PATERSON GROUP

Geotechnical Investigation Proposed Commercial Building

1545 Merivale Road Ottawa, Ontario

Prepared for 1545 Merivale Inc. / 1545 Merivale A Inc.

Report PG6288-1 dated August 3, 2022

Table of Contents

PAGE
1.0 Introduction 1
2.0 Proposed Development 1
3.0 Method of Investigation 2
3.1 Field Investigation 2
3.2 Field Survey 3
3.3 Laboratory Testing 3
3.4 Analytical Testing 3
4.0 Observations 4
4.1 Surface Conditions 4
4.2 Subsurface Profile 4
4.3 Groundwater 5
5.0 Discussion 6
5.1 Geotechnical Assessment 6
5.2 Site Grading and Preparation 6
5.3 Foundation Design 7
5.4 Design for Earthquakes 8
5.5 Slab-on-Grade Construction 8
5.6 Pavement Design 8
6.0 Design and Construction Precautions 10
6.1 Foundation Drainage and Backfill 10
6.2 Protection of Footings Against Frost Action 10
6.3 Excavation Side Slopes 10
6.4 Pipe Bedding and Backfill 11
6.5 Groundwater Control 12
6.6 Winter Construction. 12
6.7 Corrosion Potential and Sulphate 13
7.0 Recommendations 14
8.0 Statement of Limitations 15

Appendices

Appendix 1 Soil Profile and Test Data Sheets
Symbols and Terms
Analytical Testing Results
Appendix $2 \quad$ Figure 1 - Key Plan
Drawing PG6288-1 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by 1545 Merivale Inc. / 1545 Merivale A Inc. to conduct a geotechnical investigation for the proposed commercial building to be located at 1545 Merivale Road in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2 of this report).

The objectives of the geotechnical investigation were to:
\square Determine the existing subsoil and groundwater conditions at this site by means of boreholes.
\square Provide geotechnical recommendations pertaining to the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the proposed development as they are understood at the time of preparation of this report.

Investigating for the presence or potential presence of contamination on the subject property was not part of the scope of work of the present investigation. Therefore, the present report does not address environmental issues.

2.0 Proposed Development

Based on the available drawings, it is understood that the proposed development will consist of a commercial building with a slab-on-grade and an approximate footprint of $2,500 \mathrm{~m}^{2}$, to be located at the rear of the subject site. The proposed building will be surrounded by asphalt-paved access lanes and parking areas with landscaped margins. It is also understood that the proposed development will be municipally serviced.

It is further understood that the existing commercial building at the rear of the site will need to be demolished to allow for construction of the proposed development.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The field program for the current geotechnical investigation was carried out on July 18, 2022, and consisted of advancing a total of 3 boreholes to a maximum depth of 4.6 m below the existing ground surface. The borehole locations were distributed in a manner to provide general coverage of the subject site, taking into consideration underground utilities and site features.

The borehole locations are shown on Drawing PG6288-1 - Test Hole Location Plan, which is included in Appendix 2.

The boreholes were drilled using a track-mounted drill rig operated by a two-person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The drilling procedure consisted of augering to the required depths at the selected locations, and sampling and testing the overburden.

Sampling and In Situ Testing

Soil samples were recovered using a 50 mm diameter split-spoon sampler or from the auger flights. The split-spoon and auger samples were classified on site and placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the split-spoon and auger samples were recovered from the boreholes are shown as SS and AU, respectively, on the Soil Profile and Test Data sheets in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm .

The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data sheets in Appendix 1 of this report.

3.2 Field Survey

The borehole locations were selected by Paterson to provide general coverage of the proposed development, taking into consideration existing site features, and underground utilities. The borehole location and ground surface elevation at each borehole location were surveyed by Paterson using a handheld GPS and referenced to a geodetic datum.

The locations of the boreholes and ground surface elevation at each borehole location are presented on Drawing PG6288-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples were recovered from the subject site and visually examined in our laboratory to review the results of the field logging. All samples will be stored in the laboratory for a period of one (1) month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures by determining the concentration of sulphate and chloride, the resistivity, and the pH . The results are presented in Appendix 1 and are discussed further in Section 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is currently occupied by 2 existing commercial structures: a restaurant fronting onto Merivale Road, and a commercial structure at the rear of the site. The remainder of the site generally consists of asphalt-paved access lanes and parking areas.

The subject site is bordered by Merivale Road to the west, commercial properties to the north and south, and a recreational property (curling club) to the east. The existing ground surface across the site is relatively level at approximate geodetic elevation 96 m.

4.2 Subsurface Profile

Overburden

Generally, the subsurface profile consists of fill underlain by silty clay and/or glacial till. The fill was generally observed to extend to approximate depths of 1.5 to 1.8 m below the existing ground surface, and consists of a compact to dense, brown silty clay to silty sand with gravel and occasional cobbles.

At borehole BH 2-22, a stiff, brown silty clay was encountered underlying the fill, extending to an approximate depth of 2.2 m .

A glacial till deposit was encountered underlying the fill and/or silty clay at depths of about 1.5 to 2.2 m below existing site grades. The glacial till was observed to consist of brown silty sand to silty clay with gravel, cobbles, and boulders.

Practical refusal to augering was encountered at approximate depths of 3.1 to 4.6 m below the existing ground surface.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for the details of the soil profile encountered at each test hole location.

Bedrock

Based on available geological mapping, the bedrock in the subject area consists of limestone and dolomite of the Gull River formation with an overburden drift thickness of 3 to 5 m .

4.3 Groundwater

The groundwater level was measured in the flexible polytubing standpipes installed in boreholes BH 2-22 and BH 3-22 on August 2, 2022 at approximate depths of 2.89 and 1.71 m , respectively.

The long-term groundwater level can also be estimated based on the observed colour, moisture content and consistency of the recovered soil samples. Based on these observations, it is anticipated that the long-term groundwater table was not encountered during the field program and is located below the depths of the boreholes.

However, it should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater levels could vary at the time of construction.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is considered suitable for the proposed development. It is recommended that the proposed building be founded on conventional spread footings bearing on the undisturbed, stiff silty clay or compact to dense glacial till.

Should fill be encountered at the underside of footing elevation, it should be subexcavated to the surface of the undisturbed, stiff silty clay or compact to dense glacial till and replaced with engineered fill to the proposed founding elevation. The lateral limits of the engineered fill placement should be in accordance with our lateral support recommendations provided herein.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and fill, such as those containing organic or deleterious materials, should be stripped from under any buildings and other settlement sensitive structures. It is anticipated that the existing fill within the proposed building footprint, free of deleterious material and significant amounts of organics, can be left in place below the proposed slab-on-grade, outside of the lateral support zones for the footings. However, it is recommended that the existing fill layer be proof-rolled several times under dry conditions and above freezing temperatures and approved by Paterson personnel at the time of construction. Any poor performing areas noted during the proof-rolling operation should be removed and replaced with an approved fill.

Existing foundation walls and other demolished debris should be completely removed from the proposed building perimeter and within the lateral support zones of the foundation. Under paved area, existing construction remnants, such as foundation walls, should be excavated to a minimum of 1 m below final grade.

Fill Placement

Engineered fill used for grading beneath the proposed building should consist of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. This material should be tested and approved prior to delivery to the site.

The fill should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the buildings and paved areas should be compacted to at least 98% of the material's standard Proctor maximum dry density (SPMDD).

Non-specified existing fill, along with site-excavated soil, can be used as general landscaping fill where settlement of the ground surface is of minor concern. This material should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If this material is to be used to build up the subgrade level for areas to be paved, it should be compacted in thin lifts to at least 95% of the material's SPMDD.

5.3 Foundation Design

Conventional Spread Footings

Footings placed on an undisturbed, stiff silty clay or compact to dense glacial till bearing surface, or on engineered fill which is placed directly over these bearing strata, can be designed using a bearing resistance value at serviceability limit states (SLS) of $200 \mathbf{k P a}$ and a factored bearing resistance value at ultimate limit states (ULS) of $300 \mathbf{k P a}$. A geotechnical resistance factor of 0.5 was incorporated to the bearing resistance value at ULS.

An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, have been removed, in the dry, prior to the placement of concrete footings.

Footings places on a soil bearing surface and designed using the bearing resistance values at SLS given above will be subjected to potential post construction total and different settlements of 25 to 20 mm , respectively.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to a stiff silty clay, compact to dense glacial, or engineered fill bearing surface when a plane extending down and out from the bottom edges of the footing, at a minimum of $1.5 \mathrm{H}: 1 \mathrm{~V}$, passes only through in situ soil of the same or higher capacity as that of the bearing medium.

5.4 Design for Earthquakes

The site class for seismic site response can be taken as Class C. Soils underlying the subject site are not susceptible to liquefaction. Reference should be made to the latest revision of the OBC 2012 for a full discussion of the earthquake design requirements.

5.5 Slab-on-Grade Construction

With the removal of all topsoil and deleterious fill within the footprint of the proposed building, the existing fill subgrade will be considered an acceptable subgrade on which to commence backfilling for floor slab construction. A vibratory drum roller should complete several passes over the slab-on-grade subgrade surface as a proof-rolling program. Any poor performing areas should be removed and reinstated with an engineered fill, such as OPSS Granular B Type II. It is recommended that the upper 200 mm of sub-floor fill consists of 19 mm clear crushed stone.

5.6 Pavement Design

The pavement structures for car only parking areas and access lanes are presented in Tables 1 and 2 below.

Table 1-Recommended Pavement Structure - Car Only Parking Areas	
Thickness (mm)	Material Description
50	Wear Course - Superpave 12.5 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
300	SUBBASE - OPSS Granular B Type II
SUBGRADE - Imported fill, or OPSS Granular B Type I or II material placed over in-situ soil.	

Table 2-Recommended Pavement Structure - Access Lanes	
Thickness (mm)	Material Description
40	Wear Course - Superpave 12.5 Asphaltic Concrete
50	Binder Course - Superpave 19.0 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
450	SUBBASE - OPSS Granular B Type II
SUBGRADE - Imported fill, or OPSS Granular B Type I or II material placed over in situ soil.	

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 99% of the SPMDD using suitable vibratory equipment.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

Foundation Drainage

The proposed structure will not contain below-grade space, therefore a perimeter drainage system is not considered to be required. However, should the proposed building contain occupied below-grade space, it is recommended that a perimeter foundation drainage system be provided. The system, where required, should consist of a 150 mm diameter perforated and corrugated plastic pipe, surrounded on all sides by 150 mm of 19 mm clear crushed stone, which is placed at the footing level around the exterior perimeter of the below-grade space. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Foundation Backfill

The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a drainage geocomposite, such as Delta Drain 6000, connected to the perimeter foundation drainage system. Backfill against the exterior sides of the foundation walls should consist of free-draining, non-frost susceptible granular materials. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should otherwise be used for this purpose.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are recommended to be insulated against the deleterious effects of frost action. A minimum 1.5 m thick soil cover, or an equivalent combination of soil cover and foundation insulation, should be provided in this regard.

Exterior unheated footings, such as for isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure, and require additional protection, such as soil cover of 2.1 m , or an equivalent combination of soil cover and foundation insulation.

6.3 Excavation Side Slopes

The side slopes of excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is expected that
sufficient room will be available for the greater part of the excavation to be undertaken by open-cut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at $1 \mathrm{H}: 1 \mathrm{~V}$ or flatter. The flatter slope is required for excavation below groundwater level. Excavations below the groundwater level should be cut back at a maximum slope of $1.5 \mathrm{H}: 1 \mathrm{~V}$. The subsoil at this site is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

A minimum of 150 mm of OPSS Granular A should be placed for bedding for sewer or water pipes when placed on a soil subgrade. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to a minimum of 300 mm above the obvert of the pipe, should consist of OPSS Granular A (concrete or PSM PVC pipes) or sand (concrete pipe). The bedding and cover materials should be placed in maximum 225 mm thick lifts and compacted to 98% of the SPMDD.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) and above the cover material should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 225 mm thick loose lifts and compacted to a minimum of 98% of the material's SPMDD. All cobbles larger than 200 mm in their longest direction should be segregated from re-use as trench backfill.

6.5 Groundwater Control

It is anticipated that groundwater infiltration into the excavations should be controllable using open sumps. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

Groundwater Control for Building Construction

A temporary Ministry of Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required if more than 400,000 L/day of ground and/or surface water are to be pumped during the construction phase. At least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

Impacts on Neighbouring Properties

It is not anticipated that the proposed construction will extend below the groundwater level. Therefore, groundwater lowering is not anticipated during or after construction and accordingly, the proposed development will not negatively impact the neighbouring structures.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project. The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures using straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost into the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results of analytical testing show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (normal cement) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a non-aggressive to slightly aggressive corrosive environment.

7.0 Recommendations

It is a requirement for the foundation design data provided herein to be applicable that the following material testing and observation program be performed by the geotechnical consultant.

- Observation of all bearing surfaces prior to the placement of concrete.
\square Sampling and testing of the concrete and fill materials.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
\square Field density tests to determine the level of compaction achieved.
\square Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued upon the completion of a satisfactory inspection program by the geotechnical consultant.

All excess soils must be handled as per Ontario Regulation 406/19: On-Site and Excess Soil Management.

8.0 Statement of Limitations

The recommendations provided are in accordance with the present understanding of the project. Paterson requests permission to review the recommendations when the drawings and specifications are completed.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests immediate notification to permit reassessment of our recommendations.

The recommendations provided herein should only be used by the design professionals associated with this project. They are not intended for contractors bidding on or undertaking the work. The latter should evaluate the factual information provided in this report and determine the suitability and completeness for their intended construction schedule and methods. Additional testing may be required for their purposes.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than 1545 Merivale Inc. / 1545 Merivale A Inc. or their agents is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

Paterson Group Inc.

Jada Goodman
Scott S. Dennis, P.Eng.

Report Distribution:

- 1545 Merivale Inc. / 1545 Merivale A Inc. (email copy)
- Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS SYMBOLS AND TERMS ANALYTICAL TESTING RESULTS

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure. composed of regular alternating layers of silt and clay. composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Varved	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Well-Graded	-	Predominantly of one grain size (see Grain Size Distribution).
Uniformly-Graded	-	

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) ' N ' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm , required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm . An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density \%
Very Loose	<4	
Loose	$4-10$	<15
Compact	$10-30$	$15-35$
Dense	$30-50$	$65-65$
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	' N ' Value
Very Soft	<12	
Soft	$12-25$	<2
Firm	$25-50$	$2-4$
Stiff	$50-100$	$4-8$
Very Stiff	$100-200$	$8-15$
Hard	>200	$15-30$

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, St , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

Low Sensitivity:	$\mathrm{St}_{\mathrm{t}}<2$
Medium Sensitivity:	$2<\mathrm{St}_{\mathrm{t}}<4$
Sensitive:	$4<\mathrm{St}_{\mathrm{t}}<8$
Extra Sensitive:	$8<\mathrm{St}_{\mathrm{t}}<16$
Quick Clay:	$\mathrm{St}_{\mathrm{t}}>16$

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).
The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closelyspaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD \%	ROCK QUALITY
90-100	Excellent, intact, very sound
$75-90$	Good, massive, moderately jointed or sound
$50-75$	Fair, blocky and seamy, fractured
$25-50$	Poor, shattered and very seamy or blocky, severely fractured
$0-25$	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS - Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW - Thin wall tube or Shelby tube, generally recovered using a piston sampler
G - "Grab" sample from test pit or surface materials
AU - Auger sample or bulk sample
WS - Wash sample
RC - Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC\%	-	Natural water content or water content of sample, \%
LL	-	Liquid Limit, \% (water content above which soil behaves as a liquid)
PL	-	Plastic Limit, \% (water content above which soil behaves plastically)
PI	-	Plasticity Index, \% (difference between LL and PL)
Dxx	-	Grain size at which $\mathrm{xx} \%$ of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10\% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Cc	-	Concavity coefficient $=(\mathrm{D} 30)^{2} /(\mathrm{D} 10 \times \mathrm{D} 60)$
Cu	-	Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:
Well-graded gravels have: $1<\mathrm{Cc}<3$ and $\mathrm{Cu}>4$
Well-graded sands have: $\quad 1<\mathrm{Cc}<3$ and $\mathrm{Cu}>6$
Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10\% finer than 0.075 mm or the \#200 sieve)

CONSOLIDATION TEST

p^{\prime} 。	Present effective overburden pressure at sample depth
p^{\prime} c	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	Recompression index (in effect at pressures below p^{\prime})
Cc	Compression index (in effect at pressures above p^{\prime})
OC Ratio	Overconsolidaton ratio $=p^{\prime}{ }_{c} / \mathrm{p}^{\prime}{ }_{0}$
Void Ratio	Initial sample void ratio = volume of voids / volume of solids
Wo	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.
Topsoil

Asphalt

Fill

Peat

Sand

Silty Sand

MONITORING WELL AND PIEZOMETER CONSTRUCTION

MONITORING WELL CONSTRUCTION

PIEZOMETER CONSTRUCTION

Certificate of Analysis
Client: Paterson Group Consulting Engineers
Client PO: 55301

Physical Characteristics

$\%$ Solids	0.1% by Wt.	91.3	-	-	-

General Inorganics

pH	0.05 pH Units	7.62	-	-	-
Resistivity	0.10 Ohm.m	59.3	-	-	-

Anions

Chloride	5 ug/g dry	$9[1]$	-	-	-
Sulphate	5 ug/g dry	$39[1]$	-	-	-

APPENDIX 2

FIGURE 1 - KEY PLAN
DRAWING PG6288-1 TEST HOLE LOCATION PLAN

FIGURE 1

KEY PLAN

