REPORT ON

HYDROGEOLOGICAL AND TERRAIN STUDY PROPOSED COMMERCIAL BUILDINGS 3904 MARCH ROAD CITY OF OTTAWA ONTARIO

Submitted to:

Dog World Kennel
3904 March Road
Carp, Ontario
K0A 1LO

DATE
 April 25, 2022

DISTRIBUTION

1 digital copy

City of Ottawa
1 digital copy
1 copy

Tracy Kim Holden
Kollaard Associates Inc.
190622

Civil • Geotechnical •
Structural • Environmental •
Hydrogeology •
210 Prescott Street
(613) 860-0923
P.O. Box 189

Kemptville, Ontario K0G 1J0
FAX: (613) 258-0475

April 25, 2022
190622

Dog World Bedrock Kennels
3904 March Road
Carp, Ontario
K0A 1L0
Attention: Ms. Tracy Kim Holden

RE: HYDROGEOLOGICAL AND TERRAIN STUDY
EXISTING SUPPLY WELL PROPOSED COMMERCIAL BUILDINGS
3904 MARCH ROAD
WEST CARLETON-MARCH WARD
CITY OF OTTAWA, ONTARIO

Dear Madam:

This letter presents the results of an evaluation of the water quality and quantity for the well that will supply water for the above noted proposed expansion to an existing mixed used commercial and residential property at 3904 March Road, City of Ottawa, Ontario (see Key Plan, Figure 1). It is understood that the proposed development is to consist of an expansion of an existing dog kennel business on a property that also contains a single family dwelling.

The well in question was constructed by George H. Law and Son Ltd. of Calibogie, Ontario on September 24, 2000. A Ministry of the Environment, Conservation and Parks (MECP) Well Record for the subject well (TW1) and a Certificate of Well Compliance is provided as Attachment A.

This report consists of an evaluation of the water quality and quantity of an existing well on the subject property to ensure that the water quality and quantity of future wells drilled on the other proposed severed properties is acceptable using the following guidelines; Ministry of the Environment, Conservation and Parks (MECP) Guideline D-5-5 and the Ontario Drinking Water Standards, Objectives and Guidelines (ODWSOG). Consideration has also been given to the groundwater impact assessment guidelines under MECP D-5-4. A pumping test was carried out at the well, TW1, by a member of our engineering staff on October 7, 2020. The terrain study includes information from boreholes installed at the site to determine the soil and groundwater conditions with regards to sewage impact considerations.

Background

Based on a review of the surficial geology map for the site area, it is expected that the site is underlain by stone-poor sandy silt to silty sand-textured till on Paleozoic Terrain. Bedrock geology mapping indicates that the bedrock underlying the site consists of limestone, dolostone, shale and sandstone of the Ottawa Group, Simcoe Group and Shadow Lake Formation.

Based on a review of overburden thickness mapping for the site area, the overburden is estimated to be between about 0 to 10 metres in thickness above bedrock in the area. The three boreholes put down as part of a geotechnical investigation at the site indicates soil types of sand, silt and silty clay with overburden thicknesses of some 3.6 to 4.5 metres were encountered in boreholes put down at the site. The groundwater elevation was observed at 0.8 to 0.9 metres below existing ground surface on May 28, 2020.

GROUNDWATER SUPPLY INVESTIGATION

Water Demand

The water demand is calculated using the information from the sewage system daily design flow and the City of Ottawa Water Distribution Guidelines, 2010. The sewage design flows are provided below, based on the sewage design information (preliminary sewage design by Kollaard Associates Inc.). The calculations are as follows:

Commercial Daily sewage design flow:

- Existing (20 cages plus 6 employees) and Proposed Dog Kennel (plus additional 19 cages and 6 employees)
- 75 litres per cage $\times 39$ cages $=2,925$ L/day
- 75 litres per employee $\times 12$ employees = 900 L/day
- Total Commercial design flow $=5,025 \mathrm{~L} /$ day

Existing Residential Water demand:

- 4 bedroom home, per person water demand based on 450 L/day per person = 2,250 L/day
- $\mathrm{MHD}=5 \times 3.75 \mathrm{~L} / \mathrm{min} /$ person $=18.75 \mathrm{~L} / \mathrm{min}$

TOTAL WATER DEMAND $=7,275$ Litres Per Day

Since sewage system design is based on the maximum expected daily use, it is equivalent to the Average Daily Demand (ADD). The ADD is based on an eight hour operation schedule (i.e. full day occurs over an eight hour period and not over 24 hours).

City of Ottawa calculates the Maximum Hour Demand (MHD) for a commercial or industrial demand to be $1.8 \times \mathrm{MDD}$.

MDD $=5,025$ litres $/$ day $x 1$ day / 8 hours $x 1$ hour / 60 minutes
$=10.5$ litres $/$ minute
MHD $=1.8 \times \mathrm{MDD}$
$=1.8 \times 10.5$ litres $/$ minute
$=18.9$ litres $/$ minute
Alternatively, the City of Ottawa Water Distribution Guideline Section 4.2 .8 indicates the average water demand for commercial usage is $28,000 \mathrm{~L} / \mathrm{gross}$ ha/day. The gross area of the site is 9.6 hectares. However, this is not an appropriate way to calculate the commercial water demand on
the site as the site is very sparsely developed over its area. The total building footprint after development (based on the Stormwater Report) is 1,440 square metres, with some 2,640 square metres of gravel surfaced areas. As such, the total developed area (including parking) for the commercial use is 4,080 square metres (0.4 ha). This represents only 4% of the site area. That is the area used for the following calculation.

$$
\begin{aligned}
\mathrm{ADD} & =0.4 \mathrm{ha} \times 28,000 \mathrm{~L} / \text { gross ha/day } \\
& =7.8 \mathrm{~L} / \mathrm{min} \\
\mathrm{MDD} & =1.5 \times \mathrm{ADD} \\
& =11.7 \mathrm{~L} / \mathrm{min} \\
\mathrm{MHD} & =11.7 \mathrm{~L} / \mathrm{min} \times 1.8=21.1 \mathrm{~L} / \mathrm{min}
\end{aligned}
$$

Using the more conservative figure for groundwater usage, the City of Ottawa predicated water usage for MDD and MHD of $11.7 \mathrm{~L} / \mathrm{min}$ and $21.1 \mathrm{~L} / \mathrm{min}$, respectively, are used. As the well is also supplying water for residential demand, the peak residential demand rate is also considered as an additional water demand of $18.75 \mathrm{~L} / \mathrm{min}$. It should be noted that these peaks are unlikely to coincide as residential peaks occur usually early in the morning and in the early evening, whereas commercial water demand is typical throughout the daily operations between 8 am and 5 pm .

The Maximum Hourly Demand (MHD) for the site based on its proposed use is expected to be about ~ 39.9 litres/minute, compared to the pumping test rate which was 57 litres/minute.

Water Quantity

The well was pumped for six hours at a pumping rate of about 57 litres per minute. Over the course of the pumping test, the water level in the well dropped some ~ 0.4 metres. At the end of the pumping test, about 3 hours and 10 minutes was required for 100 percent recovery of the total drawdown in the static water level created during pumping.

The pumping test drawdown and recovery data and plots for TW1 are provided as Attachment B. The drawdown and recovery data provided were measured with reference to the top of the well casing at the test well location.

The pumping test data for the test well was analyzed using the method of Cooper and Jacob (1946). Although the assumptions on which these equations are based are not strictly met, this method provides a reasonable estimate of the aquifer transmissivity.
Transmissivity was calculated using the following relationship:

$$
T=\frac{2.3 Q}{4 \pi d s}
$$

where Q is the pump rate, $\mathrm{m}^{3} /$ day
$d s$ is the change in drawdown over one time log cycle, m
T is the transmissivity, $\mathrm{m}^{2} /$ day
Specific Capacity $=$ Q / TD

$$
\begin{aligned}
& =81.9 \mathrm{~m}^{3} / \text { day } / 0.41 \mathrm{~m} \\
& =199.7 \mathrm{~m}^{3} / \mathrm{day} / \mathrm{m}
\end{aligned}
$$

where $\mathrm{Q}=$ test pumping rate $\left(\mathrm{m}^{3} /\right.$ day $)$
TD = total drawdown (m)

Based on the pumping test drawdown data the transmissivity of the aquifer is estimated to be about $83 \mathrm{~m}^{2} /$ day. Based on the recovery data the aquifer transmissivity is estimated to be about 52 $\mathrm{m}^{2} /$ day. It should be noted that pumping tests should typically be carried out for a period of between 24 hours or greater to establish transmissivity for a confined aquifer in order to assess boundary conditions. Over the course of the six hour test, some $\sim 20,450$ litres of water was pumped from the well and only 3% of the available drawdown was used. The available drawdown at the well is about 12.9 metres (based on recommended pump intake and static water level at the time of the test). As the expected maximum daily water demand is about 7,275 litres per day, the expected drawdown at the well is well within the available drawdown for the well.

Water Quality

To determine the water quality of the groundwater supply, groundwater samples were obtained from the well during the pumping test and prepared/preserved in the field using appropriate techniques and submitted to Eurofins Environmental Testing in Ottawa, Ontario for the chemical, physical and bacteriological analyses listed in the MECP guideline entitled Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment, August 1996. The temperature, conductivity, pH, total dissolved solids, turbidity and residual chlorine levels of the groundwater were measured at periodic intervals during the pumping test. The results of the chemical, physical and bacteriological analyses of the water samples obtained from the test well and the field water quality are provided as Attachment C and in Table I, respectively.

The water quality as determined from the results of the analyses is acceptable. The water meets all the Ontario Drinking Water Standards (ODWS) health and aesthetic parameters tested for at the test well except for aesthetic objective for hardness, turbidity (lab based), iron and manganese.

Hardness

The water is considered to be hard by water treatment standards. Water with hardness above 80 to 100 milligrams per litre as CaCO_{3} is often softened for domestic use. The hardness at the well is 253 to 271 milligrams per litre. Treatment consisting of water softening by conventional sodium ion exchange is effective to reduce scale formation associated with hardness. Ion exchange water softening may introduce relatively high concentrations of sodium into the drinking water. Treatment by water softening can also contribute a significant percentage to the daily sodium intake for a consumer on a sodium restricted diet. Where ion exchange water softeners are used, a separate unsoftened water supply could be used for drinking and culinary purposes. The untreated water had sodium levels that were less than the medical advisory level of $20 \mathrm{mg} / \mathrm{l}$.

Turbidity (lab based)

The turbidity was measured hourly during the pumping test and the turbidity levels were below 5 NTU and were declining throughout pumping. However, the lab based turbidity levels were measured to be 7.3 NTU for the sample obtained after three hours and 5.5 NTU for the sample obtained after six hours. Turbidity (lab based) declined throughout pumping. It is considered that the turbidity level is due to the presence of iron and manganese, which were also present at or above their aesthetic objectives and contribute to turbidity. It is considered that with appropriate treatment to reduce iron and manganese, that turbidity is expected to be less than 5 NTU in treated water. There are concerns with regards to the level of turbidity measured in the lab sample as the field readings for turbidity are less than 5 NTU.

Iron

Iron was measured at a level of 0.68 after three hours and lowered to $0.52 \mathrm{mg} / \mathrm{l}$ after six hours, compared to the aesthetic objective of $0.3 \mathrm{mg} / \mathrm{l}$. Excessive iron levels may cause brown or black discolouration of laundry and fixtures, affect the taste and colour of water, and iron precipitation in pipes and hot water tank can also promote the growth of iron bacteria. Iron can be effectively removed using conventional ion exchange water softeners. However, depending on the form that iron is in (reduced or oxidized) as well as the concentration levels and other factors, iron filters may be more effective in removing iron the water supply.

Manganese

The level of manganese was $0.05 \mathrm{mg} / \mathrm{l}$ and $0.06 \mathrm{mg} / \mathrm{l}$ after three and six hours, respectively. The aesthetic objective for manganese is $0.05 \mathrm{mg} / \mathrm{l}$. Manganese can stain laundry and fixtures black. For a commercial usage, where domestic usages such as laundry are not anticipated, and the expected manganese concentration, which is elevated but did meet the aesthetic objective for one water sample, it may not be necessary to treat the water for this parameter. If desired, manganese can be effectively treated using a manganese greensand filter or some other proprietary filter for manganese removal.

Bacteria (Total Coliforms and E. Coli)

The initial testing encountered total coliform levels of 2-3 counts $/ 100 \mathrm{ml}$ and an absence of E. Coli. This was shortly after well construction and during well development. On September 29, 2021, the water was resampled once it had been connected to the existing kennel building. At that time, the total coliforms were measured to be 0 counts $/ 100 \mathrm{ml}$. A free chlorine residual was measured to be 0.00 ppm prior to obtaining the water sample. It is considered by Kollaard Associates Inc. that the bacteriological water quality is acceptable for the supply well at the site.

Other Parameters

The investigation was carried out in 2020, prior to the City of Ottawa Hydrogeological and Terrain Analysis Guidelines, which were provided in March 2021. It is understood that the current requirements for Site Plan would include trace metals and VOCs. Other parameters may also be required, based on the land use and/or geological setting. It should be noted that the site is located in a very sparsely developed area and that previous Phase I Environmental Site Assessment did not encounter any industrial or commercial activity that would involve any handling of VOCs either at the site or within 250 metres of the site. As such, it is considered that there is no need to test for VOCs or other parameters that would represent any existing contamination. It is possible that natural strontium levels at the site may be present in relation to the water supply being limestone and sandstone which are sedimentary bedrock types in the Ottawa area which are associated with strontium. It will be noted that strontium levels could be present above the interim maximum allowable concentration (IMAC) and that water softening is an appropriate treatment to reduce strontium.

TERRAIN STUDY

Soils information was obtained from geotechnical boreholes put down at the subject site. The field work for this investigation was carried out on May 28, 2020, at which time three boreholes were put down at the site, identified as $\mathrm{BH} 1, \mathrm{BH} 2$ and BH 3 . The boreholes encountered about sand to depths of some 1.3 to 1.7 metres overlying silt followed by silty clay to depths of some 3.5 to 3.8 metres overlying silty sand and gravel. The boreholes were terminated at depths of 3.6 to 4.5
metres all with refusal to advance on either large boulders or bedrock. Water was observed at about 0.8 to 0.9 metres below the ground surface at all three boreholes.

The size of the septic envelopes are a function of the percolation time of the native soil in the vicinity of the septic envelope and/or the fill used for construction of a septic bed and the daily effluent loading to the septic bed. A preliminary sewage design was prepared by Kollaard Associates for the commercial building including the proposed expansion. The sewage system is indicated to consist of a conventional partially raised leaching bed with a contact area of 502.5 square metres. The design is based on the native silty sand soils contact area at the site having a percolation rate of about $15 \mathrm{~min} / \mathrm{cm}$. No imported mantle was needed for the sewage system design.

The sewage design is based on a daily design flow of 5,025 Litres per day on the design flow information. An existing sewage system design is in place already for the existing single family dwelling. The proposed commercial sewage system is to replace the holding tank that was previously used for the kennel which will be replaced by the proposed sewage system.

The sewage dilution calculations, provided as Attachment D , indicate that the impact is within 10 $\mathrm{mg} / \mathrm{I} \mathrm{N}-\mathrm{NO}_{3}$ for two sewage systems, including the existing sewage system for the single family dwelling and a separate sewage system for the commercial kennel.

Based on the terrain information provided, there is sufficient space at the site to accommodate the two sewage systems. They are both located along the east portion of the site with at least 30 metres of separation between the well and the sewage systems. It is considered that the operation of the sewage system at the site will not cause impact to the well on the existing site or surrounding properties. There are no other wells indicated to be within at least 100 metres or more of the proposed sewage system area at the site.

Animal Waste Disposal

An area was set aside on the property for disposal of dog waste. All solid waste from the kennels is placed at a solid manure storage location that is distant from sensitive receptors and that is not prone to significant runoff. The area is to be surrounded by a berm.

The proposed solid manure storage location is shown on Kollaard drawing 190622-SER (see attached). The manure storage location is surrounded by a berm which will prevent all stormwater originating on the area of the manure storage location from running off the site. The following Table provides a summary of the design conformance of the solid manure storage location to site requirements under the NMA regulations.

Table - Conformance of Solid Manure Storage to Regulations

Design Element	Design Objective	Minimum Criteria	Design Conformance
Minimum depth of Soil to Bedrock	minimum potential for runoff to reach bedrock	3.0 m of consolidated compacted) soil	3.6 m At least 1 m of silty clay above bedrock
Minimum depth to water table	minimum potential for runoff to reach water table	0.9 m	0.9 to perched groundwater. Permanent ground water below surface

			of bedrock
Soil Type	minimize potential for nutrient flow into the bedrock	Cannot be Soil Group A	Soil Group B
Storage location	minimize potential for flooding	Cannot be in the floodplain	Is not in the floodplain.
Site slope	minimize runoff rate	< 3\%	Relatively flat in proposed area $<1 \%$ \quad storage
Distance to Surface Water	minimize potential for surface water contamination	50 m	94 m to the regulation limit surrounding the adjacent wetland
Separations	minimize risk to drinking water and provide separation to the residence	45 m to drilled well	133
		90 m to dug well	N/A
		100 m to municipal well	N/A
		125 m to single residence	127 m

As shown in the above table, the solid waste from the facilities will be placed at a location in keeping with the requirements for the storage of solid manure. As such, the proposed practices with respect to the management of the canine feces will ensure that contamination from canine feces is not carried off of the site by stormwater runoff. There are no stormwater management ponds proposed on site.

Based on the above noted information, it is considered that the storage of dog waste at the site will be in keeping with Nutrient Management Act policies to prevent any detrimental impact on the surface water and groundwater in the area.

WELLHEAD PROTECTION / FLOODPLAIN CONSIDERATIONS

The supply well is located within the north portion of the site close to the dwelling, with the existing sewage system for the dwelling located on the east side of the site. The proposed location for the commercial sewage system is south of the existing sewage also on the east side of the property. The sewage systems are at least 30 metres or more from the existing wells. The well casing must extend to greater than 400 millimetres above grade at the time of construction. It should be verified that the top of the well casing is at least 400 millimetres above the finished grade at the well location.

Additionally, the ground surface shall be graded such that the well is the highest point on the ground surface within 3 metres radially from the exterior of the well casing and shall ensure that water does not collect or pond near the well head. The well has been grouted and cased to a depth of about 6.4 metres below the existing ground surface, according to information provided on the well record (Attachment A). The well is physically separated from the driveway by at least 3 metres. With these measures in place, it is considered that an adequate amount of wellhead protection is going to be in place to protect the water supply for the proposed commercial use of the property. The well location is also appropriate for access in case of repairs and well maintenance.

Recommendations for wellhead protection include ensuring that potential contaminant sources are at least 15 metres or more from the well. Possible contaminant sources that could be present at the site include; waste storage (dog feces), garage and related chemicals, such as antifreeze, gasoline,
oils, vehicle/boat/equipment storage, sewer lines, septic systems, animal enclosures, manure or compost piles. The sewage systems and dog waste storage area are greater than 30 metres or more from the well location.

Recommendations for well maintenance include; inspect wellhead annually to ensure that the casing is structurally sound, verify well cap is sealed and that surface water is not pooling around wellhead. The well is located such that it is easily accessible for maintenance/repairs.

Based on the results of this evaluation it is considered that the well in question should supply water of adequate quantity and quality for the proposed development with suitable treatment and wellhead protection as indicated above.

RECOMMENDATIONS

The following wellhead protection measures are required:

- Ensure that potential contaminant sources are at least 15 metres or more from the well. Possible contaminant sources that could be present at the site include; waste storage (dog feces), garage and related chemicals, such as antifreeze, gasoline, oils, vehicle/boat/equipment storage, sewer lines, septic systems, animal enclosures, manure or compost piles. The sewage systems and dog waste storage area are greater than 30 metres or more from the well location.
- Maintain well at least 3 metres from the edge of the driveway/laneway at the site to ensure adequate separation distance to prevent damage from vehicles and surface water drainage is away from the well.

The following should be considered for water quality considerations:

- Well water at the site has elevated hardness, iron, manganese and iron-related turbidity.

The following treatment considerations are recommended:
> Hardness: Water softening by conventional sodium ion exchange is recommended to reduce hardness. However, this is expected to introduce relatively high concentrations of sodium into the drinking water, which may contribute a significant percentage to the daily sodium intake for a consumer on a sodium restricted diet. The water may be scale forming if water softeners are not used.
> Iron, manganese and iron-related turbidity (inorganic): Water softening to reduce hardness should have a corresponding effect on iron, provided the water softener is designed and calibrated for iron removal. A manganese greensand filter or oxidation with filtration through a proprietary filter media may be more effective at removing iron and manganese. Treatment for iron is expected to have a corresponding effect on turbidity, which was elevated in samples that had been stored and tested at the laboratory. The field turbidity levels were less than 1 NTU.
> Trace Metals and VOCs testing was not carried out as the requirement for such testing has only been required after the field work for this project was carried out. It is considered that VOCs testing is not necessary for this property as it is in a rural residential setting rather than a typical commercial or industrial park setting. The Phase I ESA indicated there are no potential contaminant sources in the site vicinity. It should be noted that there is a potential for elevated strontium due to the sedimentary limestone and sandstone aquifer that is present at the site. If strontium is elevated, conventional water softening is appropriate to remove strontium from any drinking water. Strontium currently has a proposed Maximum Acceptable Concentration (MAC) by Health Canada of $7.0 \mathrm{mg} / \mathrm{L}$. The proposed MAC is
established as there are a few studies that indicate a potential for adverse effects of strontium for humans. Since the highest sensitivity to adverse bone effects occurs in the first year of life, infants are the most sensitive to strontium toxicity. The level of strontium measured in the raw water supply at this site is $23.5 \mathrm{mg} / \mathrm{L}$, which is above the acceptable proposed limit. Strontium may be reduced from water by the use of ion exchange water softeners or a point of use reverse osmosis treatment unit for any water used for drinking or culinary purposes.

We trust this letter provides sufficient information for your purposes. If you have any questions concerning this letter, please do not hesitate to contact our office.

Yours truly, Kollaard Associates Inc.

Colleen Vermeersch, P. Eng.

Attachments: Figure 1 - Key Plan
Site Servicing Plan - Fig. 190622-SER
Table I
Attachment A

- Field Water Quality

Attachment B
Attachment C

- Well Record and Certificate of Well Compliance
- Pumping Test Data
- Well Water Laboratory Test Results

Attachment D

- Sewage Dilution Calculations
KEY PLAN

NOT TO SCALE

Kollaard Associates
Engineers

Project No.
190622
Date
April 2022

TABLE I
FIELD WATER QUALITY MEASUREMENTS FOR TEST WELL 1

Time Since Pumping Test Started (min)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\mathbf{p H}$	Turbidity (NTU)	Total Dissolved Solids (ppm)	Conductivity $(\mu \mathrm{S})$	Free Chlorine (ppm)
60	9.9	8.1	2.1	253	505	0.0
120	10.0	7.9	2.4	250	555	-
180	10.0	8.0	1.2	257	517	0.0
240	10.2	8.1	0.8	262	525	-
300	10.0	8.0	0.5	268	530	-
360	10.1	8.1	0.5	255	551	0.0

ATTACHMENT A
 MOE WELL RECORD AND CERTIFICATE OF WELL COMPLIANCE FOR TW1 PROVIDED BY WELL DRILLER
 AND AREA WELL RECORDS

 do hereby certify that I am licensed to drill wells in the Province of Ontario, and that I have supervised the drilling of a well on the property of Tracy Holden \qquad (Name of Landowner), located at 3904 March Rel, Dr $+1 t 15$, Con 10 (Legal Description, Lot/Plan No.) in the city of \qquad -

I certify further that I am aware of the well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to the site and City standards.

I do hereby certify that the said well has been drilled, cased, grouted (cement or bentonite) as applicable, and constructed in strict conformity with the standards required.

Signed this 24 day of Sept, 2020

George H. Law + Sen ltd
 (Well Driller/ Company)

The Engineer, on behalf of the landowner set out above, certifies that he/she has inspected the well and it was constructed in accordance with the specifications in O. Reg. 903, this report and the Hydrogeological report (where applicable) with regards to casing length and grouting requirements.
signed this 24 day of $\operatorname{Sept} 2020$

(Engineer)

Green InTents inc., 104 Country Meadow Drive, Carp, ON KOA 1 LO (613)839-5336 (ph); (613)978-5336 (cell); (613)839-0251 (ix)

dRILLERS REMARKS:

OWRC COPY
COUNTY OR DISTRICT

LOG OF OVERBURDEN AND BEDROCK MATERIALS (sEE insfruchons)

1520885
 types Side Rd.

FINAL STATUS OF WELL

METHOD OF CONSTRUCTION

9 Driving

\qquad
$0506(07 / 94)$ Front Form 9
Name of Well Contractor

FINAL STATUS OF WELL

METHOD OF CONSTRUCTION

9 Driving

\qquad
$0506(07 / 94)$ Front Form 9
Name of Well Contractor

Ministry of

Print only in spaces provided.

FINAL STATUS OF WELL

(11) 1532850
${ }^{C O}$
$1+11_{22} 10210$
County or District

Township/Borough/City/Town/Village
West Carleton - Huntley Address

LOG OF OVERBURDEN AND BEDROCK MATERIALS (see instructions)					
General colour	Most common material	Other materials	General description	Depth - feet	
				From	To
Brown	Sandy Clay			0	12
Gray	clay			12	40
Gray \& Fhite Sandstone				40	75
	Note	Casing was left 1.5 feet	above ground level		
		at time of drilling			

41 WATER RECORD	
Water found at - feet	Kind of water
$59^{10.13}$	
15.18	
20-23	
25.28	
30-33	

51	CASING \& OPEN HOLE RECORD			
Inside diam inches	Material	Wall thickness inches	Depth - feet	
			From	то
$619 / 4$	1 X Steel $2 \square$ Galvanized 3 Q Concrete 4 O Open hole 5 Q Plastic 1	. 188	0	$44.15{ }^{48}$
5^{17-18}			44.5	75
${ }^{24-25}$	1 Q Steel ${ }^{26}$ 2 Qalavized 3 亿 Concrete 4 Q Open hole 5 Q Plastic			${ }^{27.30}$

61 PLUGGING \& SEALING RECORD			
D Annular space \square Abandonment			
Depth set at - feet		Material and type (Cement grout, bentonite, etc.)	
From	To		
$43^{10.13}$	$0^{16.17}$	Grouted - Cement (8)	
18.21	22.25		
26.29	30-33	80	

FINAL STATUS OF WELL	- ${ }^{54}$	
'X Water supply Observation well ${ }^{3} \square$ Test hole \square Recharge well	${ }^{5}$ A Abandoned, insutficient supply 6 Abandoned, poor quality 7 A Abandoned (Other) ${ }^{8} \square$ Dewatering	${ }^{9} \square$ Unfinished $10 \square$ Peplacement well
WATER USE ${ }^{1} 7$ Domestic Stock Irrigation 4 Industrial	$\quad 55-56$ $5 \square$ Commercial $6 \square$ Municipal $7 \square$ Public supply $8 \square$ Cooling \& air conditioning	$\begin{aligned} & 9 \square \text { Not use } \\ & \text { 10 Other } \end{aligned}$
METHOD OF CONSTRUC	CTION 57	
$1 \square$ Cable tool $2 \square$ Rotary (conventional) $3 \square$ Rotary (reverse) ${ }^{4} \mathrm{X}$ Rotary (air)	${ }^{5}$ D Air percussion ${ }^{6} \square$ Boing 78 Diangond ${ }^{8}$ Jetting	$\begin{aligned} & 9 \quad \text { Driving } \\ & 10 \text { Digging } \\ & 11 \text { Other } \end{aligned}$

(11) 1532850
${ }^{C O}$
$1+11_{22} 10210$
County or District

Township/Borough/City/Town/Village
West Carleton - Huntley Address

LOG OF OVERBURDEN AND BEDROCK MATERIALS (see instructions)					
General colour	Most common material	Other materials	General description	Depth - feet	
				From	To
Brown	Sandy Clay			0	12
Gray	clay			12	40
Gray \& Fhite Sandstone				40	75
	Note	Casing was left 1.5 feet	above ground level		
		at time of drilling			

41 WATER RECORD	
Water found at - feet	Kind of water
$59^{10.13}$	
15.18	
20-23	
25.28	
30-33	

51	CASING \& OPEN HOLE RECORD			
Inside diam inches	Material	Wall thickness inches	Depth - feet	
			From	то
$619 / 4$	1 X Steel $2 \square$ Galvanized 3 Q Concrete 4 O Open hole 5 Q Plastic 1	. 188	0	$44.15{ }^{48}$
5^{17-18}			44.5	75
${ }^{24-25}$	1 Q Steel ${ }^{26}$ 2 Qalavized 3 亿 Concrete 4 Q Open hole 5 Q Plastic			${ }^{27.30}$

61 PLUGGING \& SEALING RECORD			
D Annular space \square Abandonment			
Depth set at - feet		Material and type (Cement grout, bentonite, etc.)	
From	To		
$43^{10.13}$	$0^{16.17}$	Grouted - Cement (8)	
18.21	22.25		
26.29	30-33	80	

FINAL STATUS OF WELL	- ${ }^{54}$	
'X Water supply Observation well ${ }^{3} \square$ Test hole \square Recharge well	${ }^{5}$ A Abandoned, insutficient supply 6 Abandoned, poor quality 7 A Abandoned (Other) ${ }^{8} \square$ Dewatering	${ }^{9} \square$ Unfinished $10 \square$ Peplacement well
WATER USE ${ }^{1} 7$ Domestic Stock Irrigation 4 Industrial	$\quad 55-56$ $5 \square$ Commercial $6 \square$ Municipal $7 \square$ Public supply $8 \square$ Cooling \& air conditioning	$\begin{aligned} & 9 \square \text { Not use } \\ & \text { 10 Other } \end{aligned}$
METHOD OF CONSTRUC	CTION 57	
$1 \square$ Cable tool $2 \square$ Rotary (conventional) $3 \square$ Rotary (reverse) ${ }^{4} \mathrm{X}$ Rotary (air)	${ }^{5}$ D Air percussion ${ }^{6} \square$ Boing 78 Diangond ${ }^{8}$ Jetting	$\begin{aligned} & 9 \quad \text { Driving } \\ & 10 \text { Digging } \\ & 11 \text { Other } \end{aligned}$

31
32] $L_{10}^{L_{10}}$

LOCATION OF WELL
In diagram below show distances of well from road and lot line. Indicate north by arrow.

264015

- For use in the Province of Ontario only. This documeric sur~1 711 document. Please retain for future reference.
- All Sections must be completed in full to avoid delays in processing. Further instructions and explanations are available on the back of this form.
- Questions regarding completing this application can be directed to the Water Well Management Coordinator at 416-235-6203.
- All metre measurements shall be reported to $1 / 10^{\text {th }}$ of a metre.
- Please print clearly in blue or black ink only.

Ottawa Carleton
RR\#/Street Number/Name
Dwyer Hill Rd.
Dwyer H
GPS Reading

Hole Diameter		
Depth	Metres	Diameter
	To	Centimetres
0	10.36	22.75
10.36	18.28	15.25
Water Record		
Water found Metres Kind of Water		
$\square \square \mathrm{m}$ \square Fresh \square Sulphur \square Gas \square Salty \square Minerals		
$\left\{\begin{array}{lll}\square & \text { Br }^{\circ} \mathrm{m} & \square \text { Fresh } \\ \square \text { Sulphur } \\ \square \text { Gas } & \square \text { Salty } & \square \text { Minerals }\end{array}\right.$		
$\square \mathrm{m}$$\square$ Fresh\square Gas\square Sulphur\square Salty		
After test of well yield, water was \square Clear and sediment free		
\square Other, specify		
Chlorinated X Yes \square No		

Construction Record				
$\begin{array}{\|c\|} \hline \text { Inside } \\ \text { diam } \\ \text { centimetres } \end{array}$	Material		Depth	Metres
		centimetres	From	To
Casing				
15.86	\square Steel \square Fibreglass \square Plastlc \square Concrete \square Galvanized	. 48	+1.06	10.36
	\square Steel \square Fibreglass \square Plastic \square Concrete \square Galvanized			
	\square Steel \square Fibreglass \square Plastic \square Concrete \square Galvanized			
Screen				
Outside diam	\square Steel \square Fibreglass \square Plastic \square Concrete \square Galvanized	Slot No.		
No Casing or Screen				
15.23	\square Open hole		10.36	18.28

Test of Well Yield				
Pumping test method	Draw Down		Recovery	
	$\begin{gathered} \mathrm{Time} \\ \min \end{gathered}$	Water Level Metres	Time min	Water Level Metres
Pump intake set at (metres)	$\begin{array}{\|c\|} \hline \text { Static } \\ \text { Level } \end{array}$			
Pumping rate -	1		1	
Duration of pumping	2		2	
___hrs + + ${ }^{\text {a }}$ min				
Final water level end	3		3	
of pumping metres				
Recommended pump	4		4	
$\text { type. } \square \text { Shallow } \square \text { Deep }$				
Recommended PNOT	DES	STED	5	
depth. ___metres				
Recommended pump	10		10	
rate. (litres/min)	15		15	
If flowing give rate	20		20	
(iltres/min)	25		25	
If pumping discontin-	30		30	
	40		40	
	50		50	
	60		60	

Capital Water Supply Ltd

1558

Business Address (street name, number, city etc.)
K2S 146

Box 490 Stittsville	K 25146
Name of Well Technician (last name, first name) Miller Stephen	Well Techniclan's Licence No. T0097
Signature bry x DOM Drencs	$\begin{array}{r}\text { Date Submitted } \\ 2006 \\ \hline\end{array}$

247011	2006	712
Was the well owner's information package delivered? Yes No	2006	$\begin{array}{l\|l\|} \hline \text { MM } \\ 7 & 12 \\ \hline \end{array}$

Regulation 903 Ontario Water Resources Act
page of

Instructions for Completing Form \qquad

- For use in the Province of Ontario only. This document is a permanent legal document. Fease retain for future reference.
- All Sections must be completed in full to avoid delays in processing. Further instructions and explanations are available on the back of this form.
- Questions regarding completing this application can be directed to the Water Well Management Coordinator at 416-235-6203.
- All metre measurements shall be reported to $1 / 10^{\text {th }}$ of a metre.
- Please print clearly in blue or black ink only.

Well Owner's Information and Location of Well Information
MUN \square
CON
LOT 7

PROJECT: 05-1120-993-3000
RECORD OF TEST WELLL: TW-6

SAMPLER HAMMER, 64 kg ; DROP, 760 mm

SHEET 1 OF 2
DATUM: Geodetic
PENETRATION TEST HAMMER, 64kg; DROP, 760 mm

ATTACHMENT B
 PUMPING TEST DATA FOR TW1

TW1-WELL DRAWDOWN VS. TIME-KOLLAARD FILE 190622

Kollaard File $190622 \quad$ Pump Rate $56.8 \quad$ litres/minute

DRAWDOWN DATA TW1

Time Lapsed (minutes)	Abs Pres (kPa)	Temp (${ }^{\circ} \mathrm{C}$)	Water Level (m)	Drawdown (m)
0	252.955	8.68	-2.3	0.00
1	252.24	8.68	-2.373	0.07
2	252.046	8.68	-2.393	0.09
3	251.754	8.68	-2.422	0.12
4	251.624	8.68	-2.436	0.14
5	251.526	8.68	-2.446	0.15
6	251.461	8.68	-2.452	0.15
7	251.397	8.68	-2.459	0.16
8	251.332	8.68	-2.465	0.17
9	251.299	8.68	-2.469	0.17
10	251.234	8.68	-2.475	0.18
11	251.234	8.68	-2.475	0.18
12	251.202	8.68	-2.479	0.18
13	251.169	8.68	-2.482	0.18
14	251.137	8.68	-2.485	0.19
15	251.104	8.68	-2.489	0.19
16	251.04	8.68	-2.495	0.20
17	251.04	8.68	-2.495	0.20
18	251.007	8.68	-2.499	0.20
19	251.007	8.68	-2.499	0.20
20	250.942	8.68	-2.505	0.21
21	250.942	8.68	-2.505	0.21
22	250.91	8.68	-2.509	0.21
23	250.877	8.68	-2.512	0.21
24	250.845	8.68	-2.515	0.22
25	250.877	8.68	-2.512	0.21
26	250.812	8.68	-2.519	0.22
27	250.812	8.68	-2.519	0.22
28	250.78	8.68	-2.522	0.22
29	250.78	8.68	-2.522	0.22
30	250.747	8.68	-2.525	0.23
31	250.683	8.68	-2.532	0.23
32	250.683	8.68	-2.532	0.23
33	250.65	8.68	-2.535	0.24
34	250.65	8.68	-2.535	0.24
35	250.228	8.68	-2.578	0.28
36	250.488	8.68	-2.552	0.25
37	250.423	8.68	-2.558	0.26
38	250.358	8.68	-2.565	0.27
39	250.326	8.68	-2.568	0.27
40	250.293	8.68	-2.571	0.27
41	250.293	8.68	-2.571	0.27
42	250.293	8.68	-2.571	0.27
43	250.228	8.68	-2.578	0.28
44	250.228	8.68	-2.578	0.28
45	250.196	8.68	-2.581	0.28
46	250.196	8.68	-2.581	0.28
47	250.163	8.68	-2.585	0.29
48	250.131	8.68	-2.588	0.29
49	250.131	8.68	-2.588	0.29
50	250.098	8.68	-2.591	0.29
51	250.098	8.68	-2.591	0.29
52	250.098	8.68	-2.591	0.29
53	250.066	8.68	-2.595	0.30
54	250.034	8.68	-2.598	0.30
55	250.034	8.68	-2.598	0.30
56	250.034	8.68	-2.598	0.30
57	250.001	8.68	-2.601	0.30
58	250.001	8.68	-2.601	0.30
59	249.969	8.68	-2.604	0.30
60	249.969	8.68	-2.604	0.30
61	249.936	8.68	-2.608	0.31
62	249.936	8.68	-2.608	0.31
63	249.904	8.68	-2.611	0.31
64	249.871	8.68	-2.614	0.31
65	249.871	8.68	-2.614	0.31
66	249.871	8.68	-2.614	0.31
67	249.839	8.68	-2.618	0.32
68	249.839	8.68	-2.618	0.32
69	249.839	8.68	-2.618	0.32
70	249.839	8.68	-2.618	0.32
71	249.806	8.68	-2.621	0.32
72	249.806	8.68	-2.621	0.32
73	249.806	8.68	-2.621	0.32
74	249.806	8.68	-2.621	0.32
75	249.806	8.68	-2.621	0.32
76	249.806	8.68	-2.621	0.32
77	249.774	8.68	-2.624	0.32
78	249.774	8.68	-2.624	0.32
79	249.774	8.68	-2.624	0.32
80	249.774	8.68	-2.624	0.32
81	249.741	8.68	-2.628	0.33
82	249.741	8.68	-2.628	0.33
83	249.709	8.68	-2.631	0.33
84	249.709	8.68	-2.631	0.33
85	249.677	8.68	-2.634	0.33
86	249.709	8.68	-2.631	0.3

273	248.281	8.68	-2.777	0.48
274	248.573	8.68	-2.747	0.45
275	248.314	8.68	-2.773	0.47
276	248.216	8.68	-2.783	0.48
277	248.541	8.68	-2.75	0.45
278	248.638	8.68	-2.74	0.44
279	248.703	8.68	-2.734	0.43
280	248.768	8.68	-2.727	0.43
281	248.703	8.68	-2.734	0.43
282	248.736	8.68	-2.73	0.43
283	248.736	8.68	-2.73	0.43
284	248.768	8.68	-2.727	0.43
285	248.8	8.68	-2.724	0.42
286	248.768	8.68	-2.727	0.43
287	248.768	8.68	-2.727	0.43
288	248.8	8.68	-2.724	0.42
289	248.8	8.68	-2.724	0.42
290	248.8	8.68	-2.724	0.42
291	248.8	8.68	-2.724	0.42
292	248.768	8.68	-2.727	0.43
293	248.833	8.68	-2.72	0.42
294	248.8	8.68	-2.724	0.42
295	248.833	8.68	-2.72	0.42
296	248.833	8.68	-2.72	0.42
297	248.833	8.68	-2.72	0.42
298	248.833	8.68	-2.72	0.42
299	248.833	8.68	-2.72	0.42
300	248.833	8.68	-2.72	0.42
301	248.833	8.68	-2.72	0.42
302	248.865	8.68	-2.717	0.42
303	248.865	8.68	-2.717	0.42
304	248.865	8.68	-2.717	0.42
305	248.865	8.68	-2.717	0.42
306	248.865	8.68	-2.717	0.42
307	248.865	8.68	-2.717	0.42
308	248.865	8.68	-2.717	0.42
309	248.898	8.68	-2.714	0.41
310	248.898	8.68	-2.714	0.41
311	248.93	8.68	-2.71	0.41
312	248.898	8.68	-2.714	0.41
313	248.898	8.68	-2.714	0.41
314	248.898	8.68	-2.714	0.41
315	248.898	8.68	-2.714	0.41
316	248.898	8.68	-2.714	0.41
317	248.736	8.68	-2.73	0.43
318	248.8	8.68	-2.724	0.42
319	248.865	8.68	-2.717	0.42
320	248.865	8.68	-2.717	0.42
321	248.865	8.68	-2.717	0.42
322	248.865	8.68	-2.717	0.42
323	248.833	8.68	-2.72	0.42
324	248.898	8.68	-2.714	0.41
325	248.833	8.68	-2.72	0.42
326	248.865	8.68	-2.717	0.42
327	248.865	8.68	-2.717	0.42
328	248.898	8.68	-2.714	0.41
329	248.898	8.68	-2.714	0.41
330	248.898	8.68	-2.714	0.41
331	248.898	8.68	-2.714	0.41
332	248.898	8.68	-2.714	0.41
333	248.898	8.68	-2.714	0.41
334	248.898	8.68	-2.714	0.41
335	248.898	8.68	-2.714	0.41
336	248.898	8.68	-2.714	0.41
337	248.898	8.68	-2.714	0.41
338	248.898	8.68	-2.714	0.41
339	248.898	8.68	-2.714	0.41
340	248.898	8.68	-2.714	0.41
341	248.898	8.68	-2.714	0.41
342	248.898	8.68	-2.714	0.41
343	248.898	8.68	-2.714	0.41
344	248.898	8.68	-2.714	0.41
345	248.898	8.68	-2.714	0.41
346	248.898	8.68	-2.714	0.41
347	248.898	8.68	-2.714	0.41
348	248.898	8.68	-2.714	0.41
349	248.898	8.68	-2.714	0.41
350	248.93	8.68	-2.71	0.41
351	248.93	8.68	-2.71	0.41
352	248.93	8.68	-2.71	0.41
353	248.93	8.68	-2.71	0.41
354	248.93	8.68	-2.71	0.41
355	248.93	8.68	-2.71	0.41
356	248.93	8.68	-2.71	0.41
357	248.93	8.68	-2.71	0.41
358	248.93	8.68	-2.71	0.41
$\begin{aligned} & 359 \\ & 360 \end{aligned}$	248.963 248.93	8.68 8.68	-2.707 -2.71	0.41 0.41

TW1- WELL RECOVERY VS. TIME - KOLLAARD FILE 190622

Kollaard File190622
RECOVERY DATA TW-1

t'	t/ t'	Abs Pres (kPa)	Temp (${ }^{\circ} \mathrm{C}$)	Water Level (m)	Drawdown (m)	Recovery (\%)
1	361	249.904	8.68	-2.611	0.31	24\%
2	181.0	250.196	8.68	-2.581	0.28	31\%
3	121.0	250.326	8.68	-2.568	0.27	34\%
4	91.0	250.391	8.68	-2.561	0.26	36\%
5	73.0	250.52	8.68	-2.548	0.25	39\%
6	61.0	250.585	8.68	-2.542	0.24	41\%
7	52.4	250.618	8.68	-2.538	0.24	42\%
8	46.0	250.65	8.68	-2.535	0.24	42\%
9	41.0	250.715	8.68	-2.528	0.23	44\%
10	37.0	250.747	8.68	-2.525	0.23	45\%
11	33.7	250.812	8.68	-2.519	0.22	46\%
12	31.0	250.845	8.68	-2.515	0.22	47\%
13	28.7	250.91	8.68	-2.509	0.21	49\%
14	26.7	250.942	8.68	-2.505	0.21	50\%
15	25.0	250.975	8.68	-2.502	0.20	50\%
16	23.5	250.975	8.68	-2.502	0.20	50\%
17	22.2	251.04	8.68	-2.495	0.20	52\%
18	21.0	251.072	8.68	-2.492	0.19	53\%
19	19.9	251.104	8.68	-2.489	0.19	54\%
20	19.0	251.104	8.68	-2.489	0.19	54\%
21	18.1	251.137	8.68	-2.485	0.19	55\%
22	17.4	251.169	8.68	-2.482	0.18	55\%
23	16.7	251.202	8.68	-2.479	0.18	56\%
24	16.0	251.234	8.68	-2.475	0.18	57\%
25	15.4	251.234	8.68	-2.475	0.18	57\%
26	14.8	251.04	8.68	-2.495	0.20	52\%
27	14.3	251.104	8.68	-2.489	0.19	54\%
28	13.9	251.267	8.68	-2.472	0.17	58\%
29	13.4	251.04	8.68	-2.495	0.20	52\%
30	13.0	251.299	8.68	-2.469	0.17	58\%
31	12.6	251.397	8.68	-2.459	0.16	61\%
32	12.3	251.397	8.68	-2.459	0.16	61\%
33	11.9	251.429	8.68	-2.456	0.16	62\%
34	11.6	251.429	8.68	-2.456	0.16	62\%
35	11.3	251.461	8.68	-2.452	0.15	63\%
36	11.0	251.461	8.68	-2.452	0.15	63\%
37	10.7	251.494	8.68	-2.449	0.15	63\%
38	10.5	251.526	8.68	-2.446	0.15	64\%
39	10.2	251.559	8.68	-2.442	0.14	65\%
40	10.0	251.559	8.68	-2.442	0.14	65\%
41	9.8	251.559	8.68	-2.442	0.14	65\%
42	9.6	251.559	8.68	-2.442	0.14	65\%
43	9.4	251.559	8.68	-2.442	0.14	65\%
44	9.2	251.267	8.68	-2.472	0.17	58\%
45	9.0	251.494	8.68	-2.449	0.15	63\%
46	8.8	251.559	8.68	-2.442	0.14	65\%

47	8.7	251.591	8.68	-2.439	0.14	66\%
48	8.5	251.624	8.68	-2.436	0.14	67\%
49	8.3	251.624	8.68	-2.436	0.14	67\%
50	8.2	251.656	8.68	-2.432	0.13	68\%
51	8.1	251.656	8.68	-2.432	0.13	68\%
52	7.9	251.656	8.68	-2.432	0.13	68\%
53	7.8	251.689	8.68	-2.429	0.13	68\%
54	7.7	251.721	8.68	-2.426	0.13	69\%
55	7.5	251.721	8.68	-2.426	0.13	69\%
56	7.4	251.721	8.68	-2.426	0.13	69\%
57	7.3	251.754	8.68	-2.422	0.12	70\%
58	7.2	251.786	8.68	-2.419	0.12	71\%
59	7.1	251.754	8.68	-2.422	0.12	70\%
60	7.0	251.786	8.68	-2.419	0.12	71\%
61	6.9	251.819	8.68	-2.416	0.12	71\%
62	6.8	251.819	8.68	-2.416	0.12	71\%
63	6.7	251.851	8.68	-2.413	0.11	72\%
64	6.6	251.883	8.68	-2.409	0.11	73\%
65	6.5	251.851	8.68	-2.413	0.11	72\%
66	6.5	251.883	8.68	-2.409	0.11	73\%
67	6.4	251.883	8.68	-2.409	0.11	73\%
68	6.3	251.916	8.68	-2.406	0.11	74\%
69	6.2	251.948	8.68	-2.403	0.10	75\%
70	6.1	251.948	8.68	-2.403	0.10	75\%
71	6.1	251.948	8.68	-2.403	0.10	75\%
72	6.0	251.948	8.68	-2.403	0.10	75\%
73	5.9	251.948	8.68	-2.403	0.10	75\%
74	5.9	251.981	8.68	-2.399	0.10	76\%
75	5.8	251.981	8.68	-2.399	0.10	76\%
76	5.7	252.013	8.68	-2.396	0.10	76\%
77	5.7	252.013	8.68	-2.396	0.10	76\%
78	5.6	252.046	8.68	-2.393	0.09	77\%
79	5.6	252.046	8.68	-2.393	0.09	77\%
80	5.5	252.046	8.68	-2.393	0.09	77\%
81	5.4	252.046	8.68	-2.393	0.09	77\%
82	5.4	252.078	8.68	-2.389	0.09	78\%
83	5.3	252.078	8.68	-2.389	0.09	78\%
84	5.3	252.078	8.68	-2.389	0.09	78\%
85	5.2	252.078	8.68	-2.389	0.09	78\%
86	5.2	252.078	8.68	-2.389	0.09	78\%
87	5.1	252.111	8.68	-2.386	0.09	79\%
88	5.1	252.143	8.68	-2.383	0.08	80\%
89	5.0	252.143	8.68	-2.383	0.08	80\%
90	5.0	252.143	8.68	-2.383	0.08	80\%
91	5.0	252.176	8.68	-2.379	0.08	81\%
92	4.9	252.176	8.68	-2.379	0.08	81\%
93	4.9	252.176	8.68	-2.379	0.08	81\%
94	4.8	252.176	8.68	-2.379	0.08	81\%
95	4.8	252.208	8.68	-2.376	0.08	81\%
96	4.8	252.24	8.68	-2.373	0.07	82\%

97	4.7	252.24	8.68	-2.373	0.07	82\%
98	4.7	252.24	8.68	-2.373	0.07	82\%
99	4.6	252.24	8.68	-2.373	0.07	82\%
100	4.6	252.24	8.68	-2.373	0.07	82\%
101	4.6	252.273	8.68	-2.37	0.07	83\%
102	4.5	252.24	8.68	-2.373	0.07	82\%
103	4.5	252.273	8.68	-2.37	0.07	83\%
104	4.5	252.305	8.68	-2.366	0.07	84\%
105	4.4	252.305	8.68	-2.366	0.07	84\%
106	4.4	252.305	8.68	-2.366	0.07	84\%
107	4.4	252.305	8.68	-2.366	0.07	84\%
108	4.3	252.338	8.68	-2.363	0.06	85\%
109	4.3	252.338	8.68	-2.363	0.06	85\%
110	4.3	252.338	8.68	-2.363	0.06	85\%
111	4.2	252.013	8.68	-2.396	0.10	76\%
112	4.2	252.24	8.68	-2.373	0.07	82\%
113	4.2	252.273	8.68	-2.37	0.07	83\%
114	4.2	252.338	8.68	-2.363	0.06	85\%
115	4.1	252.338	8.68	-2.363	0.06	85\%
116	4.1	252.338	8.68	-2.363	0.06	85\%
117	4.1	252.403	8.68	-2.356	0.06	86\%
118	4.1	252.403	8.68	-2.356	0.06	86\%
119	4.0	252.403	8.68	-2.356	0.06	86\%
120	4.0	252.403	8.68	-2.356	0.06	86\%
121	4.0	252.403	8.68	-2.356	0.06	86\%
122	4.0	252.403	8.68	-2.356	0.06	86\%
123	3.9	252.435	8.68	-2.353	0.05	87\%
124	3.9	252.468	8.68	-2.35	0.05	88\%
125	3.9	252.468	8.68	-2.35	0.05	88\%
126	3.9	252.468	8.68	-2.35	0.05	88\%
127	3.8	252.468	8.68	-2.35	0.05	88\%
128	3.8	252.468	8.68	-2.35	0.05	88\%
129	3.8	252.5	8.68	-2.346	0.05	89\%
130	3.8	252.5	8.68	-2.346	0.05	89\%
131	3.7	252.5	8.68	-2.346	0.05	89\%
132	3.7	252.5	8.68	-2.346	0.05	89\%
133	3.7	252.5	8.68	-2.346	0.05	89\%
134	3.7	252.533	8.68	-2.343	0.04	89\%
135	3.7	252.533	8.68	-2.343	0.04	89\%
136	3.6	252.533	8.68	-2.343	0.04	89\%
137	3.6	252.565	8.68	-2.34	0.04	90\%
138	3.6	252.565	8.68	-2.34	0.04	90\%
139	3.6	252.565	8.68	-2.34	0.04	90\%
140	3.6	252.565	8.68	-2.34	0.04	90\%
141	3.6	252.63	8.68	-2.333	0.03	92\%
142	3.5	252.597	8.68	-2.337	0.04	91\%
143	3.5	252.597	8.68	-2.337	0.04	91\%
144	3.5	252.597	8.68	-2.337	0.04	91\%
145	3.5	252.63	8.68	-2.333	0.03	92\%
146	3.5	252.63	8.68	-2.333	0.03	92\%

147	3.4	252.63	8.68	-2.333	0.03	92\%
148	3.4	252.662	8.68	-2.33	0.03	93\%
149	3.4	252.63	8.68	-2.333	0.03	92\%
150	3.4	252.662	8.68	-2.33	0.03	93\%
151	3.4	252.662	8.68	-2.33	0.03	93\%
152	3.4	252.695	8.68	-2.327	0.03	93\%
153	3.4	252.695	8.68	-2.327	0.03	93\%
154	3.3	252.695	8.68	-2.327	0.03	93\%
155	3.3	252.338	8.68	-2.363	0.06	85\%
156	3.3	252.533	8.68	-2.343	0.04	89\%
157	3.3	252.63	8.68	-2.333	0.03	92\%
158	3.3	252.37	8.68	-2.36	0.06	85\%
159	3.3	252.533	8.68	-2.343	0.04	89\%
160	3.3	252.63	8.68	-2.333	0.03	92\%
161	3.2	252.662	8.68	-2.33	0.03	93\%
162	3.2	252.695	8.68	-2.327	0.03	93\%
163	3.2	252.727	8.68	-2.323	0.02	94\%
164	3.2	252.727	8.68	-2.323	0.02	94\%
165	3.2	252.727	8.68	-2.323	0.02	94\%
166	3.2	252.76	8.68	-2.32	0.02	95\%
167	3.2	252.76	8.68	-2.32	0.02	95\%
168	3.1	252.792	8.68	-2.317	0.02	96\%
169	3.1	252.76	8.68	-2.32	0.02	95\%
170	3.1	252.792	8.68	-2.317	0.02	96\%
171	3.1	252.792	8.68	-2.317	0.02	96\%
172	3.1	252.792	8.68	-2.317	0.02	96\%
173	3.1	252.792	8.68	-2.317	0.02	96\%
174	3.1	252.825	8.68	-2.313	0.01	97\%
175	3.1	252.825	8.68	-2.313	0.01	97\%
176	3.0	252.825	8.68	-2.313	0.01	97\%
177	3.0	252.825	8.68	-2.313	0.01	97\%
178	3.0	252.857	8.68	-2.31	0.01	98\%
179	3.0	252.89	8.68	-2.307	0.01	98\%
180	3.0	252.857	8.68	-2.31	0.01	98\%
181	3.0	252.857	8.68	-2.31	0.01	98\%
182	3.0	252.89	8.68	-2.307	0.01	98\%
183	3.0	252.89	8.68	-2.307	0.01	98\%
184	3.0	252.89	8.68	-2.307	0.01	98\%
185	2.9	252.89	8.68	-2.307	0.01	98\%
186	2.9	252.89	8.68	-2.307	0.01	98\%
187	2.9	252.922	8.68	-2.303	0.00	99\%
188	2.9	252.922	8.68	-2.303	0.00	99\%
189	2.9	252.922	8.68	-2.303	0.00	99\%
190	2.9	252.955	8.68	-2.3	0.00	100\%

ATTACHMENT C RESULTS OF LABORATORY TESTING OF WELL WATER SAMPLES

Report Comments:

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Environment Testing

 Kollaard Associates Inc.210 Prescott St., Box 189 Kemptville, ON
K0G 1J0
Ms. Colleen Vermeersch
190622
Invoice to: Kollaard Associates Inc.
Dear Colleen Vermeersch:
Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692). accreditation. The scope is available at: http://www.cala.ca/scopes/2602.pdf.
Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license \#2318). A copy of the license is available upon request.
Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.
Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for into account when determining guideline or regulatory exceedances.

Report Number:	1940492
Date Submitted:	$2020-10-08$
Date Reported:	$2020-10-20$
Project:	190622
COC \#:	198013

Certificate of Analysis

QC Summary

Analyte	Blank		$\begin{gathered} \text { QC } \\ \% \text { Rec } \end{gathered}$	QC Limits
Run No 390581 Analysis/Extraction Date Method C SM2130B	Analysis/Extraction Date 2020-10-08	Analyst	AG	
Turbidity	<0.1 NTU		100	70-130
Analysis/Extraction Date 2020-10-08 -D		Analyst	AET	
S2-	$<0.01 \mathrm{mg} / \mathrm{L}$		105	80-120
Analysis/Extraction Date 2020-10-13		Analyst	H D	
Iron	$<0.03 \mathrm{mg} / \mathrm{L}$		92	80-120
Manganese	$<0.01 \mathrm{mg} / \mathrm{L}$		98	80-120
Analysis/Extraction Date 2020-10-13 3500C		Analyst	Z S	
Calcium	<1 mg/L		104	90-110
Potassium	$<1 \mathrm{mg} / \mathrm{L}$		95	87-113
Magnesium	$<1 \mathrm{mg} / \mathrm{L}$		112	76-124
Sodium	<2 mg/L		97	82-118
Analysis/Extraction Date 2020-10-14		Analyst	QT	
Colour	<2 TCU		101	90-110

[^0]Guideline $=$ ODWSOG

* = Guideline Exceedence
146 Colonnade Rd. Unit 8, Ottawa, ON K2E 7Y1
$M R L=$ Method Reporting Limit, $A O=$ Aesthetic Objective, $O G=$ Operational Guideline, MAC $=$
Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD

QC Summary

Analyte	Blank	$\begin{gathered} \text { QC } \\ \% \text { Rec } \end{gathered}$	QC Limits
Run No $390759 \quad$ Analysis/Extraction Date Method SM $2320,2510,4500 \mathrm{H} / \mathrm{F}$		Analyst QT	
Alkalinity (CaCO 3$)$	< $5 \mathrm{mg} / \mathrm{L}$	102	90-110
Conductivity	$<5 \mathrm{uS} / \mathrm{cm}$	99	90-110
F	<0.10 mg/L	102	90-110
pH		99	90-110
Run No $390799 \quad$ Analysis/Extraction Date Method SUBCONTRACT P-INORG		Analyst AET	
Phenols	$<0.001 \mathrm{mg} / \mathrm{L}$	100	69-132
Tannin \& Lignin	$<0.1 \mathrm{mg} / \mathrm{L}$	80	
Analysis/Extraction Date 2020-10-15		Analyst AG	
DOC	$<0.5 \mathrm{mg} / \mathrm{L}$	102	80-120
Analysis/Extraction Date 2020-10-17		Analyst SKH	
Chloride	<1 mg/L	100	90-110
N-NO2	$<0.10 \mathrm{mg} / \mathrm{L}$	107	90-110
N-NO3	$<0.10 \mathrm{mg} / \mathrm{L}$	107	90-110
SO4	<1 mg/L	100	90-110

[^1]146 Colonnade Rd. Unit 8, Ottawa, ON K2E 7Y1

Certificate of Analysis

Environment Testing

 Kollaard Associates Inc. 210 Prescott St., Box 189 Kemptville, ONClient:

Attention:
PO\#:
Invoice to:

$$
\begin{array}{ll}
& \text { K0G 1 J0 } \\
\text { Attention: } & \text { Ms. Colleen Vermeersch } \\
\text { PO\#: } & 190622 \\
\text { Invoice to: } & \text { Kollaard Associates Inc. }
\end{array}
$$

QC Summary

146 Colonnade Rd. Unit 8, Ottawa, ON K2E 7Y1

Certificate of Analysis

CuMOPM	
	\| Environment Testing
Client:	Kollaard Associates Inc.
	210 Prescott St., Box 189
	Kemptville, ON
	K0G 1J0
Attention:	Ms. Colleen Vermeersch
PO\#:	190622
Invoice to:	Kollaard Associates Inc.

Dear Colleen Vermeersch:

Report Comments:
All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.
 accreditation. The scope is available at: http://www.cala.ca/scopes/2602.pdf.
 \#2318). A copy of the license is available upon request.
Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

 into account when determining guideline or regulatory exceedances.
Guideline = ODWSOG
Certificate of Analysis

Report Comments:
All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.
Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of
Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license \#2318). A copy of the license is available upon request.
Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.
Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.
Certificate of Analysis

[^2]146 Colonnade Rd. Unit 8, Ottawa, ON K2E 7Y1

ATTACHMENT D SEWAGE EFFLUENT DILUTION CALCULATIONS

SEPTIC EFFLUENT DILUTION CALCULATIONS

Sewage Effluent for single family dwelling	$365 \mathrm{~m}^{3} /$ year
Sewage Effluent for commercial use	$1834.13 \mathrm{~m}^{3} /$ year
Total sewage design	$2199.13 \mathrm{~m}^{3} /$ year
Gross Site Area	$95,800 \mathrm{~m}^{2}$
Env. Can. Water Surplus (NPI)	372.2 mm
Hard Surface Area (Post-Development)	
Roofs	1440
gravel area	$\underline{2640}$
Total	$4080 \mathrm{~m}^{2}$
Net Infiltration Area = Gross Site Area - Hard Surface Area (Post-Development)	
	$91,720 \mathrm{~m}^{2}$
Infiltration Reduction Factor:	
Topography (rolling)	0.30
Soil (open sandy loam)	0.40
Cover (cultivated/orchard)	$\underline{0.15}$
Total IRF	

Total IRF 0.85
Septic Dilution For the combined effluent for the site:

Volume Effluent Per Year x $40 \mathrm{mg} / \mathrm{L} \mathrm{NO}_{3}$ $=2.8 \mathrm{mg} / \mathrm{L} \mathrm{NO}_{3}-\mathrm{N}$
Volume Effluent Per Year + (Net Infiltration Area x NPI x IRF)

[^0]: Results relate only to the parameters tested on the samples submitted.
 Methods references and/or additional QA/QC information available on request.
 Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

[^1]: Guideline $=$ ODWSOG

 * $=$ Guideline Exceedence

 Results relate only to the parameters tested on the samples submitted.
 Methods references and/or additional QA/QC information available on request.
 Objective, TDR = Typical Desired Range

[^2]: Guideline $=$ ODWSOG

 * $=$ Guideline Exceedence Results relate only to the parameters tested on the samples submitted.
 Analytical Method: AMBCOLM1 Analytical Method: AMBCOLM1

