Servicing and Stormwater Management Brief – Wellings of Stittsville Phase 2, 20 Cedarow Court

Project # 160401511

Prepared for: Nautical Lands Group

Prepared by: Stantec Consulting Ltd.

July 14, 2022

Revision	Description	Author		Quality Check	
1	Issued for Review	2020-05-19	TR	2020-05-20	DT
2	Issued for Review	2021-08-30	TR	2021-08-31	DT
3	Issued for Review	2022-03-29	DT	2022-03-29	РM
4	Issued for Review	2022-07-14	DT	2022-07-14	PM

Sign-off Sheet

This document entitled Servicing and Stormwater Management Brief – Wellings of Stittsville Phase 2, 20 Cedarow Court was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Nautical Lands Group. (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by (signature)

Dustin Thiffault, P.Eng.

Reviewed by (signature)

Peter Moroz, P.Eng.

July 14, 2022

Table of Contents

1.0		1.4
2.0	BACKGROUND	2.1
3.0 3.1 3.2 3.3 3.4	WATER SUPPLY SERVICING BACKGROUND WATER DEMANDS PROPOSED SERVICING SUMMARY OF FINDINGS	3.1 3.1 3.2
4.0 4.1 4.2 4.3	WASTEWATER SERVICING BACKGROUND DESIGN CRITERIA PROPOSED SERVICING	4.1 4.1 4.1
5.0 5.1 5.2 5.3	STORMWATER MANAGEMENT.OBJECTIVES.SWM CRITERIA AND CONSTRAINTS5.2.1Pre-Development ConditionsSTORMWATER MANAGEMENT DESIGN.5.3.1Design Methodology5.3.2Modeling Rationale5.3.3Input Parameters.5.3.4Model Results5.3.5Water Quality Control	5.1 5.2 5.3 5.3 5.3 5.4 5.6 5.9
6.0	GRADING AND DRAINAGE	6.1
7.0	UTILITIES	7.1
8.0	APPROVALS	8.1
9.0	EROSION CONTROL DURING CONSTRUCTION	9.1
10.0	GEOTECHNICAL INVESTIGATION	
11.0 11.1 11.2 11.3 11.4 11.5 11.6	CONCLUSIONS	11.1 11.1 11.1

July 14, 2022

LIST OF TABLES

Table 1: General Subcatchment Parameters	5.6
Table 2: Subcatchment Parameters	5.6
Table 3: Storage Node Parameters	
Table 4: Outlet/Orifice Parameters	
Table 5: Site Peak Discharge Rates	
Table 6: Schedule of Roof Release Rates	
Table 7: Maximum Surface Water Depths	
Table 8: Recommended Pavement Structure – At-Grade Parking Areas	
Table 9: Recommended Pavement Structure – Access Lanes and Heavy Truc	k Parking
Areas	0

LIST OF FIGURES

Figure 1 Location Plan	1.	.4
Figure 2: Schematic Representing Model Object Roles	5.	.5

July 14, 2022

LIST OF APPENDICES

APPEN	IDIX A	WATER SUPPLY SERVICING	A.1
A.1	Domesti	c Water Demand Estimate	A.1
A.2	Fire Flow	/ Requirements Per FUS	A.2
A.3	Boundry	Conditions	A.3
APPEN	IDIX B	WASTEWATER SERVICING	В.1
B.1	Sanitary	Sewer Design	B.1
		Excerpts from the KWMSS	
APPEN	IDIX C	STORMWATER MANAGEMENT	C.1
C.1	Storm Se	ewer Design Sheet And Roof Storage Calculations	C.1
C.2	SAMPLE	PCSWMM Model Input (12HR 100YR SCS)	C.2
C.3		PCSWMM Model Output (12HR 100yr SCS)	
C.4		Separator Sizing Calculations	
C.5		ecifications	
C.6		w Court Storm Sewer Capacity	
C.7		s from WOS Phase 1	
APPEN	NDIX D	GEOTECHNICAL INVESTIGATION	D.1
APPEN	NDIX E	DRAWINGS	E.1

Introduction July 14, 2022

1.0 INTRODUCTION

Stantec Consulting Ltd. has been commissioned by Nautical Land Group. to prepare the following servicing study in support of the development at 20 Cedarow Court located within the City of Ottawa. The subject property is located northwest of the intersection of Huntmar Road and Hazeldean Road. The property location is indicated in **Figure 1**. The proposed mixed use residential and commercial development comprises approximately 2.29ha of land and proposes construction of a 284 unit, six storey residential building (Phase 2 and 3), a second 200 unit (Phase 4), six storey residential building, as well as commercial buildings, all of which are proposed to be connected via one level of underground parking. The site will be constructed in two phases, beginning with building phases 2 and 3 located adjacent to Hazeldean Road, and ultimately constructing phase 4. The intent of this report is to provide a servicing scenario for the site that is free of conflicts, provides on-site servicing in accordance with City of Ottawa design guidelines, and utilizes the existing local infrastructure in accordance with the guidelines outlined in background documents, and as per consultation with City of Ottawa.

Figure 1 Location Plan

Background July 14, 2022

2.0 BACKGROUND

Documents referenced in preparing the site design for the 20 Cedarow Court Development include:

- Kanata West Master Servicing Study, Stantec Consulting Ltd., Cumming Cockburn Limited / IBI, October 1, 2014.
- Carp River PCSWMM Model Documentation Draft Report, City of Ottawa, March 2016.
- Geotechnical Investigation, Proposed Mixed Use Development Wellings of Stittsville Phase 2 20 Cedarow Court, Ottawa, Ontario, Paterson Group, March 7, 2019.
- Geotechnical Plan Review, Proposed Mixed Use Development Wellings of Stittsville Phase 2 20 Cedarow Court, Ottawa, Ontario, Paterson Group, August 12, 2021.
- Servicing and Stormwater Management Brief-5731 Hazeldean Road, Stantec Consulting Ltd., March 22, 2017
- Tree Conservation Report 5731 Hazeldean Road, IFS Associates, March 11, 2016.
- City of Ottawa Sewer Design Guidelines, City of Ottawa, October 2012.f
- City of Ottawa Design Guidelines Water Distribution, City of Ottawa, July 2010.

Water Supply Servicing July 14, 2022

3.0 WATER SUPPLY SERVICING

3.1 BACKGROUND

The proposed development comprises two residential apartment buildings with commercial space fronting Hazeldean Road, and complete with associated infrastructure and underground parking. The site is located west of Huntmar Drive, north of Hazeldean Road, and south of Poole Creek, and lies within the City's 3W pressure zone. The site will be serviced at two connection points via a proposed 200mm diameter connection to the existing stub within the Fringewood Avenue ROW at the eastern quadrant of the site, and a 300mm diameter connection to the existing 300mm diameter watermain within Cedarow Court along the western boundary of the site. The stub on Fringewood Avenue connects directly to the existing 762mm feedermain within Hazeldean Road immediately south of the site. The plumbing through the buildings will be looped.

3.2 WATER DEMANDS

Water demands for the development were estimated using the Ministry of Environment's Design Guidelines for Drinking Water Systems (2008) and the Ottawa Design Guidelines – Water Distribution (2010). A daily rate of 28,000 L/gross ha/day has been applied for commercial building space, whereas the residential facility demand was estimated at 350L/person/day with an estimated population of 1.4 persons/unit for bachelor or one bedroom apartments and 2.1 persons/unit for two bedroom apartments. See **Appendix A.1** for detailed domestic water demand estimates.

The average day demand (AVDY) for the entire site was determined to be 3.2 L/s. The maximum daily demand (MXDY) is 1.5 times the AVDY for commercial property demand and 2.5 times the AVDY for residential demand, which equates to 7.86 L/s. The peak hour demand (PKHR) is 1.8 times the MXDY for commercial property and 2.2 times the MXDY for residential properties, totaling 17.19 L/s.

Non-combustible construction with 2-hour fire separation between each floor was considered in the assessment of the fire flow requirements for the site according to the FUS Guidelines. The FUS Guidelines indicate that low hazard occupancies include apartments, dwellings, dormitories, hotels, and schools, and as such, a low hazard occupancy / limited combustible building contents credit was applied. A sprinkler system conforming to NFPA 13 was considered, and a credit applied per FUS Guidelines. Based on calculations per the FUS Guidelines (**Appendix A.2**), the maximum required fire flows for this development is 167 L/s (10,000 L/min) occurring at the proposed six-storey apartment building fronting Hazeldean Road ROW. Two hydrants located in proximity to both buildings siamese connections are proposed on the subject site. The existing hydrants along the northeastern boundary and the two proposed on site hydrants will provide amply fire flow.

Water Supply Servicing July 14, 2022

3.3 PROPOSED SERVICING

Per boundary conditions provided by the City of Ottawa and an approximate elevation on-site of 104.7m, adequate domestic water supply is available for the subject site with pressures ranging from 44.9m (75.4psi) to 56.4m (80.3psi). These values are within the normal operating pressure range as defined by the MECP and City of Ottawa design guidelines (desired 50-80 psi and not less than 40 psi). A pressure check once construction is completed is required to determine if pressure reducing valves are needed.

The boundary conditions for the proposed development under maximum day demands were initially provided under an assumed fire flow demand of 267L/s. As such, it can be confirmed that the system will maintain a residual pressure which is in excess of the required 140 kPa (20 psi) under the required fire flow demand of 167L/s. The above demonstrates that the existing watermain within Fringewood Avenue and Cedarow Court can provide adequate fire and domestic flows in excess of flow requirements for the subject site. An existing hydrant is located approximately 18m northeast of the subject site and at least one proposed hydrant is to be located within 45m of the building fire department connection (siamese) per OBC requirements.

3.4 SUMMARY OF FINDINGS

The proposed development is located in an area of the City's water distribution system that has sufficient capacity to provide both the required domestic and emergency fire flows. Based on the boundary conditions as provided by the City of Ottawa staff, fire flows are available for this development based on FUS guidelines and as per the City of Ottawa water distribution guidelines.

Wastewater Servicing July 14, 2022

4.0 WASTEWATER SERVICING

4.1 BACKGROUND

The site will be serviced via an existing 675mm dia. sanitary sewer located within the Hazeldean Road ROW south of the site and west of the intersection of Hazeldean Road and Huntmar Drive, which will ultimately outlet to the Kanata West Pump Station (see **Drawing SSP-1**).

4.2 DESIGN CRITERIA

As outlined in the City of Ottawa Sewer Design Guidelines and the MECP's Design Guidelines for Sewage Works, the following criteria were used to calculate estimated wastewater flow rates and to size the sanitary sewers:

- Minimum Velocity 0.6 m/s (0.8 m/s for upstream sections)
- Maximum Velocity 3.0 m/s
- Manning roughness coefficient for all smooth wall pipes 0.013
- Minimum size 250mm dia. for commercial areas
- Average Wastewater Generation (Commercial) 28,000L/gross ha/day of building space
- Average Wastewater Generation (Residential) 280L/cap/day
- Peak Factor (Commercial) 1.5 (Max Day Demand per MOE Design Guidelines for Drinking Water Systems)
- Peak Factor (Residential) 4.0 (Harmon's)
- Extraneous Flow Allowance 0.33 l/s/ha (conservative value)
- Manhole Spacing 120 m
- Minimum Cover 2.5m
- Population density for single-bedroom and bachelor apartments 1.4 pers./apartment
- Population density for two-bedroom apartments 2.1 pers./apartment

4.3 **PROPOSED SERVICING**

The proposed site will be serviced by a gravity sewer which will direct the wastewater flows (approx. 10.4 L/s with allowance for infiltration) to the existing 675mm dia. Hazeldean Road sanitary sewer. A backflow preventer will be required for the on-site building in the event of surcharge of the sanitary sewer and will be coordinated with building mechanical engineers. A proposed excavation cross section of the Hazeldean Road connection to the existing 675mm diameter sanitary sewer has been included on **Drawing SSP-1**. Extra precaution should be taken to ensure no damages are made to the existing 762 backbone watermain located 2.9m south of the proposed sanitary connection. Additional construction details will be included by the contractor prior to construction.

Wastewater Servicing July 14, 2022

The proposed drainage pattern is in accordance with the Kanata West Master Servicing Study (KWMSS) for Hazeldean Road and is detailed on **Drawing SAN-1**. Sanitary flows will ultimately be discharging to the downstream Kanata West Pump Station. A Sanitary sewer design sheet is included in **Appendix B.1**. Excerpts of the overall sanitary system discharging to the Kanata West Pump Station based on the KWMSS are included in **Appendix B.2**. It is noted that peak ultimate sanitary discharge to the KWPS is likely to be far lower than that indicated within the KWMSS design sheet, as current operational parameters estimating peak flow from residential uses have decreased from 350L/person/day to 280L/person/day, and commercial lands contributions have decreased from 50,000L/ha/day to 28,000L/ha/day. As a result, it is assumed that there is ample capacity within the downstream conveyance network and KWPS to receive any additional flows from that originally assumed for the area (50,000L/ha/day x 2.29ha x 1.5 P.F. = approximately 2.0L/s).

Stormwater Management July 14, 2022

5.0 STORMWATER MANAGEMENT

5.1 OBJECTIVES

The objective of this stormwater management plan is to determine the measures necessary to control the quantity of stormwater released from the proposed development to established criteria, and to provide sufficient detail for approval and construction. The proposed development will discharge treated and controlled stormwater runoff to Poole Creek.

5.2 SWM CRITERIA AND CONSTRAINTS

Criteria were established by combining current design practices outlined by the City of Ottawa Design Guidelines (2012), Ministry of Environment Conservation and Parks (MECP) and Mississippi Valley Conservation Authority (MVCA). The following summarizes the criteria, with the source of each criterion indicated in italics:

General

- Use of the dual drainage principle (City of Ottawa)
- Wherever feasible and practical, site-level measures should be used to reduce and control the volume and rate of runoff (City of Ottawa)
- Assess impact of 100-year event outlined in the City of Ottawa Sewer Design Guidelines, and climate change scenarios with a 20% increase of rainfall intensity, on major & minor drainage system (City of Ottawa)
- Quality control to be provided for 80% TSS removal (MVCA, MECP)
- Site discharge to be controlled to pre-development rates (City of Ottawa)

Storm Sewer & Inlet Controls

- Size storm sewers to convey the 2-year storm event under free-flow conditions using City of Ottawa I-D-F parameters (City of Ottawa)
- Minimum sewer inlet capture rates to be set such that no ponding occurs at the end of the 2-year event (City of Ottawa)
- Request made by the client to not allow ponding to occur in the 100-year event
- Hydraulic Grade Line (HGL) analysis to be conducted using the 100 year 12 hour SCS storm distribution (City of Ottawa)
- 100-year Storm HGL to be a minimum of 0.30 m below building foundation footing otherwise foundation drains will be pumped (City of Ottawa)

Stormwater Management July 14, 2022

Surface Storage & Overland Flow

- Building openings to be a minimum of 0.30m above the 100-year water level (City of Ottawa)
- Maximum depth of flow under either static or dynamic conditions shall be less than 0.30m (City of Ottawa)
- Subdrains required in swales where longitudinal gradient is less than 1.5% (City of Ottawa)
- Provide adequate emergency overflow conveyance off-site (City of Ottawa)

5.2.1 Pre-Development Conditions

A background report for 20 Cedarow Court Commercial Development was completed on April 6, 2009 by Novatech Engineering for the proposed property. Currently, a large portion of the site is pervious, and sheet drains north west towards Poole Creek. Based on topography, existing drainage is directed through the site for properties on Cedarow Court adjacent to the subject lands. The additional runoff will be returned to the Cedarow Court storm sewer and was not included in the overall area contributing to the pre-development rate. The sewers on Cedarow Court were analyzed based on 2K mapping data corroborated by field investigation, and the additional flows were determined not to impact the downstream 525mm diameter storm sewer. The design sheet and area map for the Cedarow Court sewer can be found in **Appendix C.6.**

The site discharge will be conveyed to the approved outlet located at the northwestern boundary of the subject site. The outlet was constructed as part of Wellings of Stittsville Inc. and Extendicare Inc. Phase 1 and was sized to convey flows from both sites. Excerpts from the Wellings of Stittsville Phase 1 servicing and stormwater management brief can be found in **Appendix C.7**.

A lumped catchment PCSWMM model was created for the subject site based on a site area of 2.3ha, and utilizing an existing SCS curve number of 82 per background documents (Carp River Full Restoration PCSWMM Model). Additional subcatchment parameters were defined based upon recent topographical survey of the property:

Area (ha)	Width (m)	Slope (%)	Imperv. (%)	Subarea Routing
2.29	143	1.0	0.0	Outlet

Based on the above, 2 through 100-year 12hr SCS event (MTO Distribution curves) peak predevelopment outflow rates from the subject site were identified per the tables below:

Stormwater Management July 14, 2022

Storm Event	Peak Outflow Rate (L/s)
2-Year	17.9
5-Year	43.4
10-Year	69.8
25-Year	111.6
50-Year	142.4
100-Year	182.1

PCSWMM model input and output files for the predevelopment scenario are included within **Appendix C.**

5.3 STORMWATER MANAGEMENT DESIGN

5.3.1 Design Methodology

The intent of the stormwater management plan presented herein is to mitigate negative impacts that the proposed development might have on the receiving watercourse (Poole Creek), while providing adequate capacity to service the proposed buildings, underground parking and access areas. The proposed stormwater management plan is designed to detain runoff on available flat rooftops, and in a subsurface storage unit to ensure that peak flows after construction will not exceed the target discharge rates.

Runoff from the site is captured via catchbasins and roof drains and conveyed to a hydrodynamic separator for water quality treatment before entering an underground storage unit for quantity control. The storage unit is restricted by an ICD at the downstream end while the roof runoff is controlled via roof drains discharging through the internal building plumbing. Eight interconnected tanks are proposed to act as subsurface storage for the development. Each tank is capable of storing up to 79m³ (20,000 gallons) of runoff for a total allowable storage of 633 m³. The underground storage unit is sized assuming that the entirety of the roof area is available to capture and store water up to 150mm in depth during the 100-year storm event.

In case of subsurface storage tank failure, overflows are managed first via installed weir wall within STM 101 to address orifice blockage, followed by surface vents/openings at each tank in series to the surface to ensure failure of an individual tank does not cause failure of the system at large. Flows are then recaptured by the remaining tank cells in operation. Building internal pumping to the building storm outlet upstream of the hydrodynamic separator has been airgapped with provision for overflow per OBC requirements. As such, the system is not at risk of blockage under the proposed configuration.

As the proposed invert of the hydrodynamic separator lies above anticipated downstream 100year HGL of the subsurface storage tanks, no tailwater concerns are noted for design of the

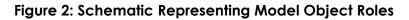
Stormwater Management July 14, 2022

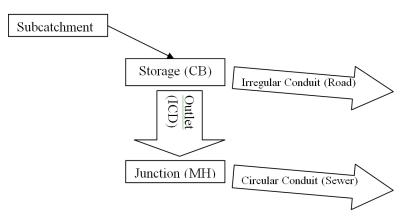
separator. The proposed hydrodynamic separator maintains an internal overflow weir for large storm events for protection of building internal plumbing, and will not impede inflow to the downstream storage tanks.

The site discharge will be conveyed to the previously approved outlet location at the western boundary of the site which ultimately directs flow into Poole Creek. The existing outlet is designed to convey flows from the proposed site as well as the existing adjacent site to the northeast, Wellings of Stittsville Inc. and Extendicare Inc Phase 1.

The site will be constructed in two phases, including build out of the underground parking structure. As the first phase is built, the entirety of the storm water storage tanks will be constructed.

5.3.2 Modeling Rationale


A comprehensive hydrologic modeling exercise was completed with PCSWMM, accounting for the estimated major and minor systems to evaluate the storm sewer infrastructure. The use of PCSWMM for modeling of the site hydrology and hydraulics allowed for an analysis of the systems response during various storm events. Surface storage estimates were based on the final grading plan design (see **Drawing GP-1**). The following assumptions were applied to the detailed model:


- Hydrologic parameters as per Ottawa Sewer Design Guidelines, including Horton infiltration, Manning's 'n', and depression storage values
- 12-hour SCS Storm distribution for the 100-year analysis to model 'worst-case' scenario in regards to on-site storage volume.
- 12hr SCS distributions (2 and 100-year events) with free flowing boundary condition to model 'worst-case' scenario in regards to site discharge rates to meet target rate. It is of note that the 100-Year floodplain elevation of the Creek at the site discharge point will not affect upstream HGLs or storage volumes provided.
- To 'stress test' the system a 'climate change' scenario was created by adding 20% of the individual intensity values of the 100-year SCS storm event at their specified time step.
- Percent imperviousness calculated based on actual soft and hard surfaces on each subcatchment, converted to equivalent Runoff Coefficient using the relationship C = (Imp. x 0.7) + 0.2
- Subcatchment areas are defined from high-point to high-point where sags occur. Subcatchment width (average length of overland sheet flow) determined by dividing subcatchment area by subcatchment length (length of overland flow path measured from high-point to high-point).
- Number of catchbasins based on servicing plan (Drawing SP-1)

5.3.2.1 SWMM Dual Drainage Methodology

Stormwater Management July 14, 2022

The proposed site is modeled in one modeling program as a dual conduit system (see **Figure 2**), with: 1) circular conduits representing the sewers & junction nodes representing manholes; 2) irregular conduits using street-shaped cross-sections to represent the sawtoothed overland road network from high-point to low-point and storage nodes representing catchbasins. The dual drainage systems are connected via outlet link objects (or orifices) from storage node (i.e. CB) to junction (i.e. MH), and represent inlet control devices (ICDs). Subcatchments are linked to the storage node on the surface so that generated hydrographs are directed there firstly.

Storage nodes are used in the model to represent catchbasins as well as major system junctions. For storage nodes representing catchbasins (CBs), the invert of the storage node represents the invert of the CB and the rim of the storage node is the top of the CB plus the maximum above ground storage depth (all catch basins on top of the underground structure will not have any surface storage). An additional 0.3m has been added to rim elevations to allow routing from one surface storage to the next and is unused where no spillage occurs between ponding areas.

Inlet control devices, as represented by orifice links, use a user-specified discharge coefficient to approximate manufacturer's specifications for the chosen ICD model. Discharge rates from the rooftops are based on the quantity of roof drains provided in the site plan per roof level. The roof drains are modelled using outlets with rating curves which specifies the outflows per roof level.

Subcatchment imperviousness was calculated via impervious area measured from **Drawing SSP-**1.

5.3.2.2 Boundary Conditions

The detailed PCSWMM hydrology and the proposed storm sewers were used to assess the peak inflows and hydraulic grade line (HGL) for the site. The elevation of the outlet sewer at STM 100 immediately upstream of Poole Creek has been set conservatively to be above the 100-Year water elevation of the Creek per MVCA Flood Risk Mapping at an invert elevation of 99.8m to

Stormwater Management July 14, 2022

enable free-flowing model condition for the site outlet. The elevation of the water level within Cedarow Court was conservatively set to an obvert of the receiving sewer at 102.17m.

5.3.3 Input Parameters

Drawing SD-1 summarizes the discretized subcatchments used in the analysis of the proposed site, and outlines the major overland flow paths. The grading plans are also enclosed for review.

Appendices C2 and C3 summarize the modeling input parameters and results for the subject area; an example input and output file are provided for the 100-year 12hr SCS storm. For all other input files and results of storm scenarios, please examine the electronic model files located on the CD provided with this report. This analysis was performed using PCSWMM, which is a front-end GUI to the EPA-SWMM engine. Model files can be examined in any program which can read EPA-SWMM files version 5.1.014.

5.3.3.1 Hydrologic Parameters

Table 1 presents the general subcatchment parameters used:

Parameter	Value
Infiltration Method	Horton
Max. Infil. Rate (mm/hr)	76.2
Min. Infil. Rate (mm/hr)	13.2
Decay Constant (1/hr)	4.14
N Impervious	0.013
N Pervious	0.2
Dstore Imperv. (mm)	1.57
Dstore perv. (mm)	4.67
Zero Imperv. (%)	0

Table 1: General Subcatchment Parameters

Table 2 presents the individual parameters that vary for each of the proposed subcatchments.

Table 2: Subcatchment Parameters

Name	Outlet	Area (ha)	Width (m)	Slope (%)	Imperv. (%)
EXT-1	CB509-S	0.069	95	1.5	38.6
ROOF_10	ROOF-10- S	0.281	136	1.5	100.0

Stormwater Management July 14, 2022

ROOF_11	ROOF-11- S	0.011	21	1.5	100.0
	ROOF-12-				
ROOF_12	S	0.013	15.6	1.5	100.0
ROOF_3	ROOF-3-S	0.110	130	1.5	100.0
ROOF_4	ROOF-4-S	0.035	46	1.5	100.0
ROOF_5	ROOF-5-S	0.110	130	1.5	100.0
ROOF_8	ROOF-8-S	0.010	21	1.5	100.0
ROOF_9	ROOF-9-S	0.005	15	1.5	100.0
	ROOF-1-				
ROOF1_2	2-S	0.095	95	1.5	100.0
	ROOF-6-				
ROOF6_7	7-S	0.096	95	1.5	100.0
UGPK_1	TANKS	0.144	115	2.0	77.1
UGPK_2	TANKS	0.152	122	2.0	80.0
UGPK_3	TANKS	0.060	60	2.0	58.6
UGPK_4	TANKS	0.120	95	2.0	70.0
UGPK_5	TANKS	0.110	85	2.0	70.0
UGPK_6	TANKS	0.022	60	15.0	100.0
UGPK_7	TANKS	0.112	78	2.0	78.6
UGPK_8	TANKS	0.062	42	2.0	75.7
UGPK_9	TANKS	0.032	42	2.0	100.0
UNC-1	OF1	0.078	78	2.0	41.4
UNC-2	OF2	0.515	25	1.0	8.6
UNC-3	OF3	0.069	122	2.0	61.4
UNC-4	CB509-S	0.052	90	2.0	37.1

 Table 3 summarizes the storage node parameters used in the model. Storage curves for each node have been created based on available volumes within each roof top or subsurface storage as applicable. Rim elevations for each node correspond to the rim elevation of the associated area's roof top drain or catch basin plus maximum depth of storage. Catch basins located above underground parking areas flow uncontrolled to the underground storage tank and provide no quantity storage for events up to the 100-year design event. No quantity storage has been assumed for model conservatism for the water balance BMP described in Section 5.3.6

Storage volumes and release rates for the underground storage tank were obtained through PCSWMM hydrologic/hydraulic modeling:

Stormwater Management July 14, 2022

Name	Invert El. (m)	Rim Elev. (m)	Depth (m)	Coefficient	Exponent	Constant (m²)	Curve Name	Storage Curve
CB509-S	102.56	104.79	2.23	0	0	0	*	FUNCTIONAL
roof- 10-s	114	114.15	0.15	0	0	0	ROOF10	TABULAR
ROOF- 11-S	114	114.15	0.15	0	0	0	ROOF11	TABULAR
ROOF- 12-S	114	114.15	0.15	0	0	0	ROOF12	TABULAR
ROOF-1- 2-S	114	114.15	0.15	0	0	0	ROOF1and2	TABULAR
ROOF-3- S	114	114.15	0.15	0	0	0	ROOF3	TABULAR
ROOF-4- S	114	114.15	0.15	0	0	0	ROOF4	TABULAR
ROOF-5- S	114	114.15	0.15	0	0	0	ROOF5	TABULAR
ROOF-6- 7-S	114	114.15	0.15	0	0	0	ROOF6and7	TABULAR
ROOF-8- S	114	114.15	0.15	0	0	0	ROOF8	TABULAR
ROOF-9- S	114	114.15	0.15	0	0	0	ROOF9	TABULAR
TANKS	99.7	103.31	3.61	0	0	222	*	FUNCTIONAL

Table 3: Storage Node Parameters

5.3.3.2 Hydraulic Parameters

As per the Ottawa Sewer Design Guidelines (OSDG 2012), Manning's roughness values of 0.013 were used for sewer modeling.

Storm sewers were modeled to confirm flow capacities and hydraulic grade lines (HGLs) in the proposed condition. The detailed storm sewer design sheet is included in **Appendix C**.

PCSWMM output hydrographs from Phase 1 for each storm event were used at manhole structure 100 in the current PCSWMM model to accurately represent to total outflow from both properties at the headwall.

Table 4 below presents the parameters for the orifice and outlet link objects in the model, which represent ICDs and restricted roof release drains respectively. The underground storage orifice

Stormwater Management July 14, 2022

was assigned a discharge coefficient of 0.61. The tank is designed with a 75mm ICD to restrict flows during the 2-year event, as well as a weir to allow additional flows to be directed towards the outlet during larger storm events. The weir is placed in manhole structure 1000 and designed with a width of 0.5m (see **Table 4** for invert elevation).

The roof release discharge curves assume the use of standard Watts Model R1100 Accutrol controlled release roof drains as noted in the calculation sheets in **Appendix C**. The number of roof notches for each roof level was confirmed with the building mechanical engineer. Details for the IPEX ICDs and Watts drains are included as part of **Appendix C**.

Name	Inlet	Outlet	Inlet Elev.	Туре	Diameter (m)
	TANKS	100	99.95	CIRCULAR	0.075
CISTERN-O	TANKS	100	102.25	WEIR	0.50
ROOF1-2-O	ROOF-1-2- S	TANKS	114	ROOF-1-2- O	-
ROOF3-O	ROOF-3-S	TANKS	114	ROOF-3-O	-
ROOF4-O	ROOF-4-S	TANKS	114	ROOF-4-O	-
ROOF5-O	ROOF-5-S	TANKS	114	ROOF-5-O	-
ROOF6-7-O	ROOF-6-7- S	TANKS	114	ROOF-6-7- O	-
ROOF8-O	ROOF-8-S	TANKS	114	ROOF-8-O	-
ROOF9-O	ROOF-9-S	TANKS	114	ROOF-9-O	-
ROOF10-O	ROOF-10- S	TANKS	114	ROOF-10-O	-
ROOF11-O	ROOF-11- S	TANKS	114	ROOF-11-0	-
ROOF12-O	ROOF-12- S	TANKS	114	ROOF-12-0	-

Table 4: Outlet/Orifice Parameters

5.3.4 Model Results

The following section summarizes the key hydrologic and hydraulic model results. For detailed model results or inputs, please refer to the example input file in **Appendix C.2 and C.3** and the electronic model files provided.

5.3.4.1 Hydrologic Results

The following tables demonstrate the peak outflow from each modeled outfall during the design storm (12hr SCS 2-100yr) events. A free-flowing outfall condition has been modeled for these events to be conservative with respect to site peak release rates. Outfalls OF1 to OF4 denote

Stormwater Management July 14, 2022

uncontrolled flows from the perimeter of the site that, due to grading restrictions, are captured by the existing ROW on Fringewood Avenue at the eastern boundary, Poole Creek at the north boundaries of the site, Hazeldean Road to the south and Cedarow Court Row to the west. The adjacent site on the eastern boundary (2500 Wellings Private) has sufficient capacity to capture minor uncontrolled flows from subcatchment UNC1. Flows from area UNC3-OF will have a minimal contribution to the infrastructure within Hazeldean Road. Based on existing external and proposed grading, subcatchments EXT-1 and UNC-4 are proposed to drain to a swale and runoff is to be captured in the subdrain. Connection to the existing 300mm diameter storm sewer on Cedarow Court is proposed to direct the flows captured from the subdrain. The storm sewer along Cedarow Court ultimately discharges to Poole Creek upstream of the proposed site. Appendix C.6 provides calculations based of general

Results of the PCSWMM model run have been provided in **Appendix C**. Peaks from the uncontrolled flows with the exception of UNC-2 are non-coincident with peaks from the subsurface storage tank/weir, and as such, flows from the conduit downstream of the subsurface storage tank (conduit C2) and UNC-2 have been considered in meeting the site predevelopment release rate target. The required subsurface storage tank volume was determined through iteration of each event and sized to mirror the site release rate target.

Event	Location	Discharge Rate (L/s)	Target (L/s)
2-Year 12 Hour SCS	Outlet Headwall	16.3	17.9
5-Year 12 Hour SCS	Outlet Headwall	25.6	43.4
10-Year 12 Hour SCS	Outlet Headwall	57.2	69.8
25-Year 12 Hour SCS	Outlet Headwall	90.1	111.6
50-Year 12 Hour SCS	Outlet Headwall	113.8	142.4
100-Year 12 Hour SCS	Outlet Headwall	150.3	182.1
100-Year 12 Hour SCS +20%	Outlet Headwall	308.8	-

Table 5: Site Peak Discharge Rates

*Post-development flows are a sum of the hydrographs from conduit C2 and outfall OF2

Table 6: Schedule of Roof Release Rates

Roof Area ID	Storage Depth (mm)	Discharge (L/s)	Required Volume (m3)	Available Volume (m3)
1 + 2	136	8.2	29.1	38.2
3	142	7.2	37.9	43.9
4	135	3.2	10.5	14.1
5	142	7.2	37.9	43.9

Stormwater Management July 14, 2022

6 + 7	136	8.2	29.1	38.2
8	117	1.7	1.9	3.9
9	100	1.6	0.6	2.1
10	141	19.3	94.7	112.4
11	120	1.7	2.2	4.2
12	118	1.7	2.0	4.0

5.3.4.2 Hydraulic Results

The City of Ottawa requires that during major storm events, the maximum hydraulic grade line be kept at least 0.30 m below the underside-of-footing (USF) of any adjacent units connected to the storm sewer during design storm events. The USFs elevations have been considered at 0.5m below the lowest top of basement slab elevation of the proposed buildings. As the proposed building perimeter foundation drain will be disconnected from the storm sewer and pumped to the surface, the proposed building footings will not be hydraulically connected to the underground storage tank. The ramp drain is to be pumped to the storage tanks. The maximum hydraulic grade line (HGL) of the underground storage tank reaches 102.48m and 102.68m during the 100 year and 100year +20% event. The HGL elevations in both scenarios remain at least 0.30 m below the proposed surface elevations as the lowest elevation of the connected catch basins within the aboveground parking structure are at 104.18m.

Table 7 presents the maximum total surface water depths (static ponding depth + dynamic flow) above the top-of-grate of the catch basin discharging to the Cedarow Drive sewer for the 100-year design storm and climate change storm. Based on the model results, no surface ponding is anticipated within the swale/subdrain within area UNC-4.

Table 7: Maximum Surface Water Depths

			100 yea	100 year, 12hr SCS 100 year, 1			
Storage node ID	Structure ID	Rim Elevation (m)	Max HGL (m)	Total Surface Water Depth (m)	Max HGL (m)	Total Surface Water Depth (m)	
CB507-S	CB 507	104.44	102.74	0.00	102.78	0.00	

5.3.5 Water Quality Control

On-site water quality control is required to provide 80% TSS removal prior to discharging to Poole Creek. A Stormceptor unit STC300 is proposed upstream of the underground storage tank. Runoff from roof top areas are considered clean and were assumed as pervious when calculating the total imperviousness of the contributing catchment area to the stormceptor. Design calculations for the Stormceptor indicate that the selected model will provide greater than 80% TSS removal on an annual basis. The Stormceptor unit will be privately maintained. The location and general

Stormwater Management July 14, 2022

arrangement of the Stormceptor unit is indicated on **Drawing SD-1**. Detailed sizing calculations for the Stormceptor unit are included in **Appendix C.4**.

5.3.6 Water Balance

The KWMSS and Carp River Watershed Study report identify that the site is located within a low groundwater recharge area. The Watershed Study in particular recommends a minimum of 73mm per year of infiltration (or 1171m³/yr for the 2.29ha site) for water balance purposes and to support Poole Creek baseflow. As such, it is proposed that roof runoff from Phase 4 buildings (areas Roof-8 through Roof-12) be directed to an infiltration trench BMP composed of clear stone be located within the Poole Creek regulation limit corridor (but outside of any limit of hazard lands and top of stable slope line as determined by Paterson/MVCA) to provide baseflow to the creek during the inter-event period. The BMP is to tie in behind the orifice control for the subsurface storage tanks to allow overflow via perforated pipe for larger storm events to be controlled prior to release to the creek. Inverts of the BMP have been set to avoid high groundwater elevations and provide a minimum offset of 1.0m from anticipated bedrock elevations. Sizing of the BMP has been provided within **Appendix C.8**, and demonstrates that sufficient storage exists below the perforated pipe drain to sequester runoff from up to the 25mm storm event for connected areas, and provide up to 2675m³ of annual infiltration.

Grading and Drainage July 14, 2022

6.0 GRADING AND DRAINAGE

The proposed development site measures approximately 2.29 ha in area. The topography across the site decreases from south to north, with a change in elevation of approximately 1.5 m to the top of bank of the existing Poole Creek. A detailed grading plan (see **Drawing GP-1**) has been provided to satisfy the stormwater management requirements, adhere to permissible grade raise restrictions (see **Section 10.0**) for the site, and provide for minimum cover requirements for storm and sanitary sewers where possible. Site grading has been established to provide emergency overland flow routes required for stormwater management in accordance with City of Ottawa requirements.

The subject site in its majority maintains emergency overland flow routes for flows deriving from storm events in excess of the maximum design event to Poole Creek as depicted in **Drawings GP-1**, **SD-1**.

Utilities July 14, 2022

7.0 UTILITIES

Utility infrastructure exists within the Hazeldean Road ROW at the south property boundary of the proposed site. Overhead utility poles are located along the south side of Hazeldean Road. It is anticipated that existing infrastructure will be sufficient to provide a means of distribution for the proposed site. Exact size, location and routing of utilities will be finalized after design circulation.

8.0 APPROVALS

As the site will be discharging to an existing storm sewer outlet, will remain under singular ownership, and will not drain industrial lands or industrial land uses, exemption from the Ontario Ministry of Environment, Conservation and Parks (MECP) Environmental Compliance Approval (ECA) process is expected for works within the subject site.

The outlet headwall has been previously approved under the neighboring property. The ECA application number is NUMBER 7185-ARZMHZ.

The Mississippi Valley Conservation Authority (MVCA) will need to be consulted in order to obtain municipal approval for site development, and permits acquired for any proposed fill within the Poole Creek regulatory limit.

Requirement for a MECP Permit to Take Water (PTTW) for sewer construction is unlikely for the site as the proposed works are above the groundwater elevations shown in the geotechnical report. Building excavation areas, however, will likely be within the groundwater table and may require a PTTW. The geotechnical consultant shall confirm at the time of application that a PTTW is not required.

Erosion Control During Construction July 14, 2022

9.0 **EROSION CONTROL DURING CONSTRUCTION**

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.

- 1. Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- 2. Limit extent of exposed soils at any given time.
- 3. Re-vegetate exposed areas as soon as possible.
- 4. Minimize the area to be cleared and grubbed.
- 5. Protect exposed slopes with plastic or synthetic mulches.
- 6. Provide sediment traps and basins during dewatering.
- 7. Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- 8. Plan construction at proper time to avoid flooding.
- 9. Installation of a mud matt to prevent mud and debris from being transported off site.
- 10. Installation of a silt fence to prevent sediment runoff.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- 11. Verification that water is not flowing under silt barriers.
- 12. Clean and change silt traps at catch basins.

Refer to **Drawing EC/DS-1** for the proposed location of silt fences, straw bales, and other erosion control structures.

Geotechnical Investigation July 14, 2022

10.0 GEOTECHNICAL INVESTIGATION

A geotechnical investigation was completed by Paterson Group Ltd. in March of 2019. The report summarizes the existing soil conditions within the subject area and construction recommendations. For details which are not summarized below, please see the original Paterson report.

Subsurface soil conditions within the subject area were determined from 29 boreholes distributed across the proposed site. In general soil stratigraphy consisted of topsoil underlain by a hard to very stiff silty clay, followed by very stiff to stiff silty clay layer over a glacial till layer.

Groundwater Levels were measured on January 29, 2019 and vary in elevation from 1.7 to 3.2m below the original ground surface. It is expected that construction occur below the existing groundwater table and therefore a permit to take water may be required as well as requirements for damp proofing or foundation waterproofing may be required.

A permissible grade raise restriction of 2.0 m has been recommended within the Paterson Group report. The grade raise restrictions were accounted for in the grading design of the property.

The required pavement structure for the at-grade parking areas and access lanes are outlined in **Table 8** and **Table 9** below:

Thickness (mm)	Material Description
50	Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete
150	Base – OPSS Granular A Crushed Stone
300	Subbase - OPSS Granular B Type II
-	Subgrade – In situ soil, or OPSS Granular B Type I or Il material placed over in situ soil

 Table 8: Recommended Pavement Structure – At-Grade Parking Areas

Geotechnical Investigation July 14, 2022

Table 9: Recommended Pavement Structure – Access Lanes and Heavy Truck Parking Areas

Thickness (mm)	Material Description
40	Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete
50	Binder Course – HL-8 or Superpave 19.0 Asphaltic Concrete
150	Base – OPSS Granular A Crushed Stone
450	Subbase - OPSS Granular B Type II
-	Subgrade – In situ soil, or OPSS Granular B Type I or II material placed over in situ soil.

Conclusions July 14, 2022

11.0 CONCLUSIONS

11.1 WATER SERVICING

Based on the supplied boundary conditions for existing watermains and estimated domestic and fire flow demands for the subject site, it is anticipated that the proposed servicing in this development will provide sufficient capacity to sustain both the required domestic demands and emergency fire flow demands of the proposed site. Fire flows greater than those required per the FUS Guidelines are available for this development.

11.2 SANITARY SERVICING

The proposed sanitary sewer network is sufficiently sized to provide gravity drainage of the site. The proposed site will be serviced by a gravity sewer which will direct the wastewater flows (approx. 10.4 L/s) to the existing 675mm dia. Hazeldean Road sanitary sewer. The proposed drainage pattern is in accordance with the Kanata West Master Servicing Report for the Hazeldean Road sewer.

11.3 STORMWATER SERVICING

The proposed stormwater management plan is in compliance with the criteria established for the site. Rooftop and subsurface storage have been designed to limit outflows from the subject site to calculated predevelopment levels. Poole Creek is located downstream of the site and has sufficient capacity to receive runoff volumes from the site based on anticipated peak flows and detention times for the subsurface storage tank servicing the development.

11.4 GRADING

Grading for the site has been designed to provide an emergency overland flow route as per City requirements and reflects the grade raise restrictions recommended in the Supplemental Geotechnical Investigation prepared by Paterson Group (March, 2019). Erosion and sediment control measures will be implemented during construction to reduce the impact on existing facilities.

11.5 UTILITIES

Utility infrastructure exists within the Hazeldean Road ROW at the south property boundary of the proposed site. Overhead poles are located along the south side of Hazeldean Road. It is anticipated that existing infrastructure will be sufficient to provide a means of distribution for the proposed site. Exact size, location and routing of utilities will be finalized after design circulation.

Conclusions July 14, 2022

11.6 APPROVALS/PERMITS

MECP Environmental Compliance Approval is not expected to be required for the proposed site works. A Permit to Take Water is not anticipated to be required for pumping requirements for sewer installation, however, will likely be a requirement for building excavation. The Mississippi Valley Conservation Authority will need to be consulted in order to obtain municipal approval for site development. No other approval requirements from other regulatory agencies are anticipated.

Appendix A Water Supply Servicing July 14, 2022

Appendix A WATER SUPPLY SERVICING

A.1 DOMESTIC WATER DEMAND ESTIMATE

<u>Wellings of Stittsville Phase 2 - 20 Cedarow Court</u> - <u>Domestic Water Demand Estimates</u> - Based on Wellings of Stittsville Site Phase 2 (160401511)

Building ID	Area	Population	ation Daily Rate of Avg Day Demand Max Day Den		Avg Day Demand		Demand ^{2,3}	2,3 Peak Hour Demand	
	(m ²)		Demand ¹	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)
Phase 2 and Phase 3									
Residential	-	441	350	107.2	1.79	268.0	4.47	589.5	9.83
Commercial and communal Amenity Areas	4726	-	28,000	9.2	0.15	13.8	0.23	24.8	0.41
Phase 4						-		-	
Residential	-	312	350	75.9	1.26	189.7	3.16	417.4	6.96
Total Site :				192.3	3.20	471.5	7.86	1031.7	17.19

1. 28,000 L/gross ha/day is used to calculate water demand for retail, restaurants and office space.

2. The City of Ottawa water demand criteria used to estimate peak demand rates for commercial space are as follows:

maximum day demand rate = 1.5 x average day demand rate maximum hour demand rate = 1.8 x maximum day demand rate

3. The City of Ottaw water demand criteria used to estimate peak demand rates for residential areas are as follows: maximum day demand rate = 2.5 x average day demand rate

maximum hour demand rate = 2.2 x maximum day demand rate

Appendix A Water Supply Servicing July 14, 2022

A.2 FIRE FLOW REQUIREMENTS PER FUS

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401317 Project Name: 20 Cedarow Court Date: 9/1/2021 Fire Flow Calculation #: 1 Description: Phase 2 and 3

Notes: 6 storey building with 2hr horizontal firewalls between each floor

Step	Task	Notes							Req'd Fire Flow (L/min)
1	Determine Type of Construction			0.8	-				
2	Determine Ground Floor Area of One Unit				-			4456	-
2	Determine Number of Adjoining Units				-			1	-
3	Determine Height in Storeys		Does not i	nclude floor	s >50% below	v grade or op	en attic space	1	-
4	Determine Required Fire Flow		(F	= 220 x C x A	^{1/2}). Round to	o nearest 100	0 L/min	-	12000
5	Determine Occupancy Charge			L	imited Comb	oustible		-15%	10200
	6 Determine Sprinkler Reduction			c	onforms to N	IFPA 13		-30%	
,		Standard Water Supply							-4080
°		Not Fully Supervised or N/A							
				100%					
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-
		North	10.1 to 20	30	6	> 120	Wood Frame or Non-Combustible	15%	
7	Determine Increase for Exposures (Max. 75%)	East	20.1 to 30	82	5	> 120	Wood Frame or Non-Combustible	10%	3978
		South	> 45	123	1	> 120	Wood Frame or Non-Combustible	0%	37/0
		West	10.1 to 20	82	1	61-90	Wood Frame or Non-Combustible	14%	
		Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min							10000
8	Determine Final Required Fire Flow	Total Required Fire Flow in L/s							166.7
ð	Determine ringi kequired file flow				Required Du	ration of Fire I	Flow (hrs)		2.00
		Required Volume of Fire Flow (m ³)							

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401317 Project Name: 20 Cedarow Court Date: 9/1/2021 Fire Flow Calculation #: 1 Description: Phase 4

Notes: 6 storey building with 2hr horizontal firewalls between each floor

Step	Task	Notes							Req'd Fire Flow (L/min)	
1	Determine Type of Construction			0.8	-					
2	Determine Ground Floor Area of One Unit				-			3192	-	
2	Determine Number of Adjoining Units				-			1	-	
3	Determine Height in Storeys		Does not i	nclude floor	s >50% belov	v grade or op	en attic space	1	-	
4	Determine Required Fire Flow		(F	= 220 x C x A	^{1/2}). Round to	o nearest 100	0 L/min	-	10000	
5	Determine Occupancy Charge			L	imited Comb	ustible		-15%	8500	
	6 Determine Sprinkler Reduction			c	Conforms to N	FPA 13		-30%		
,		Standard Water Supply							-3400	
°		Not Fully Supervised or N/A								
			% Coverage of Sprinkler System							
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-	
		North	> 45	122	1	> 120	Wood Frame or Non-Combustible	0%		
7	Determine Increase for Exposures (Max. 75%)	East	30.1 to 45	54	5	> 120	Wood Frame or Non-Combustible	5%	2125	
		South	10.1 to 20	122	6	> 120	Wood Frame or Non-Combustible	15%	2125	
		West	30.1 to 45	28	1	0-30	Wood Frame or Non-Combustible	5%		
	Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min								7000	
8		Total Required Fire Flow in L/s							116.7	
ð	Determine Final Required Fire Flow	Required Duration of Fire Flow (hrs)								
			Required Volume of Fire Flow (m ³)							

Appendix A Water Supply Servicing July 14, 2022

A.3 BOUNDRY CONDITIONS

Boundary Conditions - 20 Cedarow Court

October-19

0 a a a a a i a	Dem	nand
Scenario	L/min	L/s
Average Daily Demand	156	2.60
Maximum Daily Demand	388	6.46
Peak Hour	850	14.17
Fire Flow Demand #1	16,020	267

of connections

Date Provided

2

Location:

Results:

Connection 1 - Cedarow Crescent

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.1	80.3
Peak Hour	157.7	75.5
Max Day plus Fire 1	150.2	64.8

¹ Ground Elevation = 104.6m

Connection 2 - Wellings Pvt

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.1	80.3
Peak Hour	157.7	75.4
Max Day plus Fire 1	149.6	63.9

¹ Ground Elevation = 104.7m

Notes:

- 1. Pressure reducing valve is required since the maximum pressure exceeds 80 psi.
- 2. Looping of the watermain is required to decrease vulnerability of the water system in case of breaks.
- 3. Confirm the ownership of the watermain on Wellings Private.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix B Wastewater Servicing July 14, 2022

Appendix B WASTEWATER SERVICING

B.1 SANITARY SEWER DESIGN

TA		Stitts	Lands Gr ville Senic Extendica	or's Living				ę	DES	ARY S GN SI		2			MAX PEAK F.	ACTOR (RES.)=	-	4.0		AVG. DAILY	FLOW / PERSC	DN													
Stantec		DATE: REVISION: DESIGNEE CHECKED	BY:	8/31/2 2 TF D ¹	र	FILE NUMB	ER:	1604-01511	·	., ., .,					PEAKING FA		RIAL):	2.0 2.4 1.5 1.4 1.4		COMMERCIA INDUSTRIAL INDUSTRIAL INSTITUTION INFILTRATIO	(HEAVY) (LIGHT) IAL		55,000 35,000 28,000	L/ha/day L/ha/day L/ha/day L/ha/day L/s/ha		MAXIMUM VI MANNINGS r BEDDING CL MINIMUM CC	n _ASS		0.01	0 m/s 3 B 50 m					
LOCATION				_		RESIDENTIAL			_	_	_	COM	MERCIAL		2 BEDROOM	INDUSTR		2.1 INSTITUT		GREEN	UNUSED	C+I+I		INFILTRATION	_	TOTAL		_	_	P	PIPE	_	_	_	
AREA ID	FROM	TO	AREA		Single		POP.	CUMUL	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	I DIA	MATERIA		SLOPE	CAP.	CAP. V	VEL.	VEL.
NUMBER	M.H.	M.H.	(ha)	Studio	1 Bedroom Units	2 Bedroom		AREA (ha)	POP.	FACT.	FLOW (L/s)	(ha)	AREA (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	FLOW (L/s)	AREA (ha)	AREA (ha)	FLOW (L/s)	(L/s)	(m)	(mm)			(%)	(FULL) (I/s)	PEAK FLOW (%)	(FULL) (m/s)	(ACT.) (m/s)
Wellings of Stittsville Ph2																																			
ENTIRE SITE	STUB	MAIN	1.82	0	376	108	753	1.82	753	3.88	9.5	0.47	0.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.2	2.29	2.29	0.8	10.4	23.1	300 675	PVC	SDR 35	0.40	60.7	17.20%	0.86	0.53

Hi Dustin

I don't see a problem with this additional flow, there is capacity in the sanitary sewer system.

Regards Eric

Eric Tousignant, P.Eng.

Senior Water Resources Engineer/ Ingénieur principal en resources hydriques Infrastructure and Water Services / services d'infrastructure et d'eau 613-580-2424 ext 25129

Vacation Notice : Note that I will be away on vacation from July 25th to August 12, but will be checking emails periodically to forward them to appropriate staff.

From: Thiffault, Dustin <Dustin.Thiffault@stantec.com>
Sent: July 05, 2022 4:44 PM
To: Tousignant, Eric <Eric.Tousignant@ottawa.ca>
Cc: Moroz, Peter <peter.moroz@stantec.com>
Subject: Confirmation of Sanitary Capacity - 20 Cedarow Court

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Eric,

We are working on a site plan control application for a residential development on 20 Cedarow Court set to have sanitary discharge to the 675mm trunk sewer within Hazeldean Road just west of Huntmar. The KWMSS had previously assumed the site to be entirely commercial, and so development review is asking for confirmation that the trunk can accept the increase in expected flows.

The KWMSS had estimated peak flows from the development at approx. 2.0L/s (under the older discharge parameters), whereas we are anticipating approximately 10.4L/s including allowance for infiltration. Would you be able to confirm that the 10.4L/s rate can be sufficiently accommodated within the Hazeldean sewer? I've attached a servicing drawing for your reference.

Thanks very much for your help!

Dustin Thiffault P.Eng.

Project Engineer

Mobile: 343-996-2211 dustin.thiffault@stantec.com

Stantec 300-1331 Clyde Avenue Ottawa ON K2C 3G4

۱

,

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix B Wastewater Servicing July 14, 2022

B.2 SANITARY EXCERPTS FROM THE KWMSS

4.0 SANITARY SEWER SERVICING

4.1 Introduction

This section outlines the evaluation criteria for wastewater servicing options, describes the alternative wastewater servicing alignments, summarizes the evaluation process, and compares the recommended alternatives to select the preferred option.

4.2 Evaluation Criteria and Weightings

The evaluation of alternatives is based, in part, on criteria previously developed for the Regional Master Plan for Water, Wastewater and Transportation, which can be found in Volume 2 of the "Planning and Environmental Assessment Summary Report" prepared by the former Region of Ottawa-Carleton.

The criteria are divided into four categories. The first three categories consider environmental, social, and economic impacts of the project on the Study area. The fourth category (Constructability/Functionality) considers project-specific criteria assessing the technical aspects and impacts of the project on the Study area. A list of each criteria and its respective category, as well as an explanation of their indicators, is provided in **Table 4.1-1**.

	TABLE Evaluation	
Category	Criteria	Indicator
Constructat	bility/Functionality	
CO1.1	Geotechnical Issues and Construction Risks	Potential for encountering poor soils and/or elevated groundwater conditions.
CO1.2	Infrastructure Requirements	Extent of works required.
CO1.3	Operational Impacts	Amount of maintenance intensive infrastructure required.
CO1.4	Construction Scheduling	Impact of construction on development timing/phasing.
CO1.5	Property Acquisition	Ease of property acquisition. Depends on status of required and adjacent lands (i.e. vacant, leased or owner occupied).
CO1.6	System Reliability	Proximity of a storm sewer, SWM or other surface water for emergency overflow.
CO1.7	System Flexibility	Ease of accommodating potential changes in servicing plans.
Economy		
E1	Potential to Use Combined Service Corridor	Length and area of combined service corridor.
E2	Efficiency of use of existing infrastructure	Use of existing capacity.
E3	Energy consumption	Pumping requirements.
E5	Impact on Agriculture	Agricultural area likely to be affected by infrastructure.

STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

E9	Construction Cost	Estimated construction cost.
Caring a	nd Healthy Community	·
C3	Displacement of Residents, Community/Recreation Features and Institutions	Affects on residential areas, institutions or businesses.
C4	Disruption to Existing Community	Extent of works affecting existing residences and businesses.
C9	Consistency with Planned Land Use and Infrastructure	Compatibility with City land use, design guidelines and infrastructure servicing corridor planning (Kanata West Transportation Master Plan Report and Storm Sewer and Watermain Needs).
Natural E	Environment	
N1	Impact on Significant Natural Features	Loss of natural areas due to installation of works.
N3	Impact on Aquatic Systems	Potential impact on fish habitat due to installation of works.
N4	Impact on Quality and Quantity of Surface Water and Groundwater	Potential impact on water quality in the Carp River resulting from rare emergency overflows to the SWM pond due to pumping station failure.
N5	Impact on Global Warming	Difference in carbon dioxide emissions resulting from occasional use of diesel generator.
N6	Effects on Urban Green Space, Open Space and Vegetation	Disruption to green space and trees.

4.2.1 Description of Evaluation Categories

Presented below is a description of the categories used to assess each of the three servicing alternatives. The four categories were selected to ensure that the various servicing alternatives were evaluated in a consistent and comprehensive manner. Further details on the criteria and weightings for each category are provided in Appendix 2.1.

Constructability/Functionality (C/F) - 36%

Wastewater infrastructure is required to facilitate the development of Kanata West. The infrastructure needs to provide a flexible servicing solution to accommodate the orderly development of the entire area in a series of phases. It is important that the construction of the wastewater servicing be coordinated with other major infrastructure projects such as storm sewers, waterwain and transportation, to ensure all services are available when required. Various alignment alternatives, construction techniques and phasing options will be assessed.

Economy (E) - 25 %

The Kanata West area is recognized within the City of Ottawa Official Plan as a future growth area comprised of a mixture of residential, business, and commercial lands. The accelerated rate of development and design concerns within the Study area requires a cost-effective solution to providing municipal wastewater services.

STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

Caring and Healthy Communities (CHC) – 25 %

Impact to the surrounding community is an important factor when determining the preferred servicing alternative. The selected alignment and construction techniques are evaluated to minimize disruption to surrounding communities. It is anticipated that impacts will be limited to the time of construction for the off-site servicing.

Natural Environment (NE) – 14%

The majority of the required wastewater infrastructure is aligned within existing or proposed public roads to limit the impacts to the natural environment. Servicing alignments selected outside of roadways were chosen to minimize impacts where possible. Construction of the wastewater services will be performed in conjunction with other servicing projects required as part of the overall development. Further information on the environmental impacts of the proposed road allowances are documented in the Kanata West Transportation Master Plan Report.

In the rare event that the pump station overflows, impacts to surface water quality are anticipated to be minimal. All discharges from the overflow will be directed to the stormwater management pond where they will be collected. Increases in CO_2 emissions from the emergency diesel generators during power failures or maintenance procedures will be negligible.

4.2.2 Outlet Alternatives

4.2.2.1 Description of Outlet Alternatives

To provide an adequate outlet for the KWCP wastewater system three servicing options were evaluated. Each of these options will ultimately discharge to the Tri Township Collector Sewer. The first servicing option utilizes a gravity sewer (tunnel), the remaining two options make use of a pumping station located at the intersection of Maple Grove Road and Silver Seven Road, with alternate forcemain alignments. **Figures 4.1-1, 4.1-2 and 4.1-3** illustrate the alternative outlet alignments, which are further described below:

- Alternative I (Gravity Outlet) A gravity sewer (tunnel) along the Highway 417 corridor to the Tri Township Collector. The tunnel would be constructed within the existing road allowance, adjacent to the travel lanes. The alignment crosses Highway 417 east of Eagleson Road and parallels the Glen Cairn Collector. Refer to Figure 4.1-1.
- Alternative II (Forcemain Alignment 1) A forcemain along the Highway 417 corridor from a proposed pumping station on Maple Grove Road, extending to the Glen Cairn Collector Sewer east of Eagleson Road. Refer to **Figure 4.1-2**.
- Alternative III (Forcemain Alignment 2) A forcemain along Katimavik Road and Palladium Drive from a proposed Pumping Station on Maple Grove Road to the Glen Cairn Collector Sewer east of Eagleson Road. Refer to **Figure 4.1-3**.

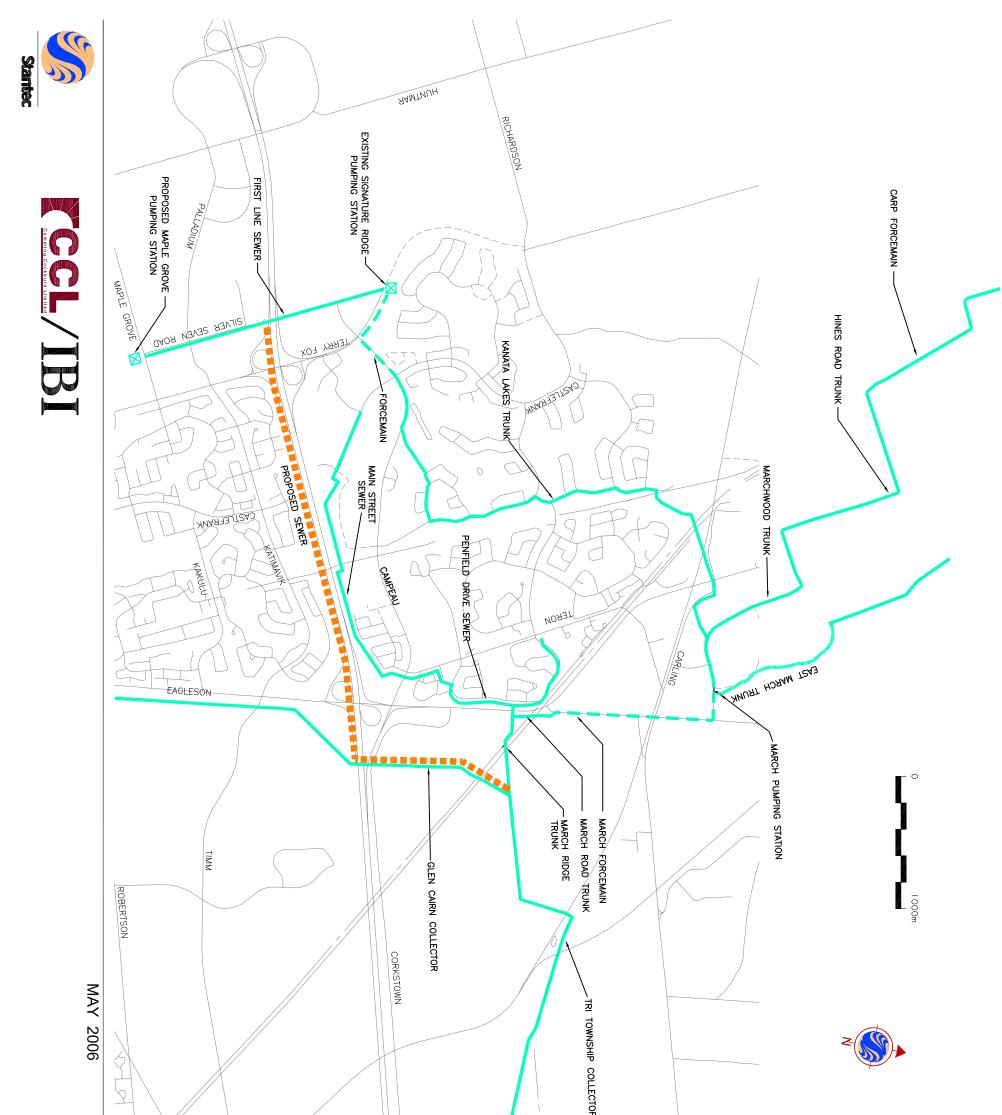
4.2.2.2 Evaluation of Outlet Alternatives

Evaluation of the criteria was completed using the "standard pair-wise comparison" methodology. The weightings assigned to each of the criteria were selected based on the weightings applied for past similar projects, knowledge of environmental constraints, community

concerns and professional judgment. The scores for each category and criterion were summed to determine the overall category weighting. Evaluation results are summarized in **Table 4.1-2**. An explanation of the category rankings and weightings are provided below.

Constructability/Functionality (C/F) (36%)

A review of the three proposed servicing options indicates that the forcemain alternatives present fewer issues with respect to the geotechnical constraints when compared to the gravity sewer alternative. The forcemain alternatives would require a relatively shallow excavation, reducing the conflict with the shallow bedrock formations that exist along each forcemain alignment. The shallow depth of the forcemains would also minimize the technical difficulties arising from earth to rock transitions along the trench. The effort required to install either of the forcemain alternatives would be much less than the gravity outlet alternative because the need to tunnel would be eliminated.

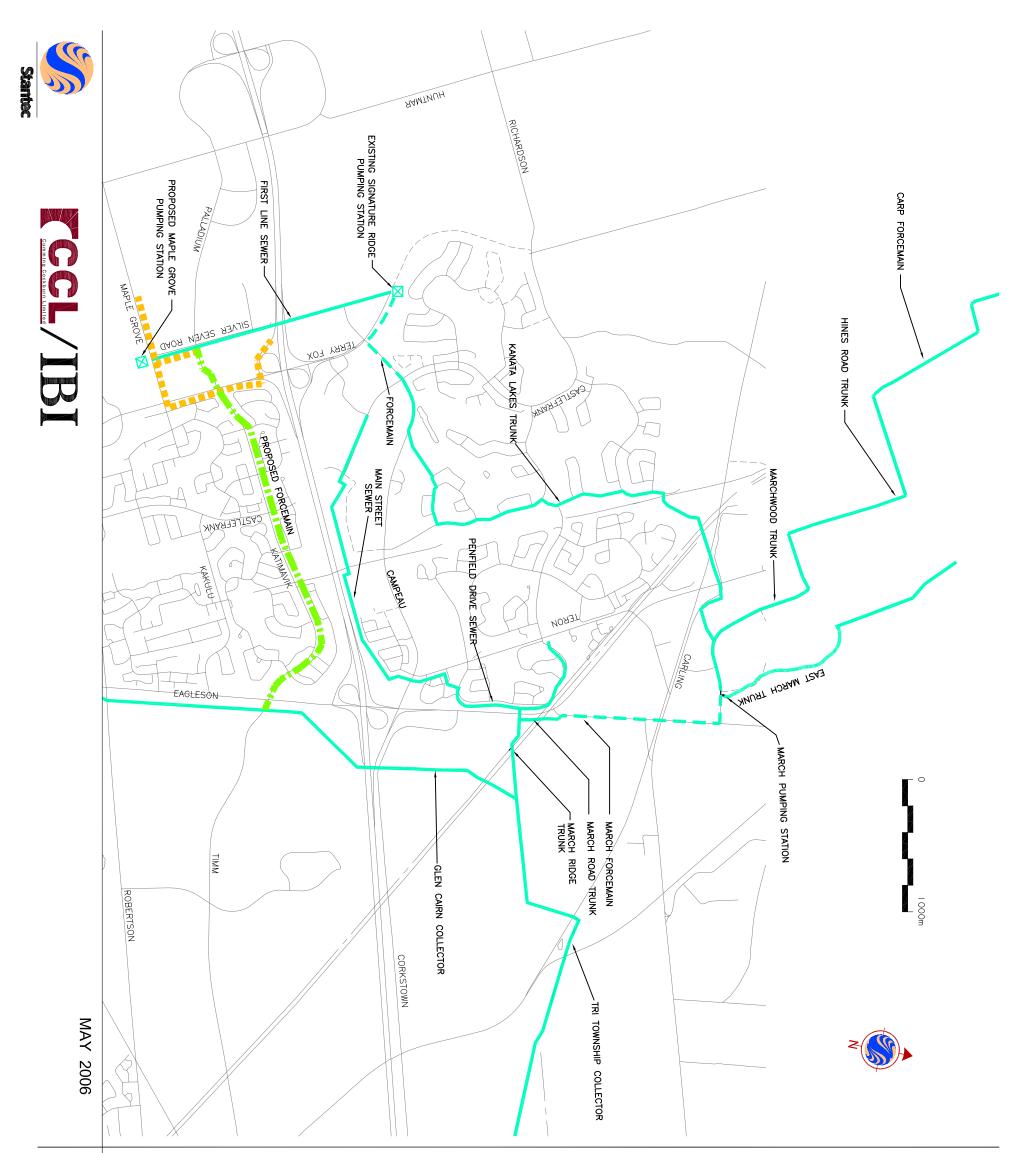

When comparing the two forcemain alternatives, an obvious benefit of Alternative II is its location along Katimavik Road as compared to the location of Alternative III, along Highway 417. Katimavik Road has a lower classification than Highway 417, reducing traffic management issues during construction and routine maintenance operations. The central location of the Alternative II forcemain alignment in relation to the area to be serviced also improves the flexibility for developing internal servicing options. The various alignments available for Alternative II, west of Terry Fox Drive (see **Figure 4.1-3**), are all located within existing road allowances and are considered equal when evaluated with the prescribed criteria. The Alternative II alignment along Silver Seven Road also allows the opportunity for the services to be installed in an easement located immediately adjacent to the east side of the right-of-way. Construction in this easement would eliminate the need to reconstruct this portion of the road. The use of easements for construction of the necessary services was not factored into the evaluation criteria and therefore the ranking was not affected.

Economy (E) (25%)

The costs of both forcemain alternatives are similar and much less expensive than the gravity sewer alternative. The increased costs of the gravity sewer are attributed to the need to tunnel through the existing bedrock. The forcemain alternatives allow for a relatively shallow excavation over the entire length of the alignment. The level of effort required to construct the gravity sewer would also be significantly greater than the effort required to install either of the forcemain alternatives.


Caring and Healthy Community (CHC) (25%)

Both the gravity outlet and the Alternative I forcemain would have minimal impact on the community given that the majority of the work would occur within the Highway 417 road allowance. The Alignment II forcemain alignment along Katimavik Road would require open cut excavation and would have a temporary impact on the residents during construction.



			TOR	
FIG. 4.1-1	Legend: Gravity Outlet (Tunnel) Existing Trunk Sewer			GRAVITY SANITARY OUTLET LOCATION

FIG. 4.1-2	Legend: Forcemain Existing Trunk Sewer	SANITARY FORCEMAIN OUTLET ALIGNMENT 1 HWY 417
------------	--	--

SANITARY FORCEMAIN OUTLET ALIGNMENT 2 KATIMAVIK RD.
SANITARY FORCEMAIN OUTLET ALIGNMENT 2 KATIMAVIK RD.

The construction of both forcemain alternatives is compatible with existing City design standards and construction practices. However, only Alignment II can easily be integrated into other servicing or roadway improvements. The time required for the construction of the gravity outlet would be significantly longer than that of the forcemain alternatives.

Natural Environment (NE) (14%)

There are no significant differences on the impacts to the natural environment between the gravity outlet and forcemain Alternative II. The gravity outlet will be tunneled below ground for the majority of the alignment resulting in minimal impact to surface conditions. Forcemain Alternative II is located within the Katimavik Road allowance, which is already developed and has minimal environmental impact. Forcemain Alternative I has a greater impact on the natural areas located along the Highway 417 corridor then the gravity sewer.

4.2.2.3 Selection of Preferred Outlet Alternative

Based on the above evaluation Alternative II, the Katimavik Road alignment, is selected as the preferred outlet alternative. This alignment offers the greatest amount of flexibility for internal servicing design, uses a lower road classification corridor, which simplifies routine maintenance operations, and provides maximum separation from the sensitive natural areas located in the 417 corridor east of Terry Fox Drive.

While Forcemain Alignment II has a marginal cost increase over Alignment I, the benefits of improved internal servicing and phasing options more than offset this discrepancy.

4.2.3 Internal Servicing Alternatives

4.2.3.1 Description of Internal Servicing Alternatives

The preliminary servicing report prepared in support of the approved Community Design Plan identified the need for two pumping stations for the wastewater discharge from KWCP. The two stations identified are required to satisfy phasing needs for construction of the overall development area and to produce a cost effective initial phasing scheme. The new sanitary pumping station(s) south of Highway 417 will be required to provide internal wastewater service to that portion of KWCP south of Highway 417.

Three potential servicing alternatives were considered for the configuration and location for the pumping station(s) required to service these lands south of Hwy. 417. Internal servicing alternatives were chosen based on their proximity to the preferred outlet described in Section 4.2.3.3. above, and accessibility to the servicing areas as illustrated in **Figures 4.1-4, 4.1-5, 4.1-6 and 4.1-6A**. A brief description of the alternative pumping station locations are as follows:

- Alternative I Two pumping stations connected with a combination of gravity sewer and forcemain. One pumping station will be located on Silver Seven Road at Highway 417. The second station will be located on Maple Grove Road at the Carp River. Refer to **Figure 4.1-4**.
- Alternative II Two pumping stations connected with a gravity sewer. One station will be located on Maple Grove Road near the Carp River and will discharge to the main station located near the Carp River south of Highway 417. A diversion sewer will also be required to intercept the existing Silver Seven Road sanitary sewer. Refer to Figure 4.1-5.

TABLE 4.1-2

Kanata West Wastewater - Outlet Alternatives

	Criteria	Indicators	Weighting	Rationale for		Alternatives	
				Relative Weights	Gravity Sewer Outlet	PS FM Alignment I	PS FM Alignment II
	ISTRUCTABILITY/FUNCTIO		36%		16	20	22
		Potential for encountering poor soils and/or elevated groundwater conditions.	7%	Alt. I has potential for poor soils conditions due to depth and tunnelling in and out of rock.	2	3	3
	2 Infrastructure Requirements	Extent of works required.	7%	Alt. I with tunnelling is a very large scale operation.	1	3	3
	3 Operational Impacts	Amount of maintenance intensive infrastructure required.	6%	Alt. II and III require more extensive maintenance due to pumping.	3	2	2
01.4	4 Construction Scheduling	Impact of construction on development timing.	4%	Alt. I with tunnelling is an extended construction schedule.	1	3	3
01.5	5 Property Acquisition	Ease of property acquisition. (Depends on status of lands and adjacent lands, i.e. vacant, leased or owner occupied.)	2%		4	4	4
01.6	5 System Reliability	Proximity of a storm sewer, SWM or other surface water for emergency overflow	6%		3	3	3
01.7	7 Servicing Flexibility	Ease of accommodating potential changes in servicing plans.	5%	Alt. I and II have fixed alignments along the north limit of the servicing area. Alt. II has some flexibility to be realigned within the development area, but Alt. III due to its more central location has maximum flexibility within Kanata West.	2	2	4
ECC	DNOMY		25%		9	13	15
1		Length and area of combined service corridor.	6%	Alt. I with the requirement for tunnelling does not offer any potential to use combined corridors.	1	2	3
2	Efficiency of Use of Existing Infrastructure	Use of exisitng capacity	5%	Alt. I requires reconstruction beyond the closest connection point to the Glen Cairn Collector sewer.	1	3	4
3	Energy Consumption	Pumping requirements	4%	Alt. II & III require pumping.	3	2	2
5	Impact on Agriculture	Agriculture area likely to be affected by infrastructure.	2%		3	3	3
9	Capital Cost	Estimated cost of construction.	8%	Alt. I is very expensive due to the tunnelling requirement.	1	3	3
CAR	RING AND HEALTHY COMMU	INITIES	25%		7	q	9
3	Displacement of Residents, Community/Recreation Features and Institutions.	Affects areas of residence, institutions or businesses.	6%	Length of Construction for Alt. I will result in increasedconstruction traffic, etc.	3	3	3
24	Disruption to Existing Community	Extent of works affecting existing residences and businesses and visibility of additional infrastructure.	11%		3	3	3
9	Consistency with Planned Land Use and Infrastructure	Compatibility with City land use, design guidelines and infrastructure servicing corridor planning (Kanata West Roadwork Environmental Study Report and Storm Sewer and Watermain Needs).		Alt. I would provide service for larger area than the existing urban boundary due to size of pipe required to tunnel. Alt. II provides greater flexibility for internal servicing.	1	3	3
			8%				
TAV	URAL ENVIRONMENT		14%			10	
11	Impact on Significant Natural Features	Loss of natural area due to installation of works.	3%	Alt. I mostly tunnel therefore minimal impact. Alt. II in vicinity of ANSI in 417 corridor at Terry Fox.	16 4	12 1	14 3
13	Impact on Aquatic Systems	Potential impact on fish habitat due to installation of works.	3%		3	3	3
4	Impact on Quality and Quantity of Surface Water and Groundwater	Potential impact on water quality in the Carp River resulting from rare emergency overflows to the SWM pond due to pump station failure.	3%		3	3	3
15	Impact on Global Warming	Difference in carbon dioxide emissions resulting from occasional use of diesel generator.	. 1%	Alt. II and III require pumping in long term. Alt. I does not.	3	2	2
16	Effects on Urban Greenspace, Open Space and Vegetation (i.e.trees,shrubs,etc.)	Disruption to greenspace and trees.	5%		3	3	3
Tota	al Score	I	100%		2.17	2.75	3.01
Ran	king				3	2	1
eti	mated Capital Cost (in \$mill	ion)			30	8.8	9

Description of Alternatives Gravity Sewer Outlet Pump Station - Forcemain Alignment I - HWY 417 Pump Station - Forcemain Alignment II - Katimavik Rd.

1604-00406_KWCP_San_EA_June_06.xls/EA Evaluation-Outlet (Qual)

Evaluation Ranking 1 -2 High or Negative Impact 3 Moderate or No Impact 4-5 Low or Positive Impact

STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

 Alternatives III and IIIA – Alternative III is a single pumping station with a gravity sewer intercepting the existing Silver Seven Road sanitary sewer. The gravity sewer alignment will be adjacent to the Carp River and connect to the pump station located at Maple Grove Road west of the Carp River. Alternative IIIA is a variation of this alternative utilizing a single pumping station and gravity sewer intercepting the existing Silver Seven

Road sewer. The variation from Alternative III is that the gravity sewer will be located within a proposed road right-of-way, or an easement, north of Palladium Drive. Refer to **Figures 4.1-6 and 4.1-6A**.

4.2.3.2 Evaluation of Internal Servicing Alternatives

The alternative internal servicing alignments were evaluated as discussed in Section 4.2. The results of the evaluation are summarized in **Table 4.1-3**. An explanation of the category rankings and weightings are provided below.

Constructability/Functionality (C/F) (36%)

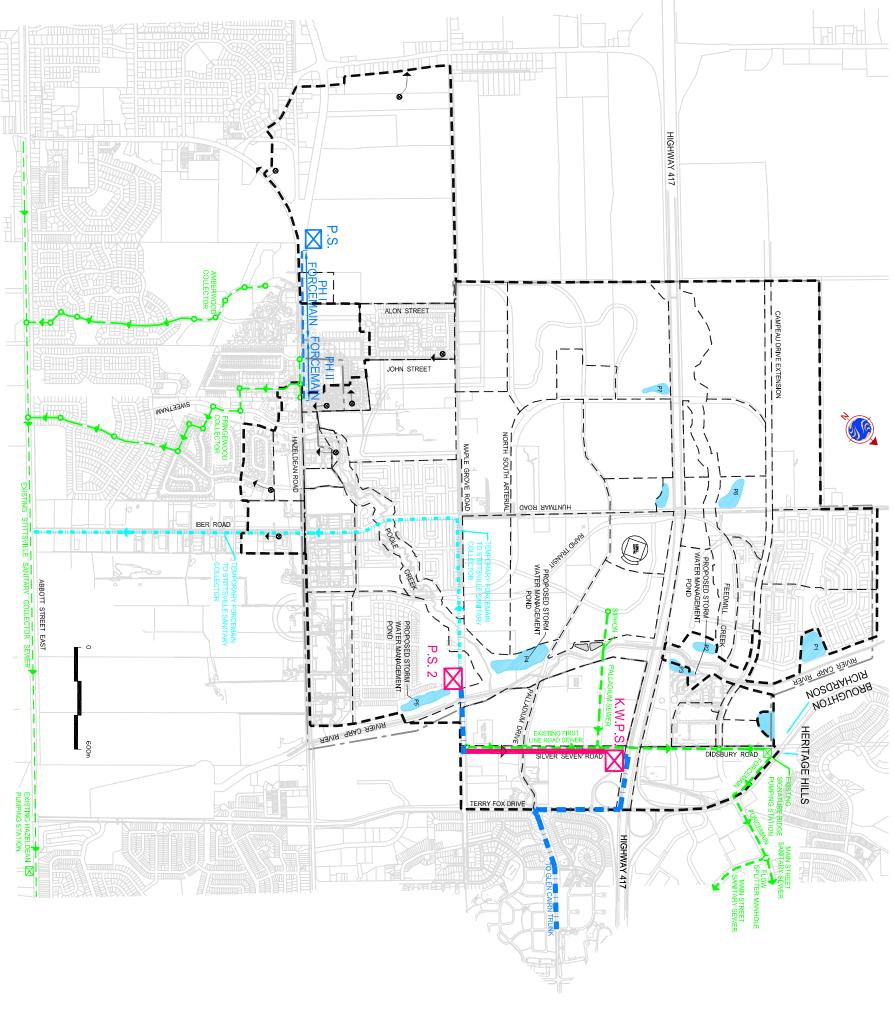
All proposed alternatives use pumping stations to provide internal wastewater servicing. The use of pumps allows the sewer system to be constructed at a relatively shallow depth. This reduces the potential for contact with poor subsurface conditions during construction. Deep Excavations will be confined to a limited area in the vicinity of the pumping station.

A benefit of Alternatives III and IIIA is that a single pumping station is required to provide the internal servicing. This is advantageous from a constructability and operational point of view when compared to Alternatives I and II which require two pumping stations to service the same area. A further benefit of Alternatives III and IIIA is that either servicing scenario will eliminate the need for the existing Palladium siphon under the Carp River. Removing the siphon will improve the overall reliability to the system.

A benefit of Alternative IIIA over Alternative III is that work in the Carp River corridor is reduced to a single crossing at Palladium Drive. Both Alternatives are close to a stormwater management pond which can be used as an emergency overflow in the rare event of flooding. (see **Figures 4.1-6 and 4.1-6A**)

All alternatives are capable of satisfying a phased development process.

Economy (E) (25%)


Alternatives I and II use two pumping stations and are significantly more expensive than Alternatives III and IIIA which use a single pump station. The additional pump stations in Alternatives I and II also increase the energy demand over the remaining options. Alternatives III and IIIA are able to service the entire KWCP with a single pump station resulting in equal or fewer economic impacts.

Caring and Healthy Community (CHC) (25%)

In terms of impact on the community, there are no differences between the alternatives. All options require construction in the vicinity of existing businesses. Impacts are anticipated to be relatively short in duration (less than two years).

INTERNAL SANITARY SERVICING ALTERNATIVE I

MAY 2006

FIG. 4.1-4

	8					0 	
Pump Station	Existing Pumping Station and Forcemain (To be Decommissioned)	Existing Trunk Sewers	Temporary Frocemain	Forcemain	Proposed Trunk Sewer	Ultimate Major Drainage Limit	

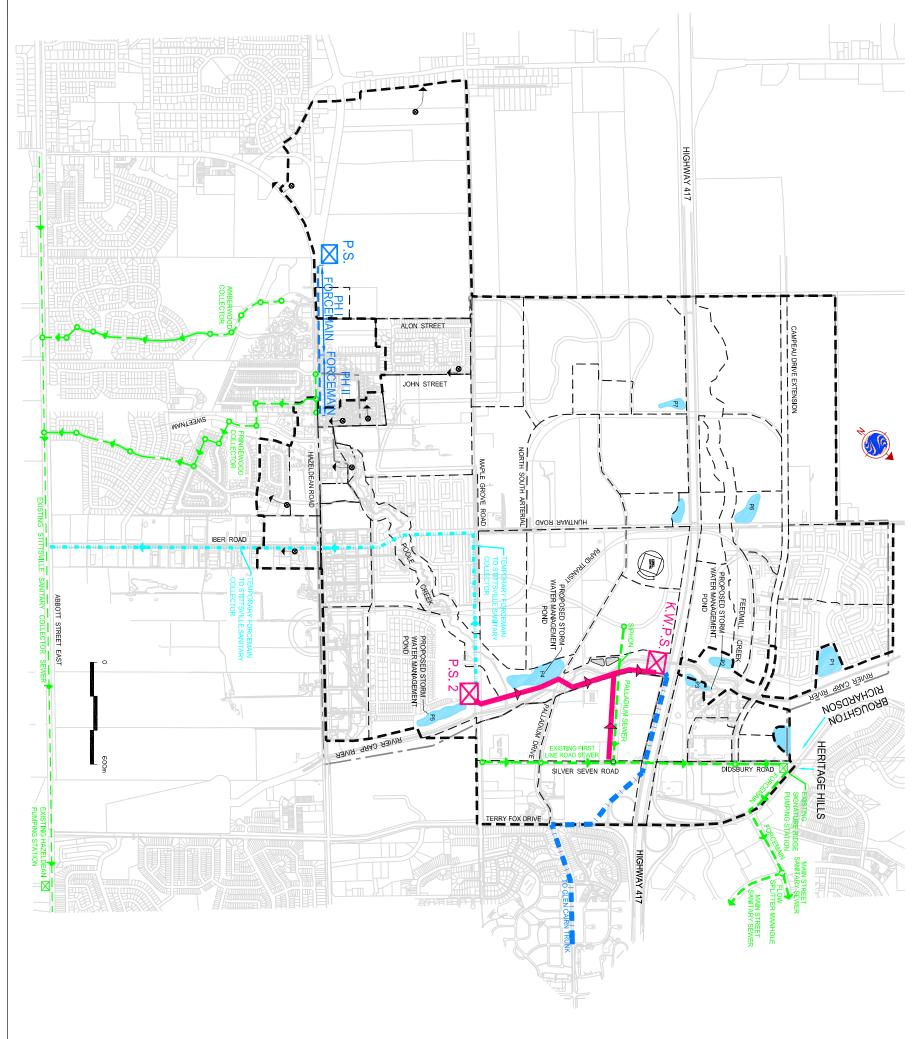


FIG. 4.1-5

\square	8					
Pump Station	Existing Pumping Station and Forcemain (To be Decommissioned)	Existing Trunk Sewers	Temporary Frocemain	Forcemain	Proposed Trunk Sewer	Ultimate Major Drainage Limit

INTERNAL SANITARY SERVICING ALTERNATIVE II

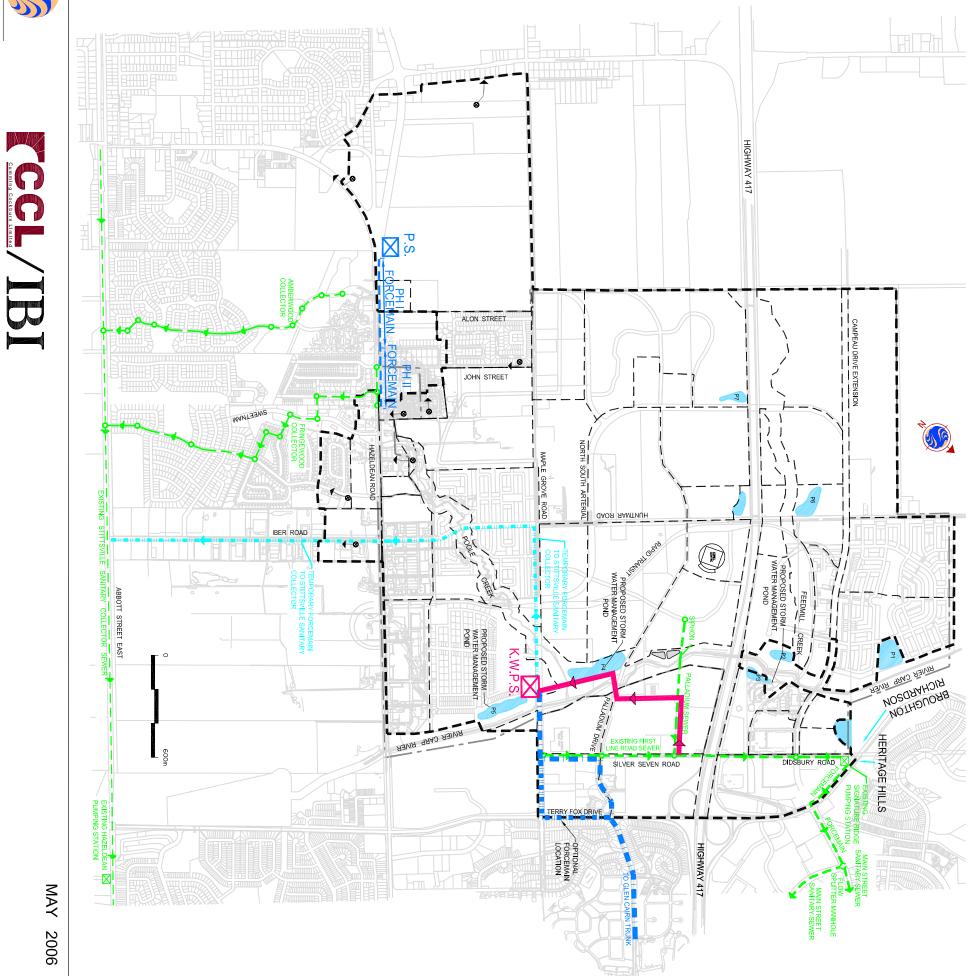

MAY 2006

FIG. 4.1-6

\square	⊗ ↓					8 8 8
Pump Station	Existing Pumping Station and Forcemain (To be Decommissioned)	Existing Trunk Sewers	Temporary Frocemain	Forcemain	Proposed Trunk Sewer	Ultimate Major Drainage Limit

INTERNAL SANITARY SERVICING ALTERNATIVE III

INTERNAL SANITARY SERVICING

(PREFERRED OPTION)

ALTERNATIVE IIIA

MAY 2006

FIG	\square	© ↓					• 	
. 4.1-6A	Pump Station	Existing Pumping Station and Forcemain (To be Decommissioned)	Existing Trunk Sewers	Temporary Frocemain	Forcemain	Proposed Trunk Sewer	Ultimate Major Drainage Limit	

Natural Environment (NE) (14%)

All four servicing options have a similar level of impact on the natural environment. Alternatives III and IIIA use a gravity sewer and a single pump station, thereby using less energy to discharge the sanitary flow from the KWCP. Alternatives II & III require the greatest amount of construction within the Carp River corridor.

Alternatives I and II both require two pumping stations. This increases the potential for impacts over the remaining options from the use of the emergency diesel generators and construction and construction.

4.2.3.3 Selection of Preferred Internal Servicing Alternative

Based on the above evaluation, Alternatives III and IIIA are considered to be the most viable options for the internal wastewater servicing for the KWCP. When comparing the two options, all of the evaluation criteria are similar. However, Alternative III requires the construction of the trunk sanitary sewer within the Carp River corridor. Alternative IIIA utilizes the proposed road allowances for the construction of a portion of the trunk sewer alignment, minimizing the potential for impacts to the Carp River. Based on the evaluation results, Alternative IIIA is selected as the preferred servicing alternative.

4.2.4 Temporary Forcemain Alternatives

4.2.4.1 Description of Temporary Forcemain Alternatives

A temporary forcemain will be required to service the initial phases of development within the KWCP. Three potential alignments were selected based on available corridors through the existing community. Each alignment begins at the preferred location of the Kanata West Pump Station, located on Maple Grove Road and west of the Carp River. All three servicing scenarios ultimately discharge to a temporary outlet, the Stittsville Collector Sewer. As illustrated on **Figure 4.1-7** the alternative forcemain alignments are:

- Alternative I West along Maple Grove Road to Huntmar Road. South along Huntmar Road and Iber Road to the Stittsville Collector Sewer situated along Abbott Street East.
- Alternative II South, parallel to the west side of the Carp River and through the proposed development lands to the Glen Cairn stormwater pond. East to Terry Fox Drive, then south along Terry Fox Drive to the Stittsville Collector Sewer.
- Alternative III East on Maple Grove Road to Terry Fox Drive. South on Terry Fox Drive to the Stittsville Collector Sewer.

4.2.4.2 Evaluation of Temporary Forcemain Alternatives

The temporary forcemain alternatives were evaluated and ranked using the criteria discussed in Section 4.2 The results of the evaluation are summarized in **Table 4.1-4**. An explanation of the category rankings and weightings are provided below.

TABLE 4.1-3

Kanata West Wastewater - Internal Servicing Alternatives

	Criteria	Indicators	Weighting	Rationale for	Alternatives								
				Relative Weights		Internal	Servicing						
					1	II		IIIA					
	ISTRUCTABILITY/FUNCTION		36%		14	14	23	22					
01.1	Geotechnical Issues and Construction Risks	Potential for encountering poor soils and/or elevated groundwater conditions.	7%		3	3	3	3					
01.2	Infrastructure Requirements	Extent of works required.	7%	Alt. I and II require two pumping stations. Alt. III and IIIA require one pumping station. All Alts. require the same amount of piping.	1	1	3	3					
01.3	Operational Impacts	Amount of maintenance intensive infrastructure required.	6%	Alt. I and II (with two pumping stations) have more maintenace intensive infratructure.	1	1	2	2					
01.4	Construction Scheduling	Impact of construction on development timing.	4%		3	3	3	3					
01.5	Property Acquisition	Ease of property acquisition. (Depends on status of lands and adjacent lands, i.e. vacant, leased or owner occupied.)	2%	Alt. Ill requires the least amount of property acquisition with only one pumping station located on active developers lands and using the Carp River corridor for sewer alignment.	2	2	4	3					
01.6	System Reliability	Proximity of a storm sewer, SWM or other surface water for emergency overflow	6%	Alt. I and II have pumping stations remotely located relative to proposed storm ponds.	2	2	4	4					
:01.7	Servicing Flexibility	Ease of accommodating potential changes in servicing plans.	5%	The more central location of the main pumping station to the tributary area makes Alt. III and IIIA more flexible to change.	2	2	4	4					
CC	NOMY		25%		11	11	18	18					
1	Potential to Use Combined Service Corridor	Length and area of combined service corridor.	6%	Alt. III and IIIA service the entire area south of Hwy 417 with one pumping station.	2	2	4	4					
2	Efficiency of Use of Existing Infrastructure	Use of exisiting capacity	5%		4	4	4	4					
3	Energy Consumption	Pumping requirements	4%	Alt. I and II requires double pumping of a significant portion of the service area.	1	1	3	3					
5	Impact on Agriculture	Agriculture area likely to be affected by infrastructure.			3	3	3	3					
9	Capital Cost	Estimated cost of construction.	2%	Alt. I and II are significantly more expensive primarily due to the cost of two	1	1	4	4					
-			8%	pumping stations.				-					
.ΔR	ING AND HEALTHY COMMU	NITIES	25%		10	10	10	10					
3	Displacement of Residents, Community/Recreation Features and Institutions.	Affects areas of residence, institutions or businesses.	6%		4	4	4	4					
24	Disruption to Existing Community	Extent of works affecting existing residences and businesses and visibility of additional infrastructure.	11%		3	3	3	3					
9	Consistency with Planned Land Use and Infrastructure	Compatibility with City land use, design guidelines and infrastructure servicing corridor planning (Kanata West Roadwork Environmental Study Report and Storm Sewer and Watermain Needs).	8%		3	3	3	3					
ΤΔΙ	URAL ENVIRONMENT		14%		13	9	11	14					
1	Impact on Significant Natural Features	Loss of natural area due to installation of works.	3%	Alts. II & III require a significant amount of work inside the Carp River corridor.	4	2	2	3					
13	Impact on Aquatic Systems	Potential impact on fish habitat due to installation of works.	3%	Alts. II & III require a significant amount of work inside the Carp River corridor.	3	2	2	3					
14	Impact on Quality and Quantity of Surface Water and Groundwater	Potential impact on water quality in the Carp River resulting from rare emergency overflows to the SWM pond due to pump station failure.	3%	Alts. I & II require two pumping stations for each alternative. Alts. III & IIIA require only one station each.	2	2	3	3					
15	Impact on Global Warming	Difference in carbon dioxide emissions resulting from occasional use of diesel generator.	1%	Alt. I and II require double pumping where Alt. III and IIIA only require single pumping.	1	1	2	2					
6	Effects on Urban Greenspace, Open Space and Vegetation (i.e.trees,shrubs,etc.)	Disruption to greenspace and trees.	5%	Alt. III requires work within the Carp River Corridor.	3	2	2	3					
ota	I Score		100%		2.39	2.26	3.21	3.29					
	king				3	4	2	1					
	mated Capital Cost (in \$milli				~	8.5	-	5.5					

Description of Alternatives Internal Servicing Alternative I - Silver Seven Road at HWY 417 Internal Servicing Alternative II - HWY 417 East of Carp River

Internal Servicing Alternative III - Maple Grove Road West of the Carp River Internal Servicing Alternative III - Maple Grove Road West of the Carp River with an Alternative Sewer Alignment

1604-00406_KWCP_San_EA_June_06.xls/EA Evaluation-Internal (Qual)

Evaluation Ranking 1 -2 High or Negative Impact 3 Moderate or No Impact 4-5 Low or Positive Impact

STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

Constructability/Functionality (C/F) -36%

All three alternatives require the construction of a shallow forcemain so geotechnical issues are not considered to be a concern along the selected alignments. However, an assessment of the subsurface conditions indicates that unlike Alternative III, Alternatives I and II will not require rock excavation.

Alternatives I and III are located entirely within existing or proposed road allowances eliminating the need for additional land or easements. A benefit of Alternative II is that the length of the require forcemain is moderately less than Alternatives I and III.

Alternative I is advantageous for routine maintenance operations as the alignment is located within a lower classification of roadway when compared to Alternative III.

Economy (E) – 25%

Approximately 50% of the Alternative I forcemain will be installed in conjunction with other development works minimizing the amount of reinstatement required. This reduces the overall cost of Alternative I relative to the other remaining options. A large portion of Alternative II would be constructed in open fields requiring fewer costs for reinstatement when compared to Alternative III.

Caring and Healthy Community (CHC) – 25%

All three alternatives present similar impacts to the community. These impacts are limited to the duration of construction and are therefore considered minimal. Alternative I creates the least amount of impact when compared to Alternatives II and III. This is due to the fact that approximately half of the construction of the temporary forcemain will be done with other development works. Alternative II requires construction along major arterials within existing communities east of the KWCP, resulting in the highest level of impact.

Natural Environment (NE) – 14%

Alternatives I and III are entirely contained within existing or proposed road allowances. However, Alternative III would require a crossing at the Carp River. Construction monitoring to detect any required mitigation measures for potential impacts to water quality would be required. A large portion of the Alternative II alignment is within the Carp River corridor and will have the highest impact on existing natural features.

4.2.4.3 Selection of Preferred Temporary Forcemain Alternative

Based on the above evaluation, temporary forcemain Alternative I, the Huntmar Road/Iber Road alignment, is selected as the preferred alternative. This alignment facilitates routine maintenance operations, as it is located within a roadway of lower classification when compared to the other alternatives (Terry Fox Drive). This alignment also results in the least amount of impact on the existing natural features. The Alternative I alignment is similar to Alternative II as the most economical options. Over half of the alignment will be constructed in conjunction with other works, unlike Alternative II.

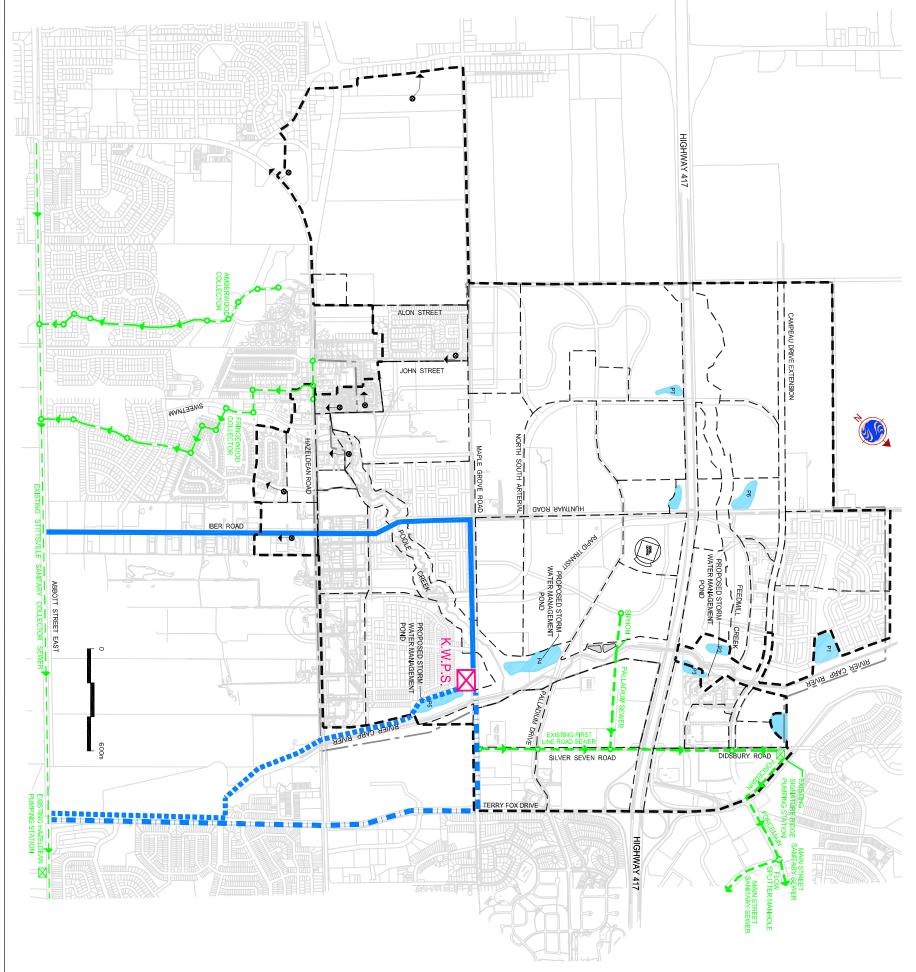


FIG. 4.1-7

Ultimate Major Drainage Limit Alternate I (Preferred Option) Alternate II Alternate II Existing Trunk Sewers Existing Pumping Station and Forcemain (To be Decommissioned) Pump Station

TABLE 4.1-4

Kanata West Wastewater - Temporary Forcemain Alternatives

	Criteria	Indicators	Weighting	Rationale for		Femporary Forcema	in
				Relative Weights		Alternatives	
					1	1	III
ONST	RUCTABILITY/FUNCTIONALITY		36%			18	20
D1.1	Geotechnical Issues and Construction Risks	Potential for encountering poor soils and/or elevated groundwater conditions.		Alt. III requires acrossing of the Carp River through deep clay deposits.	3	3	2
01.2	Infrastructure Requirements	Extent of works required.	7%		2	2	2
			7%				
01.3	Operational Impacts	Amount of maintenance intensive infrastructure required.	6%		3	3	3
01.4	Construction Scheduling	Impact of construction on development timing.	4%		3	3	3
01.5	Property Acquisition	Ease of property acquisition. (Depends on status of lands and adjacent lands, i.e. vacant, leased or owner occupied.)		Alt. Il requires property acquisition from private owners.	4	1	4
01.6	System Reliability	Proximity of a storm sewer, SWM or other surface water for emergency overflow	2%		3	3	3
01.7	Servicing Flexibility	Ease of accommodating potential changes in servicing plans.	<u>6%</u> 5%		3	3	3
			576				
CONC	MY		25%		16	14	13
1	Potential to Use Combined Service Corridor	Length and area of combined service corridor.	6%	Alts. I uses a common corridor with other new works for half of length. Alt. II requires a new single use corridor for 1/3 of its length.	4	1	2
2	Efficiency of Use of Existing Infrastructure	Use of exisiting capacity	5%		3	3	3
3	Energy Consumption	Pumping requirements	4%		3	3	3
5	Impact on Agriculture	Agriculture area likely to be affected by infrastructure.	2%		3	3	3
9	Capital Cost	Estimated cost of construction.		Alt II is the least expensive and Alt. III is the most expensive to install.	3	4	2
			8%				
	B AND HEALTHY COMMUNITIES Displacement of Residents, Community/Recreation	Affects areas of residence, institutions or businesses.	25%	Alt. II is adjacent to Carp River corridor.	8	5	7
0	Features and Institutions.	Alleus aleas ul residence, insulations ul pusificases.	6%		0	2	5
4	Disruption to Existing Community	Extent of works affecting existing residences and businesses and visibility of additional infrastructure.	11%	Alt. II and III are along major arterials in existing communities.	3	1	2
9	Consistency with Planned Land Use and Infrastructure	Compatibility with City land use, design guidelines and infrastructure servicing corridor planning (Kanata West Roadwork Environmental Study Report and Storm Sewer and Watermain Needs).	11/6		2	2	2
			8%				
ATUR	AL ENVIRONMENT		14%		15	9	14
1	Impact on Significant Natural Features	Loss of natural area due to installation of works.	3%	Alt. II is adjacent to Carp River corridor.	15 3	1	14 2
3	Impact on Aquatic Systems	Potential impact on fish habitat due to installation of works.	3%	Alt. Il is adjacent to the Carp River corridor which presents a potential for impacts to aquatic systems	3	2	3
4	Impact on Quality and Quantity of Surface Water and Groundwater	Potential impact on water quality in the Carp River resulting from rare emergency overflows to the SWM pond due to pump station failure.	3%	Alt. II requires construction along a significant portion of the Carp River corridor which is currently vegetated.	3	2	3
5	Impact on Global Warming	Difference in carbon dioxide emissions resulting from occasional use of diesel generator.	1%		3	3	3
6	Effects on Urban Greenspace, Open Space and Vegetation (i.e.trees,shrubs,etc.)	Disruption to greenspace and trees.	5%	Alt. II is adjacent to Carp River corridor which presents a potential for impacts to aquatic systems	3	1	3
otal S	core		100%		2.93	2.29	2.52
ankin	5				1	3	2
etimat	ted Capital Cost (in \$million)				1.5	1.5	2

Description of Alternatives Temporary Forcemain Alternative I - Maple Grove/Huntmar/Iber Road to the Sittsville Collector Temporary Forcemain Alternative II- Carp River/Terry Fox to the Stittsville Collector Temporary Forcemain Alternative III- Maple Grove/Terry Fox to the Stittsville Collector

Evaluation Ranking 1 -2 High or Negative Impact 3 Moderate or No Impact 4-5 Low or Positive Impact

4.2.5 Trunk Sewer Alignment Alternatives

4.2.5.1 Description of Trunk Sewer Alignment Alternatives

Three potential alignments were considered for the gravity sewer that will service the unserviced lands on Hazeldean Road. This sewer will also permit the decommissioning of several small existing pumping stations located along the north limit of the Village of Stittsville. As illustrated in **Figure 4.1-8** the alternative alignments considered for this sewer are:

- Alternative I Maple Grove Road from the proposed pumping station to Huntmar Road, south on Huntmar Road to Hazeldean Road at Iber Road.
- Alternative II Maple Grove Road to south of Poole Creek, southerly along Poole Creek to the transit corridor, southerly along the transitway to Hazeldean Road at Iber Road.
- Alternative III South from the Maple Grove Road Pumping Station through the proposed development lands adjacent to the Carp River to Hazeldean Road, west on Hazeldean Road to Iber Road.

4.2.5.2 Evaluation of the Trunk Sewer Alignment Alternatives

The alternative sewer alignments were evaluated and ranked using the criteria discussed in Section 4.2. The results of the evaluation are summarized in **Table 4.1-5.** An explanation of the category rankings and weightings are provided below.

Constructability/Functionality (C/F) – 36%

All three alternatives require approximately the same depth of excavation and present similar geotechnical issues. A benefit of Alternative I is that at least half of the works will be installed in conjunction with other infrastructure. In addition, the Alternative I alignment will be installed in a corridor that will be part of Phase One of construction providing flexibility in phasing works outside the KWCP area.

Alternatives I and II require the least amount of infrastructure to reach Iber Road.

Economy (E) - 25%

Alternatives I and II offer the opportunity to use combined service corridors along Maple Grove Road and Huntmar Road (Alternative I) and Hazeldean Road and the transitway (Alternative II). Alternative I would be part of Phase 1 of construction and will ensure that the timing of installation will coincide with other joint use utilities. This ensures that the economies of the combined corridor servicing will materialize for Alternative I.

Alternatives I and II are the least costly to install as they require the least amount of infrastructure.

Caring and Healthy Community (CHC) – 25%

There are no significant differences between the three alternatives in terms of the impact on the community. The alignment of all three alternatives is primarily confined to within the development area. Impacts will be confined to the period of construction in all cases.

Natural Environment (NE) - 14%

All three sewer alignment alternatives have a similar impact on the environment. Each alignment is confined to existing right-of-ways or in new right-of-ways proposed within the development area. Alternative I requires crossing Poole Creek that may impact water quality.

4.2.5.3 Selection of Preferred Huntmar Road Sewer Alignment Alternative

Based on the above evaluation, Huntmar Road sewer Alternative I is selected as the preferred alignment for the gravity sewer. This sewer will service Hazeldean Road and the southern portion of the KWCP. The alignment is preferred because it maximizes the flexibility for development within the KWCP without compromising the surrounding communities or natural environment.

4.2.6 Signature Ridge Pumping Station Alternatives

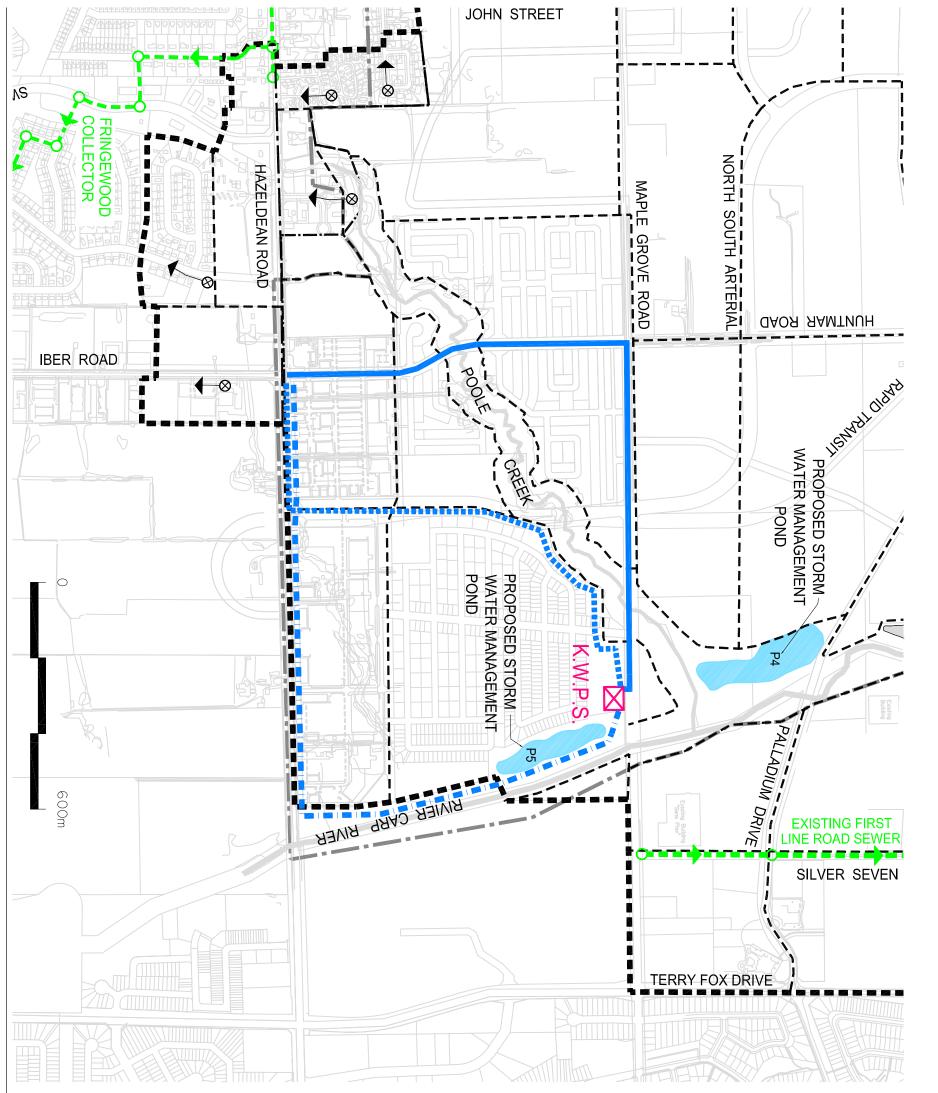
4.2.6.1 Description of Signature Ridge Pumping Station Alternatives

The Signature Ridge Pumping Station is a critical element for providing sanitary service to the KWCP. The present condition of the station is insufficient to provide the necessary level of service required to service the proposed area. To the capacity, two alternatives were considered for the Station. The station can be upgraded (Alternative II) or it can be completely rebuilt (Alternative I), including the construction of a new wet well, pumps and auxiliary power facility. Upgrade recommendations have been described in the "Signature Ridge Pumping Station Feasibility Study" by R.V. Anderson Assoc. Ltd., dated Sept. 2003.

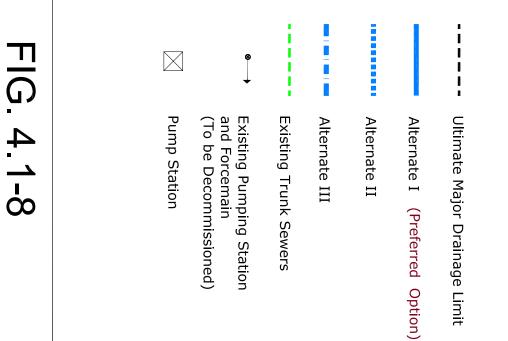
These alternatives were considered because of the significant amount of infrastructure that is currently dependent on the Signature Ridge Pumping Station for an outlet. The station is also located in close proximity to the northeast portion of the KWCP. **Figure 4.1-9** illustrates the location of the Signature Ridge Pumping Station.

4.2.6.2 Evaluation of Signature Ridge Pumping Station Alternatives

The alternative pumping station alternatives were evaluated and ranked using the criteria discussed in Section 4.2. The results of the evaluation are summarized in **Table 4.1-6**. An explanation of the category rankings and weightings are provided below.


Constructability/Functionality (C/F) 36%

The Signature Ridge Pumping Station requires only mechanical upgrades to provide the necessary level of service, which can be accomplished through Alternative I (Station up-grade). This eliminates the need to perform deep excavations in soft clays for reconstruction of the wet well. A benefit of constructing a new pumping station would be the ability to increase the pumping capacity to more than that required for the KWCP, increasing the flexibility of the overall wastewater system.


Upgrading the existing station will not require any property acquisition and can be completed in stages to meet the needs of future development over time.

MAY 2006

TRUNK SEWER ALIGNMENT ALTERNATIVES

TABLE 4.1-5

Kanata West Wastewater - Trunk Sewer Alternatives

	Criteria	Indicators	Weighting	Rationale for		Trunk Sewer	
				Relative Weights		Alternatives	
CONST	RUCTABILITY/FUNCTIONALITY		36%		27	II 17	III 19
CO1.1	Geotechnical Issues and Construction Risks	Potential for encountering poor soils and/or elevated groundwater conditions.	30 /8		3	3	3
		······································					1
			7%				L
CO1.2	Infrastructure Requirements	Extent of works required.	7%	Alt. III requires the most sewer .	3	3	2
CO1.3	Operational Impacts	Amount of maintenance intensive infrastructure required.	6%		3	3	3
CO1.4	Construction Scheduling	Impact of construction on development timing.	078	Alt. I ensures the trunk sewer is constructed as part of Phase I due to the	5	2	2
			404	requirement to install Huntmar Road as part of Phase I.			1
CO1.5	Property Acquisition	Ease of property acquisition. (Depends on status of lands and adjacent lands, i.e. vacant, leased or owner occupied.)	4%	Alts. I and III are entirely within existing road right-of-ways or in new roads.	5	2	5
		······································					1
CO1.6	System Reliability	Proximity of a storm sewer, SWM or other surface water for emergency overflow	2%		3	3	3
001.6	System Reliability	Proximity of a storm server, Swin of other surface water for emergency overnow			3	3	3
CO1.7	Servicing Flexibility	Ease of accommodating potential changes in servicing plans.	6%	The central location of Alt. I to the service area maximizes flexibility.	5	1	1
			5%	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
ECONO			25%		17	15	12
⊢ 1	Potential to Use Combined Service Corridor	Length and area of combined service corridor.		Alt. I is entirely within a joint use corridor where Alt. II and III require extensive specific corridors.	5	3	2
			6%				1
E2	Efficiency of Use of Existing Infrastructure	Use of exisitng capacity	0,0		3	3	3
			5%				I
E3	Energy Consumption	Pumping requirements	4%		3	3	3
E5	Impact on Agriculture	Agriculture area likely to be affected by infrastructure.	2%		3	3	3
E9	Capital Cost	Estimated cost of construction.		Alt. III is significantly more expensive than Alt. I and II due to overall length and singular service construction.	3	3	1
			8%	and singular service construction.			1
CARING	AND HEALTHY COMMUNITIES		25%		9	9	9
C3	Displacement of Residents, Community/Recreation Features	Affects areas of residence, institutions or businesses.			3	3	3
	and Institutions.		6%				1
C4	Disruption to Existing Community	Extent of works affecting existing residences and businesses and visibility of additional infrastructure.	0%		3	3	3
	· · · ·		11%				1
C9	Consistency with Planned Land Use and Infrastructure	Compatibility with City land use, design guidelines and infrastructure servicing corridor planning (Kanata West			3	3	3
		Roadwork Environmental Study Report and Storm Sewer and Watermain Needs).					1
			8%				1
-			14%		13	15	15
N1	Impact on Significant Natural Features	Loss of natural area due to installation of works.	3%	Alt. I crosses Poole Creek requiring construction within the river corridor.	2	3	3
N3	Impact on Aquatic Systems	Potential impact on fish habitat due to installation of works.	3%	Alt. I crosses Poole Creek increasing the potential to impact fish habitat.	2	3	3
	1			.			1
N4	Impact on Quality and Quantity of Surface Water and	Potential impact on water quality in the Carp River resulting from rare emergency overflows to the SWM pond due to	3%		3	3	3
	Groundwater	pump station failure.					1
							l
N5	Impact on Global Warming	Difference in carbon dioxide emissions resulting from occasional use of diesel generator.	1%		3	3	3
			.,		5	Ŭ	Ĩ
N6	Effects on Urban Greenspace, Open Space and Vegetation	Disruption to greenspace and trees.	5%		3	3	3
	(i.e.trees,shrubs,etc.)						l
							l
Total Sc Banking			100%		3.29	2.84 2	2.61
Ranking	ed Capital Cost (in \$million)		l		1	2	3 2.5
LSumate	eu Capital Cost (ili amilion)				1.5	1.5	2.5

Description of Alternatives Trunk Sewer Alternative I - Maple Grove/Huntmar/Hazeldean Road Trunk Sewer Alternative II- Maple Grove/Poole Creek/Transitway/Hazeldean Road Trunk Sewer Alternative III - Maple Grove/Hazeldean Road

Economy (E) 25%

The reconstruction of the Signature Ridge Pumping Station is significantly more than the costs to upgrade the existing station.

Caring and Healthy Community (CHC) 25%

In terms of the impact on the Community, there are no significant differences between the two alternatives.

Natural Environment (NE) 14%

There are no significant differences between the two options with respect to impacts to the natural environment. Both alternatives require the construction of an emergency overflow to the Carp River. Impacts to surface water quality as a result of potential station overflows during an emergency situation are not expected to occur. Should an overflow occur for either alternative, the impacts would be mitigated by a SWM pond. Increases in CO_2 emissions as a result of the use of diesel generators during power failures or maintenance procedures will be negligible and are similar in both alternatives.

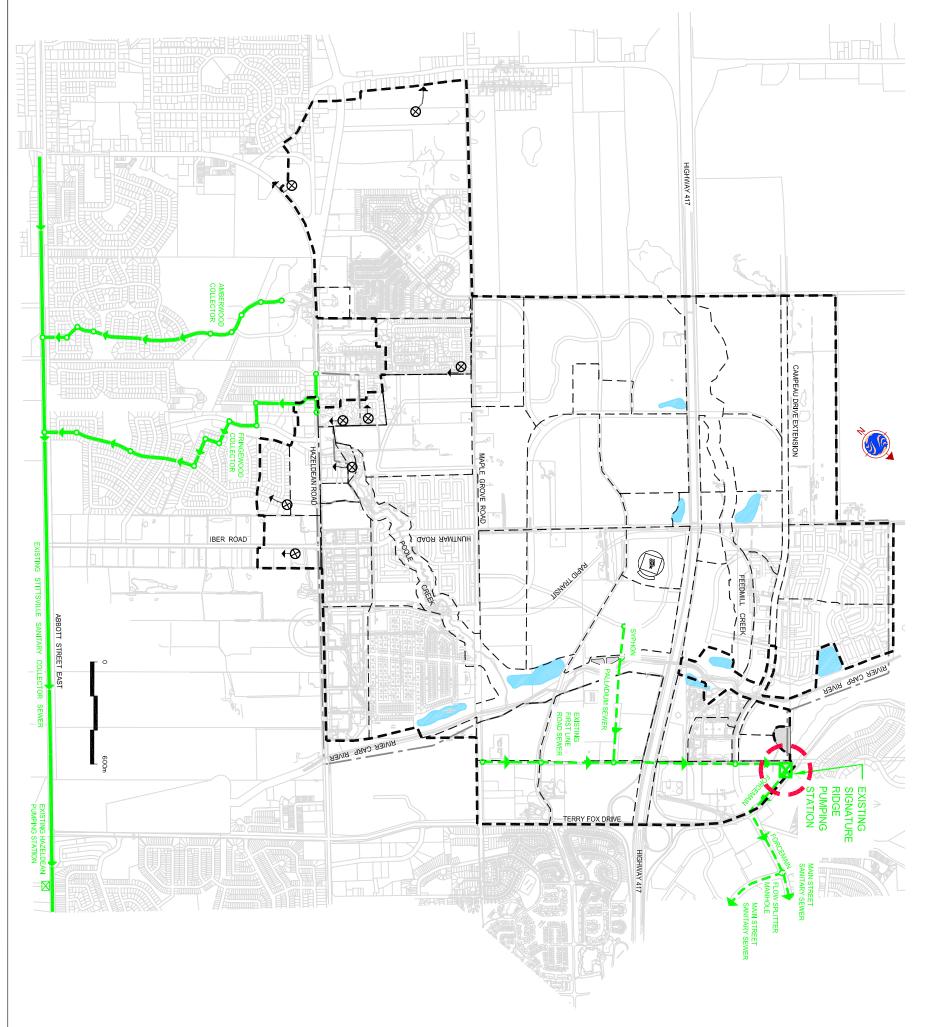
4.2.6.3 Selection of Preferred Signature Ridge Pumping Station Alternative

Based on the above evaluation, the Signature Ridge Pumping Station Alternative I, station upgrade, is selected as the preferred alternative. This alternative maximizes the use of existing infrastructure and offers the most flexibility in phasing of the works with the least amount of capital expenditure or impacts.

4.2.6.4 Summary

The preferred alternatives selected for the wastewater outlet, the internal servicing system, the temporary forcemain, the trunk sewer alignment, and the Signature Ridge Pumping Station have been used to develop a comprehensive wastewater servicing plan for the KWCP. This servicing plan is discussed in future detail in the following section of this report.

4.3 **Preferred Sanitary Sewer Servicing Plan**


Section 4.2 has detailed the selection of preferred alternatives for the major infrastructure required to provide sanitary sewer service to the KWCP. These preferred alternatives have been used to develop a Master Sanitary Servicing Plan for the area. This plan is illustrated on **Drawing S-1** (appended to this report). The major features of this plan are:

(i.) An upgraded Signature Ridge Pumping Station (SRPS) to service all the KWCP lands north of the Queensway, the existing urban area north of the Queensway currently proposed to drain to the SRPS, and the Broughton/Richardson Interstitial lands. A spreadsheet detailing the exact areas and flows tributary to the SRPS is included in **Figure 4.2-1**.

The 400 l/sec peak flow capacity identified in **Figure 4.2-1** for the upgraded SRPS, is consistent with the findings of the R.V. Anderson Report titled "Signature Ridge Pumping Station Upgrades Feasibility Study".

FIG. 4.1-9

⊗ ↓				Legend:	SIGNAI PUMPIN
Existing Pumping Station and Forcemain (To be Decommissioned)	Existing Trunk Sewer	Existing Stittsville Sewer	Ultimate Drainage Limit		PUMPING STATION

TABLE 4.1-6

Kanata West Wastewater - Temporary Forcemain/Trunk Sewer/Signature Ridge Alternatives

	Criteria	Indicators	Weighting	Rationale for	Signature	
				Relative Weights	Alterr	native Rebuild
						Rebuild
			36%		24	16
01.1	Geotechnical Issues and Construction Risks	Potential for encountering poor soils and/or elevated groundwater conditions.	70/	Alt. Il requires reconstruction of the pumping station in very soft clays where Alt. I does not require reconstruction of the wet well.	3	1
01.2	Infrastructure Requirements	Extent of works required.	7%	Alt. I only requires upgrading of hardware within the existing pumping station.	4	1
01.3	Operational Impacts	Amount of maintenance intensive infrastructure required.	6%		3	3
01.4	Construction Scheduling	Impact of construction on development timing.	4%	Alt. I can be phased to suit development timing where Alt. II requires a lengthy total reconstruction program.	4	2
01.5	Property Acquisition	Ease of property acquisition. (Depends on status of lands and adjacent lands, i.e. vacant, leased or owner occupied.)		Alt. Il requires property acquisition for a new station because existing station will have to remain in service during construction.	5	2
01.6	System Reliability	Proximity of a storm sewer, SWM or other surface water for emergency overflow	2%		3	3
01.7	Servicing Flexibility	Ease of accommodating potential changes in servicing plans.	6% 5%	Alt. II can be built to accommodate changes where Alt. I is designed to the maximum.	2	4
			5%			
CONON	ЛҮ		25%		19	12
1	Potential to Use Combined Service Corridor	Length and area of combined service corridor.			3	3
2	Efficiency of Use of Existing Infrastructure	Use of exisitng capacity	6%	Alt. I maximizes the use of the existing station.	5	2
3	Energy Consumption	Pumping requirements	5% 4%		3	3
5	Impact on Agriculture	Agriculture area likely to be affected by infrastructure.			3	3
Ð	Capital Cost	Estimated cost of construction.	2%	Alt. II is significantly more expensive to construct.	5	1
			8%			
ARING	AND HEALTHY COMMUNITIES		25%		12	9
3	Displacement of Residents, Community/Recreation Features and Institutions.	Affects areas of residence, institutions or businesses.			4	4
4	Disruption to Existing Community	Extent of works affecting existing residences and businesses and visibility of additional infrastructure.	6%	Alt. 1 requires only internal up-grades and will have minimal construction traffic or related impacts.	4	3
9	Consistency with Planned Land Use and Infrastructure	Compatibility with City land use, design guidelines and infrastructure servicing corridor planning (Kanata West Roadwork Environmental Study Report and Storm Sewer and Watermain Needs).	11%	Alt. I maximizes use of currently planned infrastructure by upgrading existing station to its maximum potential.	4	2
			8%			
ATURA	L ENVIRONMENT		14%		14	14
1	Impact on Significant Natural Features	Loss of natural area due to installation of works.	3%		3	3
3	Impact on Aquatic Systems	Potential impact on fish habitat due to installation of works.	3%		3	3
4	Impact on Quality and Quantity of Surface Water and Groundwater	Potential impact on water quality in the Carp River resulting from rare emergency overflows to the SWM pond due to pump station failure.	3%		3	3
i	Impact on Global Warming	Difference in carbon dioxide emissions resulting from occasional use of diesel generator.	1%		2	2
5	Effects on Urban Greenspace, Open Space and Vegetation (i.e.trees,shrubs,etc.)	Disruption to greenspace and trees.	5%		3	3
otal Sc	ore		100%		3.60	2.48
anking					1	2
etimata	d Capital Cost (in \$million)				1	4

Evaluation Ranking 1 -2 High or Negative Impact 3 Moderate or No Impact 4-5 Low or Positive Impact

Description of Alternatives Signature Ridge PS Alternative 1 - Rebuild Signature Ridge PS Alternative II - Upgrade

STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

The Signature Ridge Pumping Station is currently not equipped with catastrophic failure protection in the form of a gravity overflow. A hydraulic analysis of the proposed sewer system was therefore completed to evaluate the potential for providing a gravity overflow. This analysis demonstrates that catastrophic protection can be provided by gravity. The analysis is included in **Appendix 4.2** and demonstrates that overflows to the existing stormwater management pond on First Line Road and to Pond I can provide the necessary level of protection.

(ii.) A single new pumping station and forcemain located south of Maple Grove Road and west of the Carp River.

This new pumping station ultimately services all the KWCP south of Highway 417, the lands south of the 417 originally tributary to the SRPS, and the lands in the Village of Stittsville, along Hazeldean Road which are currently unserviceable by gravity to the Stittsville Sanitary Sewer System. This new pumping station has also been designed to accommodate the decommissioning of up to eight small public and private pumping stations along Hazeldean Road without deepening the Kanata West system. **Figure 4.2-1** details the exact areas and flows from Stittsville which will ultimately be tributary to the new pumping station. The areas are also illustrated on **Drawing S-1**.

Figures 4.2-3 and 4.2-4 illustrate a conceptual layout and cross-section for the new pumping station and **Appendix 4.3** details the conceptual design of the pumping station.

The new pumping station will temporarily outlet to the Stittsville Collector Sewer via a temporary forcemain in Huntmar Road and Iber Road. This temporary forcemain is designed to accommodate a flow of 190 l/sec (approximately 3,000 units). The temporary outlet will be located entirely within a public right-of-way. The single 405 mm diameter forcemain used for the initial outlet can be kept in service for long-term use as an emergency back up outlet. Rationale on the availability of capacity in the Stittsville Collector Sewer is attached as **Appendix 4.1**.

The permanent outlet for the new pumping station consists of a forcemain leading from the pumping station to the Glen Cairn Collector Sewer east of Eagleson Road. The preferred route for this forcemain in along Maple Grove Road to Silver Seven Road; along the east side of Silver Seven Road, in an easement, in the undeveloped lands between Maple Grove Road and Palladium Drive; easterly along Palladium Drive to Katimavik Road; and easterly along the north side of Katimavik Road, in the corridor for the unbuilt westbound lanes of Katimavik Road, to Eagleson Road and the Glen Cairn Collector Sewer. The location of the new pumping station is in close proximity to Stormwater Management Ponds 4 and 5. This provides catastrophic failure protection to the new pumping station in the form of a gravity overflow. The hydraulic analysis of this overflow system is attached as **Appendix 4.2**.

The preferred sanitary sewer system also includes a gravity sewer, which collects flow from several minor internal sanitary sewers and directs this flow to the new pumping station location. As illustrated on **Drawing S-1** this minor collector sewer runs parallel to the west side of the Carp River corridor between Maple Grove Road and Palladium Drive, crossing under the Carp River by boring beneath the river. The sewer extends northerly to intercept flows from Silver Seven Road and diverts them from the Signature Ridge Pumping Station. The inclusion of this north south sewer is a key element in eliminating the need for double pumping within Kanata

SANITARY SEWER DESIGN SHEET PROJECT : Kanata West Servicibility Study LOCATION : CITY OF OTTAWA

Break Prov Prov Prov <	WER PIPE LGTH. PIPE (m) (mm) 525.0 525 700.0 600 910.0 450 300.0 675 420.0 250 300.0 750 300.0 750 300.0 750) % 225 0.44 50 0.22 55 0.2	CAP. (%) 0 69.44% 0 54.93% 5 82.92% 0 60.59% 5 78.92% 0 51.93% 0 43.31%	3.64 % % % % 3.64 % 3.64 % 3.64 % 3.64 % 3.64 % 3.64 % 3.64 % 3.64 % 3.88 3.31	q/Q 0.300 0.45 0.45 0.21 0.21 0.21 0.48 0.56	5 0.73 1 0.83 1 0.63 4 0.75 1 0.66 1 0.68 7 0.88	30 0.81 30 0.57 30 0.83 50 0.59 40 0.89 30 0.76
<table-container> PARE PARD PARD PARD PARD PA</table-container>	(m) (mm) 525.0 5225 700.0 500 910.0 4500 910.0 4500 675 750.0 450 450.0 675 750.0 450 450.0 750 910.0 750 910.) % 225 0.44 50 0.22 55 0.2	CAP. (%) 0 69.44% 0 54.93% 5 82.92% 0 60.59% 5 78.92% 0 51.93% 0 43.31%	PF % % % % % % % % % % % % % % % % % %	q/Q 0.300 0.45 0.45 0.21 0.21 0.21 0.48 0.56	6 0.73 1 0.83 1 0.63 4 0.79 1 0.66 1 0.66 1 0.84 7 0.88	VELOCIT (m/s)) (m/s) (m/s) (m/s) (m/s)) (m/s) (m/s)) (m/s) (m/s)) (m
Image Image <	525.0 525.7 700.0 600 910.0 450 300.0 675 750.0 450 420.0 250 300.0 750	25 0.40 00 0.20 50 0.22 50 0.22 50 0.22 50 0.25 50 0.20 50 0.50 50 0.20 50	(%) 0 69.44% 0 54.93% 5 82.92% 0 60.59% 5 78.92% 0 51.93% 0 43.31%	% 3.66 %	0.300 0.45 0.17 0.39 0.21 0.48 0.56 0.45	1 0.83 1 0.63 4 0.79 1 0.66 1 0.84 7 0.88	(m/s) (m/s) (m/s) (0.92 (0.92)
Campean Draw Tunk Sever I C <th>525.0 525.7 700.0 600 910.0 450 300.0 675 750.0 450 420.0 250 300.0 750</th> <th>25 0.40 00 0.20 50 0.22 50 0.22 50 0.22 50 0.25 50 0.20 50 0.50 50 0.20 50 0.20 50</th> <th>0 69.44% 0 54.93% 5 82.92% 0 60.59% 5 78.92% 0 51.93% 0 43.31%</th> <th>3.65 % % % % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.61 % 3.81 3.33 %</th> <th>0.45 0.17 0.39 0.21 0.48 0.56 0.45</th> <th>1 0.83 1 0.63 4 0.79 1 0.66 1 0.84 7 0.88</th> <th>30 0.92 30 0.81 30 0.577 30 0.83 30 0.59 30 0.59 30 0.59 30 0.59 30 0.59 30 0.59 30 0.59 30 0.59 30 0.57 30 0.81 30 0.83 30 0.83 30 0.83 30 0.83 30 0.83 30 0.83 30 0.83 30 0.83 30 0.57 30 0.83 30 0.57 30 0.59 30 0.83 30 0.59 30 0.59 30</th>	525.0 525.7 700.0 600 910.0 450 300.0 675 750.0 450 420.0 250 300.0 750	25 0.40 00 0.20 50 0.22 50 0.22 50 0.22 50 0.25 50 0.20 50 0.50 50 0.20 50	0 69.44% 0 54.93% 5 82.92% 0 60.59% 5 78.92% 0 51.93% 0 43.31%	3.65 % % % % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.61 % 3.81 3.33 %	0.45 0.17 0.39 0.21 0.48 0.56 0.45	1 0.83 1 0.63 4 0.79 1 0.66 1 0.84 7 0.88	30 0.92 30 0.81 30 0.577 30 0.83 30 0.59 30 0.59 30 0.59 30 0.59 30 0.59 30 0.59 30 0.59 30 0.59 30 0.57 30 0.81 30 0.83 30 0.83 30 0.83 30 0.83 30 0.83 30 0.83 30 0.83 30 0.83 30 0.57 30 0.83 30 0.57 30 0.59 30 0.83 30 0.59 30
Image: black in the sector of the s	700.0 600 910.0 450 300.0 675 750.0 450 450.0 675 300.0 750 300.0 750	00 0.20 50 0.22 55 0.20 55 0.20 50	0 54.93% 5 82.92% 0 60.59% 5 78.92% 0 51.93% 0 43.31%	3.65 % % % % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.61 % 3.81 3.33 %	0.45 0.17 0.39 0.21 0.48 0.56 0.45	1 0.83 1 0.63 4 0.79 1 0.66 1 0.84 7 0.88	30 0.81 30 0.57 30 0.83 50 0.59 40 0.89 30 0.76
Image Image <th< td=""><td>700.0 600 910.0 450 300.0 675 750.0 450 450.0 675 300.0 750 300.0 750</td><td>00 0.20 50 0.22 55 0.20 55 0.20 50 0.20 50</td><td>0 54.93% 5 82.92% 0 60.59% 5 78.92% 0 51.93% 0 43.31%</td><td>3.65 % % % % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.61 % 3.81 3.33 %</td><td>0.45 0.17 0.39 0.21 0.48 0.56 0.45</td><td>1 0.83 1 0.63 4 0.79 1 0.66 1 0.84 7 0.88</td><td>30 0.81 30 0.57 30 0.83 50 0.59 40 0.89 30 0.76</td></th<>	700.0 600 910.0 450 300.0 675 750.0 450 450.0 675 300.0 750 300.0 750	00 0.20 50 0.22 55 0.20 55 0.20 50	0 54.93% 5 82.92% 0 60.59% 5 78.92% 0 51.93% 0 43.31%	3.65 % % % % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.61 % 3.81 3.33 %	0.45 0.17 0.39 0.21 0.48 0.56 0.45	1 0.83 1 0.63 4 0.79 1 0.66 1 0.84 7 0.88	30 0.81 30 0.57 30 0.83 50 0.59 40 0.89 30 0.76
Image: bit is an intermed and the properties of the properites of the properime of the properties of the properties	700.0 600 910.0 450 300.0 675 750.0 450 450.0 675 300.0 750 300.0 750	00 0.20 50 0.22 55 0.20 55 0.20 50	0 54.93% 5 82.92% 0 60.59% 5 78.92% 0 51.93% 0 43.31%	3.65 % % % % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.61 % 3.81 3.33 %	0.45 0.17 0.39 0.21 0.48 0.56 0.45	1 0.83 1 0.63 4 0.79 1 0.66 1 0.84 7 0.88	30 0.81 30 0.57 30 0.83 50 0.59 40 0.89 30 0.76
Image: black set of the set of t	700.0 600 910.0 450 300.0 675 750.0 450 450.0 675 300.0 750 300.0 750	00 0.20 50 0.22 55 0.20 55 0.20 50	0 54.93% 5 82.92% 0 60.59% 5 78.92% 0 51.93% 0 43.31%	3.65 % % % % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.66 % 3.61 % 3.81 3.33 %	0.45 0.17 0.39 0.21 0.48 0.56 0.45	1 0.83 1 0.63 4 0.79 1 0.66 1 0.84 7 0.88	30 0.81 30 0.57 30 0.53 30 0.59 40 0.89 30 0.76
Image: bit	910.0 450 300.0 675 750.0 450 450.0 675 420.0 250 300.0 750	50 0.2: 75 0.20 50 0.2: 55 0.20 50 0.50 50 0.20	5 82.92% 0 60.59% 5 78.92% 0 51.93% 0 43.31%	% 3.64 % 3.64 % 3.34 % 3.34 % 3.38 % 3.38 % 3.38	0.45 0.17 0.39 0.21 0.48 0.56 0.45	1 0.63 4 0.79 1 0.66 1 0.84 7 0.88	30 0.57 30 0.83 30 0.59 40 0.89 30 0.76
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	910.0 450 300.0 675 750.0 450 450.0 675 420.0 250 300.0 750	50 0.2: 75 0.20 50 0.2: 55 0.20 50 0.50 50 0.20	5 82.92% 0 60.59% 5 78.92% 0 51.93% 0 43.31%	% 3.64 % 3.64 % 3.34 % 3.38 % 3.38 % 3.38	0.17 0.39 0.21 0.48 0.56 0.45	1 0.63 4 0.79 1 0.66 1 0.84 7 0.88	30 0.57 30 0.83 30 0.59 40 0.89 30 0.76
Image: black state Area 7 HP Employment 5.48 C F	300.0 675 750.0 450 450.0 675 420.0 250 300.0 750	75 0.20 50 0.22 75 0.20 50 0.50 50 0.20	0 60.59% 5 78.92% 0 51.93% 0 43.31%	% 3.60 % 3.30 % 3.38 % 3.88 % 3.38	5 0.39 6 0.21 8 0.48 9 0.56 0.45	4 0.79 1 0.66 1 0.84 7 0.88	90 0.83 90 0.59 40 0.89 30 0.76
1 3 4 9 13 13 13 14 16 16 16 16 <t< td=""><td>300.0 675 750.0 450 450.0 675 420.0 250 300.0 750</td><td>75 0.20 50 0.22 75 0.20 50 0.50 50 0.20</td><td>0 60.59% 5 78.92% 0 51.93% 0 43.31%</td><td>% 3.60 % 3.30 % 3.38 % 3.88 % 3.38</td><td>5 0.39 6 0.21 8 0.48 9 0.56 0.45</td><td>4 0.79 1 0.66 1 0.84 7 0.88</td><td>90 0.83 90 0.59 40 0.89 30 0.76</td></t<>	300.0 675 750.0 450 450.0 675 420.0 250 300.0 750	75 0.20 50 0.22 75 0.20 50 0.50 50 0.20	0 60.59% 5 78.92% 0 51.93% 0 43.31%	% 3.60 % 3.30 % 3.38 % 3.88 % 3.38	5 0.39 6 0.21 8 0.48 9 0.56 0.45	4 0.79 1 0.66 1 0.84 7 0.88	90 0.83 90 0.59 40 0.89 30 0.76
Image: And the stand of th	750.0 450 450.0 675 420.0 250 300.0 750	50 0.25 55 0.20 50 0.50 50 0.20	5 78.92% 0 51.93% 0 43.31%	% 3.6t % 3.3t % 3.8t 3.3t 3.3t % 3.8t % 3.3t	0.21 0.48 0.56 0.45	1 0.66 1 0.84 7 0.88	60 0.59 40 0.89 30 0.76
Queensw 5 Area 13 Community Retail 6.35 0 0 </td <td>420.0 250</td> <td>50 0.50 50 0.20</td> <td>0 43.31%</td> <td>% 3.88 3.3 %</td> <td>0.56</td> <td>7 0.88</td> <td>30 0.76</td>	420.0 250	50 0.50 50 0.20	0 43.31%	% 3.88 3.3 %	0.56	7 0.88	30 0.76
Image: bit is a serie of the serie of t	300.0 750	50 0.20		%	0.45		
Image: state stat	300.0 750	50 0.20		%	0.45		
First Line Road Sewer Image: Constraint of Constraint			0 54.42%	%	0.45	3 0.8(0 0.94
Image: bit in the state of			0 54.42%			<u>5 0.8</u>	30 0.94
Signature Ridge SA Area 100 Residential 90.0 90.0 101 514	30.0 750	0 0.25		3.23	3		
Signature Ridge S A Area 100 Non-Residential 4.88 C	30.0 750	0 0.25		3.23	2	1	1
Intenticial Lands & Broughton/Richards Image: Second s	30.0 750	0 0.25		_			+
Total To SRPS 5A SRPS 324.79 154.02 3336 9409 124.54 170.77 C C 119.51 C 324.79 90.94 399.98 580.53 11.27 A <td>30.0 750</td> <td>0 0.25</td> <td></td> <td></td> <td></td> <td></td> <td></td>	30.0 750	0 0.25					
Image: Second	50.0 750		5 31.10%	% 2.98	0.68	9 0.94	1.19
Image: Market Based Base			5 51.10 %	2.50	0.00.	0.34	5 1.15
Image: Mark and SA Park 8.34 Image: Mark and SA Park 8.34 Image: Mark and SA Park A				_			
Area 33/34 Ext Employment 54.85 O 54.85 120.22 5000 47.61 97.12 97.12 120.22 120.22							
7 8 Area 37 Mixed Use 36.70 15.60 50 780 2340 2340 3.53 33.47 21.10 21.10 141.32 50000 18.32 18.32 115.44 36.70 36.70 156.92 43.94 192.85 455.83 1.23	925.0 675	0.27	7 57.69%			3 0.81	1.00
Image: 10 bit		_		3.53	3		
Corel Centre Etc. (Existing Sever) 16 Area 35 HP Employment 6.05 6.05 6.05 31000 3.15 6.05 6.05							
16 Area 36 (Corel Centre) 20.15 26.20 26.20 14400 5.04 8.19 20.15 26.20 7.34 45.52		-					
	Existing	8					
First Line Road Sewer 15 16 Area 40 Employment 14.59 14.59 14.59 35000 8.87 14.59 14.59 14.59 Line Road Sewer I Area 41 Employment 11.97 Image: Sewer And Sewer An							
Area 42 Employment 20.66 47.22 35000 1.25 28.69 20.66 47.22							
Area 43 Employment 28.89 O 28.89 76.11 76.11 3500 17.55 46.25 28.89 76.11 76.11 21.31 67.56 224.35 1.00	525.0 525	25 0.25	5 69.89%	%	0.30	1 0.73	0.73
Carp River Trunk 16 8 Nothing To Add 102.31 15.60 780 2340 3.53 33.47 102.31 102.31 102.31 0 0.00 54.44 54.44 0.00 102.31 102.31 102.31 28.65 113.08 286.61 0.98	400.0 600	0.20	0 60.54%	% 3.53	0.39	5 0.79	0.77
Carp River Trunk 8 10A Nothing To Add 259.23 15.60 780 2340 33.47 0.00 0.00 216.00 109.12 259.23 109.22 305.93 579.95 1.05	550.0 825	25 0.15	5 47.25%	% 3.53	0.52	B 0.86	60 0.90
Marle Grove Road Trunk Sever 9 10 Area 18/19 Exist. Residential 23.34 23.34 19 443 1330 1330 1330 1330 23.34				3.72			-
Area 22/26/27 Residential 79.32 79.32 30 2380 713 8469 3.03 103.82 6 6 79.32 102.66 102.66 28.74 132.56 405.11 1.39	775.0 600	00 0.40	0 67.28%	% 3.03	0.32	7 0.74	1.02
Image: Contract of the second seco				3.20			
Haddodam/Hamman Hunk Steel I I I Area (16/20 Costancinal 33.60 55.00 I 19 1601 5000 5000 50.00 10.50 15.00 10.50 1				5.20	,		
Area 16/20 Open Space 14.13 0 14.13 146.4							
Image: Marcel Participation Area 17 Ex. Commercial 3.44 Image: Marcel Participation 73.06 3.44 36.94 35.00 2.09 31.17 3.44 150.08 42.02 146.26 554.82 1.50	775.0 675	0.40	0 73.64%	%	0.26	4 0.70	00 1.05
12 10 Area 21 Exist. Employment 10.89 C 10.89 10.89 10.89 5000 9.45 9.45 10.89 10.89							
Area 19A Exist Residential 6.63 6.63 19 126 378 Image: Control of the second sec							
Area 23/24 Community Retail 17.61 C 17.61 28.50 28.50 3500 10.70 20.15 51.32 17.61 35.13 1 1						+	
Image: Constraint of the second sec	950.0 750	50 0.20	0 58.71%	% 3.03	0.41	3 0.80	0.91
Marke Grove Road Trunk Sever 10 10A Area 39 Mixed Use 21.13 8.98 50 449 1347 12.15 17.59 3500 7.38 58.71 21.13 35.01 35.01 36.13 351.10 98.31 368.56 669.89 1.21 10 10.41 10.50 10.50 10.50 10.50 10.50 36.13 351.10 98.31 368.56 669.89 1.21 10.10 58.71 10.50 <td>1000.0 825</td> <td>25 0.20</td> <td>0 44.98%</td> <td>% 2.66</td> <td>0.55</td> <td>0.87</td> <td>70 1.05</td>	1000.0 825	25 0.20	0 44.98%	% 2.66	0.55	0.87	70 1.05
Carp River Trunk Sever 13 10A Area 25 Community Retail 20.24 Sol 15.00 15.00 15.00 15.00 15.00 16.00	.500.0 825	0.20	- 44.20%		0.00	0.07	
	1000.0 600	00 0.25	5 76.07%	% 3.39	0.23	9 0.68	30 0.74
IDA Area 31A (PBP) 0.75 O	100.0 250				0.02		
					1		+
Pumping Station 2 to KWPS 10A KWPS 670.04 313.70 8484 25451 292.82 356.34 241.53 670.04 224.95 759.29 1273.71 1.43	30.0 1050	0 0.20	0 40.39%	% 2.55	0.59	6 0.90	00 1.28
						+	+
STUDY TOTALS 994.83 467.2 1162 3486 527.1 C				2.4		1	+

Revision No. 1: April 01, 2005

Revision No. 2: April 11, 2005

Revision No. 3: April 21, 2005
 Revision No. 4:
 June 07, 2005

 Revision No. 5:
 August 10, 2005

PAGE 1 OF 1 PROJECT: 3598-LD-03 DATE: April 2005 DESIGN: JIM FILE: 3598LD.sewers.XLS

Revision No. 6: Oct. 14, 2005 Revision No. 7: Nov. 10, 2005 Revision No. 8: Nov. 11, 2005 Revision No. 9: Apr. 19, 2006

FIG. 4.2-1

SANITARY SEWER DESIGN SHEET

PROJECT : Kanata West Servicibility Stury LOCATION : CITY OF OTTAWA

PHASE 1 SIGNATURE RIDGE (population based criteria..ICI simultaneous peaking)

	LOCA	TION		TOTAL			RE	ESIDENTIAL					EMPLO	YMENT/RE	TAIL/BUSIN	ESS PARK/O	PEN SPACES			INFILT	RATION		TOTAL		PROPOSED S	SEWER			
				AREA	APPLIC	UNIT/Ha TO	DTAL	POPULAT	TION	PEAK	PEAK	APPLIC	ACCUM	TOTAL	FLOW		PEAK FLOW			AREA (Ha)	PEAK	FLOW	CAPACITY	VELOCITY	LGTH.	PIPE	GRADE	AVAIL.
STREET	FROM	то			AREA	UN	ITS	INDIV AC	COM	FACTOR	FLOW	AREA	AREA	AREA	RATE	INDIV	ACCUM	TOTAL	INDIV	CUMUL	TOTAL	FLOW			(full)				CAP.
	МН	МН		(Ha)	(Ha)						(l/s)	(Ha)	(Ha)	(Ha)	(I/Ha/d)	(l/s)	(l/s)	(l/s)			CUMUL	(l/s)	(l/s)	l/s	m/s	(m)	(mm)	%	(%)
Campeau Drive Trunk Sewer	1	2	Area 1 (PBP)	0.00								0.00	0.00		35000	0.00	0.00		0.00	0.00)								
			Area 2 (PBP)	0.00								0.00	0.00		35000	0.00	0.00		0.00	0.00)								
			Area 3 Ext Employment	0.00								0.00	0.00		50000	0.00	0.00		0.00	0.00)								
			Area 4 HP Employment	0.00								0.00	0.00	0.00	50000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	283.79	1.27	500.0	525	0.40	100.00%
	2	3	Area 5 Residential	29.19	29.19	9 19	555	1664	1664	3.65	24.58			0.00				0.00	29.19	29.19)								
			Area 9 Ext Employment	0.00							24.58	0.00	0.00		50000	0.00	0.00	0.00	0.00	0.00	29.19	8.17	32.75	286.61	0.98	700.0	600	0.20	88.57%
	14	3	Area 6/8 Ext Employment	0.00								0.00	0.00	0.00	50000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
			Area 7 HP Employment	0.00								0.00	0.00	0.00	50000	0.00	0.00	0.00	0.00	0.00)			148.74	0.91	920.0	450	0.25	100.00%
	3	4							1664	3.65	24.58	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	29.19	8.17	32.75	200.67	0.90	150.0	675	0.20	83.68%
	4A	4	Area 10 Residential	27.86	27.86	5 19	529	1588	1588	3.66	23.55								27.86	27.86	27.86	7.80	31.30	34.00	0.67	750.0	450	0.25	7.76%
	4	5	14 Mixed Use	4.13	1.76	5 50	88	263	3515	3.38	48.17	2.37	2.37	123.33	35000	1.44	1.44	1.44	4.13	4.13	61.18	17.13	66.74	200.67	0.90	600.0	750	0.20	66.74%
Corel Centre Etc. (Existing Sewer)		15	Area 35 HP Employment	6.05								6.05	6.05		30000	3.15	3.15		6.05										
· • •			Area 36 (Corel Centre)																			30.00							
			Area 38 Exten Employment	20.15								20.15	26.20	26.20	14400	5.04	8.19	8.19	20.15	26.20	26.20	7.34	45.52				Existing		
First Line Road Sewer		15	Area 40 Employment	14.59								14.59	14.59		35000	8.87	8.87		14.59	14.59									
			Area 41 Employment	11.97								11.97	26.56		35000	7.27	16.14		11.97	26.56	5								
			Area 42 Employment	20.66								20.66	47.22		35000	12.55	28.69		20.66	47.22	2								
			Area 43 Employment	28.89								28.89	76.11	76.11	35000	17.55	46.25	46.25	28.89	76.11	76.11	21.31	67.50	100.21	0.88	694.0	375	0.30	32.59%
Fotals South Of Queensway To SRPS	15	5A		102.31	0.00)	0		0		0.00	102.31						54.44	102.31		102.31	58.65	113.08	203.90	1.24	230.0	450	0.47	44.54%
	Queensway	5	Area 13 Community Retail	6.35								6.35	108.66		35000	3.86	58.29		6.35	6.35	i								
			Area 11/12 Mixed Use	11.80	5.02	2 50	251	752	752	3.88	11.81	6.79	115.45	115.45	35000	4.12	62.42	62.42	11.80	18.15	120.46	63.73	137.90	203.90	1.24	420.0	450	0.47	32.34%
	5	5A	Area 15 Community Retail	3.88								3.88	119.33		35000	2.36	64.77		3.88	124.34	L .								
			Area 44	25.54							59.98	25.54	144.87	268.20	35000	15.52	81.73	81.73	25.54	149.88	3 211.06	89.10	230.8	519.43	1.14	300.0	750	0.20	55.56%
				149.88																		63.73	63.73						
Ieritage Hills		5A	Area 100 Residential	90.20	90.20) 19	1714	5141	5141	3.23	67.35	0.00							90.20										
Heritage Hills		5A	Area 100 Non-Residential	4.88				1			67.35	4.88	4.88	4.88	50000	4.24	4.24	4.24	4.88	95.08	95.08	26.62	98.2						
Broughton-Richardson / Interstitial		5A		1		1																	65.00						
Fotal To SRPS	5A	SRPS		306.14	154.03	3	3136	1	9409		127.33	152.12						85.97			306.14	115.72	394.02	625.68	1.37	30.0	750	0.29	37.03%

Average Daily Per capita Flow Rate =	350 l/cap/d	
Infiltration Allowance Flow Rate =	0.28 l/sec/Ha	
Residential Peaking Factor = $1+(14/(4+(P^{0.5})))$), P=Pop. in 1000's,	Max
Population density per unit =	3.00	
P. F. For Employment/Retail/Business Park =	1.5	0
10 111 1 150 0 1 D 11	10.50 D : D	

Mixed Uses Assumes: 15% Community Retail, 42.5% Business Park and 42.5% Residential

Note: Sewer from node 5 to SRPS is existing and is to be replaced.

PAGE 1 OF 1 PROJECT: 3598-LD-03 DATE: Apr 2005 DESIGN: JIM FILE: 3598LD.sewers.XLS

Revision	No. 1:	April 11, 2005
Revision	No. 2:	April 20, 2005
Revision	No. 3:	June 07, 2005
Revision	No. 4:	Oct. 14, 2005
Revision	No. 5:	Feb. 15, 2006

FIG. 4.2-2

SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management July 14, 2022

Appendix C STORMWATER MANAGEMENT

C.1 STORM SEWER DESIGN SHEET AND ROOF STORAGE CALCULATIONS

Stantec	Wellings of DATE: REVISION: DESIGNED CHECKED B			09-01 1	FILE NUM	I	STORM DESIGN (City of 160401511	l SHEET Ottawa)		I) ^c 1:2 yr 732.951		1:10 yr 1174.184 6.014	1:100 yr 1735.688 6.014		COVER:) 0.013 2.00 10	m	BEDDING C	LASS =	В																	
LOCATION												-	-	DR	AINAGE AR	EA																1	PIPE SELEC						
AREA ID	FROM	то	AREA	AREA	AREA	AREA	AREA	С	С	С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}		PIPE WIDTH		PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.		TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR) (100-YEAR)	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR)	AxC (10YR)	(100-YEAR) /	AxC (100YR)							Q _{CONTROL}	(CIA/360)	0		HEIGHT	SHAPE				(FULL)		(FULL)		FLOW
			(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
			1																																				
ROOF 1-ROOF 12, UGPK 1 TO UGPK - 7		STM STC 300	0.81	0.00	0.00	0.00	0.76	0.90	0.00	0.00	0.00	0.729	0.729	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	61.0	61.0	216.5	2.4	450	450	CIRCULAR	CONCRETE	-	1.00	297.4	72.80%	1.81	1.73	0.02
	STM STC 30	STM 100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.729	0.000	0.000	0.000	0.000	0.000	0.000	10.02	76.72	104.07	122.00	178.35	0.0	61.0	216.4	2.8	450	450	CIRCULAR	CONCRETE		1.00	297.4	72.74%	1.81		0.03
	STM 100	TANK	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.729	0.000	0.000	0.000	0.000	0.000	0.000	10.05	76.61	103.93	121.83	178.10	0.0	61.0	216.1	8.7	450	450	CIRCULAR	CONCRETE	-	1.00	297.4	72.67%	1.81	1.73	0.08
	1																			10.13																			
	TANK	STM 101	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.729	0.000	0.000	0.000	0.000	0.000	0.000	10.13	76.29	103.49	121.32	177.34	0.0	0.0	125.0	1.5	525	525	CIRCULAR	CONCRETE	-	0.20	200.6	62.31%	0.90	0.82	0.03
	STM 101	EX STM	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.729	0.000	0.000	0.000	0.000	0.000	0.000	10.16	76.18	103.33	121.13	177.07	0.0	0.0	154.3	20.8	525	525	CIRCULAR	CONCRETE	-	0.20	200.6	76.88%	0.90		0.40
																				10.56									675	675									
Note:																																						_	

ICD and weir are proposed to be constructed in STM 101 prior to flows discharging to approved outlet, therefore a 450mm diameter pipe is sufficient as flows will be restricted.

Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF1 and 2 Standard Watts Model R1100 Accutrol Roof Drain

	Rating Ct	Curve			Volume E	Volume Estimation			1	Total
Elevation	Discharge Rate (Outlet Discharge	Storage	Elevation	Area	Volume	Volume (cu. m)	Water Depth		Volume
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)		(cu.m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000	1	
0.025	0.0003	0.0022	0	0.025	21	0	0	0.025		0.0
0.050	0.0006	0.0044	-	0.050	85	-	-	0.050		1.2
0.075	0.0008	0.0055	5	0.075	191	ო	5	0.075		4.6
0.100	0.0009	0.0066	11	0.100	339	7	11	0.100		11.1
0.125	0.0011	0.0077	22	0.125	530	11	22	0.125		21.9
0.150	0.0013	0.0088	38	0.150	763	16	38	0.150		38.0
	•									
	Rooftop Storade St	e Summarv								

0 0.07778 0.24669 0.52078 0.90812 1.41371

0.0 1.2 3.4 6.5 10.8 16.1

986.7

608.0

0.0 280.0

1394.4 1820.1

Time (hr) Detentior

(cu.m) Vol

Time (sec)

Drawdown Estimate Total

				:			
				From Watts Drain Catalogue	ts Drain C	atalogue	
Total Building Area (sq.m)		954		Head (m) L/s	/s		
Assume Available Roof Area (sq.	80%	763.2		0	Open	75%	
Roof Imperviousness		0.99		0.025	0.025 0.3155	0.3155	0
Roof Drain Requirement (sq.m/Notch)		232		0.050	0.6309	0.6309	0
Number of Roof Notches*		7		0.075	0.9464	0.8675	0
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).	0.100	0.100 1.2618	1.1041	0
Max. Allowable Storage (cu.m)		38		0.125	1.5773	1.3407	-
Estimated 100 Year Drawdown Time (h)		1.1		0.150	1.8927	1.5773	-

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.77086 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

0.7886 0.9464 1.1041 1.2618

50% 0.3155 0.6309

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	sults	5yr	100yr	Available
	Qresult (cu.m/s)	0.006	800'0	-
	Depth (m)	0.077	0.136	0.150
	Volume (cu.m)	5.3	1.92	38.2
	Draintime (hrs)	0.3	1.1	

Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF3 Standard Watts Model R1100 Accutrol Roof Drain

	Rating	J Curve			Volume I	Volume Estimation			[Total
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	Volume (cu. m)	Water Depth	>	Volume
(ш)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(ad. m)	Increment	Accumulated	(m)	<u> </u>	(m.m)
000.0	0.0000	0.0000	0	000.0	0	0	0	0.000		
0.025	0.0003	0.00126	0	0.025	24	0	0	0.025		0.0
0.050	0.0006	0.00252	0	0.050	98	-	2	0.050		1.4
0.075	0.0009	0.00379	5	0.075	220	4	5	0.075		5.3
0.100	0.0013	0.00505	13	0.100	390	80	13	0.100		12.8
0.125	0.0016	0.00631	25	0.125	610	12	25	0.125		25.2
0.150	0.0019	0.00757	44	0.150	878	19	44	0.150		43.7
									l	
	Rooftop Storage (le Summary								

1						* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).		
	1098	878.4	0.99	232	4	0.15	44	1.9
-	Total Building Area (sq.m)	Assume Available Roof Area (sq. 80%	Roof Imperviousness	Roof Drain Requirement (sq.m/Notch)	Number of Roof Notches*	Max. Allowable Depth of Roof Ponding (m)	Max. Allowable Storage (cu.m)	Estimated 100 Year Drawdown Time (h)

* Note: Number of drains can be reduced if multiple-notch drain used.

			001	
Calculation Results	sults	syr	TUUY	Available
	Qresult (cu.m/s)	0.004	0.007	-
	Depth (m)	0.080	0.142	0.150
	Volume (cu.m)	7.0	37.9	43.9
	Draintime (hrs)	0.5	1.9	

	Drawdown Estimate	Estimate	
	Total		
Volume	Time	Vol	Detention
	(sec)	(cu.m)	Time (hr)
	0.0	0.0	0
	564.0	1.4	0.15667
	1020.6	3.9	0.44016
	1490.6	7.5	0.85422
	1966.0	12.4	1.40032
	2444.0	18.5	2.07922

From Watts Drain Catalogue

		5			
Head (m) L/s	L/S				
	Open	75%	50%	25% (25% Closed
0.025	0.3155	0.3155	0.3155	0.3155	0.3155
0.050	0.6309	0.6309	0.6309	0.6309	0.6309
0.075	0.9464	0.8675	0.7886	0.7098	0.6309
0.100	1.2618	1.1041	0.9464	0.7886	0.6309
0.125	1.5773	1.3407	1.1041	0.8675	0.6309
0.150	0.150 1.8927	1.5773	1.2618	0.9464	0.6309

Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF4 Standard Watts Model R1100 Accutrol Roof Drain

	Rating (Curve			Volume I	Volume Estimation				Total
Elevation	Discharge Rate C	Outlet Discharge	Storage	Elevation	Area	Volume	Volume (cu. m)	Water Depth	-	Volume
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)		(cu.m)
0.000	0.0000	0.0000	0	000.0	0	0	0	0.000		
0.025	0.0003	0.0016	0	0.025	8	0	0	0.025		0.0
0.050	0.0006	0.0032	-	0.050	31	0	-	0.050		0.5
0.075	0.0006	0.0032	2	0.075	70	-	2	0.075		1.7
0.100	0.0006	0.0032	4	0.100	125	0	4	0.100		4.1
0.125	0.0006	0.0032	8	0.125	196	4	8	0.125		8.1
0.150	0.0006	0.0032	14	0.150	282	9	14	0.150		14.0
	Rooftop Storage	e Summary								
	-	•								

80%	
Number of Roof Notches* 5	
Max. Allowable Depth of Roof Ponding (m) 0.15 *	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m) 14	
Estimated 100 Year Drawdown Time (h) 0.9	

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	sults	5yr	100yr	Available
	Qresult (cu.m/s)	0.002	0.003	-
	Depth (m)	0.029	0.135	0.150
	Volume (cu.m)	0.1	10.5	14.1
	Draintime (hrs)	0.0	6:0	

	Drawdown Estimate	n Estimate	
Total	Total		
Volume	Time	Vol	Detention
(cu.m)	(sec)	(cu.m)	Time (hr)
0.0	0.0	0.0	0
0.5	144.6	0.5	0.04018
1.7	392.6	1:2	0.14924
4.1	764.6	2.4	0.36162
8.1	1260.5	4.0	0.71176
14.0	1880.4	5.9	1.23411

From Watts Drain Catalogue Head (m) L/s 75% 50% 25% Closed Open 75% 50% 25% Closed 0.025 0.3155 0.3155 0.3155 0.3155 0.3155 0.050 0.63309 0.63309 0.63309 0.63309 0.63309 0.075 0.9464 0.8675 0.7886 0.7098 0.63309 0.100 1.2618 1.1041 0.9464 0.8309 0.63309 0.125 1.5773 1.3407 1.1041 0.8675 0.6309 0.150 1.8927 1.5773 1.2618 0.90464 0.6309

2022-03-29_MRM.xlsm, ROOF4 W:\active\160401511\design\analysis\swm\

Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF5 Standard Watts Model R1100 Accutrol Roof Drain

	Rating (Curve			Volume E	Volume Estimation			Total
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	Volume (cu. m)	Water Depth	Volume
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)	(cu.m)
000.0	0.0000	0.00000	0	0.000	0	0	0	0.000	
0.025	0.0003	0.00126	0	0.025	24	0	0	0.025	0.0
0.050	0.0006	0.00252	0	0.050	98	-	2	0.050	1.4
0.075	0.0009	0.00379	5	0.075	220	4	5	0.075	5.3
0.100	0.0013	0.00505	13	0.100	390	8	13	0.100	12.8
0.125	0.0016	0.00631	25	0.125	610	12	25	0.125	25.2
0.150	0.0019	0.00757	44	0.150	878	19	44	0.150	43.7
	Rooftop Storade	e Summarv							

Total Building Area (sq.m)	1098	
Assume Available Roof Area (sq. 80%	878.4	
Roof Imperviousness	0.99	
Roof Drain Requirement (sq.m/Notch)	232	
Number of Roof Notches*	4	
Max. Allowable Depth of Roof Ponding (m)	0.15 *	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)	44	
Estimated 100 Year Drawdown Time (h)	1.9	

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	sults	5yr	100yr	Available
	Qresult (cu.m/s)	0.004	0.007	
	Depth (m)	0.080	0.142	0.150
	Volume (cu.m)	7.0	6°.28	43.9
	Draintime (hrs)	0.5	6.1	

	Drawdown Estimate	i Estimate	
Total	Total		
Volume	Time	Vol	Detention
(cu.m)	(sec)	(cu.m)	Time (hr)
0.0	0.0	0.0	0
1.4	564.0	1.4	0.15667
5.3	1020.6	3.9	0.44016
12.8	1490.6	7.5	0.85422
25.2	1966.0	12.4	1.40032
43.7	2444.0	18.5	2.07922

From Watts Drain Catalogue

I TUIL WALLS PLAIN CALANGUE		araingue			
Head (m) L/s	L/s				
	Open	75%	50%	25%	25% Closed
0.025	0.3155	0.3155	0.3155	0.3155	0.3155
0.050	0.6309	0.6309	0.6309	0.6309	0.6309
0.075	0.9464	0.8675	0.7886	0.7098	0.6309
0.100	1.2618	1.1041	0.9464	0.7886	0.6309
0.125	1.5773	1.3407	1.1041	0.8675	0.6309
0.150	0.150 1.8927	1.5773	1.2618	0.9464	0.6309

Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF6 and 7 Standard Watts Model R1100 Accutrol Roof Drain

	Rating Ct	Curve			Volume I	Volume Estimation				Total
Elevation	Discharge Rate (Outlet Discharge	Storage	Elevation	Area	Nolume	Volume (cu. m)	Water Depth		Volume
(ш)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)		(m.m)
0.000	0.0000	0.0000	0	000'0	0	0	0	0.000	<u> </u>	
0.025	0.0003	0.0022	0	0.025	21	0	0	0.025		0.0
0.050	0.0006	0.0044	-	0.050	85	-	-	0.050		1.2
0.075	0.0008	0.0055	5	0.075	191	ო	5	0.075		4.6
0.100	0.0009	0.0066	11	0.100	340	7	11	0.100		11.1
0.125	0.0011	0.0077	22	0.125	531	11	22	0.125		21.9
0.150	0.0013	0.0088	38	0.150	764	16	38	0.150		38.0
	Rooftop Storage S	e Summary								

0 0.07787 0.24694 0.52133

0.0 280.3

0.0 1.2 3.4 6.5 10.8 16.1

987.8

608.7

0.90907 1.41519

1395.9 1822.1

Time (hr)

Vol (cu.m)

Time (sec)

Detentior

Drawdown Estimate Total

		1	From Wat	From Watts Drain Catalogue	ataloque	
Total Building Area (sq.m)	955		Head (m) L/s	L/S)	
Assume Available Roof Area (sq. 80%	764			Open	75%	
Roof Imperviousness	0.99		0.025		0.3155	ö
Roof Drain Requirement (sq.m/Notch)	232		0.050	0.6309	0.6309	0
Number of Roof Notches*	7		0.075	0.946	0.8675	Ö
Max. Allowable Depth of Roof Ponding (m)	0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).	0.100	1.2618	3 1.1041 0	Ö
Max. Allowable Storage (cu.m)	38		0.125	1.577	1.3407	-
Estimated 100 Year Drawdown Time (h)	1.1		0.150	1.8927	1.5773	÷

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.77086 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

0.7886 0.9464 1.1041 1.2618

50% 0.3155 0.6309

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	sults	5yr	100yr	Available
	Qresult (cu.m/s)	0.006	800'0	-
	Depth (m)	0.077	0.136	0.150
	Volume (cu.m)	5.3	1.92	38.2
	Draintime (hrs)	0.3	1.1	

2022-03-29_MRM.xlsm, ROOF6-7 W:\active\160401511\design\analysis\swm\

Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF8 Standard Watts Model R1100 Accutrol Roof Drain

	Rating	Rating Curve			Volume E	Volume Estimation			Total	Total	
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	Volume (cu. m)	Water Depth	Volume		
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)	(cn.m)) (sec)	(cu.m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000			
0.025	0.0003	0.0006	0	0.025	2	0	0	0.025	0.0	0.0	0.0
0.050	0.0006	0.0013	0	0.050	6	0	0	0.050	0.1	99.7	0.1
0.075	0.0007	0.0014	0	0.075	19	0	0	0.075	0.5	240.4	0.3
0.100	0.0008	0.0016	-	0.100	34	÷	-	0.100	1.1	421.4	0.7
0.125	0.0009	0.0017	N	0.125	54	÷	2	0.125	2.2	631.6	1.1
0.150	0.0009	0.0019	4	0.150	78	2	4	0.150	3.9	863.6	1.6

0 0.02768 0.09447 0.21152 0.38695 0.62685

Detention Time (hr)

		1	From Watts Drain Catalogue	Catalogue	
Total Building Area (sq.m)	97		Head (m) L/s		
Assume Available Roof Area (sq. 80%	% 77.6		Open	75%	
Roof Imperviousness	0.99		0.025 0.3155	0.3155	0
Roof Drain Requirement (sq.m/Notch)	232		0.050 0.6309	0.6309	0
Number of Roof Notches*	2		0.075 0.9464		0
Max. Allowable Depth of Roof Ponding (m)	0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).			0
Max. Allowable Storage (cu.m)	4		0.125 1.5773	1.3407	-
Estimated 100 Year Drawdown Time (h)	0.3		0.150 1.8927 1	1.5773	-

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.7886 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

50% 0.3155 0.6309 0.7886 0.9464 1.1041 1.2618

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	sults	5 yr	100yr	Available
	Qresult (cu.m/s)	000'0	0.002	-
	Depth (m)	000'0	0.117	0.150
	Volume (cu.m)	0.0	1.9	3.9
	Draintime (hrs)	0.0	0.3	

Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF9 Standard Watts Model R1100 Accutrol Roof Drain

	Dating	Dating Curve			Volumo Estimation	etimotion -			Totol	Intotol I		
	המנוויני					Sumation			1016		_	
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	Volume (cu. m)	Water Depth	Volume	ne Time		
(E)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)	(urm)	1) (sec)	(cu.m)	Ē
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000				
0.025	0.0003	0.0006	0	0.025	÷	0	0	0.025	0.0		0.0	
0.050	0.0006	0.0013	0	0.050	5	0	0	0.050	0.1	54.4		Ū
0.075	0.0007	0.0014	0	0.075	11	0	0	0.075	0.3		4 0.2	Ū
0.100	0.0008	0.0016	-	0.100	19	0		0.100	0.6	230.2	2 0.4	
0.125	0.0009	0.0017	-	0.125	29	-	-	0.125	1.2			
0.150	0.0009	0.0019	0	0.150	42	-	2	0.150	2.1	471.9	9 0.9	Ö

0 0.01512 0.05162 0.11557

0.21143 0.34251

Detention Time (hr)

			From Watts Drain Catalogue	Drain Ca	italogue	
Total Building Area (sq.m)	53		Head (m) L/s	(0	I	
ea (sq.	80% 42.4		Ö	Open	75%	
Roof Imperviousness	0.99		0.025 0.3155		0.3155	0
Roof Drain Requirement (sq.m/Notch)	232		0.050 0.6309		0.6309	0
Number of Roof Notches*	2		0.075 0		0.8675	0
Max. Allowable Depth of Roof Ponding (m)	0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).	0.100 1.2618		1.1041	0
Max. Allowable Storage (cu.m)	2		0.125 1		1.3407	
Estimated 100 Year Drawdown Time (h)	0.1		0.150 1.8927		1.5773	

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.7886 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

0.7886 0.9464 1.1041 1.2618

50% 0.3155 0.6309

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	sults	5 yr	100yr	Available
	Qresult (cu.m/s)	000'0	0.002	
	Depth (m)	000'0	0.100	0.150
	Volume (cu.m)	0.0	9.0	2.1
	Draintime (hrs)	0.0	0.1	

2022-03-29_MRM.xlsm, ROOF9 W:\active\160401511\design\analysis\swm\

Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF10 Standard Watts Model R1100 Accutrol Roof Drain

	Rating	Rating Curve			Volume Estimation	stimation			To	Total	Total	
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	Volume (cu. m)	Water Depth	Volt	Ð		Vol
(E)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)	(on	(cu.m) ((sec) ((cu.m) Time
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000				
0.025	0.0003	0.0066	-	0.025	62	-		0.025	0	0.0	0.0	0.0
0.050	0.0006	0.0132	4	0.050	250	4	4	0.050	e	3.6 2	74.9	3.6
0.075	0.0007	0.0149	14	0.075	562	10	14	0.075	10	13.5 6	663.3	9.9
0.100	0.0008	0.0166	33	0.100	666	19	33	0.100	32	32.8 1	1162.6	19.3
0.125	0.0009	0.0182	65	0.125	1561	32	65	0.125	64	64.5 1	1742.4	31.7
0.150	0.0009	0.0199	112	0.150	2248	47	112	0.150	=	111.9 2	2382.8	47.4

Detention Time (hr)

0 0.07637 0.26063 0.58357

1.06758 1.72946

		1	From Watts Drain Catalogue	s Drain C	ataloque	
Total Building Area (sq.m)	2810		Head (m) L/s	/s	5	
Assume Available Roof Area (sq. 80%	2248		0	Open	75%	
Roof Imperviousness	0.99		0.025	0.3155	0.3155	0
Roof Drain Requirement (sq.m/Notch)	232		0.050	0.6309	0.6309	0
Number of Roof Notches*	21		0.075	0.9464 0.8675		0
Max. Allowable Depth of Roof Ponding (m)	0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).	0.100	0.100 1.2618	1.1041	0
Max. Allowable Storage (cu.m)	112		0.125	1.5773	1.3407	Ē
Estimated 100 Year Drawdown Time (h)	1.5		0.150	1.8927	1.5773	-

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.7886 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

50% 0.3155 0.6309 0.7886 0.9464 1.1041 1.2618

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	sults	5yr	100yr	Available
	Qresult (cu.m/s)	0.017	0.019	-
	Depth (m)	0.100	0.141	0.150
	Volume (cu.m)	33.1	94.7	112.4
	Draintime (hrs)	0.6	1.5	

Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF11 Standard Watts Model R1100 Accutrol Roof Drain

	Rating	Rating Curve			Volume Estimation	stimation			Total	al Total	<u>a</u>	
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	Volume (cu. m)	Water Depth	Volume	ne Time		Vol De
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(ш)	(cn.m)	n) (sec)	c) (cu.m)	۲ آ
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000				
0.025	0.0003	0.0006	0	0.025	2	0	0	0.025	0.0		0.0	_
0.050	0.0006	0.0013	0	0.050	6	0	0	0.050	0.1	108.9	.9 0.1	0
0.075	0.0007	0.0014	-	0.075	21	0	-	0.075	0.5	262.7	.7 0.4	0
0.100	0.0008	0.0016	-	0.100	38	-	-	0.100	1.2		.5 0.	0
0.125	0.000	0.0017	0	0.125	59	-	2	0.125	2.4		.2 1.2	0
0.150	0.0009	0.0019	4	0.150	85	0	4	0.150	4.2	943.8	.8 1.8	
	Rooftop Storage Summary	ge Summary										

0 0.03025 0.10323 0.23114

0.42285 0.68501

Detention Time (hr)

		1	From Watts Drain Catalogue	n Catalogue	-
Total Building Area (sq.m)	106		Head (m) L/s		
a (sq.	80% 84.8		Open	75%	
Roof Imperviousness	0.99		0.025 0.3155	5 0.3155	0
Roof Drain Requirement (sq.m/Notch)	232		0.050 0.6309	9 0.6309	0
Number of Roof Notches*	2		0.075 0.9464	4 0.8675	0
Max. Allowable Depth of Roof Ponding (m)	0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).			0
Max. Allowable Storage (cu.m)	4		0.125 1.5773	3 1.3407	-
Estimated 100 Year Drawdown Time (h)	0.4		0.150 1.8927	7 1.5773	-

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.7886 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

0.7886 0.9464 1.1041 1.2618

50% 0.3155 0.6309

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	sults	5yr	100yr	Available
	Qresult (cu.m/s)	0.000	0.002	-
	Depth (m)	0.000	0.120	0.150
	Volume (cu.m)	0.0	2.2	4.2
	Draintime (hrs)	0.0	0.4	

2022-03-29_MRM.xlsm, ROOF11 W:\active\160401511\design\analysis\swm\

Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF12 Standard Watts Model R1100 Accutrol Roof Drain

Mating Curve Volume Estimation Total (m) (cu.ms) (cu.ms) (m) (m) (m) Mater Depth (m) Volume (cu.m) Volume (cu.m) Volume (cu.m) Volume Total V													
Discharge Rate Outlet Discharge Storage Elevation Area Volume (cu. m) Water Depth Volume Time Vol (cu.m/s) (cu.m/s) (cu.m) <		Rating	g Curve			Volume E	stimation			Tota		tal	
(cu.m/s) (sec) (cu.m) (sec) (cu.m/s) (sec) (cu.m/s) (sec) (cu.m/s) (sec) (cu.m/s) (sec) (cu.m) (sec) (cu.m)	Elevation	Discharge Rate	0	Storage	Elevation	Area	Volume) (cu. m)	Water Depth	Volum			0
0.0000 0.0000<	(ш)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)	(cu.rr			(m.r
0.0003 0.0006 0 0.025 2 0	0.000	0.0000	0.0000	0	0.000	0	0	0	0.000				
0.0006 0.0013 0 0.050 9 0 0 0.050 0.1 102.7 0.1 0.0007 0.0014 1 0.075 20 0 1 0 5 247.9 0.4 0.0008 0.0016 1 0.005 20 0 1 1 0.10 5 247.9 0.4 0.0008 0.0016 1 0.100 36 1 1 0.100 1.2 434.4 0.7 0.0009 0.0017 2 0.125 56 1 2 0.126 2.3 651.1 1.1 0.0009 0.0019 4 0.150 80 2 4 0.150 80.4 1.7 0.0009 0.0019 4 0.150 80 2 4 0.150 80.4 1.7	0.025	0.0003	0.0006	0	0.025	0	0	0	0.025	0.0			0.0
0.0007 0.0014 1 0.075 20 0 1 0.075 247.9 0.4 0.0008 0.0016 1 0.100 36 1 1 1.2 434.4 0.7 0.0009 0.0017 2 0.125 56 1 2 0.125 53 51.1 1.1 0.0009 0.0019 4 0.150 80 2 4 0.150 4.0 890.4 1.7 Rotion Storade Summary 0.0150 2 4 0.150 2 4 0.150 4 4.0	0.050	0.0006	0.0013	0	0.050	o	0	0	0.050	0.1	102	27	E
0.0008 0.0016 1 0.100 36 1 1 1 2 434.4 0.7 0.0009 0.0017 2 0.125 56 1 2 0.125 53 51.1 1.1 0.0009 0.0019 4 0.150 80 2 4 0.150 80.4 1.7 Rootton Storade Summary O O O 1 2 0.150 80.4 1.7	0.075	0.0007	0.0014	-	0.075	20	0	-	0.075	0.5			4.
0.0009 0.0017 2 0.125 56 1 2 0.125 2.3 651.1 1.1 0.0009 0.0019 4 0.150 80 2 4 0.150 80.4 1.7 Roofton Storage Summary	0.100	0.0008	0.0016	-	0.100	36	-	-	0.100	1.2		1.4 (7.
0.0009 0.0019 4 0.150 80 2 4 0.150 4.0 890.4 1.7	0.125	0.0009	0.0017	0	0.125	56	-	2	0.125	2.3		-	.
Rooftop Storage Summary	0.150	0.0009	0.0019	4	0.150	80	0	4	0.150	4.0			.7 0.
Rooftop Storage Summary]											
		Rooftop Storad	te Summary										

0 0.02854 0.09739 0.21806 0.39892 0.64624

Detention Time (hr)

-		1	From Watts Drain Catalogue	I Catalogue	
Total Building Area (sq.m)	100		Head (m) L/s		
Assume Available Roof Area (sq. 80	80% 80		Open	75%	
Roof Imperviousness	0.99		0.025 0.3155	0.3155	0
Roof Drain Requirement (sq.m/Notch)	232		0.050 0.6309	0.6309	0
Number of Roof Notches*	2		0.075 0.9464	0.8675	0
Max. Allowable Depth of Roof Ponding (m)	0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).			0
Max. Allowable Storage (cu.m)	4		0.125 1.5773	1.3407	-
Estimated 100 Year Drawdown Time (h)	0.3		0.150 1.8927	1.5773	-

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.7886 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

0.7886 0.9464 1.1041 1.2618

50% 0.3155 0.6309

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	sults	5 yr	100yr	Available
	Qresult (cu.m/s)	0.001	0.002	-
	Depth (m)	0.073	0.118	0.150
	Volume (cu.m)	5.0	2:0	4.0
	Draintime (hrs)	0.1	0.3	

	100	- it	$I = a/(t + b)^{d}$		1705 000	+ (mr!)	L (ma ma /la -r)	
	100 yr Inten	-	I = a/(I + D)	a =	1735.688	t (min)	l (mm/hr)	
	City of Ottav	va		b =	6.014	10	178.56	
				C =	0.820	20	119.95	
						30	91.87	
						40 50	75.15	
						50 60	63.95	
						60 70	55.89 49.79	
						70 80	49.79	
						90 100	41.11 37.90	
						110 120	35.20 32.89	
					L	120	52.09	
	100 YEAR	Modified Rat	tional Method	d for Entire	Site			
Subdra	ainage Area:	ROOF12					Roof	
	Area (ha):	0.01		M	laximum Stor	rage Depth:	150 mi	m
	C:	1.00						
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	
	10	178.56	4.96	1.69	3.28	1.97	117.3	0
	20	119.95	3.33	1.69	1.65	1.98	117.5	0
	30	91.87	2.55	1.64	0.91	1.64	110.1	0
	40	75.15	2.09	1.58	0.51	1.22	100.7	0
	50	63.95	1.78	1.50	0.28	0.84	87.4	0
	60	55.89	1.55	1.42	0.14	0.49	74.6	0
	70	49.79	1.38	1.32	0.07	0.28	59.0	0
	80	44.99	1.25	1.22	0.03	0.14	48.4	0
	90	41.11	1.14	1.12	0.02	0.12	44.4	0
	100	37.90	1.05	1.04	0.02	0.10	41.1	0
	110	35.20	0.98	0.97	0.01	0.09	38.3	0
	120	32.89	0.91	0.90	0.01	0.07	35.8	0.
Storage:	Roof Storage	}						
	Γ	Depth	Head	Discharge	Vreq	Vavail	Discharge	
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
100-year	Water Level	117.51	0.12	1.69	1.98	4.00	0.00	
Subdra	ainage Area:	ROOF11					Roof	
	Area (ha):	0.01		M	laximum Stor	age Depth:	150 m	m
	Ċ:	1.00				0 1		
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	
	10	178.56	5.26	1.69	3.57	2.14	118.5	0
	20	119.95	3.53	1.70	1.83	2.20	119.7	0
	30	91.87	2.71	1.66	1.05	1.88	113.1	0
	40	75.15	2.21	1.60	0.61	1.46	104.3	0
	50	63.95	1.88	1.53	0.35	1.05	93.0	0
	60 70	55.89	1.65	1.45	0.19	0.69	80.6	0
	(1)	49.79	1.47	1.37	0.10	0.41	67.0	0
			1.33	1.28	0.04	0.21	53.3	0
	80	44.99		4 4 6	<u>~ ~ ~</u>			
	80 90	41.11	1.21	1.19	0.03	0.14	47.0	
	80 90 100	41.11 37.90	1.21 1.12	1.10	0.02	0.12	43.5	0
	80 90	41.11	1.21					

	-						
		Depth	Head	Discharge	Vreq	Vavail	Discharge
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check
100-year	Water Level	119.70	0.12	1.70	2.20	4.24	0.00
		DOOL					
Subdra	inage Area:	ROOF10			avimum Cta	rage Depthy	Roof 150 m
	Area (ha):	0.28		IV	aximum Sto	rage Depth:	150 m
	C:	1.00					
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)
	10	178.56	139.49	18.48	121.01	72.60	129.0
	20	119.95	93.70	19.07	74.63	89.55	137.9
	30	91.87	71.77	19.25	52.52	94.53	140.6
	40	75.15	58.70	19.25	39.45	94.68	140.6
	50	63.95	49.96	19.17	30.79	92.36	139.4
	60	55.89	43.66	19.04	24.62	88.64	137.5
	70	49.79	38.89	18.88	20.01	84.05	135.0
	80	44.99	35.15	18.70	16.44	78.93	132.3
	90	41.11	32.12	18.51	13.60	73.46	129.4
	100	37.90	29.61	18.31	11.30	67.78	126.4
	110	35.20	27.50	18.07	9.43	62.23	122.8
	120	32.89	25.70	17.79	7.90	56.91	118.6
torage:	Roof Storage	9					
							<u> </u>
		Depth	Head	Discharge	Vreq	Vavail	Discharge
100	Water Level	(mm) 140.64	(m) 0.14	(L/s) 19.25	(cu. m) 94.68	(cu. m) 112.40	Check 0.00
Subdra	inage Area: Area (ha): C:	ROOF9 0.01 1.00		Μ	aximum Sto	rage Depth:	Roof 150 m
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth
		i (100 ji)		Greicuse	astorea	VStoreu	Deptil
		(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)
	(min)	(mm/hr) 178.56	(L/s) 2.63	(L/s)	(L/s)	(m^3) 0.63	(mm) 100.1
	(min) 10	178.56	2.63	1.58	1.05	0.63	100.1
	(min)	· /					· /
	(min) 10 20	178.56 119.95	2.63 1.77	1.58 1.46	1.05 0.30	0.63 0.37	100.1 81.9
	(min) 10 20 30	178.56 119.95 91.87	2.63 1.77 1.35	1.58 1.46 1.29	1.05 0.30 0.06	0.63 0.37 0.11	100.1 81.9 54.6
	(min) 10 20 30 40	178.56 119.95 91.87 75.15	2.63 1.77 1.35 1.11	1.58 1.46 1.29 1.08	1.05 0.30 0.06 0.02	0.63 0.37 0.11 0.06	100.1 81.9 54.6 42.9
	(min) 10 20 30 40 50	178.56 119.95 91.87 75.15 63.95	2.63 1.77 1.35 1.11 0.94	1.58 1.46 1.29 1.08 0.93	1.05 0.30 0.06 0.02 0.01	0.63 0.37 0.11 0.06 0.04	100.1 81.9 54.6 42.9 36.8
	(min) 10 20 30 40 50 60 70 80	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	2.63 1.77 1.35 1.11 0.94 0.82 0.73 0.66	1.58 1.46 1.29 1.08 0.93 0.82 0.73 0.66	1.05 0.30 0.06 0.02 0.01 0.01	0.63 0.37 0.11 0.06 0.04 0.03	100.1 81.9 54.6 42.9 36.8 32.3
	(min) 10 20 30 40 50 60 70 80 90	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	2.63 1.77 1.35 1.11 0.94 0.82 0.73 0.66 0.61	1.58 1.46 1.29 1.08 0.93 0.82 0.73 0.66 0.60	1.05 0.30 0.06 0.02 0.01 0.01 0.00 0.00 0.00	0.63 0.37 0.11 0.06 0.04 0.03 0.02 0.01 0.01	100.1 81.9 54.6 42.9 36.8 32.3 28.9 26.2 23.9
	(min) 10 20 30 40 50 60 70 80 90 100	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	2.63 1.77 1.35 1.11 0.94 0.82 0.73 0.66 0.61 0.56	1.58 1.46 1.29 1.08 0.93 0.82 0.73 0.66 0.60 0.56	1.05 0.30 0.06 0.02 0.01 0.01 0.00 0.00 0.00 0.00	0.63 0.37 0.11 0.06 0.04 0.03 0.02 0.01 0.01 0.01	100.1 81.9 54.6 42.9 36.8 32.3 28.9 26.2 23.9 22.1
	(min) 10 20 30 40 50 60 70 80 90 100 110	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	2.63 1.77 1.35 1.11 0.94 0.82 0.73 0.66 0.61	1.58 1.46 1.29 1.08 0.93 0.82 0.73 0.66 0.60 0.56 0.52	1.05 0.30 0.06 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00	0.63 0.37 0.11 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.01	100.1 81.9 54.6 42.9 36.8 32.3 28.9 26.2 23.9 22.1 20.5
	(min) 10 20 30 40 50 60 70 80 90 100	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	2.63 1.77 1.35 1.11 0.94 0.82 0.73 0.66 0.61 0.56	1.58 1.46 1.29 1.08 0.93 0.82 0.73 0.66 0.60 0.56	1.05 0.30 0.06 0.02 0.01 0.01 0.00 0.00 0.00 0.00	0.63 0.37 0.11 0.06 0.04 0.03 0.02 0.01 0.01 0.01	100.1 81.9 54.6 42.9 36.8 32.3 28.9 26.2 23.9 22.1
orage:	(min) 10 20 30 40 50 60 70 80 90 100 110	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	2.63 1.77 1.35 1.11 0.94 0.82 0.73 0.66 0.61 0.56 0.52	1.58 1.46 1.29 1.08 0.93 0.82 0.73 0.66 0.60 0.56 0.52	1.05 0.30 0.06 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00	0.63 0.37 0.11 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.01	100.1 81.9 54.6 42.9 36.8 32.3 28.9 26.2 23.9 22.1 20.5
torage:	(min) 10 20 30 40 50 60 70 80 90 100 110 120	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	2.63 1.77 1.35 1.11 0.94 0.82 0.73 0.66 0.61 0.56 0.52 0.48	1.58 1.46 1.29 1.08 0.93 0.82 0.73 0.66 0.60 0.56 0.52 0.48	1.05 0.30 0.06 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00	0.63 0.37 0.11 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01	100.1 81.9 54.6 42.9 36.8 32.3 28.9 26.2 23.9 22.1 20.5 19.2
torage:	(min) 10 20 30 40 50 60 70 80 90 100 110 120	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Depth	2.63 1.77 1.35 1.11 0.94 0.82 0.73 0.66 0.61 0.56 0.52 0.48 Head	1.58 1.46 1.29 1.08 0.93 0.82 0.73 0.66 0.50 0.56 0.52 0.48 Discharge	1.05 0.30 0.06 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00	0.63 0.37 0.11 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 Vavail	100.1 81.9 54.6 42.9 36.8 32.3 28.9 26.2 23.9 22.1 20.5 19.2 Discharge
-	(min) 10 20 30 40 50 60 70 80 90 100 110 120	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	2.63 1.77 1.35 1.11 0.94 0.82 0.73 0.66 0.61 0.56 0.52 0.48	1.58 1.46 1.29 1.08 0.93 0.82 0.73 0.66 0.60 0.56 0.52 0.48	1.05 0.30 0.06 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00	0.63 0.37 0.11 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01	100.1 81.9 54.6 42.9 36.8 32.3 28.9 26.2 23.9 22.1 20.5 19.2
-	(min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storage	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Depth (mm)	2.63 1.77 1.35 1.11 0.94 0.82 0.73 0.66 0.61 0.56 0.52 0.48 Head (m)	1.58 1.46 1.29 1.08 0.93 0.82 0.73 0.66 0.60 0.56 0.52 0.48 Discharge (L/s)	1.05 0.30 0.06 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00	0.63 0.37 0.11 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 Vavail (cu. m)	100.1 81.9 54.6 42.9 36.8 32.3 28.9 26.2 23.9 22.1 20.5 19.2 Discharge Check
100-year	(min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storage	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Depth (mm)	2.63 1.77 1.35 1.11 0.94 0.82 0.73 0.66 0.61 0.56 0.52 0.48 Head (m)	1.58 1.46 1.29 1.08 0.93 0.82 0.73 0.66 0.60 0.56 0.52 0.48 Discharge (L/s)	1.05 0.30 0.06 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00	0.63 0.37 0.11 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 Vavail (cu. m)	100.1 81.9 54.6 42.9 36.8 32.3 28.9 26.2 23.9 22.1 20.5 19.2 Discharge Check
100-year	(min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storage	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Depth (mm) 100.15	2.63 1.77 1.35 1.11 0.94 0.82 0.73 0.66 0.61 0.56 0.52 0.48 Head (m)	1.58 1.46 1.29 1.08 0.93 0.82 0.73 0.66 0.56 0.52 0.48 Discharge (L/s) 1.58	1.05 0.30 0.06 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00	0.63 0.37 0.11 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 Vavail (cu. m) 2.12	100.1 81.9 54.6 42.9 36.8 32.3 28.9 26.2 23.9 22.1 20.5 19.2 Discharge Check 0.00

	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	
	10	178.56	4.82	1.68	3.13	1.88	116.7	
	20	119.95	3.23	1.68	1.55	1.87	116.3	
	30	91.87	2.48	1.63	0.85	1.52	108.5	
	40	75.15	2.03	1.57	0.46	1.10	98.3	
	4 0 50	63.95	1.72	1.48	0.40	0.74	84.5	
	60	55.89	1.51	1.39	0.12	0.42	70.3	
	70	49.79	1.34	1.29	0.05	0.21	54.9	
	80	44.99	1.21	1.19	0.03	0.13	47.0	
	90	41.11	1.11	1.09	0.02	0.11	43.1	
	100	37.90	1.02	1.01	0.02	0.09	39.9	
	110	35.20	0.95	0.94	0.01	0.08	37.1	
	120	32.89	0.89	0.88	0.01	0.07	34.8	
torage:	Roof Storage	e						
	Г	Depth	Head	Discharge	Vreq	Vavail	Discharge	
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
100-year \	Nater Level	116.66	0.12	1.68	1.88	3.88	0.00	
Subdrai		ROOF6 and 7				_	Roof	
	Area (ha):	0.10		N	laximum Sto	rage Depth:	150 m	m
	C:	1.00						
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	
	10	178.56	47.41	7.84	39.57	23.74	127.5	
	20	119.95	31.85	8.16	23.69	28.42	134.8	
	30	91.87	24.39	8.21	16.18	29.12	135.9	
	40	75.15	19.95	8.15	11.80	28.32	134.7	
	50	63.95	16.98	8.05	8.93	26.79	132.3	
	60	55.89	14.84	7.92	6.92	24.91	129.4	
	70	49.79	13.22	7.78	5.44	22.84	126.1	
	80	44.99	11.94	7.60	4.34	20.85	122.1	
	90	41.11	10.91	7.40	3.51	18.96	117.7	
	100	37.90	10.06	7.21	2.85	17.09	113.4	
	110	35.20	9.35	7.03	2.32	15.28	109.2	
	120	32.89	8.73	6.85	1.88	13.56	105.2	
torage:	Roof Storage	е						
	Г	Depth	Head	Discharge	Vreq	Vavail	Discharge	
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
100-year V	Nater Level	135.90	0.14	8.21	29.12	38.20	0.00	
Subdrai	nage Area:	ROOF5					Roof	
	Area (ha):	0.11		N	Iaximum Sto	rage Depth:	150 m	m
	C:	1.00						
	tc	l (100 yr)		Qrelease	Qstored	Vstored	Depth	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	
	10	178.56	54.50	6.54	47.96	28.78	129.5	
	20	119.95	36.61	7.00	29.61	35.54	138.7	
	30	91.87	28.04	7.14	20.90	37.62	141.5	
	40	75.15	22.94	7.16	15.78	37.87	141.8	
	50	63.95	19.52	7.11	12.41	37.23	141.0	
	60	55.89	17.06	7.04	10.02	36.08	139.4	
	70	49.79	15.20	6.94	8.26	34.68	137.5	
	80	44.99	13.73					
		44.99	13./3	6.83	6.90	33.12	135.4	
				0 70		04 10	100 0	
	90	41.11	12.55	6.72	5.83	31.48	133.2	
				6.72 6.61 6.49		31.48 29.76 28.09	133.2 130.9 128.6	

	120	32.89	10.04	6.37	3.67	26.40	126.3	
Storage:	Roof Storag	е						
	Г	Depth	Head	Discharge	Vreq	Vavail	Discharge	
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
100-year	Water Level	141.83	0.14	7.16	37.87	43.92	0.00	
O the days							Deef	
Subora	inage Area: Area (ha):	ROOF4 0.04		м	lavimum Sto	rage Depth:	Roof 150 m	m
	C:	1.00		10		lage Deptil.	100 11	
	•							
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	
	10 20	178.56 119.95	17.47 11.74	3.15 3.15	14.32 8.59	8.59 10.31	126.9 134.1	
	30	91.87	8.99	3.15	5.84	10.51	135.0	
	40	75.15	7.35	3.15	4.20	10.09	133.2	
	50	63.95	6.26	3.15	3.11	9.32	130.0	
	60	55.89	5.47	3.15	2.32	8.35	125.9	
	70	49.79	4.87	3.15	1.72	7.23	119.2	
	80	44.99	4.40	3.15	1.25	6.01	111.6	
	90	41.11	4.02	3.15	0.87	4.71	103.4	
	100	37.90	3.71	3.15	0.56	3.35	91.5	
	110 120	35.20 32.89	3.44 3.22	3.15 3.15	0.29 0.07	1.95 0.50	76.9 48.6	
	120	32.09	3.22	3.15	0.07	0.50	40.0	-
Storage:	Roof Storag	е						
	Γ	Depth	Head	Discharge	Vreq	Vavail	Discharge	
100-vear	Water Level	(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
100-year	Water Level			-				
	Water Level	(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
	E	(mm) 134.96 ROOF3 0.11	(m)	(L/s) 3.15	(cu. m) 10.51	(cu. m)	Check 0.00	m
	inage Area:	(mm) 134.96 ROOF3	(m)	(L/s) 3.15	(cu. m) 10.51	(cu. m) 14.08	Check 0.00 Roof	m
	inage Area: Area (ha): C: tc	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr)	(m) 0.13 Qactual	(L/s) 3.15 M Qrelease	(cu. m) 10.51 laximum Sto	(cu. m) 14.08 orage Depth:	Check 0.00 Roof 150 m	m
	inage Area: Area (ha): C: tc (min)	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr)	(m) 0.13 Qactual (L/s)	(L/s) 3.15 M Qrelease (L/s)	(cu. m) 10.51 laximum Sto Qstored (L/s)	(cu. m) 14.08 rage Depth: Vstored (m^3)	Check 0.00 Roof 150 m Depth (mm)	
	inage Area: Area (ha): C: tc	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr)	(m) 0.13 Qactual	(L/s) 3.15 M Qrelease	(cu. m) 10.51 laximum Sto	(cu. m) 14.08 orage Depth:	Check 0.00 Roof 150 m	
	inage Area: Area (ha): C: tc (min) 10	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56	(m) 0.13 Qactual (L/s) 54.50	(L/s) 3.15 M Qrelease (L/s) 6.54	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96	(cu. m) 14.08 rrage Depth: Vstored (m^3) 28.78	Check 0.00 Roof 150 m Depth (mm) 129.5	
	inage Area: Area (ha): C: tc (min) 10 20	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95	(m) 0.13 Qactual (L/s) 54.50 36.61	(L/s) 3.15 Qrelease (L/s) 6.54 7.00	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96 29.61 20.90 15.78	(cu. m) 14.08 rrage Depth: Vstored (m^3) 28.78 35.54	Check 0.00 Roof 150 m Depth (mm) 129.5 138.7	
	inage Area: Area (ha): C: (min) 10 20 30 40 50	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95	(m) 0.13 Qactual (L/s) 54.50 36.61 28.04 22.94 19.52	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96 29.61 20.90 15.78 12.41	(cu. m) 14.08 rrage Depth: Vstored (m^3) 28.78 35.54 37.62 37.87 37.23	Check 0.00 Roof 150 m Depth (mm) 129.5 138.7 141.5 141.8 141.0	
	inage Area: Area (ha): C: (min) 10 20 30 40 50 60	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	(m) 0.13 Qactual (L/s) 54.50 36.61 28.04 22.94 19.52 17.06	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11 7.04	(cu. m) 10.51 laximum Sto (L/s) 47.96 29.61 20.90 15.78 12.41 10.02	(cu. m) 14.08 rage Depth: Vstored (m^3) 28.78 35.54 37.62 37.87 37.23 36.08	Check 0.00 Roof 150 m Depth (mm) 129.5 138.7 141.5 141.8 141.0 139.4	
	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	(m) 0.13 Qactual (L/s) 54.50 36.61 28.04 22.94 19.52 17.06 15.20	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11 7.04 6.94	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96 29.61 20.90 15.78 12.41 10.02 8.26	(cu. m) 14.08 rage Depth: Vstored (m^3) 28.78 35.54 37.62 37.87 37.23 36.08 34.68	Check 0.00 Roof 150 m 29.5 138.7 141.5 141.8 141.0 139.4 137.5	
	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	(m) 0.13 Qactual (L/s) 54.50 36.61 28.04 22.94 19.52 17.06 15.20 13.73	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11 7.04 6.94 6.83	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96 29.61 20.90 15.78 12.41 10.02 8.26 6.90	(cu. m) 14.08 rage Depth: (m^3) 28.78 35.54 37.62 37.87 37.23 36.08 34.68 33.12	Check 0.00 Roof 150 m 0 0 0 0 0 0 0 0 0 0 0 0 0	
	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	(m) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11 7.04 6.94 6.83 6.72	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96 29.61 20.90 15.78 12.41 10.02 8.26 6.90 5.83	(cu. m) 14.08 rage Depth: Vstored (m^3) 28.78 35.54 37.62 37.87 37.23 36.08 34.68 33.12 31.48	Check 0.00 Roof 150 m Depth (mm) 129.5 138.7 141.5 141.8 141.0 139.4 137.5 135.4 133.2	
	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	(m) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11 7.04 6.94 6.83 6.72 6.61	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96 29.61 20.90 15.78 12.41 10.02 8.26 6.90 5.83 4.96	(cu. m) 14.08 rage Depth: Vstored (m^3) 28.78 35.54 37.62 37.87 37.23 36.08 34.68 33.12 31.48 29.76	Check 0.00 Roof 150 m Depth (mm) 129.5 138.7 141.5 141.8 141.0 139.4 137.5 135.4 133.2 130.9	
	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	(m) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11 7.04 6.94 6.83 6.72	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96 29.61 20.90 15.78 12.41 10.02 8.26 6.90 5.83	(cu. m) 14.08 rage Depth: Vstored (m^3) 28.78 35.54 37.62 37.87 37.23 36.08 34.68 33.12 31.48	Check 0.00 Roof 150 m Depth (mm) 129.5 138.7 141.5 141.8 141.0 139.4 137.5 135.4 133.2	
Subdra	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 44.99 41.11 37.90 35.20 32.89	(m) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11 7.04 6.94 6.83 6.72 6.61 6.49	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96 29.61 20.90 15.78 12.41 10.02 8.26 6.90 5.83 4.96 4.26	(cu. m) 14.08 rage Depth: Vstored (m^3) 28.78 35.54 37.62 37.87 37.23 36.08 34.68 33.12 31.48 29.76 28.09	Check 0.00 Roof 150 m Depth (mm) 129.5 138.7 141.5 141.8 141.0 139.4 137.5 135.4 133.2 130.9 128.6	
Subdra	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 e Depth	(m) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11 7.04 6.94 6.83 6.72 6.61 6.49 6.37 Discharge	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96 29.61 20.90 15.78 12.41 10.02 8.26 6.90 5.83 4.96 4.26 3.67 Vreq	(cu. m) 14.08 rage Depth: Vstored (m^3) 28.78 35.54 37.62 37.87 37.23 36.08 34.68 33.12 31.48 29.76 28.09 26.40 Vavail	Check 0.00 Roof 150 m Depth (mm) 129.5 138.7 141.5 141.8 141.0 139.4 137.5 135.4 135.4 135.4 135.4 135.4 135.4 135.4 135.4 136.4 126.3 Discharge	
Subdra	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storag	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 e Depth (mm)	(m) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11 7.04 6.94 6.83 6.72 6.61 6.49 6.37 Discharge (L/s)	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96 29.61 20.90 15.78 12.41 10.02 8.26 6.90 5.83 4.96 4.26 3.67 Vreq (cu. m)	(cu. m) 14.08 rage Depth: Vstored (m^3) 28.78 35.54 37.62 37.87 37.23 36.08 34.68 33.12 31.48 29.76 28.09 26.40 Vavail (cu. m)	Check 0.00 Roof 150 m Depth (mm) 129.5 138.7 141.5 141.8 141.0 139.4 137.5 135.4 135.4 135.4 135.4 135.4 135.4 135.4 135.4 136.3 Discharge Check	
Subdra	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 e Depth	(m) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11 7.04 6.94 6.83 6.72 6.61 6.49 6.37 Discharge	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96 29.61 20.90 15.78 12.41 10.02 8.26 6.90 5.83 4.96 4.26 3.67 Vreq	(cu. m) 14.08 rage Depth: Vstored (m^3) 28.78 35.54 37.62 37.87 37.23 36.08 34.68 33.12 31.48 29.76 28.09 26.40 Vavail	Check 0.00 Roof 150 m Depth (mm) 129.5 138.7 141.5 141.8 141.0 139.4 137.5 135.4 135.4 135.4 135.4 135.4 135.4 135.4 135.4 136.4 126.3 Discharge	m () () () () () () () () () () () () ()
Subdra Storage: 100-year	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storag	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 e Depth (mm)	(m) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11 7.04 6.94 6.83 6.72 6.61 6.49 6.37 Discharge (L/s)	(cu. m) 10.51 laximum Sto Qstored (L/s) 47.96 29.61 20.90 15.78 12.41 10.02 8.26 6.90 5.83 4.96 4.26 3.67 Vreq (cu. m)	(cu. m) 14.08 rage Depth: Vstored (m^3) 28.78 35.54 37.62 37.87 37.23 36.08 34.68 33.12 31.48 29.76 28.09 26.40 Vavail (cu. m)	Check 0.00 Roof 150 m Depth (mm) 129.5 138.7 141.5 141.8 141.0 139.4 137.5 135.4 135.4 135.4 135.4 135.4 135.4 135.4 135.4 136.3 Discharge Check	
Subdra Storage: 100-year	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storag	(mm) 134.96 ROOF3 0.11 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 e Depth (mm) 141.83	(m) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	(L/s) 3.15 Qrelease (L/s) 6.54 7.00 7.14 7.16 7.11 7.04 6.94 6.83 6.72 6.61 6.49 6.37 Discharge (L/s) 7.16	(cu. m) 10.51 Qstored (L/s) 47.96 29.61 20.90 15.78 12.41 10.02 8.26 6.90 5.83 4.96 4.26 3.67 Vreq (cu. m) 37.87	(cu. m) 14.08 rage Depth: Vstored (m^3) 28.78 35.54 37.62 37.87 37.23 36.08 34.68 33.12 31.48 29.76 28.09 26.40 Vavail (cu. m)	Check 0.00 Roof 150 m 0.00 129.5 138.7 141.5 141.8 141.0 139.4 137.5 135.4 133.2 130.9 128.6 126.3 Discharge Check 0.00	

	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)
	10	178.56	47.36	7.84	39.52	23.71	127.5
	20	119.95	31.81	8.16	23.65	28.38	134.8
	30	91.87	24.36	8.21	16.16	29.08	135.9
	40	75.15	19.93	8.15	11.78	28.27	134.6
	50	63.95	16.96	8.05	8.91	26.73	132.2
	60	55.89	14.82	7.92	6.90	24.85	129.3
	70	49.79	13.20	7.78	5.42	22.78	126.1
	80	44.99	11.93	7.60	4.33	20.79	122.0
	90	41.11	10.90	7.40	3.50	18.92	117.7
	100	37.90	10.05	7.21	2.84	17.05	113.3
	110	35.20	9.34	7.03	2.31	15.22	109.1
	120	32.89	8.72	6.85	1.87	13.49	105.1
torage:	Roof Storage	•					
	Γ	Depth	Head	Discharge	Vreq	Vavail	Discharge
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check
100-year	Water Level	135.88	0.14	8.21	29.08	38.16	0.00

Tag:

Adjustable Flow Control for Roof Drains

ADJUSTABLE ACCUTROL(for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

EXAMPLE:

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2" of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: [5 gpm(per inch of head) x 2 inches of head] + 2-1/2 gpm(for the third inch of head) = 12-1/2 gpm.

TARI F	1 Ad	iustable	Accutrol	Flow	Rate	Settings
INDLL	1. Au	Insignie	ACCUITO	110 %	NUIE	Jennigs

Weir Opening Exposed 1" 2" 3" 4" 5" 6" Fully Exposed 5 10 15 20 25 30 3/4 5 10 13.75 17.5 21.25 25 1/2 5 10 12.5 15 17.5 20 1/4 5 10 11.25 12.5 13.75 15 Closed 5 10 10 10 10 10					Head of Wate	ər			
Fully Exposed 5 10 15 20 25 30 3/4 5 10 13.75 17.5 21.25 25 1/2 5 10 12.5 15 17.5 20 1/4 5 10 11.25 12.5 13.75 15 Closed 5 10 10 10 10 10			1"	2"	3"	4"	5"	6"	
3/4 5 10 13.75 17.5 21.25 25 1/2 5 10 12.5 15 17.5 20 1/4 5 10 11.25 12.5 13.75 15 Closed 5 10 10 10 10 10	Exp	osed	Flow Rate (gallons per minute)						
1/2 5 10 12.5 15 17.5 20 1/4 5 10 11.25 12.5 13.75 15 Closed 5 10 10 10 10 10	Fully	Exposed	5	10	15	20	25	30	
1/4 5 10 11.25 12.5 13.75 15 Closed 5 10 10 10 10 10 10 Contractor Contractor's P.O. No.	3	/4	5	10	13.75	17.5	21.25	25	
Closed 5 10 10 10 10 10 Contractor	1	/2	5	10	12.5	15	17.5	20	
Contractor Contractor's P.O. No	1	/4	5	10	11.25	12.5	13.75	15	
Contractor's P.O. No	Clo	osed	5	10	10	10	10	10	

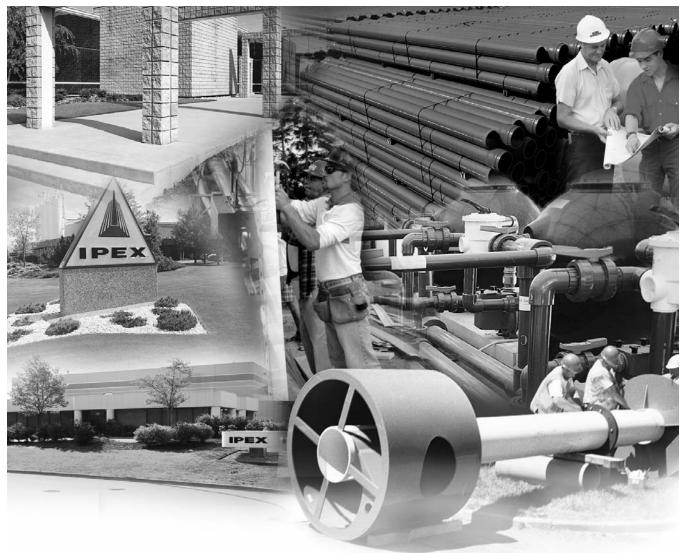
© Watts Drainage 2005

CANADA: 5435 North Service Road, Burlington, ON, L7L 5H7 TEL: 905-332-6718 TOLL-FREE: 1-888-208-8927 Website: www.wattsdrainage.ca

Volume III: TEMPEST™ INLET CONTROL DEVICES

Municipal Technical Manual Series

LMF (Low to Medium Flow) ICD HF (High Flow) ICD MHF (Medium to High Flow) ICD


IPEX Tempest™ Inlet Control Devices

Municipal Technical Manual Series

Vol. I, 1st Edition

© 2011 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 2441 Royal Windsor Drive, Mississauga, Ontario, Canada, L5J 4C7.

The information contained here within is based on current information and product design at the time of publication and is subject to change without notification. IPEX does not guarantee or warranty the accuracy, suitability for particular applications, or results to be obtained therefrom.

ABOUT IPEX

At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations throughout North America. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items.

More importantly, we are committed to meeting our customers' needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committeed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page.

For specific details about any IPEX product, contact our customer service department.

CONTENTS

TEMPEST INLET CONTROL DEVICES Technical Manual

About IPEX

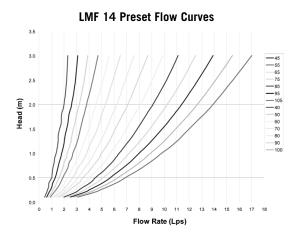
Section One:	Product Information: TEMPEST Low, Medium Flow (LMF) ICD
	Purpose
	Product Description
	Product Function
	Product Construction
	Product Applications
	Product Installation
	Instructions to assemble a TEMPEST LMF ICD into a square catch basin:
	Instructions to assemble a TEMPEST LMF ICD into a round catch basin:
	Product Technical Specification
	General
	Materials
	Dimensioning
	Installation
Section Two:	Product Information: TEMPEST High Flow (HF) & Medium, High Flow (MHF) ICD
Section Two:	Product Information: TEMPEST High Flow (HF) & Medium, High Flow (MHF) ICD Product Description
Section Two:	
Section Two:	Product Description
Section Two:	Product Description
Section Two:	Product Description .9 Product Function .9 Product Construction .9
Section Two:	Product Description.9Product Function.9Product Construction.9Product Applications.9
Section Two:	Product Description .9 Product Function .9 Product Construction .9 Product Applications .9 Product Installation .9
Section Two:	Product Description .9 Product Function .9 Product Construction .9 Product Applications .9 Product Installation .9 Instructions to assemble a TEMPEST HF or MHF ICD into a square catch basin: .10
Section Two:	Product Description .9 Product Function .9 Product Construction .9 Product Construction .9 Product Applications .9 Product Installation .9 Instructions to assemble a TEMPEST HF or MHF ICD into a square catch basin: .10 Instructions to assemble a TEMPEST HF or MHF ICD into a round catch basin: .10 Instructions to assemble a TEMPEST HF or MHF ICD into a round catch basin: .10 Instructions to assemble a TEMPEST HF Sump into a square or round catch basin: .11
Section Two:	Product Description .9 Product Function .9 Product Construction .9 Product Construction .9 Product Applications .9 Product Installation .9 Instructions to assemble a TEMPEST HF or MHF ICD into a square catch basin: .10 Instructions to assemble a TEMPEST HF or MHF ICD into a round catch basin: .10 Instructions to assemble a TEMPEST HF Sump into a square or round catch basin: .11 Product Technical Specification
Section Two:	Product Description .9 Product Function .9 Product Construction .9 Product Applications .9 Product Installation .9 Instructions to assemble a TEMPEST HF or MHF ICD into a square catch basin: .10 Instructions to assemble a TEMPEST HF or MHF ICD into a round catch basin: .10 Instructions to assemble a TEMPEST HF or MHF ICD into a round catch basin: .11 Product Technical Specification .11
Section Two:	Product Description .9 Product Function .9 Product Construction .9 Product Construction .9 Product Applications .9 Product Installation .9 Instructions to assemble a TEMPEST HF or MHF ICD into a square catch basin: .10 Instructions to assemble a TEMPEST HF or MHF ICD into a round catch basin: .10 Instructions to assemble a TEMPEST HF Sump into a square or round catch basin: .11 Product Technical Specification

IPEX

IPEX Tempest™ LMF ICD

4

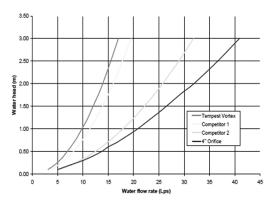
PRODUCT INFORMATION: TEMPEST LOW, MEDIUM FLOW (LMF) ICD


Purpose

To control the amount of storm water runoff entering a sewer system by allowing a specified flow volume out of a catch basin or manhole at a specified head. This approach conserves pipe capacity so that catch basins downstream do not become uncontrollably surcharged, which can lead to basement floods, flash floods and combined sewer overflows.

Product Description

Our LMF ICD is designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter and larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device to accommodate virtually any storm sewer size.


Available in 14 preset flow curves, the LMF ICD has the ability to provide flow rates: 2lps – 17lps (31gpm – 270gpm)

Product Function

The LMF ICD vortex flow action allows the LMF ICD to provide a narrower flow curve using a larger orifice than a conventional orifice plate ICD, making it less likely to clog. When comparing flows at the same head level, the LMF ICD has the ability to restrict more flow than a conventional ICD during a rain event, preserving greater sewer capacity.

Product Construction

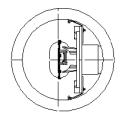
Constructed from durable PVC, the LMF ICD is light weight 8.95 Kg (19.7 lbs).


Product Applications

Will accommodate both square and round applications:

Square Application

Universal Mounting Plate **Round Application**



Universal Mounting Plate Hub Adapter

TEMPEST LMF ICD

PRODUCT INSTALLATION

Instructions to assemble a TEMPEST LMF ICD into a Square Catch Basin:

STEPS:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers,
 (4) nuts, universal mounting plate, ICD device.
- Use the mounting wall plate to locate and mark the hole
 (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts the ends of the anchors
- Install the universal mounting plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From the ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the universal mounting plate and has created a seal.

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- Call your IPEX representative for more information or if you have any questions about our products.

Instructions to assemble a TEMPEST LMF ICD into a Round Catch Basin:

STEPS:

- 1. Materials and tooling verification.
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers and (4) nuts, spigot CB wall plate, universal mounting plate hub adapter, ICD device.
- 2. Use the spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to sure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a depth between 1-1/2" to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts from the ends of the anchors
- Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between CB the spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of universal mounting plate, hub adapter and the spigot of spigot CB wall plate slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the mounting plate and has created a seal.

WARNING

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut back the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.

6

PRODUCT TECHNICAL SPECIFICATION

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's must have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

Installation

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

IPEX Tempest[™] LMF ICD

IPEX Tempest™ LMF ICD

8

PRODUCT INFORMATION: TEMPEST HF & MHF ICD

Product Description

Our HF, HF Sump and MHF ICD is designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter or larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device virtually to accommodate any storm sewer size.

Available in 5 preset flow curves, these ICDs have the ability to provide constant flow rates: 9lps (143 gpm) and greater

HF & MHF Preset Flow Curves 6.00 5.00 4.00 m) pae 3.00 2.00 1.00 60 100 120 140 Flow Q (Lps)

Product Function

TEMPEST HF (High Flow): designed to manage moderate to higher flows between 15 L/s (240 gpm) or greater and prevents the propagation of odour and floatables. With this device, the cross-sectional area of the device is larger than the orifice diameter and has been designed to limit

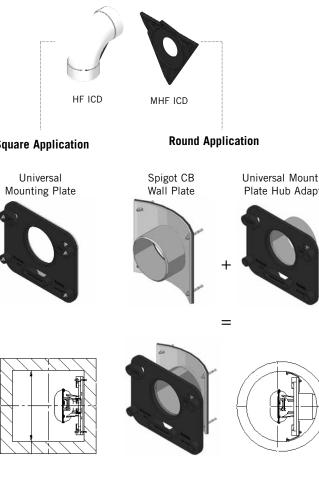
head losses. The HF ICD can also be ordered without flow control when only odour and floatable control is required.

TEMPEST HF (High Flow) Sump: The height of a sewer outlet pipe in a catch basin is not always conveniently located. At times it may be located very close to the catch basin floor, not providing enough sump for one of the other TEMPEST ICDs with universal back plate to be installed. In these

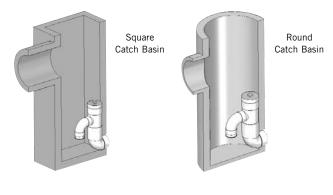
applications, a HF Sump is offered. The HF

Sump offers the same features and benefits as the HF ICD; however, is designed to raise the outlet in a square or round catch basin structure. When installed, the HF sump is fixed in place and not easily removed. Any required service to the device is performed through a clean-out located in the top of the device which can be often accessed from ground level.

TEMPEST MHF (Medium to High Flow):


The MHF plate or plug is designed to control flow rates 9 L/s (143 gpm) or greater. It is not designed to prevent the propagation of odour and floatables.

Product Construction


The HF, HF Sump and MHF ICDs are built to be light weight at a maximum weight of 6.82 Kg (14.6 lbs).

Product Applications

The HF and MHF ICD are available to accommodate both square and round applications:

The HF Sump is available to accommodate low to no sump applications in both square and round catch basins:

Square Application

Universal Mounting Plate Hub Adapter

IPFX Tempest™ I MF ICD

9

PRODUCT INSTALLATION

Instructions to assemble a TEMPEST HF or MHF ICD into a Square Catch Basin:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers, (4) nuts, universal mounting plate, ICD device
- Use the mounting wall plate to locate and mark the hole
 (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts the ends of the anchors
- 5. Install the universal from wall mounting plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From the ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the LMF device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the universal wall mounting plate and has created a seal.

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- Call your IPEX representative for more information or if you have any questions about our products.

Instructions to assemble a TEMPEST HF or MHF ICD into a Round Catch Basin:

STEPS:

- 1. Materials and tooling verification.
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers and (4) nuts, spigot CB wall plate, universal mounting plate hub adapter, ICD device.
- 2. Use the round catch basin spigot adaptor to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to sure that the plate is at the horizontal.
- 3. Use an impact drill with a 3/8" concrete bit to make the four holes at a depth between 1-1/2" to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts from the ends of the anchors
- Install the spigot CB wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the spigot CB wall plate and the catch basin wall.
- 6. Put solvent cement on the hub of the universal mounting plate, hub adapter and the spigot of spigot CB wall plate and slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal.

WARNING

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.

10 IPEX Tempest[™] LMF ICD

Instructions to assemble a TEMPEST HF Sump into a Square or Round Catch Basin:

STEPS:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, mastic tape and metal strapping
 - Material: (2) concrete anchor 3/8 x 3-1/2, (2) washers, (2) nuts, HF Sump pieces (2).
- 2. Apply solvent cement to the spigot end of the top half of the sump. Apply solvent cement to the hub of the bottom half of the sump. Insert the spigot of the top half of the sump into the hub of the bottom half of the sump.
- 3. Install the 8" spigot of the device into the outlet pipe. Use the mastic tape to seal the device spigot into the outlet pipe. You should use a level to be sure that the fitting is standing at the vertical.
- 4. Use an impact drill with a 3/8" concrete bit to make a series of 2 holes along each side of the body throat. The depth of the hole should be between 1-1/2" to 2-1/2". Clean the concrete dust from the 2 holes.
- 5. Install the anchors (2) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you will hit the anchors. Remove the nuts on the anchors at the end.
- Cut the metal strapping to length and connect each end of the strapping to the anchors. Screw the nuts in place with a maximum torque of 40 N.m (30 lbf-ft). The device should be completely flush with the catch basin wall.

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.

PRODUCT TECHNICAL SPECIFICATION

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's must have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

Installation

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

TEMPEST HF & MHF ICD

IPEX Tempest™ LMF ICD

12 IPEX Tempest[™] LMF ICD

SALES AND CUSTOMER SERVICE

Canadian Customers call IPEX Inc. Toll free: (866) 473-9462 www.ipexinc.com

U.S. Customers call IPEX USA LLC Toll free: (800) 463-9572 www.ipexamerica.com

About the IPEX Group of Companies

As leading suppliers of thermoplastic piping systems, the IPEX Group of Companies provides our customers with some of the largest and most comprehensive product lines. All IPEX products are backed by more than 50 years of experience. With state-of-the-art manufacturing facilities and distribution centers across North America, we have established a reputation for product innovation, quality, end-user focus and performance.

Markets served by IPEX group products are:

- Electrical systems
- Telecommunications and utility piping systems
- PVC, CPVC, PP, ABS, PEX, FR-PVDF and PE pipe and fittings (1/4" to 48")
- · Industrial process piping systems
- Municipal pressure and gravity piping systems
- Plumbing and mechanical piping systems
- PE Electrofusion systems for gas and water
- Industrial, plumbing and electrical cements
- Irrigation systems

Products manufactured by IPEX Inc. and distributed in the United States by IPEX USA LLC.

Tempest[™] is a trademark of IPEX Branding Inc.

This literature is published in good faith and is believed to be reliable. However it does not represent and/or warrant in any manner the information and suggestions contained in this brochure. Data presented is the result of laboratory tests and field experience.

A policy of ongoing product improvement is maintained. This may result in modifications of features and/or specifications without notice.

MNMNTPIP110817 © 2011 IPEX MN0038UC

SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management July 14, 2022

C.2 SAMPLE PCSWMM MODEL INPUT (12HR 100YR SCS)

[TITLE] ;;Project Title/Note	S
[OPTIONS] ;;Option FLOW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STATE	Value LPS HORTON DYNWAVE ELEVATION Ø YES NO
START_DATE START_TIME REPORT_START_DATE REPORT_START_TIME END_DATE END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP ROUTING_STEP RULE_STEP	07/23/2009 00:00:00 07/23/2009 00:00:00 07/24/2009 00:00:00 01/01 12/31 0 00:05:00 00:05:00 00:05:00 1 00:05:00
INERTIAL_DAMPING NORMAL_FLOW_LIMITED FORCE_MAIN_EQUATION VARIABLE_STEP LENGTHENING_STEP MIN_SURFAREA MAX_TRIALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP	PARTIAL BOTH H-W 0 0 8 0.0015 5 5 0.5

THREADS	4								
[EVAPORATION] ;;Data Source ;;	Parameters	_							
CONSTANT DRY_ONLY	0.0 NO	-							
[RAINGAGES] ;;Name ;;		val SCF	Source	e					
,, RG1	INTENSITY 0:15	1.0	TIMES	ERIES 100	SCS				
[SUBCATCHMENTS] ;;Name	Rain Gage	Outlet		Area	%Imperv	Width	%Slope	CurbLen	SnowPack
;;									
EXT-1	RG1	CB507-S		0.068859	38.571	95	1.5	0	
R00F_10	RG1	R00F-10-S		0.281012	100	136	1.5	0	
R00F_11	RG1	R00F-11-S		0.010607	100	21	1.5	0	
R00F_12	RG1	R00F-12-5		0.01253	100	15.6	1.5	0	
R00F_3	RG1	R00F-3-S		0.109818	100	130	1.5	0	
R00F_4	RG1	ROOF-4-S		0.035229	100	46	1.5	0	
R00F_5	RG1	R00F-5-S		0.109819	100	130	1.5	0	
ROOF_8	RG1	ROOF-8-S		0.009743	100	21	1.5	0	
R00F_9	RG1	ROOF-9-S		0.005311	100	15	1.5	0	
R00F1_2	RG1	R00F-1-2-S		0.0954	100	95	1.5	0	
R00F6_7	RG1	R00F-6-7-S		0.0955	100	95	1.5	0	

UGPK_1	RG1	TANK	s	0.144022	77.143	115	5 2	0	
_									
UGPK_2	RG1	TANK	S	0.152475	80	122	2 2	0	
	DC1	TANK	c .	0.059673	F0 F71	60	2	0	
UGPK_3	RG1	TANK	5	0.0590/5	50.5/1	60	2	0	
UGPK_4	RG1	TANK	S	0.119964	70	95	2	0	
UGPK_5	RG1	TANK	S	0.110163	70	85	2	0	
UGPK_6	RG1	TANK	s	0.021989	100	60	15	0	
	1101		5	0.021909	100	00	15	0	
UGPK_7	RG1	TANK	S	0.112091	78.571	78	2	0	
	DC1	TANK	r	0 061670	75 714	42	2	0	
UGPK_8	RG1	TANK	5	0.061679	/5./14	42	2	0	
UGPK_9	RG1	TANK	S	0.032467	100	42	2	0	
_									
UNC-1	RG1	OF1		0.078091	41.429	78	2	0	
UNC-2	RG1	0F2		0.515043	8 571	25	1	0	
UNC-2	NOI	012		0.010040	0.5/1	25	1	0	
UNC-3	RG1	OF 3		0.069306	61.429	122	2 2	0	
								_	
UNC-4	RG1	CB50	7-S	0.051524	37.143	90	2	0	
[SUBAREAS]									
;;Subcatchment	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero		RouteTo	PctRouted	
;;									
EXT-1	0.013	0.2	1.57	4.67	0		PERVIOUS	100	
ROOF_10	0.013	0.2	1.57	4.67	0		IMPERVIOUS		
ROOF_11	0.013	0.2	1.57	4.67	0		IMPERVIOUS IMPERVIOUS		
R00F_12	0.013	0.2	1.57	4.67	0				
ROOF_3	0.013	0.2	1.57	4.67	0		IMPERVIOUS		
ROOF_4	0.013	0.2	1.57	4.67	0		IMPERVIOUS		
ROOF_5	0.013	0.2	1.57	4.67	0		IMPERVIOUS		
ROOF_8	0.013	0.2	1.57	4.67	0		IMPERVIOUS	100	
 ROOF_9	0.013	0.2	1.57	4.67	0		IMPERVIOUS	100	
R00F_9 R00F1_2	0.013 0.013	0.2 0.2	1.57 1.57	4.67 4.67	0 0		IMPERVIOUS		
 -								100	
 R00F1_2	0.013 0.013	0.2	1.57	4.67	0		IMPERVIOUS	100 100	
ROOF1_2 ROOF6_7	0.013	0.2 0.2	1.57 1.57	4.67 4.67	0 0		IMPERVIOUS IMPERVIOUS	100 100 100	
ROOF1_2 ROOF6_7 UGPK_1	0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67	0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS	100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3	0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67	0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS	100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4	0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS	100 100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5	0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS	100 100 100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS	100 100 100 100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS	100 100 100 100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_5 UGPK_5 UGPK_6 UGPK_7 UGPK_8	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_5 UGPK_7 UGPK_7 UGPK_8 UGPK_9 UNC-1	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-1 UNC-2	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_5 UGPK_7 UGPK_7 UGPK_8 UGPK_9 UNC-1	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-4	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-2 UNC-3 UNC-4	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-2 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;;	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;;	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-2 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10	0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.457 1.44 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_11	0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.4 4.14 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-2 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_11 ROOF_12	0.013 0.02 76.2 76.2 76.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.44 4.14 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_11 ROOF_12 ROOF_3	0.013 0.013	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.44 4.14 4.14 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-2 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;: EXT-1 ROOF_10 ROOF_11 ROOF_12 ROOF_3 ROOF_4	0.013 0.023 76.2 76.2 76.2 76.2 76.2 76.2 76.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.44 4.14 4.14 4.14 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_2 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-2 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_12 ROOF_3 ROOF_4 ROOF_5	0.013 0.02 76.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.4 4.14 4.14 4.14 4.14 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_2 UGPK_1 UGPK_2 UGPK_3 UGPK_5 UGPK_6 UGPK_7 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-2 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_11 ROOF_12 ROOF_3 ROOF_4 ROOF_5 ROOF_8	0.013 0.02 76.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.44 4.14 4.14 4.14 4.14 4.14 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_11 ROOF_12 ROOF_3 ROOF_4 ROOF_5 ROOF_8 ROOF_9	0.013 0.023 0.013 0.02 76.2 7	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.44 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;;	0.013 0.	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.44 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-2 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;: EXT-1 ROOF_10 ROOF_11 ROOF_12 ROOF_3 ROOF_4 ROOF_5 ROOF_9 ROOF1_2 ROOF6_7	0.013 0.02 76.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.44 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_2 UGPK_1 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_11 ROOF_12 ROOF_3 ROOF_4 ROOF_5 ROOF_8 ROOF_9 ROOF1_2 ROOF6_7 UGPK_1	0.013 0.02 76.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.44 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_11 ROOF_12 ROOF_3 ROOF_4 ROOF_5 ROOF_8 ROOF_8 ROOF_8 ROOF_9 ROOF1_2 ROOF6_7 UGPK_1 UGPK_1 UGPK_1	0.013 0.012 76.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.44 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_5 UGPK_6 UGPK_7 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-3 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_11 ROOF_12 ROOF_12 ROOF_3 ROOF_4 ROOF_5 ROOF_8 ROOF_9 ROOF1_2 ROOF6_7 UGPK_1 UGPK_1 UGPK_2 UGPK_3	0.013 0.02 76.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.44 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-2 UNC-3 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_12 ROOF_12 ROOF_3 ROOF_4 ROOF_5 ROOF_8 ROOF_9 ROOF1_2 ROOF6_7 UGPK_1 UGPK_1 UGPK_2 UGPK_3 UGPK_4	0.013 0.02 76.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-2 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_11 ROOF_12 ROOF_3 ROOF_4 ROOF_3 ROOF_4 ROOF_5 ROOF_8 ROOF_9 ROOF1_2 ROOF6_7 UGPK_1 UGPK_1 UGPK_3 UGPK_4 UGPK_5	0.013 0.	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.4 4.14 4	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_2 UGPK_1 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_11 ROOF_12 ROOF_3 ROOF_4 ROOF_5 ROOF_4 ROOF_5 ROOF5 ROOF5 ROOF2 ROOF3 ROOF4 ROOF5 ROOF5 ROOF5 ROOF5 ROOF5 ROOF5 ROOF5 ROOF2 ROOF4 ROOF5 ROOF	0.013 0.2 76.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.44 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_7 UGPK_1 UGPK_2 UGPK_3 UGPK_5 UGPK_6 UGPK_7 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_11 ROOF_12 ROOF_12 ROOF_3 ROOF_4 ROOF_5 ROOF_8 ROOF_8 ROOF_8 ROOF_9 ROOF1_2 ROOF5 ROO55 ROO55 ROO55 ROO55 ROO55 ROO55 ROO55 ROO55 ROO55 ROO	0.013 0.02 76.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.44 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	
ROOF1_2 ROOF4_2 UGPK_1 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-3 UNC-4 [INFILTRATION] ;;Subcatchment ;; EXT-1 ROOF_10 ROOF_11 ROOF_12 ROOF_3 ROOF_4 ROOF_5 ROOF_4 ROOF_5 ROOF5 ROOF5 ROOF2 ROOF3 ROOF4 ROOF5 ROOF5 ROOF5 ROOF5 ROOF5 ROOF5 ROOF5 ROOF2 ROOF4 ROOF5 ROOF	0.013 0.2 76.2 7	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.44 4.14	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0 0		IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100	

JGPK_9	76.2	13.2	4.14	7	0				
JNC-1	76.2	13.2	4.14	7	0				
JNC-2	76.2	13.2	4.14	7	0				
JNC-3 JNC-4	76.2 76.2	13.2 13.2	4.14 4.14	7 7	0 0				
	/0.2	13.2	4.14	1	U				
[JUNCTIONS]	Elouation	MaxPart	h Taito-	th Cump	Anonded				
;;Name	Elevation		h InitDep	th SurDepth	Aponded				
;; 100	99.4	2.735	0	0	0				
OUTFALLS]									
;;Name	Elevation		Stage Da		ted Route				
;; HEADWALL	98.7	FREE		NO					
DF1	98.7	FREE		NO					
DF2	0	FREE		NO					
DF3	0	FREE		NO					
)F4	101.87	FIXED	102.17	NO					
[STORAGE]	-1	M		Ch a	.			-	
;;Name Psi Ksat	Elev. IMD	MaxDepth	InitDepth	Shape	Curve Name/Pa	arams	N/A	Fevap	
;									-
		1 10	0	ELINGTTONA	1 1 2 2	•	0	e	
1000 ^B507_S		4.18	0 0	FUNCTIONAL		0 0	0 0	0 0	
CB507-S ROOF-10-S		2.23 0.15	0	FUNCTIONAL TABULAR	0 0 ROOF10	Ø	0	0	
ROOF-10-5		0.15	0	TABULAR	ROOF10 ROOF11		0	0	
ROOF-12-S		0.15	0	TABULAR	ROOF11 ROOF12		0	0	
ROOF-1-2-5		0.15	0	TABULAR	ROOF1and2		0	0	
ROOF-3-S		0.15	õ	TABULAR	ROOF3		0	0	
ROOF-4-S		0.15	0	TABULAR	ROOF4		0	0	
R00F-5-S		0.15	0	TABULAR	ROOF5		0	0	
R00F-6-7-S		0.15	0	TABULAR	ROOF6and7		0	0	
R00F-8-5		0.15	0	TABULAR	ROOF8		0	0	
ROOF-9-S		0.15	0	TABULAR	ROOF9		0	0	
ANKS	99.7	3.61	0	FUNCTIONAL	0 0	222	0	0	
CONDUTTS1									
	From Node		⁻o Node	Length	Roughness	InOffset	OutOffset	InitFlow	
;Name				_	-				
;Name NaxFlow ;				_	Roughness				
;Name MaxFlow ;									- 0
; Name MaxFlow ; ; 1	CB507-S)F4	21.3	0.013	102.56	102.45	0	- 0
;Name MaxFlow ;; 1 2	CB507-S 1000		DF4 L00	21.3 20.8	0.013 0.013	102.56 99.87	102.45 99.83	0 0	0
[CONDUITS] ;;Name MaxFlow ;; 1 2 2 Pipe_13	CB507-S)F4	21.3	0.013 0.013	102.56	102.45	0	
;Name MaxFlow ;; 1 2 2 Pipe_13 [ORIFICES]	CB507-S 1000 100	C 1 H	DF4 L00 HEADWALL	21.3 20.8 11.135	0.013 0.013 0.013	102.56 99.87 99.548	102.45 99.83 99.52	0 0 0	0
;Name MaxFlow ;; 1 2 2 Pipe_13 [ORIFICES] ;;Name ;	CB507-S 1000 100 From Node	C 1 +	DF4 L00 HEADWALL To Node	21.3 20.8 11.135 Type	0.013 0.013 0.013 0.613 Offset	102.56 99.87 99.548 Qcoeff	102.45 99.83 99.52 Gated	0 0 0 CloseTime	0
;Name MaxFlow ;; 1 2 2 Pipe_13 [ORIFICES] ;Name ;; ISTERN-0	CB507-S 1000 100 From Node	C 1 +	DF4 L00 HEADWALL	21.3 20.8 11.135 Type	0.013 0.013 0.013 0.013	102.56 99.87 99.548 Qcoeff	102.45 99.83 99.52 Gated	0 0 0	0
;Name daxFlow ;; 1 2 2 2 2 2 2 2 2 2 2 2 2 2	CB507-S 1000 100 From Node TANKS From Node		DF4 18ADWALL To Node 1800 1000	21.3 20.8 11.135 Type SIDE Type eff. Curve	0.013 0.013 0.013 0.013 0ffset 99.95 CrestHt	102.56 99.87 99.548 Qcoeff 0.61 Qcoeff	102.45 99.83 99.52 Gated NO Gated	0 0 0 CloseTime 0 EndCon	0
;Name daxFlow ;; 1 2 2 2 2 2 2 2 2 2 2 2 2 2	CB507-S 1000 100 From Node TANKS From Node	C 1 + 2 T 1 Width Rc	DF4 18ADWALL To Node 1800 To Node 1800 To Node 1845urf Co	21.3 20.8 11.135 Type SIDE Type eff. Curve	0.013 0.013 0.013 0ffset 99.95 CrestHt	102.56 99.87 99.548 Qcoeff 0.61 Qcoeff	102.45 99.83 99.52 Gated NO Gated	0 0 0 CloseTime 0 EndCon	0
;Name laxFlow ;	CB507-S 1000 100 From Node TANKS From Node	2 T 1 2 T 1 2 T 1 2 T 1 2 T 1 2 T 1 2 T	DF4 18ADWALL To Node 1800 To Node 1800 To Node 1845urf Co	21.3 20.8 11.135 Type SIDE Type eff. Curve	0.013 0.013 0.013 0ffset 99.95 CrestHt	102.56 99.87 99.548 Qcoeff 0.61 Qcoeff	102.45 99.83 99.52 Gated NO Gated	0 0 0 CloseTime 0 EndCon	0
;Name AxFlow ;;	CB507-S 1000 100 From Node TANKS From Node TANKS From Node	2 T 1 2 T 1 2 T 1 2 T 1 2 T 1 2 T 1 2 T	0F4 100 HEADWALL 1000 10000 10000 10000	21.3 20.8 11.135 Type SIDE Eff. Type Curve TRANSVE	0.013 0.013 0.013 0.013 0.013 0.013 0.015 99.95 CrestHt RSE 102.25	102.56 99.87 99.548 Qcoeff 0.61 Qcoeff 1.67 QTab	102.45 99.83 99.52 Gated NO Gated	0 0 0 CloseTime 0 EndCon	0
;Name laxFlow ;	CB507-S 1000 100 From Node TANKS From Node TANKS From Node	C 1 + 2 T Width Rd 1 Width Rd	DF4 L00 HEADWALL TO Node L000 TO Node DadSurf Con L000	21.3 20.8 11.135 Type SIDE Type eff. Curve TRANSVE	0.013 0.013 0.013 0.ffset 99.95 CrestHt RSE 102.25 Type	102.56 99.87 99.548 Qcoeff 0.61 Qcoeff 1.67 QTab	102.45 99.83 99.52 Gated NO Gated NO	0 0 0 CloseTime 0 EndCon 0 0 Qexpon	0
;Name taxFlow taxFlow ;	CB507-S 1000 100 From Node TANKS From Node TANKS From Node ROOF-10-S	C 1 + 2 T 1 width Rc 	0F4 100 1EADWALL To Node 1000 To Node 1000 To Node 1000	21.3 20.8 11.135 Type SIDE Eff. Curve TRANSVE Offset 114	0.013 0.013 0.013 0.013 0.ffset 99.95 CrestHt RSE 102.25 Type TABULAR/H	102.56 99.87 99.548 Qcoeff 0.61 Qcoeff 1.67 QTab	102.45 99.83 99.52 Gated NO Gated NO Dle/Qcoeff	0 0 0 CloseTime 0 EndCon 0 0 Qexpon	0
;Name AxFlow AxFlow ;	CB507-S 1000 100 From Node TANKS From Node TANKS From Node ROOF-10-S ROOF-11-S	C 1 + 2 T 1 Width Rc 1 2 T 1 2 T 1 1 2 T 1 1 2 T 1 1 1 2 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DF4 L00 HEADWALL TO NODE L000 TO NODE L000 TO NODE TO NODE TO NODE	21.3 20.8 11.135 Type SIDE Type Curve TRANSVE Offset 114 114	0.013 0.013 0.013 0.013 0.ffset 99.95 CrestHt 	102.56 99.87 99.548 Qcoeff 0.61 Qcoeff 1.67 QTab EAD ROOF	102.45 99.83 99.52 Gated NO Gated NO Dle/Qcoeff 10-0 11-0	0 0 0 CloseTime 0 EndCon 0 0 Qexpon	0
; Name ; Name ; laxFlow ;	CB507-S 1000 100 From Node TANKS From Node Carge Road TANKS From Node Carge Road Carge Road Carge Road Carge Road Carge Road Carge R	2 T 2 T 2 T 2 T 2 T 1 2 T 2 T 2 T 3 T 3 T 3 T	0F4 100 1EADWALL To Node 1000 To Node 1000 To Node 1000 To Node 1000 To Node 1000 To Node 1000 To Node	21.3 20.8 11.135 Type SIDE Type Curve TRANSVE Offset 114 114 114	0.013 0.013 0.013 0.013 0.013 0.013 0.013 CrestHt 	102.56 99.87 99.548 Qcoeff 0.61 Qcoeff 1.67 QTab EAD ROOF EAD ROOF	102.45 99.83 99.52 Gated NO Gated NO Dle/Qcoeff -10-0 -11-0 -12-0	0 0 0 CloseTime 0 EndCon 0 0 Qexpon	0
; Name ; Name laxFlow ;	CB507-S 1000 100 From Node TANKS From Node TANKS From Node TANKS From Node ROOF-10-S ROOF-10-S ROOF-11-S ROOF-12-S	C 1 + 	DF4 L00 HEADWALL TO NODE L000 TO NODE L000 TO NODE TO NODE	21.3 20.8 11.135 Type SIDE Type TRANSVE Offset 114 114 114 114	0.013 0.013 0.013 0.013 0.ffset 99.95 CrestHt 	102.56 99.87 99.548 Qcoeff 0.61 Qcoeff 1.67 QTab EAD ROOF EAD ROOF EAD ROOF	102.45 99.83 99.52 Gated NO Gated NO Dle/Qcoeff -10-0 -11-0 -12-0 -1-2-0	0 0 0 CloseTime 0 EndCon 0 0 Qexpon	0
; Name ; Name iaxFlow ;	CB507-S 1000 100 From Node TANKS From Node Carge Road TANKS From Node Carge Road Carge Road Carge Road Carge Road Carge Road Carge R	C 1 + 	0F4 100 1EADWALL To Node 1000 To Node 1000 To Node 1000 To Node 1000 To Node 1000 To Node 1000 To Node	21.3 20.8 11.135 Type SIDE Type Curve TRANSVE Offset 114 114 114	0.013 0.013 0.013 0.013 0.013 0.013 0.013 CrestHt 	102.56 99.87 99.548 Qcoeff 0.61 Qcoeff 1.67 QTab EAD ROOF EAD ROOF EAD ROOF	102.45 99.83 99.52 Gated NO Gated NO Dle/Qcoeff -10-0 -11-0 -12-0	0 0 0 CloseTime 0 EndCon 0 0 Qexpon	0

;;;======= C2		,	0.14	0	NO	0				
[LOSSES] ;;Link ;;	К	entry	Kexit	Kavg	Flap	Gate See	epage			
GR 0.15	0	0	0.15	0	6.85	0.15	7			
<pre>X1 Overland(</pre>							0.0	0.0	0.0	
NC 0.013		0.013								
, ;[LE: 0][RE:	71									
JR 0.15 ;	0	Ø	0.15	0	0.85	0.12	/	0.12	/	
X1 Overland GR 0.15	0	5 0	0.15 0.15	6.85	0.0 6.85		0.0 7	0.0 0.15		
NC 0.013				6.05						
;;Transect [;										
[TRANSECTS]										
V1	R	ECT_OPEN	1		0.5	0	0			
CISTERN-O			0.075		0	0	0			
Pipe_13						0	0	1		
22					0		0	1		
,, C1			0.25			0	0	1		
;;Link			Geom1				Geom4			Culvert
[XSECTIONS]										
ROOF9-0 NO	R	00F-9-S	TAN	IKS	114	TA	ABULAR/HEAD	ROO)F-9-0	
NO			TAN						DF-8-0	
NO ROOF8-0		00F-8-5			114		ABULAR/HEAD			
NO ROOF6-7-0	R	00F-6-7-S	5 TAN	IKS	114	т	ABULAR/HEAD	ROO)F-6-7-0	
NO ROOF5-0	R	00F-5-S	TAN	IKS	114	TA	ABULAR/HEAD	ROO)F-5-0	
R00F4-0	R	00F-4-S	IAN	IKS	114	TA	ABULAR/HEAD	ROC)F-4-0	

;;Node	Constitue	nt Ti	me Series	Туре	Mfactor	Sfactor	Baseline Pattern
;; 100	FLOW	10	0yrHydrograph	FLOW	1.0	1	0
[CURVES] ;;Name ;;	Туре	X-Value	Y-Value				
BIOSWALE BASE		0	0				
BIOSWALE_BASE		0.01	0.3				
BIOSWALE_BASE		10	0.3				
R00F-10-0	Rating	0	0				
ROOF-10-0		0.025	6.624				
ROOF-10-0		0.05	13.249				
ROOF-10-0		0.075	14.905				
ROOF-10-0		0.1	16.561				
ROOF-10-0		0.125	18.217				
ROOF-10-0		0.15	19.873				
ROOF-11-0	Rating	0	0				
ROOF-11-0		0.025	0.631				
ROOF-11-0		0.05	1.262				
ROOF-11-0		0.075	1.42				
ROOF-11-0		0.1	1.577				
ROOF-11-0		0.125	1.735				
ROOF-11-0		0.15	1.893				
ROOF-12-0	Rating	0	0				
ROOF-12-0		0.025	0.631				
ROOF-12-0		0.05	1.262				
ROOF-12-0		0.075	1.42				
ROOF-12-0		0.1	1.577				
ROOF-12-0		0.125	1.735				
ROOF-12-0		0.15	1.893				
ROOF-1-2-0	Rating	0	0				
ROOF-1-2-0		0.025	2.21				
ROOF-1-2-0		0.05	4.42				
ROOF-1-2-0		0.075	5.52				

ROOF-1-2-0		0.1	6.62
ROOF-1-2-0		0.125	7.73
ROOF-1-2-0		0.15	8.83
ROOF - 3 - 0	Rating	0	0
ROOF - 3 - 0		0.025	1.26
ROOF - 3 - 0		0.05	2.52
ROOF - 3 - 0		0.075	3.79
ROOF - 3 - 0		0.1	5.05
ROOF - 3 - 0		0.125	6.31
ROOF - 3 - 0		0.15	7.57
ROOF - 4 - 0	Rating	0	0
ROOF - 4 - 0		0.025	1.58
ROOF - 4 - 0		0.05	3.15
ROOF - 4 - 0		0.075	3.15
ROOF - 4 - 0		0.1	3.15
ROOF - 4 - 0		0.125	3.15
ROOF - 4 - 0		0.15	3.15
ROOF - 5 - 0	Rating	0	0
ROOF - 5 - 0		0.025	1.26
ROOF - 5 - 0		0.05	2.52
ROOF - 5 - 0		0.075	3.79
ROOF - 5 - 0		0.1	5.05
ROOF - 5 - 0		0.125	6.31
ROOF - 5 - 0		0.15	7.57
ROOF-6-7-0	Rating	0	0
ROOF-6-7-0		0.025	2.21
ROOF-6-7-0		0.05	4.42
ROOF-6-7-0		0.075	5.52
ROOF-6-7-0		0.1	6.62
ROOF-6-7-0		0.125	7.73
ROOF-6-7-0		0.15	8.83
R00F-8-0	Rating	0	0
R00F-8-0		0.025	0.63
R00F-8-0		0.05	1.26

ROOF-8-0		0.075	1.42
ROOF-8-0		0.1	1.58
ROOF-8-0		0.125	1.73
ROOF-8-0		0.15	1.89
ROOF-9-0 ROOF-9-0 ROOF-9-0 ROOF-9-0 ROOF-9-0 ROOF-9-0 ROOF-9-0 ROOF-9-0	Rating	0 0.025 0.05 0.075 0.1 0.125 0.15	0 0.631 1.262 1.42 1.577 1.735 1.893
ROOF10	Storage	0	0
ROOF10		0.025	62.44
ROOF10		0.05	249.78
ROOF10		0.075	562
ROOF10		0.1	999.11
ROOF10		0.125	1561.11
ROOF10		0.15	2248
ROOF11	Storage	0	0
ROOF11		0.025	2.36
ROOF11		0.05	9.42
ROOF11		0.075	21.2
ROOF11		0.1	37.69
ROOF11		0.125	58.89
ROOF11		0.15	84.8
R00F12 R00F12 R00F12 R00F12 R00F12 R00F12 R00F12 R00F12	Storage	0 0.025 0.05 0.075 0.1 0.125 0.15	0 2.22 8.89 20 35.56 55.56 80
ROOF1and2	Storage	0	0
ROOF1and2		0.025	21.2

ROOF1and2		0.05	84.8
ROOF1and2		0.075	190.8
ROOF1and2		0.1	339.2
ROOF1and2		0.125	530
ROOF1and2		0.15	763.2
ROOF3 ROOF3 ROOF3 ROOF3 ROOF3 ROOF3 ROOF3 ROOF3	Storage	0 0.025 0.05 0.075 0.1 0.125 0.15	0 24.4 97.6 219.6 390.4 610 878.4
ROOF4 ROOF4 ROOF4 ROOF4 ROOF4 ROOF4 ROOF4 ROOF4	Storage	0 0.025 0.05 0.075 0.1 0.125 0.15	0 7.822222222 31.28888889 70.4 125.1555556 195.5555556 281.6
R00F5	Storage	0	0
R00F5		0.025	24.4
R00F5		0.05	97.6
R00F5		0.075	219.6
R00F5		0.1	390.4
R00F5		0.125	610
R00F5		0.15	878.4
ROOF6and7	Storage	0	0
ROOF6and7		0.025	21.22
ROOF6and7		0.05	84.89
ROOF6and7		0.075	191
ROOF6and7		0.1	339.56
ROOF6and7		0.125	530.56
ROOF6and7		0.15	764
ROOF8	Storage	0	0

ROOF8		0.025	2.16
ROOF8		0.05	8.62
ROOF8		0.075	19.4
ROOF8		0.1	34.49
ROOF8		0.125	53.89
ROOF8		0.15	77.6
ROOF9	Storage	0	0
ROOF9		0.025	1.18
ROOF9		0.05	4.71
ROOF9		0.075	10.6
ROOF9		0.1	18.84
ROOF9		0.125	29.44
ROOF9		0.15	42.4
TANK	Storage	0	560.7
TANK		0.026	560.7
TANK		0.051	560.7
TANK		0.077	560.7
TANK		0.102	559.44
TANK		0.127	559.44
TANK		0.153	558.18
TANK		0.178	556.92
TANK		0.204	555.66
TANK		0.229	554.4
TANK		0.254	551.88
TANK		0.28	549.36
TANK		0.305	546.84
TANK		0.331	543.06
TANK		0.356	539.28
TANK		0.381	534.24
TANK		0.407	527.94
TANK		0.432	521.64
TANK		0.458	514.08
TANK		0.483	505.26
TANK		0.508	495.18
TANK		0.534	483.84
TANK		0.559	478.8
TANK		0.585	464.94

TANK	0.61	449.82
TANK	0.635	434.7
TANK	0.661	419.58
TANK	0.686	403.2
TANK	0.712	383.04
TANK	0.737	360.36
TANK	0.762	347.76
TANK	0.796	335.16
TANK	0.813	320.04
TANK	0.839	304.92
TANK	0.864	289.8
TANK	0.889	272.16
TANK	0.915	258.3
TANK	0.94	244.44
TANK	0.965	233.1
TANK	0.991	221.76
TANK	1.016	211.68
TANK	1.041	201.6
TANK	1.067	192.78
TANK	1.092	185.22
TANK	1.118	180.18
TANK	1.143	176.4
TANK	1.168	172.62
TANK	1.194	170.1
TANK	1.219	167.58
TANK	1.245	165.06
TANK	1.27	163.8
TANK	1.295	162.54
TANK	1.321	162.54
TANK	1.346	162.54
TANK	1.372	161.28
TANK	1.397	161.28
TANK	1.422	161.28
TANK	1.448	161.28
TANK	1.473	161.28
TANK	1.499	161.28
TANK	1.524	161.28
TANK	1.549	161.28
TANK	1.575	161.28

TANK	1.6	161.28
TANK	1.626	161.28
TANK	1.651	161.28
TANK	1.676	161.28
TANK	1.702	161.28
TANK	1.727	161.28
TANK	1.753	161.28
TANK	1.778	161.28
TANK	1.803	161.28
TANK	1.829	161.28
TANK	1.83	0
TANK	5	0
[TIMESERIES]		
	Time	Value
;;Name Date ;;	TTME	Value
;MTO Distribution, 15min	intonvolc	
002SCS	0:00	0
002SCS	0:15	1.08
002SCS	0:30	1.08
002SCS	0:45	1.08
002SCS	1:00	1.08
002SCS	1:15	1.08
002SCS	1:30	1.08
002SCS	1:45	1.08
002SCS	2:00	1.296
002SCS	2:15	1.296
002SCS	2:30	1.296
002SCS	2:30	1.296
002SCS	3:00	1.728
002SCS	3:15	1.728
002SCS	3:30	1.728
002SCS	3:45	1.728
002SCS	4:00	2.592
		2.592
002SCS 002SCS	4:15 4:30	2.592
002SCS	4:45	3.456
002SCS	5:00	5.184
002SCS	5:15	5.184

002SCS	5:30	20.736
002SCS	5:45	57.024
002SCS	6:00	7.776
002SCS	6:15	7.776
002SCS	6:30	3.456
002SCS	6:45	3.456
002SCS	7:00	2.592
002SCS	7:15	2.592
002SCS	7:30	2.592
002SCS	7:45	2.592
002SCS	8:00	1.512
002SCS	8:15	1.512
002SCS	8:30	1.512
002SCS	8:45	1.512
002SCS	9:00	1.512
002SCS	9:15	1.512
002SCS	9:30	1.512
002SCS	9:45	1.512
002SCS	10:00	0.864
002SCS	10:15	0.864
002SCS	10:30	0.864
002SCS	10:45	0.864
002SCS	11:00	0.864
002SCS	11:15	0.864
002SCS	11:30	0.864
002SCS	11:45	0.864
002SCS	12:00	0
005SCS	0:00:00	0
005SCS	0:15:00	1.44
005SCS	0:30:00	1.44
005SCS	0:45:00	1.44
005SCS	1:00:00	1.44
005SCS	1:15:00	1.44
005SCS	1:30:00	1.44
005SCS	1:45:00	1.44
005SCS	2:00:00	1.728
005SCS	2:15:00	1.728
005SCS	2:30:00	1.728

(005SCS	2:45:00	1.728
(005SCS	3:00:00	2.304
(005SCS	3:15:00	2.304
(005SCS	3:30:00	2.304
(005SCS	3:45:00	2.304
(005SCS	4:00:00	3.456
(005SCS	4:15:00	3.456
	005SCS	4:30:00	4.608
	005SCS	4:45:00	4.608
	005SCS	5:00:00	6.912
	005SCS	5:15:00	6.912
	005SCS	5:30:00	27.648
	005SCS	5:45:00	76.032
	005SCS	6:00:00	10.368
	005SCS	6:15:00	10.368
	005SCS	6:30:00	4.608
	005SCS	6:45:00	4.608
	005SCS	7:00:00	3.456
	005SCS	7:15:00	3.456
	005SCS	7:30:00	3.456
	005SCS	7:45:00	3.456
	005SCS	8:00:00	2.016
	005SCS	8:15:00	2.016
	005SCS	8:30:00	2.016
	005SCS	8:45:00	2.016
	005SCS	9:00:00	2.016
	005SCS	9:15:00	2.016
	005SCS	9:30:00	2.016
	005SCS	9:45:00	2.016
	005SCS	10:00:00	1.152
	0055CS	10:15:00	1.152
	005SCS 005SCS	10:30:00 10:45:00	1.152 1.152
	0055CS	10:45:00	1.152
	005SCS	11:15:00	1.152
	0055CS	11:15:00	1.152
	005SCS	11:45:00	1.152
	005SCS	12:00:00	0
	00303	12.00.00	0

010SCS	9:30:00	2.35
010505		
010SCS	9:45:00	2.35 1.34
010SCS 010SCS	10:00:00 10:15:00	1.34
010SCS	10:30:00	1.34
0105CS	10:45:00	1.34
010SCS	11:00:00	1.34
010SCS	11:15:00	1.34
010SCS	11:30:00	1.34
010SCS	11:45:00	1.34
010SCS	12:00:00	0
		-
025SCS	0:00:00	0
025SCS	0:15:00	1.98
025SCS	0:30:00	1.98
025SCS	0:45:00	1.98
025SCS	1:00:00	1.98
025SCS	1:15:00	1.98
025SCS	1:30:00	1.98
025SCS	1:45:00	1.98
025SCS	2:00:00	2.376
025SCS	2:15:00	2.376
025SCS	2:30:00	2.376
025SCS	2:45:00	2.376
025SCS	3:00:00	3.168
025SCS	3:15:00	3.168
025SCS 025SCS	3:30:00 3:45:00	3.168 3.168
025SCS	4:00:00	4.752
025SCS	4:15:00	4.752
025SCS	4:30:00	6.336
025SCS	4:45:00	6.336
025SCS	5:00:00	9.504
025SCS	5:15:00	9.504
025SCS	5:30:00	38.016
025SCS	5:45:00	104.544
025SCS	6:00:00	14.256
025SCS	6:15:00	14.256
025SCS	6:30:00	6.336
025SCS	6:45:00	6.336

010SCS	0:00:00	0
0105C5	0:15:00	1.68
010SCS	0:30:00	1.68
010SCS	0:45:00	1.68
010SCS	1:00:00	1.68
010SCS	1:15:00	1.68
010SCS	1:30:00	1.68
010SCS	1:45:00	1.68
010SCS	2:00:00	2.02
010SCS	2:15:00	2.02
010SCS	2:30:00	2.02
010SCS	2:45:00	2.02
010SCS	3:00:00	2.69
010SCS	3:15:00	2.69
010SCS	3:30:00	2.69
010SCS	3:45:00	2.69
010SCS	4:00:00	4.03
010SCS	4:15:00	4.03
010SCS	4:30:00	5.38
010SCS	4:45:00	5.38
010SCS	5:00:00	8.06
010SCS	5:15:00	8.06
010SCS	5:30:00	32.26
010SCS	5:45:00	88.7
010SCS	6:00:00	12.1
010SCS	6:15:00	12.1
010SCS	6:30:00	5.38
010SCS	6:45:00	5.38
010SCS	7:00:00	4.03
010SCS	7:15:00	4.03
010SCS	7:30:00	4.03
010SCS	7:45:00	4.03
010SCS	8:00:00	2.35
010SCS	8:15:00	2.35
010SCS	8:30:00	2.35
010SCS	8:45:00	2.35
010SCS	9:00:00	2.35
010SCS	9:15:00	2.35
010SCS	9:30:00	2.35

050SCS	4:15:00	5.256
050SCS	4:30:00	7.008
050SCS	4:45:00	7.008
050SCS	5:00:00	10.512
050SCS	5:15:00	10.512
050SCS	5:30:00	42.048
050SCS	5:45:00	115.632
050SCS	6:00:00	15.768
050SCS	6:15:00	15.768
050SCS	6:30:00	7.008
050SCS	6:45:00	7.008
050SCS	7:00:00	5.256
050SCS	7:15:00	5.256
050SCS	7:30:00	5.256
050SCS	7:45:00	5.256
050SCS	8:00:00	3.066
050SCS	8:15:00	3.066
050SCS	8:30:00	3.066
050SCS	8:45:00	3.066
050SCS	9:00:00	3.066
050SCS	9:15:00	3.066
050SCS	9:30:00	3.066
050SCS	9:45:00	3.066
050SCS	10:00:00	1.752
050SCS	10:15:00	1.752
050SCS	10:30:00	1.752
050SCS	10:45:00	1.752
050SCS	11:00:00	1.752
050SCS	11:15:00	1.752
050SCS	11:30:00	1.752
050SCS	11:45:00	1.752
050SCS	12:00:00	0
;MTO Distribution, 15min	intonvolc	
100SCS	0:00	0
100SCS	0:15	0 2.4
100SCS	0:30	2.4
100SCS	0:45	2.4
100SCS	1:00	2.4
100303	1.00	2.4

025SCS	7:00:00	4.752
025SCS	7:15:00	4.752
025SCS	7:30:00	4.752
025SCS	7:45:00	4.752
025SCS	8:00:00	2.772
025SCS	8:15:00	2.772
025SCS	8:30:00	2.772
025SCS	8:45:00	2.772
025SCS	9:00:00	2.772
025SCS	9:15:00	2.772
025SCS	9:30:00	2.772
025SCS	9:45:00	2.772
025SCS	10:00:00	1.584
025SCS	10:15:00	1.584
025SCS	10:30:00	1.584
025SCS	10:45:00	1.584
025SCS	11:00:00	1.584
025SCS	11:15:00	1.584
025SCS	11:30:00	1.584
025SCS	11:45:00	1.584
025SCS	12:00:00	0
050SCS	0:00:00	0
050SCS	0:15:00	2.19
050SCS	0:30:00	2.19
050SCS	0:45:00	2.19
050SCS	1:00:00	2.19
050SCS	1:15:00	2.19
050SCS	1:30:00	2.19
050SCS	1:45:00	2.19
050SCS	2:00:00	2.628
050SCS	2:15:00	2.628
050SCS	2:30:00	2.628
050SCS	2:45:00	2.628
050SCS	3:00:00	3.504
050SCS	3:15:00	3.504
050SCS	3:30:00	3.504
050SCS	3:45:00	3.504
050SCS	4:00:00	5.256

100SCS	11:00	1.92
100SCS	11:15	1.92
100SCS	11:30	1.92
100SCS	11:45	1.92
100SCS	12:00	0
100yrHydrograph	0:05	0
100yrHydrograph	0:10	0
100yrHydrograph	0:15	0
100yrHydrograph	0:20	0
100yrHydrograph	0:25	0
100yrHydrograph	0:30	0
100yrHydrograph	0:35	0
100yrHydrograph	0:40	0
100yrHydrograph	0:45	0
100yrHydrograph	0:50	0
100yrHydrograph	0:55	0
100yrHydrograph	1:00	0
100yrHydrograph	1:05	0
100yrHydrograph	1:10	0
100yrHydrograph	1:15	0
100yrHydrograph	1:20	0
100yrHydrograph	1:25	0
100yrHydrograph	1:30	0
100yrHydrograph	1:35	0
100yrHydrograph	1:40	0
100yrHydrograph	1:45	0
100yrHydrograph	1:50	0
100yrHydrograph	1:55	0
100yrHydrograph	2:00	0
100yrHydrograph	2:05	0.03368589
100yrHydrograph	2:10	0.400265
100yrHydrograph	2:15	0.6780789
100yrHydrograph	2:20	0.8096212
100yrHydrograph	2:25	0.9188437
100yrHydrograph	2:30	1.041047
100yrHydrograph	2:35	1.160273
100yrHydrograph	2:40	1.279933
100yrHydrograph	2:45	1.400491

100SCS	1:15	2.4
100SCS	1:30	2.4
100SCS	1:45	2.4
100SCS	2:00	2.4
100SCS	2:15	2.88
100SCS	2:30	2.88
100SCS	2:45	2.88
100SCS	3:00	2.88
100SCS	3:15	3.84
100SCS	3:30	3.84
100SCS	3:45	3.84
100SCS	4:00	3.84
100SCS	4:15	5.76
100SCS	4:30	5.76
100SCS	4:45	7.68
100SCS	5:00	7.68
100SCS	5:15	11.52
100SCS	5:30	11.52
100SCS	5:45	46.08
100SCS	6:00	126.72
100SCS	6:15	17.28
100SCS	6:30	17.28
100SCS	6:45	7.68
100SCS	7:00	7.68
100SCS	7:15	5.76
100SCS	7:30	5.76
100SCS	7:45	5.76
100SCS	8:00	5.76
100SCS	8:15	3.36
100SCS	8:30	3.36
100SCS	8:45	3.36
100SCS	9:00	3.36
100SCS	9:15	3.36
100SCS	9:30 9:45	3.36
100SCS 100SCS		3.36 3.36
100SCS 100SCS	10:00 10:15	3.36 1.92
100SCS	10:15	1.92
100SCS 100SCS	10:30	1.92
100363	10.45	1.72

100yrHydrograph	2:50	1.521803
100yrHydrograph	2:55	1.6431
100yrHydrograph	3:00	1.770213
100yrHydrograph	3:05	1.89238
100yrHydrograph	3:10	2.011746
100yrHydrograph	3:15	2.129715
100yrHydrograph	3:20	2.24681
100yrHydrograph	3:25	2.372673
100yrHydrograph	3:30	2.52147
100yrHydrograph	3:35	2.690327
100yrHydrograph	3:40	2.870473
100yrHydrograph	3:45	3.049115
100yrHydrograph	3:50	3.225464
100yrHydrograph	3:55	3.398892
100yrHydrograph	4:00	3.569112
100yrHydrograph	4:05	3.736014
100yrHydrograph	4:10	3.899172
100yrHydrograph	4:15	4.062318
100yrHydrograph	4:20	4.221156
100yrHydrograph	4:25	4.414243
100yrHydrograph	4:30	4.674353
100yrHydrograph	4:35	4.971942
100yrHydrograph	4:40	5.279111
100yrHydrograph	4:45	6.154143
100yrHydrograph	4:50	6.507444
100yrHydrograph	4:55	6.698976
100yrHydrograph	5:00	6.914319
100yrHydrograph	5:05	7.139013
100yrHydrograph	5:10	7.358335
100yrHydrograph	5:15	7.568453
100yrHydrograph	5:20	7.776987
100yrHydrograph	5:25	8.043731
100yrHydrograph	5:30	8.375088
100yrHydrograph	5:35	8.720076
100yrHydrograph	5:40	9.065854
100yrHydrograph	5:45	9.411835
100yrHydrograph	5:50	9.817601
100yrHydrograph	5:55	10.7888
100yrHydrograph	6:00	12.18063

100yrHydrograph	6:05	13.55768
100yrHydrograph	6:10	15.79406
100yrHydrograph	6:15	18.70004
100yrHydrograph	6:20	42.87194
100yrHydrograph	6:25	89.41938
100yrHydrograph	6:30	110.0801
100yrHydrograph	6:35	120.6727
100yrHydrograph	6:40	126.8955
100yrHydrograph	6:45	131.1839
100yrHydrograph	6:50	135.1019
100yrHydrograph	6:55	136.1944
100yrHydrograph	7:00	134.3278
100yrHydrograph	7:05	133.2315
100yrHydrograph	7:10	131.9975
100yrHydrograph	7:15	130.5499
100yrHydrograph	7:20	128.9494
100yrHydrograph	7:25	127.0917
100yrHydrograph	7:30	124.968
100yrHydrograph	7:35	122.8077
100yrHydrograph	7:40	120.8129
100yrHydrograph	7:45	118.6745
100yrHydrograph	7:50	116.2747
100yrHydrograph	7:55	113.7336
100yrHydrograph	8:00	111.03
100yrHydrograph	8:05	107.4665
100yrHydrograph	8:10	103.368
100yrHydrograph	8:15	99.26289
100yrHydrograph	8:20	95.15655
100yrHydrograph	8:25	90.6512
100yrHydrograph	8:30	85.96979
100yrHydrograph	8:35	81.40397
100yrHydrograph	8:40	77.20897
100yrHydrograph	8:45	73.056
100yrHydrograph	8:50	68.54881
100yrHydrograph	8:55	63.82666
100yrHydrograph	9:00	59.70413
100yrHydrograph	9:05	56.16789
100yrHydrograph	9:10	53.06845
100yrHydrograph	9:15	50.40911

100yrHydrograph	9:20	48.21593
100yrHydrograph	9:25	46.66951
100yrHydrograph	9:30	45.38166
100yrHydrograph	9:35	44.14623
100yrHydrograph	9:40	42.96396
100yrHydrograph	9:45	41.84916
100yrHydrograph	9:50	40.78232
100yrHydrograph	9:55	39.74205
100yrHydrograph	10:00	38.7661
100yrHydrograph	10:05	37.83093
100yrHydrograph	10:10	36.92952
100yrHydrograph	10:15	36.06311
100yrHydrograph	10:20	35.16625
100yrHydrograph	10:25	33.88804
100yrHydrograph	10:30	32.4535
100yrHydrograph	10:35	31.05881
100yrHydrograph	10:40	29.78304
100yrHydrograph	10:45	28.63077
100yrHydrograph	10:50	27.58944
100yrHydrograph	10:55	26.653
100yrHydrograph	11:00	25.66802
100yrHydrograph	11:05	24.91771
100yrHydrograph	11:10	24.2445
100yrHydrograph	11:15	23.63535
100yrHydrograph	11:20	23.08379
100yrHydrograph	11:25	22.58303
100yrHydrograph	11:30	22.12786
100yrHydrograph	11:35	21.71402
100yrHydrograph	11:40	21.33782
100yrHydrograph	11:45	20.99621
100yrHydrograph	11:50	20.68643
100yrHydrograph	11:55	20.40586
100yrHydrograph	12:00	20.1529
100yrHydrograph	12:05	19.91762
100yrHydrograph	12:10	19.63007
100yrHydrograph	12:15	19.3239
100yrHydrograph	12:20	19.12781
100yrHydrograph	12:25	18.97093
100yrHydrograph	12:30	18.80998

100yrHydrograph	12:35	18.64461
100yrHydrograph	12:40	18.47622
100yrHydrograph	12:45	18.30533
100yrHydrograph	12:50	18.13219
100yrHydrograph	12:55	17.95722
100yrHydrograph	13:00	17.74718
100yrHydrograph	13:05	17.56915
100yrHydrograph	13:10	17.39227
100yrHydrograph	13:15	17.21504
100yrHydrograph	13:20	17.03772
100yrHydrograph	13:25	16.86038
100yrHydrograph	13:30	16.68295
100yrHydrograph	13:35	16.50546
100yrHydrograph	13:40	16.32839
100yrHydrograph	13:45	16.15076
100yrHydrograph	13:50	15.97309
100yrHydrograph	13:55	15.79539
100yrHydrograph	14:00	15.61763
100yrHydrograph	14:05	15.44018
100yrHydrograph	14:10	15.26246
100yrHydrograph	14:15	15.08446
100yrHydrograph	14:20	14.90619
100yrHydrograph	14:25	14.72721
100yrHydrograph	14:30	14.54815
100yrHydrograph	14:35	14.36913
100yrHydrograph	14:40	14.19005
100yrHydrograph	14:45	14.011
100yrHydrograph	14:50	13.83076
100yrHydrograph	14:55	13.65002
100yrHydrograph	15:00	13.46919
100yrHydrograph	15:05	13.27224
100yrHydrograph	15:10	13.09266
100yrHydrograph	15:15	12.91431
100yrHydrograph	15:20	12.73593
100yrHydrograph	15:25	12.55792
100yrHydrograph	15:30	12.37996
100yrHydrograph	15:35	12.2021
100yrHydrograph	15:40	12.02427
100yrHydrograph	15:45	11.84651

100yrHydrograph	19:05	3.932506
100yrHydrograph	19:10	3.778864
100yrHydrograph	19:15	3.629502
100yrHydrograph	19:20	3.486742
100yrHydrograph	19:25	3.350802
100yrHydrograph	19:30	3.221082
100yrHydrograph	19:35	3.097033
100yrHydrograph	19:40	2.978455
100yrHydrograph	19:45	2.864869
100yrHydrograph	19:50	2.756282
100yrHydrograph	19:55	2.654007
100yrHydrograph	20:00	2.556878
100yrHydrograph	20:05	2.461823
100yrHydrograph	20:10	2.370567
100yrHydrograph	20:15	2.283155
100yrHydrograph	20:20	2.199545
100yrHydrograph	20:25	2.119371
100yrHydrograph	20:30	2.0424
100yrHydrograph	20:35	1.968455
100yrHydrograph	20:40	1.897445
100yrHydrograph	20:45	1.82913
100yrHydrograph	20:50	1.763424
100yrHydrograph	20:55	1.701357
100yrHydrograph	21:00	1.642923
100yrHydrograph	21:05	1.586518
100yrHydrograph	21:10	1.530593
100yrHydrograph	21:15	1.476459
100yrHydrograph	21:20	1.424285
100yrHydrograph	21:25	1.373979
100yrHydrograph	21:30	1.325569
100yrHydrograph	21:35	1.278883
100yrHydrograph	21:40	1.233917
100yrHydrograph	21:45	1.190506
100yrHydrograph	21:50	1.148588
100yrHydrograph	21:55	1.108119
100yrHydrograph	22:00	1.069048
100yrHydrograph	22:05	1.031321
100yrHydrograph	22:10	0.9948828
100yrHydrograph	22:15	0.9598325

100yrHydrograph	15:50	11.66898
100yrHydrograph	15:55	11.49166
100yrHydrograph	16:00	11.3145
100yrHydrograph	16:05	11.13787
100yrHydrograph	16:10	10.96224
100yrHydrograph	16:15	10.78573
100yrHydrograph	16:20	10.60909
100yrHydrograph	16:25	10.43269
100yrHydrograph	16:30	10.25677
100yrHydrograph	16:35	10.08101
100yrHydrograph	16:40	9.904943
100yrHydrograph	16:45	9.728643
100yrHydrograph	16:50	9.552533
100yrHydrograph	16:55	9.376752
100yrHydrograph	17:00	9.201365
100yrHydrograph	17:05	9.026419
100yrHydrograph	17:10	8.854236
100yrHydrograph	17:15	8.68074
100yrHydrograph	17:20	8.507633
100yrHydrograph	17:25	8.335072
100yrHydrograph	17:30	8.163301
100yrHydrograph	17:35	7.992058
100yrHydrograph	17:40	7.821409
100yrHydrograph	17:45	7.651455
100yrHydrograph	17:50	7.482112
100yrHydrograph	17:55	7.313401
100yrHydrograph	18:00	7.145336
100yrHydrograph	18:05	6.979621
100yrHydrograph	18:10	6.813243
100yrHydrograph	18:15	6.647324
100yrHydrograph	18:20	6.482216
100yrHydrograph	18:25	5.824821
100yrHydrograph	18:30	5.295127
100yrHydrograph	18:35	5.060137
100yrHydrograph	18:40	4.84829
100yrHydrograph	18:45	4.645963
100yrHydrograph	18:50	4.453671
100yrHydrograph	18:55	4.270811
100yrHydrograph	19:00	4.09688

100yrHydrograph	22:20	0.9265975
100yrHydrograph	22:25	0.895036
100yrHydrograph	22:30	0.8651206
100yrHydrograph	22:35	0.8349182
100yrHydrograph	22:40	0.8052853
100yrHydrograph	22:45	0.7765169
100yrHydrograph	22:50	0.7486013
100yrHydrograph	22:55	0.721274
100yrHydrograph	23:00	0.6946917
100yrHydrograph	23:05	0.6689637
100yrHydrograph	23:10	0.6440647
100yrHydrograph	23:15	0.619979
100yrHydrograph	23:20	0.5967006
100yrHydrograph	23:25	0.5741587
100yrHydrograph	23:30	0.5523183
100yrHydrograph	23:35	0.5311568
100yrHydrograph	23:40	0.5106529
100yrHydrograph	23:45	0.4907854
100yrHydrograph	23:50	0.4715335
100yrHydrograph	23:55	0.4528767
120SCS	0:00	0
120SCS	0:15	2.88
120SCS	0:30	2.88
120SCS	0:45	2.88
120SCS	1:00	2.88
120SCS	1:15	2.88
120SCS	1:30	2.88
120SCS	1:45	2.88
120SCS	2:00	2.88
120SCS	2:15	3.456
120SCS	2:30	3.456
120SCS	2:45	3.456
120SCS	3:00	3.456
120SCS	3:15	4.608
120SCS	3:30	4.608
120SCS	3:45	4.608
120SCS	4:00	4.608
120SCS	4:15	6.912

120SCS	4:30	6.912
120SCS	4:45	9.216
120SCS	5:00	9.216
120SCS	5:15	13.824
120SCS	5:30	13.824
120SCS	5:45	55.296
120SCS	6:00	152.064
120SCS	6:15	20.736
120SCS	6:30	20.736
120SCS	6:45	9.216
120SCS	7:00	9.216
120SCS	7:15	6.912
120SCS	7:30	6.912
120SCS	7:45	6.912
120SCS	8:00	6.912
120SCS	8:15	4.032
120SCS	8:30	4.032
120SCS	8:45	4.032
120SCS	9:00	4.032
120SCS	9:15	4.032
120SCS	9:30	4.032
120SCS	9:45	4.032
120SCS	10:00	4.032
120SCS	10:15	2.304
120SCS	10:30	2.304
120SCS	10:45	2.304
120SCS	11:00	2.304
120SCS	11:15	2.304
120SCS	11:30	2.304
120SCS	11:45	2.304
120SCS	12:00	0
[REPORT]		
;;Reporting Options		
INPUT YES		
CONTROLS NO		
SUBCATCHMENTS ALL		
NODES ALL		
LINKS ALL		

[TAGS] Node :	1000	MN			
[MAP] DIMENSIONS UNITS		350504.706880014 Meters	5015809.99134237	350738.979598863	5016090.18291
[COORDINATES	5]				
;;Node		X-Coord	Y-Coord		
;; 100		350580.8	5016032		
HEADWALL		350565.848	5016032		
OF1		350702.274	5015973.798		
OF2		350547.792	5015987.469		
0F3		350691.907	5015873.685		
0F4		350536.617	5015877.154		
1000		350599.591	5016022.489		
CB507-S		350565.233	5015895.797		
ROOF-10-S		350597.664	5015958.821		
R00F-11-S		350644.317	5015987.934		
R00F-12-S		350612.609	5016011.36		
R00F-1-2-S		350676.499	5015951.256		
ROOF-3-S		350694.246	5015914.342		
ROOF-4-S		350662.511	5015888.115		
R00F-5-S		350638.638	5015863.467		
R00F-6-7-S		350600.067	5015880.741		
R00F-8-S		350571.435	5015920.731		
R00F-9-S		350589.892	5015966.401		
TANKS		350611.749	5016033.953		
[VERTICES]					
;;Link		X-Coord	Y-Coord		
;; W1		350597.646	5016038.74		
[POLYGONS]					
;;Subcatchme			Y-Coord		
,,	_				
[SYMBOLS]		Y Coord	V. Coord		
;;Gage		X-Coord	Y-Coord		

SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management July 14, 2022

C.3 SAMPLE PCSWMM MODEL OUTPUT (12HR 100YR SCS)

WARNING 03: negative	e offset ignore	ed for Lin	nk C2				
****			~=				
************** Element Count							
Element Count *****							
Number of rain gages	5 1						
Number of subcatchme							
Number of nodes							
Number of links							
Number of pollutants							
Number of land uses							

Raingage Summary *****							
				Data	Recordi	ng	
Name	Data Source			Туре	Interva	1	
 RG1	100SCS			INTENSITY	15 min	•	
******	k						
Subcatchment Summary ******							
Name	Area	Width	%Imperv	%Slope	Rain Gage	e	Outlet
				- F -	0		
 EXT-1	0.07	95.00	38.57	1.5000	RG1		CB507-S
R00F_10	0.28	136.00	100.00	1.5000			ROOF-10-S
ROOF 11	0.01	21.00	100.00	1.5000			ROOF-11-S
R00F_12	0.01	15.60	100.00	1.5000			ROOF-12-S
ROOF_3	0.11	130.00	100.00	1.5000			ROOF-3-S
ROOF_4	0.04	46.00	100.00	1.5000			ROOF-4-S
ROOF_5	0.11	130.00	100.00	1.5000			ROOF-5-S
R00F_8	0.01	21.00	100.00	1.5000	RG1		ROOF-8-S
-	0.01 0.01	21.00 15.00	100.00 100.00	1.5000 1.5000			ROOF-8-S ROOF-9-S
R00F_9					RG1		
ROOF_9 ROOF1_2	0.01	15.00	100.00	1.5000	RG1 RG1		ROOF-9-S
ROOF_9 ROOF1_2 ROOF6_7	0.01 0.10	15.00 95.00	100.00 100.00	1.5000 1.5000	RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S
ROOF_9 ROOF1_2 ROOF6_7 UGPK_1	0.01 0.10 0.10	15.00 95.00 95.00	100.00 100.00 100.00	1.5000 1.5000 1.5000	RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S
ROOF_9 ROOF1_2 ROOF6_7 JGPK_1 JGPK_2	0.01 0.10 0.10 0.14 0.15	15.00 95.00 95.00 115.00 122.00	100.00 100.00 100.00 77.14 80.00	1.5000 1.5000 1.5000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS
ROOF_9 ROOF1_2 ROOF6_7 JGPK_1 JGPK_2 JGPK_3	0.01 0.10 0.10 0.14	15.00 95.00 95.00 115.00	100.00 100.00 100.00 77.14	1.5000 1.5000 1.5000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS
ROOF_9 ROOF1_2 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_4	0.01 0.10 0.10 0.14 0.15 0.06	15.00 95.00 95.00 115.00 122.00 60.00	100.00 100.00 100.00 77.14 80.00 58.57	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS
ROOF_9 ROOF1_2 ROOF6_7 JGPK_1 JGPK_2 JGPK_2 JGPK_3 JGPK_4 JGPK_5	0.01 0.10 0.14 0.15 0.06 0.12 0.11	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00	100.00 100.00 77.14 80.00 58.57 70.00 70.00	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS
ROOF_9 ROOF1_2 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_3 JGPK_4 JGPK_5 JGPK_6	0.01 0.10 0.10 0.15 0.06 0.12 0.11 0.02	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 60.00	100.00 100.00 77.14 80.00 58.57 70.00 70.00 100.00	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 15.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS
ROOF_9 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_4 JGPK_5 JGPK_6 JGPK_7	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 60.00 78.00	100.00 100.00 77.14 80.00 58.57 70.00 70.00 100.00 78.57	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 15.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS
ROOF_9 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_4 JGPK_5 JGPK_6 JGPK_7 JGPK_8	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 60.00 78.00 42.00	100.00 100.00 77.14 80.00 58.57 70.00 70.00 100.00 78.57 75.71	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 15.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS
ROOF_9 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_4 JGPK_5 JGPK_5 JGPK_6 JGPK_7 JGPK_8 JGPK_9	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03	15.00 95.00 95.00 115.00 122.00 60.00 95.00 60.00 85.00 60.00 78.00 42.00	100.00 100.00 77.14 80.00 58.57 70.00 70.00 100.00 78.57 75.71 100.00	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 15.0000 2.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS
ROOF_9 ROOF1_2 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_4 JGPK_5 JGPK_6 JGPK_7 JGPK_8 JGPK_9 JJCFK_9 JJNC-1	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03 0.08	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 60.00 78.00 42.00 78.00	100.00 100.00 77.14 80.00 58.57 70.00 70.00 100.00 78.57 75.71 100.00 41.43	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1
ROOF_9 ROOF_12 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_4 JGPK_5 JGPK_5 JGPK_5 JGPK_7 JGPK_7 JGPK_8 JGPK_9 JJNC-1 JNC-1	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.03 0.03 0.08 0.52	$\begin{array}{c} 15.00\\ 95.00\\ 95.00\\ 115.00\\ 122.00\\ 60.00\\ 95.00\\ 85.00\\ 60.00\\ 78.00\\ 42.00\\ 42.00\\ 78.00\\ 25.00\end{array}$	100.00 100.00 77.14 80.00 58.57 70.00 70.00 100.00 78.57 75.71 100.00 41.43 8.57	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2
ROOF_9 ROOF_12 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_4 JGPK_5 JGPK_5 JGPK_6 JGPK_7 JGPK_6 JGPK_7 JGPK_8 JGPK_9 JJNC-1 JNC-1 JNC-2 JNC-3	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03 0.08	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 60.00 78.00 42.00 78.00	100.00 100.00 77.14 80.00 58.57 70.00 70.00 100.00 78.57 75.71 100.00 41.43	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1
ROOF_8 ROOF_9 ROOF1_2 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-1 UNC-2 UNC-3 UNC-4	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 60.00 78.00 42.00 42.00 78.00 25.00 122.00	100.00 100.00 77.14 80.00 58.57 70.00 100.00 78.57 75.71 100.00 41.43 8.57 61.43	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-1 UNC-2 UNC-3 UNC-4	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 60.00 78.00 42.00 42.00 78.00 25.00 122.00	100.00 100.00 77.14 80.00 58.57 70.00 100.00 78.57 75.71 100.00 41.43 8.57 61.43	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-2 UNC-3 UNC-4	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 60.00 78.00 42.00 42.00 78.00 25.00 122.00	100.00 100.00 77.14 80.00 58.57 70.00 100.00 78.57 75.71 100.00 41.43 8.57 61.43	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_5 UGPK_5 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-1 UNC-1 UNC-3 UNC-4	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07	$\begin{array}{c} 15.00\\ 95.00\\ 95.00\\ 115.00\\ 122.00\\ 60.00\\ 95.00\\ 85.00\\ 60.00\\ 78.00\\ 42.00\\ 42.00\\ 78.00\\ 25.00\\ 122.00\\ 90.00\\ \end{array}$	100.00 100.00 77.14 80.00 58.57 70.00 70.00 100.00 78.57 75.71 100.00 41.43 8.57 61.43 37.14	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	External	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_5 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-2 UNC-3 UNC-4	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07	15.00 95.00 95.00 122.00 60.00 95.00 85.00 60.00 78.00 42.00 42.00 78.00 25.00 90.00	100.00 100.00 77.14 80.00 58.57 70.00 100.00 78.57 75.71 100.00 41.43 8.57 61.43	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	External Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_4 JGPK_5 JGPK_5 JGPK_6 JGPK_7 JGPK_8 JGPK_7 JGPK_8 JGPK_9 JJNC-1 JNC-1 JNC-2 JNC-3 JNC-4	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.02 0.03 0.08 0.52 0.07 0.05	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 42.00 42.00 42.00 42.00 122.00 90.00	100.00 100.00 77.14 80.00 58.57 70.00 100.00 78.57 75.71 100.00 41.43 8.57 61.43 37.14	1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_4 JGPK_5 JGPK_6 JGPK_7 JGPK_6 JGPK_7 JGPK_8 JGPK_9 JNC-1 JNC-2 JNC-3 JNC-3 JNC-3 JNC-4 ************************************	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07 0.05	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 42.00 42.00 42.00 78.00 42.00 78.00 122.00 90.00	100.00 100.00 77.14 80.00 58.57 70.00 100.00 78.57 75.71 100.00 41.43 8.57 61.43 37.14	1.5000 1.5000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_4 JGPK_5 JGPK_6 JGPK_7 JGPK_8 JGPK_9 JGPK_9 JNC-1 JNC-2 JNC-2 JNC-3 JNC-4 ************************************	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07 0.05	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 42.00 42.00 42.00 78.00 42.00 78.00 122.00 90.00	100.00 100.00 77.14 80.00 58.57 70.00 70.00 100.00 41.43 8.57 61.43 37.14	1.5000 1.5000 1.5000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_5 JGPK_6 JGPK_6 JGPK_7 JGPK_7 JGPK_8 JGPK_9 JJNC-1 JNC-2 JNC-1 JNC-2 JNC-3 JNC-4 ************************************	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07 0.05 Type JUNCTION OUTFALL OUTFALL	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 42.00 42.00 42.00 78.00 42.00 78.00 122.00 90.00	100.00 100.00 77.14 80.00 58.57 70.00 70.00 70.00 78.57 75.71 100.00 41.43 8.57 61.43 37.14	1.5000 1.5000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_5 JGPK_5 JGPK_6 JGPK_7 JGPK_8 JGPK_7 JGPK_8 JGPK_9 JJNC-1 JNC-1 JNC-2 JNC-3 JNC-3 JNC-4 ************************************	0.01 0.10 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07 0.05	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 42.00 42.00 42.00 78.00 42.00 78.00 122.00 90.00	100.00 100.00 100.00 77.14 80.00 58.57 70.00 100.00 78.57 75.71 100.00 41.43 8.57 61.43 37.14	1.5000 1.5000 1.5000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_6 JGPK_5 JGPK_6 JGPK_7 JGPK_6 JGPK_7 JGPK_8 JJC-1 JNC-2 JNC-3 JNC-3 JNC-3 JNC-3 JNC-4 ************************************	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07 0.05 Type JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 42.00 42.00 42.00 122.00 90.00	100.00 100.00 77.14 80.00 58.57 70.00 100.00 78.57 75.71 100.00 41.43 37.14 557 61.43 37.14	1.5000 1.5000 1.5000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_4 JGPK_5 JGPK_6 JGPK_7 JGPK_6 JGPK_7 JGPK_8 JGPK_9 JNC-1 JNC-2 JNC-3 JNC-2 JNC-3 JNC-3 JNC-4 ************************************	0.01 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07 0.05 Type JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 42.00 42.00 78.00 42.00 78.00 122.00 90.00	100.00 100.00 77.14 80.00 58.57 70.00 100.00 100.00 41.43 8.57 61.43 37.14 hvert Elev.	1.5000 1.5000 2.00000 2.00000 2.00000 2.00000000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 JGPK_1 JGPK_2 JGPK_3 JGPK_4 JGPK_5 JGPK_6 JGPK_7 JGPK_8 JGPK_9 JNC-1 JNC-2 JNC-2 JNC-2 JNC-3 JNC-4 ************************************	0.01 0.10 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.01 0.03 0.08 0.52 0.07 0.05 Type JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE	15.00 95.00 95.00 122.00 60.00 95.00 85.00 42.00 42.00 78.00 122.00 90.00	100.00 100.00 100.00 77.14 80.00 58.57 70.00 70.00 100.00 41.43 8.57 61.43 37.14 hvert Elev. 	1.5000 1.5000 2.00000 2.00000 2.00000 2.00000000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 JGPK_1 JGPK_1 JGPK_2 JGPK_5 JGPK_5 JGPK_6 JGPK_7 JGPK_8 JGPK_9 JNC-1 JNC-2 JNC-1 JNC-2 JNC-3 JNC-4 ************************************	0.01 0.10 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07 0.05	15.00 95.00 95.00 115.00 122.00 60.00 95.00 42.00 42.00 42.00 122.00 90.00	100.00 100.00 100.00 77.14 80.00 58.57 70.00 70.00 100.00 78.57 75.71 100.00 41.43 8.57 61.43 37.14 0.01 98.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.5000 1.5000 1.5000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 JGPK_1 JGPK_1 JGPK_2 JGPK_6 JGPK_6 JGPK_6 JGPK_7 JGPK_8 JGPK_7 JGPK_8 JGPK_9 JJNC-1 JNC-1 JNC-2 JNC-3 JNC-1 JNC-2 JNC-3 JNC-4 ************************************	0.01 0.10 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07 0.05	15.00 95.00 95.00 115.00 122.00 60.00 95.00 42.00 42.00 42.00 42.00 122.00 90.00	100.00 100.00 77.14 80.00 58.57 70.00 100.00 78.57 75.71 100.00 41.43 37.14 0.00 61.43 37.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	1.5000 1.5000 1.5000 2.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_5 UGPK_6 UGPK_7 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-4 ************************************	0.01 0.10 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.02 0.11 0.03 0.08 0.52 0.07 0.05	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 42.00 42.00 42.00 42.00 122.00 90.00	100.00 100.00 77.14 80.00 58.57 70.00 100.00 100.00 41.43 8.57 61.43 37.14 Nevert Elev. 	1.5000 1.5000 1.5000 2.0000 0.0000 0.0	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_6 UGPK_7 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-2 UNC-3 UNC-2 UNC-3 UNC-4 ************************************	0.01 0.10 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.06 0.03 0.08 0.52 0.07 0.05	15.00 95.00 95.00 115.00 122.00 60.00 95.00 85.00 42.00 42.00 42.00 78.00 42.00 78.00 122.00 90.00	100.00 100.00 100.00 77.14 80.00 58.57 70.00 100.00 100.00 41.43 8.57 61.43 37.14 59.40 99.40 98.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.5000 1.5000 2.0000 0.15 0.15 0.15	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3
ROOF_9 ROOF_12 ROOF6_7 UGPK_1 UGPK_2 UGPK_3 UGPK_5 UGPK_6 UGPK_7 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-4 ************************************	0.01 0.10 0.10 0.14 0.15 0.06 0.12 0.11 0.02 0.11 0.02 0.11 0.03 0.08 0.52 0.07 0.05	15.00 95.00 95.00 115.00 122.00 60.00 78.00 42.00 78.00 42.00 78.00 122.00 90.00	100.00 100.00 77.14 80.00 58.57 70.00 100.00 100.00 41.43 8.57 61.43 37.14 Nevert Elev. 	1.5000 1.5000 1.5000 2.0000 0.0000 0.0	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1	Inflow	ROOF-9-S ROOF-1-2-S ROOF-6-7-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3

ROOF-5-S ROOF-6-7-S ROOF-8-S	STORAGE STORAGE STORAGE	114.00 114.00 114.00	0.15 0.15 0.15	0.0 0.0 0.0
R00F-9-S	STORAGE	114.00	0.15	0.0
TANKS	STORAGE	99.70	3.61	0.0

	-	
Link Summary *****		

Name	From Node	To Node	Туре	Length	%Slope R	oughness
C1	CB507-S	0F4	CONDUIT	21.3	0.5164	0.0130
C2	1000	100	CONDUIT	20.8	0.4327	0.0130
Pipe_13	100	HEADWALL	CONDUIT	11.1	0.2515	0.0130
CISTERN-0	TANKS	1000	ORIFICE			
W1	TANKS	1000	WEIR			
R00F10-0	ROOF-10-S	TANKS	OUTLET			
R00F11-0	ROOF-11-S	TANKS	OUTLET			
R00F12-0	ROOF-12-S	TANKS	OUTLET			
R00F1-2-0	ROOF-1-2-S	TANKS	OUTLET			
ROOF3-0	ROOF-3-S	TANKS	OUTLET			
ROOF4-0	ROOF-4-S	TANKS	OUTLET			
ROOF5-0	ROOF-5-S	TANKS	OUTLET			
R00F6-7-0	R00F-6-7-S	TANKS	OUTLET			
ROOF8-0	ROOF-8-S	TANKS	OUTLET			
ROOF9-0	ROOF-9-S	TANKS	OUTLET			

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	CIRCULAR	0.25	0.05	0.06	0.25	1	42.74
C2	CIRCULAR	0.45	0.16	0.11	0.45	1	187.55
Pipe_13	CIRCULAR	0.90	0.64	0.23	0.90	1	907.85

Transect Area:	Overland				
Area.	0.0196	0.0392	0.0588	0.0784	0.0980
	0.1177	0.1374	0.1571	0.1768	0.1965
	0.2162	0.2360	0.2558	0.2756	0.2954
	0.3152	0.3351	0.3550	0.3748	0.3947
	0.4147	0.4346	0.4546	0.4745	0.4945
	0.5145	0.5346	0.5546	0.5747	0.5947
	0.6148	0.6350	0.6551	0.6752	0.6954
	0.7156	0.7358	0.7560	0.7762	0.7965
	0.8168	0.8371	0.8574	0.8777	0.8980
	0.9184	0.9388	0.9592	0.9796	1.0000
Hrad:					
	0.0208	0.0415	0.0622	0.0829	0.1036
	0.1242	0.1448	0.1653	0.1858	0.2063
	0.2268	0.2472	0.2676	0.2879	0.3083
	0.3285	0.3488	0.3690	0.3892	0.4094
	0.4295	0.4496	0.4697	0.4897	0.5097
	0.5297	0.5496	0.5695	0.5894	0.6093
	0.6291	0.6489	0.6686	0.6884	0.7081
	0.7277	0.7474	0.7670	0.7865	0.8061
	0.8256	0.8451	0.8646	0.8840	0.9034
	0.9228	0.9421	0.9614	0.9807	1.0000
Width:					
	0.9580	0.9589	0.9597	0.9606	0.9614
	0.9623	0.9631	0.9640	0.9649	0.9657
	0.9666	0.9674	0.9683	0.9691	0.9700
	0.9709	0.9717	0.9726	0.9734	0.9743
	0.9751	0.9760	0.9769	0.9777	0.9786
	0.9794	0.9803	0.9811	0.9820	0.9829
	0.9837	0.9846	0.9854	0.9863	0.9871
	0.9880	0.9889	0.9897	0.9906	0.9914
	0.9923	0.9931	0.9940	0.9949	0.9957

	0.9966	0.9974	0.9983	0.9991	1.0000
Transect	Overland(or:	ig)			
Area:		-87			
	0.0196	0.0392	0.0588	0.0784	0.0980
	0.1177	0.1374	0.1571	0.1768	0.1965
	0.2162	0.2360	0.2558	0.2756	0.2954
	0.3152	0.3351	0.3550	0.3748	0.3947
	0.4147	0.4346	0.4546	0.4745	0.4945
	0.5145	0.5346	0.5546	0.5747	0.5947
	0.6148	0.6350	0.6551	0.6752	0.6954
	0.7156	0.7358	0.7560	0.7762	0.7965
	0.8168	0.8371	0.8574	0.8777	0.8980
	0.9184	0.9388	0.9592	0.9796	1.0000
Hrad:					
	0.0208	0.0415	0.0622	0.0829	0.1036
	0.1242	0.1448	0.1653	0.1858	0.2063
	0.2268	0.2472	0.2676	0.2879	0.3083
	0.3285	0.3488	0.3690	0.3892	0.4094
	0.4295	0.4496	0.4697	0.4897	0.5097
	0.5297	0.5496	0.5695	0.5894	0.6093
	0.6291	0.6489	0.6686	0.6884	0.7081
	0.7277	0.7474	0.7670	0.7865	0.8061
	0.8256	0.8451	0.8646	0.8840	0.9034
	0.9228	0.9421	0.9614	0.9807	1.0000
Width:	0.0500	0.0500	0 0507	0.000	0.0614
	0.9580 0.9623	0.9589 0.9631	0.9597 0.9640	0.9606 0.9649	0.9614 0.9657
	0.9666	0.9631	0.9640	0.9649	0.9657
	0.9709	0.9674	0.9726	0.9691	0.9700
	0.9751	0.9760	0.9769	0.9734	0.9745
	0.9794	0.9803	0.9811	0.9820	0.9829
	0.9837	0.9846	0.9854	0.9863	0.9871
	0.9880	0.9889	0.9897	0.9906	0.9914
	0.9923	0.9931	0.9940	0.9949	0.9957
	0.9966	0.9974	0.9983	0.9991	1.0000
	0.0000	0.0074	0.2200	0.0001	2.0000

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

***** Analysis Options ***** Flow Units LPS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed YES Water Quality NO Infiltration Method HORTON Flow Routing Method DYNWAVE Surcharge Method EXTRAN Starting Date 07/23/2009 00:00:00 Ending Date 07/24/2009 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:05:00 Maximum Trials 8 Number of Threads 1 Head Tolerance 0.001500 m

*****	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.226	95.520
Evaporation Loss	0.000	0.000
Infiltration Loss	0.063	26.653
111111111111111111111111111111111111111	0.005	20.055

Surface Runoff	0.161	68.040
Final Storage	0.002	1.029
Continuity Error (%)	-0.212	

*****	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.161	1.607
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.183	1.828
External Outflow	0.336	3.358
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.008	0.077
Continuity Error (%)	0.005	

Tatal Daal	D	Total	Total	Total	Total	Imperv	Perv	Total	
Total Peak	Runoff	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	
Runoff Runof		·		·					
Subcatchment ltr LPS		mm	mm	mm	mm	mm	mm	mm	10^6
Itr LPS									
EXT-1		95.52	0.00	0.00	52.83	36.25	42.60	42.60	
0.03 22.66	0.446	95.52	0.00	0.00	52.85	30.25	42.00	42.00	
ROOF 10		95.52	0.00	0.00	0.00	94.22	0.00	94.22	
0.26 98.91	0.986								
ROOF_11		95.52	0.00	0.00	0.00	93.99	0.00	93.99	
0.01 3.73 ROOF 12	0.984	95.52	0.00	0.00	0.00	94.03	0.00	94.03	
0.01 4.41	0.984	95.52	0.00	0.00	0.00	94.05	0.00	94.05	
ROOF_3		95.52	0.00	0.00	0.00	94.04	0.00	94.04	
0.10 38.65	0.985								
ROOF_4 0.03 12.40	0.984	95.52	0.00	0.00	0.00	94.03	0.00	94.03	
ROOF 5	0.984	95.52	0.00	0.00	0.00	94.04	0.00	94.04	
0.10 38.66	0.985	55152	0100	0100	0100	5.00	0.00	21101	
ROOF_8		95.52	0.00	0.00	0.00	93.99	0.00	93.99	
0.01 3.43	0.984	05 50	0.00	0.00	0.00	02.00	0.00	02.00	
ROOF_9 0.00 1.87	0.984	95.52	0.00	0.00	0.00	93.98	0.00	93.98	
ROOF1 2	0.904	95.52	0.00	0.00	0.00	94.07	0.00	94.07	
0.09 33.58	0.985								
ROOF6_7		95.52	0.00	0.00	0.00	94.07	0.00	94.07	
0.09 33.62	0.985	05 53	0.00	0.00	14.20	80.10	7.64	90.10	
UGPK_1		95.52	0.00	0.00	14.36	80.16	7.64	80.16	

0.12 49.41	0.839							
UGPK_2		95.52	0.00	0.00	12.55	81.90	6.69	81.90
0.12 52.49	0.857							
UGPK_3		95.52	0.00	0.00	26.08	68.85	13.80	68.85
0.04 20.01	0.721							
UGPK_4		95.52	0.00	0.00	18.87	75.81	10.00	75.81
0.09 40.79	0.794							
UGPK_5		95.52	0.00	0.00	18.87	75.81	10.00	75.81
0.08 37.46	0.794							
UGPK_6		95.52	0.00	0.00	0.00	93.99	0.00	93.99
0.02 7.74	0.984							
UGPK_7		95.52	0.00	0.00	13.46	81.04	7.16	81.04
0.09 38.52	0.848							
UGPK_8		95.52	0.00	0.00	15.27	79.30	8.10	79.30
0.05 21.12	0.830							
UGPK_9		95.52	0.00	0.00	0.00	94.01	0.00	94.01
0.03 11.43	0.984							
UNC-1		95.52	0.00	0.00	51.92	38.94	43.47	43.47
0.03 25.77	0.455							
UNC-2		95.52	0.00	0.00	72.25	8.08	23.25	23.25
0.12 39.00	0.243							
UNC-3		95.52	0.00	0.00	43.07	57.73	51.73	51.73
0.04 23.41	0.542							
UNC-4		95.52	0.00	0.00	53.22	34.91	42.20	42.20
0.02 16.94	0.442							

Node Depth Summary *********

Node	Туре	Average Depth Meters	Maximum Depth Meters	HGL	Time of Occurre days hr:	ence	Reported Max Depth Meters
100	JUNCTION	0.23	0.43	99.83	0 00	5:46	0.43
HEADWALL	OUTFALL	0.00	0.00	98.70		0:00	0.00
OF1	OUTFALL	0.00	0.00	0.00		0:00	0.00

0F2	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
0F3	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
0F4	OUTFALL	0.30	0.30	102.17	0	00:00	0.30
1000	STORAGE	0.07	0.25	100.17	0	06:23	0.25
CB507-S	STORAGE	0.00	0.18	102.74	0	06:15	0.18
ROOF-10-S	STORAGE	0.02	0.14	114.14	0	06:19	0.14
ROOF-11-S	STORAGE	0.01	0.12	114.12	0	06:18	0.12
ROOF-12-S	STORAGE	0.01	0.13	114.13	0	06:18	0.13
ROOF-1-2-S	STORAGE	0.01	0.14	114.14	0	06:19	0.14
R00F-3-S	STORAGE	0.02	0.15	114.15	0	06:19	0.15
ROOF-4-S	STORAGE	0.01	0.13	114.13	0	06:19	0.13
R00F-5-S	STORAGE	0.02	0.15	114.15	0	06:19	0.15
R00F-6-7-S	STORAGE	0.01	0.14	114.14	0	06:19	0.14
R00F-8-S	STORAGE	0.01	0.11	114.11	0	06:18	0.11
R00F-9-S	STORAGE	0.00	0.09	114.09	0	06:16	0.08
TANKS	STORAGE	1.26	2.78	102.48	0	06:23	2.78

		Maximum	Maximum			Lateral	Total	Flow
		Lateral	Total	Time	of Max	Inflow	Inflow	Balance
		Inflow	Inflow	0ccu	irrence	Volume	Volume	Error
Node	Туре	LPS	LPS	days	hr:min	10^6 ltr	10^6 ltr	Percent
100	JUNCTION	136.19	222.37		06:46	1.83	3.12	0.008
HEADWALL	OUTFALL	0.00	222.38	0	06:46	0	3.12	0.000
OF1	OUTFALL	25.77	25.77	0	06:15	0.0339	0.0339	0.000
OF2	OUTFALL	39.00	39.00	0	06:15	0.12	0.12	0.000
OF3	OUTFALL	23.41	23.41	0	06:15	0.0359	0.0359	0.000
OF4	OUTFALL	0.00	39.58	0	06:15	0	0.0511	0.000
1000	STORAGE	0.00	111.32	0	06:23	0	1.29	0.010
CB507-S	STORAGE	39.61	39.61	0	06:15	0.0511	0.0511	-0.001
ROOF-10-S	STORAGE	98.91	98.91	0	06:10	0.265	0.265	-0.001
ROOF-11-S	STORAGE	3.73	3.73	0	06:05	0.00997	0.00997	-0.001
R00F-12-S	STORAGE	4.41	4.41	0	06:10	0.0118	0.0118	-0.001

R00F-1-2-S	STORAGE	33.58	33.58	0	06:10	0.0897	0.0897	-0.001
R00F-3-S	STORAGE	38.65	38.65	0	06:10	0.103	0.103	-0.001
ROOF-4-S	STORAGE	12.40	12.40	0	06:15	0.0331	0.0331	-0.001
R00F-5-S	STORAGE	38.66	38.66	0	06:10	0.103	0.103	-0.001
R00F-6-7-S	STORAGE	33.62	33.62	0	06:10	0.0898	0.0898	-0.001
ROOF-8-S	STORAGE	3.43	3.43	0	06:05	0.00916	0.00916	-0.001
ROOF-9-S	STORAGE	1.87	1.87	0	06:10	0.00499	0.00499	-0.001
TANKS	STORAGE	278.96	337.67	0	06:15	0.647	1.37	0.001

***** Node Surcharge Summary *****

No nodes were surcharged.

***** Node Flooding Summary

No nodes were flooded.

***** Storage Volume Summary *****

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Evap Pcnt Loss	Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pcnt Full	0ccu	of Max rrence hr:min	Maximum Outflow LPS
1000	0.000	2	0	0	0.000	6	0	06:23	111.34
CB507-S	0.000	0	0	0	0.000	0	0	00:00	39.58
R00F-10-S	0.006	5	0	0	0.093	82	0	06:19	19.23
ROOF-11-S	0.000	1	0	0	0.002	48	0	06:18	1.68
ROOF-12-S	0.000	2	0	0	0.003	67	0	06:18	1.77
ROOF-1-2-S	0.002	4	0	0	0.030	78	0	06:19	8.29

ROOF-3-S	0.003	7	0	0	0.041	91	0	06:19	7.34
ROOF-4-S	0.000	3	0	0	0.010	67	0	06:19	3.15
ROOF-5-S	0.003	7	0	0	0.041	91	0	06:19	7.34
R00F-6-7-S	0.002	4	0	0	0.030	78	0	06:19	8.29
ROOF-8-S	0.000	1	0	0	0.002	44	0	06:18	1.66
ROOF-9-S	0.000	0	0	0	0.000	19	0	06:16	1.48
TANKS	0.281	35	0	0	0.618	77	0	06:23	111.32

Outfall Loading Summary *****

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	LPS	LPS	10^6 ltr
HEADWALL	90.72	39.77	222.38	3.117
OF1	6.58	5.97	25.77	0.034
OF2	11.58	11.97	39.00	0.120
OF3	12.63	3.29	23.41	0.036
OF4	6.36	9.30	39.58	0.051
System	25.57	70.29	253.17	3.358

Link Flow Summary *********

Link	Туре	Maximum Flow LPS	Time of Max Occurrence days hr:min	Veloc	Max/ Full Flow	Max/ Full Depth
C1	CONDUIT	39.58	0 06:15	1.09	0.93	0.69
C2	CONDUIT	111.34	0 06:24	1.28	0.59	0.54
Pipe 13	CONDUIT	222.38	0 06:46	1.35	0.24	0.31

CISTERN-O	ORIFICE	18.15	0	06:23
W1	WEIR	93.17	0	06:23
R00F10-0	DUMMY	19.23	0	06:19
ROOF11-0	DUMMY	1.68	0	06:18
ROOF12-0	DUMMY	1.77	0	06:18
R00F1-2-0	DUMMY	8.29	0	06:19
ROOF3-0	DUMMY	7.34	0	06:19
ROOF4-0	DUMMY	3.15	0	05:52
ROOF5-0	DUMMY	7.34	0	06:19
R00F6-7-0	DUMMY	8.29	0	06:19
ROOF8-0	DUMMY	1.66	0	06:18
ROOF9-0	DUMMY	1.48	0	06:16

 Adjusted
 ----- Fraction of Time in Flow Class

 /Actual
 Up
 Down
 Sub
 Sup
 Up
 Down
 Norm
 Inlet

 Conduit
 Length
 Dry
 Dry
 Dry
 Crit
 Crit
 Crit
 Ltd
 Ctrl

 C1
 1.00
 0.24
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0

1.00 0.23

No conduits were surcharged.

Analysis begun on: Tue Mar 29 13:35:49 2022 Analysis ended on: Tue Mar 29 13:35:50 2022 Total elapsed time: 00:00:01

SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management July 14, 2022

C.4 OIL/GRIT SEPARATOR SIZING CALCULATIONS

Detailed Stormceptor Sizing Report – WOS PH2 20 Cedarow Crt

	Project Information	& Location				
Project Name	WOS PH2	Project Number	20349			
City	City Ottawa		Ontario			
Country Canada		Date	11/4/2019			
Designer Information	1	EOR Information (optional)				
Name	thakshika rathnasooriya	Name				
Company stantec		Company				
Phone # 613-724-4081		Phone #				
Email thakshika.rathnasooriya@stantec.com		Email				

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WOS PH2 20 Cedarow Crt			
Recommended Stormceptor Model	STC 300			
Target TSS Removal (%)	80.0			
TSS Removal (%) Provided	80			
PSD	Fine Distribution			
Rainfall Station	OTTAWA MACDONALD-CARTIER INT'L A			

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary				
Stormceptor Model	% TSS Removal Provided			
STC 300	80			
STC 750	85			
STC 1000	85			
STC 1500	85			
STC 2000	86			
STC 3000	87			
STC 4000	88			
STC 5000	89			
STC 6000	90			
STC 9000	92			
STC 10000	92			
STC 14000	94			
StormceptorMAX	Custom			

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station				
State/Province	State/Province Ontario Total Number of Rainfall Events			
Rainfall Station Name	OTTAWA MACDONALD- CARTIER INT'L A	Total Rainfall (mm)	20978.1	
Station ID #	6000	Average Annual Rainfall (mm)	567.0	
Coordinates	45°19'N, 75°40'W	Total Evaporation (mm)	982.0	
Elevation (ft)	370	Total Infiltration (mm)	10341.2	
Years of Rainfall Data	37	Total Rainfall that is Runoff (mm)	9654.9	

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

FORTERRA[®]

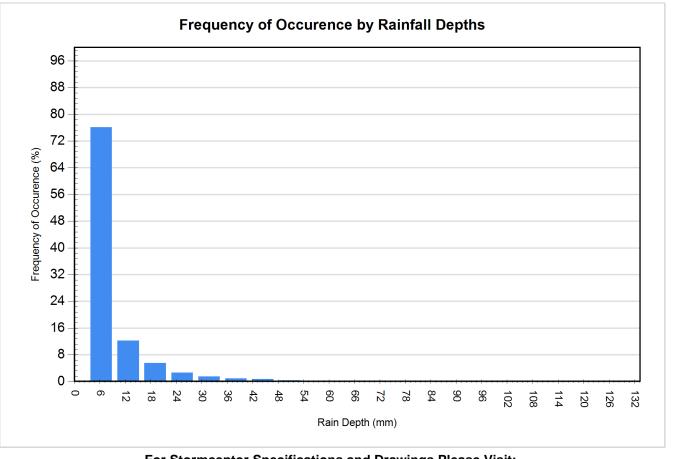
Drainage Area	Drainage Area		Up Str	eam Storage		
Total Area (ha)	1.60	Storage	e (ha-m) Discharge (cms)
Imperviousness %	50.60	0.00	00	0.000		
		0.03	30	0.	.007	
		0.06	60	0.	.015	
		0.09	90	0.	.022	
Water Quality Objective	e		Up Stream	n Flow Diversi	on	
TSS Removal (%)	80.0	Max. Flo	w to Stormce	eptor (cms)		
Runoff Volume Capture (%)			Desi	ign Details		
Oil Spill Capture Volume (L)		Stormce	otor Inlet Inve			
Peak Conveyed Flow Rate (L/s)	126.00	Stormcep	tor Outlet Inv	ert Elev (m)		
Water Quality Flow Rate (L/s)		Storm	ceptor Rim E	Elev (m)		
		Normal Water Level Elevation (m)				
		Pip	pe Diameter (mm)		
			Pipe Materia	ป		
		Μι	Itiple Inlets (Y/N)	N	lo
		(Grate Inlet (Y/	/N)	N	lo
	Particle Size D	istribution (P	'SD)			
Removing the smallest fraction metals, hydrocarbons and n Distribution (PSD) that w	utrients are captu	red. The table	below identif	ies the Particle S	Size	
		stribution				
Particle Diameter (microns)	Distribut %	ion	Specific Gravity			
20.0	20.0		1.30			
60.0	20.0		1.80			
150.0	20.0			2.20		
400.0	20.0			2.65		
2000.0	20.0			2.65		

FORTERRA [®]

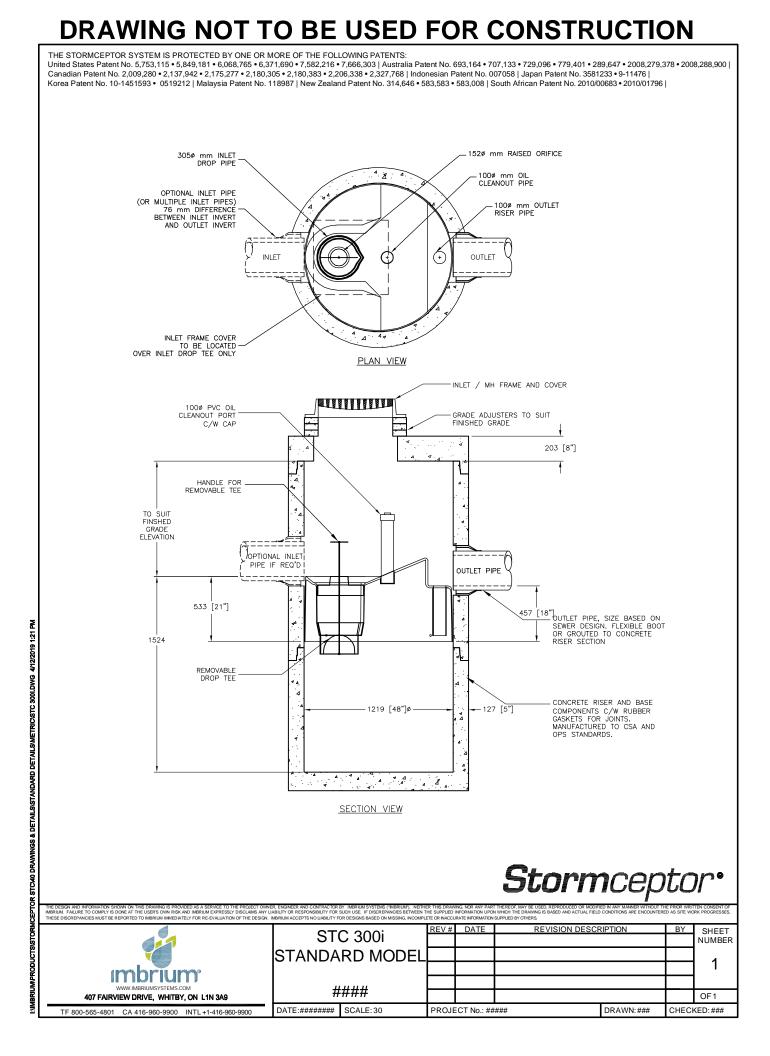
Site Name		WOS PH2 20 Cedarow Crt		
	Site I	Details		
Drainage Area		Infiltration Parameters		
Total Area (ha)	1.60	Horton's equation is used to estimate infiltration		
Imperviousness %	50.60	Max. Infiltration Rate (mm/hr) 61.98		
Surface Characteristics	\$	Min. Infiltration Rate (mm/hr)10.16		
Width (m)	253.00	Decay Rate (1/sec) 0.00055		
Slope %	2	Regeneration Rate (1/sec)0.01		
Impervious Depression Storage (mm)	0.508	Evaporation		
Pervious Depression Storage (mm)	5.08	Daily Evaporation Rate (mm/day)2.54		
Impervious Manning's n	0.015	Dry Weather Flow		
Pervious Manning's n	0.25	Dry Weather Flow (lps)		
Maintenance Frequency		Winter Months		
Maintenance Frequency (months) >	12	Winter Infiltration 0		
	TSS Loadin	ng Parameters		
TSS Loading Function				
Buildup/Wash-off Parame	eters	TSS Availability Parameters		
Target Event Mean Conc. (EMC) mg/L		Availability Constant A		
Exponential Buildup Power		Availability Factor B		
Exponential Washoff Exponent		Availability Exponent C		
		Min. Particle Size Affected by Availability (micron)		

FORTERRA"

Cumulative Runoff Volume by Runoff Rate				
Runoff Rate (L/s)	Runoff Rate (L/s) Runoff Volume (m ³) Volume Over (m ³)		Cumulative Runoff Volume (%)	
1	111983	43648	72.1	
4	151637	3654	97.7	
9	154907	370	99.8	
16	155201	73	100.0	
25	155273	0	100.0	
36	155273	0	100.0	

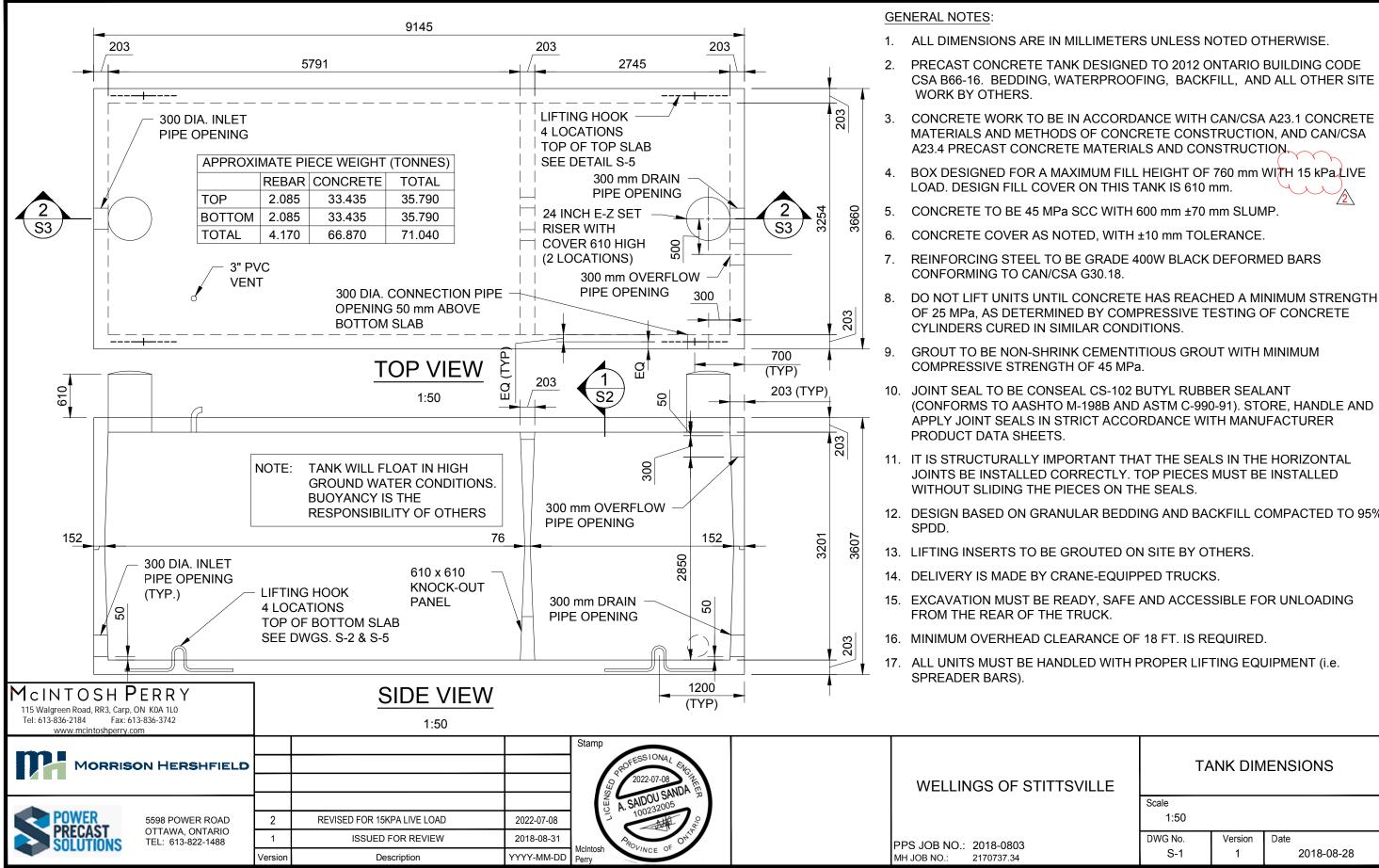

Cumulative Runoff Volume by Runoff Rate

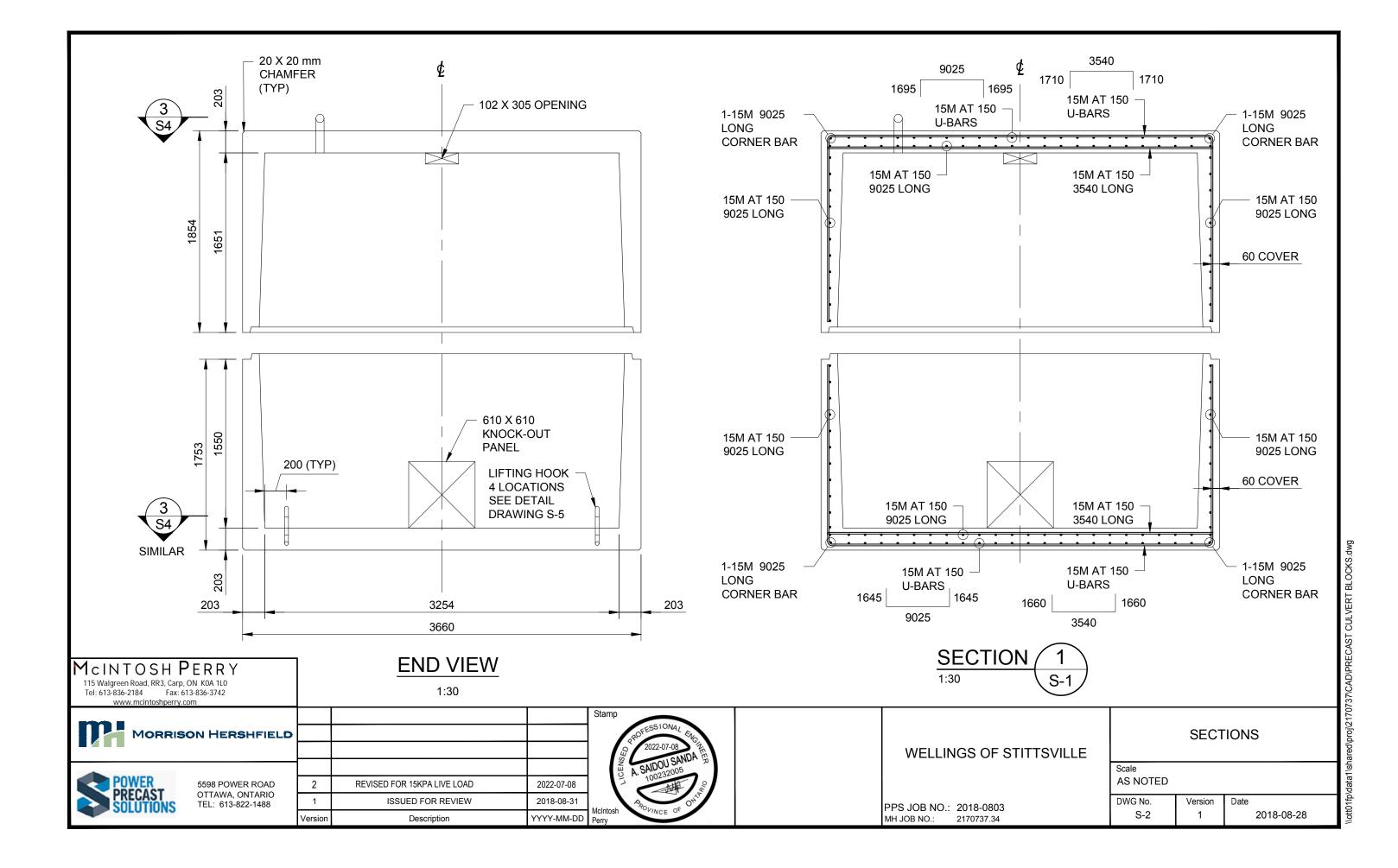
For area: 1.60(ha), imperviousness: 50.60%, rainfall station: OTTAWA MACDONALD-CARTIER INT'L A

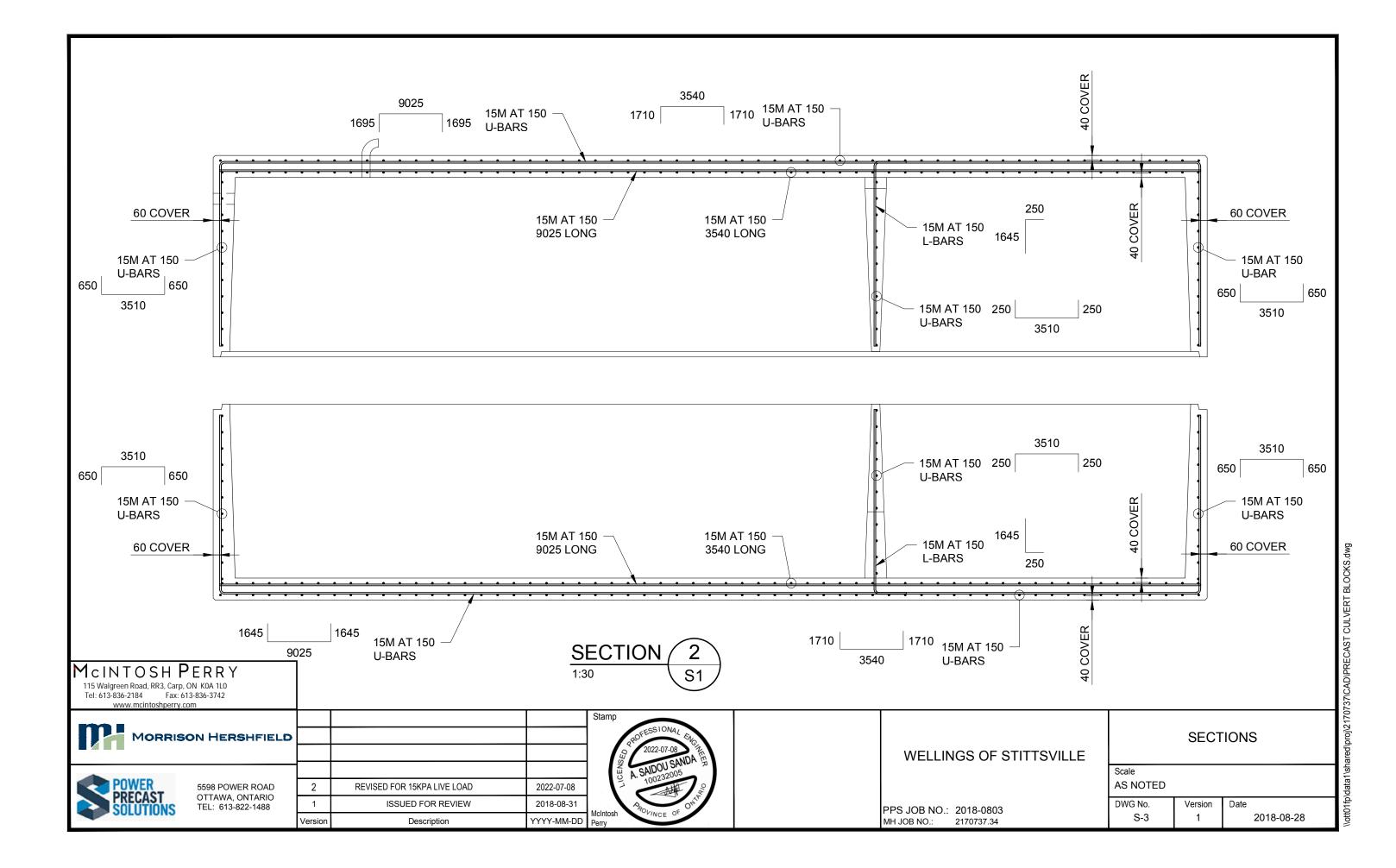

FORTERRA"

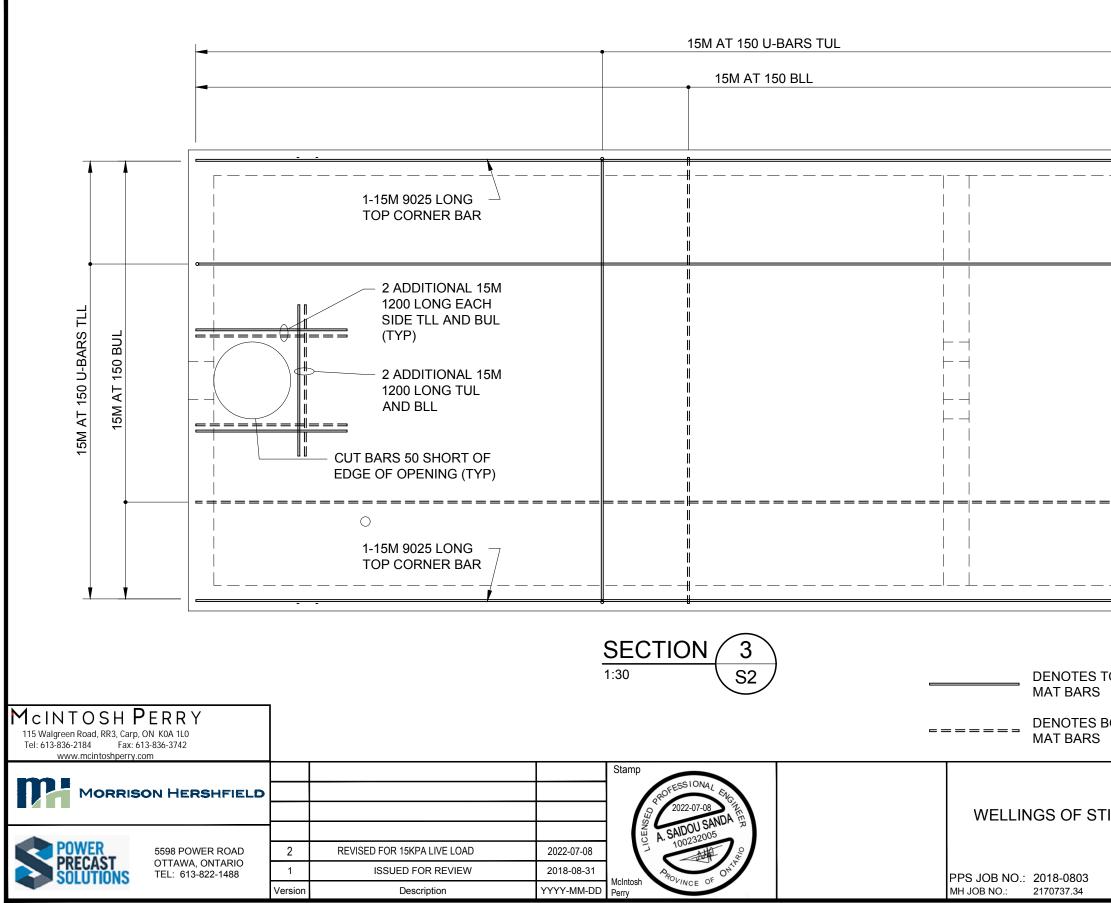
Rainfall Event Analysis						
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)		
6.35	3113	76.1	5230	24.9		
12.70	501	12.2	4497	21.4		
19.05	225	5.5	3469	16.5		
25.40	105	2.6	2317	11.0		
31.75	62	1.5	1765	8.4		
38.10	35	0.9	1206	5.8		
44.45	28	0.7	1163	5.5		
50.80	12	0.3	557	2.7		
57.15	7	0.2	378	1.8		
63.50	1	0.0	63	0.3		
69.85	1	0.0	64	0.3		
76.20	1	0.0	76	0.4		
82.55	0	0.0	0	0.0		
88.90	1	0.0	84	0.4		
95.25	0	0.0	0	0.0		
101.60	0	0.0	0	0.0		
107.95	0	0.0	0	0.0		
114.30	1	0.0	109	0.5		
120.65	0	0.0	0	0.0		
127.00	0	0.0	0	0.0		

• FORTERRA

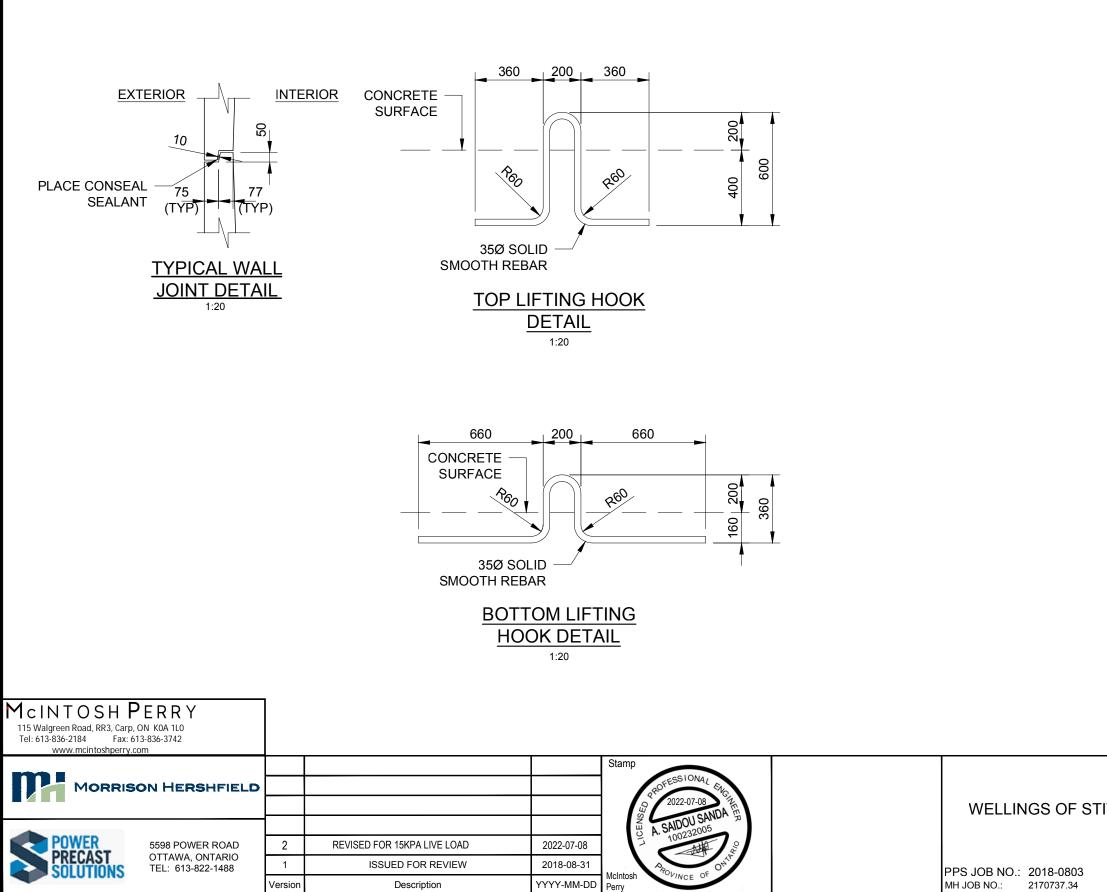

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications


SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT


Appendix C Stormwater Management July 14, 2022

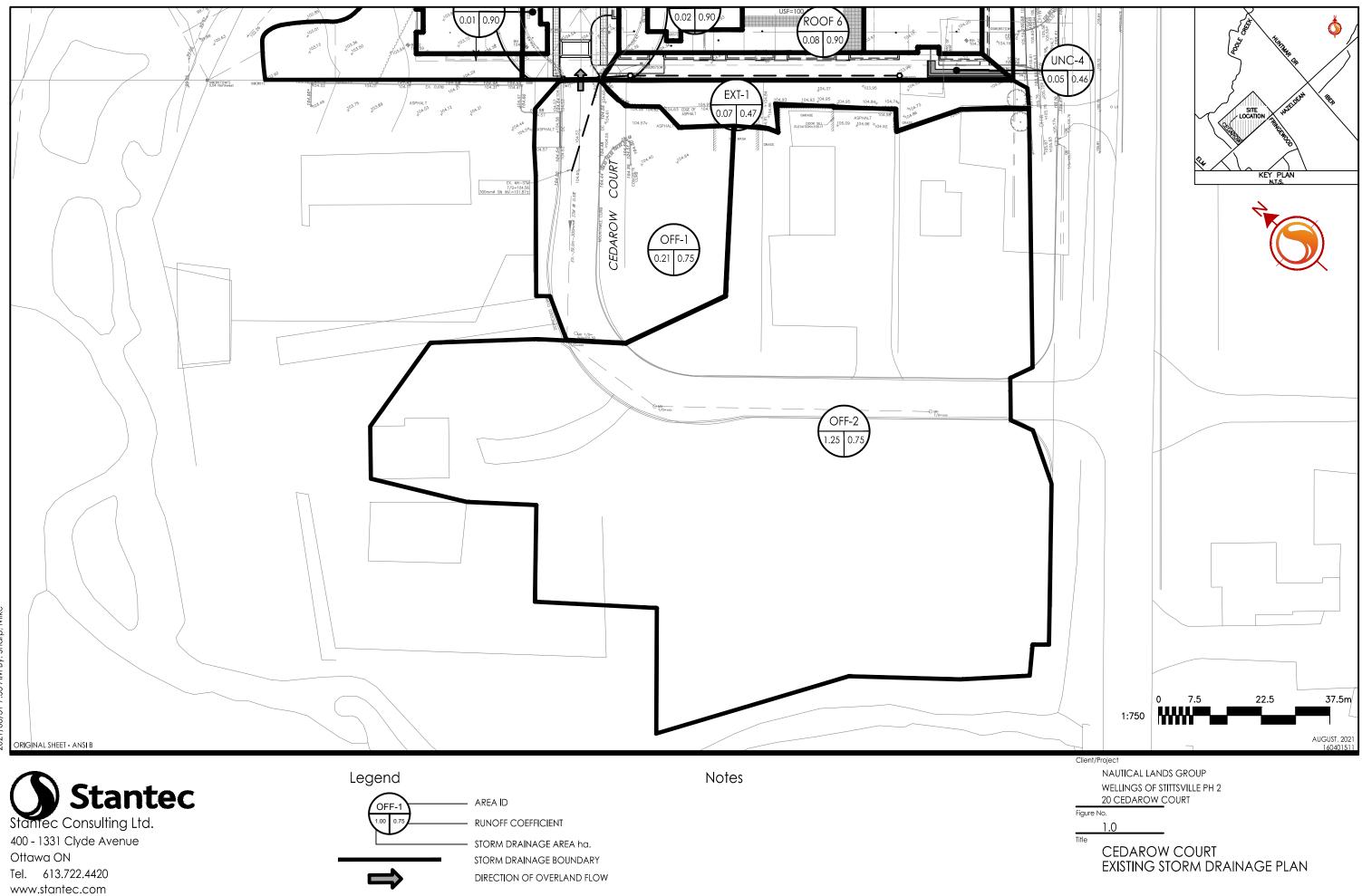

C.5 TANK SPECIFICATIONS

BE IN ACCORDANCE WITH CAN/CSA A23.1 CONCRETE IODS OF CONCRETE CONSTRUCTION, AND CAN/CSA					
RETE MATERIALS AND CONSTRUCTION					
MAXIMUM FILL HEIGHT OF 760 mm WITH 15 kPa LIVE VER ON THIS TANK IS 610 mm.					
، 00 mm ±70	mm SLUN	IP.			
±10 mm TOL	ERANCE.				
00W BLACK	DEFORM	IED BARS			
PRESSIVE T					
	JT WITH	MINIMUM			
ASTM C-990	0-91). STO	ORE, HANDLE AND			
MPORTANT THAT THE SEALS IN THE HORIZONTAL CORRECTLY. TOP PIECES MUST BE INSTALLED E PIECES ON THE SEALS.					
ANULAR BEDDING AND BACKFILL COMPACTED TO 95%					
N SITE BY O	THERS.				
CRANE-EQUIPPED TRUCKS.					
E READY, SAFE AND ACCESSIBLE FOR UNLOADING HE TRUCK.					
	SIDLE FU	R UNLOADING			
18 FT. IS RE					
	EQUIRED				
	EQUIRED				
	EQUIRED				
PROPER LIF	EQUIRED TING EQU				
PROPER LIF	EQUIRED TING EQU	JIPMENT (i.e.			
PROPER LIF	EQUIRED TING EQU	JIPMENT (i.e.			
PROPER LIF TA Scale 1:50 DWG No.		JIPMENT (i.e. IENSIONS			
PROPER LIF	EQUIRED TING EQU	JIPMENT (i.e. IENSIONS			
	RETE CONS LS AND CON HEIGHT OF ANK IS 610 r 500 mm ±70 r ±10 mm TOL 00W BLACK HAS REACI PRESSIVE TI 10NS. TIOUS GROU BUTYL RUBE ASTM C-990 RDANCE WI AT THE SEAL OP PIECES IE SEALS. NG AND BAO N SITE BY O PED TRUCKS	RETE CONSTRUCTIO LS AND CONSTRUCT HEIGHT OF 760 mm M ANK IS 610 mm. 500 mm ±70 mm SLUM ±10 mm TOLERANCE. 00W BLACK DEFORM HAS REACHED A MI PRESSIVE TESTING O TIOUS GROUT WITH I BUTYL RUBBER SEAL ASTM C-990-91). STO RDANCE WITH MANU AT THE SEALS IN THE OP PIECES MUST BE IE SEALS. NG AND BACKFILL CO N SITE BY OTHERS. PED TRUCKS.			



LEGEN	1D		
	TLL BUL	TOP LOV BOTTOM	PER LAYER VER LAYER UPPER LAYER LOWER LAYER
ITTSVILLE	Scale	SECT	IONS
	AS NOTED DWG No. S-4	Version 1	Date 2018-08-28

(ott01fp)data1\shared\proj\2170737\CAD\PRECAST CULVERT BLOCKS.dwg



TTSVILLE	DETAILS			
	Scale AS NOTED			\\ott01fp\data1\shared\proj\2170
	DWG No. S-5	Version 1	Date 2018-08-28	\\ott01fp

SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management July 14, 2022

C.6 CEDAROW COURT STORM SEWER CAPACITY

Stanteo	,	Cedarow Co					STORM				DESIGN I = a / (t+l	PARAME1		(As per C	ity of Otta	wa Guidel	ines, 2012	2)																					
	DATE:		2021	09-01			(City of	Ottawa)				1:2 yr	1:5 yr	1:10 yr	1:100 yr		10	0.010																					
	REVISION: DESIGNED B	Y:	т	R	FILE NUN	MBER:	16040151	1			a = b =	732.951 6.199	998.071 6.053	1174.184 6.014		MANNING		0.013 2.00 r		BEDDING CL	ASS =	В																	
	CHECKED B	Y:		-							c =	0.810	0.814	0.816	0.820	TIME OF I	INTRY	10 r	nin																				
LOCA	TION													DR	AINAGE A	REA																	PIPE SELE	TION					
AREA ID	FROM	то	AREA	AREA	AREA	AREA	AREA	С	С	С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)) (ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR)	AxC (10YR)	(100-YEAR) A	C (100YR)							Q _{CONTROL}	(CIA/360)		OR DIAMETE	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
			(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
UNC-4 + EXT-1	CB507	EX1	0.00	0.12	0.00	0.00	0.00	0.00	0.47	0.00	0.00	0.000	0.000	0.056	0.056	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	16.2	21.3	250	250	CIRCULAR	CONCRETE	-	0.50	42.7	37.91%	0.86	0.68	0.52
OFF-1	EX1	EX2	0.00	0.21	0.00	0.00	0.00	0.00	0.75	0.00	0.00	0.000	0.000	0.154	0.210	0.000	0.000	0.000	0.000	10.52	74.85	101.50	118.97	173.90	0.0	0.0	59.2	39.0	300	300	CIRCULAR	CONCRETE		0.50	68.0	87.02%	0.97	0.98	0.67
OFF-2	EX2	POOLE CREEK	0.00	1.25	0.00	0.00	0.00	0.00	0.75	0.00	0.00	0.000	0.000	0.937	1.147	0.000	0.000	0.000	0.000	11.19	72.52	98.30	115.20	168.37	0.0	0.0	313.1	86.8	525	525	CIRCULAR	CONCRETE	-	0.62	353.3	88.62%	1.58	1.61	0.90

SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management July 14, 2022

C.7 EXCERPTS FROM WOS PHASE 1

Stormwater Management March 22, 2017

5.0 STORMWATER MANAGEMENT

5.1 OBJECTIVES

The objective of this stormwater management plan is to determine the measures necessary to control the quantity of stormwater released from the proposed development to established criteria, and to provide sufficient detail for approval and construction. The proposed development will discharge treated and controlled stormwater runoff to Poole Creek.

5.2 SWM CRITERIA AND CONSTRAINTS

Criteria were established by combining current design practices outlined by the City of Ottawa Design Guidelines (2012), Ministry of Environment and Climate Change (MOECC) and Mississippi Valley Conservation Authority (MVCA). The following summarizes the criteria, with the source of each criterion indicated in italics:

General

- Use of the dual drainage principle (City of Ottawa)
- Wherever feasible and practical, site-level measures should be used to reduce and control the volume and rate of runoff (City of Ottawa)
- Site-level infiltration measures to be implemented to meet infiltration criteria of minimum 50 mm/yr (MVCA)
- Assess impact of 100 year event outlined in the City of Ottawa Sewer Design Guidelines, and climate change scenarios with a 20% increase of rainfall intensity, on major & minor drainage system (City of Ottawa)
- Quality control to be provided for 80% TSS removal (MVCA, MOECC)
- Site discharge to be controlled to pre-development rates (MVCA, City of Ottawa)
- Site design to mitigate erosion impacts on Poole Creek (City of Ottawa)

Storm Sewer & Inlet Controls

- Size storm sewers to convey the 5 year storm event under free-flow conditions using City of Ottawa I-D-F parameters (City of Ottawa) with the exception of the outlet sewer from the proposed underground storage facility.
- Minimum sewer inlet capture rates to be set such that no ponding occurs at the end of the 5-year event (City of Ottawa)
- Hydraulic Grade Line (HGL) analysis to be conducted using the 100 year 12 hour SCS storm distribution (City of Ottawa).
- 100-year Storm HGL to be a minimum of 0.30 m below building foundation footing otherwise foundation drains will be pumped (City of Ottawa)

Stormwater Management March 22, 2017

Surface Storage & Overland Flow

- Building openings to be a minimum of 0.30m above the 100-year water level (City of Ottawa)
- Maximum depth of flow under either static or dynamic conditions shall be less than 0.30m (City of Ottawa)
- Subdrains required in swales where longitudinal gradient is less than 1.5% (City of Ottawa)
- Provide adequate emergency overflow conveyance off-site (City of Ottawa)

5.2.1 Pre-Development Conditions

A lumped catchment PCSWMM model was created for the subject site based on a site area of 2.9ha, and utilizing an existing SCS curve number of 80 per background documents. Additional subcatchment parameters were defined based upon recent topographical survey of the property:

Area (ha)	Width (m)	Slope (%)	Imperv. (%)	Subarea Routing
2.90	161.1	1.0	0.0	Outlet

Based on the above and during the 2 through 100-year 12hr SCS events (MTO Distribution curves), peak pre-development outflow rates from the subject site were identified per the tables below:

Storm Event	2-Year	5-Year	10-Year		
Peak Outflow Rate	17.7L/s	43.9L/s	66.2L/s		

Storm Event	25-Year	50-Year	100-Year
Peak Outflow Rate	103.7L/s	136.5L/s	176.3L/s

PCSWMM model input and output files for the predevelopment scenario are included within **Appendix C.**

5.3 STORMWATER MANAGEMENT DESIGN

5.3.1 Rationale for Design and Servicing Deviations

5.3.1.1 Deviation from Kanata West MSS

Per the findings of the Kanata West MSS, stormwater outflows from the proposed site were intended to be directed to the storm sewer within Huntmar Drive, and in turn directed to the

Stormwater Management March 22, 2017

downstream Fairwinds temporary pond 5. The MSS had assumed that the entire area of land west of Huntmar Drive and bound by Poole creek to the north and Hazeldean Road to the south was to be directed to the Huntmar Drive sewer, however, the proposed site forms only part of the tributary area, within lands owned by others blocking direct access to the storm sewer within Huntmar Drive. Rather than encumbering the adjacent property, and to avoid considerable connection fees associated with the outlet from the Kanata West Owners Group (KWOG), a separate outlet for the site to Poole Creek has been considered. As the downstream Pond 5 discharges to Poole Creek as well, by restricting flows to predevelopment levels, and assessing the erosive potential of such flows for the Poole Creek reach between the site outlet and that of the downstream Pond 5, no deleterious effects to the downstream watercourse are expected. Additionally, this option provides additional potential to supplement baseflows to Poole Creek in accordance with recommendations from the MVCA.

5.3.1.2 Deviation from Standard SWM Design

The proposed SWM design includes three LID measures to encourage on-site infiltration and water re-use for irrigation. It is recognized that these measures are not currently standard SWM controls and when they are used for water balance purposes are not traditionally included in SWM calculations due to concerns over longterm reliability. The proposed SWM design has included some of the storage and infiltration/reuse rates from these measures in the supporting analysis as discussed in the following sections. However the analysis has also included simulations assuming that these measures fail in order to assess the potential associated impacts. The benefit of including some of the storage an infiltration losses associated with the LID measures was that the end-of-pipe underground storage component of the infiltration gallery was able to be reduced by 30% as compared to previous design requirements when no credit was assigned for the LID measures. As discussed later in this report, a monitoring plan will be developed and implemented to ensure that constructed LID measures are performing as designed.

5.3.2 Design Methodology

The intent of the stormwater management plan presented herein is to mitigate negative impacts that the proposed development might have on the receiving watercourse (Poole Creek), while providing adequate capacity to service the proposed buildings, underground parking and access areas. The proposed stormwater management plan is designed to detain runoff on the rooftop, surface and in the subsurface (StormTech chamber) to ensure that peak flows after construction will not exceed the target discharge rates and erosion mitigation requirements.

Runoff from the site is captured via catchbasins, landscaping drains and roof drains and conveyed to a hydrodynamic separator for water quality treatment followed by an underground storage unit for quantity control. The storage unit is restricted by an ICD at the downstream end and is an open bottom unit designed to also promote infiltration. Roof runoff is controlled via roof drains discharging through the internal building plumbing to rainwater harvesting tanks. Two rainwater harvesting tanks are proposed for each building. Each rainwater

Stormwater Management March 22, 2017

tank is capable of storing up to 91m³ of runoff (approximately 32mm of rainfall) beyond which it will overflow into the storm sewer and be conveyed to the storage unit. The underground storage unit is sized assuming that the rainwater harvesting tanks are available at the start of the rainfall event.

Additional infiltration will be achieved on-site through the implementation of a bioswale along the east side of the site. The granular subbase of the swale is sized to store runoff from its tributary area. An overflow drain is also provided to convey excess water to the underground storage unit.

The site discharge will be conveyed to the approved outlet location for the adjacent CMHC lands to the west of the subject site. The outlet will be sized to convey flows from both sites. Utilizing this location addresses concerns regarding an additional outlet to Poole Creek and prevents disturbance of the natural area to the north of the site.

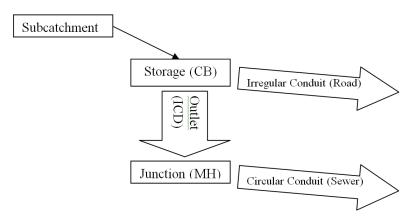
5.3.3 Modeling Rationale

A comprehensive hydrologic modeling exercise was completed with PCSWMM, accounting for the estimated major and minor systems to evaluate the storm sewer infrastructure. The use of PCSWMM for modeling of the site hydrology and hydraulics allowed for an analysis of the systems response during various storm events. Surface storage estimates were based on the final grading plan design (see **Drawing GP-1**). The following assumptions were applied to the detailed model:

- Hydrologic parameters as per Ottawa Sewer Design Guidelines, including Horton infiltration, Manning's 'n', and depression storage values
- 12-hour SCS Storm distribution for the 100-year analysis to model 'worst-case' scenario in regards to on-site HGLs.
- 12hr SCS distributions (2 and 100-year events) with free flowing boundary condition to model 'worst-case' scenario in regards to site discharge rates to meet target rate.
- To 'stress test' the system a 'climate change' scenario was created by adding 20% of the individual intensity values of the 100-year SCS storm event at their specified time step.
- All LID measures were designed outside of PCSWMM (as documented in the report and calculations included in **Appendix E**) in order to allow routing of LID overflows to the next downstream LID which cannot be done in PCSWMM where an LID is defined as part of a given subcatchment. Total design storage and calculated infiltration losses were then input into PCSWMM as storage nodes with separate outlets for infiltration losses.
- Percent imperviousness calculated based on actual soft and hard surfaces on each subcatchment, converted to equivalent Runoff Coefficient using the relationship C = (Imp. x 0.7) + 0.2
- Subcatchment areas are defined from high-point to high-point where sags occur. Subcatchment width (average length of overland sheet flow) determined by dividing

hazeldean road\design\report\servicing\2017-03-20\rpt_2017-03-20_servicing.docx

Stormwater Management March 22, 2017


subcatchment area by subcatchment length (length of overland flow path measured from high-point to high-point).

- Number of catchbasins based on servicing plan (Drawing SP-1)
- Catchbasin inflow restricted with inlet-control devices (ICDs) as necessary to maintain inflow target rate and maximize use of surface storage where possible.
- Surface ponding in sag storage calculated based on grading plans (Drawing GP-1).

5.3.3.1 SWMM Dual Drainage Methodology

The proposed site is modeled in one modeling program as a dual conduit system (see **Figure 3**), with: 1) circular conduits representing the sewers & junction nodes representing manholes; 2) irregular conduits using street-shaped cross-sections to represent the sawtoothed overland road network from high-point to low-point and storage nodes representing catchbasins. The dual drainage systems are connected via outlet link objects (or orifices) from storage node (i.e. CB) to junction (i.e. MH), and represent inlet control devices (ICDs). Subcatchments are linked to the storage node on the surface so that generated hydrographs are directed there firstly.

Figure 3: Schematic Representing Model Object Roles

Storage nodes are used in the model to represent catchbasins as well as major system junctions. For storage nodes representing catchbasins (CBs), the invert of the storage node represents the invert of the CB and the rim of the storage node is the top of the CB plus the maximum above ground storage depth. An additional 0.3m has been added to rim elevations to allow routing from one surface storage to the next, and is unused where no spillage occurs between ponding areas. Ponding at low points is represented via storage area-depth curves for each individual storage node to match ponding volumes demonstrated on the grading plan **Drawing GP-1**. Storage volumes exceeding the sag storage available in the node will route through the system until, ultimately, flows either re-enter the minor system or reach the outfall of the major system.

Stormwater Management March 22, 2017

Inlet control devices, as represented by orifice links, use a user-specified discharge coefficient to approximate manufacturer's specifications for the chosen ICD model.

Subcatchment imperviousness was calculated via impervious area measured from **Drawing SSP-**1.

5.3.3.2 Boundary Conditions

The detailed PCSWMM hydrology and the proposed storm sewers were used to assess the peak inflows and hydraulic grade line (HGL) for the site. The elevation of the outlet sewer at MH100 immediately upstream of Poole Creek has been set conservatively to be above the 100-Year water elevation of the Creek per MVCA Flood Risk Mapping at an invert elevation of 99.7m to enable free-flowing model condition for the site outlet.

5.3.4 Input Parameters

Drawing SD-1 summarizes the discretized subcatchments used in the analysis of the proposed site, and outlines the major overland flow paths. The grading plans are also enclosed for review.

Appendices A1 to A3 summarize the modeling input parameters and results for the subject area; an example input and output file are provided for the 100-year 12hr SCS storm. For all other input files and results of storm scenarios, please examine the electronic model files located on the CD provided with this report. This analysis was performed using PCSWMM, which is a front-end GUI to the EPA-SWMM engine. Model files can be examined in any program which can read EPA-SWMM files version 5.1.010.

5.3.4.1 Hydrologic Parameters

Table 4 presents the general subcatchment parameters used:

Table 4: General Subcatchment Parameters

Parameter	Value
Infiltration Method	Curve Number
Drying Time (days)	7
Curve Number	80
N Impervious	0.013
N Pervious	0.2
Dstore Imperv. (mm)	1.57
Dstore perv. (mm)	4.67
Zero Imperv. (%)	0

Stormwater Management March 22, 2017

Table 5 presents the individual parameters that vary for each of the proposed subcatchments.

Name	Outlet	Area (ha)	Width (m)	Slope (%)	Imperv. (%)
EXT1	EXT1-OF	0.07	15.1	33.3	0
EXT2	EXT2-OF	0.06	14.4	2	72.857
ST104A	ST104A-S	0.15	69	2	84.286
ST107A	ST107A-S	0.37	225.0	1.5	64.286
ST108A	ST108A-S	0.40	90.9	1.5	100
ST108B	ST108B-S	0.36	82.0	1.5	100
st108C	ST108C-S	0.05	12.1	1.5	100
st108D	ST108D-S	0.05	10.9	1.5	100
ST108E	ST108E-S	0.03	25.0	1.5	100
ST108F	108	0.38	86.0	1.2	44.286
ST109A	109	0.01	18.2	10	100
ST109C	ST109C-S	0.06	25.8	1	100
ST109B	ST109B-S	0.05	24.8	1	100
st110A	110	0.07	16.8	0.8	7.143
ST110B	110	0.03	24.5	10	100
ST110C	110	0.03	26.6	10	100
ST110D	110	0.07	16.7	0.8	7.143
STIIIA	ST111A-S	0.24	107.5	0.8	72.857
ST111B	ST111B-S	0.04	88.0	0.8	100
ST111C	ST111C-S	0.04	36.8	1.5	85.714
ST507A	ST507A-S	0.05	33.5	1.5	72.857
ST508A	508	0.34	189.2	1	7.143

Table 5: Subcatchment Parameters

Table 6 summarizes the storage node parameters used in the model. Storage curves for each node have been created based on volumes presented for each individual ponding area within Drawing GP-1. Rim elevations for each node correspond to the rim elevation of the associated area's catchbasin plus maximum depth of storage plus 0.30m to allow for demonstration of overland flow in the climate change event scenario. The 0.30m buffer is unused during other modeled events.

Stormwater Management March 22, 2017

Storage volumes and release rates for the rainwater harvesting tank, bioswale/rain garden, and infiltration basin were obtained through iterations between design sizing calculations (final sizing attached in **Appendix E**) and PCSWMM hydrologic/hydraulic modeling.

Name	Invert El. (m)	Rim Elev. (m)	Depth (m)	Coefficient	Exponent	Constant (m²)	Curve Name	Storage Curve
108	99.27	104.37	5.10	0	0	0	RWHtank	TABULAR
508	101.06	102.85	1.79	0	0	0	ST508A-S	TABULAR
ST104A-S	101.52	103.62	2.1	1000	0	0	ST104A-S	TABULAR
ST107A-S	101.13	103.23	2.1	1000	0	0	ST107A-S	TABULAR
ST108A-S	118.6	118.75	0.15	1000	0	0	ST108A	TABULAR
ST108B-S	115.75	115.9	0.15	1000	0	0	ST108B	TABULAR
ST108C-S	110.4	110.55	0.15	1000	0	0	ST108C	TABULAR
ST108D-S	110.1	110.25	0.15	1000	0	0	ST108D	TABULAR
ST108E-S	107.2	107.35	0.15	1000	0	0	ST108E	TABULAR
ST109B-S	102.81	104.31	1.5	0	0	0	*	FUNCTIONAL
ST109C-S	102.81	104.31	1.5	0	0	0	*	FUNCTIONAL
ST111A-S	101.86	104.26	2.4	1000	0	0	ST111A-S	TABULAR
ST111C-S	101.95	104.05	2.1	0	0	0	*	FUNCTIONAL
ST507A-S	101.57	103.67	2.1	1000	0	0	ST504A-S	TABULAR
TANK	100.10	103.37	3.27	1000	0	0	ΤΑΝΚ	TABULAR

Table 6: Storage Node Parameters

5.3.4.2 Hydraulic Parameters

As per the Ottawa Sewer Design Guidelines (OSDG 2012), Manning's roughness values of 0.013 were used for sewer modeling and overland flow corridors representing roadways.

Storm sewers were modeled to confirm flow capacities and hydraulic grade lines (HGLs) in the proposed condition. The detailed storm sewer design sheet is included in **Appendix C**.

Table 7 below presents the parameters for the orifice and outlet link objects in the model, which represent ICDs and restricted roof release drains respectively. CB leads modeled as orifices were assigned a discharge coefficient of 0.65. The roof release discharge curves assume the use of standard Zurn model Z-105-5 controlled release roof drains as noted in the calculation sheet in **Appendix C**. The number of roof notches for each building area is to be confirmed with the

Stormwater Management March 22, 2017

building mechanical engineer. Details for the IPEX ICDs and Zurn drains are included as part of **Appendix G**.

Name	Inlet	Outlet	Inlet Elev.	Type	Diameter
				Туре	
OR1	TANK	102	100.10	CIRCULAR	0.11
OR2	TANK	102	100.70	CIRCULAR	0.15
OR3	TANK	102	101.00	CIRCULAR	0.15
ST104A-O	ST104A-S	104	101.52	IPEX HF	0.140
ST107A-O	ST107A-S	107	101.13	CIRCULAR	0.2
ST109B-O	ST109B-S	109	102.81	CIRCULAR	0.2
ST109C-O	ST109C-S	109	102.81	CIRCULAR	0.2
ST111A-O	ST111A-S	111	101.86	IPEX HF	0.076
ST111C-O	ST111C-S	111	101.95	CIRCULAR	0.2
ST111C-O1	ST111C-S	111	101.95	CIRCULAR	0.2
OL-1	TANK	P_OF1	100.10	0.66L/s	-
OL-2	508	P_OF2	101.06	0.3L/s	-
ST507A-O	ST507A-S	TANK	101.57	IPEX LMF 95	-
ST108A-O	ST108A-S	108	118.60	ROOF	-
ST108B-O	ST108B-S	108	115.75	ROOF	-
ST108C-O	ST108C-S	108	110.40	ROOF	-
ST108D-O	ST108D-S	108	110.10	ROOF	-
ST108E-O	ST108E-S	108	107.20	ROOF	-

Table 7: Outlet/Orifice Parameters

5.3.5 Model Results

The following section summarizes the key hydrologic and hydraulic model results. For detailed model results or inputs please refer to the example input file in **Appendix C.2 and C.3** and the electronic model files on the enclosed CD.

5.3.5.1 Hydrologic Results

The following tables demonstrate the peak outflow from each modeled outfall during the design storm (12hr SCS 2-100yr) events. A free-flowing outfall condition has been modeled for these events to be conservative with respect to site peak release rates. Outfalls EXT1-OF and EXT2-OF denote uncontrolled flows from the perimeter of the site that, due to grading restrictions, are captured by the existing right-of-way/Poole Creek at the south and north boundaries of the site.

Stormwater Management March 22, 2017

Flows from area EXT2 will have a minimal contribution to the infrastructure within Hazeldean Road. Peaks from these uncontrolled flows are non-coincident with peaks from the subsurface storage tank/weir, and as such, flows from the outlet headwall are the only values considered in meeting the release rate target. The required subsurface storage tank volume was determined through iteration of each event, and sized to mirror the site release rate target.

Event	Location	Discharge Rate (L/s)	Target (L/s)
2-Year 12 Hour SCS	Outlet Headwall	15.2	17.7
5-Year 12 Hour SCS	Outlet Headwall	38.6	43.9
10-Year 12 Hour SCS	Outlet Headwall	64.5	66.2
25-Year 12 Hour SCS	Outlet Headwall	98.7	103.7
50-Year 12 Hour SCS	Outlet Headwall	116.2	136.5
100-Year 12 Hour SCS	Outlet Headwall	136.3	176.3
100-Year 12 Hour SCS +20%	Outlet Headwall	317.0	-

Table 8: Site Peak Discharge Rates

5.3.5.2 Hydraulic Results

Table 9 summarizes the HGL results within the site for the 100 year storm events and the 'climate change' scenario storm required by the City of Ottawa Sewer Design Guidelines (2012), where intensities are increased by 20%. The City of Ottawa requires that during major storm events, the maximum hydraulic grade line be kept at least 0.30 m below the underside-of-footing (USF) of any adjacent units connected to the storm sewer during design storm events. As the proposed building perimeter drain and ramp drains will be disconnected from the storm sewer and pumped to the surface, USFs are considered at 0.3m below the lowest finished floor elevation of the building.

Table 9:	Modeled	Hvdraulic	Grade	Line	Results

	Bronocod	100-year	12hr SCS	100-year 12	hr SCS + 20%
STM MH	Proposed Ground Elev. (m)	HGL (m)	USF-HGL Clearance (m)	HGL (m)	USF-HGL Clearance (m)
103	104.20	101.97	2.23	102.78	1.42
104	104.20	101.98	2.22	102.80	1.40
105	104.20	101.99	2.21	102.86	1.34
106	104.20	101.99	2.21	102.87	1.33
107	104.20	102.00	2.20	102.89	1.31

Stormwater Management March 22, 2017

	Dronocod	100-year	12hr SCS	100-year 12hr SCS + 20%				
STM MH	Proposed Ground Elev. (m)	HGL (m)	USF-HGL Clearance (m)	HGL (m)	USF-HGL Clearance (m)			
108	104.20	102.04	2.16	103.04	1.16			

As is demonstrated in the table above, the worst-case scenario results in HGL elevations remain at least 0.30 m below the proposed surface elevations, and HGL elevations remain below the proposed surface elevations during the 20% increased intensity 'climate change' scenario.

Table 10 presents the maximum total surface water depths (static ponding depth + dynamic flow) above the top-of-grate of catchbasins for the 100-year design storm and climate change storm. Based on the model results, the total ponding depth (static + dynamic) does not exceed the required 0.30m maximum during the 100-year event. Total ponding depths during the climate change scenario are below adjacent building openings and should not impact the proposed building.

			100 yec	ır, 12hr SCS	100 year, 1	12hr SCS +20%
Storage node ID	Structure ID	Rim Elevation (m)	Max HGL (m)	Total Surface Water Depth (m)	Max HGL (m)	Total Surface Water Depth (m)
ST104A-S	CB 506	103.32	103.23	0.00	103.47	0.15
ST107A-S	CB 505	102.93	102.85	0.00	103.09	0.16
ST111A-S	CB 501	103.96	104.18	0.22	104.22	0.26
ST111C-S	CB 504	103.75	102.03	0.00	102.91	0.00
ST507A-S	CB 507	103.37	103.44	0.07	103.47	0.10
508	CB T 508	102.60	102.01	0.00	102.83	0.23

Table 10: Maximum Surface Water Depths

5.3.6 Water Quality Control

On-site water quality control is required to provide 80% TSS removal prior to discharging to Poole Creek. A Stormceptor unit STC300 is proposed upstream of the underground storage/infiltration basin. The Stormceptor will provide greater than 80% TSS removal in the 25mm event and will act as pre-treatment for the storage/ infiltration basin thereby reducing maintenance requirements of the facility and improving long-term performance. The Stormceptor unit will be privately maintained. The location and general arrangement of the Stormceptor unit is indicated on **Drawing SD-1**. Detailed sizing calculations for the Stormceptor unit are included in **Appendix C.5**

Stormwater Management March 22, 2017

5.3.7 Infiltration Targets

The MVCA requires that BMP measures be implemented on-site to meet the minimum infiltration target rate of 50 mm/yr (as identified in the Kanata West Master Servicing Study, Stantec, 2006). For a site area of 2.9ha with an average imperviousness of 56% the total annual infiltration requirement is therefore 812m³/yr. The KWMSS also requires a 25% augmentation to site infiltration requirements to account for off-site road areas for which no infiltration measures were required. Therefore, the total site infiltration target is 1,015 m³/yr. Past correspondence with the MVCA indicated that the target infiltration rates were in fact "target hydrograph volume reduction rates".

The LID bioswale and infiltration gallery proposed for the site will provide significant opportunity for stormwater infiltration. Infiltration calculations completed for the design and sizing of these LID measures were used to approximate an expected annual infiltration rate. Water balance calculations for a continuous rainfall scenario from August 2, 2009 to March 1, 2012 (see **Appendix E**) were used to determine an average daily infiltration rate over a one year period. The average rate was estimated to be 44m³/day. Note that this rate is averaged over 365 days per year and would underestimate summer months and overestimate winter. Nevertheless, the average annual infiltration that could be provided through the LID measures would be approximately 16,262 m³/yr. Therefore, only about 10% of the total possible infiltration is required to meet the infiltration target for the site.

The infiltration contribution from the bioswale and infiltration gallery is included in **Table 11** below. Note that this summary does not include infiltration resulting from the rainwater harvesting reuse for irrigation. The results in **Table 11** suggest that the infiltration target could be met with the bioswale infiltration only.

LID Feature	Estimated Total Annual Infiltration (m3/yr)
Bioswale	2,568
Infiltration Gallery	13,694
Total Infiltration	16,262

Table 11: Summary of Infiltration from LID Features

5.3.7.1 Potential Groundwater Mounding

Groundwater levels at the site were measured by Paterson Group during two separate site visits and are summarized in the attached Paterson memos in **Appendix F**. Based on the results of the

Stormwater Management March 22, 2017

groundwater monitoring Paterson Group prepared a memo discussing the variation in groundwater level measurements and anticipated seasonally high and normal groundwater levels. The results for the boreholes near the LID features are summarized in **Table 12** below. The complete memo dated January 25, 2017 is included in **Appendix F**.

Borehole	Ground Elevation	Grour	g-term ndwater vels	Seasonally High Groundwater Level			
Number	(m)	Depth (m)	Elevation (m)	Depth (m)	Elevation (m)		
BH 1	102.93	3.7	99.23	3.2	99.73		
BH 2	103.02	3.7	99.32	3.2	99.82		
BH 3	103.07	3.7	99.37	3.2	99.87		
BH 4	103.15	3.7	99.45	3.2	99.95		
BH 5	103.22	3.7	99.52	3.2	100.02		
BH 6	103.25	3.7	99.55	3.2	100.05		
BH 7	102.91	4.5	98.41	4.0	98.91		

Table 12: Expected Seasonal Variation of Groundwater Levels

Since the clearance from the bottom of the infiltration tank to the groundwater table is less than 1.0m the potential for groundwater mounding was considered. Groundwater mounding calculations were completed for both the seasonally high groundwater condition and the normal groundwater condition. However, per the Paterson memo, the seasonally high level is expected to occur during March-April, as such historical rainfall data was used to establish the average rainfall event volume for March-April. The analysis indicated approximately a 10mm event. The duration of infiltration for the infiltration gallery was obtained from the PCSWMM hydraulic model based on the modeled time for the infiltration gallery to empty. No PCSWMM model was run for the 10mm event so the 2-year event was used as a conservative estimate. These durations were input into the groundwater mounding calculation spreadsheet in **Appendix E**. It is noted that the calculations are based on the Hantush (1967) equation for groundwater mounding and use the hydraulic conductivity (measured by Paterson and summarized in the attached memo from September 2016) as the recharge rate and typical specific yield for silty clay. It is also noted that spreadsheet inputs and results are in imperial units. **Table 13** below summarizes the results of the groundwater mounding calculations.

Stormwater Management March 22, 2017

Groundwater Conditon	Mounding Height (m)	Mounding Elevation (m)	Distance to Bottom of Infiltration Gallery (m)
Long-term (99.23)	0.31	99.54	0.56
Seasonally High (99.73)	0.26	99.99	0.11

Table 13: Estimated Maximum Groundwater Mounding below Infiltration Gallery

It is noted the above mounding depths are still below the bottom of the infiltration gallery. Should a larger rainfall even occur during the seasonally high groundwater condition there could be potential for the groundwater mound to extend into the infiltration gallery. However, there is a storm sewer outlet proposed at the bottom of the infiltration gallery (Invert =100.10m per attached **Drawing SSP-1**) which will limit the maximum groundwater height to the bottom of the infiltration gallery. Once the mounding reaches the bottom, the stored stormwater would discharge only through the controlled outlets and would not infiltrate. Since the groundwater mounding is caused only by infiltrating stormwater and not by external sources, there should be no loss of storage volume due to groundwater mounding.

5.3.8 Thermal Controls

The MVCA and MOECC confirmed that Poole Creek is designated as a "cool-water fish habitat". As the proposed development will increase the amount of impervious area on the site and roof top detention will increase water temperatures, thermal mitigation measures are required for the site.

As the majority of heat transfer from paved surfaces occurs during the first flush (considered as the initial 10mm of each design event), storage of the 10mm event has been given priority. With exception of the rooftop areas, the site is designed with minimal surface storage. All runoff will be captured and detained in the underground storage unit which will allow for heat dumping into the surrounding ground and granular material. Similarly, runoff conveyed through the granular subbase of the bioswale will experience cooling. Roof discharge will be the most thermally impacted water as it will be retained on the rooftops for several hours. This water will be discharged to the underground rainwater harvesting tank and will inlet at the bottom of the tank such that if the tank is full, the cooler water will be discharged first through the overflow. With 167m³ of storage available in each of the rainwater harvesting tanks, the only occurrence where roof discharge would not experience any temperature mitigation via mixing or detention would be when total rainfall exceeds approximately a 2-year event. The reverse temperature mitigation effect (warming water during cold weather) would also occur with these measures as ground temperatures would warm the runoff.

Stormwater Management March 22, 2017

5.3.9 Monitoring Plan

In addition to monitoring requirements to be identified by the MOECC in the Environmental Compliance Approval (ECA), the site will require regular monitoring of the LID measures installed on the site. A detailed monitoring program will be developed through consultation with the City of Ottawa and MVCA. In general, the monitoring plan will required pre-construction, during construction and post-construction monitoring and include the following:

- Installation of water level loggers in both the rainwater harvesting tank, infiltration gallery, and bioswale (monitoring "well" to be installed) to assess frequency of overflow and drawdown rates and compare with design values;
- Installation of temperature logger in the outlet manhole from the site to monitor temperature of the storm discharge. The temperature logger cannot be installed at the outlet to Poole Creek as this outlet will include discharge from the CMHC lands as well and would not be representative of the subject site;
- Collection of water quality samples upstream and downstream of the proposed OGS unit;
- Visual inspection of all LID systems at least once per month and following all large rainfall events. Including observations for:
 - o Debris accumulation on the surface
 - Measurement of/inspection for sediment accumulation in rainwater harvesting tank and infiltration gallery
 - Presence of ponded water on the surface of the bioswale beyond design duration
 - o Outlet/inlet blockages of tanks and OGS

A detailed monitoring plan is included in **Appendix H**.

5.3.10 Contingency Plan

It is recognized that the proposed stormwater management plan is considered a "pilot project" by the City of Ottawa and has allowed for credit from the LID measures toward the stormwater management design. As such the monitoring plan for the site will be critical in assessing the performance of the system. Should either the pre-construction monitoring result in findings that will impact the function of the system, then additional assessment of the design will be required to assess system performance and determine whether additional storage is required. Additional storage would be provided by expanding the size of the proposed infiltration gallery. This assessment would be required prior to constructing the facility. A memo will be issued to the City of Ottawa outlining the monitoring results and confirming whether there is any need for expansion of the infiltration system.

Similarly, post-construction monitoring will assess the performance of the system. Data analysis and reporting will be completed and review whether any retrofits to the system are required. The

Stormwater Management March 22, 2017

greatest benefit to the SWM design is the storage available in the rainwater harvesting system. It is estimated that the greatest impact to the system storage requirements would be if this system does not operate as designed and this entire volume cannot be relied upon for the SWM system. This would result in the need for an additional 335m³ to be added to the infiltration gallery. While this extreme is assumed to be unlikely, it is recommended that the site MOECC ECA include this contingency volume of 335m³ to allow for the expansion if needed without requiring an amendment to the ECA before proceeding.

Post-construction monitoring will include groundwater level monitoring and water level monitoring within the infiltration gallery. Results will be monitored to ensure no storage volume is lost as a result of groundwater influences and storage volume would be adjusted as necessary. However, it is anticipated that since the infiltration gallery design includes and outlet at the bottom of the storage area, there should be no significant loss of volume caused by seasonal groundwater fluctuations or mounding.

5.4 SUMMARY OF FINDINGS

Based on the preceding, the following conclusions can be drawn:

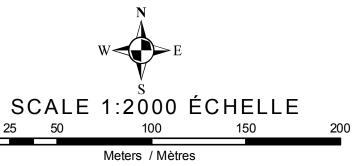
- The proposed stormwater management plan is in compliance with the criteria established for the site and the 2012 City of Ottawa Sewer Guidelines.
- Inlet control devices are proposed to limit inflow from the site area into the minor system to maximize the use of surface storage.
- Subsurface storage has been provided to further limit site outflows to the peak site discharge rate determined via PCSWMM model (See **Table 14** below).
- The storm sewer hydraulic grade line is maintained at least 0.30 m below finished ground elevations during design storm events.
- All dynamic surface water depths are less than 0.30 m during all design storm events.
- Quality control is provided by a Stormceptor model STC3000 upstream of the underground storage facility to maintain water quality objectives outlined in the background reports.

Table 14: Site Peak Discharge Rates/Targets

Storm Event	Site Peak Discharge Rate (L/s)	Target Discharge Rate (L/s)
2-Year 12 Hour SCS	15.2	17.7
5-Year 12 Hour SCS	38.6	43.9
10-Year 12 Hour SCS	64.5	66.2
25-Year 12 Hour SCS	98.7	103.7
50-Year 12 Hour SCS	116.2	136.5
100-Year 12 Hour SCS	136.3	176.3
100-Year 12 Hour SCS +20%	317.0	-

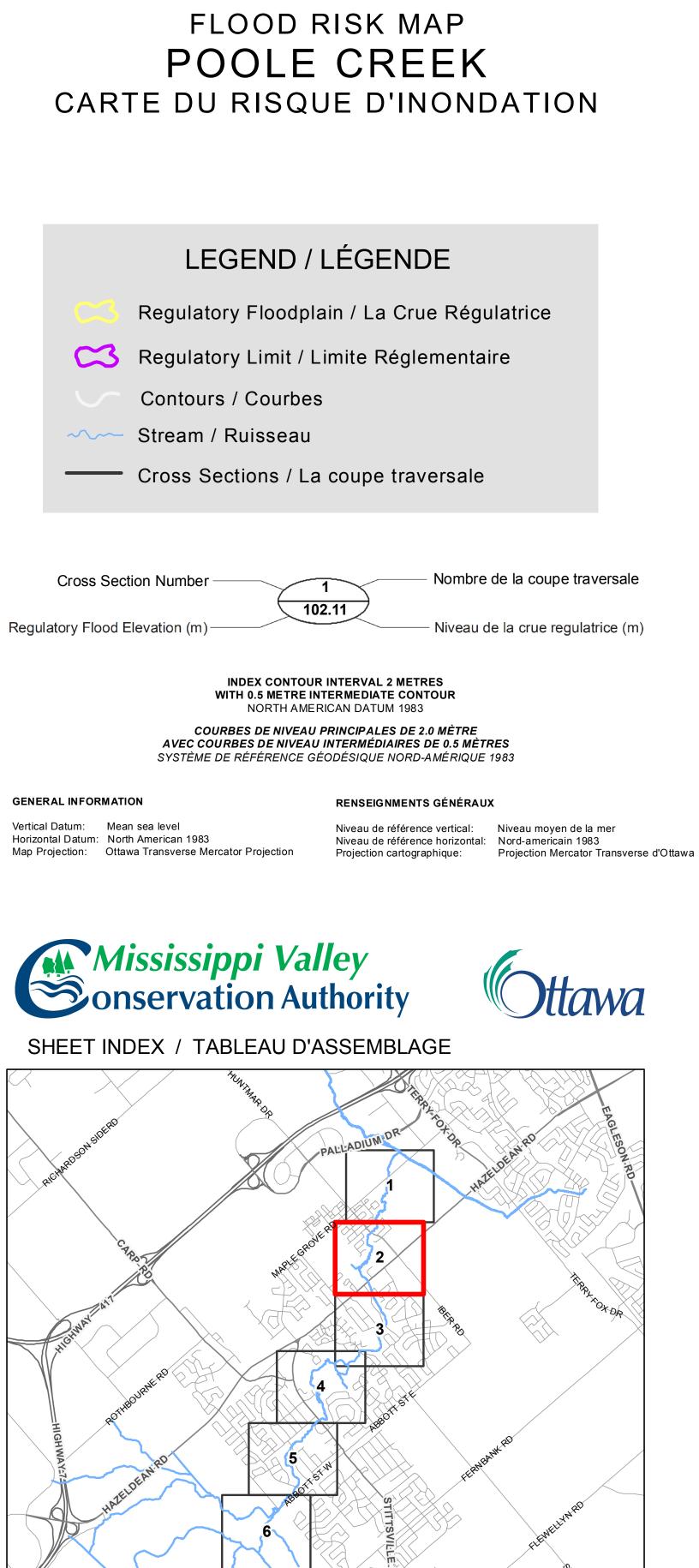
Appendix C Stormwater Management March 22, 2017

Appendix C STORMWATER MANAGEMENT


C.1 STORM SEWER DESIGN SHEET AND ROOF STORAGE CALCULATIONS

This map and the associated information displayed are to be used for general illustrative purposes only. Although best efforts have been made to create accuracy; due to the complex and extensive nature of the data, all representations and/or information provided herein are approximate and to be verified by user. User hereby acknowledges that this map is not intended for true and accurate navigational purposes and hereby accepts and assumes all inherent risks associated with the use of this map.

This map is produced in part with data provided by the Ontario Geographic Data Exchange under Licence with the Ontario Ministry ofNatural Resources and the Queen's Printer for Ontario, 2013


Imagery © City of Ottawa, 2011 Digital Elevation Information © GeoDigital International Inc, Spring 2008

This map and the associated information displayed are to be used for general illustrative purposes only. Although best efforts have been made to create accuracy; due to the complex and extensive nature of the data, all representations and/or information provided herein are approximate and to be verified by user. User hereby acknowledges that this map is not intended for true and accurate navigational purposes and hereby accepts and assumes all inherent risks associated with the use of this map.

This map is produced in part with data provided by the Ontario Geographic Data Exchange under Licence with the Ontario Ministry ofNatural Resources and the Queen's Printer for Ontario, 2013

Imagery © City of Ottawa, 2011 Digital Elevation Information © GeoDigital International Inc, Spring 2008

Revision #	Issue	BOFESSION .
1 - Nov. 14 2013	Public review	a a a a a a a a a a a a a a a a a a a
2 - Dec. 4, 2013	Board approval	(3 Amtrud 2)
3 - Jan. 21,2015	Final	J. S. A. PRICE
		3 Van. 20/15 0
		Charge on the
		CE OF

S A	5	5731 Hazeldea	n Road								<u>DESIGN</u> I = a / (t+	PARAME	TERS	()	2.4. of Otto			10)												
Stantec	DATE: REVISION:		23-M	lar-2017 3	-			Ottawa)			a =	,	1:100 yr	(As per C	City of Otta	0.013	elines, 20°	BEDDING	CLASS =	В										
	DESIGNED BY: CHECKED BY:	:		DT AL	FILE NU	MBER: 160	4-01195				b = c =	6.053 0.814	6.014 0.820	MINIMUM	COVER:	2.00	m min	5255		2										
	LOCATION									DRAINA	GE AREA													PIPE SELE	CTION					
AREA ID NUMBER	FROM M.H.	TO M.H.	AREA (5-YEAR)	AREA (100-YEAR)	AREA (ROOF)	С	ACCUM. AREA (5YR	A x C (5-YEAR)	ACCUM. AxC (5YR)	ACCUM. AREA (100YI	A x C R (100-YEAR)	ACCUM. AxC (100YR)	T of C	I _{5-YEAR}	I _{10-YEAR}	Q _{CONTROL} (NOTE 1)	ACCUM. Q _{CONTROL}	Q _{ACT} (CIA/360)	LENGTH	PIPE WIDTH OR DIAMETEI		PIPE SHAPE	MATERIAL	CLASS	SLOPE	Q _{CAP} (FULL)	% FULL	VEL. (FULL)	VEL. (ACT)	TIME OF FLOW
			(ha)	(ha)	(ha)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
	TANKOUT	102	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.000	0.000	13.91 13.98	87.26	149.29	44.9	44.9	44.9	2.8	450	450	CIRCULAR	CONCRETE	-	0.20	133.0	33.76%	0.81	0.62	0.08
	103	102	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.000	0.000	10.00 10.00	104.19	178.56	0.0	0.0	0.0	3.0	450	450	CIRCULAR	CONCRETE	-	1.00	298.1	0.00%	1.82	0.00	0.00
	102	101	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.000	0.000	13.98	86.99	148.82	0.0	44.9	44.9	70.7	450	450	CIRCULAR	CONCRETE	-	0.20	133.0	33.76%	0.81	0.62	1.92
	101 100	100 HEADWALL	0.00	0.00	0.00	0.00	0.00	0.000 0.000	0.000 0.000	0.00 0.00	0.000 0.000	0.000 0.000	15.90 18.65	80.76 73.36	138.07 125.30	0.0 62.4	44.9 107.3	44.9 107.3	101.6 11.1	450 675	450 675	CIRCULAR	CONCRETE CONCRETE	-	0.20	133.0	33.76% 10.34%	0.81 2.81	0.62	2.75 0.12
	100	HEADWALL	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.000	0.000	18.77	73.30	123.30	02.4	107.5	107.5	11.1	675	675	CIRCULAR	CONCRETE		1.40	1037.0	10.34 /	2.01	1.50	0.12
ST109A-C	109	104	0.13	0.00	0.00	0.90	0.13	0.114	0.114	0.00	0.000	0.000	10.00 10.63	104.19	178.56	0.0	0.0	32.9	38.2	375	375	CIRCULAR	PVC	-	1.00	164.8	19.94%	1.56	1.01	0.63
ST110A-D	110	106	0.21	0.00	0.00	0.44	0.21	0.093	0.093	0.00	0.000	0.000	10.00 10.22	104.19	178.56	0.0	0.0	26.8	12.5	375	375	CIRCULAR	PVC	-	1.00	164.8	16.24%	1.56	0.95	0.22
	500 501	501 111	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.000 0.000	0.000 0.000	0.00 0.00	0.000 0.000	0.000 0.000	10.00 10.00 10.00		178.56 178.56	0.0 0.0	0.0 0.0	0.0 0.0	26.1 4.0	200 200	200 200	CIRCULAR	PVC PVC	•	1.00 1.00	33.3 33.3	0.00% 0.00%	1.05 1.05	0.00 0.00	0.00 0.00
	502	111	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.000	0.000	10.00 10.00	104.19	178.56	0.0	0.0	0.0	2.8	200	200	CIRCULAR	PVC	-	1.00	33.3	0.00%	1.05	0.00	0.00
ST111A-C ST107A	111 107	107 106	0.32 0.37	0.00 0.00	0.00 0.00	0.68 0.65	<mark>0.32</mark> 0.70	0.221 0.243	<mark>0.221</mark> 0.464	<mark>0.00</mark> 0.00	0.000 0.000	<mark>0.000</mark> 0.000	10.00 11.68 12.59	104.19 96.10	178.56 164.56	0.0 0.0	<mark>0.0</mark> 0.0	64.0 123.8	110.4 63.3	375 450	375 450	CIRCULAR CIRCULAR	PVC CONCRETE		0.70 0.50	137.9 210.3	46.41% 58.87%	1.31 1.28	1.10 1.15	1.68 0.91
	106	105	0.00	0.00	0.00	0.00	0.91	0.000	0.556	0.00	0.000	0.000	12.59 12.93	92.25	157.90	0.0	0.0	142.6	17.6	525	525	CIRCULAR	CONCRETE		0.20	200.6	71.05%	0.90	0.85	0.34
ST108C-F ST108A, B	108A 108	108 105	0.38	0.00 0.00	0.13 0.77	0.51 0.25	0.38 0.38	0.195 0.000	0.195 0.195	0.00 0.00	0.000 0.000	0.000 0.000	10.00 11.46	104.19 97.07	178.56 166.24	8.0 43.7	8.0 51.7	64.4 104.2	85.0 36.3	375 450	375 450	CIRCULAR CIRCULAR	PVC CONCRETE	-	0.50 0.30	116.6 162.9	55.25% 63.98%	1.11 0.99	0.97 0.92	1.46 0.66
	105	104	0.00	0.00	0.00	0.00	1.29	0.000	0.751	0.00	0.000	0.000	12.12 12.93 13.60	90.89	155.55	0.0	51.7	241.3	39.1	600	600	CIRCULAR	CONCRETE	-	0.20	286.5	84.25%	0.98	0.98	0.66
ST104A	104 103	103 TANKIN2	0.15		0.00 0.00	0.79 0.00	1.57 1.57	0.118 0.000	<mark>0.983</mark> 0.983	<mark>0.00</mark> 0.00	0.000 0.000	0.000 0.000	<mark>13.60</mark> 13.86 13.91		151.22 149.57	0.0 0.0	<mark>51.7</mark> 51.7	293.1 290.5	16.3 2.8	675 675 675	675 675 675		CONCRETE CONCRETE	-	0.20 0.20		74.73% 74.08%		1.03 1.02	0.26 0.05
ST507A	507	TANKIN3	0.05	0.00	0.00	0.90	0.05	0.049	0.049	0.00	0.000	0.000	10.00 10.02	104.19	178.56	0.0	0.0	14.2	0.9	200 200	200 200	CIRCULAR	PVC	-	1.00	33.3	42.56%	1.05	0.85	0.02
	511	510	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.000	0.000	10.00	104.19	179 56	0.0	0.0	0.0	24.0	250	250	CIRCULAR	CONCRETE		0.25	30.2	0.00%	0.61	0.00	0.00
ST508A	511 510 509 508	510 509 508 TANKIN1	0.00 0.00 0.00 0.34	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.25	0.00 0.00 0.00 0.34	0.000 0.000 0.000 0.084	0.000 0.000 0.000 0.084	0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	10.00	104.19 104.19	178.56	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 24.3	24.0 41.2 40.4 8.7	250 250 250 250 250	250 250 250 250 250 250	CIRCULAR CIRCULAR		•	0.25 0.25 0.25 0.25	30.0 30.2	0.00% 0.00% 79.77%	0.61 0.61 0.61 0.61	0.00 0.00 0.00 0.60	0.00 0.00 0.00 0.24

File No: 160401195 Project: 5731 Hazeldean Date: 30-Jan-17

SWM Approach: Post-development to Pre-development flows

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

Sub-cat	chment	Runoff C	oefficient Table Area		Runoff			Overall
Ar Catchment Type	ea ID / Description		(ha) "A"		Coefficient "C"	"A >	« C"	Runoff Coefficien
Deef	074000	Lined	0.05			0.047		
Roof	ST108D	Hard Soft	0.05 0.00		0.9 0.2	0.047 0.000		
	S	ibtotal	0.00	0.052	0.2	0.000	0.047	0.900
	50	ibiotai		0.052			0.047	0.300
Roof	ST108E	Hard	0.03		0.9	0.024		
		Soft	0.00		0.2	0.000		
	Su	ıbtotal		0.027			0.024	0.900
Roof	ST108B	Hard	0.36		0.9	0.328		
1.001	011002	Soft	0.00		0.2	0.000		
	Su	ibtotal		0.364	•		0.328	0.900
Roof	ST108A	Hard	0.40		0.9	0.363		
1.001	01100/1	Soft	0.00		0.2	0.000		
	Su	ibtotal		0.404			0.363	0.900
Roof	ST108C	Hard	0.05		0.9	0.042		
		Soft	0.00		0.2	0.000		
	Su	ıbtotal		0.047			0.042	0.900
Total erall Runoff Coefficient= C:				0.894			0.805	0.90
tal Roof Areas			0.894	ha				
tal Tributary Surface Areas (Controlled and Uncontro	(hell	0.000 1					
tal Tributary Area to Outlet	controlled and oncontro	ineu)	0.894 1					
al Uncontrolled Areas (Non	Uncontrolled Areas (Non-Tributary)			ha				
al Site			0.894	ha				

Stormwater Management Calculations

Project #160401195, 5731 Hazeldean

Project #160401195, 5731 Hazeldean Modified Rational Method Calculaton s for Storage

	5 yr Intens		$I = a/(t + b)^{c}$	a =	998.071	t (min)	I (mm/hr)	1
	City of Otta	awa		b = c =	6.053 0.814	5 10	141.18 104.19	1
				U =	0.014	15	83.56	
						20	70.25	
						25 30	60.90 53.93	
						35	48.52	
						40	44.18	
						45	40.63	
						50 55	37.65 35.12	
						60	32.94	
	5 YEAR M	Nodified F	Rational Meth	nod for Entir	e Site			
Subdra	ainage Area: Area (ha):	ST108D 0.05		м	aximum Sto	rage Depth:	Roo 150	of Omm
	C:	0.90						
	tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	1
	5	141.18	18.26	2.75	15.51	4.65	89.6	0.00
	10	104.19	13.48	3.09	10.39	6.24	100.5	0.00
	15 20	83.56 70.25	10.81 9.09	3.17 3.20	7.64 5.89	6.88 7.07	103.2 104.0	0.00
	25	60.90	7.88	3.19	4.69	7.03	103.9	0.00
	30	53.93	6.98	3.17	3.81	6.86	103.1	0.00
	35 40	48.52 44.18	6.28 5.72	3.13 3.09	3.14 2.62	6.60 6.29	102.0 100.7	0.00
	40 45	44.18 40.63	5.72	3.09	2.62	5.98	99.0	0.00
	50	37.65	4.87	2.98	1.90	5.69	96.9	0.00
	55	35.12	4.54	2.91	1.63	5.39	94.8	0.00
	60	32.94	4.26	2.85	1.41	5.09	92.7	0.00
Storage:	Roof Storag			<u>.</u>				-
		Depth (mm)	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Discharge Check	
5-year	Water Level	104.03	0.10	3.20	7.07	20.68	0.00	_
Subdra	ainage Area:	ST108E					Roo	of
	Area (ha): C:	0.03 0.90		M	aximum Sto	rage Depth:	150	0 mm
	tc (min)	I (5 yr)	Qactual	Qrelease (L/s)	Qstored	Vstored (m^3)	Depth	Т
	5	(mm/hr) 141.18	(L/s) 9.61	1.38	(L/s) 8.23	2.47	(mm) 89.9	0.00
	10	104.19	7.09	1.55	5.54	3.32	100.8	0.00
	15	83.56	5.68	1.59	4.09	3.68	103.7	0.00
	20 25	70.25 60.90	4.78 4.14	1.61 1.61	3.17 2.53	3.81 3.80	104.7 104.7	0.00
	30	53.93	3.67	1.60	2.07	3.73	104.1	0.00
	35	48.52	3.30	1.58	1.72	3.61	103.1	0.00
	40 45	44.18 40.63	3.01 2.76	1.57 1.54	1.44 1.22	3.46 3.29	101.9 100.6	0.00
	50	37.65	2.56	1.52	1.04	3.13	98.8	0.00
	55	35.12 32.94	2.39 2.24	1.49 1.46	0.90	2.98	96.8 94.7	0.00
_	60		2.24	1.40	0.79	2.83	94.7	0.00
Storage:	Roof Storag			<u>.</u>			<u> </u>	-
5-vear	Water Level	Depth (mm) 104.74	Head (m) 0.10	Discharge (L/s) 1.61	Vreq (cu. m) 3.81	Vavail (cu. m) 10.88	Discharge Check 0.00	_
-		ST108B					Roo	-
Subura	ainage Area: Area (ha): C:	0.36		М	aximum Sto	rage Depth:		" 0 mm
	tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	Τ
	5	141.18	128.71	17.98	110.73	33.22	90.0	0.00
	10	104.19	94.99	20.17	74.81	44.89	101.0	0.00
	15 20	83.56 70.25	76.18 64.04	20.78 21.00	55.40 43.05	49.86 51.66	104.1 105.1	0.00
	25	60.90	55.52	21.01	34.51	51.76	105.2	0.00
	30	53.93	49.16	20.90	28.26	50.87	104.7	0.00
	35 40	48.52 44.18	44.23 40.28	20.72 20.49	23.51 19.79	49.38 47.50	103.8 102.6	0.00
	40 45	44.18 40.63	40.28 37.04	20.49 20.23	19.79	47.50 45.38	102.6	0.00
	50	37.65	34.33	19.95	14.37	43.12	99.9	0.00
	55 60	35.12 32.94	32.02 30.03	19.56 19.16	12.46 10.87	41.13 39.14	97.9 96.0	0.00
Storage:	Roof Storag							
o.aye.		Depth	Head	Discharge	Vreq	Vavail	Discharge	٦
	Water Level	(mm) 105.21	(m) 0.11	(L/s) 21.01	(cu. m) 51.76	(cu. m) 145.75	Check 0.00	-
5-vear		. 99.61	0.11				0.00	
		ST108A		M	aximum Sto	rage Depth:	Roo 150	of O mm
	ainage Area: Area (ha): C:	0.40 0.90						
	Area (ha): C: tc	0.40 0.90 I (5 yr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	T
	Area (ha): C: tc (min) 5	0.40 0.90 I (5 yr) (mm/hr) 141.18	(L/s) 142.64	(L/s) 19.39	(L/s) 123.25	(m^3) 36.97	(mm) 90.2	
	Area (ha): C: (min) 5 10	0.40 0.90 I (5 yr) (mm/hr) 141.18 104.19	(L/s) 142.64 105.27	(L/s) 19.39 21.77	(L/s) 123.25 83.50	(m^3) 36.97 50.10	(mm) 90.2 101.2	0.00
	Area (ha): C: tc (min) 5	0.40 0.90 I (5 yr) (mm/hr) 141.18	(L/s) 142.64	(L/s) 19.39	(L/s) 123.25	(m^3) 36.97	(mm) 90.2	0.00
	Area (ha): C: (min) 5 10 15 20 25	0.40 0.90 I (5 yr) (mm/hr) 141.18 104.19 83.56 70.25 60.90	(L/s) 142.64 105.27 84.42 70.98 61.53	(L/s) 19.39 21.77 22.44 22.69 22.72	(L/s) 123.25 83.50 61.98 48.28 38.80	(m ³) 36.97 50.10 55.78 57.94 58.20	(mm) 90.2 101.2 104.3 105.5 105.7	0.00 0.00 0.00
	Area (ha): C: (min) 5 10 15 20 25 30	0.40 0.90 I (5 yr) (mm/hr) 141.18 104.19 83.56 70.25 60.90 53.93	(L/s) 142.64 105.27 84.42 70.98 61.53 54.48	(L/s) 19.39 21.77 22.44 22.69 22.72 22.62	(L/s) 123.25 83.50 61.98 48.28 38.80 31.86	(m^3) 36.97 50.10 55.78 57.94 58.20 57.35	(mm) 90.2 101.2 104.3 105.5 105.7 105.2	0.00
	Area (ha): C: (min) 5 10 15 20 25 30 35 40	0.40 0.90 (mm/hr) 141.18 104.19 83.56 70.25 60.90 53.93 48.52 44.18	(L/s) 142.64 105.27 84.42 70.98 61.53 54.48 49.02 44.64	(L/s) 19.39 21.77 22.44 22.69 22.72 22.62 22.44 22.21	(L/s) 123.25 83.50 61.98 48.28 38.80 31.86 26.58 22.43	(m^3) 36.97 50.10 55.78 57.94 58.20 57.35 55.81 53.84	(mm) 90.2 101.2 104.3 105.5 105.7 105.2 104.4 103.3	0.00
	Area (ha): C: (min) 5 10 15 20 25 30 35	0.40 0.90 I (5 yr) (mm/hr) 141.18 104.19 83.56 70.25 60.90 53.93 48.52	(L/s) 142.64 105.27 84.42 70.98 61.53 54.48 49.02	(L/s) 19.39 21.77 22.44 22.69 22.72 22.62 22.44	(L/s) 123.25 83.50 61.98 48.28 38.80 31.86 26.58	(m^3) 36.97 50.10 55.78 57.94 58.20 57.35 55.81	(mm) 90.2 101.2 104.3 105.5 105.7 105.2 104.4	0.00

Modified Rational Method Calculatons for Storage 100 yr Intensity City of Ottawa $I = a/(t + b)^{6}$ 1735.688 t (min) l (mm/hr) a = b = 6.01 242.70 0.82 10 15 178.56 142.89 142.89 119.95 103.85 91.87 82.58 75.15 69.05 63.95 20 25 30 35 40 45 50 55 60 59.62 55.89 100 YEAR Modified Rational Method for Entire Site ST108D 0.05 1.00 Subdrainage Area: Area (ha): C: Roof 150 Maximum Storage Depth: l (100 yr) tc Qactua Qrelease Qstored Vstored Depth (min) 10 (mm/hr (L/s) 25.67 (L/s) 3.93 (L/s) 21.73 (m^3) 13.04 15.69 16.19 15.88 15.20 14.35 13.40 12.42 11.50 10.67 9.87 9.11 (mm) 128.1 135.7 137.1 136.2 134.3 131.8 129.1 126.3 178.56 178.56 119.95 91.87 75.15 63.95 55.89 25.07 17.24 13.21 10.80 9.19 8.03 4.17 4.21 4.18 4.13 4.05 3.97 3.88 13.07 8.99 6.62 5.07 3.98 3.19 2.59 20 30 40 50 60 70 80 90 100 110 120 0.00 49.79 44.99 7.16 6.47 0.00 44.99 41.11 37.90 35.20 32.89 5.91 5.45 5.06 4.73 3.78 3.67 3.56 3.46 2.39 2.13 1.78 1.50 1.26 120.3 123.0 119.5 116.0 112.7 Storage Roof Storage Discharge Discharge Check 0.00 Depth Head Vreq Vavai (m) 0.14 (L/s) 4.21 (cu. m) 16.19 (cu. m 20.68 100-year Water Level 137.1 Subdrainage Area: ST108F Roof 0.03 Area (ha): C: Maximum Storage Depth 150 m Vstored (m^3) 6.92 (100 yr) Qstored Depth tc Qactua (L/s) 13.50 (L/s) 1.97 (min) 10 (mm/hr) 178.56 (L/s) 11.53 (mm) 128.4 2.09 8.37 20 119.95 9.07 6.97 136.3 138.0 137.4 135.7 133.4 130.9 128.2 125.4 0.0 5.68 4.83 4.23 3.76 30 40 50 60 70 80 90 100 110 120 91.87 75.15 2.12 4.82 3.57 2.75 2.18 1.75 1.43 1.18 8.68 8.57 8.25 7.83 7.37 6.88 6.38 0.0 0.0 75.15 63.95 55.89 49.79 44.99 41.11 2.11 2.08 2.05 2.01 1.97 1.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.40 3.11 37.90 35.20 32.89 2.87 2.66 2.49 1.88 1.82 1.77 0.99 0.84 0.71 5.94 5.53 5.13 122.1 122.1 118.8 115.5 Roof Storage Storage Depth Head Discharge Vreq Vavail Discharge (m) 0.14 (L/s) 2.12 (cu. m) 8.68 (cu. m) 10.88 Check 0.00 100-year Water Level 138.04 Subdrainage Area: ST108B Roof 150 m Maximum Storage Depth: Area (ha): 0.36 C: 1.00 Depth (mm) 128.6 tr (100 yı Qactua Orelea Qstore Vstorer (mm/hr) 178.56 (L/s) 180.87 (m^3) 93.12 (min) 10 (L/s) 25.67 (L/s) 27.29 27.67 94.21 65.39 113.05 117.70 136.7 138.6 138.1 136.5 134.3 131.9 129.3 126.6 123.7 120.4 117.2 20 30 40 50 60 70 80 90 100 110 119.95 121.50 93.06 0.0 91.87 0.0 75.15 76.12 64.78 56.62 50.43 45.57 41.64 38.39 35.66 27.57 48.54 37.53 116.51 112.58 0.00 63.95 27.26 63.95 55.89 49.79 44.99 41.11 37.90 35.20 37.53 29.80 24.10 19.76 16.36 13.70 11.62 26.82 26.33 25.81 25.28 107.26 101.23 94.85 88.34 0.00 82.18 76.72 71.45 24.70 24.03 120 32.89 33.32 23.40 9.92 Roof Storage Storage Vreq Vavail Depth Head Discharge Discharge (m) 0.14 (L/s) 27.67 (cu. m) 117.70 (cu. m) 145.75 Check 0.00 100-year Water Level 138.58 ST108A Roof 150 r Subdrainage Area: Area (ha): C: Maximum Storage Depth: 0.40 1.00 tc l (100 vr Qactua Qreleas Qstored Vstored Depth (min) 10 (mm/hr 178.56 (L/s) 200.45 (L/s) (L/s) (m^3) (mm) 172.76 105.19 73.22 54.52 42.28 33.67 27.33 128.7 137.0 139.1 138.7 137.3 135.2 132.8 29.47 29.91 29.83 29.52 126.23 131.80 130.86 126.84 134.66 103.13 119.95 91.87 20 30 40 50 60 70 80 90 0.00 75.15 63.95 84.36 71.79 0.0 0.00 55.89 49.79 44.99 41.11 62.75 55.89 29.07 121.23 114.78 0.00 28.56

130.3

127.7

22.48

107.93

100.90

28.02 27.47

50.51 46.15

Stormwater Management Calculations

Project #160401195, 5731 Hazeldean

Modified								
	50	37.65	38.04	21.66	16.39	49.16	100.7	0.00
	55	35.12	35.49	21.30	14.19	46.81	99.1	0.00
	60	32.94	33.28	20.88	12.40	44.65	97.1	0.00
Storage:	Roof Storag	ge						
	1	Depth	Head	Discharge	Vreq	Vavail	Discharge	1
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
5-year	Water Level	105.67	0.11	22.72	58.20	161.52	0.00]
Quite day		ST108C					Roo	
Subura	ainage Area: Area (ha):	0.05			louinum Cto	rage Depth:		mm
	Area (na): C:	0.05		IVI	aximum Stu	rage Deptri.	150	mm
	U:	0.90						
	tc	l (5 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	T
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	
	5	141.18	16.63	2.74	13.90	4.17	89.1	0.00
	10	104.19	12.27	3.06	9.21	5.53	99.6	0.00
	15	83.56	9.84	3.14	6.71	6.03	102.1	0.00
	20	70.25	8.28	3.15	5.12	6.15	102.7	0.00
	25	60.90	7.17	3.14	4.03	6.05	102.2	0.00
	30	53.93	6.35	3.11	3.24	5.84	101.2	0.00
	35	48.52	5.72	3.07	2.65	5.56	99.9	0.00
	35 40	48.52 44.18		3.07 3.00	2.20	5.56 5.29	99.9 97.7	
			5.72					0.00
	40	44.18	5.72 5.21	3.00	2.20 1.85 1.57	5.29	97.7	0.00
	40 45	44.18 40.63	5.72 5.21 4.79	3.00 2.93	2.20 1.85	5.29 5.00	97.7 95.5	0.00
	40 45 50	44.18 40.63 37.65	5.72 5.21 4.79 4.44	3.00 2.93 2.87	2.20 1.85 1.57	5.29 5.00 4.71	97.7 95.5 93.3	0.00
Storage:	40 45 50 55	44.18 40.63 37.65 35.12 32.94	5.72 5.21 4.79 4.44 4.14	3.00 2.93 2.87 2.80	2.20 1.85 1.57 1.34	5.29 5.00 4.71 4.42	97.7 95.5 93.3 91.0	0.00
Storage:	40 45 50 55 60	44.18 40.63 37.65 35.12 32.94	5.72 5.21 4.79 4.44 4.14	3.00 2.93 2.87 2.80	2.20 1.85 1.57 1.34	5.29 5.00 4.71 4.42	97.7 95.5 93.3 91.0	0.00
Storage:	40 45 50 55 60	44.18 40.63 37.65 35.12 32.94	5.72 5.21 4.79 4.44 4.14 3.88	3.00 2.93 2.87 2.80 2.73	2.20 1.85 1.57 1.34 1.15	5.29 5.00 4.71 4.42 4.14	97.7 95.5 93.3 91.0 88.9	0.00

Project #160401195, 5731 Hazeldean

Modified	Rational	Nethod Ca	alculatons	for Storag	е			
	100	37.90	42.55	26.91	15.64	93.84	125.1	0.00
	110	35.20	39.52	26.21	13.31	87.81	121.9	0.00
	120	32.89	36.93	25.53	11.39	82.04	118.7	0.00
Storage:	Roof Storag	ge						
		Depth	Head	Discharge	Vreq	Vavail	Discharge	٦
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
100-yea	r Water Level	139.08	0.14	29.91	131.80	161.52	0.00]
		071000						,
Subdr	ainage Area:	ST108C					Roo	
	Area (ha): C:	0.05 1.00		M	aximum Sto	rage Depth:	150) mm
	C:	1.00						
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	
	10	178.56	23.37	3.92	19.46	11.67	127.4	0.00
	20	119.95	15.70	4.13	11.57	13.89	134.4	0.00
	30	91.87	12.02	4.16	7.87	14.16	135.3	0.00
	40	75.15	9.84	4.11	5.72	13.73	133.9	0.00
	50	63.95	8.37	4.04	4.33	12.99	131.6	0.00
	60	55.89	7.32	3.96	3.36	12.10	128.8	0.00
	70	49.79	6.52	3.86	2.65	11.14	125.8	0.00
	80	44.99	5.89	3.75	2.14	10.27	122.0	0.00
	90	41.11	5.38	3.63	1.75	9.45	118.2	0.00
	100	37.90	4.96	3.52	1.44	8.66	114.5	0.00
	110	35.20	4.61	3.41	1.20	7.91	111.0	0.00
	120	32.89	4.31	3.31	1.00	7.20	107.6	0.00
		02.00	4.51	0.01	1.00	1.20		
Storage:	Roof Storag		4.51	0.01	1.00	1.20		
Storage:		ge Depth	Head	Discharge	Vreq	Vavail	Discharge	٦
-		ge Depth (mm)					Discharge Check 0.00]

Project #160401195, 5731 Hazeldean Roof Drain Design Sheet, Area ST108A Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

		~			Volume Estimation						
	Rating	j Curve									
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth			
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)			
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000			
0.025	0.0004	0.0054	1	0.025	90	1	1	0.025			
0.050	0.0008	0.0108	6	0.050	359	5	6	0.050			
0.075	0.0012	0.0161	20	0.075	808	14	20	0.075			
0.100	0.0015	0.0215	48	0.100	1436	28	48	0.100			
0.125	0.0019	0.0269	93	0.125	2243	46	93	0.125			
0.150	0.0023	0.0323	162	0.150	3230	68	162	0.150			

	Drawdown Estimate							
Total	Total							
Volume	Time	Vol	Detention					
(cu.m)	(sec)	(cu.m)	Time (hr)					
0.0	0.0	0.0	0					
5.2	486.8	5.2	0.13523					
19.4	881.0	14.2	0.37995					
47.1	1286.7	27.7	0.73735					
92.7	1697.0	45.6	1.20874					
160.8	2109.7	68.0	1.79476					

Notch Rating

232

Rooftop Storage Summary

Total Building Area (sq.m)		4038	
Assume Available Roof Area (sq.	80%	3230	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		14	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)		162	
Estimated 100 Year Drawdown Time (h)		1.5	

From Zurn Drain Catalogue Head (m) L/min L/s

0.051 45.5 0.00076

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	5yr	100yr	Available
Qresult (cu.m/s)	0.023	0.030	-
Depth (m)	0.106	0.139	0.150
Volume (cu.m)	58.2	131.8	161.5
Draintime (hrs)	0.9	1.5	

Project #160401195, 5731 Hazeldean Roof Drain Design Sheet, Area ST108B Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

Rating Curve								
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0004	0.0050	1	0.025	81	1	1	0.025
0.050	0.0008	0.0100	5	0.050	324	5	5	0.050
0.075	0.0012	0.0150	18	0.075	729	13	18	0.075
0.100	0.0015	0.0200	43	0.100	1296	25	43	0.100
0.125	0.0019	0.0250	84	0.125	2024	41	84	0.125
0.150	0.0023	0.0300	146	0.150	2915	61	146	0.150

Drawdown Estimate							
Total	Total						
Volume	Time	Vol	Detention				
(cu.m)	(sec)	(cu.m)	Time (hr)				
0.0	0.0	0.0	0				
4.7	473.1	4.7	0.13141				
17.5	856.1	12.8	0.36921				
42.5	1250.3	25.0	0.71652				
83.7	1649.1	41.2	1.17459				
145.1	2050.0	61.4	1.74404				

Notch Rating

232

From Zurn Drain Catalogue Head (m) L/min L/s

0.051 45.5 0.00076

Rooftop Storage Summary

Total Building Area (sq.m)		3644
Assume Available Roof Area (sq.	80%	2915
Roof Imperviousness		0.99
Roof Drain Requirement (sq.m/Notch)		232
Number of Roof Notches*		13
Max. Allowable Depth of Roof Ponding (m)		0.15
Max. Allowable Storage (cu.m)		146
Estimated 100 Year Drawdown Time (h)		1.5

* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	5yr	100yr	Available
Qresult (cu.	.m/s) 0.021	0.028	-
Depth (m)	0.105	0.139	0.150
Volume (cu	.m) 51.8	117.7	145.7
Draintime (I	hrs) 0.8	1.5	

Project #160401195, 5731 Hazeldean Roof Drain Design Sheet, Area ST108C Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

Rating Curve								
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0004	0.0008	0	0.025	10	0	0	0.025
0.050	0.0008	0.0015	1	0.050	42	1	1	0.050
0.075	0.0012	0.0023	2	0.075	94	2	2	0.075
0.100	0.0015	0.0031	6	0.100	167	3	6	0.100
0.125	0.0019	0.0038	11	0.125	262	5	11	0.125
0.150	0.0023	0.0046	19	0.150	377	8	19	0.150

	Drawdown Estimate							
Total	Total							
Volume	Time	Vol	Detention					
(cu.m)	(sec)	(cu.m)	Time (hr)					
0.0	0.0	0.0	0					
0.6	397.4	0.6	0.11038					
2.3	719.0	1.7	0.3101					
5.5	1050.1	3.2	0.60181					
10.8	1385.1	5.3	0.98655					
18.7	1721.9	7.9	1.46485					

Rooftop Storage Summary

Total Building Area (sq.m)		471	
Assume Available Roof Area (sq.	80%	377	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		2	
Max. Allowable Depth of Roof Ponding (m)		0.15	*
Max. Allowable Storage (cu.m)		19	
Estimated 100 Year Drawdown Time (h)		1.2	

* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	5yr	100yr	Available
Qresult (cu.r	m/s) 0.003	0.004	-
Depth (m)	0.103	0.135	0.150
Volume (cu.	m) 6.1	14.2	18.8
Draintime (h	rs) 0.6	1.2	

From Zurn Drain Catalogue

Head (m) L/min L/s Notch Rating 0.051 45.5 0.00076 232

Project #160401195, 5731 Hazeldean Roof Drain Design Sheet, Area ST108D Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

	Rating Curve								
	Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
	(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
	0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
	0.025	0.0004	0.0008	0	0.025	11	0	0	0.025
	0.050	0.0008	0.0015	1	0.050	46	1	1	0.050
	0.075	0.0012	0.0023	3	0.075	103	2	3	0.075
	0.100	0.0015	0.0031	6	0.100	184	4	6	0.100
	0.125	0.0019	0.0038	12	0.125	287	6	12	0.125
	0.150	0.0023	0.0046	21	0.150	414	9	21	0.150

	Drawdow	n Estimate	
Total	Total		
Volume	Time	Vol	Detention
(cu.m)	(sec)	(cu.m)	Time (hr)
0.0	0.0	0.0	0
0.7	436.4	0.7	0.12121
2.5	789.6	1.8	0.34055
6.0	1153.3	3.5	0.6609
11.9	1521.1	5.8	1.08342
20.6	1890.9	8.7	1.60868

Rooftop Storage Summary

Total Building Area (sq.m)		517	
Assume Available Roof Area (sq.	80%	414	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		2	
Max. Allowable Depth of Roof Ponding (m)		0.15	*
Max. Allowable Storage (cu.m)		21	
Estimated 100 Year Drawdown Time (h)		1.3	

* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results		5yr	100yr	Available
	Qresult (cu.m/s)	0.003	0.004	-
	Depth (m)		0.137	0.150
	Volume (cu.m)	7.1	16.2	20.7
	Draintime (hrs)	0.7	1.3	

From Zurn Drain Catalogue

Head (m) L/min L/s Notch Rating 0.051 45.5 0.00076 232

Project #160401195, 5731 Hazeldean Roof Drain Design Sheet, Area ST108E Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

1		Rating	Curve								
	Elevation	Elevation Discharge Rate Outlet Discharge		Storage	Elevation	Area	Volume	(cu. m)	Water Depth		
	(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)		
	0.000	0.0000	0.0000	0	0.000	0	0	0	0.000		
	0.025	0.0004	0.0004	0	0.025	6	0	0	0.025		
	0.050	0.0008	0.0008	0	0.050	24	0	0	0.050		
	0.075	0.0012	0.0012	1	0.075	54	1	1	0.075		
	0.100	0.0015	0.0015	3	0.100	97	2	3	0.100		
	0.125	0.0019	0.0019	6	0.125	151	3	6	0.125		
	0.150	0.0023	0.0023	11	0.150	218	5	11	0.150		

	Drawdow	n Estimate	
Total	Total		
Volume	Time	Vol	Detention
(cu.m)	(sec)	(cu.m)	Time (hr)
0.0	0.0	0.0	0
0.4	459.0	0.4	0.1275
1.3	830.5	1.0	0.3582
3.2	1213.0	1.9	0.69516
6.2	1599.9	3.1	1.13957
10.8	1988.9	4.6	1.69206

Rooftop Storage Summary

Total Building Area (sq.m) Assume Available Roof Area (sq.	80%	272 218	
Roof Imperviousness	80 %	0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		1	
Max. Allowable Depth of Roof Ponding (m)		0.15	
Max. Allowable Storage (cu.m)		11	
Estimated 100 Year Drawdown Time (h)		1.4	

* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results		5yr	100yr	Available
	Qresult (cu.m/s)	0.002	0.002	-
	Depth (m)	0.105	0.138	0.150
	Volume (cu.m)	3.8	8.7	10.9
	Draintime (hrs)	0.8	1.4	

From Zurn Drain Catalogue Head (m) L/min L/s

ead (m) L/min L/s Notch Rating 0.051 45.5 0.00076 232

Outlet Rip-Rap Sizing

1991 P EM160	US Army Corps of Enginners 1991 Procedure EM1601								
Commo	Common values								
V	1.62								
y	0.37125								
Ž		H:1V							
phi		degrees							
r	300								
W		m							
Ss	2.5	ific gravity							
g	9.806								
theta	18.4	degrees	bank angle with horizontal						
SF	1.1								
Cs	0.3								
KI	1								
Cv	0.79								
Ct	1								
I = 1									
D ₅₀ =	0.048	m							
M ₅₀ =	0.147	kg							
·	Selected E Min. thicki		0.060 m 0.120 m						

Appendix C Stormwater Management March 22, 2017

C.2 SAMPLE PCSWMM MODEL INPUT (12HR 100YR SCS)

[TITLE]

[OPTIONS] ;;Options	v	alue			
FLOW_UNITS INFILTRATION FLOW_UNITS INFILTRATION FLOW_ROUTING START_DATE START_TIME REPORT_START_DATI REPORT_START_DATI REPORT_START_TIME SWEEP_END DRY_DAYS REPORT_STEP DRY_STEP ROUTING_STEP ALLOW_PONDING INERTIAL_DAMPING INERTIAL_DAMPING INERTIAL_STEP LENGTHENING_STEP MIN_SURFAREA NORMAL_FLOW_LIMT SKIP_STEADY_STATI FORCE_MAIN_EQUATI CONSTRUCTION LINK_OFFSETS MIN_SLOPE MAX_TRIALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP THREADS	CDD00000000000000000000000000000000000	YNWA 7/23, 0:000 7/24, 0:001 1/011 2/31 0:055 0:055 0:055 0:055 ES ARTI/ O OTH O -W LEVAT	/2009 :00 :00 :00 :2009 :00 :00 :00 :00 :00 :00 :00		
[EVAPORATION] ;;Type ;;	Parame	ters 			
DRY_ONLY NO [RAINGAGES] ;; ;;Name	Rain Type			Snow Catch	

Page 1

		16040	1195_100scs.i	inp			
RG1	INTENSITY 0:15	1.0 TIMESERIE	ES 100SCS				
[SUBCATCHMENTS]			Tatal 04		Dent	Curre	Care
,,Name	Raingage	Outlet		nt. perv Width	Pcnt. Slope	Curb Length	Snow Pack
;; EXT1	RG1	EXT1-OF	0.067219 0	15.124	33.3	0	
EXT2	RG1	EXT2-0F	0.063791 72	14.353	2	0	
ST104A	RG1	ST104A-S	0.149935 84	.286 69	2	0	
ST107A	RG1	ST107A-S	0.373344 64	.286 225	1.5	0	
ST108A	RG1	ST108A-S	0.403809 10	90.857	1.5	0	
ST108B	RG1	ST108B-S	0.36437 10	81.983	1.5	0	
ST108C	RG1	ST108C-S	0.047083 10	00 12.1	1.5	0	
ST108D	RG1	ST108D-S	0.051706 10	10.9	1.5	0	
ST108E	RG1	ST108E-S	0.027193 10	0 25	1.5	0	
ST108F	RG1	108	0.382042 44	.286 85.96	1.2	0	
ST109A	RG1	109	0.013537 10	18.2	10	0	
ST109B	RG1	ST109B-S	0.054305 10	00 24.8	1	0	
ST109C	RG1	ST109C-S	0.058618 10	25.8	1	0	
ST110A	RG1	110	0.074661 7.	143 16.799	0.8	0	
ST110B	RG1	110	0.031906 10	24.5	10	0	
ST110C	RG1	110	0.029561 10	26.6	10	0	
ST110D	RG1	110	0.074098 7.	143 16.672	0.8	0	
ST111A	RG1	ST111A-S	0.242699 72	.857 107.5	0.8	0	
ST111B	RG1	111	0.037296 10	0 88	0.8	0	
ST111C	RG1	ST111C-S	0.043507 85	36.8	1.5	0	
ST507A	RG1	ST507A-S	0.054432 72 Page 2	2.857 33.5	1.5	0	

				160401195_	100scs.in	c				
ST508A	RG1		508	0.3	356 7.14	3 189	9.2 1	0		
[SUBAREAS] ;;Subcatchment ;;	N-Imperv	N-Perv	S-Imp	erv S-Pe	rv Pct	Zero	RouteTo	PctRou	uted	
EXT1 EXT2 EXT2 ST104A ST108A ST108B ST108B ST108E ST108E ST108E ST109A ST109A ST109A ST109A ST110A ST110A ST1110C ST111A ST111B ST111C ST507A ST508A	$\begin{array}{c} 0.013\\ 0.$	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	$\begin{array}{c} 4.67\\$			PERVIOUS PERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS IMPERVIOUS PERVIOUS PERVIOUS PERVIOUS PERVIOUS	100 100 100 100 100 100 100 100 100 100		
[INFILTRATION];;Subcatchment	CurveNum	HydCon	DryTi	me						
EXT1 EXT2 ST104A ST108A ST108A ST108B ST108C ST108C ST108F ST108F ST108F ST109A ST109B ST109B ST109B ST109B ST109A ST100A ST110A	80 80 80 80 80 80 80 80 80 80 80 80 80 8		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
				Pag	ie 3					
ST110C ST110D ST111A ST111B ST111C ST507A ST508A	80 80 80 80 80 80 80 80	0 0 0.5 0 0	7 7 7 7 7 7 7 7 7	160401195_	1005C5.in;	0				
[JUNCTIONS] ;; ;;Name	Invert Elev.	Max. Depth	Init. Depth	Surc Dept	harge Pon h Are	ided a				
100 101 102 103 104 105 106 107 109 110 111	99.4 99.60313 99.7793 100.035 100.2317 100.3418 100.8033 100.83 100.686 101.4225	2.735 3.691 3.752 3.526 3.492 3.406 2.976 2.417 3.67 3.814								
[OUTFALLS] ;; ;;Name ;;	Invert Elev.	Outfal Type	l Sta Tim	ge/Table e Series	Tide Gate R	Route To				
;; EXT1-OF EXT2-OF HEADWALL POOLE_OF1 POOLE_OF2 ST104A-OF ST107A-OF	Elev. 102.88 104.2 98.7 100.1 101.059 0	FREE FREE FREE FREE FREE FREE FREE FREE			NO NO NO NO NO NO NO					
;;	Invert Elev. rameters	Depth	Init. Depth					Ponded Area	Frac.	
108 508 ST104A-S ST107A-S ST108A-S ST108B-S				TABULAR TABULAR TABULAR TABULAR TABULAR TABULAR	RWHtank ST508A-S ST104A-S ST107A-S ST108A			0 0.01 0.01 0.01 0.01 0.01	0 0 0 0 0	

ST108C-S ST108D-S ST109B-S ST109B-S ST109B-S ST111A-S ST111A-S ST111C-S ST507A-S TANK	110.4 110.1 107.2 102.81 102.81 101.86 101.95 101.57 100.1	0.15 0.15 1.5 1.5 2.4 2.1 2.1 3.27	0 0 0 0 0 0 0 0 0	1604011 TABULAR TABULAR FUNCTIOI FUNCTIOI TABULAR FUNCTIOI TABULAR TABULAR	ST108D ST108E NAL 0 NAL 0 ST111A NAL 0 ST504A	0 0 -S 0	0 0 0	0.01 0.01 0.01 0.01 0.01 0.01 0.01	0 0 0 0 0 0 0 0 0		
[CONDUITS] ;;	Inlet		Outlet			Manning	Inlet	Outlet		Init.	
Max. ;;Name Flow	Node		Node	I	Length	Ν	Offset	Offset		Flow	
;;	100				11 125	0.012	00 540	00 52		0	0
Pipe_13	100		HEADWALL		11.135	0.013	99.548	99.52		-	0
Pipe_14	106		105		17.55995	0.013	100.411	100.376		0	0
Pipe_14_(1)	105		104		39.10268	0.013	100.301	100.222		0	0
Pipe_15	109		104		38.24086	0.013	100.83	100.447		0	0
Pipe_16	110		106	:	12.50838	0.013	100.686	100.561		0	0
Pipe_17	111		107	:	110.3626	0.013	101.65	100.877		0	0
Pipe_21	104		103	:	16.284	0.013	100.143	100.11		0	0
Pipe_23	508		TANK	:	8.730414	0.013	101.6588	101.637		0	0
Pipe_26	101		100	:	101.5684	0.013	99.936	99.733		0	0
Pipe_27	108		105	:	36.34	0.013	100.441	100.332		0	0
Pipe_29	107		106		63.29649	0.013	100.802	100.486		0	0
Pipe_31	102		101	:	70.701	0.013	100.083	99.942		0	0
Pipe_34	103		TANK	:	2.81	0.013	100.106	100.1		0	0
ST104A-T	ST104A-S		ST104A-OF	:	2.5	0.025	103.47	102.88		0	0
ST107A-T	ST107A-S		ST107A-OF	:	2.5	0.025	103.08	103.04		0	0
ST111A-T	ST111A-S		S⊤111C-S		40.9 Page 5	0.013	104.26	103.75		0	0

160401195_100scs.inp								
ST111B-T	ST111C-S	ST107A-S	60	0.013	103.75	103.08	0	0
ST507A-T	ST507A-S	ST104A-S	14.9	0.013	103.5	103.47	0	0
W1	103	102	3	0.013	102	101.97	0	0
[ORIFICES] ;; ;Name	Inlet Node	Outlet Node	Orifice Type	Crest Height	Coeff.	Flap Gate	Open/Close Time	
;; OR1 OR2 OR3 ST104A-O ST107A-O ST109C-O ST109C-O ST111C-O ST111C-O	TANK TANK TANK ST104A-S ST109B-S ST109B-S ST109C-S ST111A-S ST111C-S ST111C-S	102 102 102 104 107 109 109 111 111 111	SIDE SIDE SIDE SIDE SIDE SIDE SIDE SIDE	100.1 100.7 101.52 101.13 102.81 101.86 101.95 101.95	0.65 0.65 0.572 0.65 0.65 0.65 0.65 0.572 0.65 0.65 0.65 0.65	N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0	0 0 0 0 0 0 0 0 0 0 0 0	
[OUTLETS] ;; Flap ;;Name Gate	Inlet Node	Outlet Node	Outflow Height	Outlet Type	Qcoeff/ QTable		Qexpon	
;;								
OL1 NO	TANK	POOLE_OF1		, _		OW		
OL2 NO	508	POOLE_OF2	101.06	TABULAR/HEAD BIOSWALE_BASEF		SEFLOW		
ST108A-0 NO	ST108A-S	108	118.6	TABULAR/HEAD ST108A-0				
ST108B-0	ST108B-S	108	115.75	TABULAR/HEAD ST108B-0		08в-0		
NO ST108C-0	ST108C-S	108	110.4	TABULAR/HEAD ST108		08C-0		
NO ST108D-0	ST108D-S	108	110.1	TABULAR/HEAD ST108D-0				
NO ST108E-0	ST108E-S	108	107.2	TABULAR/HEAD ST108E-0				
NO ST507A-O NO	ST507A-S	TANK	101.57	FUNCTIONAL,	/HEAD 7.9	96	0.499	

[XSECTIONS]

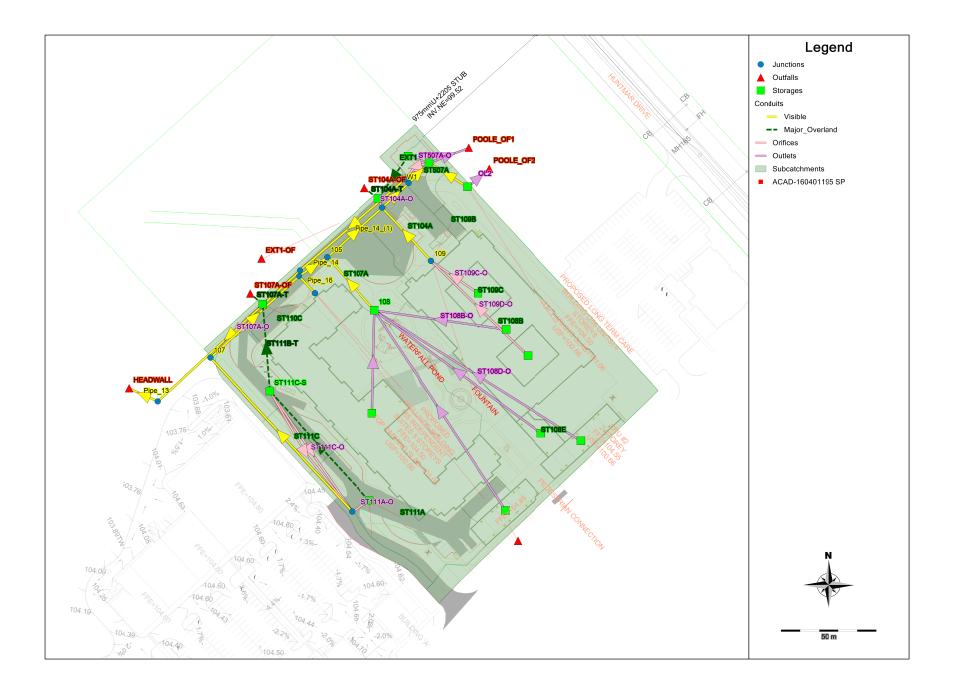
···ink	Shane	Geom1			100SCS.inp		Bai	rrals
;;Link ;; Pipe_13 Pipe_14	Shape CIRCULAR CIRCULAR	Geom1 0.675 0.525		Geom2 0 0	Geom3 0 0	Geom4 0 0	Ba 1 1	rrels
Pipe_14_(1) Pipe_15	CIRCULAR CIRCULAR	0.6 0.375		0	0	0 0	1 1	
Pipe_16 Pipe_17 Pipe_21	CIRCULAR CIRCULAR CIRCULAR	0.375 0.375 0.675		0 0 0	0 0 0	0 0 0	1 1 1	
Pipe_23 Pipe_26	CIRCULAR	0.25 0.45		0	0	0	1 1	
Pipe_27 Pipe_29 Pipe_31	CIRCULAR CIRCULAR CIRCULAR	0.45 0.45 0.45		0 0 0	0 0 0	0 0 0	1 1 1	
Pipe_34 ST104A-T	CIRCULAR	0.45 0.675 Overland	d	0 0	0	0	1 1	
ST107A-T ST111A-T	IRREGULAR IRREGULAR IRREGULAR	Overland Overland	d	0 0 0	0 0 0	0 0 0	1 1 1	
ST111B-T ST507A-T W1	IRREGULAR CIRCULAR	Overland Overland 0.45		0	0	0	1 1	
OR1 OR2	CIRCULAR CIRCULAR	0.11 0.15		0	0	0		
OR3 ST104A-0 ST107A-0	CIRCULAR CIRCULAR CIRCULAR	0.15 0.14 0.2		0 0 0	0 0 0	0 0 0		
ST109B-0 ST109C-0	CIRCULAR CIRCULAR	0.2		0	0	0		
ST111A-0 ST111C-0 ST111C-01	CIRCULAR CIRCULAR CIRCULAR	0.076 0.2 0.2		0 0 0	0 0 0	0 0 0		
[TRANSECTS]								
NC 0.013 0.01 X1 Overland	3 0.013 5	0.15	6.85	0.0	0.0	0.0	0.0	0.0
GR 0.15 0	0	0.15	0	6.85	0.15	7	0.15	7
;[LE: 0][RE: 7] NC 0.013 0.01 X1 Overland(orig GR 0.15 0		0.15 0.15	6.85 0	0.0 6.85	0.0 0.15	0.0 7	0.0	0.0
[LOSSES] ;;Link	Inlet	Outlet	Avera		Gate Seep			
,, Pipe_14	0 0	0.053 0.022	0 0	NO NO	0 0			
Pipe_15	0	1.344	0	NO	100scs.inp			
Pipe_16 Pipe_17 Pipe_21	0 0 0	1.344 1.344 0.022	0 0 0	NO NO NO	0 0 0			
Pipe_26 Pipe_27 Pipe_29	0 0 0	0.423 1.344 0.053	0 0 0	NO NO NO	0 0 0			
Pipe_31 W1	0	1.344 1.344	0 0	NO NO NO	0 0			
[INFLOWS] ::				Para	am Units	s scale	Base	line Baseline
;;Node ;;	Parameter FLOW	Time	e Serie	s Type	e Facto N 1.0	or Factor 1	r Valu 175	e Pattern
[CURVES]					N 1.0	T	175	
;;Name ;; BTOSWALE BASEFLO		X-Value		ue 				
BIOSWALE_BASEFLO BIOSWALE_BASEFLO BIOSWALE_BASEFLO		0.01 10.00	0.3 0.3					
ST108A-0 ST108A-0	Rating	0 0.025	0 5.4					
ST108A-0 ST108A-0 ST108A-0		0.050 0.075 0.100	10.8 16.1 21.5					
ST108A-0 ST108A-0		0.125 0.150	26.9 32.3					
ST108B-0 ST108B-0	Rating	0 0.025	0 5.0					
ST108B-0 ST108B-0		0.050 0.075	$10.0 \\ 15.0$					
ST108B-0 ST108B-0 ST108B-0		0.100 0.125 0.150	20.0 25.0 30.0					
ST108C-0 ST108C-0	Rating	0	0 0.8					
ST108C-0 ST108C-0		0.050 0.075	1.5 2.3					
ST108C-0 ST108C-0 ST108C-0		0.100 0.125 0.150	3.1 3.8 4.6					
ST108D-0	Rating	0	0					
				Pag	e 8			

ST108D-0 ST108D-0 ST108D-0 ST108D-0 ST108D-0 ST108D-0 ST108D-0		0.025 0.050 0.075 0.100 0.125 0.150	160401195_100scs.inp 0.8 1.5 2.3 3.1 3.8 4.6
ST108E-0 ST108E-0 ST108E-0 ST108E-0 ST108E-0 ST108E-0 ST108E-0 ST108E-0	Rating	0 0.025 0.050 0.075 0.100 0.125 0.150	0 0.4 0.8 1.2 1.5 1.9 2.3
TANK_BASEFLOW	Rating	0.00	0
TANK_BASEFLOW		0.01	0.66
TANK_BASEFLOW		10.00	0.66
RWHtank	Storage	0	113.747
RWHtank		3.202	113.747
RWHtank		3.203	0
RWHtank		5	0
ST104A-S	Storage	0	0
ST104A-S		1.8	0
ST104A-S		1.95	32
ST107A-S	Storage	0	0
ST107A-S		1.8	0
ST107A-S		1.95	30.67
ST108A	Storage	0	0
ST108A		0.025	90
ST108A		0.050	359
ST108A		0.075	808
ST108A		0.100	1436
ST108A		0.125	2243
ST108A		0.150	3230
ST108B ST108B ST108B ST108B ST108B ST108B ST108B ST108B	Storage	0 0.025 0.050 0.075 0.100 0.125 0.150	0 81 324 729 1296 2024 2915

Page 9

Storage	0 0.025 0.050 0.075 0.100 0.125	160401 0 42 94 167 262
Storage	0.150 0.025 0.050 0.075 0.100 0.125 0.150	377 0 11 46 103 184 287 414
Storage	0 0.025 0.050 0.075 0.100 0.125 0.150	0 6 24 54 97 151 218
Storage	0 2.10 2.40	0 0 724
Storage	0 1.8 1.93	0 0 181.54
Storage	0 0.7 0.701 1.741 1.991	0 152 0 0 114.4
Storage	0 0.026 0.051 0.077 0.102 0.127 0.153 0.178 0.204 0.229	560.7 560.7 560.7 559.44 559.44 558.18 556.92 555.66 554.4
	Storage Storage Storage Storage	0.025 0.050 0.075 0.100 0.125 0.150 Storage 0 0.025 0.150 Storage 0 0.025 0.150 Storage 0 0.025 0.150 Storage 0 0.025 0.150 Storage 0 0.125 0.150 Storage 0 2.10 2.40 Storage 0 2.10 2.40 Storage 0 0.7 0.701 1.741 1.991 Storage 0 0.026 0.051 0.077 0.102 0.127 0.127 0.128 0.127 0.127 0.123 0.127 0.127 0.128 0.204

160401195_100scs.inp


TANK TANK TANK TANK TANK TANK TANK TANK	0.254 0.28 0.305 0.3351 0.407 0.432 0.4432 0.458 0.483 0.558 0.561 0.661 0.662 0.712 0.737 0.762 0.7726 0.737 0.762 0.737 0.991 1.016 1.041 1.067 1.092 1.118 1.143 1.168 1.194 1.2295 1.321 1.346 1.372 1.397 1.422 1.448	160401195_100SCS.inp \$49.36 \$49.36 \$49.36 \$49.38 \$42.44 \$27.44 \$47.84 \$48.84 \$48.84 \$48.84 \$48.84 \$48.84 \$48.84 \$49.82 \$49.13 \$40.45 \$40.16 \$40.76
TANK TANK TANK TANK TANK TANK TANK TANK	$\begin{array}{c} 1.473\\ 1.499\\ 1.524\\ 1.575\\ 1.6\\ 1.626\\ 1.651\\ 1.676\\ 1.702\\ 1.727\\ 1.753\\ 1.778\\ 1.803\\ 1.829\\ 1.83\\ 5\end{array}$	160401195_100scs.inp 161.28

SERVICING AND STORMWATER MANAGEMENT BRIEF -**5731 HAZELDEAN ROAD**

Appendix C Stormwater Management March 22, 2017

C.3 SAMPLE PCSWMM MODEL OUTPUT (12HR 100YR SCS)

	EPA STORM WATER MANA		VERSION	5.1 (Buil	_100scs.rp d 5.1.011]			
	WARNING 03: negative *********** Element Count ************* Number of rain gages Number of subcatchme Number of nodes Number of links Number of pollutants Number of land uses	offset ignored 1 nts 22 33 37 0			,	-		
	***************** Raingage Summary ******				Data	Recor	dina	
	Name RG1	Data Source 100SCS			Type INTENSITY	Inter	val	
	Subcatchment Summary	Area	Width	%Imperv				Outlet
-	EXT1 EXT2 ST104A ST107A ST108A ST108C ST108C ST108E ST108F ST109A ST109B ST109C ST110A ST109C ST110A ST110B ST110C	$\begin{array}{c} 0.07\\ 0.06\\ 0.15\\ 0.37\\ 0.40\\ 0.36\\ 0.05\\ 0.05\\ 0.03\\ 0.38\\ 0.01\\ 0.05\\ 0.06\\ 0.07\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ \end{array}$	$\begin{array}{c} 15.12\\ 14.35\\ 69.00\\ 225.00\\ 90.86\\ 81.98\\ 12.10\\ 10.90\\ 25.00\\ 85.96\\ 18.20\\ 24.80\\ 25.80\\ 16.80\\ 25.80\\ 16.80\\ 24.50\\ 26.60\\ \end{array}$	$\begin{array}{c} 0.00\\ 72.86\\ 84.29\\ 64.29\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 44.29\\ 100.00\\ 100.00\\ 100.00\\ 7.14\\ 100.00\\ 100.00\\ 100.00 \end{array}$	33.3000 2.0000 1.5000 1.5000 1.5000 1.5000 1.5000 1.2000 10.0000 1.0000 1.0000 10.0000 10.0000 10.0000 10.0000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		EXT1-OF EXT2-OF ST104A-S ST107A-S ST108A-S ST108C-S ST108C-S ST108C-S ST108E-S 108 109 ST109E-S ST109C-S 110 110
	ST110D ST111A ST111B ST111C ST507A ST508A	0.07 0.24 0.04 0.04 0.05 0.34	16.67 107.50 88.00 36.80 33.50 189.20	7.14 72.86 100.00 85.71 72.86	_100SCS.rp 0.8000 0.8000 0.8000 1.5000 1.5000 1.0000	RG1 RG1 RG1 RG1 RG1		110 ST111A-S 111 ST111C-S ST507A-S 508
	Node Summary	Туре	In	vert	Max. I	Ponded	External	
	Name 		9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	9.40 9.60 9.78 0.04 0.08 0.23 0.34 0.80 0.83 0.69 1.42 2.88 4.20 8.70 0.10 1.06 0.00 1		Area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Inflow Yes	

160401195_100scs.rpt

Link Summary						
Name	From Node	To Node	Туре	Length	%Slope	Roughness
Pipe_13 Pipe_14 Pipe_14_(1) Pipe_15 Pipe_16 Pipe_17 Pipe_23 Pipe_26 Pipe_27 Pipe_29 Pipe_31 Pipe_34 ST104A-T ST111A-T ST111A-T ST111A-T ST107A-T W1 OR1 OR2 OR3 ST104A-0 ST107A-0 ST107A-0 ST107A-0 ST108-0 ST101C-0 ST111C-01 OL1 OL2 ST108C-0 ST008C-0 ST008	mmarv	HEADWALL 105 104 104 106 107 103 TANK 100 105 106 101 TANK ST104A-OF ST107A-OF ST111C-S ST107A-S ST107A-S ST104A-S 102 102 102 102 102 104 107 109 111 111 POOLE_OF1 POOLE_OF1 POOLE_OF2 108 108 108 108 108 108 108 108	CONDUIT CONTLEE OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET	11.1 17.6 39.1 38.2 12.5 110.4 16.3 8.7 101.6 366.3 70.7 2.8 2.5 2.5 2.5 2.5 40.9 60.0 14.9 3.0	0.2515 0.1993 0.2020 1.0016 0.9994 0.7004 0.2027 0.2497 0.1999 0.2999 0.5013 0.1994 0.2135 24.2860 1.6002 1.2470 1.1167 0.2013 1.0001	$\begin{array}{c} 0.0130\\ \end{array}$

Page 3

Conduit	Shape	16 Full Depth	60401195_1 Full Area	.00SCS.rpt Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
Pipe_13	CIRCULAR	0.68	0.36	0.17	0.68	1	421.55
Pipe_14	CIRCULAR	0.53	0.22	0.13	0.53	1	192.01
Pipe_14_(1)	CIRCULAR	0.60	0.28	0.15	0.60	1	276.00
Pipe_15	CIRCULAR	0.38	0.11	0.09	0.38	1	175.48
Pipe_16	CIRCULAR	0.38	0.11	0.09	0.38	1	175.29
Pipe_17	CIRCULAR	0.38	0.11	0.09	0.38	1	146.75
Pipe_21	CIRCULAR	0.68	0.36	0.17	0.68	1	378.43
Pipe_23	CIRCULAR	0.25	0.05	0.06	0.25	1	29.72
Pipe_26	CIRCULAR	0.45	0.16	0.11	0.45	1	127.47
Pipe_27	CIRCULAR	0.45	0.16	0.11	0.45	1	156.15
Pipe_29	CIRCULAR	0.45	0.16	0.11	0.45	1	201.87
Pipe_31	CIRCULAR	0.45	0.16	0.11	0.45	1	127.33
Pipe_34	CIRCULAR	0.68	0.36	0.17	0.68	1	388.45
ST104A-T	Overland	0.15	1.03	0.14	7.00	1	10684.06
ST107A-T	Overland	0.15	1.03	0.14	7.00	1	2742.50
ST111A-T	Overland	0.15	1.03	0.14	7.00	1	2421.02
ST111B-T	Overland	0.15	1.03	0.14	7.00	1	2291.05
ST507A-T	Overland	0.15	1.03	0.14	7.00	1	972.81
W1	CIRCULAR	0.45	0.16	0.11	0.45	1	285.13

***** Transect Summary

Transect Overland

Area:					
	0.0196	0.0392	0.0588	0.0784	0.0980
	0.1177	0.1374	0.1571	0.1768	0.1965
	0.2162	0.2360	0.2558	0.2756	0.2954
	0.3152	0.3351	0.3550	0.3748	0.3947
	0.4147	0.4346	0.4546	0.4745	0.4945
	0.5145	0.5346	0.5546	0.5747	0.5947
	0.6148	0.6350	0.6551	0.6752	0.6954
	0.7156	0.7358	0.7560	0.7762	0.7965
	0.8168	0.8371	0.8574	0.8777	0.8980
	0.9184	0.9388	0.9592	0.9796	1.0000
Hrad:					
	0.0208	0.0415	0.0622	0.0829	0.1036
	0.1242	0.1448	0.1653	0.1858	0.2063
	0.2268	0.2472	0.2676	0.2879	0.3083
	0.3285	0.3488	0.3690	0.3892	0.4094
	0.4295	0.4496	0.4697	0.4897	0.5097
	0.5297	0.5496	0.5695	0.5894	0.6093
				Page	1
				Page	7

				160401195_1		
width:	0.6291 0.7277 0.8256 0.9228	0.6489 0.7474 0.8451 0.9421	0.6686 0.7670 0.8646 0.9614	0.6884 0.7865 0.8840 0.9807	0.7081 0.8061 0.9034 1.0000	
	0.9580 0.9623 0.9666 0.9709 0.9751 0.9794 0.9837 0.9880 0.9923 0.9966	0.9589 0.9631 0.9674 0.9717 0.9760 0.9803 0.9846 0.9889 0.9931 0.9974	$\begin{array}{c} 0.9597\\ 0.9640\\ 0.9683\\ 0.9726\\ 0.9769\\ 0.9811\\ 0.9854\\ 0.9854\\ 0.98940\\ 0.9940\\ 0.9983 \end{array}$	$\begin{array}{c} 0.9606\\ 0.9649\\ 0.9691\\ 0.9734\\ 0.9777\\ 0.9820\\ 0.9863\\ 0.9906\\ 0.9949\\ 0.9991 \end{array}$	0.9614 0.9657 0.9700 0.9743 0.9786 0.9829 0.9871 0.9914 0.9957 1.0000	
	Overland(or					
Area:	0.0196 0.1177 0.2162 0.3152 0.4147 0.5145 0.6148 0.7156 0.8168 0.9184	0.0392 0.1374 0.2360 0.3351 0.4346 0.5346 0.6350 0.7358 0.8371 0.9388	0.0588 0.1571 0.2558 0.3550 0.4546 0.5546 0.6551 0.7560 0.8574 0.9592	0.0784 0.2756 0.3748 0.4745 0.5747 0.6752 0.7762 0.8777 0.9796	0.0980 0.1965 0.2954 0.3947 0.4945 0.5947 0.6954 0.7965 0.8980 1.0000	
Hrad:	0.0208 0.1242 0.2268 0.3285 0.4295 0.5297 0.6291 0.7277 0.8256 0.9228	0.0415 0.1448 0.2472 0.3488 0.4496 0.5496 0.6489 0.7474 0.8451 0.9421	$\begin{array}{c} 0.0622\\ 0.1653\\ 0.2676\\ 0.3690\\ 0.4697\\ 0.5695\\ 0.6686\\ 0.7670\\ 0.8646\\ 0.9614 \end{array}$	$\begin{array}{c} 0.0829\\ 0.1858\\ 0.2879\\ 0.3892\\ 0.4897\\ 0.5894\\ 0.6884\\ 0.7865\\ 0.8840\\ 0.9807\end{array}$	0.1036 0.2063 0.3083 0.4094 0.5097 0.6093 0.7081 0.8061 0.9034 1.0000	
width:	0.9580 0.9623 0.9666 0.9709 0.9751 0.9794 0.9837 0.9880	0.9589 0.9631 0.9674 0.9717 0.9760 0.9803 0.9846 0.9889	0.9597 0.9640 0.9683 0.9726 0.9726 0.9811 0.9854 0.9897	0.9606 0.9649 0.9691 0.9734 0.9777 0.9820 0.9863 0.9906 Page	$\begin{array}{c} 0.9614 \\ 0.9657 \\ 0.9700 \\ 0.9743 \\ 0.9786 \\ 0.9829 \\ 0.9871 \\ 0.9914 \end{array}$	
	0.9923 0.9966	0.9931 0.9974	0.9940 0.9983	160401195_1 0.9949 0.9991	005C5.rpt 0.9957 1.0000	
NOTE: The based on i not just (************************************	0.9966 summary sta results four on results f ******* Options s	0.9974 atistics di at every from each re vess ves	0.9983 ************************************	0.9949 0.9991 **********************************	0.9957 1.0000 **** are ep,	
NOTE: The based on i not just (************************************	0.9966 summary staresults four on results four on results four on results four on results four on results four stares four dels: 1/Runoff t dels: 1/Runoff t dilowed uality ing Method Date t Dry Days me Step Step Step Step step Time Step Time Step Threads Threads	0.9974 atistics dia d at every from each re vessor	0.9983 ************************************	0.9949 0.9991 **********************************	0.9957 1.0000 **** are ep, ****	
NOTE: The based on i not just (************************************	0.9966 summary st results four on results four on results four on results four on results four on results four on set stater uting Allowed ater t Allowed ton Method ing Method Date t Dry Days me Step Step step Time Step Time Step Threads rance	0.9974 atistics dia d at every from each re vession v	0.9983 splayed in computation eporting t ave ave 3/2009 00:1 4/2009 00:1 5:00 5:0	0.9949 0.9991 **********************************	0.9957 1.0000 **** are ep, ****	

Flow Routing Continu Dry Weather Inflow Wet Weather Inflow RDII Inflow External Inflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume Continuity Error (%)	ity he ****** 	Volume	01195_10050 Volume 0.66 ltr 0.000 2.394 0.000 0.000 15.120 17.108 0.000 0.000 0.000 0.000 0.409	CS.rpt					
Highest Flow Instabi Link Pipe_34 (3) ************************************	lity Indexes ***********************************	1.00 sec 1.00 sec 1.00 sec 0.00 2.00 0.05							
		Total Runon	Total Evap	Total Infil	Total Runoff	Total Runoff	Runoff	Runoff Coeff	
Subcatchment EXT1 EXT2 ST104A ST107A ST108A	mm 95.52 95.52 95.52 95.52 95.52	mm 0.00 0.00 0.00 0.00 0.00 0.00	mm 0.00 0.00 0.00 0.00 0.00 Page 7	mm 41.82 11.35 6.56 14.94 0.00	mm 52.63 83.12 87.63 79.28 94.37	10^6 ltr 0.04 0.05 0.13 0.30 0.38	LPS 16.91 20.73 50.18 115.66 142.13	0.551 0.870 0.917 0.830 0.988	
ST108B ST108C ST108D ST108F ST109A ST109A ST109C ST110A ST110A ST110C ST111A ST111B ST111C ST111B ST111C ST507A ST508A	95.52 95.52 95.52 95.52 95.52 95.52 95.52 95.52 95.52 95.52 95.52 95.52 95.52 95.52 95.52 95.52 95.52	$\begin{array}{c} 16040\\ 0.00$	01195_10050 0.00 0.00 0.00 0.00 0.00 0.00 0.00	CS.rpt 0.00 0.00 0.00 23.30 0.00 0.00 38.83 0.00 38.83 11.35 0.00 5.96 11.34 38.83	94.37 94.35 94.37 94.08 70.82 93.98 94.28 94.29 54.74 93.99 93.99 93.99 93.99 54.74 82.89 93.40 88.16 88.16 82.85 55.31	$\begin{array}{c} 0.34\\ 0.04\\ 0.05\\ 0.03\\ 0.27\\ 0.01\\ 0.05\\ 0.06\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.20\\ 0.04\\ 0.04\\ 0.05\\ 0.19\\ \end{array}$	128.25 16.57 18.20 9.57 102.04 4.76 19.11 20.63 10.41 12.82 77.09 11.23 10.41 12.82 77.09 11.23 14.64 17.48 79.58	0.988 0.988 0.985 0.741 0.987 0.573 0.884 0.573 0.884 0.573 0.868 0.984 0.573 0.868 0.984 0.573	

Node	А\ Туре М	verage Maximum Depth Depth Meters Meters	HGL Meters	Time of Max Occurrence days hr:min	e Max Dep n Mete	ers			
100 101 102 103 104 105 106 107 109 110 111 EXT1-OF EXT2-OF HEADWALL POOLE_OF1 POOLE_OF1 POOLE_OF2 ST104A-OF ST107A-OF 108 508	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 99.92\\ 100.34\\ 100.54\\ 101.97\\ 101.99\\ 101.99\\ 102.00\\ 101.98\\ 101.99\\ 102.02\\ 102.88\\ 104.20\\ 98.70\\ 100.10\\ 101.06\\ 0.00\\ 0.00\\ 0.00\\ 102.04 \end{array}$	$\begin{array}{c} 0 & 06:53\\ 0 & 06:53\\ 0 & 06:52\\ 0 & 06:52\\ 0 & 06:52\\ 0 & 06:52\\ 0 & 06:52\\ 0 & 06:52\\ 0 & 06:52\\ 0 & 06:52\\ 0 & 06:51\\ 0 & 00:00\\ 0 & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52 74 76 93 89			

			160401	195_100scs	.rpt		
ST104A-S	STORAGE	0.05	1.71	103.23	0	06:15	1.71
ST107A-S	STORAGE	0.09	1.72	102.85	0	06:15	1.71
ST108A-S	STORAGE	0.02	0.14	118.74	0	06:20	0.14
ST108B-S	STORAGE	0.02	0.14	115.89	0	06:20	0.14
ST108C-S	STORAGE	0.02	0.14	110.54	0	06:19	0.14
ST108D-S	STORAGE	0.02	0.14	110.24	0	06:19	0.14
ST108E-S	STORAGE	0.02	0.14	107.34	0	06:19	0.14
ST109B-S	STORAGE	0.01	0.15	102.96	0	06:10	0.15
ST109C-S	STORAGE	0.01	0.16	102.97	0	06:15	0.16
ST111A-S	STORAGE	0.23	2.32	104.18	0	06:24	2.32
ST111C-S	STORAGE	0.01	0.08	102.03	0	06:15	0.08
ST507A-S	STORAGE	0.06	1.87	103.44	0	06:17	1.87
TANK	STORAGE	0.38	1.87	101.97	0	06:52	1.86

Node Inflow Summary

Node	Туре	Maximum Lateral Inflow LPS	Maximum Total Inflow LPS	Time of Ma Occurrenc days hr:mi	ce Volume	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
100 101 102 103 104 105 106 107 109 110 111 EXT1-OF EXT2-OF HEADWALL POOLE_OF1 POOLE_OF2 ST107A-OF 108 508 ST104A-S	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE	$\begin{array}{c} 175.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 4.76\\ 47.37\\ 13.13\\ 16.91\\ 20.73\\ 16.91\\ 20.73\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 102.04\\ 79.58\\ 50.18\end{array}$	$\begin{array}{c} 311.33\\ 136.63\\ 136.71\\ 457.04\\ 457.02\\ 368.34\\ 206.19\\ 159.99\\ 159.99\\ 44.51\\ 74.61\\ 45.04\\ 16.91\\ 20.73\\ 311.33\\ 0.66\\ 0.30\\ 0.00\\ 240.16\\ 79.58\\ 50.18\end{array}$	0 06: 0 00: 0 00: 00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 16.9\\ 1.83\\ 1.83\\ 1.71\\ 1.71\\ 1.71\\ 1.71\\ 0.707\\ 0.569\\ 0.119\\ 0.139\\ 0.275\\ 0.0354\\ 0.053\\ 16.9\\ 0.053\\ 16.9\\ 0.054\\ 0.0203\\ 0\\ 0\\ 1.14\\ 0.186\\ 0.131\\ \end{array}$	$\begin{array}{c} 0.017\\ -0.075\\ 0.036\\ -0.003\\ -0.145\\ 0.141\\ -0.315\\ 0.194\\ 0.473\\ 0.082\\ 0.493\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 10.000\\ 0.00$
ST107A-S ST108A-S	STORAGE STORAGE	115.66 142.13	115.66 142.13	0 06:1 0 06:1 Page 9		0.296 0.381	0.014 -0.001

160401195_100SCS.rptST108B-SSTORAGE128.25128.250.6:150.3440.344-0.001ST108C-SSTORAGE16.5716.570.6:150.04440.0444-0.001ST108D-SSTORAGE18.200.6:150.04880.0488-0.001ST108E-SSTORAGE9.579.570.66:100.02560.0256-0.000ST109B-SSTORAGE19.1119.110.61:100.05120.0512-0.000ST109C-SSTORAGE77.0977.090.61:150.2010.201-0.001ST111A-SSTORAGE77.0977.090.61:150.03840.03840.078ST507A-SSTORAGE17.4817.480.66:150.04510.0451-0.002TANKSTORAGE0.00548.410.06:1501.89-0.001

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Max. Height Above Crown Meters	Min. Depth Below Rim Meters
104 105 106 107 109 110	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	4.28 3.62 3.40 2.19 2.28 2.81	$\begin{array}{c} 1.156 \\ 1.092 \\ 1.058 \\ 0.747 \\ 0.773 \\ 0.933 \end{array}$	$ \begin{array}{r} 1.592\\ 1.645\\ 1.324\\ 1.220\\ 2.522\\ 2.506\\ \end{array} $

Node Flooding Summary

No nodes were flooded.

Storage Volume Summary

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full		Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow LPS
108 508	0.288 0.030	79 55	0 0	0 0 Page	0.364 0.053 e 10	100 99	0 06:13 0 06:13	210.40 79.31

			1604	01195_1	100SCS.rpt				
ST104A-S	0.000	0	0	0	0.000	0	0	00:00	49.96
ST107A-S	0.000	0	0	0	0.000	0	0	00:00	114.99
ST108A-S	0.010	6	0	0	0.141	86	0	06:20	30.68
ST108B-S	0.008	6	0	0	0.126	85	0	06:20	28.40
ST108C-S	0.001	4	0	0	0.015	80	0	06:19	4.26
ST108D-S	0.001	5	0	0	0.017	83	0	06:19	4.30
ST108E-S	0.001	5	0	0	0.009	85	0	06:19	2.17
ST109B-S	0.000	0	0	0	0.000	0	0	00:00	19.11
ST109C-S	0.000	0	0	0	0.000	0	0	00:00	20.63
ST111A-S	0.003	3	0	0	0.058	53	0	06:24	17.36
ST111C-S	0.000	0	0	0	0.000	0	0	00:00	14.64
ST507A-S	0.000	0	0	0	0.004	6	0	06:17	10.93
TANK	0.175	30	0	0	0.592	100	0	06:47	137.37

Outfall Node	Flow Freq Pcnt	Avg Flow LPS	Max Flow LPS	Total Volume 10^6 ltr
EXT1-OF EXT2-OF HEADWALL POOLE_OF1 POOLE_OF2 ST104A-OF ST107A-OF	30.18 45.84 100.00 95.39 78.72 0.00 0.00	1.36 1.34 196.13 0.65 0.30 0.00 0.00	$\begin{array}{c} 16.91\\ 20.73\\ 311.33\\ 0.66\\ 0.30\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	0.035 0.053 16.945 0.054 0.020 0.000 0.000
System	50.02	199.78	316.10	17.108

 Maximum
 Time of Max
 Maximum
 Max/
 Max/</th

Page 1

			160	0401195	100SCS.rpt		
Pipe_16	CONDUIT	64.13	0	06:14	0.94	0.37	1.00
Pipe_17	CONDUIT	45.00	0	06:15	1.00	0.31	0.99
Pipe_21	CONDUIT	457.04	0	06:14	1.28	1.21	1.00
Pipe_23	CONDUIT	79.01	0	06:15	1.65	2.66	1.00
Pipe_26	CONDUIT	136.33	0	06:53	1.08	1.07	0.74
Pipe_27	CONDUIT	210.40	0	06:14	1.32	1.35	1.00
Pipe_29	CONDUIT	158.73	0	06:14	1.45	0.79	1.00
Pipe_31	CONDUIT	136.63	0	06:52	0.88	1.07	0.94
Pipe_34	CONDUIT	458.73	0	06:15	1.35	1.18	1.00
ST104A-T	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
ST107A-T	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
ST111A-T ST111B-T	CHANNEL CHANNEL	0.00	0	00:00	0.00	0.00	$0.00 \\ 0.00$
ST111B-1 ST507A-T	CHANNEL	0.00	ő	00:00	0.00	0.00	0.00
W1	CONDUIT	0.00	ő	00:00	0.00	0.00	0.00
OR1	ORIFICE	32.79	ŏ	06:48	0.00	0.00	1.00
OR2	ORIFICE	55.72	ŏ	06:52			1.00
OR3	ORIFICE	48.25	ŏ	06:52			1.00
ST104A-0	ORIFICE	49.96	ŏ	06:15			1.00
ST107A-0	ORIFICE	114.99	Ō	06:15			1.00
ST109B-0	ORIFICE	19.11	Ó	06:10			0.76
ST109C-0	ORIFICE	20.63	0	06:15			0.80
ST111A-0	ORIFICE	17.36	0	06:24			1.00
ST111C-0	ORIFICE	7.32	0	06:15			0.40
ST111C-01	ORIFICE	7.32	0	06:15			0.40
OL1	DUMMY	0.66	0	01:27			
OL2	DUMMY	0.30	0	05:14			
ST108A-0	DUMMY	30.68	0	06:20			
ST108B-0	DUMMY	28.40	0	06:20			
ST108C-0	DUMMY	4.26	0	06:19			
ST108D-0 ST108E-0	DUMMY	4.30 2.17	0	06:19 06:19			
ST108E-0 ST507A-0	DUMMY		0				
SI 307A-0	DUMMY	10.93	0	06:17			

Flow Classification Summary

	Adjusted /Actual Length	Dry	Up Dry	Down	ion of Sub Crit	Sup	Up	Down	Norm	Inlet
Pipe_13 Pipe_14 Pipe_14_(1) Pipe_15	$1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00$	0.00 0.04 0.04 0.04	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.39 0.51 0.36 Page	0.00 0.00 0.00	0.00	0.56	0.00 0.02 0.06 0.19	0.00 0.00 0.00 0.00 0.00

				160401	L195_10)0SCS.1	pt			
Pipe_16	1.00	0.04	0.00	0.00	0.31	0.00	0.00	0.65	0.05	0.00
Pipe_17	1.00	0.04	0.00	0.00	0.15	0.00	0.00	0.80	0.11	0.00
Pipe_ZI	1.00	0.04	0.00	0.00	0.94	0.00	0.00	0.02	0.14	0.00
Pipe_23	1.00	0.62	0.00	0.00	0.05	0.00	0.00	0.33	0.00	0.00
Pipe_26	1.00	0.00	0.09	0.00	0.72	0.00	0.00	0.19	0.54	0.00
Pipe_27	1.00	0.05	0.20	0.00	0.42	0.00	0.02	0.32	0.06	0.00
Pipe_29	1.00	0.04	0.00	0.00	0.34	0.00	0.00	0.63	0.17	0.00
Pipe_31	1.00	0.07	0.00	0.00	0.90	0.00	0.00	0.02	0.00	0.00
Pipe_34	1.00	0.04	0.00	0.00	0.89	0.07	0.00	0.00	0.01	0.00
ST104A-T	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST107A-T	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST111A-T	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST111B-T	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST507A-T	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W1	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Conduit Surcharge Summary

Conduit		Hours Full Upstream		Hours Above Full Normal Flow	Hours Capacity Limited
Pipe_14 Pipe_14_(1) Pipe_15 Pipe_17 Pipe_21 Pipe_22 Pipe_26 Pipe_26 Pipe_29 Pipe_31 Pipe_34	$\begin{array}{c} 3.40\\ 3.61\\ 2.28\\ 2.81\\ 0.01\\ 4.31\\ 0.34\\ 0.01\\ 3.71\\ 2.19\\ 0.01\\ 4.68\end{array}$	$\begin{array}{c} 3.40\\ 3.62\\ 2.28\\ 2.81\\ 0.01\\ 4.31\\ 0.42\\ 0.01\\ 3.71\\ 2.19\\ 0.16\\ 4.68\end{array}$	$\begin{array}{c} 3.62 \\ 4.28 \\ 4.28 \\ 3.40 \\ 2.19 \\ 4.63 \\ 0.44 \\ 0.01 \\ 4.69 \\ 3.40 \\ 0.01 \\ 4.75 \end{array}$	$\begin{array}{c} 0.05\\ 0.07\\ 0.01\\ 0.01\\ 0.01\\ 0.05\\ 0.19\\ 0.72\\ 0.06\\ 0.01\\ 0.73\\ 0.04\\ \end{array}$	$\begin{array}{c} 0.01\\ 0.05\\ 0.01\\ 0.01\\ 0.03\\ 0.01\\ 0.01\\ 0.16\\ 0.01\\ 0.01\\ 0.02\\ \end{array}$

Analysis begun on: Thu Mar 23 14:03:56 2017 Analysis ended on: Thu Mar 23 14:03:58 2017 Total elapsed time: 00:00:02

Page 13

SERVICING AND STORMWATER MANAGEMENT BRIEF -**5731 HAZELDEAN ROAD**

Appendix C Stormwater Management March 22, 2017

C.4 OIL/GRIT SEPARATOR SIZING CALCULATIONS

Stormceptor Design Summary PCSWMM for Stormceptor

Project Information

Designer Information					
Location	Ottawa, ON				
Project Number	160401195				
Project Name	5731 Hazeldean				
Date	11/4/2016				

Designer information					
Company	Stantec Consulting Ltd.				
Contact	N/A				

Notes

N/A		
-----	--	--

Drainage Area

Total Area (ha)	2.72
Imperviousness (%)	70

The Stormceptor System model STC 3000 achieves the water quality objective removing 80% TSS for a CLOCA (clay, silt and sand) particle size distribution.

Stormceptor Sizing Summary

Rainfall

Name	OTTAWA MACDONALD-CARTIER INT'L A
State	ON
ID	6000
Years of Records	1967 to 2003
Latitude	45°19'N
Longitude	75°40'W

Water Quality Objective

TSS Removal (%)	80

Upstream Storage

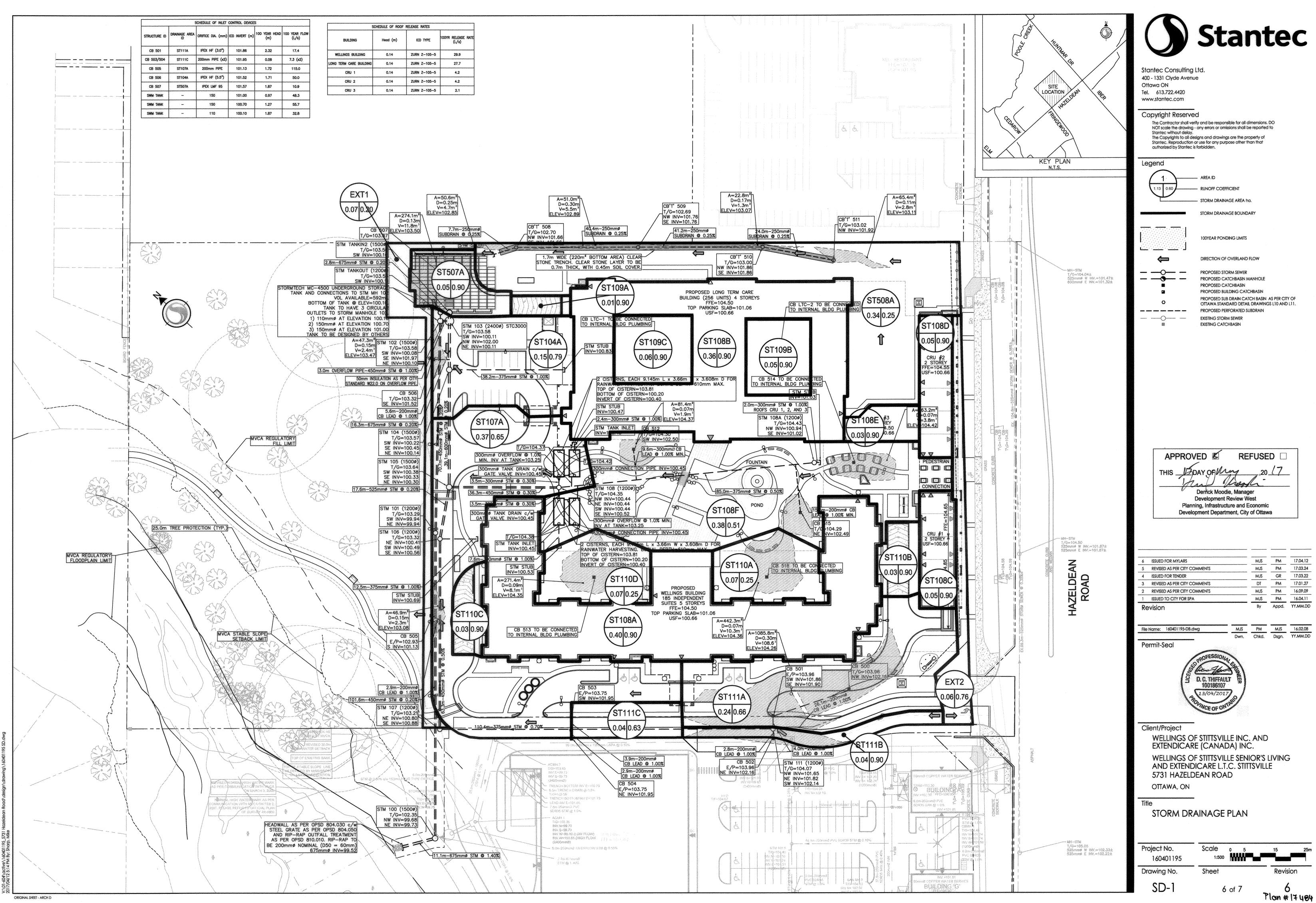
•	
Storage	Discharge
Storage (ha-m)	(L/s)
0	0

Stormceptor Model	TSS Removal		
	%		
STC 300	60		
STC 750	73		
STC 1000	73		
STC 1500	74		
STC 2000	79		
STC 3000	80		
STC 4000	84		
STC 5000	84		
STC 6000	87		
STC 9000	90		
STC 10000	90		
STC 14000	92		

Particle Size Distribution

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

CLOCA (clay, silt and sand)								
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%	,	m/s ์		μm	%	,	m/s ์
850	3.3	2.65	0.1465		50	3.9	2.65	0.0022
425	23.4	2.65	0.0698		36	2.6	2.65	0.0012
300	17.5	2.65	0.0439		22	1.3	2.65	0.0004
250	6.5	2.65	0.0335		12	1.9	2.65	0.0004
212	6.5	2.65	0.0259		9	0	2.65	0.0004
150	11.7	2.65	0.0145		6.5	1.3	2.65	0.0004
125	5.2	2.65	0.0105		3	1.3	2.65	0.0004
100	3.9	2.65	0.0070		1.5	1.3	2.65	0.0004
75	3.9	2.65	0.0040		1	4.5	2.65	0.0004


Stormceptor Design Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor version 1.0

- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 300 is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 750 to STC 6000 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:
 - Inlet and Outlet Pipe Invert Elevations Differences

Inlet Pipe Configuration	STC 300	STC 750 to STC 6000	STC 9000 to STC 14000
Single inlet pipe	75 mm	25 mm	75 mm
Multiple inlet pipes	75 mm	75 mm	Only one inlet pipe.

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Imbrium Systems Inc., 1-800-565-4801.

SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management July 14, 2022

C.8 WATER BALANCE CALCULATIONS

Project #160401511 - 20 Cedarrow Drive

Infiltration calculations

Required Infiltration Rate (KWMSS)	73 mm/yr
Site Area	2.29 ha
Pre-Development Imperviousness	0 %
Pre-Development Infiltration	1674.5 m³/yr
Post Development Imperviousness	66.3 %
Post Development Pervious Area	0.69 ha
Post Development Infiltration in Pervious Areas	503.4 m³/yr

Determine Volume of Water to be Sequestered in Infiltration Trench (Assume storage up to 25mm event)

1171.1 m³/yr

Post Development Infiltration Volume Req.

100.0 % <i>Impervious</i> (910.5mm/yr annual precipitation less urban ET of 150mm/yr) for events with rainfall <25mm	e of runoff 40% Trench Porosity
3517 m ² 3517 m ² 760.5 mm/yr 2674.7 m³/yr	88 m ³ volume of runoff 40.00 m 5.50 m 1.00 m 88 m³
Area Tributary to Infiltration Trench Impervious Area to Infiltration Trench Total Depth of Annual Runoff to Infiltration Trench Volume of Runoff from Impervious Area to Infiltration Trench	In order to store up to 25mm from catchment area: Max. Capacity Required (25mm)= Trench Length (m) Trench Height (m) Volume Provided

SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix D Geotechnical Investigation July 14, 2022

Appendix D GEOTECHNICAL INVESTIGATION

patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Geotechnical Investigation

Proposed Mixed-Use Development Wellings of Stittsville - Phase 2 20 Cedarow Court Ottawa, Ontario

Prepared For

Nautical Lands Group

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca March 7, 2019

Report PG4772-1

Table of Contents

1.0	Pag	
2.0	Proposed Project	1
3.0	Method of Investigation3.1Field Investigation3.2Field Survey3.3Laboratory Testing3.4Analytical Testing	3 3
4.0	Observations4.1Surface Conditions4.2Subsurface Profile4.3Groundwater	4
5.0	Discussion5.1Geotechnical Assessment.5.2Site Grading and Preparation5.3Foundation Design5.4Design for Earthquakes.5.5Basement Slab5.6Basement Wall5.7Pavement Structure.	5 8 10 11
6.0	Design and Construction Precautions6.1Foundation Drainage and Backfill6.2Protection of Footings Against Frost Action6.3Excavation Side Slopes.6.4Pipe Bedding and Backfill6.5Groundwater Control6.6Winter Construction.6.7Corrosion Potential and Sulphate6.8Limit of Hazard Lands6.9Landscaping Considerations	15 15 17 18 18 19
7.0 8.0	Recommendations	

Geotechnical Investigation Proposed Mixed-Use Development 20 Cedarow Court - Ottawa

Appendices

Appendix 1	Soil Profile and Test Data Sheets Symbols and Terms Analytical Testing Results
Appendix 2	Figure 1 - Key Plan Figures 2 to 4 - Slope Stability Analysis Sections Drawing PG4772-1 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Nautical Lands Group to conduct a geotechnical investigation for the proposed mixed-use development to be located at 20 Cedarow Court in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2).

The objectives of the current investigation were to:

- Determine the subsurface conditions by means of boreholes.
- □ Provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project. This report contains geotechnical findings and includes recommendations pertaining to the design and construction of the proposed development as understood at the time of writing this report.

2.0 Proposed Development

Based on the available drawings, it is our understanding that the proposed development will consist of four, five (5) storey mixed-use buildings with a shared underground parking level occupying the majority of the footprint of the subject site. The buildings are understood to include retail, office space and residential units. A one (1) storey restaurant building is also proposed within the centre of the site. At-grade parking areas, access lanes and landscaped areas are also anticipated a part of the development. It is anticipated that the proposed development will be municipally serviced.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The field program for the current investigation was carried out from January 14, 2019 to January 18, 2019. At that time, 29 boreholes were drilled to a maximum depth of 4 m below existing grade. The borehole locations were distributed in a manner to provide general coverage of the proposed development. The locations of the boreholes are shown on Drawing PG4772-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were drilled using a track-mounted auger drill rig operated by a two-person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel with the direction of a senior engineer. The drilling procedure consisted of augering to the required depths at the selected locations, sampling and testing the overburden.

Sampling and In Situ Testing

Soil samples were recovered from a 50 mm diameter split-spoon or the auger flights. The split-spoon and auger samples were classified on site and placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the split-spoon and auger samples were recovered from the boreholes are presented as SS and AU, respectively, on the Soil Profile and Test Data sheets.

Standard Penetration Tests (SPT) were conducted and recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sample 300 mm into the soil after the initial penetration of 150 mm using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength tests were conducted in cohesive soils with a field vane apparatus.

The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are presented on the Soil Profile and Test Data sheets in Appendix 1.

Groundwater

Flexible polyethylene standpipes were installed in the majority of the boreholes to permit groundwater results subsequent to the sampling program completion. Monitoring wells were installed in BH 4, BH 9, BH 15, BH 22, and BH 27 to provide general site coverage as part of our hydrogeological study. The groundwater observations are discussed in Subsection 4.3 and presented in the Soil Profile and Test Data Sheets in Appendix 1.

Sample Storage

All samples will be stored in the laboratory for a period of one month after issuance of this report at which time the samples will be discarded unless otherwise directed.

3.2 Field Survey

The borehole locations were selected by Paterson taking in consideration site features. The ground surface at the test pit locations was located and surveyed by Annis, O'Sullivan, Vollebekk LTD. It is understood that the ground surface elevations at the borehole locations were referenced to a geodetic datum. The locations and ground surface elevation at the boreholes are presented on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples recovered from the subject site were visually examined in our laboratory to review the field logs. All samples will be stored in the laboratory for a period of one month after the issuance of this report. They will then be discarded unless we are otherwise directed.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the potential for exposed ferrous metals and the sulphate potential against subsurface concrete structures. The results are discussed further in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is currently undeveloped and grass covered with a tree-line located along the west boundary line of Cedarow Court. The ground surface across the site is relatively flat and approximately 1 m lower than adjacent properties and Hazeldean Road. Poole Creek ravine runs along the western border of the subject site approximately 3 m below the subject site.

The subject site is bordered by an active construction site for Phase 1 of the Wellings of Stittsville development along the north, Hazeldean Road along the east, and commercial buildings at the edge of Cedarow Court along the south.

4.2 Subsurface Profile

Overburden

The subsurface profile at the borehole locations consists of topsoil overlying a hard to very stiff silty clay crust followed by a grey, very stiff to stiff silty clay layer. Glacial till was encountered below the silty clay layer consisting of compact silty sand to sandy silt with clay, gravel, cobbles and boulders. A deposit of very stiff to hard clayey silt was encountered below the topsoil in BH 17, BH 18, BH 24, BH 25, BH 26, and BH 27. Practical refusal to augering on inferred bedrock was encountered in all boreholes at depths ranging between 1.6 to 4.0 m. Specific details of the soil profile at each test hole location are presented on the Soil Profile and Test Data sheets provided in Appendix 1.

Bedrock

Based on available geological mapping, the subject site consists of interbedded dolostone and limestone of the Gull River formation and an approximate drift thickness of 2 to 15 m.

4.3 Groundwater

The measured groundwater levels at the borehole locations are presented in Table 1. Groundwater readings recorded in flexible piezometers could be influenced by surface water infiltrating the backfilled boreholes. The long-term groundwater level can also be estimated based on observations of the recovered soil samples, such as the moisture level, soil consistency and colouring. Based on these observations, the long-term groundwater level is anticipated at a depth ranging between 2.5 to 3.5 m below existing grade. Groundwater levels are subject to seasonal fluctuations and could vary at the time of construction.

Proposed Mixed-Use Development 20 Cedarow Court - Ottawa

Test Hole	Ground	Groundwa	ter Levels (m)	Recording Date	
Number	Elevation (m)	Depth	Elevation		
BH 1	104.37	DRY	n/a	January 29, 2019	
BH 2	103.59	3.05	100.54	January 29, 2019	
BH 3	103.55	1.81	101.74	January 29, 2019	
BH 4	103.28	3.05	100.23	January 29, 2019	
BH 5	103.45	3.05	100.40	January 29, 2019	
BH 6	103.49	3.04	100.45	January 29, 2019	
BH 7	103.41	DRY	n/a	January 29, 2019	
BH 8	103.46	DRY	n/a	January 29, 2019	
BH 9	103.42	3.17	100.25	January 29, 2019	
BH 10	103.31	2.18	101.13	January 29, 2019	
BH 11	103.44	DRY	n/a	January 29, 2019	
BH 12	103.58	DRY	n/a	January 29, 2019	
BH 13	103.55	DRY	n/a	January 29, 2019	
BH 14	104.18	DRY	n/a	January 29, 2019	
BH 15	103.65	2.92	100.73	January 29, 2019	
BH 16	103.66	DRY	n/a	January 29, 2019	
BH 17	104.19	DRY	n/a	January 29, 2019	
BH 18	104.15	DRY	n/a	January 29, 2019	
BH 19	103.78	DRY	n/a	January 29, 2019	
BH 20	103.59	DRY	n/a	January 29, 2019	
BH 21	103.58	DRY	n/a	January 29, 2019	
BH 22	103.65	DRY	n/a	January 29, 2019	
BH 23	103.87	2.62	101.25	January 29, 2019	
BH 24	104.04	2.55	101.49	January 29, 2019	
BH 25	104.07	1.68	102.39	January 29, 2019	
BH 26	104.30	DRY	n/a	January 29, 2019	
BH 27	103.97	DRY	n/a	January 29, 2019	
BH 28	103.78	DRY	n/a	January 29, 2019	
BH 29	103.71	DRY	n/a	January 29, 2019	

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is suitable for the proposed development. The proposed structures will be founded on conventional shallow foundations placed on an undisturbed, hard to very stiff silty clay, compact to dense glacial till and/or clean, surface sounded bedrock bearing surface. Alternatively, conventional shallow footings can be placed over a near vertical, zero entry, concrete in-filled trenches extending to a clean, surface sounded bedrock bearing surface.

Permissible grade raise restriction areas are also required due to the silty clay deposit. A permissible grade raise restriction of **2 m** is recommended for areas where settlement sensitive structures are founded over the silty clay deposit.

Depending on the extent of the underground parking garage and potential grade raise, the bedrock may be encountered during excavation and construction. All contractors should be prepared for bedrock removal within the subject site.

Prior to considering blasting operations, if required, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or preconstruction survey of the existing structures located in proximity of the blasting operations should be carried out prior to commencing site activities. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries/claims related to the blasting operations.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

The above and other considerations are discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding, and other settlement sensitive structures.

Bedrock Removal

Bedrock removal can be accomplished by hoe ramming where only small quantity of the bedrock needs to be removed. Sound bedrock may be removed by line drilling and controlled blasting and/or hoe ramming.

Prior to considering blasting operations, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or pre-construction survey of the existing structures located in proximity of the blasting operations should be completed prior to commencing site activities. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries/claims related to the blasting operations.

As a general guideline, peak particle velocities (measured at the structures) should not exceed 25 mm/s during the blasting program to reduce the risks of damage to the existing structures.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

Excavation side slopes in sound bedrock can be excavated almost vertical side walls. A minimum 1 m horizontal ledge, should remain between the overburden excavation and the bedrock surface. The ledge will provide an area to allow for potential sloughing or a stable base for the overburden shoring system.

Vibration Considerations

Construction operations are the cause of vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels as much as possible should be incorporated in the construction operations to maintain, as much as possible, a cooperative environment with the residents.

The following construction equipments could be the source of vibrations: hoe ram, compactor, dozer, crane, truck traffic, etc. Vibrations, whether caused by blasting operations or by construction operations, could be the source of detrimental vibrations on the nearby buildings and structures. Therefore, all vibrations are recommended to be limited.

Two parameters are used to determine the permissible vibrations, namely, the maximum peak particle velocity and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline, the peak particle velocity should be less than 15 mm/s between frequencies of 4 to 12 Hz, and 50 mm/s above a frequency of 40 Hz (interpolate between 12 and 40 Hz). The guidelines are for current construction standards. Considering that these guidelines are above perceptible human level and, in some cases, could be very disturbing to some people, a pre-construction survey is recommended be completed to minimize the risks of claims during or following the construction of the proposed buildings.

Fill Placement

Fill placed for grading beneath the structure(s) or other settlement sensitive areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. This material should be tested and approved prior to delivery to the site. The engineered fill should be placed in maximum 300 mm thick lifts and compacted to 98% of the material's standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be placed as general landscaping fill where surface settlement is a minor concern. The backfill materials should be spread in thin lifts and at a minimum compacted by the tracks of the spreading equipment to minimize voids. If the non-specified backfill is to be placed to increase the subgrade level for areas to be paved, the fill should be compacted in maximum 300 mm lifts and compacted to 95% of the material's SPMDD. Non-specified existing fill and site-excavated soils are not suitable for placement as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

5.3 Foundation Design

Bearing Resistance Values (Shallow Foundation)

Footings for the proposed buildings can be designed with the following bearing resistance values presented in Table 2.

Table 2 - Bearing Resistance Values			
Bearing Surface	Bearing Resistance Value at SLS (kPa)	Factored Bearing Resistance Value at ULS (kPa)	
Very stiff to hard silty clay	150	250	
Compact to dense glacial till	200	300	
Lean Concrete In-filled Trenches	-	1,500	
Clean, Surface Sounded Limestone Bedrock	-	1,500	
 Note: Strip footings, up to 3 m wide, and pad footings, up to 8 m wide, placed over an undisturbed, silty clay bearing surface can be designed using the abovenoted bearing resistance values. A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance value at ULS. 			

The above-noted bearing resistance values at SLS for soil bearing surfaces will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively. Footings bearing on an acceptable bedrock bearing surface and designed for the bearing resistance values provided herein will be subjected to negligible potential post-construction total and differential settlements.

The bearing resistance values are provided on the assumption that the footings are placed on undisturbed soil bearing surfaces. An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

A clean, surface-sounded bedrock bearing surface should be free of loose materials, and have no near surface seams, voids, fissures or open joints which can be detected from surface sounding with a rock hammer.

Lean Concrete Filled Trenches

Where bedrock is encountered below the design underside of footing elevation, consideration should be given to excavating vertical trenches to expose the underlying bedrock surface and backfilling with lean concrete (**15 MPa** 28-day compressive strength). Typically, the excavation sidewalls will be used as the form to support the concrete. The additional width of the concrete poured against an undisturbed trench sidewall will suffice in providing a direct transfer of the footing load to the underlying bedrock.

The effectiveness of this operation will depend on the ability of maintaining vertical trenches until the lean concrete can be poured. It is suggested that once the bottom of the excavation is exposed, an assessment should be completed to determine the water infiltration and stability of the excavation sidewalls extending to the bedrock surface.

The trench excavation should be at least 300 mm wider than all sides of the footing at the base of the excavation. The excavation bottom should be relatively clean using the hydraulic shovel only (workers will not be permitted in the excavation below a 1.5 m depth). Once approved by the geotechnical engineer, lean concrete can be poured up to the proposed founding elevation.

Bedrock/Soil Transition

Where a building is founded partly on bedrock and partly on soil, it is recommended to decrease the soil bearing resistance value by 25% for the footings placed on soil bearing media to reduce the potential long term total and differential settlements. Also, at the soil/bedrock and bedrock/soil transitions, it is recommended that the upper 0.5 m of the bedrock be removed for a minimum length of 2 m (on the bedrock side) and replaced with nominally compacted OPSS Granular A or Granular B Type II material. The width of the sub-excavation should be at least the proposed footing width plus 0.5 m. Steel reinforcement, extending at least 3 m on both sides of the 2 m long transition, should be placed in the top part of the footings and foundation walls.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to an engineered fill, stiff silty clay or glacial till above the groundwater table when a plane extending horizontally and vertically from the underside of the footing at a minimum of 1.5H:1V passing through in situ soil of the same or higher bearing capacity as the bearing medium soil.

Permissible Grade Raise Restriction

Based on the current borehole information, a **permissible grade raise restriction of 2 m** is recommended for the proposed buildings and settlement sensitive structures where founded over a silty clay deposit. A post-development groundwater lowering of 0.5 m was assumed for our calculations.

5.4 Design for Earthquakes

The site class for seismic site response can be taken as **Class C** for the foundations considered at this site. However, a higher site class, such as Class A or B can be provided if a site specific shear wave velocity test is completed to confirm the seismic site classification. The soils underlying the subject site are not susceptible to liquefaction. Refer to the latest revision of the Ontario Building Code for a full discussion of the earthquake design requirements.

5.5 Basement Slab

The basement area for the proposed project will be mostly parking and the recommended pavement structure noted in Subsection 5.7 will be applicable. However, if storage or other uses of the lower level where a concrete floor slab will be constructed, the upper 200 mm of sub-slab fill is recommended to consist of 19 mm clear crushed stone. The upper 200 mm of sub-slab fill is recommended to consist of OPSS Granular A crushed stone for slab on grade construction. All backfill material within the footprint of the proposed building(s) should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular A or Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. All backfill material within the footprint of the proposed building(s) should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

A subfloor drainage system, consisting of lines of perforated drainage pipe subdrains connected to a positive outlet, should be provided in the clear stone under the lower basement floor (discussed in Subsection 6.1).

5.6 Basement Wall

There are several combinations of backfill materials and retained soils that could be applicable for the proposed structure's basement walls. However, the conditions can be well-represented by assuming the retained soil consists of a material with an angle of internal friction of 30 degrees and a dry unit weight of 20 kN/m³.

The foundation wall is anticipated to be provided with a perimeter drainage system; therefore, the retained soils should be considered drained. For the undrained conditions, the applicable effective unit weight of the retained soil can be designed with13 kN/m³. A hydrostatic pressure should be added to the total static earth pressure when calculating the effective unit weight. The total earth pressure (P_{AE}) includes both the static earth pressure component (P_o) and the seismic component (ΔP_{AE}).

Two distinct conditions, static and seismic, should be reviewed for design calculations. The parameters for design calculations for the two conditions are presented below.

Static Conditions

The static horizontal earth pressure (p_o) could be calculated with a triangular earth pressure distribution equal to $K_o \cdot \gamma \cdot H$ where:

- K_{o} = at-rest earth pressure coefficient of the applicable retained soil, 0.5
- γ = unit weight of fill of the applicable retained soil (kN/m³)
- H = height of the wall (m)

An additional pressure with a magnitude equal to $K_0 \cdot q$ and acting on the entire height of the wall should be added to the above formula for any surcharge loading, q (kPa), that may be placed at ground surface adjacent to the wall. The surcharge pressure should only be applicable for static analyses and not be calculated in conjunction with the seismic loading case. Actual earth pressures could be higher than the "at-rest" case if care is not exercised during the compaction of the backfill materials to maintain a minimum separation of 0.3 m from the walls with the compaction equipment.

Seismic Conditions

The total seismic force (P_{AE}) includes both the earth force component (P_o) and the seismic component (ΔP_{AE}) .

The seismic earth force (ΔP_{AE}) could be calculated using 0.375 $\cdot a_c \cdot \gamma \cdot H^2/g$ where:

 $a_c = (1.45 - a_{max}/g)a_{max}$ $\gamma = unit weight of fill of the applicable retained soil (kN/m³)$ H = height of the wall (m)g = gravity, 9.81 m/s²

The peak ground acceleration, (a_{max}) , for the Ottawa area is 0.32g according to OBC 2012. The vertical seismic coefficient is assumed to be zero. The earth force component (P_o) under seismic conditions could be calculated using P_o = 0.5 K_o γ H², where K_o = 0.5 for the soil conditions presented above.

The total earth force (P_{AE}) is considered to act at a height, h (m), from the base of the wall, where:

 $h = \{P_{o} \cdot (H/3) + \Delta P_{AE} \cdot (0.6 \cdot H)\} / P_{AE}$

The earth forces calculated are unfactored. For the ULS case, the earth loads should be factored as live loads, as per OBC 2012.

5.7 Pavement Structure

For design purposes, the pavement structure presented in the following tables could be used for the design of car only parking areas and access lanes, if required.

Table 3 - Recommended Flexible Pavement Structure - At-Grade Parking Areas		
Thickness (mm)	Material Description	
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete	
150	BASE - OPSS Granular A Crushed Stone	
300	SUBBASE - OPSS Granular B Type II	
	SUBGRADE - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil	

	able 4 - Recommended Flexible Pavement Structure - Access Lanes and Heavy Truck Parking Areas		
Thickness (mm)	Material Description		
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete		
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete		
150	BASE - OPSS Granular A Crushed Stone		
450	SUBBASE - OPSS Granular B Type II		
	SUBGRADE - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil		

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be sub-excavated and replaced with OPSS Granular B Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 98% of the SPMDD.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

Foundation Drainage

A perimeter foundation drainage system is recommended to be provided for the proposed structures. The composite drainage system (such as Miradrain G100N, Delta Drain 6000 or an approved equivalent) is recommended to extend to the footing level. Sleeves, 150 mm diameter, at 3 m centres are recommended to be placed in the footing or at the foundation wall/footing interface for blind sided pours to allow the infiltration of water to flow to the interior perimeter drainage pipe. The perimeter drainage pipe and underfloor drainage system should direct water to sump pit(s) within the lower basement area.

Underfloor Drainage

Underfloor drainage is recommend to control water infiltration for the proposed structures. For design purposes, Paterson recommends 150 mm diameter PVC, corrugated, perforated pipes be placed at 3 to 6 m centres. The spacing of the underfloor drainage system should be confirmed at the time of completing the excavation when water infiltration can be better assessed.

Adverse Effects of Dewatering on Adjacent Properties

Due to the low permeability of the subsoils profile, any minor dewatering will be considered relatively minor due to the proposed building. Therefore, adverse effects to the surrounding buildings or properties are not expected with respect to any groundwater lowering.

Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls where frost heave sensitive structures, such as a concrete sidewalk, will be placed. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material may be used for this purpose. A composite drainage system, such as Delta Drain 6000, Miradrain G100 or an approved equivalent, should be placed against the foundation wall to promote drainage toward the perimeter drainage pipe.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are recommended to be protected against the deleterious effects of frost action. A minimum of 1.5 m of soil cover alone, or a combination of soil cover and foundation insulation should be provided.

Exterior unheated footings, such as isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m or a combination of soil cover and foundation insulation.

The parking garage should not require protection against frost action due to the founding depth. Unheated structures, such as the access ramp wall footings, may be required to be insulated against the deleterious effect of frost action. A minimum of 2.1 m of soil cover alone, or a minimum of 0.6 m of soil cover, in conjunction with foundation insulation, should be provided.

6.3 Excavation Side Slopes

Temporary Side Slopes

The temporary excavation side slopes should either be excavated to acceptable slopes or retained by shoring systems from the beginning of the excavation until the structure is backfilled.

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be excavated at 1H:1V or shallower. The shallower slope is required for excavation below groundwater level. The subsurface soil is considered to be mainly Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should maintain safe working distance from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

A trench box is recommended to be installed at all times to protect personnel working in trenches with steep or vertical sides. Services are expected to be installed by "cut and cover" methods and excavations should not be remain exposed for extended periods of time.

Temporary Shoring

Temporary shoring may be required for the overburden soil to complete the required excavations where insufficient room is available for open cut methods. The shoring requirements designed by a structural engineer specializing in those works will depend on the excavation depths, the proximity of the adjacent structures and the elevation of the adjacent building foundations and underground services. The design and implementation of these temporary systems will be the responsibility of the excavation contractor and their design team. Inspections and approval of the temporary system will also be the responsibility of the designer. Geotechnical information provided below is to assist the designer in completing a suitable and safe shoring system. The designer should take into account the impact of a significant precipitation event and designate design measures to ensure that a precipitation will not negatively impact the shoring system or soils supported by the system. Any changes to the approved shoring design system should be reported immediately to the owner's structural designer prior to implementation.

The temporary system could consist of soldier pile and lagging system or interlocking steel sheet piling. Any additional loading due to street traffic, construction equipment, adjacent structures and facilities, etc., should be included to the earth pressures described below. These systems could be cantilevered, anchored or braced. Generally, it is expected that the shoring systems will be provided with tie-back rock anchors to ensure their stability. The shoring system is recommended to be adequately supported to resist toe failure and inspected to ensure that the sheet piles extend well below the excavation base. It should be noted if consideration is being given to utilizing a raker style support for the shoring system that lateral movements can occur and the structural engineer should ensure that the design selected minimizes these movements to tolerable levels.

Table 6 - Soil Parameters	
Parameters	Values
Active Earth Pressure Coefficient (K _a)	0.33
Passive Earth Pressure Coefficient (K _p)	3
At-Rest Earth Pressure Coefficient (K_o)	0.5
Dry Unit Weight (γ), kN/m ³	20
Effective Unit Weight (γ), kN/m ³	13

The earth pressures acting on the shoring system may be calculated with the following parameters.

The active earth pressure should be calculated where wall movements are permissible while the at-rest pressure should be calculated if no movement is permissible. The dry unit weight should be calculated above the groundwater level while the effective unit weight should be calculated below the groundwater level.

The hydrostatic groundwater pressure should be included to the earth pressure distribution wherever the effective unit weight are calculated for earth pressures. If the groundwater level is lowered, the dry unit weight for the soil/bedrock should be calculated full weight, with no hydrostatic groundwater pressure component.

For design purposes, the minimum factor of safety of 1.5 should be calculated.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

A minimum of a 150 mm layer of OPSS Granular A crushed stone should be placed for pipe bedding for sewer and water pipes for a soil subgrade. The bedding thickness should be increased to 300 mm for areas where the subgrade consists of bedrock. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe should consist of OPSS Granular A. The bedding and cover materials should be placed in maximum 300 mm thick lifts compacted to a minimum of 95% of the SPMDD.

The site excavated material may be placed above cover material if the excavation operations are completed in dry weather conditions and the site excavated material is approved by the geotechnical consultant. All cobbles greater than 200 mm in the longest dimension should be removed prior to the site materials being reused.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to reduce differential frost heaving. The trench backfill should be placed in maximum 225 mm thick loose lifts and compacted to a minimum of 95% of the SPMDD. Within the frost zone (1.8 m below finished grade), non frost susceptible materials should be used when backfilling trenches below the original bedrock level.

Clay seals are recommended for the subject site. The seals should be a minimum of 1.5 m long (in the trench direction) and should extend from trench wall to trench wall. Generally, the seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the SPMDD. The clay seals should be placed at the site boundaries, roadway intersections and at a maximum distance of every 50 m in the service trenches.

6.5 Groundwater Control

Groundwater Control for Building Construction

It is anticipated that groundwater infiltration into the excavations should be low and controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes, being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

6.6 Winter Construction

Precautions must be provided if winter construction is considered for this project. Where excavations are completed in proximity of existing structures which may be adversely affected due to the freezing conditions. In particular, where a shoring system is constructed, the soil behind the shoring system will be subjected to freezing conditions and could result in heaving of the structure(s) placed within or above frozen soil. Provisions in the contract documents should be provided to protect the excavation walls from freezing, if applicable. In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the installation of straw, propane heaters and tarpaulins or other suitable means. The excavation base should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be considered if such activities are to be completed during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results on analytical testing show that the sulphate content is less than 0.1%. The results are indicative that Type 10 Portland Cement (Type GU) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity in indicative of a low to moderate corrosive environment.

6.8 Limit of Hazard Lands

Field Observations

Paterson conducted a site visit on January 13, 2019 to review the slope located along the west boundary of the subject site, assess the current slope conditions and confirm the grades provided in the existing topographic mapping. A section of Poole Creek is located within the west portion of the site and shown in Drawing PG4772-1 - Test Hole Location Plan.

Three (3) slope cross-sections were reviewed in the field as the worst case scenarios. The cross section locations are presented on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2. Generally, the riverbanks along both sides of Poole Creek are currently well vegetated and were observed in an acceptable condition. Poole Creek was observed within a 20 to 40 m wide flood plain. The slope along the east side of Poole Creek ranged in height between 3 and 5 m with an inclination ranging between 2.3H:1V and 3.3H:1V. The upper slope was observed to be well vegetated with little to no signs of active surficial erosion.

Slope Stability Analysis

Limit of Hazard Lands

The slope condition was reviewed based on available topographic mapping along the east side slopes of Poole Creek within the west portion of the subject development. A total of 3 slope cross-sections were assessed as the worst case scenarios. The cross section locations are presented on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2.

A slope stability assessment was carried out to determine the required stable slope allowance setback from the top of slope based on a factor of safety of 1.5. A toe erosion and 6 m erosion access allowances were also included in the determination of limits of hazard lands and are discussed below. The proposed limit of hazard lands (as shown on Drawing PG4772-1 - Test Hole Location Plan) includes:

- a geotechnical slope stability allowance with a factor of safety of 1.5
- a toe erosion allowance
- a 6 m erosion access allowance and top of slope

Slope Stability Analysis

The analysis of the stability of the slope sections was carried out using SLIDE, a computer program which permits a two-dimensional slope stability analysis using several methods including the Bishop's method, which is a widely used and accepted analysis method. The program calculates a factor of safety, which represents the ratio of the forces resisting failure to those favoring failure. Theoretically, a factor of safety of 1.0 represents a condition where the slope is stable. However, due to intrinsic limitations of the calculation methods and the variability of the subsoil and groundwater conditions, a factor of safety greater than one is usually required to ascertain than the risks of failure are acceptable. A minimum factor of safety of 1.5 is generally recommended for conditions where the failure of the slope would endanger permanent structures.

An analysis considering seismic loading was also completed. A horizontal acceleration of 0.16G was considered for the sections for the seismic loading condition. A factor of safety of 1.1 is considered to be satisfactory for stability analyses including seismic loading.

The cross-sections were analysed taking into account a groundwater level at ground surface, which represents a worse-case scenario that can be reasonably expected to occur in cohesive soils. The stability analysis assumes full saturation of the soil with groundwater flow parallel to the slope face. Subsoil conditions at the cross-sections were inferred based on the findings at borehole locations along the top of slope and general knowledge of the area's geology.

Stable Slope Allowance

The results of the stability analysis for static conditions at Sections A through C are presented in Figures 2A to 4A in Appendix 2. All the reviewed slope sections along the subject creek were noted to be shaped to at least a 2.3H:1V. Based on the soil conditions observed and the results of the slope stability analysis, the slope stability factor of safety was calculated to be 1.5 or greater for all the slope sections which indicates that a stable slope allowance is not required for the subject slope.

The results of the analyses including seismic loading are shown in Figures 2B to 4B for the slope sections. The results indicate that the factor of safety for the sections are greater than 1.1.

It should be noted that the existing vegetation on the slope face should not be removed as it contributes to the stability of the slope and reduces erosion. If the existing vegetation needs to be removed, it is recommended that a 100 to 150 mm of topsoil mixed with a hardy seed and/or topped with an erosion control blanket be which can be placed across the exposed slope face.

Toe Erosion and Erosion Access Allowance

The toe erosion allowance for the valley corridor wall slope was based on the cohesive nature of the top layers of the subsoils, the observed current erosional activities and the width and location of the current watercourse. It should be noted that if the flood plain is measured to be greater than 20 m, no toe erosion will be required. Therefore, based on the above factors, no toe erosion allowance is considered for the subject slope.

An erosion access allowance of 6 m is required from the top of slope to ensure access is provided should future maintenance to the slope face is required. The limit of hazard lands, which includes these allowances, is indicated on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2.

6.9 Landscaping Considerations

Tree Planting Restrictions

According to the City of Ottawa Guidelines for tree planting, where a sensitive silty clay deposit is present within the vicinity of the site, tree planting restrictions should be determined. However, for this site, based on the founding medium of the underground parking level which will occupy the majority of the site, tree planting restrictions are not required from a geotechnical perspective.

7.0 Recommendations

A materials testing and observation services program is a requirement for the provided foundation design data to be applicable. The following aspects of the program should be performed by the geotechnical consultant:

- **Q** Review detailed grading plan(s) from a geotechnical perspective.
- □ Review groundwater conditions at the time of construction to determine if waterproofing is required.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- **G** Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that the construction work has been conducted in general accordance with the above recommendations could be issued, upon request, following the completion of a satisfactory materials testing and observation program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations provided in the report are in accordance with Paterson's present understanding of the project. Paterson request permission to review the recommendations when the drawings and specifications are completed.

A geotechnical investigation is a limited sampling of a site. Should any conditions encountered during construction differ from the borehole locations, Paterson requests immediate notification to permit reassessment of the recommendations provided herein.

The recommendations provided should only be used by the design professionals associated with this project. The recommendations are not intended for contractors bidding on or constructing the project. The latter should evaluate the factual information provided in the report. The contractor should also determine the suitability and completeness for the intended construction schedule and methods. Additional testing may be required for the contractors purpose.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Nautical Lands Group or their agent(s) is not authorized without review by Paterson for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Faisal I. Abou-Seido, P.Eng.

Report Distribution:

- Nautical Lands Group (3 copies)
- Paterson Group (1 copy)

David J. Gilbert, P.Eng.

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TESTING RESULTS

natersonar								SOIL PROFILE AND TEST DATA								
154 Colonnade Road South, Ottawa, Oni		_		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario											
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO.	PG4772	,					
REMARKS																
BORINGS BY CME 55 Power Auger	1			DA	TE 2	2019 Jan	uary 14			BH 1						
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		esist. Bl 0 mm Dia	ows/0.3m a. Cone	er Ion					
	STRATA	ТҮРЕ	NUMBER	~ © © © © ©	N VALUE or RQD	()	()	• v	Vater Cor	ntent %	Piezometer Construction					
GROUND SURFACE	s N	~	Z	RE	z ⁰	0-	-104.37	20	40 6	50 80	ы С Б С					
FILL: Compact brown silty sand, some gravel			1													
		SS	2	38	15	1-	-103.37									
<u>1.52</u>																
		SS	3	42	7	2-	-102.37									
Very stiff, brown SILTY CLAY, trace gravel		ss	4	58	4											
						3-	-101.37		Δ	1	29					
<u>3.73</u> End of Borehole																
Practical refusal to augering at 3.73m depth																
(BH dry - Jan 29/19)																
								20 Shea ▲ Undist	ar Streng		⊣ 00					

patersongr	g SOIL PROFILE AND TEST DATA										
154 Colonnade Road South, Ottawa, On		-		ineers	P	eotechnic roposed M ttawa, Or	Cedarow C	t.			
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO.	PG4772	
REMARKS									HOLE NO.		1
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 14			BH 2	
SOIL DESCRIPTION	PLOT .			/IPLE 거	61	DEPTH (m)	ELEV. (m)		tesist. Blo 50 mm Dia.		ter tion
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or ROD				Nater Cont		Piezometer Construction
GROUND SURFACE		XX		<u></u>	4		103.59	20	40 60	80	
FILL: Brown silty sand, some gravel			1								
		ss	2	33	4	1-	-102.59				
Very stiff to stiff, brown SILTY CLAY						2-	- 101.59		<u></u>		
- grey and trace gravel by 3.0m depth		ss	3		50.		- 100.59				
3.51			3		50+						
Practical refusal to augering at 3.51m depth											
(GWL @ 3.05m depth - Jan 29/19)											
								20 Shea ▲ Undist	40 60 ar Strengtl turbed △		⊣ 00

patersongr		In	Con	sulting	SOIL PROFILE AND TEST DATA							
154 Colonnade Road South, Ottawa, Ont		-		ineers	P	eotechnic roposed M ttawa, Or	/lixed-Us	oment - 20 (Cedarow C	t.		
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO.	PG4772		
REMARKS									HOLE NO.	BH 3		
BORINGS BY CME 55 Power Auger					TE	2019 Jan	uary 14	Dem D				
SOIL DESCRIPTION	A PLOT			/IPLE 값	Ĕ٥.	DEPTH (m)	ELEV. (m)		Resist. Blov 50 mm Dia.		eter ction	
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE or RQD			0 V 20	Nater Conte 40 60	ent % 80	Piezometer Construction	
		×				- 0-	-103.55					
TOPSOIL 0.33		AU	1									
		ss	2	21	7	1-	-102.55					
Very stiff to stiff, brown SILTY CLAY												
		SS	3	62	7	2-	-101.55					
- grey by 2.3m depth												
						3-	-100.55			<u> </u>		
								▲				
End of Borehole <u>3.66</u>												
Practical refusal to augering at 3.66m depth												
(GWL @ 1.81m depth - Jan 29/19)												
									40 60 ar Strength sturbed △ F		[⊣] 00	

patersongr		ın	Con	sulting	SOIL PROFILE AND TEST DATA								
154 Colonnade Road South, Ottawa, On		-		ineers	Pr	eotechnic oposed M tawa, Or	/lixed-Us		oment - 20	Cedarow C	t.		
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO.	PG4772	,		
REMARKS									HOLE NO	<u> </u>			
BORINGS BY CME 55 Power Auger				DA	TE 2	2019 Jan	uary 14			BH 4			
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		esist. Blo 60 mm Dia		g Well ion		
	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE or RQD				Vater Con		Monitoring Well Construction		
		8		<u>к</u>	4	0-	-103.28	20	40 6	0 80	≥0 ≣≣		
TOPSOIL			1								արերիներիներիներիներիներիներիներիներիների		
Very stiff, brown SILTY CLAY		ss	2	25	6		- 102.28		A				
- grey by 2.4m depth - trace sand and gravel by 3.0m depth		X SS	3	100	50+		- 101.28 - 100.28			1	59 •		
3.18 End of Borehole					00.								
Practical refusal to augering at 3.18m depth (GWL @ 3.05m depth - Jan 29/19)													
								20 Shea ▲ Undis	40 6 ar Strengt turbed △				

patersongr		In	Con	sulting	SOIL PROFILE AND TEST DATA								
154 Colonnade Road South, Ottawa, Ont		-		ineers	Pr	eotechnic oposed M tawa, Or	/lixed-Us		oment - 20 Ce	darow Ct	t.		
DATUM Ground surface elevations	prov	ded b	y Anr	nis, O'S					FILE NO.	FILE NO. PG4772			
REMARKS										BH 5			
BORINGS BY CME 55 Power Auger					TE 2	2019 Jan	uary 14						
SOIL DESCRIPTION	PLOT			NPLE ਮੁ	ы .	DEPTH (m)	ELEV. (m)		esist. Blows 60 mm Dia. C		ter tion		
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	∾ RECOVERY	N VALUE or RQD			0 V 20	Vater Conten 40 60	nt % 80	Piezometer Construction		
TOPSOIL		AU	1			0-	-103.45						
Hard to very stiff, brown SILTY CLAY		SS	2	38	6	1-	-102.45						
- grey by 2.1m depth						2-	- 101.45				39		
3.40						3-	- 100.45	· · · · · · · · · · · · · · · · · · ·			79		
End of Borehole		-											
Practical refusal to augering at 3.40m depth													
(GWL @ 3.05m depth - Jan 29/19)								20 Shea ▲ Undist	40 60 ar Strength (turbed △ Rei		00		

patersongr		In	Con	sulting	SOIL PROFILE AND TEST DATA								
154 Colonnade Road South, Ottawa, On		-		ineers	-	ow Ct.							
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO.	4772			
REMARKS									HOLE NO. BH 6				
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 14		5				
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		esist. Blows/0.3 0 mm Dia. Cone				
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD			0 W 20	/ater Content %				
		×				- 0-	103.49						
TOPSOIL		× AU	1										
<u>0.30</u>													
		$\overline{1}$											
		ss	2	58	8	1-	-102.49						
Very stiff, brown SILTY CLAY													
				_									
		SS	3	71	9	2-	-101.49						
- grey by 2.0m depth						2	101.49						
		17											
		ss	4	100	5								
						3-	-100.49						
										249			
End of Borehole 3.56													
Practical refusal to augering at 3.56m depth													
(GWL @ 3.04m depth - Jan 29/19)													
									40 60 80 Ir Strength (kPa)			
								▲ Undist	urbed $ riangle$ Remoul	ded			

patersongr		In		SOIL	PRO	FILE AND TEST DATA							
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario								
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-			. FILE NO. PG4772					
REMARKS								HOLE NO. BH 7					
BORINGS BY CME 55 Power Auger					TE	2019 Jan	uary 14						
SOIL DESCRIPTION	PLOT			/IPLE と	E .	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone					
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			50 mm Dia. Cone 50 mm Dia. Cone 0 Water Content % 20 40 60 80					
GROUND SURFACE		×		щ			-103.41						
TOPSOIL		AU	1										
Very stiff to hard, brown SILTY		ss	2	58	7	1-	-102.41						
CLAY													
- grey by 1.8m depth		SS	3	92	6	2-	-101.41						
								139					
						3-	-100.41						
								209					
<u>3.83</u> End of Borehole													
Practical refusal to augering at 3.83m depth													
(BH dry - Jan 29/19)													
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded					

natersonar							g SOIL PROFILE AND TEST DATA								
154 Colonnade Road South, Ottawa, Ont		_		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario										
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	ulliv	an, Vollet	oekk Ltd.		FILE NO.	PG4772					
REMARKS										BH 8					
BORINGS BY CME 55 Power Auger					TE	2019 Jan	uary 14								
SOIL DESCRIPTION	A PLOT			/IPLE	ы ы	DEPTH (m)	ELEV. (m)		esist. Blows 0 mm Dia. C		eter ction				
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE of RQD			0 V 20	Vater Conter 40 60	nt % 80	Piezometer Construction				
		XXX					103.46								
TOPSOIL	XX	AU	1												
		滚													
		ss	2	67	7	1-	102.46								
Very stiff, brown SILTY CLAY			2		,										
		1													
		ss	3	92	6										
- grey by 2.0m depth						2-	-101.46								
									Δ	1	89				
3.02 End of Borehole						3-	-100.46								
Practical refusal to augering at 3.02m depth															
(BH Dry - Jan 29/19)															
								20 Shea ▲ Undist	40 60 ar Strength (turbed △ Re		00				

patersongr		ın	Con	sulting		SOII	_ PRO	FILE AND TEST DATA
154 Colonnade Road South, Ottawa, Ont		-		ineers	P	eotechnic roposed M ttawa, Or	Mixed-Us	tigation Se Development - 20 Cedarow Ct.
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S				FILE NO. PG4772
REMARKS								
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 15	BH 9
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE or RQD			Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone ○ Water Content % 20 40 60 80
GROUND SURFACE	02	×	2	RE	z ^o	- 0-	103.42	
TOPSOIL <u>0.38</u>			1					
		ss	2	71	4	1-	-102.42	
Hard to very stiff, brown SILTY CLAY								
						2-	-101.42	139
		ss	3	71	14	3-	-100.42	
3.76	μ <i>Έ</i> λ							
Practical refusal to augering at 3.76m depth (GWL @ 3.17 m depth - Jan 29/19)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongr		In	Con	sulting	SOIL PROFILE AND TEST DATA								
154 Colonnade Road South, Ottawa, Ont		-		ineers	Pr	eotechnic oposed M tawa, Or	/lixed-Us		ment - 20	Cedarow C	t.		
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-				FILE NO.	DC 4770			
REMARKS									HOLE NO	PG4772	•		
BORINGS BY CME 55 Power Auger				DA	TE 2	2019 Jan	uary 15			BH10			
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia		er ion		
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD				Vater Con		Piezometer Construction		
GROUND SURFACE		×		<u>д</u>	-	0-	103.31	20	40 60	0 80			
TOPSOIL <u>0.41</u>		AU	1										
Very stiff, brown SILTY CLAY		SS	2	67	9	1-	-102.31						
- grey by 2.1m depth		SS	3	75	6	2-	-101.31	2	y				
GLACIAL TILL: Compact, brown sandy silt, trace clay and gravel, occasional cobbles and boulders		ss	4	83	19	3-	-100.31						
		Į.											
End of Borehole Practical refusal to augering at 3.66m													
depth (GWL @ 2.18m depth - Jan 29/19)													
								20 Shea ▲ Undist	40 60 ar Strengt urbed △		100		

patersongr		In	Con	sulting	SOIL PROFILE AND TEST DATA							
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario							
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-		FILE NO.	PG4772				
REMARKS												
BORINGS BY CME 55 Power Auger					ΛTE	2019 Jan	uary 15		BH11			
SOIL DESCRIPTION	PLOT			NPLE 건	M -	DEPTH (m)	ELEV. (m)		esist. Blow 0 mm Dia. 0		ter tion	
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or ROD				Vater Conte		Piezometer Construction	
GROUND SURFACE		×		щ			103.44	20	40 60	80		
TOPSOIL		AU	1									
Very stiff, brown SILTY CLAY		ss	2	71	4	1-	-102.44				79	
						2-	-101.44				49	
3.05 GLACIAL TILL: Very dense brown to grey sandy silt, trace clay and gravel, occasional cobbles and 3.35 boulders End of Borehole Practical refusal to augering at 3.35m		ss	3	100	50+		-100.44					
depth (BH Dry - Jan 29/19)												
								20 Shea ▲ Undist	40 60 ar Strength turbed △ Re		00	

patersongr		In	Con	sulting		SOIL	PRO	FILE AND TEST DATA					
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario								
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-			FILE NO. PG4772					
REMARKS													
BORINGS BY CME 55 Power Auger					TE	2019 Jan	uary 15	BH12					
SOIL DESCRIPTION	PLOT			MPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone	tion				
	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE or RQD			• Water Content %	Construction				
GROUND SURFACE	ω	~	z	RE	z ⁰	0-	-103.58	20 40 60 80 Ē	ິບິ ™				
TOPSOIL 0.38		AU	1										
						1-	-102.58						
		ss	2	88	6								
Very stiff, brown SILTY CLAY		ss	3	96	5	2-	-101.58						
								139					
<u>3.05</u>						3-	-100.58						
GLACIAL TILL: Compact, brown to grey clayey silt, some sand, trace gravel, occasional cobbles and boulders		ss	4	90	11								
End of Borehole									<u>–9999</u>				
Practical refusal to augering at 3.58m depth													
(BH Dry - Jan 29/19)													
								20 40 60 80 100					
								Shear Strength (kPa) ▲ Undisturbed △ Remoulded					

patersongr		In	Con	sulting	,	SOII	_ PRO	FILE AN	D TEST DAT	4			
154 Colonnade Road South, Ottawa, Ont		_		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario								
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO. PG477	2			
REMARKS								-		-			
BORINGS BY CME 55 Power Auger					ΔTE	2019 Jan	uary 15		BH13				
SOIL DESCRIPTION	PLOT			/IPLE 것	61 -	DEPTH (m)	ELEV. (m)		sist. Blows/0.3m mm Dia. Cone	ter tion			
	STRATA	TYPE	NUMBER	RECOVERY	N VALUE of ROD				ter Content %	Piezometer Construction			
GROUND SURFACE		×		<u></u>	4		103.55	20	40 60 80				
TOPSOIL 0.36			1										
Hard, brown SILTY CLAY		SS	2	88	4	1-	-102.55		4				
2.90						2-	-101.55		· A	229			
End of Borehole Practical refusal to augering at 2.90m													
depth (BH Dry - Jan 29/19)								20	40 60 80	100			
									Strength (kPa)	100			

patersongr		ın	Con	sulting		SOIL	- PRO	FILE AI	ND TES	T DATA		
154 Colonnade Road South, Ottawa, Ont		-		jineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario							
DATUM Ground surface elevations	prov	ided b	y Anı	nis, O'S					FILE NO.	PG4772		
REMARKS									HOLE NO.			
BORINGS BY CME 55 Power Auger					ATE	2019 Jan	uary 15			BH14		
SOIL DESCRIPTION	PLOT			MPLE 것	ы. Ы.	DEPTH (m)	ELEV. (m)		esist. Blov 60 mm Dia.		ter stion	
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	°% RECOVERY	N VALUE or ROD			0 V 20	Vater Conte	ent % 80	Piezometer Construction	
		XX					-104.18					
TOPSOIL 0.41		AU	1									
		17										
Very stiff, brown SILTY CLAY		ss	2	67	7	1-	-103.18					
			0		0							
- grey by 2.0m depth		SS	3	96	6	2-	-102.18					
2.29												
GLACIAL TILL: Grey silty clay, trace												
sand and gravel, occasional cobbles and boulders												
3.00						2	-101.18					
End of Borehole						5	101.10					
Practical refusal to augering at 3.00m depth												
(BH Dry - Jan 29/19)												
								20 Shea	40 60 ar Strength		00	
								▲ Undist	-	Remoulded		

patersongr		In	Con	sulting		SOIL	PRO	FILE AND TEST DATA						
154 Colonnade Road South, Ottawa, Ont		-		ineers	Proposed Mixed-Use Development - 20 Cedarow Ct.									
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	Ottawa, Ontario sullivan, Vollebekk Ltd. FILE NO.									
REMARKS								PG4772						
BORINGS BY CME 55 Power Auger	1			DA	TE	2019 Jan	uary 15	BH15						
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone	Well on					
	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	VALUE Dr RQD		(11)	• Water Content %	Monitoring Well Construction					
GROUND SURFACE	LS	L	NC	REC	N O	0	-103.65	20 40 60 80	C Q					
TOPSOIL 0.36			1			0-	- 103.65		Արևերերերերերեր Մերեներերերերեր					
Very stiff, brown SILTY CLAY		SS	2	71	6	1-	-102.65		ցերերունը ա <mark>նքն</mark> ությունը ու երերերին երերերին երերերին երերերին երերերին երերերին։ ԱՄԵՄ երերերին երերերին երերերին երերերին երերերին երերերին երերերին։					
2.29		-				2-	-101.65							
Hard, brown CLAYEY SILT 3.05						3-	- 100.65		9					
GLACIAL TILL: Compact to very dense, grey clayey silt, some sand, trace gravel, occasional cobbles and boulders		ss	3	79	24									
3.99 End of Borehole		∐ ∑ss	4	100	50+									
Practical refusal to augering at 3.99m depth														
(GWL @ 2.92m depth - Jan 29/19)														
								20 40 60 80 10 Shear Strength (kPa) ▲ Undisturbed △ Remoulded	00					

patersongr		In	Con	sulting		SOIL	PRO	FILE AN	ND TE	ST DATA			
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario								
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-				FILE NO	PG4772	,		
REMARKS									HOLE N	n	•		
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 15			BH16			
SOIL DESCRIPTION	PLOT		SAN	MPLE		DEPTH (m)	ELEV. (m)		esist. Bl 0 mm Di	ows/0.3m a. Cone	er tion		
	STRATA	ТҮРЕ	NUMBER	~ © © © © ©	N VALUE or RQD			• v	Vater Co	ntent %	Piezometer Construction		
GROUND SURFACE	01	×	4	RE	z		-103.66	20	40	60 80	ŭ ja w w		
TOPSOIL 0.33			1										
Hard, brown SILTY CLAY		ss	2	75	4	1-	-102.66						
						2-	-101.66	Ź	×		209		
2.29 GLACIAL TILL: Dense, brown to grey clayey silt, some sand, gravel, cobbles and boulders 2.95		ss	3	46	31								
End of Borehole		<u>.</u>											
Practical refusal to augering at 2.95m depth													
(BH Dry - Jan 29/19)								20	40	60 80 1			
								-	ar Streng				

patersongr	sulting	SOIL PROFILE AND TEST DATA										
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario							
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S								
REMARKS									HOLE NO.			
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 16		BH1	7		
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	-	esist. Blows/0.3 0 mm Dia. Cone			
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE of RQD			0 V 20	Vater Content %	on lez		
		XXXX					104.19	20				
TOPSOIL 0.38			1									
Very stiff to hard, brown CLAYEY SILT		ss	2	79	7	1-	-103.19					
- grey by 1.8m depth		ss	3	100	55	2-	-102.19					
2.23							102.10					
End of Borehole		_										
Practical refusal to augering at 2.23m depth												
(BH Dry - Jan 29/19)												
								20 Shea ▲ Undist	40 60 80 ar Strength (kPa) turbed △ Remould			

natoreonar		In	Con	sulting		SOII	_ PRO			ST DATA						
	Patersongroup Consultin Engineers 154 Colonnade Road South, Ottawa, Ontario K2E 7J5								Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario							
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO.	PG4772						
REMARKS									HOLE NO)						
BORINGS BY CME 55 Power Auger				DA	TE 2	2019 Jan	uary 16			⁷ BH18	1					
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)		esist. Bl 0 mm Dia	ows/0.3m a. Cone	er ion					
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD			• v	Vater Cor	ntent %	Piezometer Construction					
GROUND SURFACE		×.	I	R	z °	0-	104.15	20	40 6	60 80	i⊑ ŭ ⊠ ⊠					
TOPSOIL																
<u>0.33</u>		AU	1													
Hard, brown CLAYEY SILT		17														
, -		ss	2	88	11	1-	103.15				ज्ञातीत ज्ञातात					
		$\overline{\mathbb{N}}$	-													
- grey by 1.8m depth 1.96		ss	3	88	50+											
End of Borehole																
Practical refusal to augering at 1.96m depth																
(BH Dry - Jan 29/19)																
								20 Shea ▲ Undist	ar Streng		⊣ 00					

patersongr		ın	Con	sulting		SOII	_ PRO	FILE AND TEST DATA			
154 Colonnade Road South, Ottawa, On		_	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario								
DATUM Ground surface elevations	s prov	ided b	y Anr	nis, O'S	_			FILE NO. PG4772			
REMARKS								HOLE NO.			
BORINGS BY CME 55 Power Auger		1		DA	TE	2019 Jan	uary 16	BH19			
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone			
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD		(,	● 50 mm Dia. Cone ○ Water Content %			
GROUND SURFACE	01	×	4	RE	z		103.78	20 40 60 80 Ö			
TOPSOIL		AU	1								
		SS	2	88	3	1-	-102.78				
Hard, brown to grey SILTY CLAY					U						
						2-	-101.78	234			
2.44 End of Borehole		ss	3	100	50+						
Practical refusal to augering at 2.44m depth											
(BH Dry - Jan 29/19)											
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded			

patersongr		ır	Con	sulting		SOI	_ PRO	FILE AND TEST DATA					
154 Colonnade Road South, Ottawa, On		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario								
DATUM Ground surface elevations	s prov	ided b	oy Anr	nis, O'S	_			FILE NO. PG4772					
REMARKS													
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 16	BH20					
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone	er ion				
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or ROD	1		• Water Content %	Plezometer Construction				
GROUND SURFACE	ß	~	N	RE	z ⁰		- 103.59	20 40 60 80	±°S ∞∞∞				
TOPSOIL													
0.33		AU	1										
		17											
Very stiff, brown SILTY CLAY		ss	2	83	4	1	102.59						
, -		1			-								
- grey by 1.8m depth								1 59					
						2	101.59						
2.30													
		\mathbb{N}											
Loose, grey CLAYEY SILT , trace sand and gravel		ss	3	83	9								
End of Borehole	<u>1</u> 2X					3-	-100.59						
Practical refusal to augering at 3.05m													
depth (BH Dry - Jan 29/19)													
(Dri Diy - Jail 29/19)													
								20 40 60 80 100 Shear Strength (kPa)					
								▲ Undisturbed △ Remoulded					

patersongr		ın	Con	sulting	SOIL PROFILE AND TEST DATA							
154 Colonnade Road South, Ottawa, On		-	ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario								
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S				FILE NO. PG4772				
REMARKS												
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 16	BH21				
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone				
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			50 mm Dia. Cone 50 mm Dia. Cone 9				
TOPSOIL						- 0-	-103.58					
0.33		AU	1									
Very stiff, brown SILTY CLAY		ss	2	79	5	1-	-102.58					
								129				
- grey by 1.8m depth						2-	-101.58					
GLACIAL TILL: Compact to very dense, brown to grey sandy silt, some clay, gravel, cobbles and boulders		ss	3	71	13							
3.20		ss	4	100	50+	3-	-100.58					
Practical refusal to augering at 3.20m depth												
(BH Dry - Jan 29/19)												
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded				

patersongr		In	Con	sulting		SOIL	- PRO	FILE AI	ND TE	ST DATA		
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario							
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-				FILE NO	D. PG4772)	
REMARKS									HOLE	10	-	
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 16			BH22	_	
SOIL DESCRIPTION	PLOT		SAN	MPLE		DEPTH (m)	ELEV. (m)			lows/0.3m ia. Cone	g Well tion	
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD			• V	Vater Co	ontent %	Monitoring Well Construction	
GROUND SURFACE	0,	×		R	z ⁰	- 0-	103.65	20	40	60 80	_	
TOPSOIL0.25			1								ביריביניין איז	
Very stiff, brown SILTY CLAY		ss	2	71	5	1-	- 102.65					
- grey by 2.0m depth						2-	-101.65		2			
End of Borehole												
Practical refusal to augering at 2.29m depth (BH Dry - Jan 29/19)												
								20 Shea ▲ Undis		60 80 ∕ gth (kPa) ∆ Remoulded	100	

patersongr	ır	SOIL PROFILE AND TEST DATA										
154 Colonnade Road South, Ottawa, On		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario							
DATUM Ground surface elevations	s prov	ided b	y Anr	nis, O'S				FILE NO. PG4772				
REMARKS												
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 16	BH23				
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone				
	STRATA	TYPE	NUMBER	RECOVERY	N VALUE or ROD		(,	● 50 mm Dia. Cone ○ Water Content % 20 40 60 80				
GROUND SURFACE	Ø	×	Z	RE	z ^o		103.87	20 40 60 80 ÖČČ				
TOPSOIL 0.30												
<u>0.3</u> (AU	1									
		1										
Very stiff, brown SILTY CLAY , some sand		ss	2	0	6	1-	102.87					
					Ū							
1.52												
		ss	3	83	11							
						2-	101.87					
GLACIAL TILL: Dense to very dense, grey silty sand with clay,												
gravel, cobbles and boulders		ss	4	75	36							
						3-	100.87					
3.36	5	∬ss	5	31	50+							
End of Borehole												
Practical refusal to augering at 3.36m depth												
(GWL @ 2.62m depth - Jan 29/19)												
								20 40 60 80 100 Shear Strength (kPa)				
								▲ Undisturbed △ Remoulded				

patersongr						SOIL PROFILE AND TEST DATA							
154 Colonnade Road South, Ottawa, Ont	-	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario											
DATUM Ground surface elevations	FILE NO. PG4772												
REMARKS													
BORINGS BY CME 55 Power Auger		1	TE	2019 Jan	uary 16	BH24							
SOIL DESCRIPTION	PLOT	SAMPLE				DEPTH (m)		Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone					
	STRATA	TYPE NUMBER ® RECOVERY			N VALUE or RQD	(,	(,	• 50 mm Dia. Cone					
GROUND SURFACE				Z *		104.04	20 40 60 80 <u>.</u>						
TOPSOIL		AU	1										
Very stiff, brown to grey CLAYEY		ss	2	67	10	1-	-103.04						
2.29		SS	3	79	29	2-	-102.04						
GLACIAL TILL: Compact to very dense, brown clayey silt, some sand, gravel, cobbles and boulders		ss	4	58	23								
2.15		ך ע ss	5	100	50+	3-	101.04						
End of Borehole	<u> ^.^.</u>				00.								
Practical refusal to augering at 3.15m depth													
(GWL @ 2.55m depth - Jan 29/19)													
						20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded							

				SOIL PROFILE AND TEST DATA Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario									
154 Colonnade Road South, Ottawa, Ont													
DATUM Ground surface elevations provided by Annis, O'Sullivan, Vollebekk Ltd.									FILE NO.				
REMARKS										PG4772			
BORINGS BY CME 55 Power Auger DATE 2019 January 16									BH25				
SOIL DESCRIPTION	PLOT	SAMPLE				DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone क			er		
	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE or RQD		(,	● 50 mm Dia. Cone □ or pro- □					
GROUND SURFACE	02				z		-104.07		40	40 60 80			
TOPSOIL		AU	1										
Very stiff, brown CLAYEY SILT		ss	2	75	11	1-	-103.07						
GLACIAL TILL: Very dense, grey 1.62 clayey silt with sand, gravel, cobbles, boulders		x ss	3	75	50+						 		
End of Borehole Practical refusal to augering at 1.62m	<u>⊢</u> _ J												
depth													
(GWL @ 1.68m depth - Jan 29/19)													
								20 Shea ▲ Undist	40 60 80 100 ear Strength (kPa) isturbed △ Remoulded				

patersongr		In	Con	sulting		SOIL	_ PRO	FILE AI		EST DAT	4
154 Colonnade Road South, Ottawa, Ont		-	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario								
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S		•			FILE N	o. PG477	2
REMARKS									HOLE	NO	_
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 17			BH26	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)			Blows/0.3m Dia. Cone	er ion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD					ontent %	Piezometer Construction
GROUND SURFACE		×		<u>щ</u>		- 0-	104.30	20	40	60 80	
TOPSOIL <u>0.38</u>		AU	1								
Very stiff, brown CLAYEY SILT		ss	2	75	9	1-	-103.30				
GLACIAL TILL: Compact to dense, grey silty clay with gravel, cobbles		ss	3	50	19	2-	-102.30				
and boulders 2.87		ss	4	100	46						
End of Borehole Practical refusal to augering at 2.87m		-									
depth (BH Dry - Jan 29/19)											
								20 Shea ▲ Undist		60 80 ngth (kPa) △ Remoulded	100

patersongr	In	SOIL PROFILE AND TEST DATA									
154 Colonnade Road South, Ottawa, On		-	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario								
DATUM Ground surface elevations	s prov	ided b	y Anr	nis, O'S	_				FILE NO.	PG4772	
REMARKS								-	HOLE NO		
BORINGS BY CME 55 Power Auger					TE 2	2019 Jan	uary 17	Dara Da			Τ_
SOIL DESCRIPTION	A PLOT			/IPLE 것	ы о	DEPTH (m)	ELEV. (m)) mm Dia	ows/0.3m . Cone	ng Wel
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD			○ W 20	ater Con		Monitoring Well Construction
				н 		0-	103.97		40 00		
TOPSOIL	B	₩ AU	1								<u>երերերերերը։</u> Արերերերեր
Very stiff, brown CLAYEY SILT					•	1-	-102.97				
		SS	2	71	8						
		$\overline{\mathbb{N}}$									
_ grey by 1.7m depth		ss	3	88	50+						
End of Borehole											
Practical refusal to augering at 1.93m depth											
(BH Dry - Jan 29/19)											
									40 60 r Strengt	h (kPa)	00
	1							▲ Undistu		Remoulded	ſ

patersongr		ın	Con	sulting		SOII	_ PRO	FILE AND TEST DATA			
154 Colonnade Road South, Ottawa, Ont		-	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario								
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-			FILE NO. PG4772			
REMARKS											
BORINGS BY CME 55 Power Auger DATE 2019 January 17 BH28											
SOIL DESCRIPTION	PLOT		SAN	MPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone			
	STRATA	TYPE	NUMBER	~ RECOVERY	N VALUE or ROD			● 50 mm Dia. Cone ○ Water Content % 20 40 60 80 Leizounetion			
GROUND SURFACE	02	8	4	RE	z ^o	- 0-	103.78	20 40 60 80 <u> </u>			
TOPSOIL		AU	1								
Very stiff, brown SILTY CLAY		ss	2	38	6	1-	-102.78				
								<u>م</u>			
<u>2.29</u>						2-	-101.78				
GLACIAL TILL: Loose to very dense, grey silty clay with sand, gravel, cobbles and boulders		SS	3	8	2						
3 18		≍ SS	4	0	50+	3-	100.78				
End of Borehole Practical refusal to augering at 3.18m	<u></u>	-									
depth (BH Dry - Jan 29/19)											
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded			

patersongr		In	Con	sulting		SOII	_ PRO	FILE AND TEST DATA		
154 Colonnade Road South, Ottawa, On		_		Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario						
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_			FILE NO. PG4772		
REMARKS								HOLE NO. BH29		
BORINGS BY CME 55 Power Auger					TE	2019 Jan	uary 17			
SOIL DESCRIPTION	A PLOT			/PLE 것	ы о	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone		
	STRATA	TYPE	NUMBER	~ RECOVERY	N VALUE or RQD	1		So mm Dia. Cone So mm Dia. Cone So me Dia. Cone S		
GROUND SURFACE		XXX		щ			103.71			
TOPSOIL 0.38		AU	1							
						1	-102.71			
Very stiff, brown SILTY CLAY		SS	2	50	7		102.71			
		ss	3	71	4					
2.29						2-	-101.71			
GLACIAL TILL: Loose, grey silty clay with sand, gravel, cobbles and boulders		ss	4	17	7					
2.95		ľ.								
End of Borehole Practical refusal to augering at 2.95m depth										
(BH Dry - Jan 29/19)										
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded		

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %		
Very Loose	<4	<15		
Loose	4-10	15-35		
Compact	10-30	35-65		
Dense	30-50	65-85		
Very Dense	>50	>85		

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

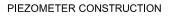
GRAIN SIZE DISTRIBUTION

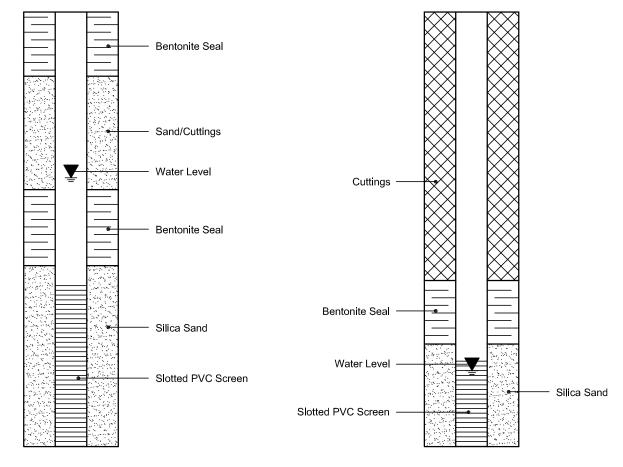
MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)						
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size						
D10	-	Grain size at which 10% of the soil is finer (effective grain size)						
D60	-	Grain size at which 60% of the soil is finer						
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$						
Cu	-	Uniformity coefficient = D60 / D10						
Cc and Cu are used to assess the grading of sands and gravels:								

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Cc	-	Compression index (in effect at pressures above p'_c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)


PERMEABILITY TEST


k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

Certificate of Analysis **Client: Paterson Group Consulting Engineers** Client PO: 25648

Report Date: 22-Jan-2019

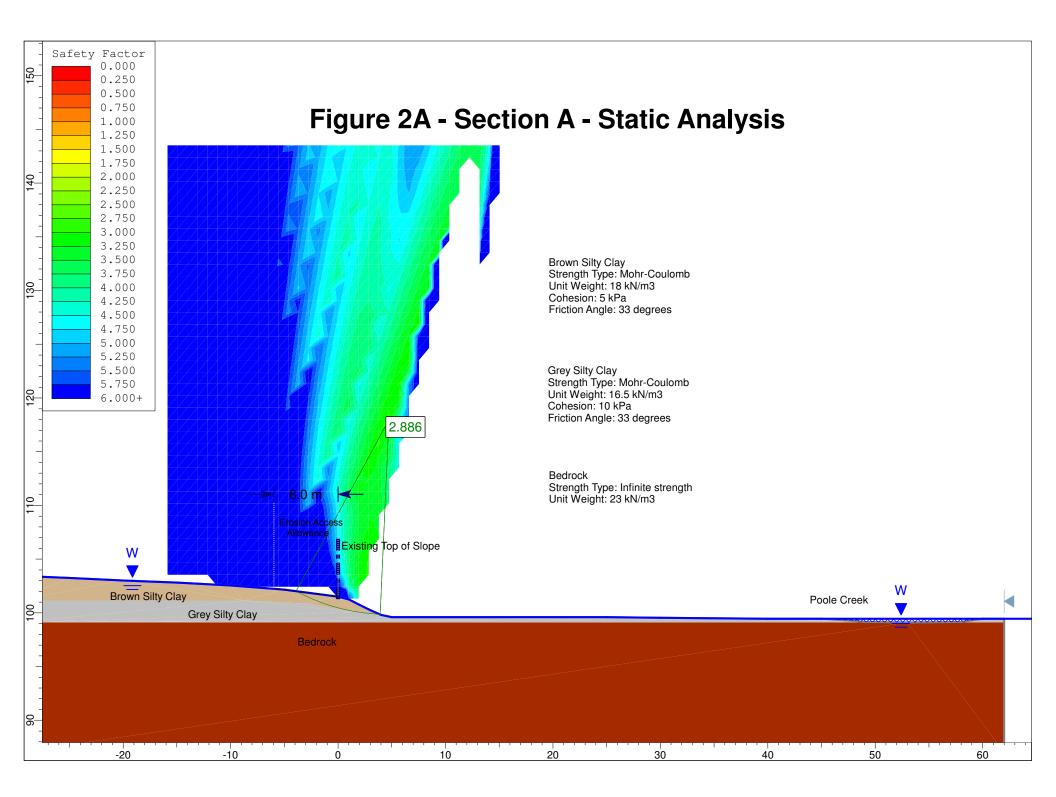
Order Date: 16-Jan-2019

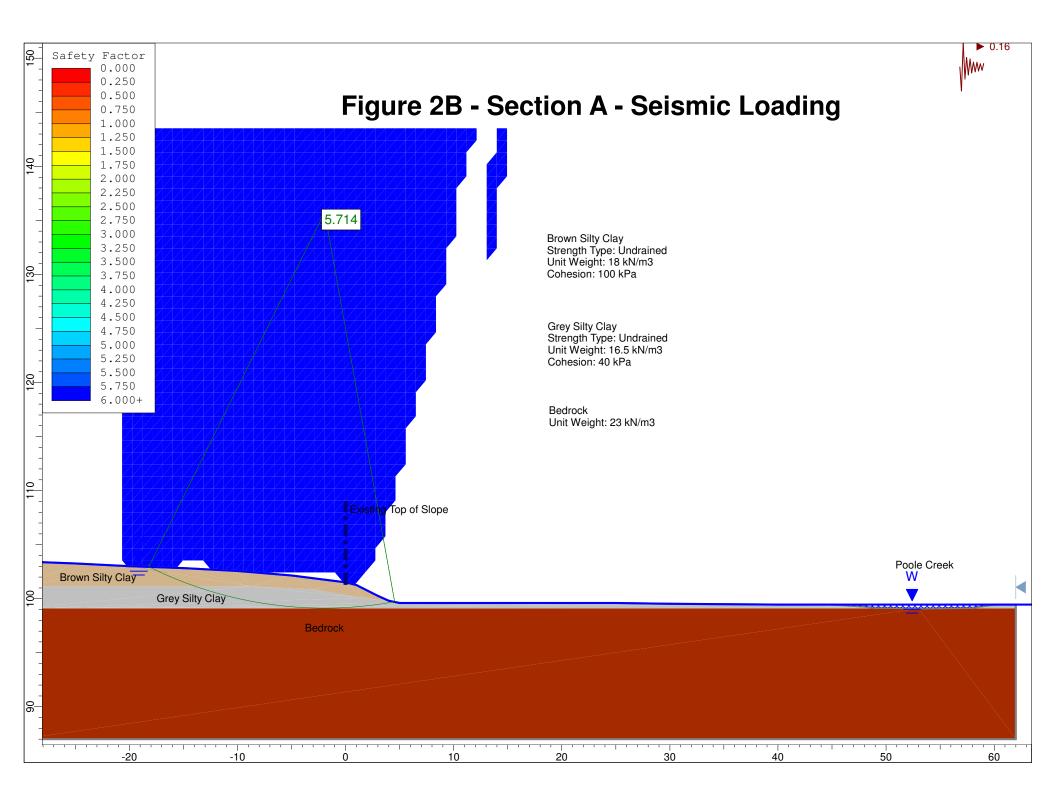
Project Description: PG4772

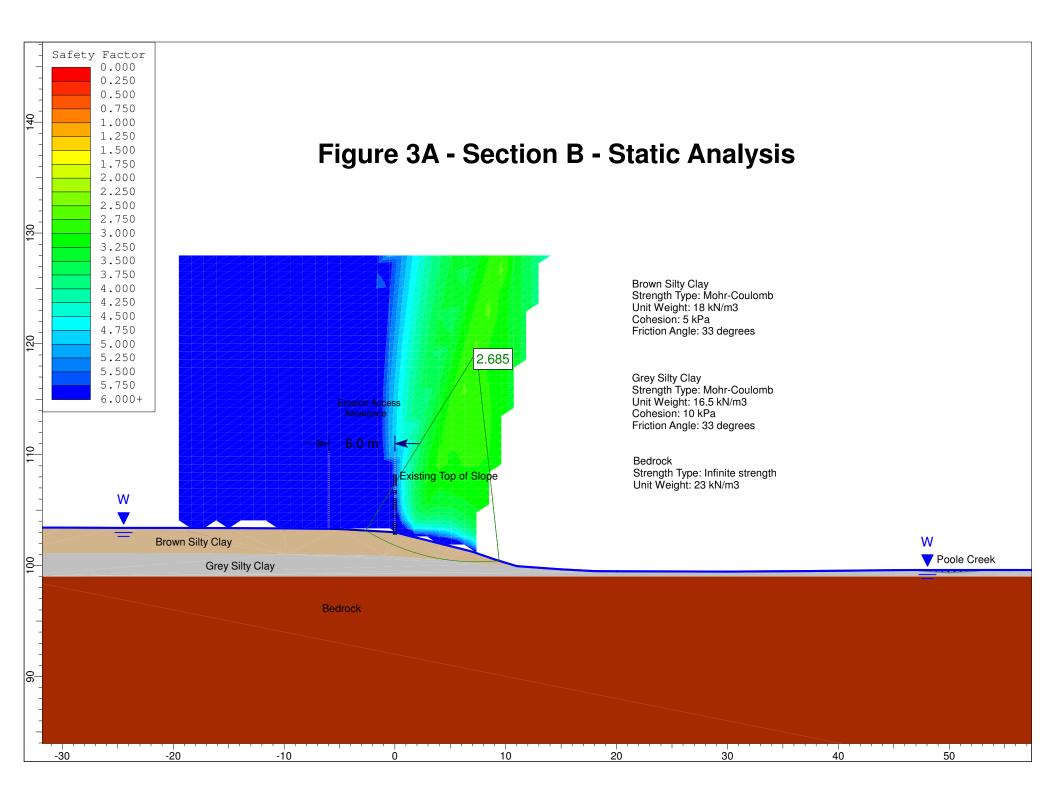
	Client ID:	BH#16-19 SS#3	-	-	-
	Sample Date:	01/15/2019 09:00	-	-	-
	Sample ID:	1903309-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	85.8	-	-	-
General Inorganics					
рН	0.05 pH Units	7.80	-	-	-
Resistivity	0.10 Ohm.m	76.2	-	-	-
Anions					
Chloride	5 ug/g dry	6	-	-	-
Sulphate	5 ug/g dry	6	-	-	-

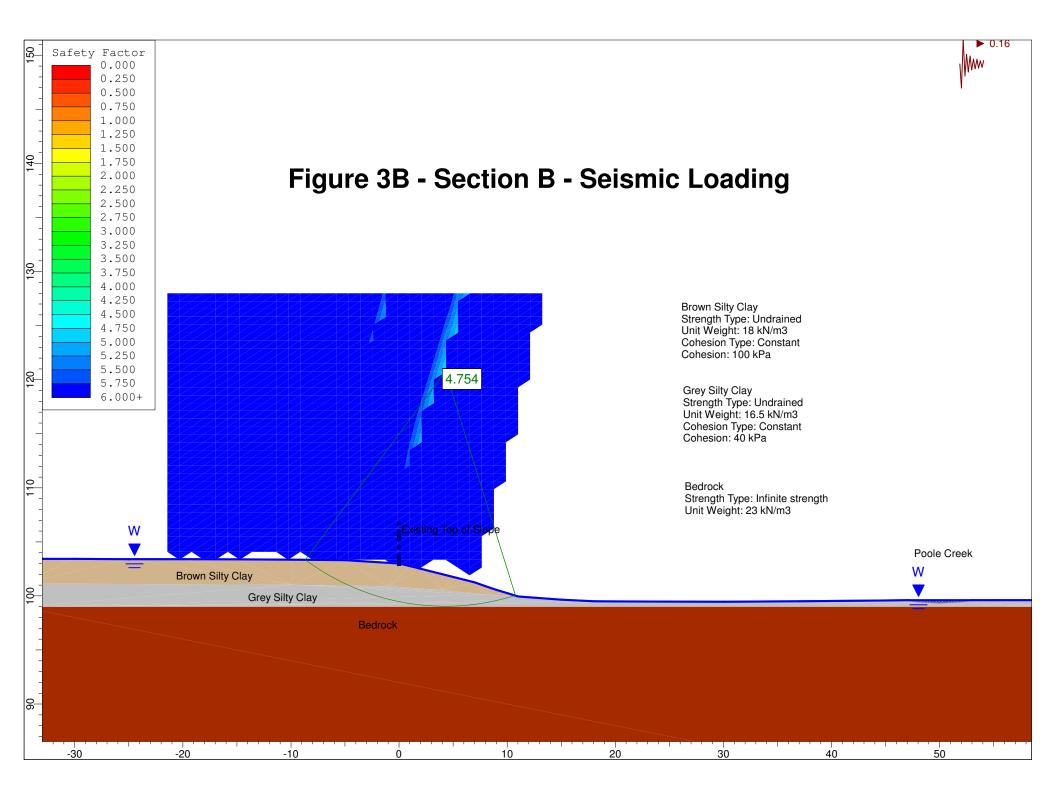
APPENDIX 2

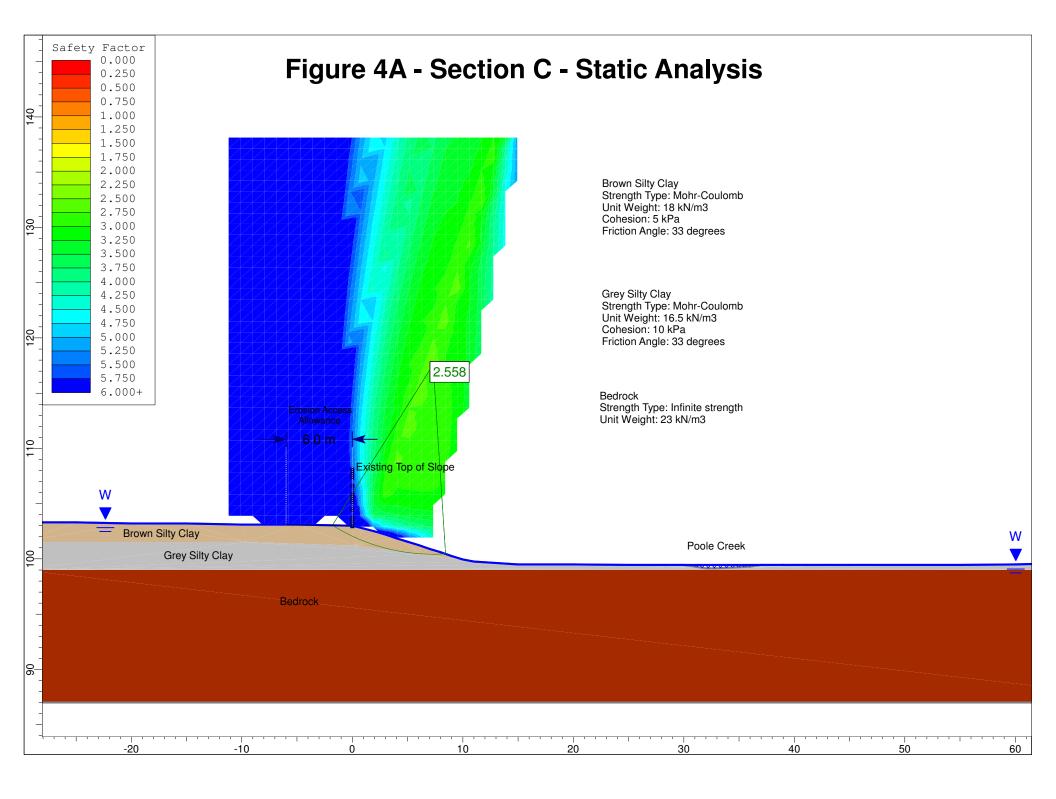

FIGURE 1 - KEY PLAN

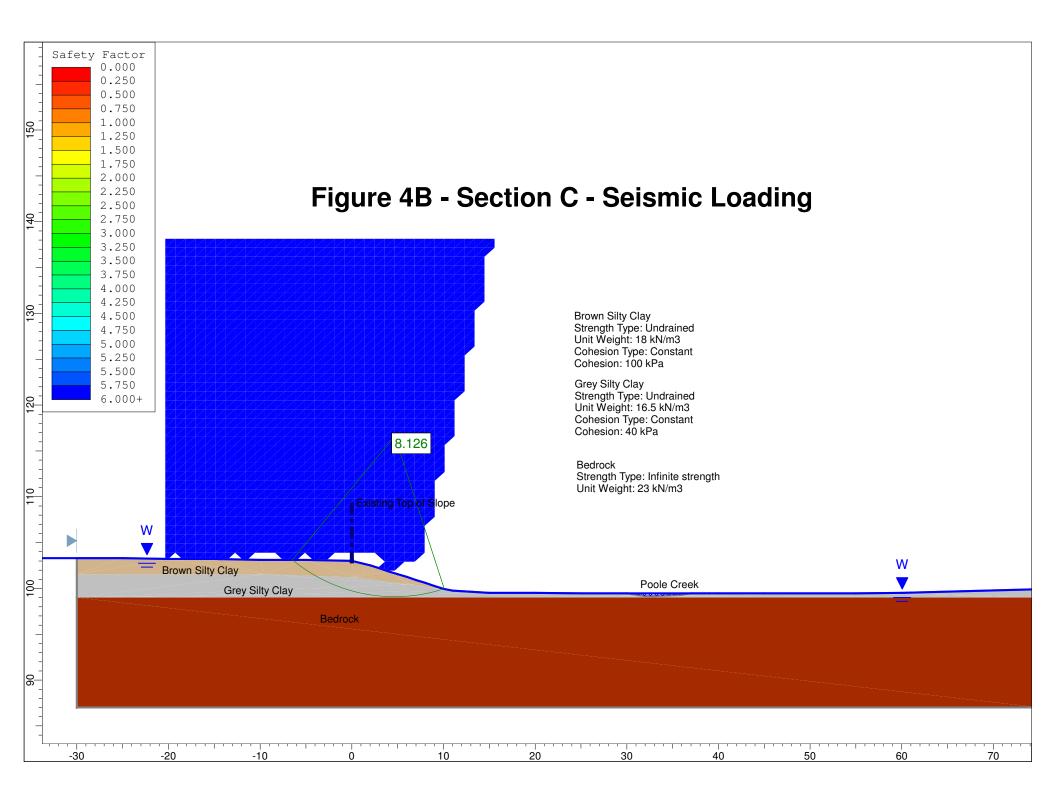

FIGURES 2 TO 4 - SLOPE STABILITY ANALYSIS SECTIONS

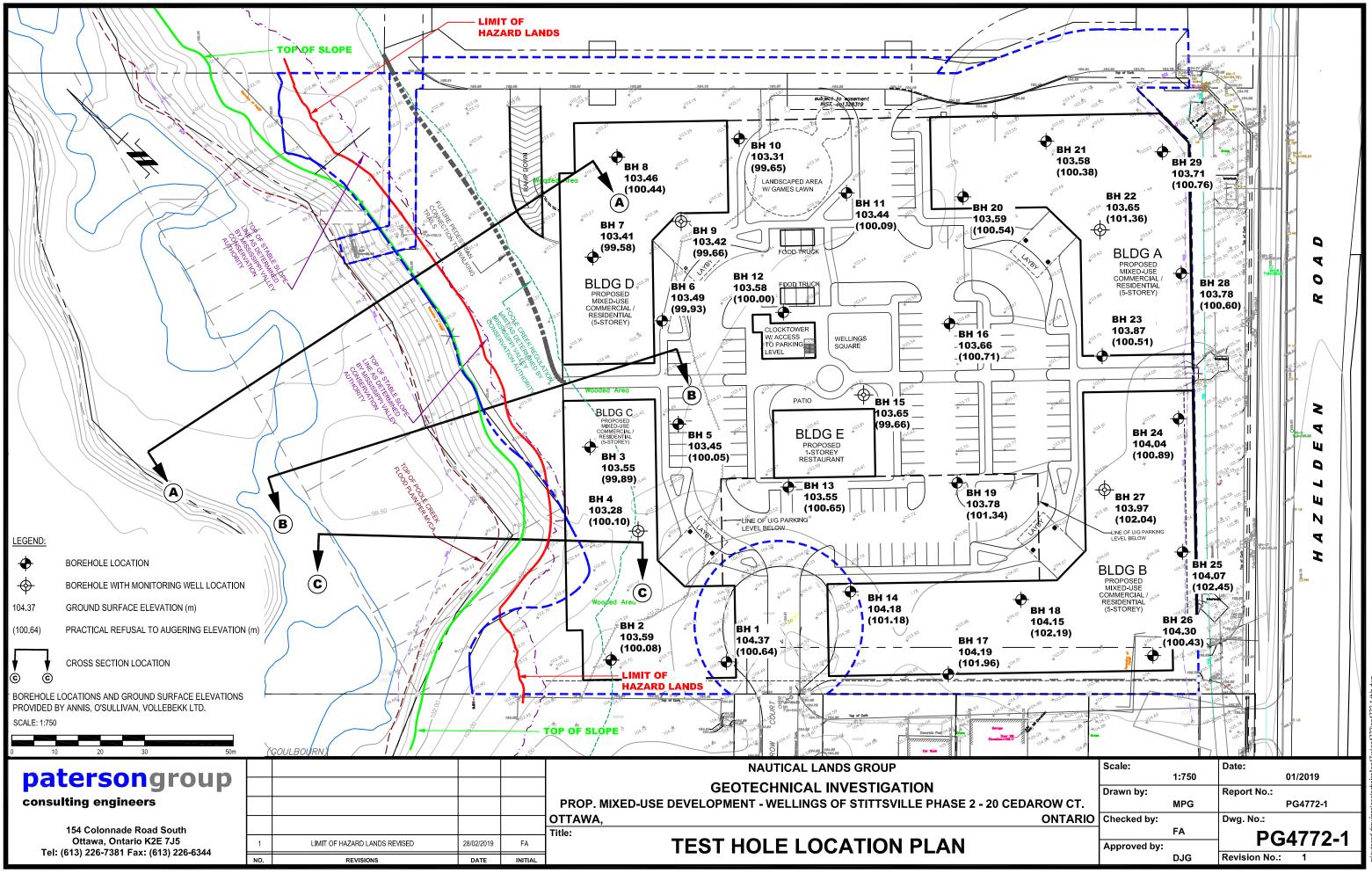

DRAWING PG4772-1 - TEST HOLE LOCATION PLAN


KEY PLAN


FIGURE 1







patersongroup

memorandum

consulting engineers

re: **Grading Plan Review** Proposed Mixed-Use Development – Wellings of Stittsville Phase 2 20 Cedarow Court - Ottawa

cc: Stantec - Mr. Mike Sharp - Mike.Sharp@stantec.com

date: August 12, 2021

file: PG4772-MEMO.03

Following your request and authorization, Paterson Group (Paterson) prepared the current memorandum to complete a grading plan review from a geotechnical perspective for Phase 2 of the mixed-use development to be constructed at the aforementioned site. The following memorandum should be read in conjunction with Paterson Group Report PG4772-1 Revision 1, dated September 29, 2020.

Grading Plan Review

Paterson reviewed the following grading plan prepared by Stantec regarding the aforementioned development:

□ Grading Plan - Wellings of Stittsville Phase 2 - Project No. 160401511 - Drawing No. GP-1 - Sheet No. 4 of 7 - Revision 2 - dated August 3, 2021.

Based on our review of the above noted grading plan, the proposed grades within Phase 2 of the aforementioned development are within the permissible grade raise restriction of 2 m provided throughout the subject site in the aforementioned geotechnical investigation report. Therefore, the proposed grading is considered acceptable from a geotechnical perspective. No exceedances of the grade raise restriction were noted, therefore lightweight fill or other considerations to accommodate the proposed grades are not required at this time.

We trust that this information satisfies your immediate requirements.

Best Regards,

Paterson Group Inc.

Maha Saleh, Provisional P. Eng.

Paterson Group Inc.

Ottawa Head Office 154 Colonnade Road South Ottawa – Ontario – K2E 7S8 Tel: (613) 226-7381

Ottawa Laboratory 28 Concourse Gate Ottawa – Ontario – K2E 7T7 Tel: (613) 226-7381

Faisal Abou-Seido, P. Eng.

Northern Office and Laboratory 63 Gibson Street North Bay – Ontario – P1B 8Z4 Tel: (705) 472-5331

to: Nautical Lands Group – Mr. Mark Williams – mwilliams@nauticallandsgroup.com

SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix E Drawings July 14, 2022

Appendix E DRAWINGS