger</u>	<b>Temperature</b>	<u>Datalogger</u>	<b>Water Level</b>
Date/Time	<u>(min)</u>	<u>(L/min)</u>	Level (m)	(deg C)	Drawdown (m)	(m btoc)
11/7/2011 9:36	0	15.14	9.2122	8.385	0.00	1.71
11/7/2011 9:37	1	15.14	8.825	8.361	0.39	2.10
11/7/2011 9:38	2	15.14	8.4062	8.349	0.81	2.52
11/7/2011 9:39	3	15.14	8.038	8.343	1.17	2.88
11/7/2011 9:40	4	15.14	7.7232	8.345	1.49	3.20
11/7/2011 9:41	5	15.14	7.4403	8.354	1.77	3.48
11/7/2011 9:42	6	15.14	7.1782	8.361	2.03	3.74
11/7/2011 9:42	7	15.14	6.8541	8.386	2.36	4.07
11/7/2011 9:44	8	15.14	6.5403	8.423	2.67	4.38
11/7/2011 9:45	9	15.14	6.2556	8.474	2.96	4.67
11/7/2011 9:46	10	15.14	6.0008	8.531	3.21	4.92
11/7/2011 9:47	11	15.14	5.7696	8.592	3.44	5.15
11/7/2011 9:48	12	15.14	5.5226	8.69	3.69	5.40
11/7/2011 9:49	13	15.14	5.2192	8.764	3.99	5.70
11/7/2011 9:49	14	15.14	4.9205	8.857	4.29	6.00
11/7/2011 9:51	15	15.14	4.6517	8.956	4.56	6.27
11/7/2011 9:51	16	15.14	4.388	9.042	4.82	6.53
11/7/2011 9:52	17	15.14	4.1523	9.144	5.06	6.77
11/7/2011 9:54	18	15.14	3.9616	9.237	5.25	6.96
11/7/2011 9:55	19	15.14	3.8107	9.237	5.40	7.11
11/7/2011 9:55	20	15.14 15.14		9.27	5.40 5.53	7.11 7.24
11/7/2011 9:56	20		3.6776			
11/7/2011 9:57	21	15.14 15.14	3.5343	9.275	5.68	7.39
		15.14 15.14	3.4041	9.288	5.81	7.52
11/7/2011 9:59	23 24	15.14 15.14	3.2832	9.282	5.93	7.64
11/7/2011 10:00		15.14 15.14	3.1722	9.254	6.04	7.75
11/7/2011 10:01	25	15.14	3.0663	9.217	6.15	7.86
11/7/2011 10:02	26	15.14 15.14	2.9659	9.239	6.25	7.96
11/7/2011 10:03	27	15.14	2.8715	9.234	6.34	8.05
11/7/2011 10:04	28	15.14	2.7769	9.199	6.44	8.15
11/7/2011 10:05	29	15.14	2.691	9.21	6.52	8.23
11/7/2011 10:06	30	15.14	2.605	9.171	6.61	8.32
11/7/2011 10:07	31	15.14	2.5161	9.135	6.70	8.41
11/7/2011 10:08	32	9.46	2.8412	9.053	6.37	8.08
11/7/2011 10:09	33	9.46	2.874	8.893	6.34	8.05
11/7/2011 10:10	34	9.46	2.9246	8.804	6.29	8.00
11/7/2011 10:11	35	9.46	2.9747	8.733	6.24	7.95
11/7/2011 10:12	36	9.46	3.0168	8.682	6.20	7.91
11/7/2011 10:13	37	9.46	3.0534	8.637	6.16	7.87
11/7/2011 10:14	38	9.46	3.0633	8.62	6.15	7.86
11/7/2011 10:15	39	9.46	3.0708	8.596	6.14	7.85
11/7/2011 10:16	40	10.22	3.0804	8.583	6.13	7.84
11/7/2011 10:17	41	10.22	3.0944	8.564	6.12	7.83
11/7/2011 10:18	42	10.22	3.0621	8.547	6.15	7.86
11/7/2011 10:19	43	10.22	3.0213	8.557	6.19	7.90
11/7/2011 10:20	44	10.22	2.9779	8.563	6.23	7.94
11/7/2011 10:21	45	10.22	2.944	8.573	6.27	7.98
11/7/2011 10:22	46	10.22	2.9133	8.579	6.30	8.01
11/7/2011 10:23	47	10.22	2.8856	8.587	6.33	8.04
11/7/2011 10:24	48	10.22	2.8952	8.59	6.32	8.03
11/7/2011 10:25	49	10.22	2.9073	8.58	6.30	8.02
11/7/2011 10:26	50	10.22	2.9118	8.57	6.30	8.01
11/7/2011 10:27	51	10.22	2.9147	8.571	6.30	8.01
11/7/2011 10:28	52	10.22	2.919 <b>Golder Asso</b>	8.565	6.29	8.00
			Goldel ASSO	ciates		

Datalogger installed at 10.7 m below top of casing

Static WL 1.715 m below top of casing

End of Test		11/7/2011 15:52				
	<u>Time</u>	Pumping Rate	<u>Datalogger</u>	<b>Temperature</b>	<u>Datalogger</u>	<b>Water Level</b>
Date/Time	(min)	(L/min)	Level (m)	(deg C)	Drawdown (m)	(m btoc)
11/7/2011 10:29	53	10.22	2.9244	8.55	6.29	8.00
11/7/2011 10:29	54	10.22	2.9233	8.535	6.29	8.00
11/7/2011 10:30	55	10.22	2.921	8.522	6.29	8.00
11/7/2011 10:31	56	10.22	2.9235	8.531	6.29	8.00
11/7/2011 10:32	57	10.22	2.9196	8.518	6.29	8.00
	57 58		2.9219			
11/7/2011 10:34		10.22		8.507	6.29	8.00
11/7/2011 10:35	59	10.22	2.9219	8.503	6.29	8.00
11/7/2011 10:36	60	10.22	2.9125	8.505	6.30	8.01
11/7/2011 10:37	61	10.22	2.9014	8.505	6.31	8.02
11/7/2011 10:38	62	10.22	2.8938	8.498	6.32	8.03
11/7/2011 10:39	63	10.22	2.8759	8.508	6.34	8.05
11/7/2011 10:40	64	10.22	2.8628	8.5	6.35	8.06
11/7/2011 10:41	65	10.22	2.8467	8.495	6.37	8.08
11/7/2011 10:42	66	11.32	2.8316	8.498	6.38	8.09
11/7/2011 10:43	67	11.32	2.8181	8.495	6.39	8.10
11/7/2011 10:44	68	11.32	2.8026	8.495	6.41	8.12
11/7/2011 10:45	69	11.32	2.7805	8.497	6.43	8.14
11/7/2011 10:46	70	11.32	2.763	8.488	6.45	8.16
11/7/2011 10:47	71	11.32	2.7455	8.485	6.47	8.18
11/7/2011 10:48	72	11.32	2.7271	8.483	6.49	8.20
11/7/2011 10:49	73	11.32	2.7123	8.486	6.50	8.21
11/7/2011 10:50	74	11.32	2.7018	8.482	6.51	8.22
11/7/2011 10:51	75	11.32	2.6864	8.476	6.53	8.24
11/7/2011 10:52	76	11.32	2.6755	8.471	6.54	8.25
11/7/2011 10:53	77	11.32	2.6649	8.465	6.55	8.26
11/7/2011 10:54	78	11.32	2.6577	8.456	6.55	8.26
11/7/2011 10:55	79	11.32	2.6506	8.453	6.56	8.27
11/7/2011 10:56	80	11.32	2.6418	8.454	6.57	8.28
11/7/2011 10:57	81	11.32	2.6378	8.451	6.57	8.28
11/7/2011 10:58	82	11.32	2.6312	8.454	6.58	8.29
11/7/2011 10:59	83	11.32	2.6267	8.451	6.59	8.30
11/7/2011 11:00	84	11.32	2.6219	8.447	6.59	8.30
11/7/2011 11:01	85	11.32	2.6195	8.441	6.59	8.30
11/7/2011 11:02	86	11.32	2.6158	8.432	6.60	8.31
11/7/2011 11:03	87	11.32	2.6135	8.429	6.60	8.31
11/7/2011 11:04	88	11.32	2.6147	8.426	6.60	8.31
11/7/2011 11:05	89	11.32	2.6145	8.426	6.60	8.31
11/7/2011 11:06	90	11.32	2.6135	8.422	6.60	8.31
11/7/2011 11:07	91	11.32	2.6138	8.42	6.60	8.31
11/7/2011 11:08	92	11.32	2.6138	8.416	6.60	8.31
11/7/2011 11:09	93	11.32	2.6107	8.408	6.60	8.31
11/7/2011 11:10	94	11.32	2.6116	8.408	6.60	8.31
11/7/2011 11:11	95	11.32	2.6144	8.408	6.60	8.31
11/7/2011 11:12	96	11.32	2.6177	8.407	6.59	8.30
11/7/2011 11:13	97	11.32	2.621	8.402	6.59	8.30
11/7/2011 11:14	98	11.32	2.6294	8.405	6.58	8.29
11/7/2011 11:14	99	11.32	2.6337	8.407	6.58	8.29
11/7/2011 11:15	100	11.32	2.6302	8.404	6.58	8.29
11/7/2011 11:17	101	11.32	2.6215	8.396	6.59	8.30
11/7/2011 11:17	101	11.32	2.6144	8.394	6.60	8.31
11/7/2011 11:18	102	11.32	2.6041	8.391	6.61	8.32
11/7/2011 11:19	103	11.32	2.5953	8.393	6.62	8.33
11/7/2011 11:20	104	11.32	2.588	8.39	6.62	8.33
11///2011 11.21	103	11.32	Golder Asso	ciates	0.02	0.55

Datalogger installed at 10.7 m below top of casing

Static WL 1.715 m below top of casing

nd of Test		11/7/2011 15:52				
	<u>Time</u>	Pumping Rate	<u>Datalogger</u>	<b>Temperature</b>	<u>Datalogger</u>	<b>Water Level</b>
Date/Time	<u>(min)</u>	<u>(L/min)</u>	Level (m)	(deg C)	Drawdown (m)	(m btoc)
11/7/2011 11:22	106	11.32	2.5795	8.395	6.63	8.34
11/7/2011 11:23	107	11.32	2.5741	8.398	6.64	8.35
11/7/2011 11:24	108	11.32	2.5647	8.4	6.65	8.36
11/7/2011 11:25	109	11.32	2.5589	8.401	6.65	8.36
11/7/2011 11:26	110	11.32	2.5465	8.398	6.67	8.38
11/7/2011 11:27	111	11.32	2.5375	8.395	6.67	8.38
11/7/2011 11:27	112	11.32	2.5297	8.392	6.68	8.39
11/7/2011 11:29	113	11.32	2.5207	8.392	6.69	8.40
11/7/2011 11:29	114	11.32	2.5141	8.388	6.70	8.41
11/7/2011 11:30	115	11.32	2.508	8.385	6.70	8.41
11/7/2011 11:31	116	11.32	2.5053	8.383	6.71	8.42
11/7/2011 11:32	117	11.32	2.5022	8.386	6.71	8.42
11/7/2011 11:33	117	11.32	2.5022	8.386	6.71	8.42
11/7/2011 11:34	119	11.32	2.496	8.385	6.72	8.43
11/7/2011 11:35	120	11.32	2.4945	8.381	6.72	8.43
11/7/2011 11:30	121	11.32	2.4943	8.38	6.72	8.43
11/7/2011 11:37	121	11.32	2.4903	8.382	6.73	8.44
11/7/2011 11:38	123	11.32	2.4833	8.38	6.73	8.44
11/7/2011 11:39	123	11.32	2.4835	8.371	6.73	8.44
11/7/2011 11:40	125	11.32	2.4820	8.372	6.73	8.44
11/7/2011 11:41 11/7/2011 11:42	125	11.32	2.4777	8.37 8.37	6.73	8.44 8.44
11/7/2011 11:42	127	11.32		8.371	6.74	8.45
			2.4724			
11/7/2011 11:44	128	11.32	2.4707	8.366	6.74	8.45
11/7/2011 11:45	129	11.32	2.4699	8.367	6.74	8.45
11/7/2011 11:46	130	11.32	2.4663	8.365	6.75	8.46
11/7/2011 11:47	131	11.32	2.4636	8.365	6.75	8.46
11/7/2011 11:48	132	11.32	2.4615	8.365	6.75	8.46
11/7/2011 11:49	133	11.32	2.4589	8.364	6.75	8.46
11/7/2011 11:50	134	11.32	2.4568	8.364	6.76	8.47
11/7/2011 11:51	135	11.32	2.4543	8.365	6.76	8.47
11/7/2011 11:52	136	11.32	2.4514	8.369	6.76	8.47
11/7/2011 11:53	137	11.32	2.4505	8.369	6.76	8.47
11/7/2011 11:54	138	11.32	2.4486	8.365	6.76	8.47
11/7/2011 11:55	139	11.32	2.4464	8.364	6.77	8.48
11/7/2011 11:56	140	11.32	2.4459	8.364	6.77	8.48
11/7/2011 11:57	141	11.32	2.4434	8.361	6.77	8.48
11/7/2011 11:58	142	11.32	2.4408	8.36	6.77	8.48
11/7/2011 11:59	143	11.32	2.4394	8.357	6.77	8.48
11/7/2011 12:00	144	11.32	2.4381	8.356	6.77	8.48
11/7/2011 12:01	145	11.32	2.4335	8.356	6.78	8.49
11/7/2011 12:02	146	11.32	2.4313	8.356	6.78	8.49
11/7/2011 12:03	147	11.32	2.4272	8.354	6.79	8.50
11/7/2011 12:04	148	11.32	2.4275	8.352	6.78	8.49
11/7/2011 12:05	149	11.32	2.4313	8.351	6.78	8.49
11/7/2011 12:06	150	11.32	2.4291	8.349	6.78	8.49
11/7/2011 12:07	151	11.32	2.4296	8.349	6.78	8.49
11/7/2011 12:08	152	11.32	2.4254	8.35	6.79	8.50
11/7/2011 12:09	153	11.32	2.4261	8.351	6.79	8.50
11/7/2011 12:10	154	11.32	2.4226	8.349	6.79	8.50
11/7/2011 12:11	155	11.32	2.4227	8.347	6.79	8.50
11/7/2011 12:12	156	11.32	2.4222	8.351	6.79	8.50
11/7/2011 12:13	157	11.32	2.4205	8.351	6.79	8.50
11/7/2011 12:14	158	11.32	2.4156	8.348	6.80	8.51
			Golder Asso	ciales		

Datalogger installed at 10.7 m below top of casing

Static WL 1.715 m below top of casing

nd of Test		11/7/2011 15:52				
	<u>Time</u>	Pumping Rate	<u>Datalogger</u>	<b>Temperature</b>	<u>Datalogger</u>	<b>Water Level</b>
Date/Time	<u>(min)</u>	<u>(L/min)</u>	Level (m)	(deg C)	Drawdown (m)	(m btoc)
11/7/2011 12:15	159	11.32	2.4137	8.345	6.80	8.51
11/7/2011 12:16	160	11.32	2.4123	8.346	6.80	8.51
11/7/2011 12:17	161	11.32	2.404	8.346	6.81	8.52
11/7/2011 12:18	162	11.32	2.4001	8.346	6.81	8.52
11/7/2011 12:19	163	11.32	2.3962	8.344	6.82	8.53
11/7/2011 12:13	164	11.32	2.3941	8.346	6.82	8.53
11/7/2011 12:20	165	11.32	2.3886	8.345	6.82	8.53
11/7/2011 12:21	166	11.32	2.3887	8.346	6.82	8.53
11/7/2011 12:22	167	11.32	2.3884	8.348	6.82	8.53
11/7/2011 12:24	168	11.32	2.3841	8.348	6.83	8.54
11/7/2011 12:25	169	11.32	2.3796	8.346	6.83	8.54
11/7/2011 12:26	170	11.32	2.375	8.343	6.84	8.55
11/7/2011 12:27	171	11.32	2.3738	8.342	6.84	8.55
11/7/2011 12:27	171	11.32	2.3689	8.344	6.84	8.55
11/7/2011 12:28	173	11.32	2.3687	8.341	6.84	8.55
11/7/2011 12:29	173 174	11.32	2.3671	8.341	6.85	8.56
11/7/2011 12:30	174	11.32	2.3655	8.343	6.85	8.56
11/7/2011 12:31	175 176	11.32	2.3631	8.342	6.85	8.56
11/7/2011 12:32	177	11.32	2.3607	8.34	6.85	8.56
11/7/2011 12:34	177	11.32	2.3581	8.342	6.85	8.56
11/7/2011 12:34	178 179	11.32		8.342 8.343	6.86	8.50 8.57
11/7/2011 12:36	180	11.32	2.3561 2.3544	8.342		8.57
					6.86	
11/7/2011 12:37	181	11.32	2.3533	8.343	6.86	8.57
11/7/2011 12:38	182	11.32	2.3501	8.343	6.86	8.57
11/7/2011 12:39	183	11.32	2.346	8.343	6.87	8.58
11/7/2011 12:40	184	11.32	2.3442	8.343	6.87	8.58
11/7/2011 12:41	185	11.32	2.3429	8.343	6.87	8.58
11/7/2011 12:42	186	11.32	2.3434	8.342	6.87	8.58
11/7/2011 12:43	187	11.32	2.3439	8.342	6.87	8.58
11/7/2011 12:44	188	11.32	2.3435	8.341	6.87	8.58
11/7/2011 12:45	189	11.32	2.3418	8.338	6.87	8.58
11/7/2011 12:46	190	11.32	2.3373	8.339	6.87	8.59
11/7/2011 12:47	191	11.32	2.3369	8.339	6.88	8.59
11/7/2011 12:48	192	11.32	2.3375	8.337	6.87	8.58
11/7/2011 12:49	193	11.32	2.3372	8.339	6.88	8.59
11/7/2011 12:50	194	11.32	2.3359	8.336	6.88	8.59
11/7/2011 12:51	195	11.32	2.3395	8.333	6.87	8.58
11/7/2011 12:52	196	11.32	2.3396	8.333	6.87	8.58
11/7/2011 12:53	197	11.32	2.3365	8.334	6.88	8.59
11/7/2011 12:54	198	11.32	2.3384	8.333	6.87	8.58
11/7/2011 12:55	199	11.32	2.3364	8.334	6.88	8.59
11/7/2011 12:56	200	11.32	2.3381	8.333	6.87	8.58
11/7/2011 12:57	201	11.32	2.3369	8.333	6.88	8.59
11/7/2011 12:58	202	11.32	2.3312	8.335	6.88	8.59
11/7/2011 12:59	203	11.32	2.3344	8.333	6.88	8.59
11/7/2011 13:00	204	11.32	2.3354	8.331	6.88	8.59
11/7/2011 13:01	205	11.32	2.3317	8.331	6.88	8.59
11/7/2011 13:02	206	11.32	2.3341	8.334	6.88	8.59
11/7/2011 13:03	207	11.32	2.3361	8.333	6.88	8.59
11/7/2011 13:04	208	11.32	2.3319	8.335	6.88	8.59
11/7/2011 13:05	209	11.32	2.3357	8.334	6.88	8.59
11/7/2011 13:06	210	11.32	2.3344	8.332	6.88	8.59
11/7/2011 13:07	211	11.32	2.3375	8.331	6.87	8.58
			Golder Asso	ciales		

Datalogger installed at 10.7 m below top of casing

Static WL 1.715 m below top of casing

nd of Test		11/7/2011 15:52				
	<u>Time</u>	Pumping Rate	<u>Datalogger</u>	<b>Temperature</b>	<u>Datalogger</u>	<b>Water Level</b>
Date/Time	<u>(min)</u>	<u>(L/min)</u>	Level (m)	(deg C)	Drawdown (m)	(m btoc)
11/7/2011 13:08	212	11.32	2.3355	8.333	6.88	8.59
11/7/2011 13:09	213	11.32	2.3373	8.332	6.87	8.59
11/7/2011 13:10	214	11.32	2.337	8.331	6.88	8.59
11/7/2011 13:11	215	11.32	2.3345	8.333	6.88	8.59
11/7/2011 13:11	216	11.32	2.3326	8.332	6.88	8.59
11/7/2011 13:12	217	11.32	2.3312	8.333	6.88	8.59
11/7/2011 13:13	218	11.32	2.3236	8.332	6.89	8.60
11/7/2011 13:15	219	11.32	2.3159	8.331	6.90	8.61
11/7/2011 13:15	220	11.32	2.3103	8.331	6.90	8.61
11/7/2011 13:10	221	11.32	2.3044	8.33	6.91	8.62
11/7/2011 13:17	222	11.32	2.2939	8.331	6.92	8.63
11/7/2011 13:18	223	11.32	2.2973	8.33	6.91	8.63
11/7/2011 13:19	224	11.32	2.2892	8.331	6.92	8.63
11/7/2011 13:20	225	11.32	2.2834	8.332	6.93	8.64
11/7/2011 13:21	226	11.32	2.2845	8.328	6.93	8.64
11/7/2011 13:22	227	11.32	2.2845	8.329	6.92	8.63
11/7/2011 13:23	228	11.32	2.2808	8.329	6.93	8.64
11/7/2011 13:24	228	11.32	2.2759	8.332	6.94	8.65
11/7/2011 13:25	230	11.32	2.2772	8.333	6.94	8.65
11/7/2011 13:27	230	11.32	2.2772	8.333	6.94	8.65
11/7/2011 13:27	231	11.32	2.2762		6.94 6.94	
11/7/2011 13:28	232	11.32	2.275	8.331 8.331	6.94	8.65 8.65
11/7/2011 13:30	234	11.32	2.2733	8.331	6.94	8.65
11/7/2011 13:31	235	11.32	2.2689	8.332	6.94	8.65
11/7/2011 13:32	236	11.32	2.2666	8.331	6.95	8.66
11/7/2011 13:33	237	11.32	2.269	8.33	6.94	8.65
11/7/2011 13:34	238	11.32	2.2676	8.328	6.94	8.65
11/7/2011 13:35	239	11.32	2.2665	8.33	6.95	8.66
11/7/2011 13:36	240	11.32	2.2645	8.33	6.95	8.66
11/7/2011 13:37	241	11.32	2.2623	8.329	6.95	8.66
11/7/2011 13:38	242	11.32	2.2667	8.328	6.95	8.66
11/7/2011 13:39	243	11.32	2.2706	8.329	6.94	8.65
11/7/2011 13:40	244	11.32	2.2683	8.327	6.94	8.65
11/7/2011 13:41	245	11.32	2.2669	8.329	6.95	8.66
11/7/2011 13:42	246	11.32	2.2685	8.328	6.94	8.65
11/7/2011 13:43	247	11.32	2.2656	8.327	6.95	8.66
11/7/2011 13:44	248	11.32	2.2666	8.325	6.95	8.66
11/7/2011 13:45	249	11.32	2.2674	8.328	6.94	8.66
11/7/2011 13:46	250	11.32	2.2648	8.326	6.95	8.66
11/7/2011 13:47	251	11.32	2.2614	8.324	6.95	8.66
11/7/2011 13:48	252	11.32	2.268	8.325	6.94	8.65
11/7/2011 13:49	253	11.32	2.2671	8.325	6.95	8.66
11/7/2011 13:50	254	11.32	2.267	8.324	6.95	8.66
11/7/2011 13:51	255	11.32	2.2672	8.325	6.95	8.66
11/7/2011 13:52	256	11.32	2.2641	8.325	6.95	8.66
11/7/2011 13:53	257	11.32	2.2627	8.322	6.95	8.66
11/7/2011 13:54	258	11.32	2.2626	8.323	6.95	8.66
11/7/2011 13:55	259	11.32	2.2619	8.323	6.95	8.66
11/7/2011 13:56	260	11.32	2.2592	8.323	6.95	8.66
11/7/2011 13:57	261	11.32	2.2574	8.323	6.95	8.67
11/7/2011 13:58	262	11.32	2.2569	8.324	6.96	8.67
11/7/2011 13:59	263	11.32	2.2554	8.325	6.96	8.67
11/7/2011 14:00	264	11.32	2.2563 <b>Golder Asso</b>	8.325	6.96	8.67
			Guidel ASSO	ciales		

Datalogger installed at 10.7 m below top of casing

Static WL 1.715 m below top of casing

End of Test		11/7/2011 15:52				
	<u>Time</u>	<b>Pumping Rate</b>	<u>Datalogger</u>	<b>Temperature</b>	<u>Datalogger</u>	<b>Water Level</b>
Date/Time	<u>(min)</u>	<u>(L/min)</u>	Level (m)	(deg C)	Drawdown (m)	(m btoc)
11/7/2011 14:01	265	11.32	2.254	8.325	6.96	8.67
11/7/2011 14:02	266	11.32	2.2532	8.325	6.96	8.67
11/7/2011 14:03	267	11.32	2.2524	8.326	6.96	8.67
11/7/2011 14:04	268	11.32	2.2527	8.323	6.96	8.67
11/7/2011 14:05	269	11.32	2.255	8.324	6.96	8.67
11/7/2011 14:06	270	11.32	2.2603	8.324	6.95	8.66
11/7/2011 14:07	271	11.32	2.2666	8.323	6.95	8.66
11/7/2011 14:07	272	11.32	2.2644	8.323	6.95	8.66
11/7/2011 14:08	272	11.32	2.2591	8.324	6.95	8.66
11/7/2011 14:09	273	11.32	2.2597	8.323	6.95	8.66
11/7/2011 14:10	274	11.32	2.2673	8.323	6.94	8.66
11/7/2011 14:11	275 276	11.32		8.323	6.94	8.65
			2.2688			
11/7/2011 14:13	277	11.32	2.2683	8.323	6.94	8.65
11/7/2011 14:14	278	11.32	2.2668	8.326	6.95	8.66
11/7/2011 14:15	279	11.32	2.2637	8.326	6.95	8.66
11/7/2011 14:16	280	11.32	2.2614	8.327	6.95	8.66
11/7/2011 14:17	281	11.32	2.2614	8.326	6.95	8.66
11/7/2011 14:18	282	11.32	2.2593	8.326	6.95	8.66
11/7/2011 14:19	283	11.32	2.2574	8.326	6.95	8.67
11/7/2011 14:20	284	11.32	2.2561	8.327	6.96	8.67
11/7/2011 14:21	285	11.32	2.2521	8.328	6.96	8.67
11/7/2011 14:22	286	11.32	2.251	8.328	6.96	8.67
11/7/2011 14:23	287	11.32	2.2496	8.328	6.96	8.67
11/7/2011 14:24	288	11.32	2.2495	8.328	6.96	8.67
11/7/2011 14:25	289	11.32	2.2451	8.326	6.97	8.68
11/7/2011 14:26	290	11.32	2.2456	8.324	6.97	8.68
11/7/2011 14:27	291	11.32	2.2409	8.324	6.97	8.68
11/7/2011 14:28	292	11.32	2.2357	8.324	6.98	8.69
11/7/2011 14:29	293	11.32	2.2326	8.323	6.98	8.69
11/7/2011 14:30	294	11.32	2.2279	8.324	6.98	8.69
11/7/2011 14:31	295	11.32	2.2234	8.323	6.99	8.70
11/7/2011 14:32	296	11.32	2.22	8.323	6.99	8.70
11/7/2011 14:33	297	11.32	2.2181	8.324	6.99	8.70
11/7/2011 14:34	298	11.32	2.2158	8.325	7.00	8.71
11/7/2011 14:35	299	11.32	2.2142	8.325	7.00	8.71
11/7/2011 14:36	300	11.32	2.21	8.323	7.00	8.71
11/7/2011 14:37	301	11.32	2.2086	8.321	7.00	8.71
11/7/2011 14:38	302	11.32	2.2082	8.32	7.00	8.71
11/7/2011 14:39	303	11.32	2.2061	8.319	7.01	8.72
11/7/2011 14:40	304	11.32	2.2045	8.319	7.01	8.72
11/7/2011 14:41	305	11.32	2.2053	8.321	7.01	8.72
11/7/2011 14:42	306	11.32	2.2047	8.321	7.01	8.72
11/7/2011 14:43	307	11.32	2.2041	8.32	7.01	8.72
11/7/2011 14:44	308	11.32	2.204	8.32	7.01	8.72
11/7/2011 14:45	309	11.32	2.2036	8.32	7.01	8.72
11/7/2011 14:46	310	11.32	2.2015	8.321	7.01	8.72
11/7/2011 14:47	311	11.32	2.2003	8.322	7.01	8.72
11/7/2011 14:48	312	11.32	2.2016	8.321	7.01	8.72
11/7/2011 14:49	313	11.32	2.2012	8.323	7.01	8.72
11/7/2011 14:49	314	11.32	2.2012	8.322	7.01	8.72
11/7/2011 14:50	315	11.32	2.1999	8.322	7.01	8.72
11/7/2011 14:51	316	11.32	2.1992	8.323	7.01	8.72
11/7/2011 14:53	317	11.32	2.1982	8.324	7.01	8.72
11//2011 14.33	311	11.52	Golder Asso		7.01	5.72

Datalogger installed at 10.7 m below top of casing

Static WL 1.715 m below top of casing

 Start of Test
 11/7/2011 9:36

 End of Test
 11/7/2011 15:52

End of Test		11/7/2011 15:52				
	<u>Time</u>	Pumping Rate	<b>Datalogger</b>	<b>Temperature</b>	<u>Datalogger</u>	<b>Water Level</b>
Date/Time	(min)	(L/min)	Level (m)	(deg C)	Drawdown (m)	(m btoc)
11/7/2011 14:54	318	11.32	2.2016	8.324	7.01	8.72
11/7/2011 14:55	319	11.32	2.2002	8.323	7.01	8.72
11/7/2011 14:56	320	11.32	2.2016	8.323	7.01	8.72
11/7/2011 14:57	321	11.32	2.1995	8.322	7.01	8.72
11/7/2011 14:58	321	11.32	2.1982	8.322	7.01	8.72
11/7/2011 14:59			2.197		7.01	
	323	11.32		8.32		8.73
11/7/2011 15:00	324	11.32	2.197	8.322	7.02	8.73
11/7/2011 15:01	325	11.32	2.1965	8.323	7.02	8.73
11/7/2011 15:02	326	11.32	2.1951	8.322	7.02	8.73
11/7/2011 15:03	327	11.32	2.1948	8.322	7.02	8.73
11/7/2011 15:04	328	11.32	2.2016	8.322	7.01	8.72
11/7/2011 15:05	329	11.32	2.2025	8.322	7.01	8.72
11/7/2011 15:06	330	11.32	2.2011	8.32	7.01	8.72
11/7/2011 15:07	331	11.32	2.2023	8.32	7.01	8.72
11/7/2011 15:08	332	11.32	2.2028	8.321	7.01	8.72
11/7/2011 15:09	333	11.32	2.2007	8.321	7.01	8.72
11/7/2011 15:10	334	11.32	2.2002	8.32	7.01	8.72
11/7/2011 15:11	335	11.32	2.2009	8.321	7.01	8.72
11/7/2011 15:12	336	11.32	2.1996	8.321	7.01	8.72
11/7/2011 15:13	337	11.32	2.2004	8.323	7.01	8.72
11/7/2011 15:14	338	11.32	2.2012	8.323	7.01	8.72
11/7/2011 15:15	339	11.32	2.2026	8.322	7.01	8.72
11/7/2011 15:16	340	11.32	2.1998	8.323	7.01	8.72
11/7/2011 15:17	341	11.32	2.201	8.323	7.01	8.72
11/7/2011 15:18	342	11.32	2.1959	8.321	7.02	8.73
11/7/2011 15:19	343	11.32	2.1975	8.322	7.01	8.72
11/7/2011 15:20	344	11.32	2.1974	8.322	7.01	8.73
11/7/2011 15:21	345	11.32	2.1978	8.321	7.01	8.72
11/7/2011 15:22	346	11.32	2.1979	8.319	7.01	8.72
11/7/2011 15:23	347	11.32	2.1953	8.319	7.02	8.73
11/7/2011 15:24	348	11.32	2.1944	8.32	7.02	8.73
11/7/2011 15:25	349	11.32	2.195	8.319	7.02	8.73
11/7/2011 15:26	350	11.32	2.1934	8.319	7.02	8.73
11/7/2011 15:27	351	11.32	2.1941	8.32	7.02	8.73
11/7/2011 15:27	352	11.32	2.1941	8.321	7.02	8.73
11/7/2011 15:29	353	11.32	2.1922	8.322	7.02	8.73
11/7/2011 15:30 11/7/2011 15:31	354	11.32	2.1921	8.32	7.02	8.73
11/7/2011 15:31	355	11.32	2.1904	8.32	7.02	8.73
• •	356	11.32	2.1891	8.319	7.02	8.73
11/7/2011 15:33	357	11.32	2.1903	8.32	7.02	8.73
11/7/2011 15:34	358	11.32	2.1905	8.32	7.02	8.73
11/7/2011 15:35	359	11.32	2.1936	8.32	7.02	8.73
11/7/2011 15:36	360	11.32	2.192	8.32	7.02	8.73
11/7/2011 15:37	361	11.32	2.1935	8.319	7.02	8.51
11/7/2011 15:38	362	11.32	2.1935	8.319	7.02	8.73
11/7/2011 15:39	363	11.32	2.1939	8.32	7.02	8.73
11/7/2011 15:40	364	11.32	2.1944	8.321	7.02	8.73
11/7/2011 15:41	365	11.32	2.1927	8.319	7.02	8.73
11/7/2011 15:42	366	11.32	2.192	8.319	7.02	8.73
11/7/2011 15:43	367	11.32	2.1906	8.319	7.02	8.73
11/7/2011 15:44	368	11.32	2.1884	8.321	7.02	8.73
11/7/2011 15:45	369	11.32	2.1874	8.321	7.02	8.74
11/7/2011 15:46	370	11.32	2.1888	8.32	7.02	8.73
			Golder Asso	ciates		

Datalogger installed at 10.7 m below top of casing

Static WL 1.715 m below top of casing

 Start of Test
 11/7/2011 9:36

 End of Test
 11/7/2011 15:52

End of Test		11///2011 15:52				
	<u>Time</u>	Pumping Rate	<u>Datalogger</u>	<b>Temperature</b>	<u>Datalogger</u>	<b>Water Level</b>
Date/Time	<u>(min)</u>	<u>(L/min)</u>	Level (m)	(deg C)	Drawdown (m)	(m btoc)
11/7/2011 15:47	371	11.32	2.1896	8.317	7.02	8.73
11/7/2011 15:48	372	11.32	2.186	8.319	7.03	8.74
11/7/2011 15:49	373	11.32	2.1858	8.319	7.03	8.74
11/7/2011 15:50	374	11.32	2.182	8.318	7.03	8.74
11/7/2011 15:51	375	11.32	2.1814	8.318	7.03	8.74
11/7/2011 15:52	376	0	2.1782	8.317	7.03	8.74
11/7/2011 15:53	377	0	2.7355	8.308	6.48	8.19
11/7/2011 15:54	378	0	3.2417	8.293	5.97	7.68
11/7/2011 15:55	379	0	3.7198	8.28	5.49	7.20
11/7/2011 15:56	380	0	4.1715	8.272	5.04	6.75
11/7/2011 15:57	381	0	4.5965	8.268	4.62	6.33
11/7/2011 15:58	382	0	4.9962	8.263	4.22	5.93
11/7/2011 15:59	383	0	5.374	8.261	3.84	5.55
11/7/2011 16:00	384	0	5.7259	8.258	3.49	5.20
11/7/2011 16:01	385	0	6.0546	8.256	3.16	4.87
11/7/2011 16:02	386	0	6.3606	8.255	2.85	4.56
11/7/2011 16:03	387	0	6.6445	8.255	2.57	4.28
11/7/2011 16:04	388	0	6.9091	8.254	2.30	4.01
11/7/2011 16:05	389	0	7.1517	8.252	2.06	3.77
11/7/2011 16:06	390	0	7.3772	8.253	1.84	3.55
11/7/2011 16:07	391	0	7.5812	8.251	1.63	3.34
11/7/2011 16:08	392	0	7.7687	8.25	1.44	3.15
11/7/2011 16:09	393	0	7.9376	8.251	1.27	2.98
11/7/2011 16:10	394	0	8.0927	8.25	1.12	2.83
11/7/2011 16:10	395	0	8.2311	8.25	0.98	2.69
11/7/2011 16:12	396	0	8.355	8.25	0.86	2.57
11/7/2011 16:13	397	0	8.4663	8.249	0.75	2.46
11/7/2011 16:14	398	0	8.5647	8.249	0.65	2.36
11/7/2011 16:15	399	0	8.65	8.25	0.56	2.27
11/7/2011 16:16	400	0	8.7241	8.249	0.49	2.20
11/7/2011 16:17	401	0	8.787	8.249	0.43	2.14
11/7/2011 16:18	402	0	8.8317	8.249	0.38	2.09
11/7/2011 16:19	403	0	8.8712	8.25	0.34	2.05
11/7/2011 16:20	404	0	8.9085	8.25	0.30	2.01
11/7/2011 16:21	405	0	8.9433	8.25	0.27	1.98
11/7/2011 16:22	406	0	8.9724	8.25	0.24	1.95
11/7/2011 16:23	407	0	8.9973	8.25	0.21	1.93
11/7/2011 16:24	408	0	9.0187	8.25	0.19	1.90
11/7/2011 16:25	409	0	9.0368	8.25	0.18	1.89
11/7/2011 16:26	410	0	9.0535	8.25	0.16	1.87
11/7/2011 16:27	411	0	9.0682	8.25	0.14	1.85
11/7/2011 16:28	412	0	9.0801	8.252	0.13	1.84
11/7/2011 16:29	413	0	9.0906	8.252	0.12	1.83
11/7/2011 16:30	414	0	9.0998	8.252	0.11	1.82
11/7/2011 16:31	415	0	9.1077	8.252	0.10	1.81
11/7/2011 16:31	416	0	9.1148	8.253	0.10	1.81
11/7/2011 16:33	417	0	9.1208	8.254	0.09	1.80
11/7/2011 16:34	418	0	9.1258	8.258	0.09	1.80
11/7/2011 16:35	419	0	9.1298	8.258	0.08	1.79
11/7/2011 16:36	420	0	9.134	8.261	0.08	1.79
11/7/2011 16:37	421	0	9.1381	8.262	0.07	1.78
11/7/2011 16:37	422	0	9.1406	8.263	0.07	1.78
11, , , 2011 10.50		J	3.1400	0.203	0.07	1.70

Datalogger installed at 10 m below top of casing

Static WL 2.39 m below top of casing

	<u>Time</u>	<u>Datalogger</u>	<u>Temperature</u>	<u>Datalogger</u>	Water Level
Date/Time	<u>(min)</u>	Level (m)	<u>(deg C)</u>	<u>Drawdown (m)</u>	(m btoc)
11/7/2011 9:35		8.8294	9.528	0	2.390
11/7/2011 9:40	4	8.8286	9.54	0.001	2.391
11/7/2011 9:45	9	8.6027	9.568	0.227	2.617
11/7/2011 9:50	14	8.7893	9.659	0.040	2.430
11/7/2011 9:55	19	8.8033	9.683	0.026	2.416
11/7/2011 10:00	24	8.805	9.667	0.024	2.414
11/7/2011 10:05	29	8.8025	9.625	0.027	2.417
11/7/2011 10:10	34	8.8014	9.611	0.028	2.418
11/7/2011 10:15	39	8.5922	9.647	0.237	2.627
11/7/2011 10:20	44	8.78	9.69	0.049	2.439
11/7/2011 10:25	49	8.7933	9.689	0.036	2.426
11/7/2011 10:30	54	8.7939	9.682	0.035	2.426
11/7/2011 10:35	59	8.7939	9.665	0.035	2.426
11/7/2011 10:40	64	8.7933	9.65	0.036	2.426
11/7/2011 10:45	69	8.7932	9.629	0.036	2.426
11/7/2011 10:50	74	8.7908	9.611	0.039	2.429
11/7/2011 10:55	79	8.7901	9.588	0.039	2.429
11/7/2011 11:00	84	8.7889	9.585	0.040	2.431
11/7/2011 11:05	89	8.7875	9.574	0.042	2.432
11/7/2011 11:10	94	8.7865	9.562	0.043	2.433
11/7/2011 11:15	99	8.7849	9.55	0.044	2.435
11/7/2011 11:20	104	8.7856	9.54	0.044	2.434
11/7/2011 11:25	109	8.7846	9.527	0.045	2.435
11/7/2011 11:30	114	8.7844	9.513	0.045	2.435
11/7/2011 11:35	119	8.7841	9.5	0.045	2.435
11/7/2011 11:40	124	8.7827	9.491	0.047	2.437
11/7/2011 11:45	129	8.7821	9.478	0.047	2.437
11/7/2011 11:50	134	8.7811	9.472	0.048	2.438
11/7/2011 11:55	139	8.7805	9.468	0.049	2.439
11/7/2011 12:00	144	8.7797	9.462	0.050	2.440
11/7/2011 12:05	149	8.7796	9.453	0.050	2.440
11/7/2011 12:10	154	8.78	9.443	0.049	2.439
11/7/2011 12:15	159	8.7779	9.434	0.051	2.442
11/7/2011 12:20	164	8.7672	9.459	0.062	2.452
11/7/2011 12:25	169	8.7761	9.471	0.053	2.443
11/7/2011 12:30	174	8.7762	9.476	0.053	2.443
11/7/2011 12:35	179	8.777	9.478	0.052	2.442
11/7/2011 12:40	184	8.7776	9.48	0.052	2.442
11/7/2011 12:45	189	8.7769	9.477	0.053	2.443
11/7/2011 12:50	194	8.7761	9.471	0.053	2.443
11/7/2011 12:55	199	8.775	9.465	0.054	2.444
11/7/2011 13:00 11/7/2011 13:05	204	8.774	9.458	0.055	2.445
• •	209	8.7739	9.453	0.056	2.446 2.446
11/7/2011 13:10 11/7/2011 13:15	214	8.7738	9.448	0.056	
11/7/2011 13:15	219	8.7091	9.556	0.120	2.510
	224	8.7661 8.7713	9.634	0.063	2.453
11/7/2011 13:25 11/7/2011 13:30	229 234	8.7713 8.7723	9.621 9.603	0.058 0.057	2.448
11/7/2011 13:30	234	8.7723 8.7708	9.598	0.057	2.447 2.449
11/7/2011 13:35	239 244				
11/7/2011 13:40 11/7/2011 13:45	244 249	8.7707 8.7713	9.586 9.572	0.059	2.449 2.448
11/7/2011 13:45	249 254		9.572 9.56	0.058 0.060	2.448
11/7/2011 13:50 11/7/2011 13:55	254 259	8.7696 <b>8.756</b>	9.56 <b>9.598</b>	0.060 <b>0.073</b>	2.450
11/7/2011 13:55	259 264	8.7638	9.623	0.066	2.456
11//2011 14.00	204	0.7030	Golder	Associates	2.430

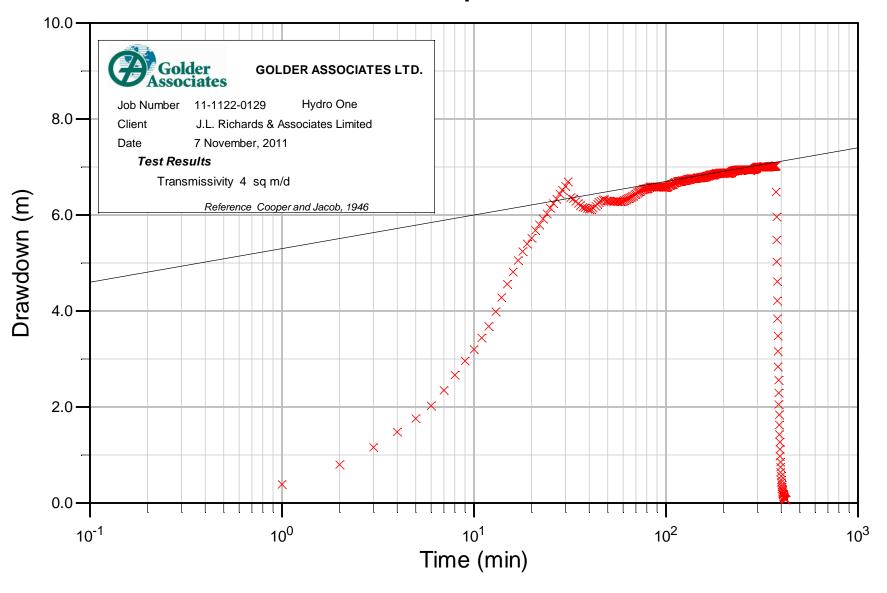
Datalogger installed at 10 m below top of casing

Static WL 2.39 m below top of casing

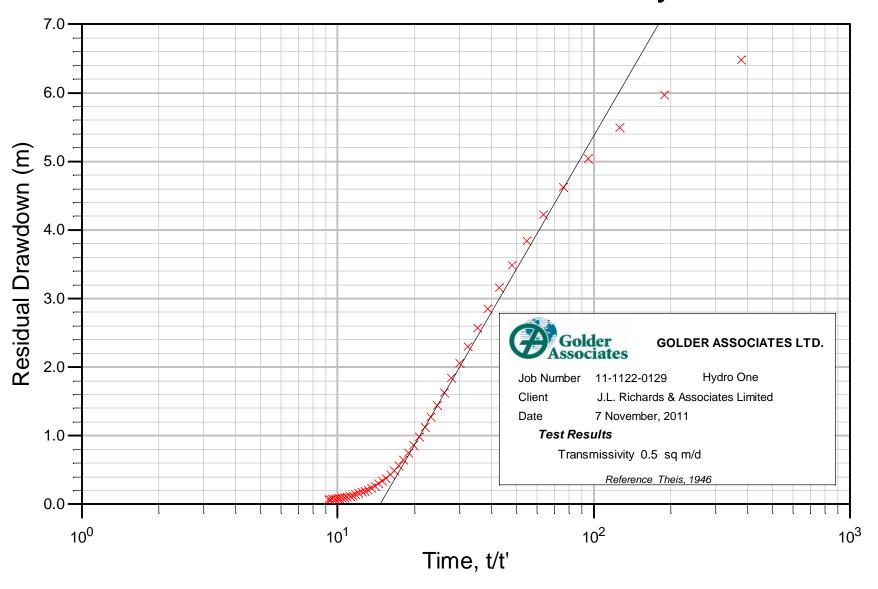
	<u>Time</u>	<u>Datalogger</u>	<u>Temperature</u>	<u>Datalogger</u>	Water Level
Date/Time	<u>(min)</u>	Level (m)	(deg C)	Drawdown (m)	(m btoc)
11/7/2011 14:05	269	8.7665	9.637	0.063	2.453
11/7/2011 14:10	274	8.7675	9.609	0.062	2.452
11/7/2011 14:15	279	8.7683	9.603	0.061	2.451
11/7/2011 14:20	284	8.7683	9.589	0.061	2.451
11/7/2011 14:25	289	8.7681	9.576	0.061	2.451
11/7/2011 14:30	294	8.7681	9.563	0.061	2.451
11/7/2011 14:35	299	8.7683	9.554	0.061	2.451
11/7/2011 14:40	304	8.7667	9.544	0.063	2.453
11/7/2011 14:45	309	8.7652	9.533	0.064	2.454
11/7/2011 14:50	314	8.7658	9.519	0.064	2.454
11/7/2011 14:55	319	8.7667	9.51	0.063	2.453
11/7/2011 15:00	324	8.7665	9.501	0.063	2.453
11/7/2011 15:05	329	8.7683	9.49	0.061	2.451
11/7/2011 15:10	334	8.7686	9.483	0.061	2.451
11/7/2011 15:15	339	8.7699	9.475	0.059	2.450
11/7/2011 15:20	344	8.7694	9.467	0.060	2.450
11/7/2011 15:25	349	8.7686	9.459	0.061	2.451
11/7/2011 15:30	354	8.7679	9.451	0.062	2.452
11/7/2011 15:35	359	8.7676	9.445	0.062	2.452
11/7/2011 15:40	364	8.7679	9.438	0.062	2.452
11/7/2011 15:45	369	8.7679	9.431	0.062	2.452
11/7/2011 15:50	374	8.7679	9.425	0.062	2.452
11/7/2011 15:55	379	8.7687	9.419	0.061	2.451
11/7/2011 16:00	384	8.7741	9.412	0.055	2.445
11/7/2011 16:05	389	8.7791	9.406	0.050	2.440
11/7/2011 16:10	394	8.7851	9.4	0.044	2.434
11/7/2011 16:15	399	8.7909	9.394	0.038	2.429

Datalogger installed at 11 m below top of casing

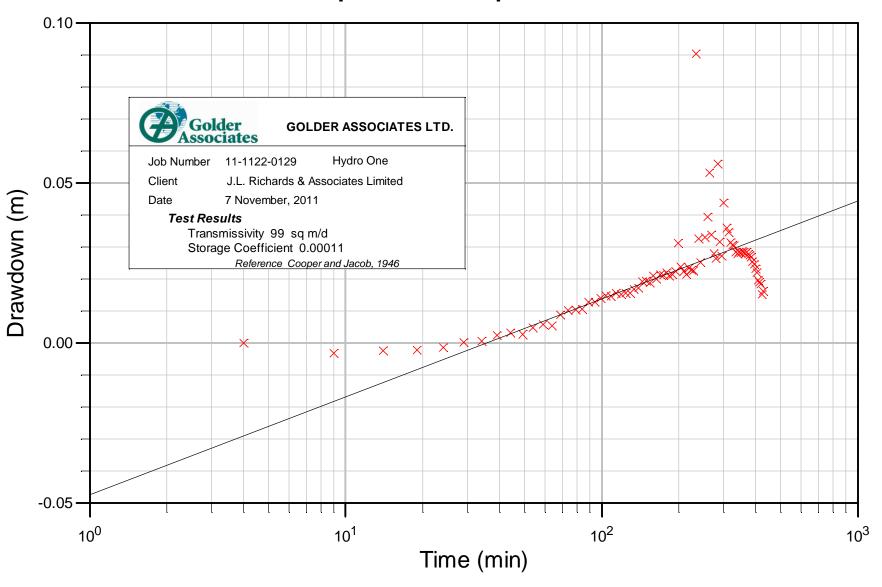
Static WL 2.204 m below top of casing


	<u>Time</u>	<u>Datalogger</u>	<u>Temperature</u>	<u>Datalogger</u>	Water Level
Date/Time	<u>(min)</u>	<u>Level (m)</u>	<u>(deg C)</u>	<u>Drawdown (m)</u>	<u>(m btoc)</u>
11/7/2011 9:25		7.9923	12.015		2.20
11/7/2011 9:30		7.9903	12.003		2.20
11/7/2011 9:35		7.5706	11.959	0	2.62
11/7/2011 9:40	4	7.9793	12.093	0.000	2.22
11/7/2011 9:45	9	7.9825	12.062	-0.003	2.21
11/7/2011 9:50	14	7.9816	12.049	-0.002	2.21
11/7/2011 9:55	19	7.9815	12.077	-0.002	2.21
11/7/2011 10:00	24	7.9807	12.066	-0.001	2.21
11/7/2011 10:05	29	7.979	11.995	0.000	2.22
11/7/2011 10:10	34	7.9786	11.966	0.001	2.22
11/7/2011 10:15	39	7.9768	11.945	0.003	2.22
11/7/2011 10:20	44	7.976	11.929	0.003	2.22
11/7/2011 10:25	49	7.9765	11.924	0.003	2.22
11/7/2011 10:30	54	7.9743	11.908	0.005	2.22
11/7/2011 10:35	59	7.9734	11.899	0.006	2.22
11/7/2011 10:40	64	7.9737	11.879	0.006	2.22
11/7/2011 10:45	69	7.9704	11.869	0.009	2.22
11/7/2011 10:50	74	7.969	11.862	0.010	2.23
11/7/2011 10:55	79	7.9689	11.855	0.010	2.23
11/7/2011 11:00	84	7.9687	11.847	0.011	2.23
11/7/2011 11:05	89	7.9665	11.841	0.013	2.23
11/7/2011 11:10	94	7.9664	11.83	0.013	2.23
11/7/2011 11:15	99	7.9653	11.822	0.014	2.23
11/7/2011 11:20	104	7.9644	11.818	0.015	2.23
11/7/2011 11:25	109	7.9647	11.814	0.015	2.23
11/7/2011 11:30	114	7.9637	11.806	0.016	2.23
11/7/2011 11:35	119	7.9641	11.804	0.015	2.23
11/7/2011 11:40	124	7.9636	11.799	0.016	2.23
11/7/2011 11:45	129	7.9635	11.795	0.016	2.23
11/7/2011 11:50	134	7.9624	11.788	0.017	2.23
11/7/2011 11:55	139	7.962	11.783	0.017	2.23
11/7/2011 12:00	144	7.96	11.78	0.019	2.23
11/7/2011 12:05	149	7.9599	11.774	0.019	2.23
11/7/2011 12:10	154	7.9604	11.769	0.019	2.23
11/7/2011 12:15	159	7.9582	11.764	0.021	2.24
11/7/2011 12:20	164	7.9591	11.757	0.020	2.24
11/7/2011 12:25	169	7.9578	11.749	0.022	2.24
11/7/2011 12:30	174	7.958	11.748	0.021	2.24
11/7/2011 12:35	179	7.9573	11.741	0.022	2.24
11/7/2011 12:40	184	7.9583	11.732	0.021	2.24
11/7/2011 12:45	189	7.9579	11.729	0.021	2.24
11/7/2011 12:50	194	7.9568	11.725	0.023	2.24
11/7/2011 12:55	199	7.948	11.783	0.031	2.25
11/7/2011 13:00	204	7.9555	11.838	0.024	2.24
11/7/2011 13:05	209	7.9567	11.803	0.023	2.24
11/7/2011 13:10	214	7.9579	11.801	0.021	2.24
11/7/2011 13:15	219	7.9558	11.813	0.024	2.24
11/7/2011 13:20	224	7.9564	11.798	0.023	2.24
11/7/2011 13:25	229	7.9566	11.794	0.023	2.24
11/7/2011 13:30	234	7.8888	11.788	0.091	2.31
11/7/2011 13:35	239	7.9467	11.849	0.033	2.25
11/7/2011 13:40	244	7.954	11.959	0.025	2.24
11/7/2011 13:45	249	7.5155	11.926	0.464	2.68
11/7/2011 13:50	254	7.9462	12.151 <b>Golder</b>	0.033 <b>Associates</b>	2.25

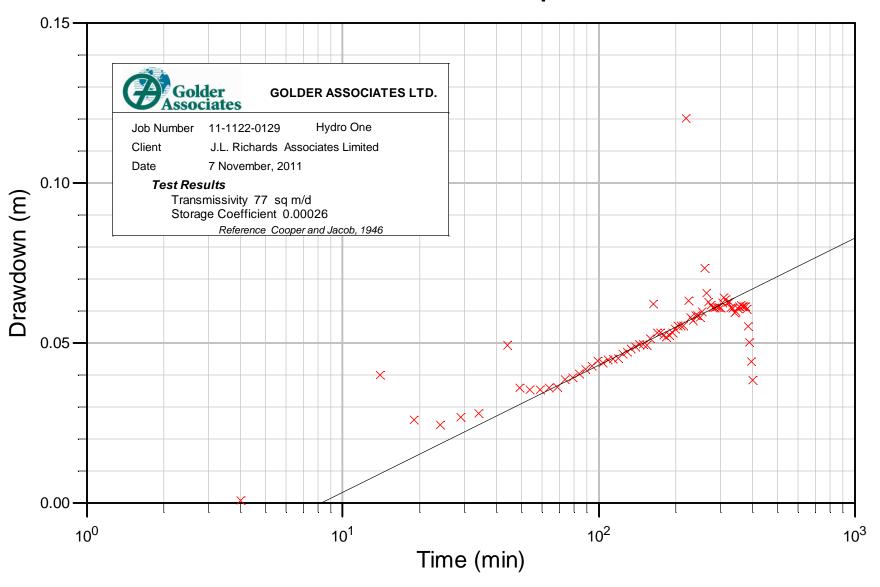
Datalogger installed at 11 m below top of casing


Static WL 2.204 m below top of casing

	<u>Time</u>	Datalogger	<u>Temperature</u>	<u>Datalogger</u>	Water Level
Date/Time	<u>(min)</u>	Level (m)	(deg C)	Drawdown (m)	(m btoc)
11/7/2011 13:55	259	7.9399	11.935	0.039	2.25
11/7/2011 14:00	264	7.9261	11.884	0.053	2.27
11/7/2011 14:05	269	7.9455	11.953	0.034	2.25
11/7/2011 14:10	274	7.9513	11.976	0.028	2.24
11/7/2011 14:15	279	7.9529	12.056	0.026	2.24
11/7/2011 14:20	284	7.9232	11.893	0.056	2.27
11/7/2011 14:25	289	7.9477	11.936	0.032	2.25
11/7/2011 14:30	294	7.9521	12.006	0.027	2.24
11/7/2011 14:35	299	7.9354	11.868	0.044	2.26
11/7/2011 14:40	304	7.5824	11.899	0.397	2.61
11/7/2011 14:45	309	7.9433	12.073	0.036	2.25
11/7/2011 14:50	314	7.9445	12.18	0.035	2.25
11/7/2011 14:55	319	7.9478	12.144	0.032	2.25
11/7/2011 15:00	324	7.9486	12.076	0.031	2.25
11/7/2011 15:05	329	7.9488	12.046	0.031	2.25
11/7/2011 15:10	334	7.9508	12.013	0.029	2.24
11/7/2011 15:15	339	7.9513	12.002	0.028	2.24
11/7/2011 15:20	344	7.9509	11.961	0.028	2.24
11/7/2011 15:25	349	7.9511	11.947	0.028	2.24
11/7/2011 15:30	354	7.9507	11.925	0.029	2.24
11/7/2011 15:35	359	7.9509	11.912	0.028	2.24
11/7/2011 15:40	364	7.9512	11.902	0.028	2.24
11/7/2011 15:45	369	7.9509	11.89	0.028	2.24
11/7/2011 15:50	374	7.9514	11.878	0.028	2.24
11/7/2011 15:55	379	7.9517	11.865	0.028	2.24
11/7/2011 16:00	384	7.9525	11.857	0.027	2.24
11/7/2011 16:05	389	7.9537	11.857	0.026	2.24
11/7/2011 16:10	394	7.9547	11.846	0.025	2.24
11/7/2011 16:15	399	7.9561	11.837	0.023	2.24
11/7/2011 16:20	404	7.9573	11.826	0.022	2.24
11/7/2011 16:25	409	7.9596	11.818	0.020	2.23
11/7/2011 16:30	414	7.9603	11.81	0.019	2.23
11/7/2011 16:35	419	7.9609	11.801	0.018	2.23
11/7/2011 16:40	424	7.9641	11.792	0.015	2.23
11/7/2011 16:45	429	7.963	11.79	0.016	2.23


# PW11-1 Cooper and Jacob




# PW11-1 Theis Recovery



# Bus Depot - Cooper and Jacob



# Residential Well - Cooper and Jacob





# **APPENDIX F**

**Laboratory Certificates of Analysis** 



### **EXOVA** ACCUTEST

#### **REPORT OF ANALYSIS**



Client: Golder Associates Ltd. (Ottawa)

32 Steacie Drive

Kanata, ON K2K 2A9

Attention: Ms. Caitlin Cooke

Report Number:

1126039

Date:

2011-11-10

Date Submitted:

2011-11-07

Project:

11-1122-0129

P.O. Number:

Water

Chain of Custody Number: 155926							Matrix:		Water	
		LAB ID:	923194	923195	923196	923197			GUIDELINE	
	Samı	ple Date:	2011-11-07	2011-11-07	2011-11-07	2011-11-07				
	Sa	mple ID:	S-1	S-2	S-3	S-4			ODWSOG	
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
	CFU/100mL		5	12	0	2		MAC	0	CFU/100mL
	CFU/100mL		0	0	0	0		MAC	0	CFU/100mL
Heterotrophic Plate Count	CFU/1mL		12	5	18	12				
Faecal Coliforms	CFU/100mL		0	0	0	0				
	CFU/100mL		l o	o	0	0			ļ	

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

Methods references and/or additional QA/QC information available on request.

1 of 1

Krista Quantrill
Microbiology Lab Supervisor

8-146 Colonnade Road, Ottawa, ON, K2E 7Y1

Results relate only to the parameters tested on the samples submitted.

#### REPORT OF ANALYSIS



Client: Golder Associates Ltd. (Ottawa)

32 Steacie Drive

Kanata, ON K2K 2A9

Attention: Ms. Caitlin Cooke

Report Number:

1126052 2011-11-14

Date Submitted:

2011-11-07

Project:

Date:

11-1122-0129

P.O. Number:

Chain of Custody Number: 155926							Matrix:		Water	
		LAB ID:	923239	923240	923241	923242			GUIDELINE	
	Sam	ple Date:	2011-11-07	2011-11-07	2011-11-07	2011-11-07				
	Si	ample ID:	S-1	S-2	S-3	S-4			ODWSOG	
									00,,,000	
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
Alkalinity as CaCO3	mg/L	5	284	312	332	295		OG	500	mg/L
Chloride	mg/L	1	89	80	104	90		AO	250	mg/L.
Colour	TCU	2	<2	<2	2	<2		AO	5	TCU
Conductivity	uS/cm	5	848	992	1000	853				
Dissolved Organic Carbon	mg/L	0.5	1.5	1.3	1.6	1.2		AO	5	mg/L
Fluoride	mg/L	0.1	0.29	0.11	<0.10	0.27		MAC	1.5	mg/L
Hydrogen Sulphide	mg/L	0.01	2.88	0.14	<0.01	<0.10		AO	0.05	mg/L
N-NH3 (Ammonia)	mg/L	0.02	0.76	0.14	0.07	0.70				
N-NO2 (Nitrite)	mg/L	0.1	<0.10	<0.10	<0.10	< 0.10		MAC	1.0	mg/L
N-NO3 (Nitrate)	mg/L	0.1	0.14	<0.10	<0.10	< 0.10		MAC	10.0	mg/L
pΗ			7.96	7.91	7.90	8.03			6.5-8.5	
Phenols	mg/L	0.001	0.002	<0.001	<0.001	<0.001				
Sulphate	mg/L	1	22	95	43	22		AO	500	mg/L
Tannin & Lignin	mg/L	0.1	<0.1	<0.1	<0.1	<0.1				
Total Dissolved Solids (COND - CALC)	mg/L	1	551	645	650	554		AO	500	mg/L
Total Kjeldahl Nitrogen	mg/L	0.1	0.74	0.26	<0.10	0.87				
Turbidity	NTU	0.1	102	28.4	7.6	37.1		MAC	1.0	UTN
Hardness as CaCO3	mg/L	1	297	471	439	279		OG	100	mg/L
Ion Balance	-	0.01	1.04	1.08	1.06	0.94				
Calcium	mg/L	1	76	169	156	74				
Magnesium	mg/L	1	26	12	12	23				
Potassium	mg/L	1	8	3	2	6				
Sodium	mg/L	2	66	41	51	60	1	AO	200	mg/L
Iron	mg/L	0.03	1.48	1.86	0.82	0.35		AO	0.3	mg/L
Manganese	mg/L	0.01	0.05	0.08	0.05	0.03		AO	0.05	mg/L

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration

923242: H2S MRL elevated due to sample turbidity.

**APPROVAL** 

Inorganic Lab Supervisor

**REPORT OF ANALYSIS** 



Client: Golder Associates Ltd. (Ottawa)

32 Steacie Drive

Kanata, ON K2K 2A9

Attention: Ms. Caitlin Cooke

Report Number:

1126052 2011-11-14

Date Submitted:

2011-11-07

Project:

Date:

11-1122-0129

P.O. Number:

Mater

Chain of Custody Number: 155926							Matrix:		Water	
		LAB ID:							GUIDELINE	
	Sam	ple Date:								
		ample ID:	LAB BLANK	LAB QC % RECOVERY	QC RECOVERY RANGE	DATE ANALYSED			ODWSOG	,
PARAMETER	UNITS	MRL						TYPE	LIMIT	UNITS
Alkalinity as CaCO3	mg/L	5	<5	101	95-105	2011-11-09		OG	500	mg/L
Chloride	mg/L	1	<1	99	90-112	2011-11-10		AO	250	mg/L
Colour	TCU	2	<2	100	80-120	2011-11-09		AO	5	TCU
Conductivity	uS/cm	5	<5	99	95-105	2011-11-09				
Dissolved Organic Carbon	mg/L	0.5	<0.5	90	84-116	2011-11-10		AO	5	mg/L
Fluoride	mg/L	0.1	<0.10	100	90-110	2011-11-09		MAC	1.5	mg/L
Hydrogen Sulphide	mg/L	0.01	<0.01	84	33-166	2011-11-14		AO	0.05	mg/L
N-NH3 (Ammonia)	mg/L	0.02	<0.02	95	85-115	2011-11-08				
N-NO2 (Nitrite)	mg/L	0.1	<0.10	93	80-120	2011-11-10	1	MAC	1.0	mg/L
N-NO3 (Nitrate)	mg/L	0.1	<0.10	108	80-120	2011-11-10		MAC	10.0	mg/L
pH		1	5.78	99	90-110	2011-11-09			6.5-8.5	
Phenols	mg/L	0.001	<0.001	112	73-127	2011-11-11				
Sulphate	mg/L	1	<1	98	90-110	2011-11-10		AO	500	mg/L
Tannin & Lignin	mg/L	0.1	<0.1	94	80-120	2011-11-10				
Total Dissolved Solids (COND - CALC)	mg/L	1	<1		-	2011-11-14		AO	500	mg/L
Total Kjeldahl Nitrogen	mg/L	0.1	<0.10	97	77-123	2011-11-11				
Turbidity	NTU	0.1	<0.1	100	73-127	2011-11-08		MAC	1.0	NTU
Hardness as CaCO3	mg/L	1	<1		-	2011-11-14	İ	OG	100	mg/L
Ion Balance		0.01	<0.01		-	2011-11-14				
Calcium	mg/L	1	<1	100	80-120	2011-11-09	1		ļ	
Magnesium	mg/L	1	<1	98	80-120	2011-11-09				
Potassium	mg/L	1	<1	100	80-120	2011-11-09				
Sodium	mg/L	2	<2	100	80-120	2011-11-09	1	AO	200	mg/L
iron	mg/L	0.03	<0.03	108	88-112	2011-11-08		AO	0.3	mg/L
Manganese	mg/L	0.01	<0.01	100	91-109	2011-11-08		AO	0.05	mg/L
-										

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Lorna Wilson

Inorganic Lab Supervisor

## **EXOVA** ACCUTEST

#### **REPORT OF ANALYSIS**



Client: Golder Associates Ltd. (Ottawa)

32 Steacie Drive

Report Number:

Date Submitted:

1126582

Kanata, ON

Attention: Ms. Caitlin Cooke

Date:

2011-11-16 2011-11-14

K2K 2A9

Project:

11-1122-0124

Chain of Custody Number: 156190						P.O. Number: Matrix:		Groundwater	r
	L	AB ID:	924767					GUIDELINE	
	Sample	Date:	2011-11-14						
	Sam	ple ID:	11-5					ODWSOG	
PARAMETER		MRL					TYPE	LIMIT	UNITS
N-NO3 (Nitrate)	mg/L	0.1	<0.10				MAC	10.0	mg/L
			·						
					<u> </u>			İ	
				i			ĺ		
			·						
					. *				
								'	

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Lorna Wilson

Inorganic Lab Supervisor

8-146 Colonnade Road, Ottawa, ON, K2E 7Y1

#### **EXOVA** ACCUTEST

#### **REPORT OF ANALYSIS**



Client: Golder Associates Ltd. (Ottawa)

32 Steacie Drive

Report Number:

Date Submitted:

1126582

Kanata, ON

Attention: Ms. Caitlin Cooke

Date:

2011-11-16 2011-11-14

Kanata, Or K2K 2A9

Project:

11-1122-0124

Chain of Custody Number: 156190		LAB ID:		I	<u> </u>	1	P.O. Number: Matrix:		Groundwater GUIDELINE	r
	Sa	mple Date: Sample ID:	LAB BLANK	LAB QC % RECOVERY	QC RECOVERY RANGE	DATE ANALYSED			ODWSOG	
PARAMETER	UNITS	MRL				`		TYPE	LIMIT	UNITS
N-NO3 (Nitrate)	mg/L	0.1	<0.10	97	80-120	2011-11-15		MAC	10.0	mg/L

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Lorna Wilson

Inorganic Lab Supervisor



# **APPENDIX G**

**Nitrate Dilution Calculation** 



Input	<b>Parameters</b>
-------	-------------------

Site Area	29,000 m²	(approximately 2.90 hectares)
Net Potential Infiltration (NPI)	180 mm/yr	
Nitrate strength in effluent	40 mg/L	
Water usage per employee	125 L/day	
Maximum number of employees	35	

#### **Dilution Calculation**

Annual infiltration across site	5.22E+06 L/yr	= NPI * site area
, illinaar illintration across sits	0.222.00 2, y.	111 1 0110 0100

Septic Loading for 35 employees 1.60E+06 L/yr = water usage * number of employeesNitrate loading 6.39E+07 mg/L/yr = septic loading * nitrate strength

Nitrate concentration at property boundary 9.37 mg/L = (nitrate loading)/(annual infiltration + septic loading)

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd. 32 Steacie Drive Kanata, Ontario, K2K 2A9 Canada

T: +1 (613) 592 9600



City of Ottawa Project No. 21493887

Public Works Department December 12, 2022

#### **ATTACHMENT 2**

Water Quality Summary and Lab Reports 1973087,1976973 and 1985044



Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa) Page 1 of 7

Report Number: 1973087

Date Submitted: 2022-03-09

Date Reported: 2022-03-16

Project: 21493887

COC #: 216712

#### **Dear Caitlin Cooke:**

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-56)	P	lease fin	ıd atta	ched t	he ana	lytica	l resul	ts fo	r your	samp	oles. If	you	have a	ny c	uestions r	egardin	g this r	eport,	please	do not	: hesita	te to c	call (	613-	-727-	-569	2)
------------------------------------------------------------------------------------------------------------------------------------------------------------	---	-----------	---------	--------	--------	--------	---------	-------	--------	------	----------	-----	--------	------	------------	---------	----------	--------	--------	--------	----------	---------	--------	------	-------	------	----

Report Comments:	
APPROVAL:	
	Addrine Thomas, Inorganics Supervisor

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: http://www.cala.ca/scopes/2602.pdf.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.



**Environment Testing** 

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1973087

Date Submitted: 2022-03-09

Date Reported: 2022-03-16

Project: 21493887

COC #: 216712

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.  Guideline	1613861 Water 2022-03-09 Hydro
Anions	Cl	1	mg/L	AO 250	61
Allions	F	0.10	mg/L	MAC 1.5	0.27
	N-NO2	0.10	mg/L	MAC 1.0	<0.10
	N-NO3	0.10	mg/L	MAC 10.0	<0.10
	SO4	1	mg/L	AO 500	35
General Chemistry	Alkalinity as CaCO3	5	mg/L	OG 30-500	290
Control on onlinetry	Colour (Apparent)	2	TCU	AO 5	96*
	Conductivity	5	uS/cm	7.0 0	747
	DOC	0.5	mg/L	AO 5	1.6
	pH	1.00	9, =	6.5-8.5	7.82
	Phenols	0.001	mg/L		<0.001
	S2-	0.01	mg/L	AO 0.05	0.21*
	TDS (COND - CALC)	1	mg/L	AO 500	486
	Turbidity	0.1	NTU	AO 5	13.2*
Hardness	Hardness as CaCO3	1	mg/L	OG 80-100	305*
Indices/Calc	Ion Balance	0.01			1.00
Metals	Ca	1	mg/L		94
	Fe	0.03	mg/L	AO 0.3	1.63*
	K	1	mg/L		5
	Mg	1	mg/L		17
	Mn	0.01	mg/L	AO 0.05	0.06*
	Na	1	mg/L	AO 200	46
Microbiology	Escherichia Coli	0	ct/100mL	MAC 0	0
	Faecal Coliforms	0	ct/100mL		0
	Heterotrophic Plate Count	0	ct/1mL		0

#### Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



**Environment Testing** 

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1973087

Date Submitted: 2022-03-09

Date Reported: 2022-03-16

Project: 21493887

COC #: 216712

Crown	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.  Guideline	1613861 Water 2022-03-09 Hydro
Group	Analyte	WIKL	Units	Guideline	
Microbiology	Total Coliforms	0	ct/100mL	MAC 0	0
Nutrients	N-NH3	0.010	mg/L		0.502
	Total Kjeldahl Nitrogen	0.100	mg/L		0.629
Subcontract	Tannin & Lignin	1	mg/L		<1.0

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



**Environment Testing** 

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1973087

Date Submitted: 2022-03-09

Date Reported: 2022-03-16

Project: 21493887

COC #: 216712

#### **QC Summary**

Analyte	Blank			QC % Rec	QC Limits
Run No 418290 Analysis/Extraction Method AMBCOLM1	Date 2022-03-10	Ana	llyst	DRA	
Escherichia Coli					
Faecal Coliforms					
Heterotrophic Plate Count					
Total Coliforms					
Run No 418310 Analysis/Extraction	Date 2022-03-10	Ana	llyst	AsA	
Method C SM4500-S2-D					
S2-	<0.01 mg/L			84	80-120
Run No 418351 Analysis/Extraction	Date 2022-03-10	Ana	lyst	IP	
Method SM5530D/EPA420.2					
Phenols	<0.001 mg/	L		53	50-120
Run No 418367 Analysis/Extraction	Date 2022-03-10	Ana	lyst	SKH	
Method EPA 351.2					
Total Kjeldahl Nitrogen	<0.100 mg/	L		106	70-130
Run No 418375 Analysis/Extraction	Date 2022-03-11	Ana	lyst	AsA	
Method SM 5310B					
DOC	<0.5 mg/L			93	80-120

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



**Environment Testing** 

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1973087

Date Submitted: 2022-03-09

Date Reported: 2022-03-16

Project: 21493887

COC #: 216712

#### **QC Summary**

An	alyte	Blank		QC % Rec	QC Limits
Run No 418376 Method C SM2120C	Analysis/Extraction Date 20	)22-03-11 <b>A</b>	nalyst	AsA	
Colour (Apparent)		<2 TCU		106	90-110
Run No 418403 Method C SM2130B	Analysis/Extraction Date 20	)22-03-11 <b>A</b>	nalyst	AaN	
Turbidity		<0.1 NTU		100	70-130
Run No 418413 Method EPA 350.1	Analysis/Extraction Date 20	)22-03-11 <b>A</b>	nalyst	SKH	
N-NH3		<0.010 mg/L		100	80-120
Run No 418426 Method SM 4110	Analysis/Extraction Date 20	)22-03-14 <b>A</b>	nalyst	AaN	
Chloride		<1 mg/L		100	90-110
N-NO2		<0.10 mg/L		104	90-110
N-NO3		<0.10 mg/L		105	90-110
SO4		<1 mg/L		105	90-110
Run No 418447 Method M SM3120B-3	Analysis/Extraction Date 20	)22-03-14 <b>A</b>	nalyst	Z S	
Calcium		<1 mg/L		100	90-110
Potassium		<1 mg/L		100	87-113

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



**Environment Testing** 

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1973087

Date Submitted: 2022-03-09

Date Reported: 2022-03-16

Project: 21493887

COC #: 216712

#### **QC Summary**

Analyte	Blank	QC % Rec	QC Limits
Magnesium	<1 mg/L	100	76-124
Sodium	<1 mg/L	106	82-118
Run No 418474 Analysis/Extraction Date 20 Method EPA 200.8	)22-03-14 <b>A</b> na	llyst SD	
Iron	<0.03 mg/L	104	80-120
Manganese	<0.01 mg/L	103	80-120
Run No 418491 Analysis/Extraction Date 20 Method SUBCONTRACT-A	)22-03-14 <b>A</b> na	llyst AET	
Tannin & Lignin	<1.0 mg/L	106	
Run No 418559 Analysis/Extraction Date 20 Method SM2320,2510,4500H/F	)22-03-15 <b>A</b> na	llyst AsA	
Alkalinity (CaCO3)	<5 mg/L	98	90-110
Conductivity	<5 uS/cm	99	90-110
F	<0.10 mg/L	95	90-110
рН		98	90-110
Run No 418578 Analysis/Extraction Date 20 Method C SM2340B	022-03-16 <b>A</b> na	llyst AET	
Hardness as CaCO3			
Ion Balance			

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



**Environment Testing** 

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1973087

Date Submitted: 2022-03-09

Date Reported: 2022-03-16

Project: 21493887

COC #: 216712

#### **QC Summary**

Analyte	Blank	QC % Rec	QC Limits
TDS (COND - CALC)			

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa) Page 1 of 4

Report Number: 1976973

Date Submitted: 2022-05-09

Date Reported: 2022-05-16

Project: 21493887

COC #: 216712

#### **Dear Caitlin Cooke:**

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-56)	P	lease fin	ıd atta	ched t	he ana	lytica	l resul	ts fo	r your	samp	oles. If	you	have a	ny c	uestions r	egardin	g this r	eport,	please	do not	: hesita	te to c	call (	613-	-727-	-569	2)
------------------------------------------------------------------------------------------------------------------------------------------------------------	---	-----------	---------	--------	--------	--------	---------	-------	--------	------	----------	-----	--------	------	------------	---------	----------	--------	--------	--------	----------	---------	--------	------	-------	------	----

eport Comments:	
APPROVAL:	
	Rebecca Koshy, Project Manager

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: http://www.cala.ca/scopes/2602.pdf.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.



**Environment Testing** 

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1976973

Date Submitted: 2022-05-09

Date Reported: 2022-05-16

Project: 21493887

COC #: 216712

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.  Guideline	1625012 GW 2022-03-09 Hydro - Dissolved
Metals	Ag	0.0001	mg/L		<0.0001
	Al	0.01	mg/L	OG 0.1	<0.01
	As	0.001	mg/L	IMAC 0.01	<0.001
	В	0.01	mg/L	IMAC 5.0	0.15
	Ва	0.01	mg/L	MAC 1.0	0.16
	Be	0.0005	mg/L		<0.0005
	Cd	0.0001	mg/L	MAC 0.005	<0.0001
	Со	0.0002	mg/L		<0.0002
	Cr	0.001	mg/L	MAC 0.05	<0.001
	Cu	0.001	mg/L	AO 1	0.004
	Filtration		mg/L		у
	Мо	0.005	mg/L		<0.005
	Ni	0.005	mg/L		<0.005
	Pb	0.001	mg/L	MAC 0.010	<0.001
	Sb	0.0005	mg/L	IMAC 0.006	<0.0005
	Se	0.001	mg/L	MAC 0.05	<0.001
	Sr	0.001	mg/L		1.59
	TI	0.0001	mg/L		<0.0001
	U	0.001	mg/L	MAC 0.02	0.001
	V	0.001	mg/L		<0.001
	Zn	0.01	mg/L	AO 5	<0.01

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



**Environment Testing** 

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1976973

Date Submitted: 2022-05-09

Date Reported: 2022-05-16

Project: 21493887

COC #: 216712

#### **QC Summary**

Analyte	Blank	QC % Rec	QC Limits	
Run No 421951 Analysis/Extraction Date 2022-05-13 Analyst SD  Method EPA 200.8				
Silver	<0.0001 mg/L	91	80-120	
Aluminum	<0.01 mg/L	116	80-120	
Arsenic	<0.001 mg/L	100	80-120	
Boron (total)	<0.01 mg/L	117	80-120	
Barium	<0.01 mg/L	110	80-120	
Beryllium	<0.0005 mg/L	113	80-120	
Cadmium	<0.0001 mg/L	109	80-120	
Cobalt	<0.0002 mg/L	103	80-120	
Chromium Total	<0.001 mg/L	106	80-120	
Соррег	<0.001 mg/L	107	80-120	
Filtration				
Molybdenum	<0.005 mg/L	99	80-120	
Nickel	<0.005 mg/L	107	80-120	
Lead	<0.001 mg/L	111	80-120	
Antimony	<0.0005 mg/L	90	80-120	
Selenium	<0.001 mg/L	109	80-120	

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



**Environment Testing** 

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1976973
Date Submitted: 2022-05-09
Date Reported: 2022-05-16
Project: 21493887
COC #: 216712

#### **QC Summary**

Analyte	Blank	QC % Rec	QC Limits
Strontium	<0.001 mg/L	104	80-120
Thallium	<0.0001 mg/L	110	80-120
Uranium	<0.001 mg/L	103	80-120
Vanadium	<0.001 mg/L	104	80-120
Zinc	<0.01 mg/L	110	80-120

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa) Page 1 of 4

Report Number: 1985044

Date Submitted: 2022-08-30

Date Reported: 2022-08-31

Project:

COC #: 899423

#### **Dear Caitlin Cooke:**

eport Comments:		
APPROVAL:		
	Emma-Dawn Ferguson, Chemist	

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: <a href="https://directory.cala.ca/">https://directory.cala.ca/</a>.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.



**Environment Testing** 

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1985044

Date Submitted: 2022-08-30

Date Reported: 2022-08-31

Project:

COC #: 899423

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1648217 Water 2022-08-30 SA1
Group	Analyte	MRL	Units	Guideline	
VOCs Surrogates	1,2-dichloroethane-d4	0	%		84
	4-bromofluorobenzene	0	%		90
	Toluene-d8	0	%		99
Volatiles	1,1-dichloroethylene	0.5	ug/L	MAC 14	<0.5
	1,2-dichlorobenzene	0.4	ug/L	MAC 200	<0.4
	1,2-dichloroethane	0.5	ug/L	IMAC 5	<0.5
	1,4-dichlorobenzene	0.4	ug/L	MAC 5	<0.4
	Benzene	0.5	ug/L	MAC 1	<0.5
	Bromodichloromethane	0.3	ug/L		<0.3
	Bromoform	0.4	ug/L		<0.4
	Carbon Tetrachloride	0.2	ug/L	MAC 2	<0.2
	Chloroform	0.5	ug/L		<0.5
	Dibromochloromethane	0.3	ug/L		<0.3
	Dichloromethane	4.0	ug/L	MAC 50	<4.0
	Ethylbenzene	0.5	ug/L	MAC 140	<0.5
	m/p-xylene	0.4	ug/L		<0.4
	Monochlorobenzene	0.5	ug/L	MAC 80	<0.5
	o-xylene	0.4	ug/L		<0.4
	Tetrachloroethylene	0.3	ug/L	MAC 10	<0.3
	Toluene	0.4	ug/L	MAC 60	<0.4
	Trichloroethylene	0.3	ug/L	MAC 5	<0.3
	Trihalomethanes (total)	1.5	ug/L		<1.5
	Vinyl Chloride	0.2	ug/L	MAC 1	<0.2
	Xylene; total	0.5	ug/L	MAC 90	<0.5

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



**Environment Testing** 

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

 Report Number:
 1985044

 Date Submitted:
 2022-08-30

 Date Reported:
 2022-08-31

Project:

COC #: 899423

#### **QC Summary**

Analyte	Blank	QC % Rec	QC Limits	
Run No 428649 Analysis/Extraction Date 2022-08-31 Analyst PJ Method EPA 8260				
Dichloroethylene, 1,1-	<0.5 ug/L	85	60-130	
Dichlorobenzene, 1,2-	<0.4 ug/L	104	60-130	
Dichloroethane, 1,2-	<0.5 ug/L	117	60-130	
Dichlorobenzene, 1,4-	<0.4 ug/L	91	60-130	
Benzene	<0.5 ug/L	106	60-130	
Bromodichloromethane	<0.3 ug/L	104	60-130	
Bromoform	<0.4 ug/L	100	60-130	
Carbon Tetrachloride	<0.2 ug/L	102	60-130	
Chloroform	<0.5 ug/L	112	60-130	
Dibromochloromethane	<0.3 ug/L	102	60-130	
Methylene Chloride	<4.0 ug/L	112	60-130	
Ethylbenzene	<0.5 ug/L	117	60-130	
m/p-xylene	<0.4 ug/L	120	60-130	
Chlorobenzene	<0.5 ug/L	115	60-130	
o-xylene	<0.4 ug/L	111	60-130	
Tetrachloroethylene	<0.3 ug/L	102	60-130	

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



**Environment Testing** 

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

 Report Number:
 1985044

 Date Submitted:
 2022-08-30

 Date Reported:
 2022-08-31

Project:

COC #: 899423

#### **QC Summary**

Analyte	Blank	QC % Rec	QC Limits
Toluene	<0.4 ug/L	108	60-130
Trichloroethylene	<0.3 ug/L	98	60-130
Vinyl Chloride	<0.2 ug/L	86	60-130
Run No 428665 Analysis/Extraction Date 20 Method EPA 8260	)22-08-31 Ana	llyst PJ	
Xylene Mixture			
Run No 428667 Analysis/Extraction Date 20 Method EPA 8260	)22-08-31 <b>Ana</b>	il <b>yst</b> PJ	
Trihalomethanes (total)			80-120

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

City of Ottawa Project No. 21493887

Public Works Department December 12, 2022

#### **ATTACHMENT 3**

**Updated Nitrate Dilution Calculation** 

**Input Parameters** 

Site Area 26,480 m² (approximately 2.6 hectares)

Net Potential Infiltration (NPI)180 mm/yrDaily effluent volume10000 L/dayNitrate strength in effluent40 mg/LNitrate reduction via pre-treatment50%

**Dilution Calculation** 

Annual infiltration across site 4.77E+06 L/yr = NPI * site area

Septic Loading 3.65E+06 L/yr = daily effluent volume * 365 days

Nitrate loading 7.30E+07 mg/L/yr = septic loading * nitrate strength * nitrate reduction | Nitrate concentration at property boundary | 8.7 mg/L = (nitrate loading)/(annual infiltration + septic loading)