Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

patersongroup

Phase II - Environmental Site Assessment

70 Nicholas Street Ottawa, Ontario

Prepared For

The Cadillac Fairview Corporation Limited

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca August 10, 2022

Report: PE5267-2 Rev

TABLE OF CONTENTS

EXE	CUTIV	'E SUMMARY	3
1.0	INTF	RODUCTION	3
	1.1	Site Description	3
	1.2	Property Ownership	3
	1.3	Current and Proposed Future Uses	3
	1.4	Applicable Site Condition Standard	2
2.0	BAC	KGROUND INFORMATION	2
	2.1	Physical Setting	2
	2.2	Past Investigations	3
3.0	SCO	PE OF INVESTIGATION	2
	3.1	Overview of Site Investigation	2
	3.2	Media Investigated	2
	3.3	Phase I Conceptual Site Model	3
	3.4	Deviations from Sampling and Analysis Plan	5
	3.5	Impediments	
4.0	INVE	STIGATION METHOD	6
	4.1	Subsurface Investigation	6
	4.2	Soil Sampling	6
	4.3	Field Screening Measurements	7
	4.4	Groundwater Monitoring Well Installation	8
	4.5	Field Measurement of Water Quality Parameters	8
	4.6	Groundwater Sampling	9
	4.7	Analytical Testing	9
	4.8	Residue Management	3
	4.9	Elevation Surveying	3
	4.10	Quality Assurance and Quality Control Measures	3
5.0	REV	IEW AND EVALUATION	3
	5.1	Geology	3
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	4
	5.3	Fine-Coarse Soil Texture	4
	5.4	Soil: Field Screening	4
	5.5	Soil Quality	5
	5.6	Groundwater Quality	12
	5.7	Quality Assurance and Quality Control Results	14
	5.8	Phase II Conceptual Site Model	19
6.0		CLUSIONS	25
7.0	STA	TEMENT OF LIMITATIONS	27

List of Figures

Figure 1 - Key Plan

Drawing PE5267-1 - Site Plan

Drawing PE5267-2 – Surrounding Land Use Plan

Drawing PE5267-3 - Test Hole Location Plan

Drawing PE5267-4 – Analytical Testing Plan – Soil (Metals)

Drawing PE5267-4A – Cross Section A-A' – Soil (Metals)

Drawing PE5267-4B – Cross Section B-B' – Soil (Metals)

Drawing PE5267-5 – Analytical Testing Plan – Soil (VOCs and BTEX)

Drawing PE5267-5A – Cross Section A-A' – Soil (VOCs and BTEX)

Drawing PE5267-5B – Cross Section B-B' – Soil (VOCs and BTEX)

Drawing PE5267-6 – Analytical Testing Plan – Soil PHCs)

Drawing PE5267-6A – Cross Section A-A' – Soil (PHCs)

Drawing PE5267-6B - Cross Section B-B' - Soil (PHCs)

Drawing PE5267-7 – Analytical Testing Plan – Soil (PAHs)

Drawing PE5267-7A – Cross Section A-A' – Soil (PAHs)

Drawing PE5267-7B – Cross Section B-B' – Soil (PAHs)

Drawing PE5267-8 - Analytical Testing Plan - Groundwater

Drawing PE5267-8A – Cross-section A – A' – Groundwater

Drawing PE5267-8B – Cross-section B – B' – Groundwater

List of Appendices

Appendix 1 Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

Appendix 2 Remedial Action Plan

EXECUTIVE SUMMARY

Assessment

A Phase II ESA was conducted for the northeast portion of the property addressed 70 Nicholas Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II Property.

The Phase II ESA was carried out in conjunction with a geotechnical investigation and consisted of the placement of four boreholes and nine test pits. All boreholes were constructed with groundwater monitoring wells. The general soil profile encountered during the field program consisted of a silty sand fill layer, over a layer of clay followed by glacial till (on the southwest corner of the site only), followed by limestone bedrock. No unusual staining or odour was noted at the time of the field program. Deleterious material identified in the fill material consists of construction debris, coal, brick, concrete and a layer of asphalt in TP7-21.

A total of 17 soil samples were submitted for laboratory analysis of Metals (including methyl mercury), Volatile Organic Compounds (VOCs), Benzene, Toluene, Ethylbenzene and Xylenes (BTEX), Petroleum Hydrocarbons (PHCs, Fractions F₁-F₄) and/or Polycyclic Aromatic Hydrocarbons (PAHs). No VOC or BTEX concentrations identified in the samples analysed. Concentrations of metals (including As, Sb, Se), Hg, PAH and/or PHC (F₃) parameters exceeding the MECP Table 3 standards were identified in soil Samples BH1-21-SS5/6, BH2-21-SS4, BH3-21-SS4/5 TP1-21-GS3, TP3-21-GS3, TP5-21-GS2 and TP6-21-GS5. Based on Hg results, MeHg was analyzed and determined to comply with the MECP Table 3 standards.

Groundwater samples from monitoring wells BH1-21, BH2-21, BH3-21 and BH4-21 were collected during the May 25, 2021 sampling event. No sheen, free product or odour was noted during the groundwater sampling event.

Groundwater samples were analyzed for Metals, BTEX, PHCs and/or PAHs. All groundwater results comply with the selected MECP Table 3 Residential Standards.

Recommendations

<u>Soil</u>

Based on the findings of the Phase II ESA, it is anticipated that fill material impacted with metals, mercury, PAHs and/or PHC (F₃) exceeding the MECP Table 3 standards is

present across the Phase II Property at depths extending up to approximately 5.0m below grade. It is our understanding that the Phase II Property will be redeveloped with a residential multi-story building with 2 levels of underground parking.

It is recommended that an environmental site remediation program, involving the removal of all impacted fill material be completed prior to site redevelopment. Prior to off-site disposal of the impacted soil at a licenced landfill site, a leachate analysis of a representative sample of contaminated soil must be conducted in accordance with Ontario Regulation 347/558.

It is also recommended that Paterson personnel be onsite during construction activities to direct the excavation and segregation of impacted soil and to conducted additional delineation or confirmatory sampling as required.

Any clean soil that requires removal from the Phase II Property for construction purposes must be handled in accordance with Ontario Regulation 406/19: On-Site and Excess Soil Management.

Groundwater

It is recommended that the monitoring wells installed on the Phase II Property remain viable for future monitoring, if required. It is expected that groundwater monitoring wells will be abandoned in accordance with O.Reg.903 at the time of the construction excavation.

1.0 INTRODUCTION

At the request of The Cadillac Fairview Corporation Limited, Paterson Group (Paterson) conducted a Phase II Environmental Site Assessment for the northeast portion of the property addressed 70 Nicholas Street, in the City of Ottawa, Ontario. The purpose of this Phase II ESA has been to address areas of potential environmental concern (APECs) identified on the Phase II Property during the Phase I ESA conducted by Paterson in June of 2021.

1.1 Site Description

Address: 70 Nicholas Street, Ottawa, Ontario

Location: The Phase II Property is located on the west side of

Nicholas Street between Daly Avenue and the Mackenzie King Bridge, in the City of Ottawa. The Phase I Property is shown on Figure 1 - Key Plan

following the body of this report.

Latitude and Longitude: 45° 25' 30" N, 75° 41' 22" W

Site Description:

Configuration: Irregular

Site Area: 0.33 ha (approximate)

Zoning: Mixed Use Downtown Zone

1.2 Property Ownership

Paterson was engaged to conduct this Phase I ESA by Mr. Peter Nikolakakos of The Cadillac Fairview Corporation Limited. Mr. Nikolakakos can be reached by telephone at 416-598-8373.

1.3 Current and Proposed Future Uses

The Phase II Property is currently occupied by a vacant commercial building. It is our understanding that the Phase II Property redevelopment will consist of a residential high rise building with two underground parking levels. Associated

access lanes, walkways and hardscaped areas are also anticipated as part of the development. It is expected that the proposed buildings will be municipally serviced.

1.4 Applicable Site Condition Standard

The site condition standards for the property were obtained from Table 3 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of Environment, Conservation and Parks (MECP), April 2011. The MECP selected Table 3 Standards are based on the following considerations:

Coarse-grained soil conditions
Full depth generic site conditions
Non-potable groundwater conditions
Residential land use

Section 35 of O.Reg. 153/04 does apply to the Phase II Property in that the property relies upon municipal drinking water.

Section 41 of O.Reg. 153/04 does not apply to the Phase II Property, as the property is not within 30m of an environmentally sensitive area and the pH of the soil at the property is between 5 and 9 for surface soil and between 5 and 11 for sub-surface soil.

Section 43.1 of O.Reg. 153/04 does not apply to the Phase II Property in that the property is not a Shallow Soil property and the property is not within 30m of a water body.

The intended use of the Phase II Property is residential; therefore, the Residential Standards have been selected for the purpose of this Phase II ESA.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II Property is located on the west side of Nicholas Street, between Daly Avenue and the Mackenzie King Bridge, in the City of Ottawa, Ontario. The Phase II Property is situated in a mixed-use downtown zone consisting of primarily commercial with some residential land use. The setting of the Phase II Property is shown on Drawing PE5267-2 – Surrounding Land Use Plan.

At the time of the Phase II ESA, the Phase II Property was occupied by a vacant commercial building on the east-central portion. The building was constructed circa 1878 with a stone foundation and consists of one storey with a small basement crawl space.

The remainder of the Phase II Property consists of an access road to a (off-site) truck loading area across the southeast portion and vacant grassed/treed land on the remaining areas.

Site topography slopes down to the east, in the direction of Nicholas Street. The regional topography in the general area of the Phase II Property slopes downward to the north-northwest, towards the Ottawa River. Site drainage consisting primarily of infiltration and surface runoff to catch basins on site and along adjacent roadways. Multiple underground utilities were identified on the Phase I Property including electrical, gas, water, sewer and telecommunication lines.

2.2 Past Investigations

Paterson completed a Phase I ESA in June of 2021 for the Phase II Property. Based on the findings of the Phase I ESA, several on and off-site PCAs were considered to result in APECs on the Phase II Property as shown in Table 1.

Table 1 Areas of Potential Environmental Concern									
Location of Area of Potential Environmental Concern Concern Phase I Property		Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)				
APEC 1 (former warehouse / workshop)	Northern portion of the Phase I Property	Other – associated with the former warehouse and workshop	On-site	BTEX PHCs (F ₁ -F ₄)	Soil Groundwater				
APEC 2 (former coal storage)	Northeast portion of the Phase I Property	Other – former coal storage	On-site	Metals As, Sb, Se Hg, CrVI PAH	Soil Groundwater				

70 Nicholas Street Ottawa, Ontario

APEC 3 (former coal storage – Canadian Granite Co.)	Northeast portion of the Phase I Property	Other – former coal storage	On-site	Metals As, Sb, Se Hg, CrVI PAH	Soil Groundwater	
---	--	--------------------------------	---------	---	---------------------	--

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern with respect to Phase I Property	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)
APEC 4 (former garage)	Southwest portion of the Phase I Property	PCA 52 - Storage, maintenance, fuelling and repair of equipment, vehicles and material used to maintain transportation systems	On-site	BTEX PHCs (F ₁ -F ₄) VOCs	Soil Groundwater
APEC 5 ¹ (use of de-icing salt associated with on-site and adjacent roadways)	South portion of the Phase I Property	Other - use of salt for de-icing purposes	On-site	EC SAR	Soil
APEC 6 (former railway spur line)	Western portion of the Phase I Property	PCA 46 – Rail Yards, Tracks and Spurs	On-site	Metals As, Sb, Se Hg, CrVI PAH PHCs (F₁-F₄)	Soil Groundwater
APEC 7 (fill material of unknown quality)	Potentially across the Phase I Property	PCA 30 - Importation of Fill Material of Unknown Quality	On-site	Metals As, Sb, Se Hg, CrVI PAHs PHCs (F₁-F₄)	Soil (Fill Material)
APEC 8 (former rail yard and rail lines)	West portion of the Phase I Property	PCA 46 – Rail Yards, Tracks and Spurs	Off-site	Metals As, Sb, Se Hg, CrVI PAH PHCs (F ₁ -F ₄)	Groundwater
APEC 9 (former coal storage)	West portion of the Phase I Property	Other – former coal storage	Off-site	Metals As, Sb, Se Hg, CrVI PAH	Groundwater

^{1 –} In accordance with Section 49.1 of Ontario Regulation 153/04 standards are deemed to be met if an applicable site condition standard is exceeded at a property solely because the qualified person has determined, based on a phase two environmental site assessment, that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both. As further discussed in the Phase II CSM, the exemption outlined in Section 49.1 is being relied upon with respect to the RSC Property.

The rationale for identifying the above PCAs is based on fire insurance plans, city directories, aerial photographs, field observations, and personal interviews. A Phase II ESA was recommended to address the aforementioned APECs.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The subsurface investigation was conducted during the interim of May 14 through May 17, 2021 and June 15, 2021, in conjunction with a Geotechnical Investigation. The field program consisted of drilling four boreholes to address the APECs identified on the Phase II Property. All four of the boreholes (BH1-21 through BH4-21) were instrumented with groundwater monitoring wells. Boreholes were drilled to a maximum depth of 10.62 m below the ground surface (mbgs).

Additionally, nine test pits were places across the Phase I Property to assess the quality of the fill material.

3.2 Media Investigated

During the subsurface investigation, soil samples and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the Contaminants of Potential Concern identified in the Phase I ESA.

The contaminants of potential concern for the soil and groundwater on the subject site include the following:

Metals (including Arsenic (As,), Antimony (Sb) and Selenium);
Mercury (Hg);
Hexavalent Chromium;
Volatile Organic Compounds (VOCs);
Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX);
Petroleum Hydrocarbons, fractions 1 - 4 (PHCs F ₁ -F ₄); and
Polycyclic Aromatic Hydrocarbons (PAHs).

3.3 Phase I Conceptual Site Model

Geological and Hydrogeological Setting

The Geological Survey of Canada website on the Urban Geology of the National Capital Area was consulted as part of this assessment. Based on this information, the bedrock in the area of the Phase I Property consists of interbedded limestone and shale of the Verulam Formation. Based on the maps, the thickness of the overburden ranges from 5 to 10 m and consists of plain till. Groundwater flow is expected to reflect regional topography and flow in a northwesterly direction toward the Ottawa River.

Buildings and Structures

The central portion of the Phase I Property is occupied by a vacant registry office. The building has one storey and is constructed with a stone foundation. A crawl space is present beneath the northwestern portion of the building. The exterior of the building is finished with brick, stone and a sloped shingle-style roof. The building was constructed circa 1878 and was most recently heated with electric baseboard heaters. No other buildings or structures are present on the Phase I Property.

Subsurface Structures and Utilities

A small basement crawl space is present beneath the northwestern portion of the building. Multiple underground utilities were identified on the Phase I Property including electrical, gas, water, sewer and telecommunication lines.

Water Bodies

No water bodies are present on the Phase I Property. The closest water body is the Rideau Canal. located approximately 200 m southwest of the Phase I Property.

Areas of Natural Significance

No areas of natural significance were identified on the Phase I Property or in the Phase I ESA Study Area.

Drinking Water Wells

No potable well records were identified for the Phase I Property or the Phase I Study Area.

Monitoring Well Records

No monitoring well records were identified on the Phase I Property. A total of 13 well records were identified for properties within the Phase I Study Area. All of the reported well records were dated between 2010 and 2018. A monitoring well record for the property addressed 2 Daly Avenue, approximately, 15 m east of the Phase I Property was identified. Five monitoring well records were identified for the properties addressed 70 & 90 Waller Street, approximately 125 m northeast of the Phase I Property.

The monitoring well records identified within the Phase I Study Area are not considered to represent a concern to the Phase I Property based on their respective separation distances.

Neighbouring Land Use

Neighbouring land use in the Phase I Study Area is primarily commercial with some residential land use.

Potentially Contaminating Activities

As per section 7.1 of this report, seven PCAs were identified on the Phase I Property and pertain to a historical post office warehouse/workshop, two separate historical coal storage locations, a historical railway spur line, the use of de-icing salt (on the former roadway through the south portion of the Phase I Property and adjacent roadways), a former garage and fill material of unknown quality throughout the Phase I Property. The seven identified PCAs result in seven APECs for the Phase I Property.

Two off-site PCAs that result in APECs for the Phase I Property were identified within the Study Area. The PCAs include a historical rail yard with associated rail lines and coal storage located adjacent to the west of the Phase I Property. The remaining 42 off-site PCAs identified within the Phase I Study Area are not considered to result in APECs on the subject property due to their respective separation distances and/or cross/down gradient orientations with respect to the Phase I Property.

Areas of Potential Environmental Concern

Nine APECs were identified on the subject site, seven of which resulted from onsite activities including a historical post office warehouse/workshop, two separate historical coal storages, a historical railway spur line, the use of de-icing salt, a former garage and fill material of unknown quality throughout the Phase I

Property. The remaining two APECs are resultant of off-site activities and include a historical rail yard with associated rail lines and a coal storage located adjacent to the west of the Phase I Property.

According to Section 49.1 of O.Reg. 153/04, if an applicable site condition standard is exceeded at a property solely because of the following reason, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act: "The qualified person has determined, based on a phase one environmental site assessment or a phase two environmental site assessment, that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both."

In accordance with Section 49.1 of O.Reg. 153/04, any EC and SAR concentrations on the RSC Property that exceed the MECP Table 3 standards for a residential/institutional land use are deemed not to be exceeded for the purpose of Part XV.1 of the Act. This exemption is being relied on for APEC 5.

Contaminants of Potential Concern

The contaminants of potential concern (CPCs) associated with the aforementioned APECs are considered to be:

Metals (including arsenic (As), antimony (Sb) and selenium (Se))
Mercury (Hg)
Hexavalent Chromium (Cr _{VI})
Volatile Organic Compounds (VOCs)
Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)
Petroleum Hydrocarbons (PHCs, Fractions F ₁ -F ₄)
Polycyclic Aromatic Hydrocarbons (PAHs)

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of this Phase I-ESA is considered to be sufficient to conclude that there are APECs on the Phase I Property which may potentially have impacted the Phase I Property. The presence of PCAs was confirmed by a variety of independent sources, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

3.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan for this project is included in Appendix 1 of this report.

3.5 Impediments

The depth of the test pits was impeded by large boulders and concrete in the fill material; test pits were completed on practical refusal.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation was completed in conjunction with a Geotechnical Investigation during the interim of May 14 through May 17, 2021 and June 15, 2021. The field program consisted of drilling four boreholes (BH1-21 through BH4-21) and excavating nine test pits (TP1-21 through TP9-21) across the Phase II Property.

The boreholes were drilled to a maximum depth of 10.62 m below ground surface (mbgs). Three of the four boreholes were cored into the bedrock and all four were completed as groundwater monitoring wells to access.

The boreholes and test pits were placed to address the aforementioned APECs presented in Table 1, and to provide coverage of the proposed building footprint for geotechnical purposes. The boreholes were drilled using a low-clearance drill rig operated by George Downing Estate Drilling of Hawkesbury, Ontario, under full-time supervision of Paterson personnel. The borehole locations are indicated on the attached Drawing PE5267-3 - Test Hole Location Plan.

4.2 Soil Sampling

A total of 24 soil samples were obtained from the boreholes by means of grab sampling from shallow auger flights and split spoon sampling. Split spoon samples were taken at approximate 0.76 m intervals. The depths at which split spoon and auger samples were obtained from the boreholes are shown as "SS" and "AU" on the Soil Profile and Test Data Sheets.

Upon refusal of the augers, boreholes BH1-21, BH2-21 and BH4-21 were advanced into bedrock using a diamond coring system. An additional 14 rock core samples were recovered and are shown as "**RC**" on the Soil Profile and Test Data Sheets.

During the test pit program, a total of 38 soil samples were obtained from the test pits by means of grab sampling. The depths at which grab samples were

obtained from the test holes are shown as "**G**" on the Soil Profile and Test Data Sheets.

The site stratigraphy generally consists of a layer of topsoil (0.1 to 0.2m thick) or engineered fill over (up to 0.5m thick) over a thick layer of fill material extending to depths up to approximately 5.0m below grade. The fill material primarily consists of brown silty sand with some clay and gravel. Fragments of concrete, brick, wood and/or coal were identified at each test hole location. A thin layer of silty clay (from 4.27 to 5.18 mbgs) followed by a silty clay glacial till (from 5.18 to 7.01 mbgs) was encountered in BH3-21 below the fill material. A layer of asphalt was encountered in TP7-21 from 0.5 to 0.6 mbgs. Limestone bedrock was encountered beneath the fill material or glacial till at BH3-21, at depths ranging from approximately 2.6 to 7.0m below grade.

Borehole and test pit locations are shown on Drawing PE5267-3 – Test Hole Location Plan.

4.3 Field Screening Measurements

Soil samples recovered at the time of sampling were placed immediately into airtight plastic bags with nominal headspace. All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey. Allowing the samples to stabilize to room temperature ensures consistency of readings between samples.

To measure the soil vapours, the analyser probe is inserted into the nominal headspace above the soil sample. A photoionization detector (PID) was used to measure the volatile organic vapour concentrations. The sample is agitated/manipulated gently as the measurement is taken. The peak reading registered within the first 15 seconds is recorded as the vapour measurement.

The organic vapour readings were generally below 20ppm and not considered to be indicative of potential contamination. A slightly elevated reading of 77.2ppm was identified for Sample BH2-21-SS2. These results were not considered to be indicative of potential significant contamination from volatile contaminants. Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1.

No olfactory indications of potential contamination were identified in the soil samples. Deleterious material identified in the fill material consists of construction debris, coal, brick, concrete and a layer of asphalt in TP7-21. The

results of the vapour survey are presented on the Soil Profile and Test Data sheets.

4.4 Groundwater Monitoring Well Installation

Four groundwater monitoring wells were installed on the Phase II Property as part of the subsurface investigation. The monitoring wells consisted of 32 mm diameter, Schedule 40 threaded PVC risers and screens. Monitoring well construction details are listed in Table 3 and are also presented on the Soil Profile and Test Data Sheets provided in Appendix 1.

Borehole locations and elevations were surveyed geodetically by Paterson personnel.

TABLE 3 - Monitoring Well Construction Details										
Well ID	Ground Surface Elevation	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Seal					
BH1-21	67.20	10.49	7.44-10.49	6.71-10.49	0.15-6.71	Stick-Up				
BH2-21	66.14	10.62	7.57-10.62	6.10-10.62	0.15-6.10	Stick-Up				
BH3-21	67.28	7.01	3.96-7.01	3.35-7.01	0.15-3.35	Stick-Up				
BH4-21	66.89	10.36	7.31-10.36	6.71-10.36	0.15-6.71	Stick-Up				

4.5 Field Measurement of Water Quality Parameters

Groundwater samples were collected on May 25, 2021. Water quality parameters were measured in the field using a multi-parameter analyzer. Parameters measured in the field include temperature, pH and electrical conductivity.

Field parameters were measured after each well volume purged. Wells were purged prior to sampling until at least three well volumes had been removed, the field parameters were relatively stable or the well was dry. Stabilized field parameter values are summarized in Table 4.

Table 4 - Field Measurement of Water Quality Parameters – May 25, 2021									
Parameter	BH1-21 BH2-21		BH3-21	BH4-21					
Temperature (°C)	22.3	20.7	20.0	21.7					
рН	7.31	7.48	7.08	7.53					
Electrical Conductivity (µS/cm)	1,980	2,010	2,450	2,380					

Report: PE5267-2 Rev

August 10, 2022 Page 8

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, using dedicated sampling equipment. Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

4.7 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the following soil and groundwater samples, as well as analyzed parameters are presented in Tables 5 and 6.

Table 5	Table 5 - Testing Parameters for Submitted Soil Samples								
			Parame	eters Ar	nalyzed				
Sample ID	Sample Depth & Stratigraphic Unit	Metals¹	SOOA	ВТЕХ	PHCs F ₁ -F ₄	SHAG	Rationale		
May 14, 2	021								
BH1-21- SS3	1.52 - 2.13 m Brown Silty Sand (Fill Material)			Х	Х		Assess potential soil impacts resulting from the historical onsite spur line and off-site rail yard and rail tracks.		
BH1-21- SS5/6	3.05 - 4.42 m Brown Silty Sand (Fill Material)	Х				Х	Assess potential soil impacts resulting from the historical onsite spur line and off-site rail yard and rail tracks.		
May 17, 2	021								
BH2-21- SS4	2.29 - 2.62 m Brown Silty Sand (Fill Material)	X				X	Assess potential soil impacts resulting from the presence of the historical on-site warehouse/workshop and coal storage.		
BH3-21- SS2	0.76 – 1.37 m Brown Silty Sand (Fill Material)			х	х		Assess potential soil impacts resulting from the presence of the historical on-site garage and coal storage yard and the off-site coal storage.		

Table 5 Continued - Testing Parameters for Submitted Soil Samples							
Sample ID	Sample Depth & Stratigraphic Unit	Metals¹	VOCs	ВТЕХ	PHCs F ₁ -F ₄	PAHs	Rationale
BH3-21- SS4/5	2.29 – 3.66 m Brown Silty Sand (Fill Material)	Х				х	Assess potential soil impacts resulting from the presence of the historical on-site garage and coal storage yard and the off-site coal storage.
BH4-21- SS2	0.76 – 1.37 m Brown Silty Sand (Fill Material)	Х				х	Assess potential soil impacts resulting from the presence of fill material.
DUP	2.29 – 3.66 m Brown Silty Sand (Fill Material)	X				х	Duplicate soil sample (BH3- 21-SS4/5) for QA/QC purposes
June 25,							
TP1-21- GS3	1.7 – 1.9 m Brown Silty Sand (Fill Material)		X		x		Delineation of previously identified impacts and further assessment of the fill material
TP1-21- GS4	2.3 – 2.5 m Brown Silty Sand (Fill Material)	X ²					Delineation of previously identified impacts and further assessment of the fill material
TP2-21- GS4	1.7 – 1.9 m Brown Silty Sand (Fill Material)	Х		Х	х	х	Delineation of previously identified impacts and further assessment of the fill material
TP3-21- GS3	0.5 – 0.7 m Brown Silty Sand (Fill Material)	Х				х	Delineation of previously identified impacts and further assessment of the fill material
TP4-21- GS2	0.7 – 0.8 m Brown Silty Sand (Fill Material)	Х					Delineation of previously identified impacts and further assessment of the fill material
TP5-21- GS2	1.7 – 1.9 m Brown Silty Sand (Fill Material)					х	Delineation of previously identified impacts and further assessment of the fill material
TP6-21- GS5	1.7 – 1.9 m Brown Silty Sand (Fill Material)	X				х	Delineation of previously identified impacts and further assessment of the fill material
TP6-21- GS6	1.7 – 1.9 m Brown Silty Sand (Fill Material)	X ²					Delineation of previously identified impacts and further assessment of the fill material
TP7-21- GS6	2.7 – 3.0 m Brown Silty Sand (Fill Material)	X ²					Delineation of previously identified impacts and further assessment of the fill material

Report: PE5267-2 Rev

August 10, 2022 Page 1

Table 5	Table 5 Continued - Testing Parameters for Submitted Soil Samples									
TP8-21- GS5	2.5-2.7 Brown Silty Sand (Fill Material)	X ²					Delineation of previously identified impacts and further assessment of the fill material			
DUP3	1.7 – 1.9 m Brown Silty Sand (Fill Material)					х	Duplicate soil sample (TP3-21-GS3) for QA/QC purposes			
DUP4	1.7 – 1.9 m Brown Silty Sand (Fill Material)	х					Duplicate soil sample (TP4-21-GS2) for QA/QC purposes			

- 1 including As, Sb, Se, Hg and CrVI 2 tested specifically for methyl mercury

TABLE 6 - Te	esting Parame	ters for	Submit	tted Gro	oundwa	ter Samples
				s Analyz		
Sample ID	Screened Interval	Metals ¹	втех	PHCs F ₁ -F ₄	PAHs	Rationale
May 25, 2021						
MW1-21-GW1	7.44 - 10.49m Bedrock	Х			Х	Assess potential groundwater impacts resulting from the historical on-site spur line and off-site rail yard and rail tracks.
MW2-21-GW1	7.57 - 10.62m Bedrock	X			x	Assess potential groundwater impacts resulting from the historical on-site warehouse/workshop and coal storage.
MW3-21-GW1	3.96 - 7.01m Glacial Till	X	X	×		Assess potential groundwater impacts resulting from the historical on-site garage and coal storage yard and the offsite coal storage
MW4-21-GW1	7.31 - 10.36m Bedrock				х	Assess potential groundwater impacts resulting from the historical on-site roadway.
DUP1	7.31 - 10.36m Bedrock				Х	Duplicate groundwater sample (MW4-21-GW1) for QA/QC purposes.
DUP2	7.57 - 10.62m Bedrock	Х				Duplicate groundwater sample (MW2-21-GW1) for QA/QC purposes.
Notes:	- din n 11 n - n d 0n					
■ 1 – inclu	ıding Hg and Cr _{∨ı}					

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory

Report: PE5267-2 Rev

Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

4.8 Residue Management

All soil cuttings, purge water and fluids from equipment cleaning were retained on-site.

4.9 Elevation Surveying

The ground surface elevations at each borehole location were surveyed using a GPS device by Paterson personnel and referenced to a geodetic datum.

4.10 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, and custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

Site soils consists of a layer of topsoil (0.1 to 0.2m thick) or engineered fill over (up to 0.5m thick) over a thick layer of fill material extending to depths up to approximately 5.0m below grade. The fill material primarily consists of brown silty sand with some clay and gravel. Fragments of concrete, brick, wood and/or coal were identified at each test hole location. A thin layer of silty clay (from 4.27 to 5.18 mbgs) followed by a silty clay glacial till (from 5.18 to 7.01 mbgs) was encountered in BH3-21 below the fill material. A layer of asphalt was encountered in TP7-21 from 0.5 to 0.6 mbgs. Limestone bedrock was encountered beneath the fill material or glacial till at BH3-21, at depths ranging from approximately 2.6 to 7.0m below grade. Groundwater was encountered within the bedrock at depths ranging from approximately 5.64 to 9.00 m below ground surface and within the overburden in BH3-21 at a depth of approximately 5.60m below ground surface.

Site geology details are provided in the Soil Profile and Test Data Sheets provided in Appendix 1.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured during the groundwater sampling event on May 25, 2021 using an electronic water level meter. Groundwater levels are summarized in Table 7.

TABLE 7 -	TABLE 7 - Groundwater Level Measurements								
Borehole Location	Ground Surface Elevation (m)	Water Level Depth (m below grade)	Water Level Elevation (m ASL)	Date of Measurement					
BH1-21	67.20	9.00	58.20	May 25, 2021					
BH2-21	66.14	6.86	59.28	May 25, 2021					
BH3-21	67.28	5.60	61.68	May 25, 2021					
BH4-21	66.89	5.64	61.24	May 25, 2021					

Based on the groundwater elevations measured during the sampling event, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE5267-3 – Test Hole Location Plan. Based on the contour mapping, groundwater flow at the Phase II Property is in a northwestern direction. A horizontal hydraulic gradient of approximately 0.06 m/m was calculated.

It should be noted that groundwater levels are expected to fluctuate throughout the year with seasonal variations.

5.3 Fine-Coarse Soil Texture

Grain-size analysis was not completed as part of this investigation. Coarsegrained soil standards were chosen based on the nature of the recovered soil samples.

5.4 Soil: Field Screening

The organic vapour readings were generally below 20ppm and not considered to be indicative of potential contamination. A slightly elevated reading of 77.2ppm was identified for Sample BH2-21-SS2. No olfactory indications of potential contamination were identified in the soil samples. Deleterious material identified in the fill material consists of construction debris, coal, brick, concrete and a layer of asphalt in TP7-21. The results of the vapour survey are presented on the Soil Profile and Test Data sheets.

The field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

Report: PE5267-2 Rev

August 10, 2022 Page 4

5.5 Soil Quality

Based on the findings of the field screening in combination with sample depth and location, seven soil samples (including one duplicate) were submitted for analysis of metals (including As, Sb and Se), Hg, MeHg, CrVI, BTEX, PHC (F1-F4) and/or PAHs. The results of the analytical testing are presented in Tables 8 to 12. The laboratory certificate of analysis is provided in Appendix 1.

			MECP Table 3					
Parameter	MDL (µg/g)	May 14, 2021 May 17, 2021					Residential Standards	
		BH1-21- SS5/6	BH2-21- SS4	BH3-21- SS4/5	BH4-21- SS2	DUP ¹	(µg/g)	
Antimony	1.0	2.0	1.5	nd	nd	nd	7.5	
Arsenic	1.0	4.5	7.4	6.2	2.7	5.2	18	
Barium	1.0	<u>584</u>	159	150	106	132	390	
Beryllium	0.5	nd	nd	0.5	nd	0.5	4	
Boron	5.0	19.0	8.8	8.4	5.5	6.8	120	
Cadmium	0.5	nd	8.0	nd	nd	nd	1.2	
Chromium	5.0	22.6	24.1	25.7	16.0	24.2	160	
Chromium (VI)	0.2	nd	nd	nd	nd	nd	8	
Cobalt	1.0	5.2	6.0	5.7	5.4	5.2	22	
Copper	5.0	17.3	43.2	16.3	20.9	15.9	140	
Lead	1.0	61.9	<u>212</u>	72.4	21.8	78.1	120	
Mercury	0.1	0.2	<u>1.3</u>	0.5	nd	<u>0.4</u>	0.27	
Molybdenum	1.0	2.4	1.2	1.2	nd	1.0	6.9	
Nickel	5.0	11.6	14.8	16.3	9.6	15.3	100	
Selenium	1.0	nd	nd	nd	nd	nd	2.4	
Silver	0.3	nd	0.3	nd	nd	nd	20	
Thallium	1.0	nd	nd	nd	nd	nd	1	
Uranium	1.0	nd	nd	nd	nd	nd	23	
Vanadium	10.0	28.7	25.6	31.4	17.7	30.3	86	
Zinc	20.0	261	271	67.4	103	69.3	340	

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- Bold and underlined Results exceed selected MECP standard
- 1 Duplicate of sample BH3-21-SS4/5

			MECP Table 3				
Parameter	MDL (µg/g)		Jı		Residential Standards		
	(49,9)	TP2-21- GS4	TP3-21- GS3	TP4-21- GS2	TP6-21- GS5	DUP4 ²	(µg/g)
Antimony	1.0	nd	2.1	nd	2.0	nd	7.5
Arsenic	1.0	3.2	22.3	3.9	5.0	3.2	18
Barium	1.0	190	181	149	90.9	121	390
Beryllium	0.5	nd	0.7	nd	nd	nd	4
Boron	5.0	8.7	6.9	7.1	9.3	5.5	120
Cadmium	0.5	nd	3.1	nd	nd	nd	1.2
Chromium	5.0	17.6	20.6	15.1	18.6	12.7	160
Chromium (VI)	0.2	nd	nd	nd	nd	nd	8
Cobalt	1.0	4.9	7.4	4.9	5.2	4.3	22
Copper	5.0	11.4	51.5	11.3	25.8	10.5	140
Lead	1.0	11.1	<u>270</u>	17.8	<u>136</u>	17.8	120
Mercury	0.1	nd	<u>1.0</u>	0.1	0.2	0.1	0.27
Molybdenum	1.0	nd	2.3	nd	2.3	nd	6.9
Nickel	5.0	12.4	17.8	10.9	12.8	9.7	100
Selenium	1.0	nd	4.3	nd	nd	nd	2.4
Silver	0.3	nd	nd	nd	nd	nd	20
Thallium	1.0	nd	nd	nd	nd	nd	1
Uranium	1.0	nd	nd	nd	nd	nd	23
Vanadium	10.0	20.1	26.4	22.5	24.3	18.0	86
Zinc	20.0	27.2	<u>1680</u>	48.6	161	47.7	340

- MDL Method Detection Limit
- nd not detected above the MDL
- Bold and underlined Results exceed selected MECP standard
- 2 Duplicate of sample TP4-21-GS2

	MDI	S	MECP Table 3		
Parameter	MDL (µg/g)		Residential Standards		
		TP1-21-GS4	TP7-21-GS6	TP8-21-GS5	(µg/g)
Methyl Mercury	0.000050	nd	0.000176	0.000092	0.0084

Arsenic, barium, cadmium, lead, mercury, selenium and/or zinc concentrations in Samples BH1-21-SS5/6, BH2-21-SS4, BH3-21-SS4/5, TP3-21-GS3 and TP6-21-GS5 exceed the MECP Table 3 Standards. The remaining metal concentrations in the soil samples analysed are in compliance with the selected MECP Table 3 standards. The analytical results for metals tested in soil are shown on Drawing PE5267-4 – Analytical Testing Plan – Soil (Metals).

Report: PE5267-2 Rev

August 10, 2022 Page 6

		Soil Sample (µg/g)	MECP	
Paramatan.	MDL	June 15, 2021	Table 3	
Parameter	(µg/g)	TP1-21-GS3	Residential Standards (µg/g)	
Acetone	0.50	nd	16	
Benzene	0.02	nd	0.21	
Bromodichloromethane	0.05	nd	13	
Bromoform	0.05	nd	0.27	
Bromomethane	0.05	nd	0.05	
Carbon Tetrachloride	0.05	nd	0.05	
Chlorobenzene	0.05	nd	2.4	
Chloroform	0.05	nd	0.05	
Dibromochloromethane	0.05	nd	9.4	
Dichlorodifluoromethane	0.05	nd	16	
1,2-Dichlorobenzene	0.05	nd	3.4	
1,3-Dichlorobenzene	0.05	nd	4.8	
1,4-Dichlorobenzene	0.05	nd	0.083	
1,1-Dichloroethane	0.05	nd	3.5	
1,2-Dichloroethane	0.05	nd	0.05	
1,1-Dichloroethylene	0.05	nd	0.05	
cis-1,2-Dichloroethylene	0.05	nd	3.4	
trans-1,2-Dichloroethylene	0.05	nd	0.084	
1,2-Dichloropropane	0.05	nd	0.05	
1,3-Dichloropropene, total	0.05	nd	0.05	
Ethylbenzene	0.05	nd	2	
Ethylene dibromide (dibromoethane, 1,2-)	0.05	nd	0.05	
Hexane	0.05	nd	2.8	
Methyl Ethyl Ketone (2-Butanone)	0.50	nd	16	
Methyl Isobutyl Ketone	0.50	nd	1.7	
Methyl tert-butyl ether	0.05	nd	0.75	
Methylene Chloride	0.05	nd	0.1	
Styrene	0.05	nd	0.7	
1,1,1,2-Tetrachloroethane	0.05	nd	0.058	
1,1,2,2-Tetrachloroethane	0.05	nd	0.05	
Tetrachloroethylene	0.05	nd	0.28	
Toluene	0.05	nd	2.3	
1,1,1-Trichloroethane	0.05	nd	0.38	
1,1,2-Trichloroethane	0.05	nd	0.05	
Trichloroethylene	0.05	nd	0.061	
Trichlorofluoromethane	0.05	nd	4	
Vinyl Chloride	0.02	nd	0.02	
Xylenes, total Notes:	0.05	nd	3.1	

Report: PE5267-2 Rev

nd - not detected above the MDL

August 10, 2022 Page 7

No VOC parameters were detected in the soil sample analyzed. The results are in compliance with the selected MECP Table 3 standards. The analytical results for VOCs tested in soil are shown on Drawing PE5267-5 – Analytical Testing Plan – Soil (VOCs and BTEX).

	Soil Samples (µg/g)							
	MDL	May 14, 2021	May 17, 2021	June 15, 2021	Table 3			
Parameter	(µg/g)	BH1-21-SS3	BH3-21-SS2	TP2-21-GS4	Residential Standards (µg/g)			
Benzene	0.02	nd	nd	nd	0.21			
Toluene	0.05	nd	nd	nd	2			
Ethylbenzene	0.05	nd	nd	nd	2.3			
Xylenes	0.05	nd	nd	nd	3.1			

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL

No BTEX parameters were detected in the soil samples analyzed. The results are in compliance with the selected MECP Table 3 standards. The analytical results for BTEX tested in soil are shown on Drawing PE5267-5 – Analytical Testing Plan – Soil (VOCs and BTEX).

	TABLE 12 - Analytical Test Results – Soil PHCs F ₁ -F ₄								
Parameter	MDL (ug/g)	May 14, 2021	May 17, 2021	June 1	5, 2021	MECP Table 3 Residential Standards (μg/g)			
	(µg/g)	BH1-21- SS3	BH3-21- SS2	TP1-21- GS3	TP2-21- GS4				
PHC F₁	7	nd	nd	nd	nd	55			
PHC F ₂	4	nd	7	5	5	98			
PHC F ₃	8	43	53	<u>386</u>	24	300			
PHC F ₄	6	29	37	134	15	2800			

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
 - Bold and underlined Results exceed selected MECP standard

The PHC F₃ concentrations in sample TP1-21-GS3 exceeds the MECP Table 3 Standard. The remaining PHC concentrations in the soil samples analysed are in compliance with the selected MECP Table 3 standards. The analytical results for PHCs tested in soil are shown on Drawing PE5267-6 – Analytical Testing Plan – Soil (PHCs).

TABLE 13 - Analytical Test Results – Soil PAHs							
			Soil				
Parameter	MDL (µg/g)	May 14, 2021		May 17			MECP Table 3 Residential Standards
	(49,87	BH1- 21- SS5/6	BH2- 21- SS4	BH3- 21- SS4/5	BH4- 21- SS2	DUP ¹	(µg/g)
Acenaphthene	0.02	0.27	nd	nd	nd	0.03	7.9
Acenaphthylene	0.02	0.23	0.15	0.02	0.14	0.04	0.15
Anthracene	0.02	<u>0.75</u>	0.11	0.04	0.09	0.09	0.67
Benzo[a]anthracene	0.02	<u>1.50</u>	0.24	0.12	0.18	0.21	0.5
Benzo[a]pyrene	0.02	<u>1.38</u>	<u>0.35</u>	0.15	0.23	0.20	0.3
Benzo[b]fluoranthene	0.02	<u>1.29</u>	0.31	0.16	0.26	0.24	0.78
Benzo[g,h,i]perylene	0.02	0.70	0.25	0.09	0.19	0.12	6.6
Benzo[k]fluoranthene	0.02	0.75	0.16	0.09	0.11	0.12	0.78
Chrysene	0.02	1.44	0.22	0.16	0.18	0.19	7
Dibenzo[a,h]anthracene	0.02	<u>0.11</u>	0.06	nd	0.04	0.03	0.1
Fluoranthene	0.02	2.89	0.39	0.24	0.24	0.44	0.69
Fluorene	0.02	0.26	nd	nd	nd	0.03	62
Indeno[1,2,3-cd]pyrene	0.02	0.66	0.22	0.08	0.15	0.11	0.38
1-Methylnaphthalene	0.02	0.13	nd	nd	0.12	nd	0.99
2-Methylnaphthalene	0.02	0.13	0.03	nd	0.17	0.03	0.99
Methylnaphthalene (1&2)	0.04	0.29	nd	nd	0.29	0.05	0.99
Naphthalene	0.01	0.21	0.04	0.02	0.11	0.03	0.6
Phenanthrene	0.02	2.78	0.23	0.17	0.13	0.35	6.2
Pyrene	0.02	2.32	0.36	0.21	0.22	0.38	78

- MDL Method Detection Limit
- $\mbox{nd}-\mbox{not}$ detected above the MDL
- <u>Bold and underlined Results exceed selected MECP standard 1 Duplicate of sample BH3-21-SS4/5</u>

			Soil S	MECP Table 3 Residential			
	MDL		Ju				
Parameter	(µg/g)	TP2- 21- GS4	TP3- 21- GS3	TP5- 21- GS2	TP6- 21- GS5	DUP3 ¹	Standards (µg/g)
Acenaphthene	0.02	nd	<u>15.5</u>	1.42	nd	11.0	7.9
Acenaphthylene	0.02	nd	1.43	<u>1.01</u>	0.45	<u>1.31</u>	0.15
Anthracene	0.02	nd	34.0	2.40	0.59	32.9	0.67
Benzo[a]anthracene	0.02	nd	50.9	6.74	<u>1.11</u>	43.6	0.5
Benzo[a]pyrene	0.02	nd	48.5	7.22	1.25	38.9	0.3
Benzo[b]fluoranthene	0.02	nd	43.0	7.37	1.29	35.9	0.78
Benzo[g,h,i]perylene	0.02	nd	23.3	3.95	0.81	18.5	6.6
Benzo[k]fluoranthene	0.02	nd	23.6	4.47	0.59	19.2	0.78
Chrysene	0.02	nd	52.4	7.59	1.41	44.0	7
Dibenzo[a,h]anthracene	0.02	nd	6.01	1.07	nd	5.30	0.1
Fluoranthene	0.02	nd	123	18.7	2.49	105	0.69
Fluorene	0.02	nd	12.8	1.23	nd	15.7	62
Indeno[1,2,3-cd]pyrene	0.02	nd	21.1	3.61	0.67	17.0	0.38

Report: PE5267-2 Rev

August 10, 2022

TABLE 13 Continued - Analytical Test Results – Soil PAHs							
1-Methylnaphthalene	0.02	nd	<u>3.91</u>	<u>1.96</u>	nd	3.72	0.99
2-Methylnaphthalene	0.02	nd	<u>5.39</u>	2.43	nd	5.42	0.99
Methylnaphthalene (1&2)	0.04	nd	9.30	4.39	nd	<u>9.15</u>	0.99
Naphthalene	0.01	nd	9.72	<u>3.10</u>	0.36	<u>10.1</u>	0.6
Phenanthrene	0.02	nd	<u>123</u>	<u>15.7</u>	2.18	<u>115</u>	6.2
Pyrene	0.02	nd	97.6	15.2	2.07	78.9	78

- MDL Method Detection Limit
- nd not detected above the MDL
- Bold and underlined Results exceed selected MECP standard
- 1 Duplicate of sample TP3-21-GS3

Various PAH parameter concentrations in Samples BH1-21-SS5/6, BH2-21-SS4, TP23-21-GS3, TP5-21-GS2 and TP6-21-GS5 exceed the MECP Table 3 Standards. The remaining PAH concentrations in the soil samples analysed are in compliance with the selected MECP Table 3 standards. The analytical results for PAHs tested in soil are shown on Drawing PE5267-7 – Analytical Testing Plan – Soil (PAHs).

The maximum concentrations of analyzed parameters in the soil at the Phase II Property are summarized in Table 14.

TABLE 14 - Maximum Co	TABLE 14 - Maximum Concentrations - Soil								
Parameter	Maximum Concentration (µg/g)	Sample ID	Depth Interval (m BGS)						
Antimony	2.1	TP3-21-GS3	0.5-0.7; Fill Material						
Arsenic	22.3	TP3-21-GS3	0.5-0.7; Fill Material						
Barium	<u>584</u>	BH1-21-SS5/6	3.05 - 4.42; Fill Material						
Beryllium	0.7	TP3-21-GS3	0.5-0.7; Fill Material						
Boron	19.0	BH1-21-SS5/6	3.05 - 4.42; Fill Material						
Cadmium	3.1	TP3-21-GS3	0.5-0.7; Fill Material						
Chromium	25.7	BH3-21-SS4/5	2.29 - 3.66; Fill Material						
Cobalt	7.4	TP3-21-GS3	0.5-0.7; Fill Material						
Copper	51.5	TP3-21-GS3	0.5-0.7; Fill Material						
Lead	270	TP3-21-GS3	0.5-0.7; Fill Material						
Mercury	1.3	BH2-21-SS4	2.29 - 2.62; Fill Material						
Molybdenum	2.4	BH1-21-SS5/6	3.05 - 4.42; Fill Material						
Nickel	17.8	TP3-21-GS3	0.5-0.7; Fill Material						
Selenium	4.3	TP3-21-GS3	0.5-0.7; Fill Material						
Silver	0.3	BH2-21-SS4	2.29 - 2.62; Fill Material						
Vanadium	31.4	BH3-21-SS4/5	2.29 - 3.66; Fill Material						
Zinc	<u>1680</u>	TP3-21-GS3	0.5-0.7; Fill Material						
PHC F ₂	7	BH3-21-SS2	0.76 - 1.37; Fill Material						
PHC F ₃	386	TP1-21-GS3	1.7-1.9; Fill Material						
PHC F ₄	134	TP1-21-GS3	1.7-1.9; Fill Material						
Acenaphthene	15.5	TP3-21-GS3	0.5-0.7; Fill Material						
Acenaphthylene	1.43	TP3-21-GS3	0.5-0.7; Fill Material						
Anthracene	34.0	TP3-21-GS3	0.5-0.7; Fill Material						

Report: PE5267-2 Rev

August 10, 2022 Page 10

TABLE 14 - Maximum Co	TABLE 14 - Maximum Concentrations - Soil								
Benzo[a]anthracene	50.9	TP3-21-GS3	0.5-0.7; Fill Material						
Benzo[a]pyrene	48.5	TP3-21-GS3	0.5-0.7; Fill Material						
Benzo[b]fluoranthene	43.0	TP3-21-GS3	0.5-0.7; Fill Material						
Benzo[g,h,i]perylene	23.3	TP3-21-GS3	0.5-0.7; Fill Material						
Benzo[k]fluoranthene	23.6	TP3-21-GS3	0.5-0.7; Fill Material						
Chrysene	52.4	TP3-21-GS3	0.5-0.7; Fill Material						
Dibenzo[a,h]anthracene	6.01	TP3-21-GS3	0.5-0.7; Fill Material						
Fluoranthene	123	TP3-21-GS3	0.5-0.7; Fill Material						
Fluorene	15.7	DUP3 (TP3-21-GS3)	0.5-0.7; Fill Material						
Indeno[1,2,3-cd]pyrene	21.1	TP3-21-GS3	0.5-0.7; Fill Material						
1-Methylnaphthalene	3.91	TP3-21-GS3	0.5-0.7; Fill Material						
2-Methylnaphthalene	5.42	DUP3 (TP3-21-GS3)	0.5-0.7; Fill Material						
Methylnaphthalene (1&2)	9.30	TP3-21-GS3	0.5-0.7; Fill Material						
Naphthalene	10.1	DUP3 (TP3-21-GS3)	0.5-0.7; Fill Material						
Phenanthrene	123	TP3-21-GS3	0.5-0.7; Fill Material						
Pyrene	97.6	TP3-21-GS3	0.5-0.7; Fill Material						

All remaining parameter results were non-detect. The laboratory Certificates of Analysis are provided in Appendix 1.

5.6 Groundwater Quality

Groundwater samples (including two duplicates) from monitoring wells installed in BH1 through BH4 were submitted for laboratory analysis of metals (including Hg and CrVI), BTEX, PHC (F1-F4) and/or PAHs. The groundwater samples were obtained from the screened intervals noted in Table 3.

The results of the analytical testing are presented in Tables 15 to 18. The laboratory certificates of analysis are provided in Appendix 1.

TABLE 15 - Analytical Test Results – Groundwater Metals									
	MDI	G	g)	MECP Table 3					
Parameter	MDL		May 2	5, 2021		Residential			
	(µg/g)	MW1-21- GW1	MW2-21- GW1			Standards (μg/g)			
Antimony	0.5	nd	nd	nd	nd	20,000			
Arsenic	1	nd	nd	nd	nd	1,900			
Barium	1	40	629	65	701	29,000			
Beryllium	0.5	nd	nd	nd	nd	67			
Boron	10	137	74	39	87	45,000			
Cadmium	0.1	nd	nd	nd	nd	2.7			
Chromium	1	nd	nd	nd	nd	810			
Chromium (VI)	10	nd	nd	nd	nd	140			
Cobalt	0.5	1.2	1.2	0.6	nd	66			
Copper	0.5	3.3	4.9	3.5	4.8	87			
Lead	0.1	nd	nd	nd	0.1	25			
Mercury	0.1	nd	nd	nd	nd	0.29			
Molybdenum	0.5	4.1	2.9	0.9	3.2	9,200			
Nickel	1	8	4	7	4	490			
Selenium	1	6	nd	2	nd	63			
Silver	0.1	nd	nd	nd	nd	1.5			
Sodium	200	455,000	228,000	289,000	237,000	2,300,000			
Thallium	0.1	nd	0.1	nd	0.2	510			
Uranium	0.1	2.8	3.8	4.7	4.1	420			
Vanadium	0.5	nd	0.5	nd	0.6	250			
Zinc	5	10	17	9	9	1,100			

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- 1 Duplicate of sample MW2-21-GW1

All detected metal concentrations in the groundwater samples analysed are in compliance with the selected MECP Table 3 standards. The analytical results for groundwater tested are shown on Drawing PE5267-8 – Analytical Testing Plan – Groundwater.

TABLE 16 - Analytical Test Results – Groundwater BTEX									
		Groundwater Sample (μg/L)	MECP						
Parameter	MDL	May 25, 2021	Table 3						
Farameter	(µg/L)	MW3-21-GW1	Standards (µg/L)						
Benzene	0.5	nd	44						
Toluene	0.5	nd	18,000						
Ethylbenzene	0.5	nd	2,300						
Xylenes	0.5	nd	4,200						
Notes:									

No detectable BTEX concentrations were identified in the groundwater sample analysed. As such, the results are in compliance with the selected MECP Table 3 standards. The analytical results for groundwater tested are shown on Drawing PE5267-8 – Analytical Testing Plan – Groundwater.

Parameter	MDL	Groundwater Sample (μg/L)	MECP	
	(µg/L)	May 25, 2021	Table 3	
		MW3-21-GW1	Standards (µg/L)	
PHC F₁	25	nd	750	
PHC F ₂	100	nd	150	
PHC F₃	100	nd	500	
PHC F ₄	100	nd	500	

No detectable PHC concentrations were identified in the groundwater sample analysed; the results comply with the MECP Table 3 standards. The analytical results for groundwater tested are shown on Drawing PE5267-8 – Analytical Testing Plan – Groundwater.

TABLE 18 - Analytical Test Results – Groundwater PAHs								
		G	roundwater	- MECP Table 3				
Parameter	MDL		May 2			Residential		
Farameter	(µg/g)	MW1- 21- GW1	MW2-21- GW1	MW4-21- GW1	DUP1 ¹	Standards (µg/g)		
Acenaphthene	0.05	nd	nd	nd	nd	600		
Acenaphthylene	0.05	nd	nd	nd	nd	1.8		
Anthracene	0.01	nd	nd	nd	nd	2.4		
Benzo[a]anthracene	0.01	nd	nd	nd	nd	4.7		
Benzo[a]pyrene	0.01	nd	nd	nd	nd	0.81		

Report: PE5267-2 Rev August 10, 2022

TABLE 18 - Analytical Test Results – Groundwater									
PAHs									
Benzo[b]fluoranthene	0.05	nd	nd	nd	nd	0.75			
Benzo[g,h,i]perylene	0.05	nd	nd	nd	nd	0.2			
Benzo[k]fluoranthene	0.05	nd	nd	nd	nd	0.4			
Chrysene	0.05	nd	nd	nd	nd	1			
Dibenzo[a,h]anthracene	0.05	nd	nd	nd	nd	0.52			
Fluoranthene	0.01	0.04	nd	nd	nd	130			
Fluorene	0.05	nd	nd	nd	nd	400			
Indeno[1,2,3-cd]pyrene	0.05	nd	nd	nd	nd	0.2			
Methylnapthalene (1&2)	0.10	nd	nd	nd	nd	1,800			
Naphthalene	0.05	0.34	nd	nd	nd	1,400			
Phenanthrene	0.05	0.08	nd	nd	nd	580			
Pyrene	0.01	0.04	nd	nd	nd	68			

- MDL Method Detection Limit
- nd not detected above the MDL
- 1 Duplicate of sample MW4-21-GW1

Several PAH parameters were identified in Sample MW1-21-GW1 at concentrations below the MECP Table 3 standards. Otherwise, no PAH parameters were detected in the groundwater samples analysed. The analytical results for groundwater tested are shown on Drawing PE5267-8 – Analytical Testing Plan – Groundwater.

5.7 Quality Assurance and Quality Control Results

All samples submitted as part of the Phase II ESA were handled in accordance with the Analytical Protocol with respect to preservation method, storage requirement, and container type. As per Subsection 47(3) of O.Reg. 153/04, as amended under the Environmental Protection Act, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

Duplicate soil and groundwater samples from BH1-21-SS5, MW2-21-GW1 and MW4-21-GW1 were submitted for laboratory analysis of metals (including Hg and CrVI), BTEX, PHCs (F1-F4) and/or PAHs.

The duplicates were collected with the intent of calculating the relative percent difference (RPD) between duplicate sample values, as a way of assessing the quality of the analytical test results. Several parameter concentrations were not detected in either or both the original sample and duplicate. The RPD values are therefore considered to be 0% and therefore meet the 20% target.

The RPD calculations for the original soil and duplicate sample are provided in Tables 19 to 20.

Table 19 - QA/QC	Calcula	tions – S			
Parameter	MDL (µg/L)	BH3-21- SS4/5	DUP (BH3-21- SS4/5)	RPD (%)	QA/QC Result
Antimony	1.0	nd	nd	0	Meets Target
Arsenic	1.0	6.2	5.2	17.5	Meets Target
Barium	1.0	150	132	12.8	Meets Target
Beryllium	0.5	0.5	0.5	0	Meets Target
Boron	5.0	8.4	6.8	21.0	Does Not Meet Target
Cadmium	0.5	nd	nd	0	Meets Target
Chromium	5.0	25.7	24.2	6.0	Meets Target
Chromium (VI)	0.2	nd	nd	0	Meets Target
Cobalt	1.0	5.7	5.2	9.2	Meets Target
Copper	5.0	16.3	15.9	2.5	Meets Target
Lead	1.0	72.4	78.1	7.6	Meets Target
Mercury	0.1	<u>0.5</u>	0.4	22.2	Does Not Meet Target
Molybdenum	1.0	1.2	1.0	18.2	Meets Target
Nickel	5.0	16.3	15.3	6.3	Meets Target
Selenium	1.0	nd	nd	0	Meets Target
Silver	0.3	nd	nd	0	Meets Target
Thallium	1.0	nd	nd	0	Meets Target
Uranium	1.0	nd	nd	0	Meets Target
Vanadium	10.0	31.4	30.3	3.6	Meets Target
Zinc	20.0	67.4	69.3	2.8	Meets Target
Acenaphthene	0.02	nd	0.03	40	Does Not Meet Target
Acenaphthylene	0.02	0.02	0.04	66.7	Does Not Meet Target
Anthracene	0.02	0.04	0.09	76.9	Does Not Meet Target
Benzo[a]anthracene	0.02	0.12	0.21	54.5	Does Not Meet Target
Benzo[a]pyrene	0.02	0.15	0.20	28.6	Does Not Meet Target
Benzo[b]fluoranthene	0.02	0.16	0.24	40	Does Not Meet Target
Benzo[g,h,i]perylene	0.02	0.09	0.12	28.6	Does Not Meet Target
Benzo[k]fluoranthene	0.02	0.09	0.12	28.6	Does Not Meet Target
Chrysene	0.02	0.16	0.19	17.7	Meets Target
Dibenzo[a,h]anthracene	0.02	nd	0.03	40	Does Not Meet Target
Fluoranthene	0.02	0.24	0.44	58.8	Does Not Meet Target
Fluorene	0.02	nd	0.03	0	Meets Target
Indeno[1,2,3-cd]pyrene	0.02	0.08	0.11	31.6	Does Not Meet Target
1-Methylnaphthalene	0.02	nd	nd	0	Meets Target
2-Methylnaphthalene	0.02	nd	0.03	0	Meets Target
Methylnaphthalene(1&2)	0.04	nd	0.05	0	Meets Target
Naphthalene	0.01	0.02	0.03	40	Does Not Meet Target
Phenanthrene	0.02	0.17	0.35	69.2	Does Not Meet Target
Pyrene	0.02	0.21	0.38	57.6	Does Not Meet Target

- □ MDL Method Detection Limit
- □ nd not detected above the MDL
- Bold and underlined Results exceed selected MECP standard

Table 19 Continued - QA/QC Calculations - Soil								
Parameter	MDL (µg/L)	TP3-21- GS3	DUP3 (TP3-21- GS3)	RPD (%)	QA/QC Result			
Acenaphthene	0.02	<u>15.5</u>	<u>11.0</u>	40.0	Does Not Meet Target			
Acenaphthylene	0.02	<u>1.43</u>	<u>1.31</u>	8.8	Meets Target			
Anthracene	0.02	<u>34.0</u>	<u>32.9</u>	3.3	Meets Target			
Benzo[a]anthracene	0.02	<u>50.9</u>	<u>43.6</u>	15.4	Meets Target			
Benzo[a]pyrene	0.02	<u>48.5</u>	<u>38.9</u>	22.0	Does Not Meet Target			
Benzo[b]fluoranthene	0.02	<u>43.0</u>	<u>35.9</u>	18.0	Does Not Meet Target			
Benzo[g,h,i]perylene	0.02	<u>23.3</u>	<u>18.5</u>	23.0	Meets Target			
Benzo[k]fluoranthene	0.02	<u>23.6</u>	<u>19.2</u>	20.6	Meets Target			
Chrysene	0.02	<u>52.4</u>	44.0	17.4	Meets Target			
Dibenzo[a,h]anthracene	0.02	<u>6.01</u>	<u>5.30</u>	12.6	Meets Target			
Fluoranthene	0.02	<u>123</u>	<u>105</u>	15.8	Meets Target			
Fluorene	0.02	12.8	15.7	20.4	Meets Target			
Indeno[1,2,3-cd]pyrene	0.02	<u>21.1</u>	<u>17.0</u>	21.5	Does Not Meet Target			
1-Methylnaphthalene	0.02	<u>3.91</u>	3.72	5.0	Meets Target			
2-Methylnaphthalene	0.02	<u>5.39</u>	<u>5.42</u>	0.6	Meets Target			
Methylnaphthalene(1&2)	0.04	9.30	<u>9.15</u>	1.6	Meets Target			
Naphthalene	0.01	9.72	<u>10.1</u>	3.8	Meets Target			
Phenanthrene	0.02	<u>123</u>	<u>115</u>	6.7	Meets Target			
Pyrene	0.02	<u>97.6</u>	<u>78.9</u>	21.2	Does Not Meet Target			

- □ MDL Method Detection Limit
 - nd not detected above the MDL
- □ Bold and underlined Results exceed selected MECP standard

Table 19 Continued - QA/QC Calculations - Soil								
Parameter	MDL (µg/L)	TP4-21- GS2	DUP4 (TP4-21- GS2)	RPD (%)	QA/QC Result			
Antimony	1.0	nd	nd	0	Meets Target			
Arsenic	1.0	3.9	3.2	19.7	Meets Target			
Barium	1.0	149	121	20.7	Does Not Meet Target			
Beryllium	0.5	nd	nd	0	Meets Target			
Boron	5.0	7.1	5.5	25.4	Does Not Meet Target			
Cadmium	0.5	nd	nd	0	Meets Target			
Chromium	5.0	15.1	12.7	17.3	Meets Target			
Chromium (VI)	0.2	nd	nd	0	Meets Target			
Cobalt	1.0	4.9	4.3	13.0	Meets Target			
Copper	5.0	11.3	10.5	7.3	Meets Target			
Lead	1.0	17.8	17.8	0	Meets Target			
Mercury	0.1	0.1	0.1	0	Meets Target			
Molybdenum	1.0	nd	nd	0	Meets Target			
Nickel	5.0	10.9	9.7	11.7	Meets Target			
Selenium	1.0	nd	nd	0	Meets Target			
Silver	0.3	nd	nd	0	Meets Target			
Thallium	1.0	nd	nd	0	Meets Target			
Uranium	1.0	nd	nd	0	Meets Target			
Vanadium	10.0	22.5	18.0	22.2	Does Not Meet Target			

Report: PE5267-2 Rev

August 10, 2022

Table 19 Continued - QA/QC Calculations - Soil								
Parameter	MDL (µg/L)	4 :1- RPD (%) QA/QC Result						
Zinc	20.0	48.6	47.7	1.9	Meets Target			
Notes:	Notaction I	imit						

- MDL Method Detection Limit
- □ nd not detected above the MDL
- ☐ Bold and underlined Results exceed selected MECP standard

Table 20 - QA/QC Calculations – Groundwater								
MW2-21-GW1								
Parameter	MDL (µg/L)	MW2-21- GW1	DUP2 (MW2- 21-GW1)	RPD (%)	QA/QC Result			
Antimony	0.5	nd	nd	0	Meets Target			
Arsenic	1	nd	nd	0	Meets Target			
Barium	1	629	701	10.8	Meets Target			
Beryllium	0.5	nd	nd	0	Meets Target			
Boron	10	74	87	16.1	Meets Target			
Cadmium	0.1	nd	nd	0	Meets Target			
Chromium	1	nd	nd	0	Meets Target			
Chromium (VI)	10	nd	nd	0	Meets Target			
Cobalt	0.5	1.2	nd	0	Meets Target			
Copper	0.5	4.9	4.8	2.06	Meets Target			
Lead	0.1	nd	0.1	0	Meets Target			
Mercury	0.1	nd	nd	0	Meets Target			
Molybdenum	0.5	2.9	3.2	9.8	Meets Target			
Nickel	1	4	4	0	Meets Target			
Selenium	1	nd	nd	0	Meets Target			
Silver	0.1	nd	nd	0	Meets Target			
Sodium	200	228,000	237,000	3.9	Meets Target			
Thallium	0.1	0.1	0.2	66.7	Does Not Meet Target			
Uranium	0.1	3.8	4.1	7.6	Meets Target			
Vanadium	0.5	0.5	0.6	18.2	Meets Target			
Zinc	5	17	9	61.5	Does Not Meet Target			

- □ MDL Method Detection Limit
- □ nd not detected above the MDL

Table 20 Continued - QA/QC Calculations - Groundwater								
Parameter	MDL (µg/L)	MW4-21- GW1	DUP1 (MW4-21- GW1)	RPD (%)	QA/QC Result			
Acenaphthene	0.05	nd	nd	0	Meets Target			
Acenaphthylene	0.05	nd	nd	0	Meets Target			
Anthracene	0.01	nd	nd	0	Meets Target			
Benzo[a]anthracene	0.01	nd	nd	0	Meets Target			
Benzo[a]pyrene	0.01	nd	nd	0	Meets Target			
Benzo[b]fluoranthene	0.05	nd	nd	0	Meets Target			
Benzo[g,h,i]perylene	0.05	nd	nd	0	Meets Target			

Report: PE5267-2 Rev

August 10, 2022

Table 20 Continued - QA/QC Calculations - Groundwater					
Benzo[k]fluoranthene	0.05	nd	nd	0	Meets Target
Chrysene	0.05	nd	nd	0	Meets Target
Dibenzo[a,h]anthracene	0.05	nd	nd	0	Meets Target
Fluoranthene	0.01	nd	nd	0	Meets Target
Fluorene	0.05	nd	nd	0	Meets Target
Indeno[1,2,3-cd]pyrene	0.05	nd	nd	0	Meets Target
Methylnaphthalene(1&2)	0.10	nd	nd	0	Meets Target
Naphthalene	0.05	nd	nd	0	Meets Target
Phenanthrene	0.05	nd	nd	0	Meets Target
Pyrene	0.01	nd	nd	0	Meets Target

- MDL Method Detection Limit
- □ nd not detected above the MDL

Typically, RPD values below 20% are considered to be of satisfactory quality. The relative percent difference (RPD) results calculated for several soil parameters fell outside of the acceptable range of 20%. It is not uncommon that very small concentrations or values will yield higher RPD values, and as such, the RPD value is not an accurate measure in these cases.

Despite the exceeded RPD values calculated for samples BH3-21-SS4/5, TP3-21-GS3, TP4-21-GS2 and MW2-21-GW1 between the original and duplicate samples, it should be noted that the individual metal and PAH parameters detected appear to be consistent between the two samples. Furthermore, the concentration of the majority of the detected metal and PAH parameters were well within the selected MECP Table 3 standards in both samples by a large margin (except for Mercury which was in excess of the standard). As a result, it is our opinion that the decision-making usefulness of the samples is not considered to be impaired, and thus the quality of the field data collected during this remediation is considered to be sufficient to meet the overall objectives of this assessment.

5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O.Reg. 153/04, as amended by the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Potentially Contaminating Activity and Areas of Potential Environmental Concern

Based on the results of the Phase I ESA completed for the subject property, 51 PCAs were identified, nine of which represent APECs on the Phase II Property. The APECs on the Phase II Property are as follows:

IIIC /	ir LOS on the Fhase if Froperty are as follows.
	APEC 1: Resulting from the historical presence of an on-site warehouse/workshop (PCA #N/A);
	APEC 2: Resulting from the historical presence of an on-site coal storage (PCA #N/A).
	APEC 3: Resulting from the historical presence of an on-site coal storage (PCA #N/A).
	APEC 4: Resulting from the historical presence of an on-site garage (PCA #52).
	APEC 5: Resulting from the use of de-icing salt associated with on-site and adjacent roadways (PCA #N/A).
	APEC 6: Resulting from the historical presence of an on-site railway spur line (PCA #46).
	APEC 7: Resulting from the presence of fill material of unknown quality (PCA #30).
	APEC 8: Resulting from the historical presence of an off-site rail yard and rail lines (PCA #46).
	APEC 9: Resulting from the historical presence of an off-site coal storage (PCA #N/A).

Contaminants of Potential Concern

The	following CPCs are identified with respect to the Phase II Property:			
	Metals (including Arsenic (As,), Antimony (Sb) and Selenium);			
	Mercury (Hg);			
	Hexavalent Chromium;			
	Volatile Organic Compounds (VOCs);			
	Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX);			
	Petroleum Hydrocarbons, fractions 1 - 4 (PHCs F ₁ -F ₄); and			
	Polycyclic Aromatic Hydrocarbons (PAHs).			
Sub	surface Structures and Utilities			
subj	nall basement crawl space is present beneath the northwestern portion of the ect building. Multiple underground utilities were identified on the Phase I perty including electrical, gas, water, sewer and telecommunication lines.			
expe trend wate Phas Tabl surfa	ed on standard practice for subsurface utility installation, service trenches are ected to be present approximately 1 to 2 m below existing grade. In general, ch backfill may provide a preferential pathway for contaminant transport if the er table is at or above the base of the trenches. Based on the findings of the se II ESA, groundwater on the Phase II Property complies with the MECP e 3 standards and is located within the bedrock, 5.6 to 9.0 m below ground ace. Therefore subsurface structures and utilities are not expected to have the potential to impact contaminant distribution.			
Phy	sical Setting			
Site	Stratigraphy			
The	stratigraphy of the Phase II Property generally consists of:			
	Topsoil, encountered at depths ranging from approximately 0.00 to 5.00 m below ground surface			
	Fill material, consisting of brown silty sand with crushed stone, trace concrete, brick and clay; encountered at depths ranging from			

Report: PE5267-2 Rev

August 10, 2022 Page 20

approximately 0.00 to 5.00 m below ground surface

approximately 4.27 to 5.18 m below ground surface;
Glacial till, consisting of brown to grey silty clay with sand, gravel, cobbles and boulders; encountered in BH3-21 from approximately 5.18 to 7.01 m below ground surface;
Limestone bedrock, encountered at depths ranging from approximately 2.62 to 7.01 m below ground surface

Very stiff to stiff brown silty clay encountered in BH3-21 from

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is provided in the Soil Profile and Test Data Sheets in Appendix 1.

Hydrogeological Characteristics

Groundwater at the Phase II Property was encountered within the bedrock or the overburden in BH3-21. During the most recent groundwater monitoring event, groundwater flow was measured in a northwestern direction, with a hydraulic gradient of 0.06 m/m. Groundwater contours are shown on Drawing PE5267-3 – Groundwater Contour Plan.

Approximate Depth to Bedrock

Bedrock was confirmed within all four boreholes at depths ranging from approximately 2.62 to 7.01 m below ground surface, as determined by rock coring activities conducted in three of the boreholes at the time of the drilling program.

Approximate Depth to Water Table

The depth to the water table at the subject site varies between approximately 5.60 to 9.00 m below existing grade.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation does not apply to the Phase II Property, in that the subject property is not within 30m of an environmentally sensitive area, and the pH of surface soil is between 5 and 9.

Section 43.1 of the Regulation does not apply to the subject site as bedrock is not located less than 2 m below ground surface.

Fill Placement

Fill material, consisting of brown silty sand with crushed stone, trace concrete, brick and clay was identified throughout the entire Phase II Property.

Existing Buildings and Structures

The Phase II Property is currently occupied by a vacant commercial building located on the southeastern portion of the subject land. The subject building was constructed as early as 1878.

Proposed Buildings and Other Structures

The proposed site development for the Phase II Property will consist of a residential high rise building with two underground parking levels. Associated access lanes, walkways and hardscaped areas are also anticipated as part of the development. It is expected that the proposed buildings will be municipally serviced.

Areas of Natural Scientific Interest and Water Bodies

There are no areas of natural and scientific interest or waterbodies on the Phase II Property or within the 250 m study area.

Environmental Condition

Areas Where Contaminants are Present

Based on the findings of this Phase II ESA, soil (fill material) impacted with metal parameters, arsenic and selenium, mercury, PAH parameters and/or PHC (F₃) concentrations exceeding the MECP Table 3 standards, was present on the northern, central and southwestern portions of the Phase II Property. Based on the non-homogenous nature of the fill material, it is expected that impacted soil is present in pockets across the across the entire Phase II Property.

Groundwater beneath the Phase II Property was determined to comply with the MECP Table 3 standards.

Types of Contaminants

Based on the findings of this Phase II ESA, soil contaminants at the Phase II Property include the following:

Metals (barium, cadmium, lead and zinc);

Arsenic and selenium;				
Mercury;				
PHCs (F ₃); and				
PAHs (acenapthene, benzo[a]pyrene, benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, pyrene)	benzo[b]fluorant	thene, nzo[a,h]anthra	benzo[g ncene, f	,h,i]perylene, fluoranthene,

The groundwater at the Phase II Property complies with the MECP Table 3 standards.

Contaminated Media

The soil (fill material) across the Phase II Property is impacted with parameter concentrations exceeding the MECP Table 3 standards.

Groundwater beneath the Phase II Property complies with the MECP Table 3 standards.

What Is Known About Areas Where Contaminants Are Present

Based on the findings of this Phase II ESA, impacted soil was identified at test holes BH1-21, BH2-21, BH3-21, TP1-21-GS3, TP3-21-GS3, TP5-21-GS2 and TP6-21-GS5. Based on the nature of the fill material, pockets of metal (including As, Sb, Se), mercury, PHC and/or PAH impacts are anticipated to be present across the Phase II Property.

The impacted soil identified on the Phase II Property is interpreted to be associated with the historical uses of the Phase II Property in combination with the historical importation of poor-quality fill material.

Distribution and Migration of Contaminants

A layer of impacted fill material was identified throughout the subject site. This layer was observed to range from approximately 2.62 to 5.00 m thick. Based on the observations made during the field program, in conjunction with analytical test results, it is expected that the majority of the fill material is impacted with metals and/or PAHs.

Based on the findings of the Phase II ESA, groundwater beneath the site was in compliance with the MECP Table 3 standards. Given the clean groundwater

results in combination with the low solubility of metal, mercury and PAH parameters, no significant distribution or migration of contaminants is considered to have occurred on the Phase II Property.

Discharge of Contaminants

The metals and PAH impacted fill material identified on the Phase II Property, is considered to be the result of the historical uses of the property as a coal storage yard/area, on site railway spur line and road way or from the importation of fill material of a poor quality.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

Based on the results of the Phase II ESA, downward leaching may have affected contaminant distribution at the Phase II Property. However, given the low solubility of metal and PAH parameters, no significant distribution or migration of contaminants is considered to have occurred.

Site groundwater was in compliance with the MECP Table 3 standards; as such, migration of contaminants via groundwater levels and/or flow is not considered to have occurred on the Phase II Property.

Potential for Vapour Intrusion

Given the non-volatile nature of the impacts identified in the soil, the potential for vapour intrusion into the current site building is considered to be low.

As part of the site redevelopment for the proposed building, all impacted soil on the RSC Property will be excavated and disposed off-site. Given the groundwater beneath the site is clean, once the impacted soil is removed, there will be no anticipated potential for vapour intrusion into future subsurface structures and utilities at the Phase II Property.

6.0 CONCLUSIONS

Assessment

A Phase II ESA was conducted for the northeast portion of the property addressed 70 Nicholas Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II Property.

The Phase II ESA was carried out in conjunction with a geotechnical investigation and consisted of the placement of four boreholes and nine test pits. All boreholes were constructed with groundwater monitoring wells. The general soil profile encountered during the field program consisted of a silty sand fill layer, over a layer of clay followed by glacial till (on the southwest corner of the site only), followed by limestone bedrock. No unusual staining or odour was noted at the time of the field program. Deleterious material identified in the fill material consists of construction debris, coal, brick, concrete and a layer of asphalt in TP7-21.

A total of 17 soil samples were submitted for laboratory analysis of Metals (including methyl mercury), Volatile Organic Compounds (VOCs), Benzene, Toluene, Ethylbenzene and Xylenes (BTEX), Petroleum Hydrocarbons (PHCs, Fractions F₁-F₄) and/or Polycyclic Aromatic Hydrocarbons (PAHs). No VOC or BTEX concentrations identified in the samples analysed. Concentrations of metals (including As, Sb, Se), Hg, PAH and/or PHC (F₃) parameters exceeding the MECP Table 3 standards were identified in soil Samples BH1-21-SS5/6, BH2-21-SS4, BH3-21-SS4/5 TP1-21-GS3, TP3-21-GS3, TP5-21-GS2 and TP6-21-GS5. Based on Hg results, MeHg was analyzed and determined to comply with the MECP Table 3 standards.

Groundwater samples from monitoring wells BH1-21, BH2-21, BH3-21 and BH4-21 were collected during the May 25, 2021 sampling event. No sheen, free product or odour was noted during the groundwater sampling event.

Groundwater samples were analyzed for Metals, BTEX, PHCs and/or PAHs. All groundwater results comply with the selected MECP Table 3 Residential Standards.

Recommendations

Soil

Based on the findings of the Phase II ESA, it is anticipated that fill material impacted with metals, mercury, PAHs and/or PHC (F₃) exceeding the MECP Table 3 standards is present across the Phase II Property at depths extending up to approximately 5.0m below grade. It is our understanding that the Phase II Property will be redeveloped with a residential multi-story building with 2 levels of underground parking.

It is recommended that an environmental site remediation program, involving the removal of all impacted fill material be completed prior to site redevelopment. Prior to off-site disposal of the impacted soil at a licenced landfill site, a leachate analysis of a representative sample of contaminated soil must be conducted in accordance with Ontario Regulation 347/558.

It is also recommended that Paterson personnel be onsite during construction activities to direct the excavation and segregation of impacted soil and to conducted additional delineation or confirmatory sampling as required.

Any clean soil that requires removal from the Phase II Property for construction purposes must be handled in accordance with Ontario Regulation 406/19: On-Site and Excess Soil Management.

Groundwater

It is recommended that the monitoring wells installed on the Phase II Property remain viable for future monitoring, if required. It is expected that groundwater monitoring wells will be abandoned in accordance with O.Reg.903 at the time of the construction excavation.

7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared under the supervision of a Qualified Person, in general accordance with O.Reg. 153/04, as amended, and meets the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of The Cadillac Fairview Corporation Limited. Notification from The Cadillac Fairview Corporation Limited and Paterson Group will be required to release this report to any other party.

Paterson Group Inc.

Jeremy Camposarcone, B. Eng.

Karyn Munch, P.Eng., Q.P.ESA

Kaup Munch

Report Distribution:

☐ The Cadillac Fairview Corporation Limited

Paterson Group

FIGURES

FIGURE 1 – KEY PLAN

DRAWING PE5267-1 - SITE PLAN

DRAWING PE5267-2 - SURROUNDING LAND USE PLAN

DRAWING PE5267-3 – TEST HOLE LOCATION PLAN

DRAWING PE5267-4 – ANALYTICAL TESTING PLAN – SOIL (METALS)

DRAWING PE5267-4A - CROSS SECTION A-A' - SOIL (METALS)

DRAWING PE5267-4B - CROSS SECTION B-B' - SOIL (METALS)

DRAWING PE5267-5- ANALYTICAL TESTING PLAN - SOIL (VOCS AND BTEX)

DRAWING PE5267-5A - CROSS SECTION A-A' - SOIL (VOCS AND BTEX)

DRAWING PE5267-5B - CROSS SECTION B-B' - SOIL (VOCS AND BTEX)

DRAWING PE5267-6 - ANALYTICAL TESTING PLAN - SOIL (PHCS)

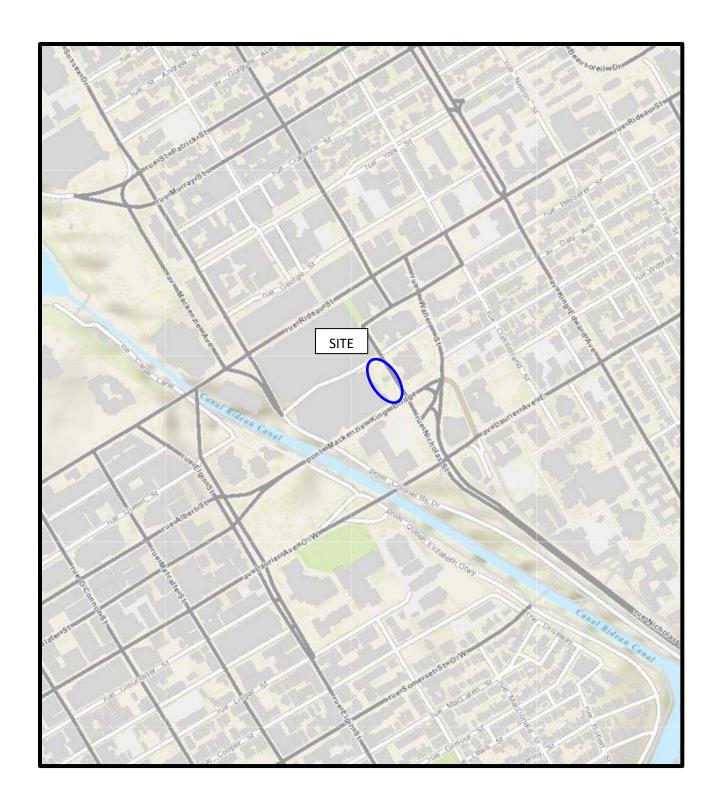
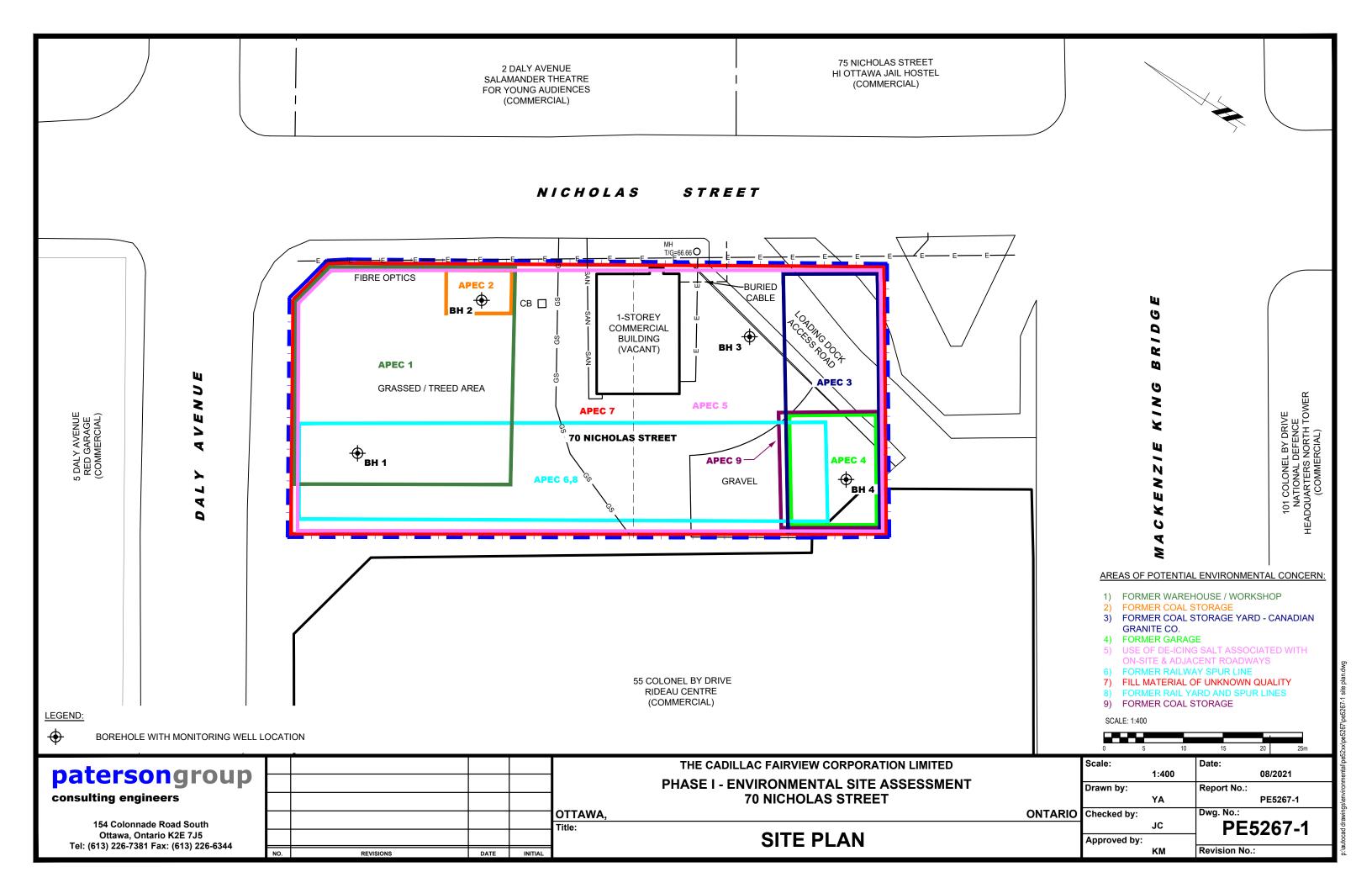
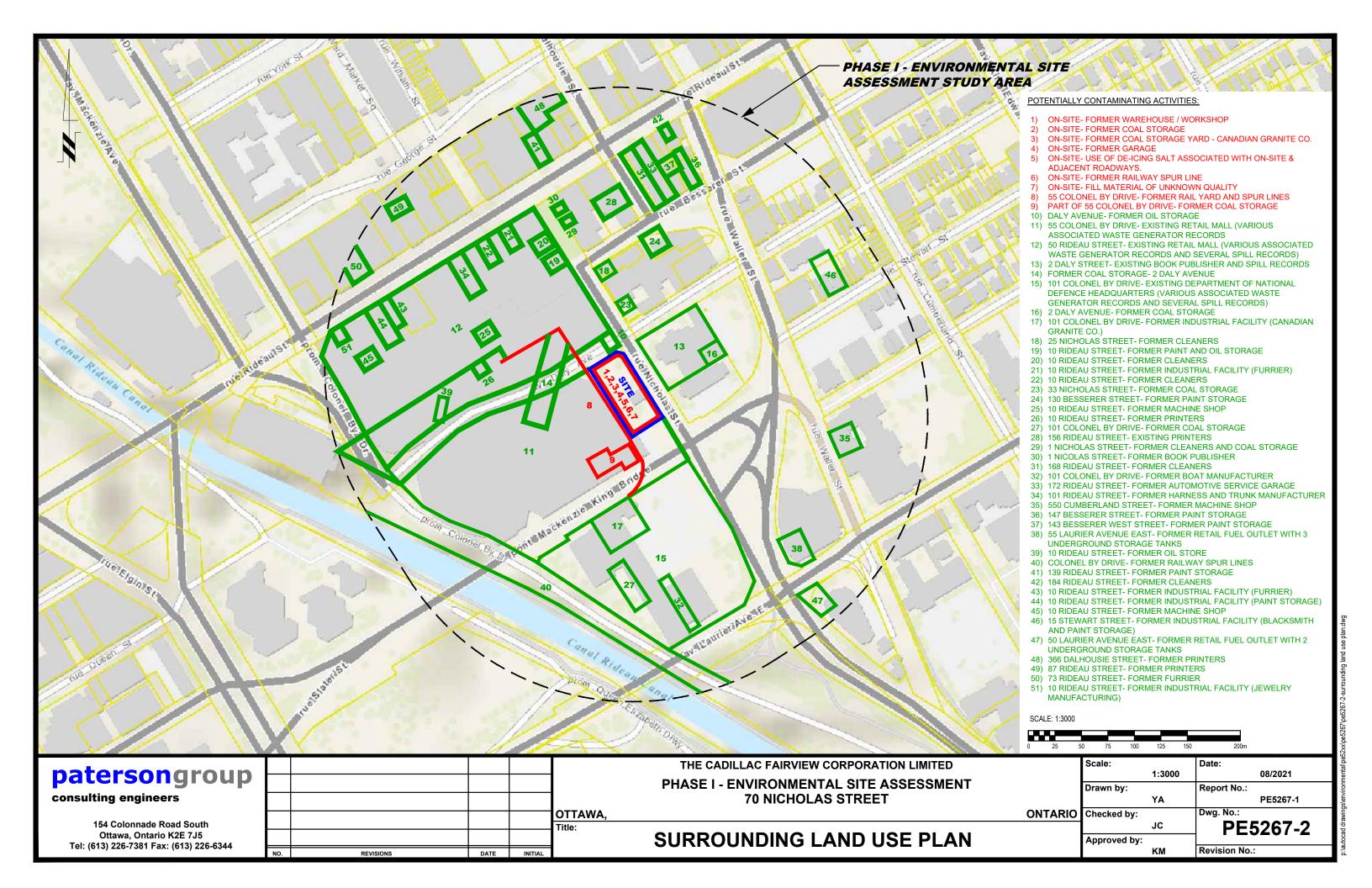
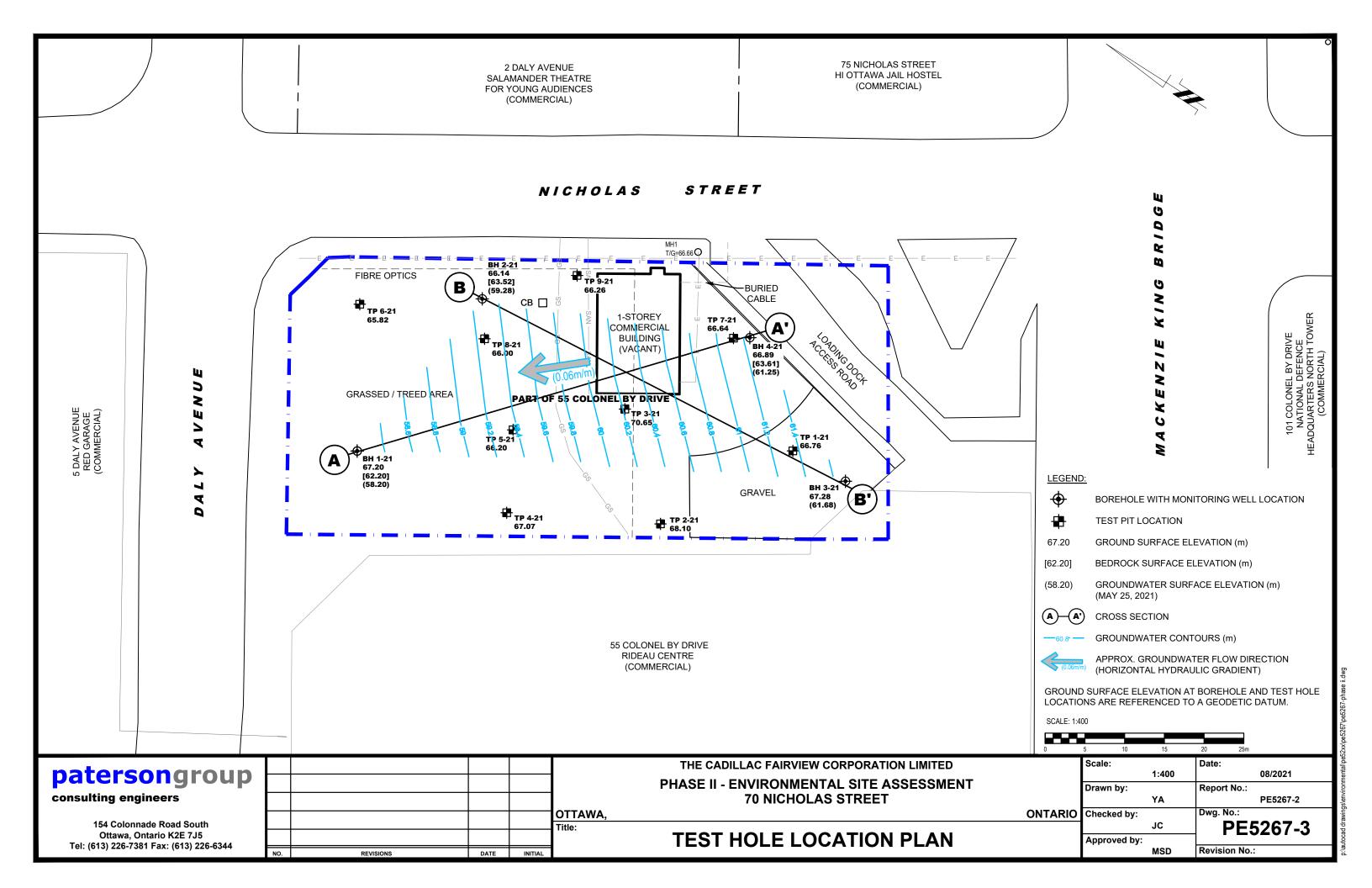
DRAWING PE5267-6A - CROSS SECTION A-A' - SOIL (PHCS)

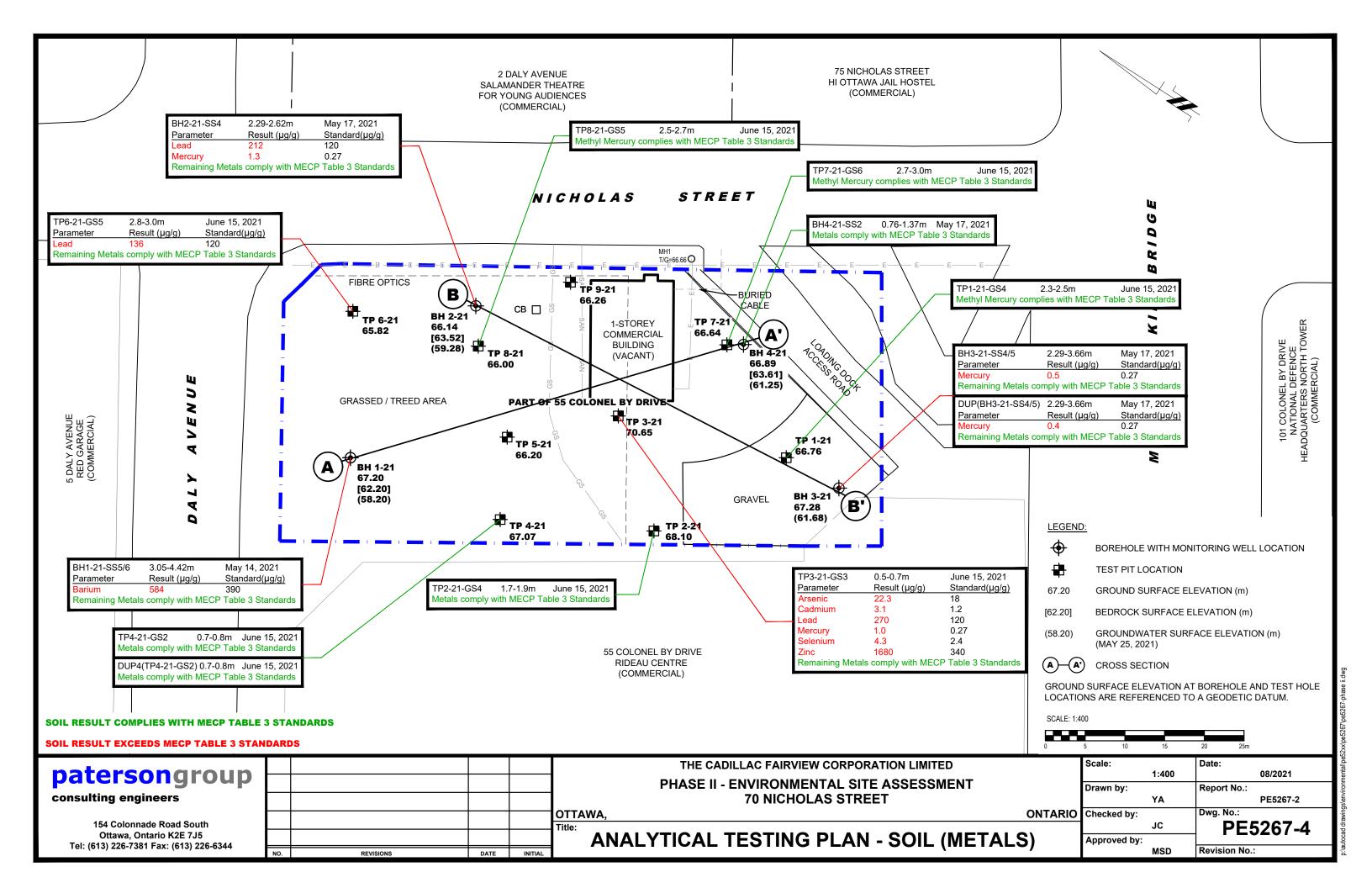
DRAWING PE5267-6B – CROSS SECTION B-B' – SOIL (PHCS)

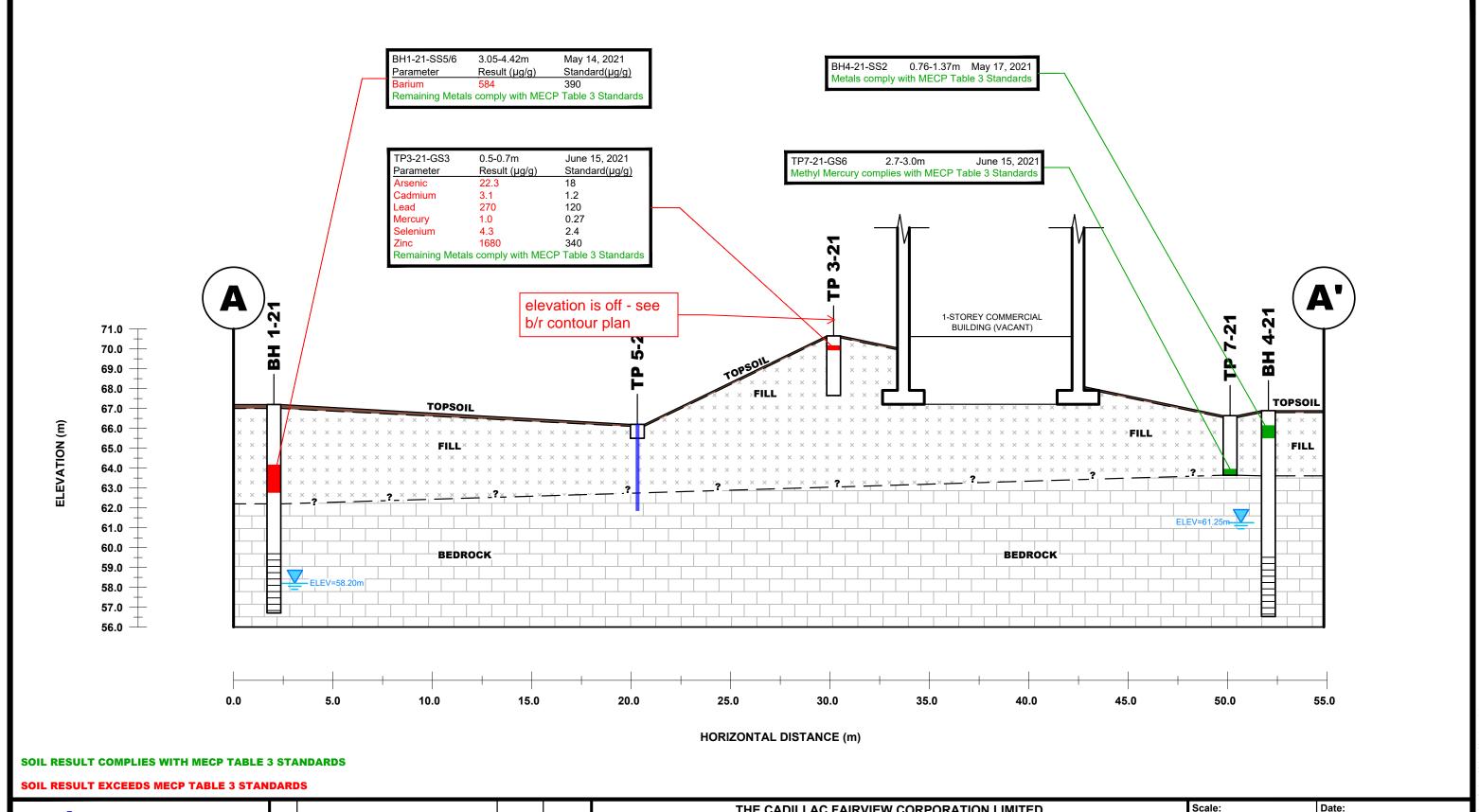
DRAWING PE5267-7 - ANALYTICAL TESTING PLAN - SOIL (PAHS)

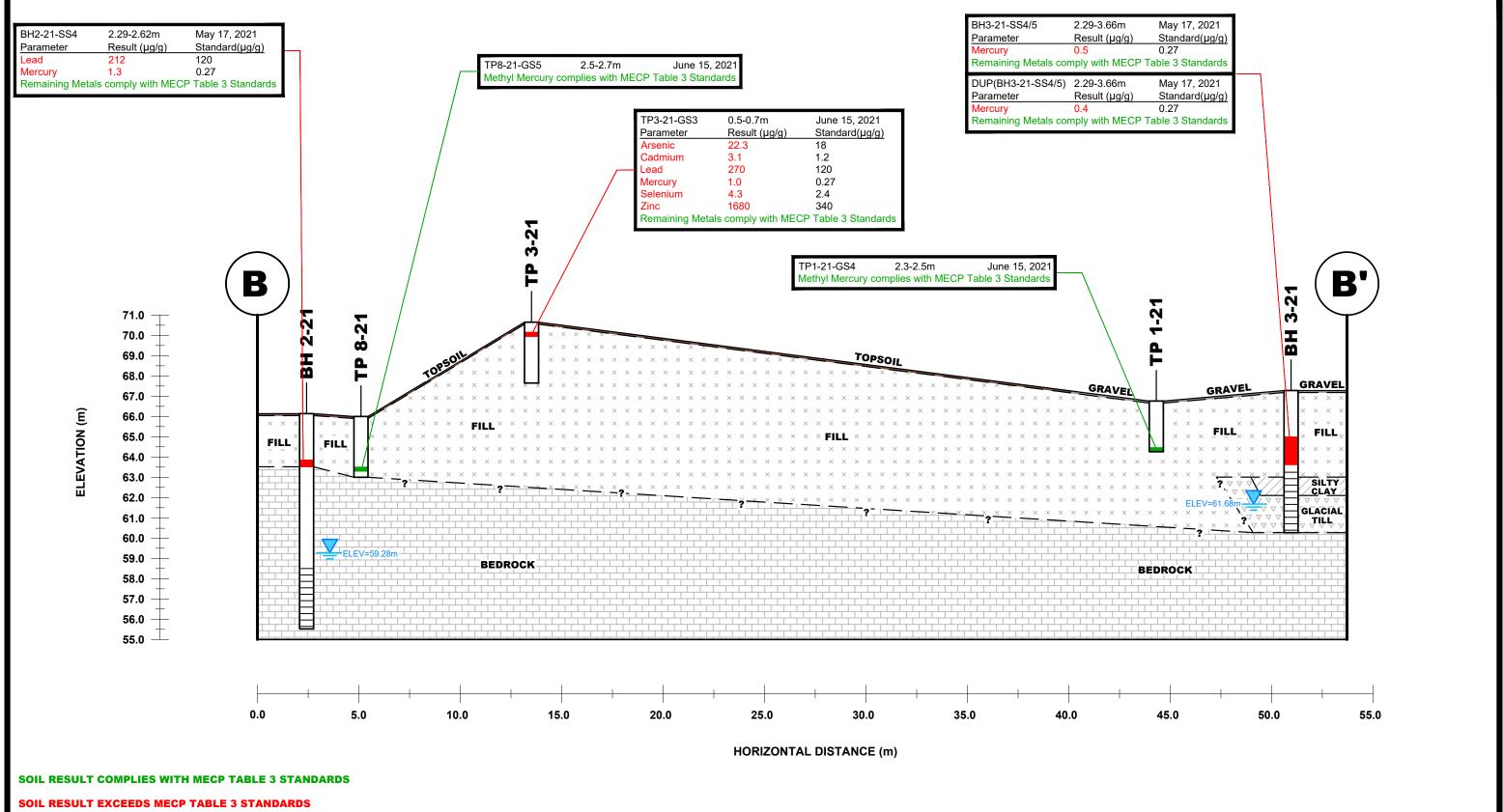
DRAWING PE5267-7A - CROSS SECTION A-A' - SOIL (PAHS)

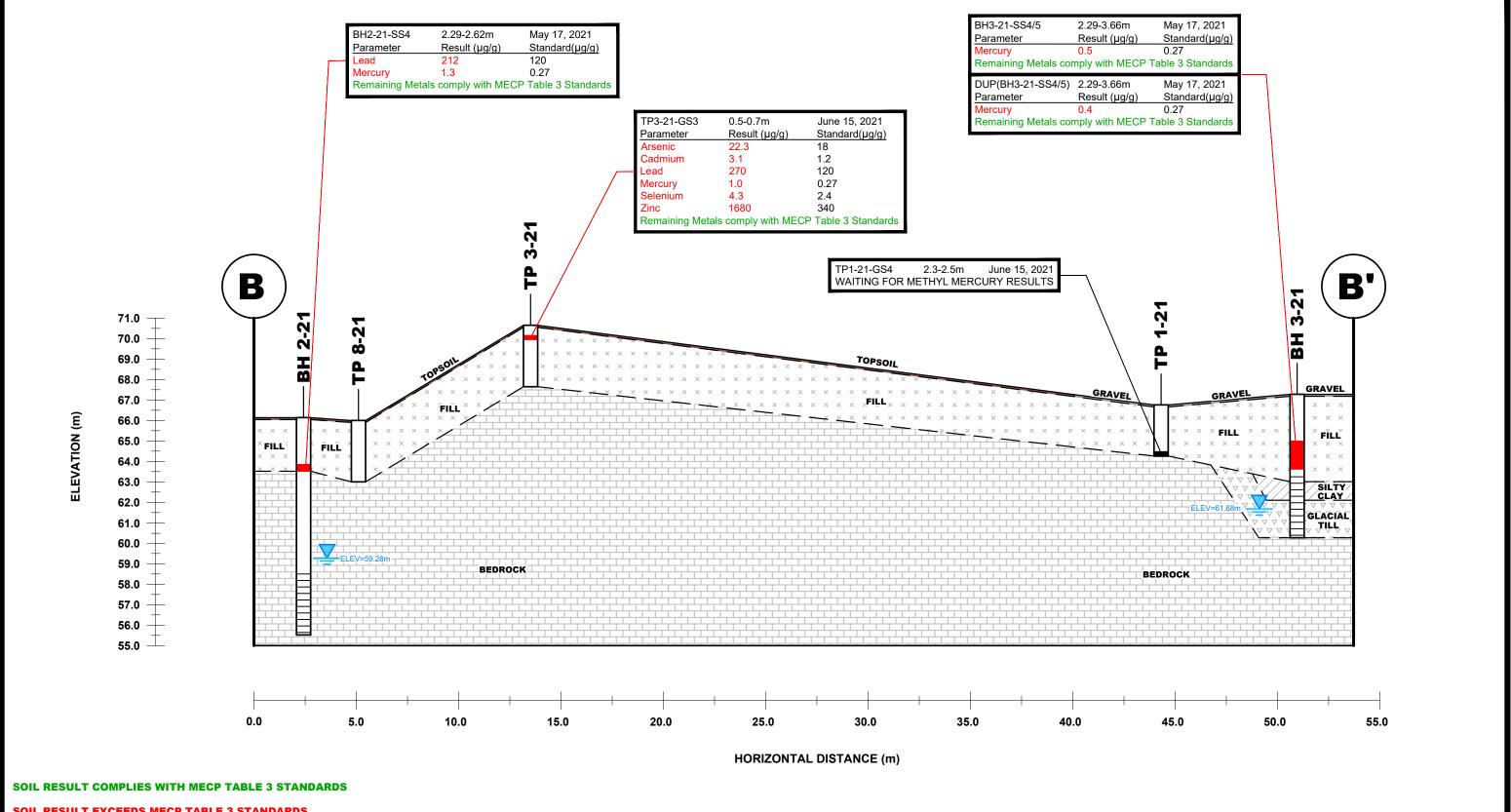
DRAWING PE5267-7B - CROSS SECTION B-B' - SOIL (PAHS)


FIGURE 1
KEY PLAN


patersongroup





THE CADILLAC FAIRVIEW CORPORATION LIMITED patersongroup **AS SHOWN** 08/2021 **PHASE II - ENVIRONMENTAL SITE ASSESSMENT** Drawn by: Report No.: consulting engineers **70 NICHOLAS STREET** PE5267-2 ONTARIO Checked by: Dwg. No.: OTTAWA 154 Colonnade Road South PE5267-4A Title: **CROSS SECTION A-A' - SOIL (METALS)** Ottawa, Ontario K2E 7J5 Approved by: Tel: (613) 226-7381 Fax: (613) 226-6344 Revision No.: MSD REVISIONS

THE CADILLAC FAIRVIEW CORPORATION LIMITED patersongroup **AS SHOWN** 08/2021 PHASE II - ENVIRONMENTAL SITE ASSESSMENT Drawn by: Report No.: consulting engineers **70 NICHOLAS STREET** PE5267-2 Dwg. No.: ONTARIO Checked by: OTTAWA PE5267-4B 154 Colonnade Road South Title: **CROSS SECTION B-B' - SOIL (METALS)** Ottawa, Ontario K2E 7J5 Approved by: Tel: (613) 226-7381 Fax: (613) 226-6344 Revision No.: MSD REVISIONS

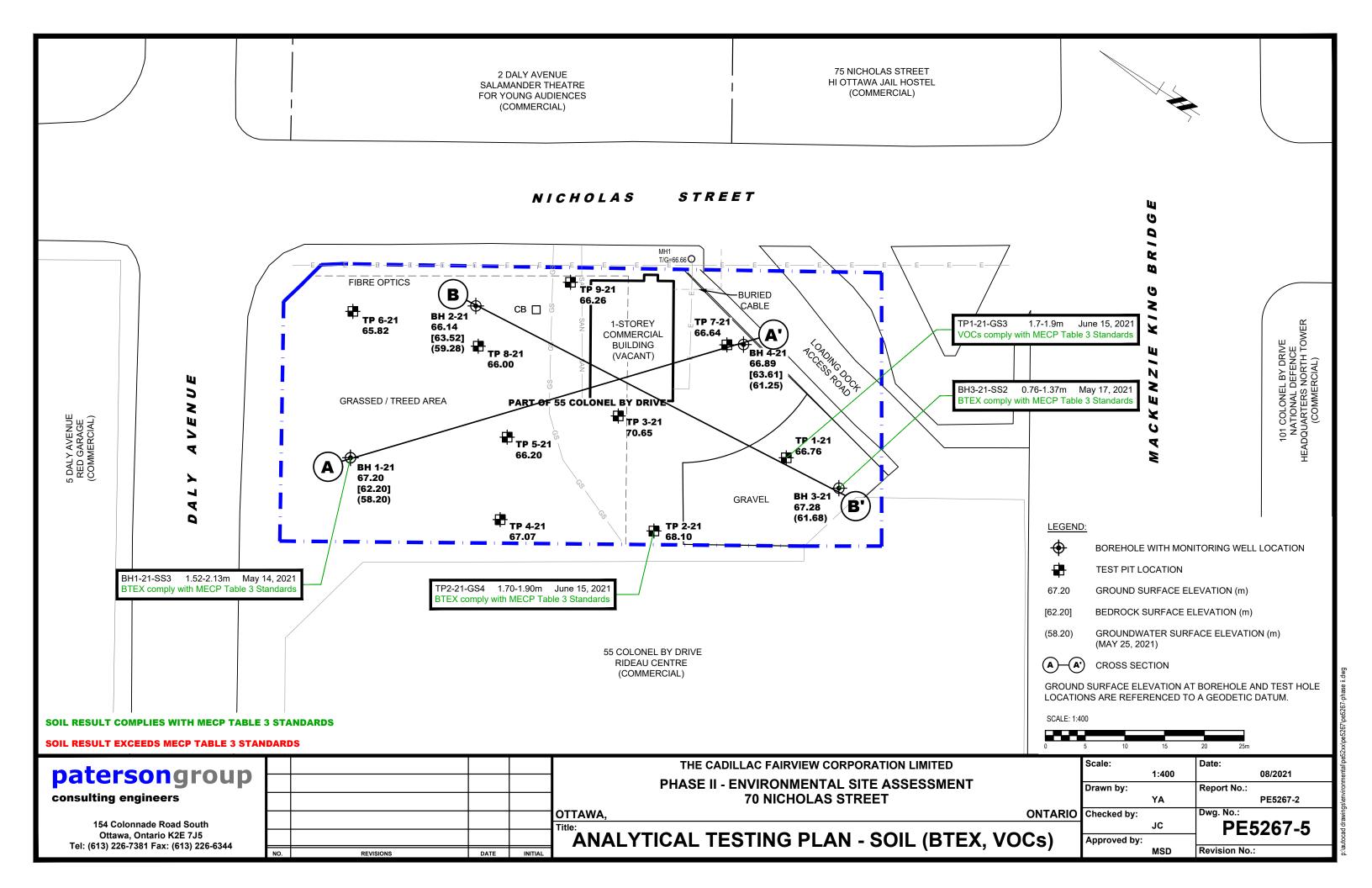
gs\environmental\pe52xx\pe5267\pe5267-pha

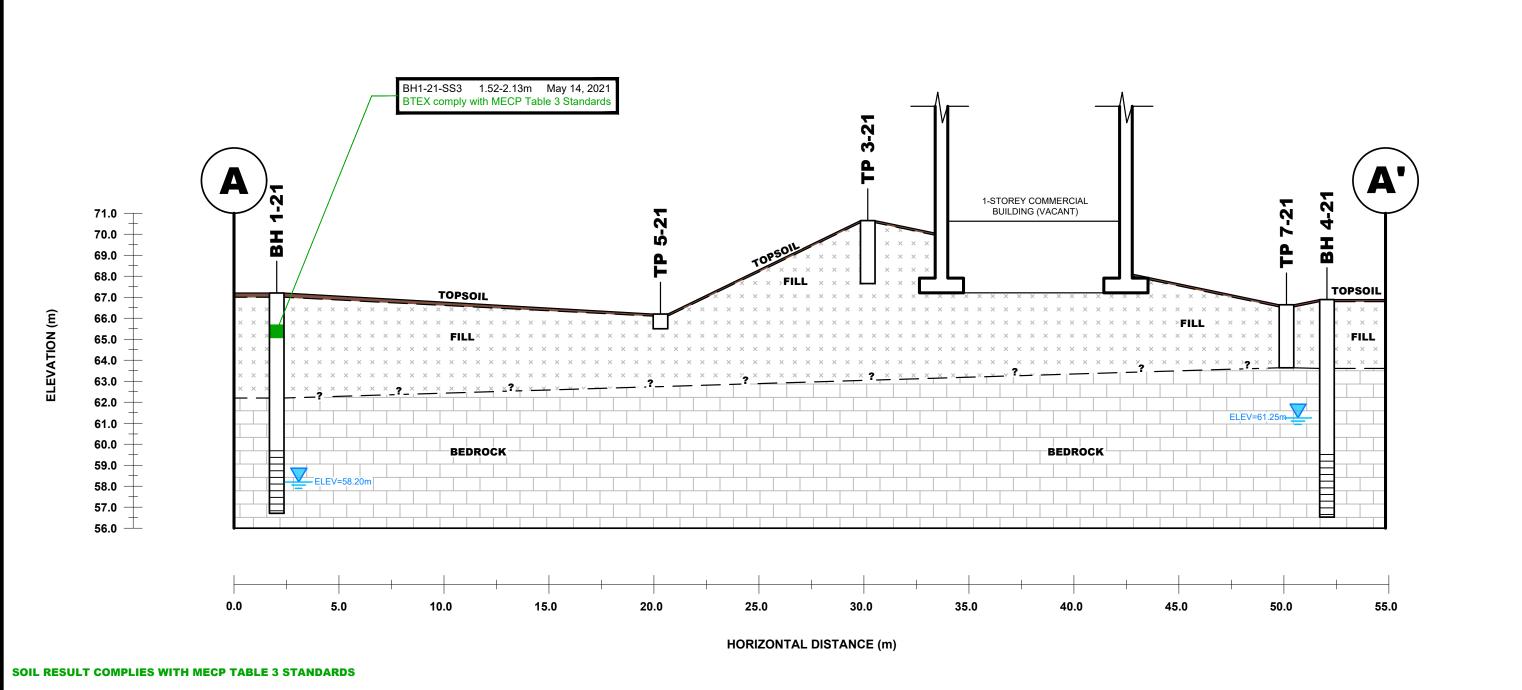
SOIL RESULT EXCEEDS MECP TABLE 3 STANDARDS

patersongroup

consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344


				OTTAWA, Title:
NO.	REVISIONS	DATE	INITIAL	


THE CADILLAC FAIRVIEW CORPORATION LIMITED PHASE II - ENVIRONMENTAL SITE ASSESSMENT PART OF 55 COLONEL BY DRIVE

ONTARIO (

Scale:	Date:
AS SHOWN	07/2021
Orawn by:	Report No.:
YA	PE5267-2
Checked by:	Dwg. No.:
ıc	DEFOCT 4D

PE5267-4B Approved by:

267\pe5267-phase ii.dwg

SOIL RESULT EXCEEDS MECP TABLE 3 STANDARDS

patersongroup

consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

				OTTAWA, Title:
NO.	REVISIONS	DATE	INITIAL	11.10.

THE CADILLAC FAIRVIEW CORPORATION LIMITED
PHASE II - ENVIRONMENTAL SITE ASSESSMENT
70 NICHOLAS STREET

NICHOLAS STREET

ONTARIO Chi

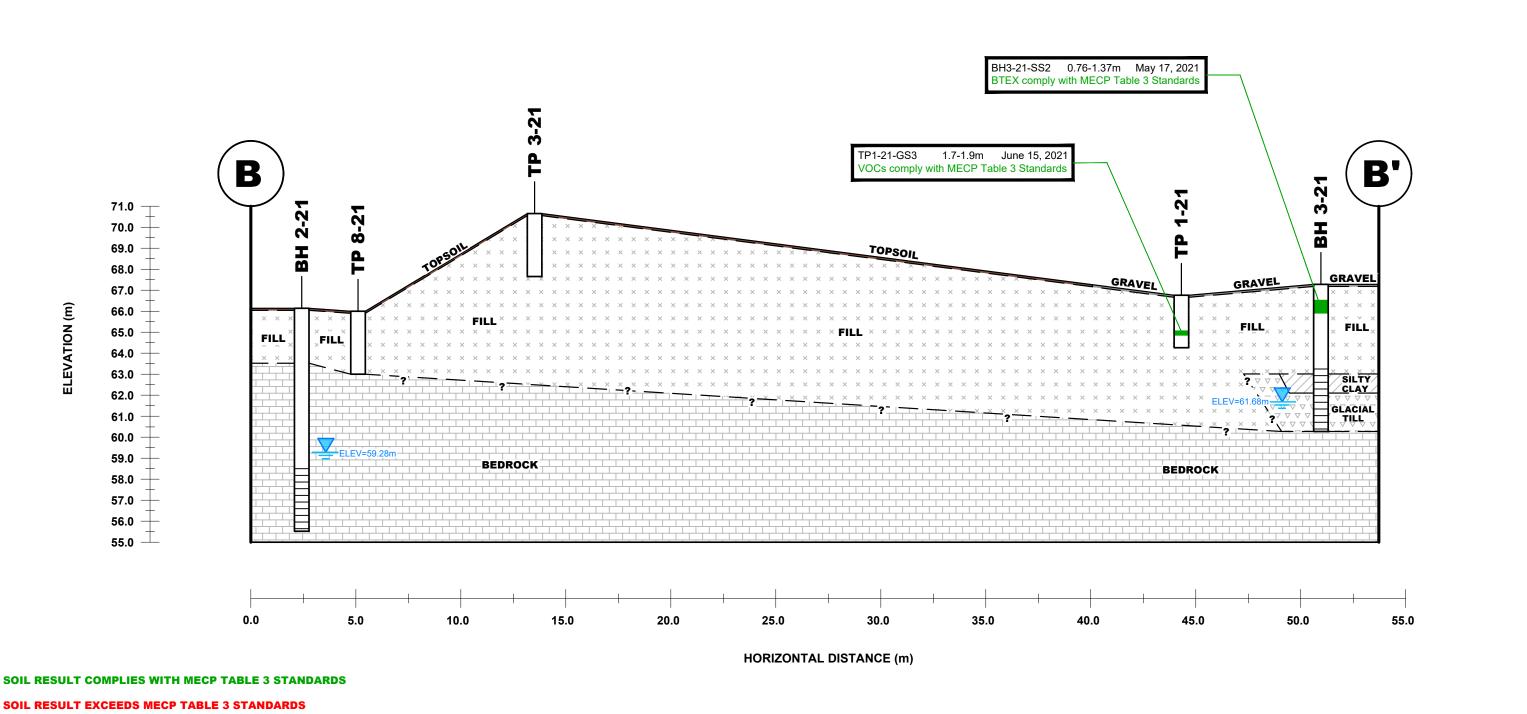
CROSS SECTION A-A' - SOIL (BTEX, VOCs)

cale:	Date:
AS SHOWN	08/2021
awn by:	Report No.:
YA	PE5267-2
necked by:	Dwg. No.:

Checked by:

JC

Approved by:


Dwg. No.:

PE5267-5A

MSD

Revision No.:

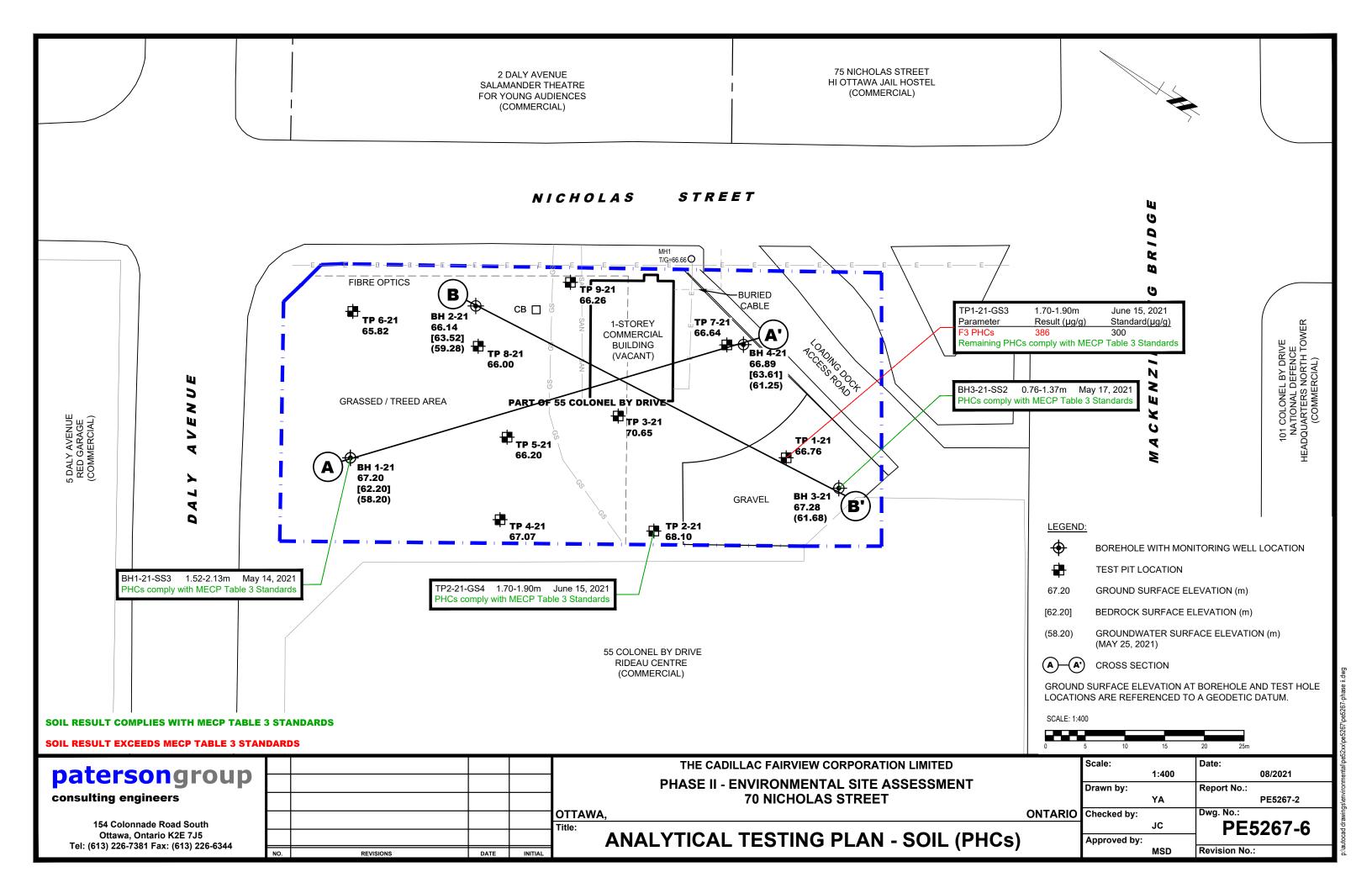
d drawings∖environmental∖pe52xx∖pe5267

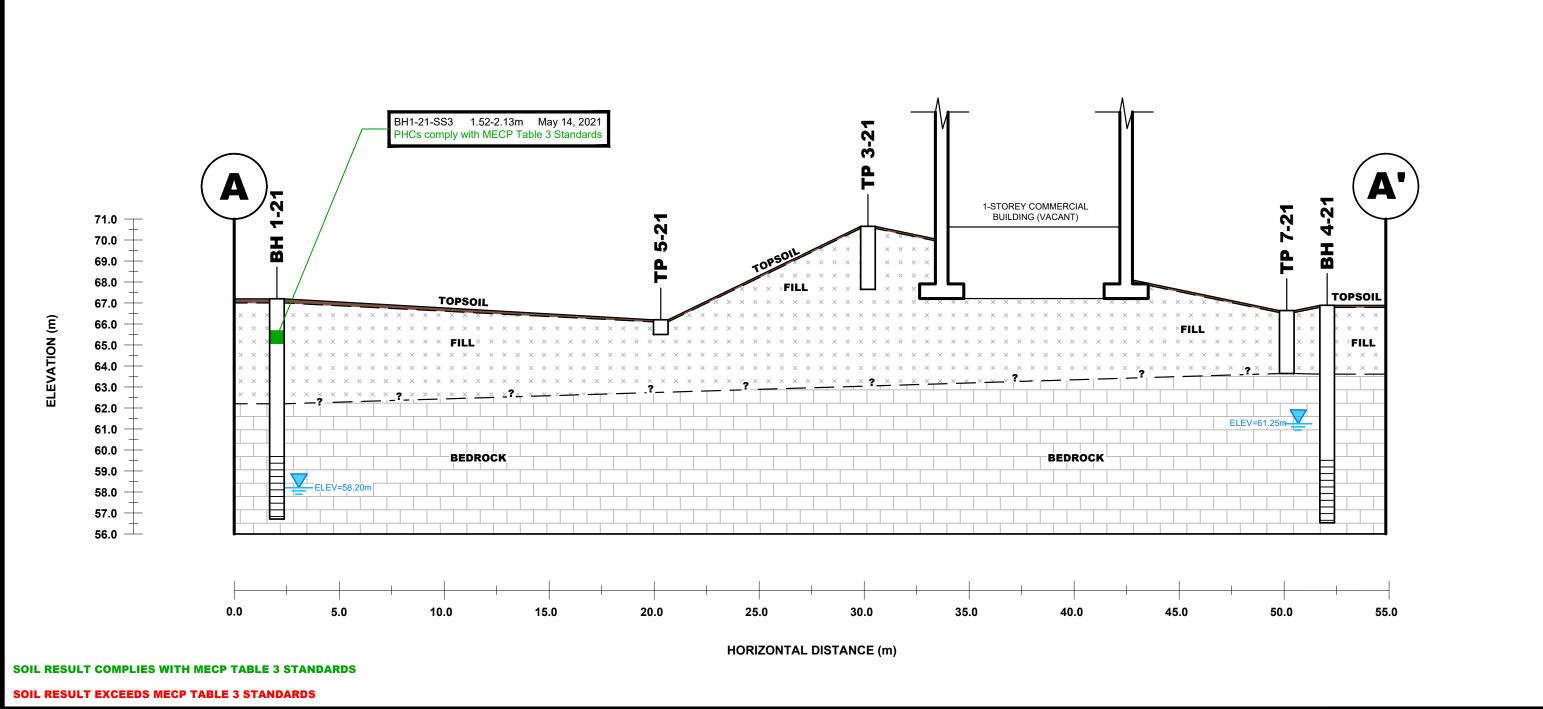
consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

				OTTAWA, Title:
NO.	REVISIONS	DATE	INITIAL	

THE CADILLAC FAIRVIEW CORPORATION LIMITED **PHASE II - ENVIRONMENTAL SITE ASSESSMENT 70 NICHOLAS STREET**


ONTARIO Checked by:


AS SHOWN 08/2021 Drawn by: Report No.: PE5267-2 Dwg. No.:

PE5267-5B Approved by:

MSD

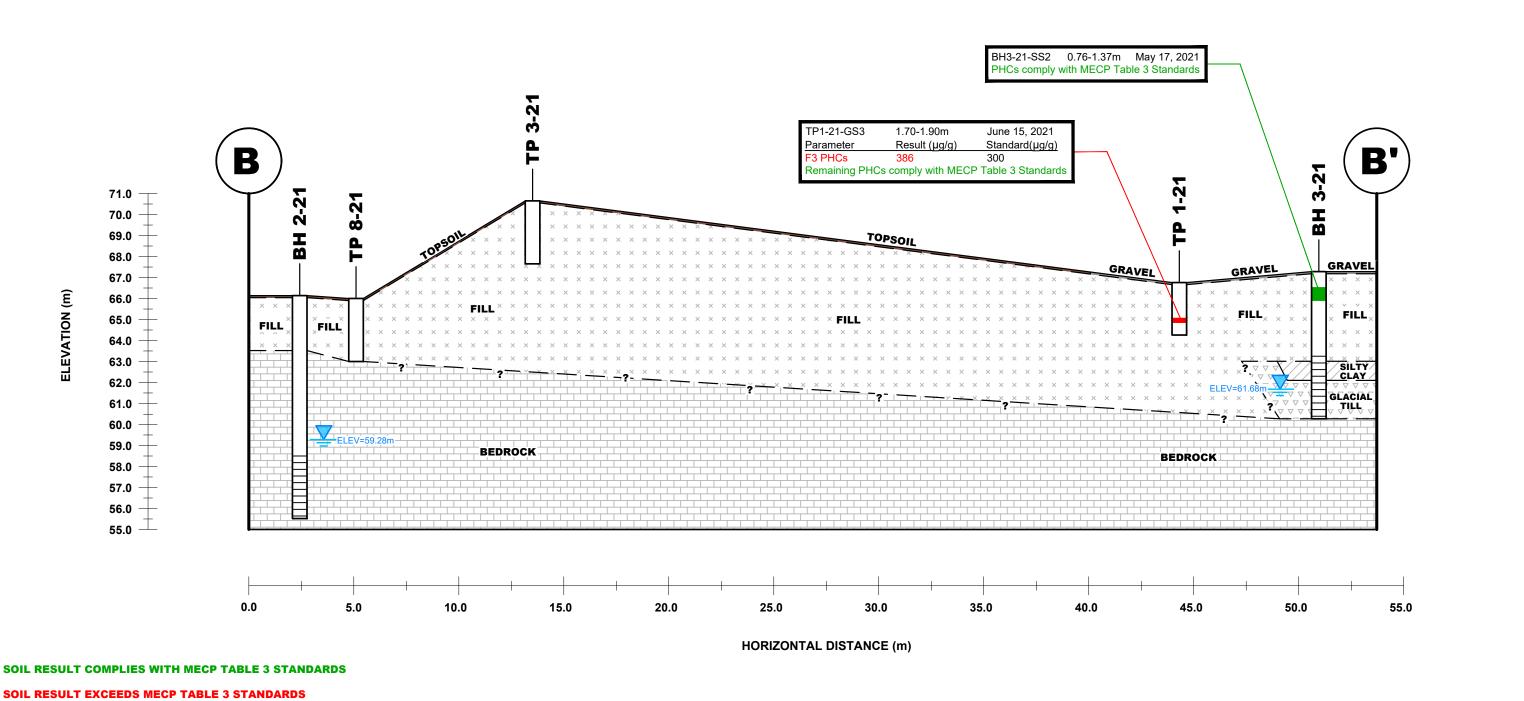
CROSS SECTION B-B' - SOIL (BTEX, VOCs)

consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

				OTTAWA,
				Title:
NO.	REVISIONS	DATE	INITIAL	

THE CADILLAC FAIRVIEW CORPORATION LIMITED PHASE II - ENVIRONMENTAL SITE ASSESSMENT **70 NICHOLAS STREET**


CROSS SECTION A-A' - SOIL (PHCs)

Scale:		Date:	
	AS SHOWN	08/202	1
Orawn by:		Report No.:	
	YA	PE526	7-2
Checked b	y:	Dwg. No.:	
	ic.	DEFOCT	C A

ONTARIO

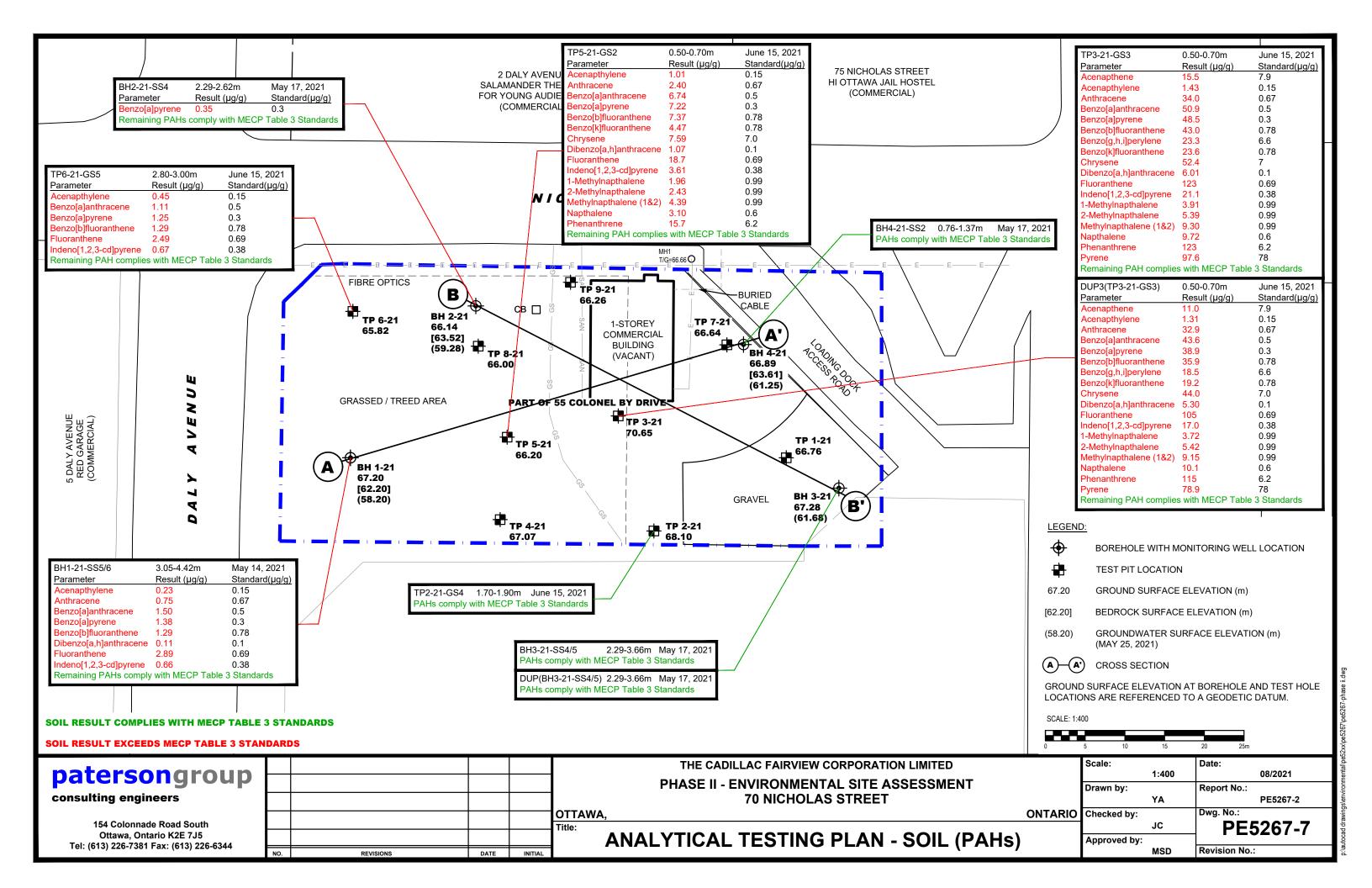
PE5267-6A Approved by:

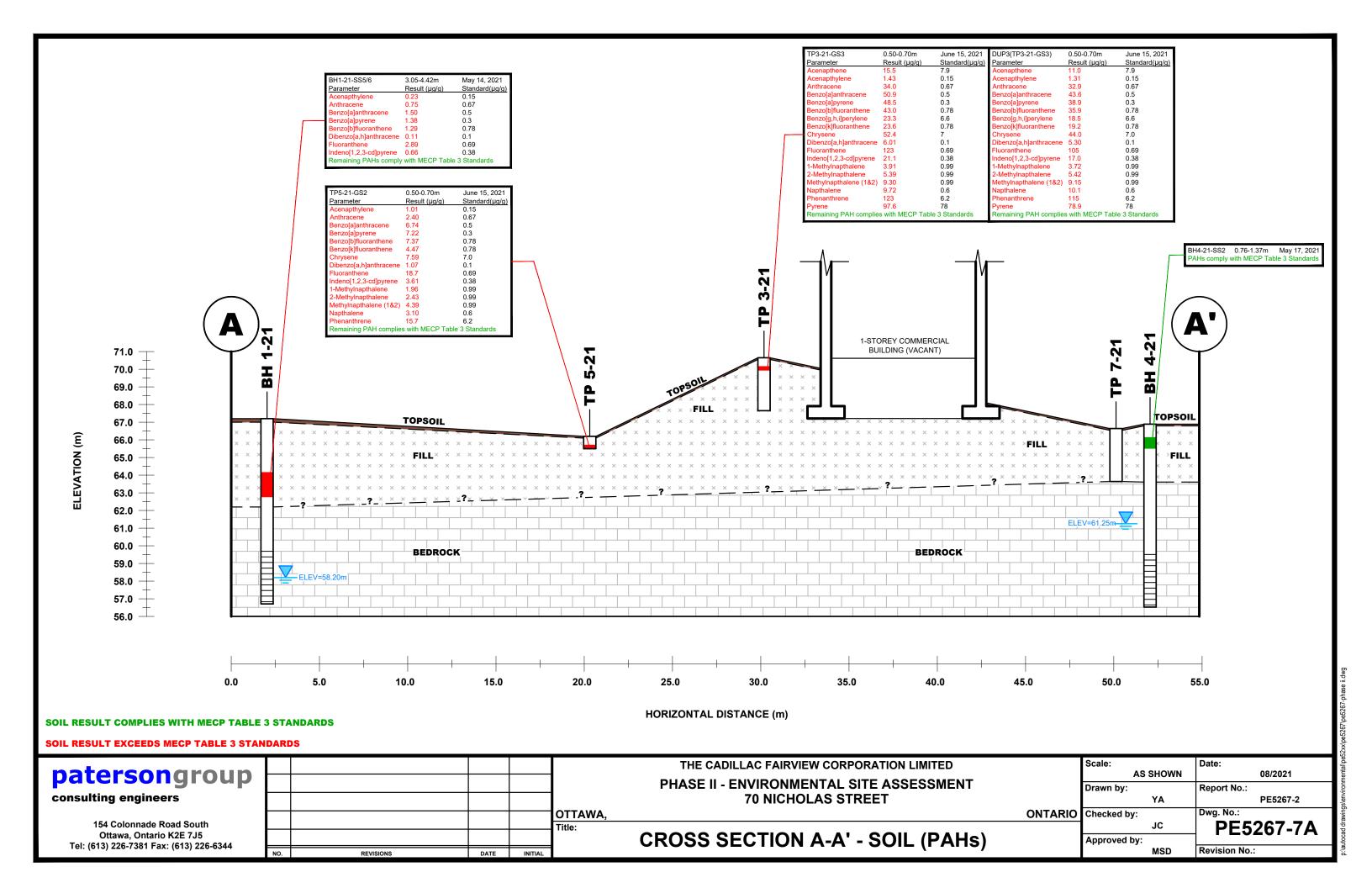
MSD

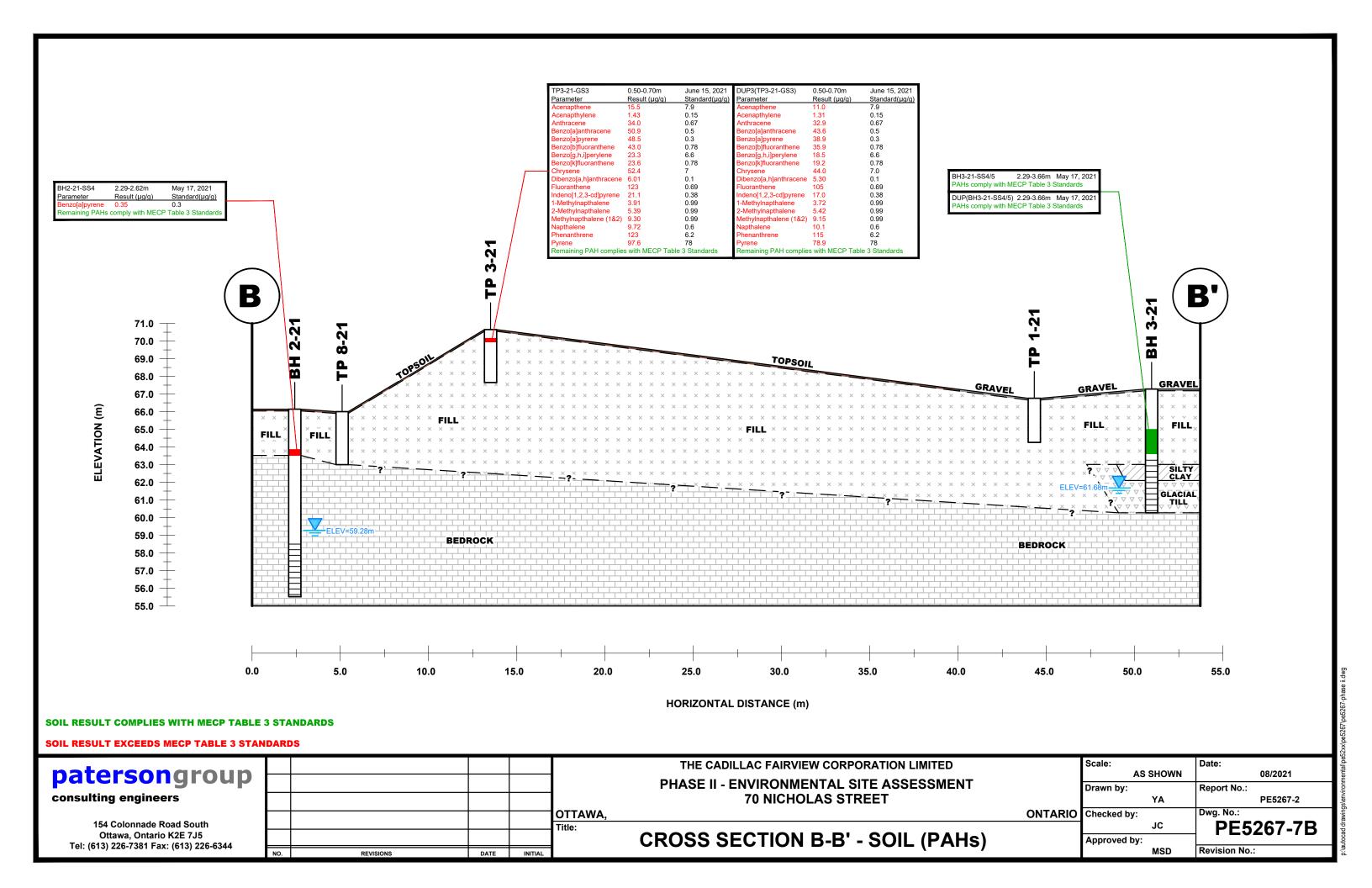
consulting engineers

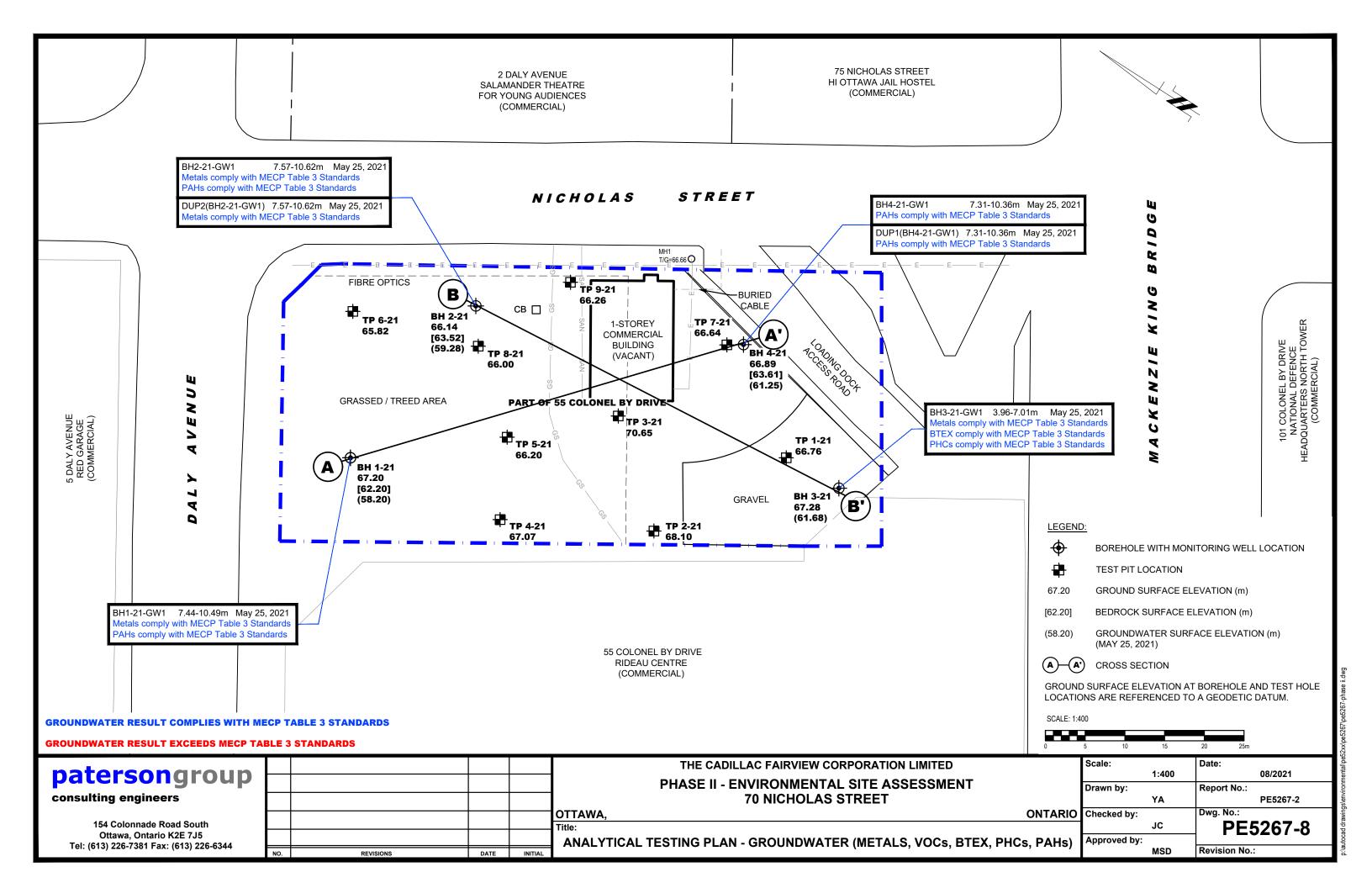
154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

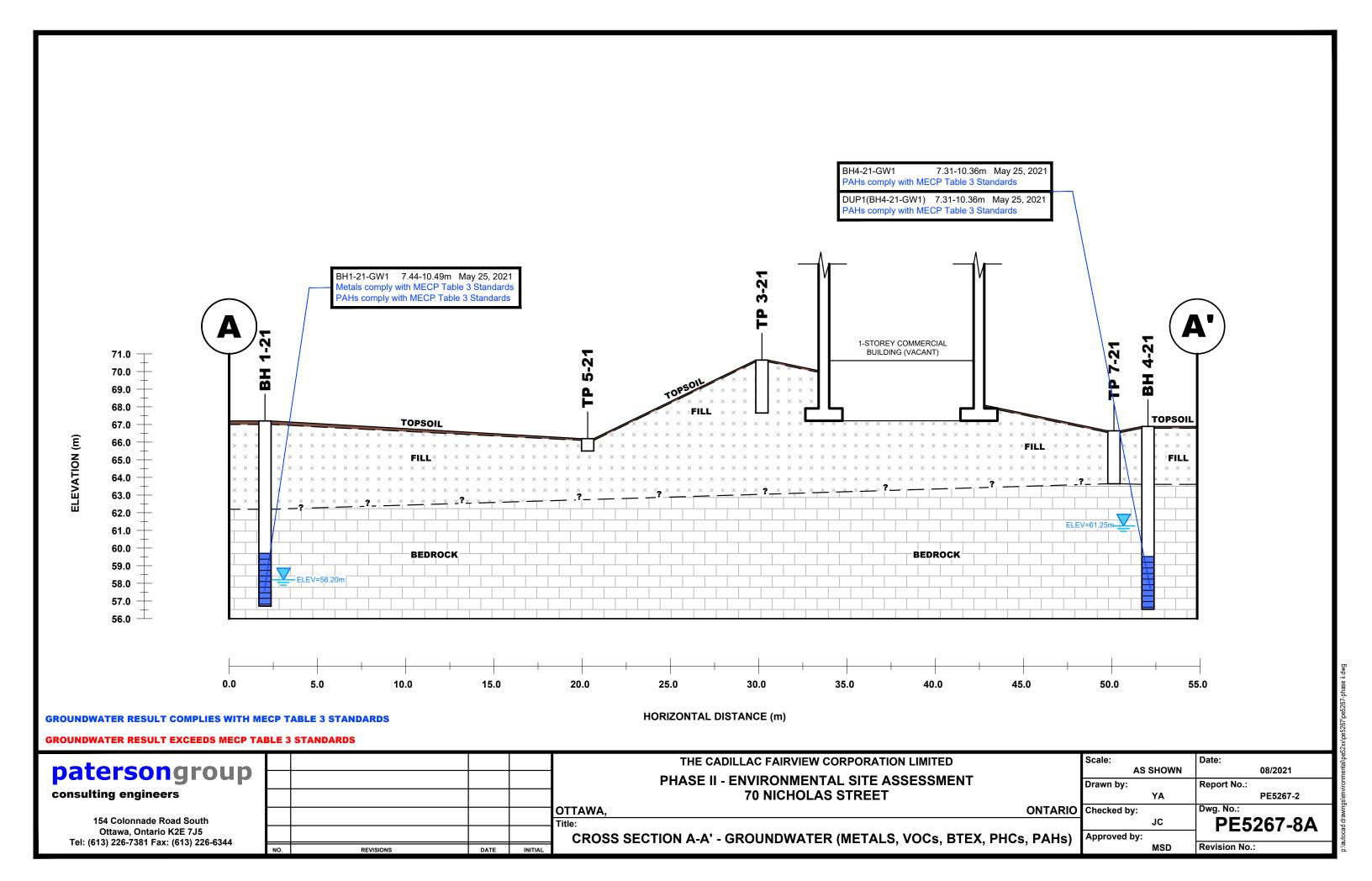
NO.	REVISIONS	DATE		OTTAWA, Title:
NO.	REVISIONS	DATE	INITIAL	

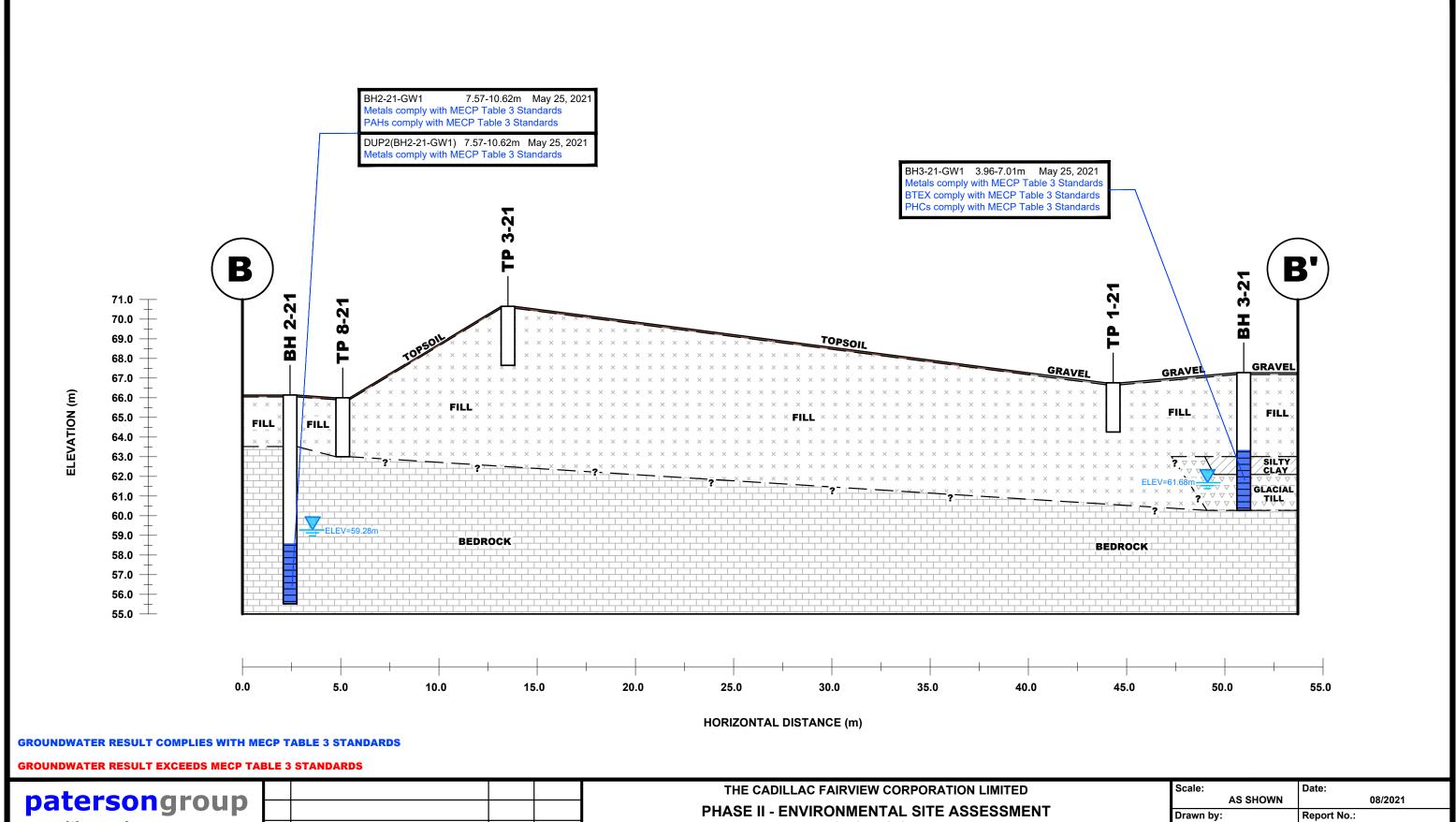

THE CADILLAC FAIRVIEW CORPORATION LIMITED PHASE II - ENVIRONMENTAL SITE ASSESSMENT **70 NICHOLAS STREET**


CROSS SECTION B-B' - SOIL (PHCs)


Scale:	Date:
AS SHOWN	08/2021
Drawn by:	Report No.:
YA	PE5267-2
Checked by:	Dwg. No.:
JC	PF5267-6R


ONTARIO


Approved by:



consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

				OTTAWA,
				Title: CROS
NO.	REVISIONS	DATE	INITIAL	

PHASE II - ENVIRONMENTAL SITE ASSESSMENT 70 NICHOLAS STREET

ONTA

ARIO	Checke
	A

Report No.: PE5267-2 Dwg. No.: ed by: JC

PE5267-8B CROSS SECTION B-B' - GROUNDWATER (METALS, VOCs, BTEX, PHCs, PAHs) Approved by:

APPENDIX 1

SAMPLING AND ANALYSIS PLAN

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

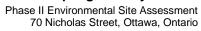
Building Science

patersongroup

Sampling & Analysis Plan

Phase II Environmental Site Assessment 70 Nicholas Street Ottawa, Ontario

Prepared For


The Cadillac Fairview Corporation Limited

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca May 12, 2021

Report: PE5267-SAP

TABLE OF CONTENTS

1.0	SAMPLING PROGRAM	
2.0	ANALYTICAL TESTING PROGRAM	2
3.0	STANDARD OPERATING PROCEDURES	3
	3.1 Environmental Drilling Procedure	
	3.2 Monitoring Well Installation Procedure	
	3.3 Monitoring Well Sampling Procedure	
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	
5.0	DATA QUALITY OBJECTIVES	
	PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN	

1.0 SAMPLING PROGRAM

Paterson was retained by Mr. Peter Nikolakakos of The Cadillac Fairview Corporation Limited, to conduct a Phase II Environmental Site Assessment (ESA) for the property addressed 70 Nicholas Street, in the City of Ottawa, Ontario.

The Phase II ESA was carried out to address the areas of potential environmental concern on the Phase II Property. The following subsurface investigation program was developed. A Geotechnical Investigation was conducted concurrently with the environmental subsurface investigation.

Borehole	Location & Rationale	Proposed Depth & Rationale	
BH1	Place on the northwest portion of the Phase II Property to assess the potential impact due to APECs 1, 5, 6, 7 and 8.	Borehole to be advanced to approximately 10 mbgs to install monitoring well.	
BH2	Place on the northeast portion of the Phase II Property to assess the potential impact due to APECs 1, 2, 5 and 7.	Borehole to be advanced to approximately 10 mbgs to install monitoring well.	
ВН3	Place on the southeast portion of the Phase II Property to assess the potential impact due to APECs 5 and 7.	Borehole to be advanced to approximately 7 mbgs to install monitoring well.	
BH4	Place on the southwest portion of the Phase II Property to assess the potential impact due to APECs 3, 4, 7 and 9.	Borehole to be advanced to approximately 10 mbgs to install monitoring well.	
TP1-21 to TP9-21	Place to provide general coverage of the Phase II Property; to laterally delineate soil exceedances identified in the boreholes and to further assess the quality of the fill material.	Test Pit to be advanced to native soil or bedrock to assess the full depth of the fill material.	

Borehole and test pit locations are shown on Drawing PE5267-3-Test Hole Location Plan, appended to the main report.

At each borehole, split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals until practical refusal to augering. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Report: PE5267-SAP

May 21, 2021 Page 1

Following borehole drilling, monitoring wells will be installed in selected boreholes (as above) for the measurement of water levels and the collection of groundwater samples. Borehole locations are shown on the Test Hole Location Plan appended to the main report.

Nine test pits will be placed across the entire Phase II Property for delineation purposes and to obtain broader coverage to assess the quality of the fill material (APEC 7). At each test pit location, samples will be collected at approximate 0.5 to 1.0m intervals. Samples will also be collected from potentially contaminated layers and different soil strata. Test pits should be placed through the full depth of the fill material to the native layer and/or bedrock, whichever is encountered first.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the subject site is based on the following general considerations: At least one sample from each borehole or test pit should be submitted, in order to delineate the horizontal extent of contamination across the site. At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site. In boreholes and test pits where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP site condition standards. In boreholes and test pits with evidence of contamination as described above. a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward. Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA. The analytical testing program for groundwater at the subject site is based on the following general considerations:

Report: PE5267-SAP

May 21, 2021 Page 2

Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil

3.0

3.1

	contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained).		
	Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.		
	At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is water-bearing.		
	Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil samples.		
S1	ANDARD OPERATING PROCEDURES		
En	vironmental Drilling Procedure		
Pu	rpose		
The purpose of environmental boreholes and test pits is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.			
Εq	uipment		
The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:			
	glass soil sample jars two buckets cleaning brush (toilet brush works well) dish detergent methyl hydrate water (if not available on site - water jugs available in trailer) latex or nitrile gloves (depending on suspected contaminant) RKI Eagle organic vapour meter or MiniRae photoionization detector		

Report: PE5267-SAP

May 21, 2021 Page 3

(depending on contamination suspected)

Determining Borehole and Test Pit Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling and/or excavation of test pits is completed, a plan with the test hole locations must be provided. Distances should be measured using a measuring tape or wheel or located with a GPS unit.

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

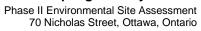
Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every
0.76 m or 2'6") are required.
Make sure samples are well sealed in plastic bags with no holes prior to
screening and are kept cool but unfrozen.
If sampling for VOCs, BTEX, or PHCs F1, a soil core from each soil sample
which may be analyzed must be taken and placed in the laboratory-provided
methanol vial.
Note all and any odours or discolouration of samples.
Split spoon samplers must be washed between samples.
If obvious contamination is encountered, continue sampling until vertical extent
of contamination is delineated.
As a general rule, environmental boreholes should be deep enough to intercept
the groundwater table (unless this is impossible/impractical - call project
manager to discuss).
If at all possible, soil samples should be submitted to a preliminary screening
procedure on site, either using a RKI Eagle, PID, etc. depending on type of
suspected contamination.

Test Pit Excavation

Nine test pits will be placed across the entire Phase II Property for delineation purposes and to obtain broader coverage to assess the quality of the fill material (APEC 7). At each test pit location, samples will be collected at approximate 0.5 to 1.0m intervals. Samples will also be collected from potentially contaminated layers

Report: PE5267-SAP

and different soil strata. Test pits should be placed through the full depth of the fill material to the native layer and/or bedrock, whichever is encountered first.


Spoon Washing Procedure

All sampling equipment (spilt spoons, etc.) must be washed between samples in order to prevent cross contamination of soil samples. ☐ Obtain two buckets of water (preferably hot if available) Add a small amount of dish soap to one bucket Scrub spoons with brush in soapy water, inside and out, including tip ☐ Rinse in clean water ☐ Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well) ☐ Allow to dry (takes seconds) Rinse with distilled water, a spray bottle works well. The methyl hydrate eliminates any soap residue that may be on the spoon, and is especially important when dealing with suspected VOCs. Screening Procedure The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted. Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used. Samples should be brought to room temperature; this is specifically important in colder weather. Soil must not be frozen. ☐ Turn instrument on and allow to come to zero - calibrate if necessary ☐ If using RKI Eagle, ensure instrument is in methane elimination mode unless otherwise directed. Ensure measurement units are ppm (parts per million) initially. RKI Eagle will automatically switch to %LEL (lower explosive limit) if higher concentrations are encountered.

Report: PE5267-SAP

May 21, 2021 Page 5

Break up large lumps of soil in the sample bag, taking care not to puncture bag.

3.2

 Insert probe into soil bag, creating a seal with your hand around the opening. Gently manipulate soil in bag while observing instrument readings. Record the highest value obtained in the first 15 to 25 seconds Make sure to indicate scale (ppm or LEL); also note which instrument was used (RKI Eagle 1 or 2, or MiniRae). Jar samples and refrigerate as per Sampling and Analysis Plan.
Monitoring Well Installation Procedure
Equipment
 □ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC slotted well screen (5' x 1 ¼" [1.52 m x 32 mm] if installing in cored hole in bedrock) □ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC riser pipe (5' x 1 ¼" [1.52 m x 32 mm] if installing in cored hole in bedrock) □ Threaded end-cap □ Slip-cap or J-plug □ Asphalt cold patch or concrete □ Silica Sand □ Bentonite chips (Holeplug) □ Steel flushmount casing
Procedure
☐ Drill borehole to required depth, using drilling and sampling procedures described above.
 If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination. Only one monitoring well should be installed per borehole.
☐ Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units.
☐ Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table.
☐ Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.

Report: PE5267-SAP

3.3

	As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen.									
	Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand.									
	Backfill remainder of borehole with holeplug or with auger cuttings (if contamination is not suspected).									
	Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match surrounding ground surface.									
Mc	onitoring Well Sampling Procedure									
Εq	uipment									
	Water level metre or interface probe on hydrocarbon/LNAPL sites Spray bottles containing water and methanol to clean water level tape or interface probe Peristaltic pump Polyethylene tubing for peristaltic pump Flexible tubing for peristaltic pump Latex or nitrile gloves (depending on suspected contaminant) Allen keys and/or 9/16" socket wrench to remove well caps Graduated bucket with volume measurements pH/Temperature/Conductivity combo pen									
	Laboratory-supplied sample bottles									
Sa	mpling Procedure									
	Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.									
	Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product.									
	Measure total depth of well.									
	Clean water level tape or interface probe using methanol and water. Change									
_	gloves between wells.									
	Calculate volume of standing water within well and record.									
	Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue									

Report: PE5267-SAP

4.0

	to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.										
	Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).										
	Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.										
	Replace well cap and flushmount casing cap.										
QI	UALITY ASSURANCE/QUALITY CONTROL (QA/QC)										
Th	e QA/QC program for this Phase II ESA is as follows:										
	All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.										
	All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).										
	Where groundwater samples are to be analyzed for VOCs, one laboratory-provided trip blank will be submitted for analysis with every laboratory submission.										
	Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples										
	Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.										

Report: PE5267-SAP

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half (0.5 x) the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MECP site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

Report: PE5267-SAP

May 21, 2021

Page 9

6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Ph	ysical impediments to the Sampling and Analysis plan may include:
	The location of underground utilities
	Poor recovery of split-spoon soil samples
	Insufficient groundwater volume for groundwater samples
	Breakage of sampling containers following sampling or while in transit to the laboratory
	Elevated detection limits due to matrix interference (generally related to soil colour or presence of organic material)
	Elevated detection limits due to high concentrations of certain parameters, necessitating dilution of samples in laboratory
	Drill rig breakdowns
	Winter conditions
	Other site-specific impediments
Sit	e-specific impediments to the Sampling and Analysis plan are discussed in the

body of the Phase II ESA report.

Report: PE5267-SAP

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DATUM

SOIL PROFILE AND TEST DATA

FILE NO.

Phase II - Environmental Site Assessment 55 Colonel By Drive Ottawa, Ontario

PE5267 **REMARKS** HOLE NO. **BH 1-21** BORINGS BY CME-55 Low Clearance Drill **DATE** May 14, 2021 **SAMPLE Photo Ionization Detector** Monitoring Well Construction PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY STRATA N VALUE or RQD NUMBER TYPE **Lower Explosive Limit % GROUND SURFACE** 80 0+67.20FILL: Topsoil with brown silty sand).20 1 1+66.20SS 2 25 18 SS 3 38 50 +2 + 65.20FILL: Brown silty sand with crushed stone, brick and concrete, trace clay SS 4 42 33 3+64.20SS 5 33 5 SS 6 29 50+ 4 + 63.20SS 7 67 77 5.00 5+62.20RC 1 100 72 6+61.202 RC 100 69 7+60.20**BEDROCK:** Fair to good quality, grey limestone ¥ 8+59.20RC 3 100 67 9+58.20RC 100 4 77 10+57.2010.49 End of Borehole (GWL @ 9.00m - May 25, 2021) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 55 Colonel By Drive Ottawa, Ontario

DATUM FILE NO. PE5267 **REMARKS** HOLE NO. **BH 2-21** BORINGS BY CME-55 Low Clearance Drill **DATE** May 17, 2021 **SAMPLE Photo Ionization Detector** Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 0+66.14ΑU 1 1 + 65.14SS 2 23 FILL: Brown silty sand with crushed stone and organics, trace topsoil and SS 3 37 2+64.14 SS 4 50+ 2.62 3+63.14RC 1 64 100 4+62.145+61.14RC 2 100 55 6 + 60.14BEDROCK: Fair to good quality, RC 3 100 66 grey limestone 7+59.148+58.14RC 4 100 70 9+57.14RC 5 100 85 10+56.14 10.62 End of Borehole (GWL @ 6.86m - May 25, 2021) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DATUM

SOIL PROFILE AND TEST DATA

FILE NO.

Phase II - Environmental Site Assessment 55 Colonel By Drive Ottawa, Ontario

PE5267 **REMARKS** HOLE NO. **BH 3-21** BORINGS BY CME-55 Low Clearance Drill **DATE** May 17, 2021 **SAMPLE Photo Ionization Detector** Monitoring Well Construction PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD STRATA NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 0+67.28ΑU 1 FILL: Brown silty sand with organics 1+66.28SS 2 42 33 SS 3 42 20 2 + 65.28FILL: Brown silty sand with organics and crushed stone, trace concrete SS 4 33 35 and brick 3+64.28SS 5 33 25 4+63.284.27 ¥ Very stiff to stiff, brown SILTY CLAY SS 6 83 7 5+62.28SS 7 0 50+ GLACIAL TILL: Brown to grey silty clay with sand, gravel, cobbles and 6+61.28boulders SS 8 83 6 7.01 ∕⊠.SS 9 50+ 17 7+60.28End of Borehole Practical refusal to augering at 7.01m depth. (GWL @ 5.60m - May 25, 2021) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 55 Colonel By Drive Ottawa, Ontario

DATUM FILE NO. PE5267 **REMARKS** HOLE NO. **BH 4-21** BORINGS BY CME-55 Low Clearance Drill **DATE** May 17, 2021 **SAMPLE Photo Ionization Detector** Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER **Lower Explosive Limit % GROUND SURFACE** 80 0+66.89ΑU 1 1 + 65.89SS 2 33 42 FILL: Brown silty sand with crushed stone, gravel, trace concrete and SS 3 33 11 topsoil 2 + 64.89SS 4 0 50 +3+63.893.28 RC 1 100 28 4 + 62.892 5+61.89RC 100 69 6+60.89RC 3 100 85 BEDROCK: Poor to good quality, grey limestone 7+59.898+58.894 100 68 RC 9+57.895 75 RC 100 10+56.89<u>10.36</u>Ē End of Borehole (GWL @ 5.64m - May 25, 2021) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

55 Colonel By Drive

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Phase II - Environmental Site Assessment Ottawa, Ontario

DATUM Geodetic **REMARKS**

FILE NO. PE5267

HOLE NO. TP 1-21 **BORINGS BY** Backhoe **DATE** June 15, 2021 **SAMPLE Photo Ionization Detector** STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) N VALUE or RQD RECOVERY NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 0+66.76FILL: Crushed stone with brown silty sand 0.50 G 1 1 + 65.762 G FILL: Brown silty sand wiht crushed stone, some concrete, trace brick and clay G 3 2 + 64.76G 4 End of Test Pit Practical refusal to excavation on concrete at 2.50m depth. 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 55 Colonel By Drive Ottawa, Ontario

DATUM Geodetic FILE NO. PE5267											7
REMARKS BORINGS BY Backhoe				_		June 15,	2021		HOLE NO.	TP 2-2	21
BORINGS BY DACKING	PLOT		CAR		DAIE	June 15,	2021	Dhoto I	onization De		
SOIL DESCRIPTION			DEPTH ELEV. (m) Vo			tile Organic Rd		Monitoring Well Construction			
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			○ Lowe	r Explosive	Limit %	Consti
GROUND SURFACE TOPSOIL 0.10				2	4	0-	68.10	20	40 60	80	2
TOPSOIL 0.10		G	1								
											-
		_									
		G	2								
FILL: Brown silty sand with crushed											
stone, cobbles and boulders, some concrete, trace brick											
						1-	67.10				
											-
		_									
		G	3								
											-
		_									
1.90		G	4					• · · · · · · · · · · · · · · · · · · ·		(]
End of Test Pit											
Practical refusal to excavation on											
concrete at 1.90m depth.											
								100	200 300		1 00
									Eagle Rdg. (as Resp. △ Me		

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Phase II - Environmental Site Assessment 55 Colonel By Drive Ottawa, Ontario

DATUM Geodetic									FILE NO.	PE5267	7
REMARKS				_		l 45	0001		HOLE NO.	TP 3-2)1
BORINGS BY Backhoe					DATE	June 15,	2021				
SOIL DESCRIPTION	PLOT			/PLE	F-1	DEPTH (m)	ELEV. (m)	1	onization Detaile Organic Rd		Monitoring Well Construction
	STRATA	TYPE	NUMBER	RECOVERY	N VALUE or RQD			O Lowe	r Explosive	Limit %	onitorir Sonstru
GROUND SURFACE	w		z	Æ	z °	0-	70.65	20	40 60	80	ž
TOPSOIL 0.10	XXX	G	1				70.00	†			
FILL: Brown silty sand with crushed stone, trace brick		_									
- trace coal and wood by 0.5m depth		G -	2								
		G -	3								
0.90											
						1-	69.65				
FILL: Brown silty sand, some coal, trace clay		_									
,		G	4								
1.50											
FILL: Brown silty sand, some clay, trace brick and coal											
2.00						2-	68.65				
		G	5					•			
FILL: Brown silty sand with clay,		_									
gravel, cobbles and boulders											
		_									
3.00		G 	6			3.	67.65	•			
End of Test Pit							07.00				
									000 000	400 =	
									200 300 Eagle Rdg. (as Resp. △ Me		UÜ

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Phase II - Environmental Site Assessment 55 Colonel By Drive Ottawa, Ontario

SOIL PROFILE AND TEST DATA

DATUM Geodetic									FILE NO.	PE5267	7
REMARKS					. TE	luna 1E	2021		HOLE NO	TP 4-2	21
BORINGS BY Backhoe					AIE (June 15,	2021				
SOIL DESCRIPTION	A PLOT			IPLE	ш .	DEPTH (m)	ELEV. (m)			Detector Rdg. (ppm)	ng Wel
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD					ve Limit %	Monitoring Well Construction
GROUND SURFACE				<u> </u>	4	0-	67.07	20	40 6	0 80	_
TOPSOIL 0.10	$\times\!\!\times\!\!\times$	G	1								
FILL: Brown silty sand with crushed stone, trace concrete and brick											
		G	2								
End of Test Pit Practical refusal to excavation on concrete at 0.80m depth.											
									200 30 Eagle Rdg		000

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 55 Colonel By Drive Ottawa. Ontario

DATUM Geodetic						tarra, Or			FILE NO.	PE5267	,
REMARKS									HOLE NO.		
BORINGS BY Backhoe				D	ATE .	June 15,	2021			TP 5-2	1
SOIL DESCRIPTION	PLOT		SAMPLE DEPTH				ELEV. (m)		onization [ile Organic R		ng Well action
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	,	,	O Lowe	r Explosive	e Limit %	Monitoring Well Construction
GROUND SURFACE				꿆	z °	0-	-66.20	20	40 60	80	Σ
TOPSOIL 0.10 FILL: Brown silty sand with crushed stone, trace brick and coal 0.70		G G 	2								
End of Test Pit											
Practical refusal to excavation on concrete at 0.70m depth.								100	200 300		00
								RKI E	agle Rdg.		

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 55 Colonel By Drive

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario **DATUM** Geodetic FILE NO. PE5267 **REMARKS** HOLE NO. **TP 6-21 BORINGS BY** Backhoe **DATE** June 15, 2021 **SAMPLE Photo Ionization Detector** STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) N VALUE or RQD RECOVERY NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 0+65.82**TOPSOIL** 0.10 G 1 G 2 1 + 64.82FILL: Brown silty sand with crushed stone, gravel, concrete, trace brick G 3 2 + 63.82G 4 G 5 3 + 62.82End of Test Pit 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Phase II - Environmental Site Assessment 55 Colonel By Drive Ottawa, Ontario

DATUM Geodetic										FIL	E NC).	PE5	267
REMARKS BORINGS BY Backhoe				-	\ATE	luna 1E	2021			НО	DLE N	Ю.	TP 7	7-21
BURINGS BY DACKING	PLOT		CAL	/IPLE	JAIE (June 15,	2021	Photo		ni-	rotio	n Do		
SOIL DESCRIPTION						DEPTH (m)	ELEV. (m)	Photo Ionization Detector ■ Volatile Organic Rdg. (ppm)				> -		
	STRATA	TYPE	NUMBER	RECOVERY	N VALUE or RQD			O Low	ver	Ex	plos	sive I	_imit %	onitori Constr
GROUND SURFACE				꿆	z °	0-	66.64	20		40		60	80	Σ
TOPSOIL 0.10	XXX	G	1				00.01	\P						
FILL: Brown silty sand with crushed stone, trace brick and concrete														
		G	2					P						
		 _ _ G	3									- - -		
		_						Tilli				1		
						1-	65.64							
									;					
		_												
FILL: Brown silty sand with blast		G	4					•		<u>.</u>				
rock, crushed stone, trace brick, clay and coal		_												
						2-	64.64		÷	+				
									. :					
		G	5					.						
		_												
0.00		G	6					\P						
3.00 End of Test Pit						3-	-63.64		÷	+				
									:					
									. :					
									. :					
								100		200) :	300	400	500
									ΙE	agl	e Ro	lg. (p	pm)	

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment

55 Colonel By Drive 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario **DATUM** Geodetic FILE NO. PE5267 **REMARKS** HOLE NO. **TP 8-21 BORINGS BY** Backhoe **DATE** June 15, 2021 **SAMPLE Photo Ionization Detector** STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE Lower Explosive Limit % **GROUND SURFACE** 80 0+66.00**TOPSOIL** <u>0.10</u> G 1

G 2 FILL: Brown silty sand with crushed stone, gravel, boulders, cobbles and concrete, trace brick and wood 1 + 65.00G 3

1.80 2 + 64.00G 4 FILL: Brown silty sand with clay, some brick and crushed stone

5

G

G 6 3 + 63.00End of Test Pit

200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 55 Colonel By Drive Ottawa, Ontario

DATUM Geodetic									FILE NO.	PE5267	,
REMARKS									HOLE NO.	TP 9-2	
BORINGS BY Backhoe				D	ATE .	June 15,	2021			17 3-2	
SOIL DESCRIPTION	PLOT			MPLE	₩ -	DEPTH (m)	ELEV. (m)	1	onization D		Monitoring Well Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				r Explosive		Aonitori Constr
GROUND SURFACE				<u> </u>		0-	66.26	20	40 60	80	_
FILL: Brown silty sand with crushed stone, gravel, concrete, cobbles and boulders 1.50 End of Test Pit Practical refusal to excavation on concrete at 1.50m depth.			1 2 3				-66.26 -65.26				
									200 300 Eagle Rdg. (as Resp. △ M		00

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value		
Very Soft	<12	<2		
Soft	12-25	2-4		
Firm	25-50	4-8		
Stiff	50-100	8-15		
Very Stiff	100-200	15-30		
Hard	>200	>30		

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, S_t , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC% - Natural water content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic Limit, % (water content above which soil behaves plastically)

PI - Plasticity Index, % (difference between LL and PL)

Dxx - Grain size at which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

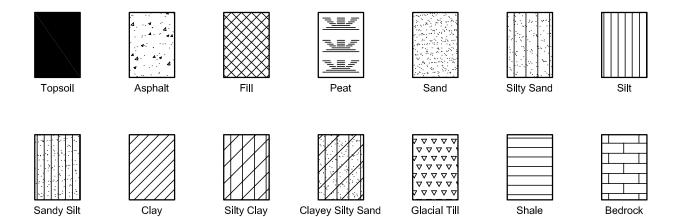
p'₀ - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

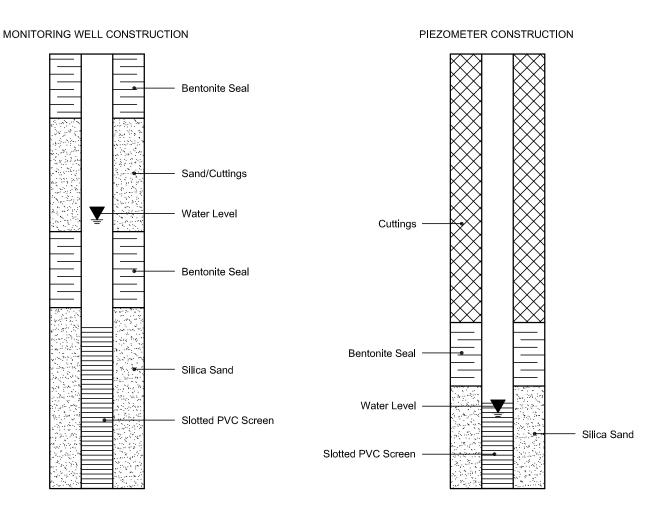
Ccr - Recompression index (in effect at pressures below p'c)
 Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'c / p'o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5

Attn: Karyn Munch

Client PO: 33033 Project: PE5267 Custody: 126670

Report Date: 4-Jun-2021 Order Date: 28-May-2021

Order #: 2122570

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2122570-01	MW1-21-GW1
2122570-02	MW2-21-GW1
2122570-03	MW3-21-GW1
2122570-04	MW4-21-GW1
2122570-05	DUP1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Report Date: 04-Jun-2021 Order Date: 28-May-2021

Project Description: PE5267

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33033

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	1-Jun-21	1-Jun-21
Chromium, hexavalent - water	MOE E3056 - colourimetric	31-May-21	31-May-21
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	31-May-21	3-Jun-21
Metals, ICP-MS	EPA 200.8 - ICP-MS	31-May-21	31-May-21
PHC F1	CWS Tier 1 - P&T GC-FID	31-May-21	1-Jun-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	2-Jun-21	4-Jun-21
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	2-Jun-21	3-Jun-21

 Certificate of Analysis
 Report Date: 04-Jun-2021

 Client: Paterson Group Consulting Engineers
 Order Date: 28-May-2021

Client PO: 33033 Project Description: PE5267

	Client ID: Sample Date: Sample ID: MDL/Units	MW1-21-GW1 25-May-21 09:00 2122570-01 Water	MW2-21-GW1 25-May-21 09:00 2122570-02 Water	MW3-21-GW1 25-May-21 09:00 2122570-03 Water	MW4-21-GW1 25-May-21 09:00 2122570-04 Water
Metals			•	!	
Mercury	0.1 ug/L	<0.1	<0.1	<0.1	-
Antimony	0.5 ug/L	<0.5	<0.5	<0.5	-
Arsenic	1 ug/L	<1	<1	<1	-
Barium	1 ug/L	40	629	65	-
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	-
Boron	10 ug/L	137	74	39	-
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	-
Chromium	1 ug/L	<1	<1	<1	-
Chromium (VI)	10 ug/L	<10	<10	<10	-
Cobalt	0.5 ug/L	1.2	1.2	0.6	-
Copper	0.5 ug/L	3.3	4.9	3.5	-
Lead	0.1 ug/L	<0.1	<0.1	<0.1	-
Molybdenum	0.5 ug/L	4.1	2.9	0.9	-
Nickel	1 ug/L	8	4	7	-
Selenium	1 ug/L	6	<1	2	-
Silver	0.1 ug/L	<0.1	<0.1	<0.1	-
Sodium	200 ug/L	455000	228000	289000	-
Thallium	0.1 ug/L	<0.1	0.1	<0.1	-
Uranium	0.1 ug/L	2.8	3.8	4.7	-
Vanadium	0.5 ug/L	<0.5	0.5	<0.5	-
Zinc	5 ug/L	10	17	9	-
Volatiles					
Benzene	0.5 ug/L	-	-	<0.5	-
Ethylbenzene	0.5 ug/L	-	-	<0.5	-
Toluene	0.5 ug/L	-	-	<0.5	-
m,p-Xylenes	0.5 ug/L	-	-	<0.5	-
o-Xylene	0.5 ug/L	-	-	<0.5	-
Xylenes, total	0.5 ug/L	-	-	<0.5	-
Toluene-d8	Surrogate	-	-	120%	-
Hydrocarbons			T	Г	Г
F1 PHCs (C6-C10)	25 ug/L	-	-	<25	-
F2 PHCs (C10-C16)	100 ug/L	-	-	<100	-
F3 PHCs (C16-C34)	100 ug/L	-	-	<100	-
F4 PHCs (C34-C50) Semi-Volatiles	100 ug/L	-	-	<100	-

Certificate of Analysis

Terphenyl-d14

Order #: 2122570

Report Date: 04-Jun-2021

Order Date: 28-May-2021

Project Description: PE5267

Client: Paterson Group Consulting Engineers

Client PO: 33033

MW2-21-GW1 Client ID: MW1-21-GW1 MW3-21-GW1 MW4-21-GW1 Sample Date: 25-May-21 09:00 25-May-21 09:00 25-May-21 09:00 25-May-21 09:00 2122570-01 2122570-02 2122570-03 2122570-04 Sample ID: Water MDL/Units Water Water Water 0.05 ug/L Acenaphthene <0.05 < 0.05 < 0.05 0.05 ug/L Acenaphthylene < 0.05 <0.05 <0.05 0.01 ug/L Anthracene < 0.01 < 0.01 < 0.01 0.01 ug/L Benzo [a] anthracene < 0.01 < 0.01 < 0.01 0.01 ug/L Benzo [a] pyrene < 0.01 < 0.01 < 0.01 Benzo [b] fluoranthene 0.05 ug/L < 0.05 < 0.05 < 0.05 Benzo [g,h,i] perylene 0.05 ug/L < 0.05 < 0.05 < 0.05 0.05 ug/L Benzo [k] fluoranthene < 0.05 <0.05 < 0.05 0.05 ug/L Chrysene < 0.05 < 0.05 < 0.05 0.05 ug/L Dibenzo [a,h] anthracene < 0.05 < 0.05 < 0.05 0.01 ug/L Fluoranthene 0.04 <0.01 < 0.01 Fluorene 0.05 ug/L < 0.05 < 0.05 < 0.05 0.05 ug/L Indeno [1,2,3-cd] pyrene < 0.05 < 0.05 _ < 0.05 0.05 ug/L 1-Methylnaphthalene < 0.05 < 0.05 < 0.05 0.05 ug/L 2-Methylnaphthalene < 0.05 < 0.05 < 0.05 0.10 ug/L Methylnaphthalene (1&2) <0.10 < 0.10 < 0.10 0.05 ug/L Naphthalene 0.34 < 0.05 < 0.05 0.05 ug/L Phenanthrene 0.08 <0.05 <0.05 0.01 ug/L Pyrene 0.04 <0.01 <0.01 2-Fluorobiphenyl Surrogate 80.4% 93.9% 92.9% -

90.4%

Surrogate

117%

119%

_

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33033

Report Date: 04-Jun-2021 Order Date: 28-May-2021

Project Description: PE5267

	Client ID:	DUP1	-	_	_
	Sample Date:	25-May-21 09:00	-	-	-
	Sample ID:	2122570-05	-	-	-
	MDL/Units	Water	-	-	-
Metals	0.5.00/		T	<u> </u>	
Antimony	0.5 ug/L	<0.5	-	-	-
Arsenic	1 ug/L	<1	-	-	-
Barium	1 ug/L	73	-	-	-
Beryllium	0.5 ug/L	<0.5	-	-	-
Boron	10 ug/L	30	-	-	-
Cadmium	0.1 ug/L	<0.1	-	-	-
Chromium	1 ug/L	<1	-	-	-
Chromium (VI)	10 ug/L	<10	-	-	-
Cobalt	0.5 ug/L	<0.5	-	-	-
Copper	0.5 ug/L	1.4	-	-	-
Lead	0.1 ug/L	<0.1	-	-	-
Molybdenum	0.5 ug/L	4.4	-	-	-
Nickel	1 ug/L	2	-	-	-
Selenium	1 ug/L	4	-	-	-
Silver	0.1 ug/L	<0.1	-	-	-
Sodium	200 ug/L	328000	-	-	-
Thallium	0.1 ug/L	<0.1	-	-	-
Uranium	0.1 ug/L	2.3	-	-	-
Vanadium	0.5 ug/L	<0.5	-	-	-
Zinc	5 ug/L	<5	-	-	-
Semi-Volatiles			•		
Acenaphthene	0.05 ug/L	<0.05	-	-	-
Acenaphthylene	0.05 ug/L	<0.05	-	-	-
Anthracene	0.01 ug/L	<0.01	-	-	-
Benzo [a] anthracene	0.01 ug/L	<0.01	-	-	-
Benzo [a] pyrene	0.01 ug/L	<0.01	-	-	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	-	-	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	-	-	-
Benzo [k] fluoranthene	0.05 ug/L	<0.05	-	-	-
Chrysene	0.05 ug/L	<0.05	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	-	-	-
Fluoranthene	0.01 ug/L	<0.01	-	-	-
Fluorene	0.05 ug/L	<0.05	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	-	-	-

Report Date: 04-Jun-2021

Order Date: 28-May-2021

Project Description: PE5267

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client. Paterson Group Consulting Engineers

Client PO: 33033

	Client ID:	DUP1	_		
	Sample Date:	_	_	-	-
	Sample ID:	•	-	-	-
	MDL/Units	Water	-	-	-
1-Methylnaphthalene	0.05 ug/L	<0.05	-	-	-
2-Methylnaphthalene	0.05 ug/L	<0.05	-	-	-
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	-	-	-
Naphthalene	0.05 ug/L	<0.05	-	-	-
Phenanthrene	0.05 ug/L	<0.05	-	-	-
Pyrene	0.01 ug/L	<0.01	-	-	-
2-Fluorobiphenyl	Surrogate	92.3%	-	-	-
Terphenyl-d14	Surrogate	114%	-	-	-

Report Date: 04-Jun-2021

Order Date: 28-May-2021 **Project Description: PE5267**

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 33033

	Reporting			Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals			Ü						
Mercury	ND	0.1	ug/L						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium (VI)	ND	10	ug/L						
Chromium	ND ND	1	ug/L						
Cobalt	ND ND	0.5	ug/L						
Copper	ND ND	0.5	ug/L						
Lead	ND ND	0.5	ug/L ug/L						
Molybdenum	ND ND	0.5	-						
Nickel	ND ND	1	ug/L						
Selenium	ND ND	1	ug/L						
Silver	ND ND	0.1	ug/L						
	ND ND	200	ug/L						
Sodium	ND ND		ug/L						
Thallium	ND ND	0.1	ug/L						
Uranium	ND ND	0.1 0.5	ug/L						
Vanadium Zinc	ND ND	0.5 5	ug/L ug/L						
Semi-Volatiles	, no	Ŭ	ugr						
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
14 (1) (1) (400)	ND ND	0.03							
Naphthalene (1&2)	ND ND	0.10	ug/L ug/L						
Phenanthrene	ND ND	0.05	ug/L ug/L						
Pyrene	ND ND	0.03	ug/L ug/L						
Surrogate: 2-Fluorobiphenyl	16.8	0.01	ug/L ug/L		84.2	50-140			
			-						
Surrogate: Terphenyl-d14 /olatiles	23.0		ug/L		115	50-140			
	NID	0.5	u~/l						
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	99.7		ug/L		125	50-140			

Report Date: 04-Jun-2021 Order Date: 28-May-2021

Project Description: PE5267

Certificate of Analysis

Client PO: 33033

Client: Paterson Group Consulting Engineers

Method Quality Control: Duplicate

				Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons	_								
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Metals									
Mercury	ND	0.1	ug/L	ND			NC	20	
Antimony	1.09	0.5	ug/L	ND			NC	20	
Arsenic	ND	1	ug/L	ND			NC	20	
Barium	81.7	1	ug/L	81.7			0.0	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	148	10	ug/L	150			1.6	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Chromium (VI)	ND	10	ug/L	ND			NC	20	
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	ND	0.5	ug/L	ND			NC	20	
Copper	20.9	0.5	ug/L	21.1			0.9	20	
Lead	0.13	0.1	ug/L	0.14			3.7	20	
Molybdenum	2.07	0.5	ug/L	1.99			NC	20	
Nickel	ND	1	ug/L	ND			NC	20	
Selenium	ND	1	ug/L	ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	58400	200	ug/L	59600			2.1	20	
Thallium	ND	0.1	ug/L	ND			NC	20	
Uranium	1.9	0.1	ug/L	1.9			1.6	20	
Vanadium	0.78	0.5	ug/L	0.79			1.1	20	
Zinc	12	5	ug/L	ND			NC	20	
Volatiles			Ü						
Benzene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: Toluene-d8	95.2	0.0	ug/L	ND	119	50-140	110	00	

Report Date: 04-Jun-2021 Order Date: 28-May-2021

Project Description: PE5267

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33033

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
lydrocarbons									
F1 PHCs (C6-C10)	1830	25	ug/L	ND	91.3	68-117			
F2 PHCs (C10-C16)	1310	100	ug/L	ND	81.7	60-140			
F3 PHCs (C16-C34)	3510	100	ug/L	ND	89.4	60-140			
F4 PHCs (C34-C50)	2270	100	ug/L	ND	91.7	60-140			
Netals									
Mercury	3.42	0.1	ug/L	ND	114	70-130			
Antimony	43.2	0.5	ug/L	ND	85.5	80-120			
Arsenic	43.4	1	ug/L	ND	86.1	80-120			
Barium	45.7	1	ug/L	ND	91.3	80-120			
Beryllium	40.5	0.5	ug/L	ND	80.9	80-120			
Boron	44	10	ug/L	ND	86.2	80-120			
Cadmium	38.3	0.1	ug/L	ND	76.6	80-120			QM-07
Chromium (VI)	195	10	ug/L	ND	97.5	70-130			
Chromium	52.5	1	ug/L	ND	104	80-120			
Cobalt	50.9	0.5	ug/L	ND	102	80-120			
Copper	47.4	0.5	ug/L	ND	94.8	80-120			
Lead	42.8	0.1	ug/L	0.14	85.3	80-120			
Molybdenum	51.8	0.5	ug/L	1.99	99.7	80-120			
Nickel	47.5	1	ug/L	ND	93.6	80-120			
Selenium	33.3	1	ug/L	ND	66.2	80-120			QM-07
Silver	41.3	0.1	ug/L	ND	82.6	80-120			
Sodium	8490	200	ug/L	ND	84.8	80-120			
Thallium	40.4	0.1	ug/L	ND	80.8	80-120			
Uranium	45.6	0.1	ug/L	1.9	87.3	80-120			
Vanadium	54.5	0.5	ug/L	0.79	107	80-120			
Zinc	49	5	ug/L	ND	91.8	80-120			QM-07
emi-Volatiles									
Acenaphthene	4.82	0.05	ug/L	ND	96.3	50-140			
Acenaphthylene	3.84	0.05	ug/L	ND	76.8	50-140			
Anthracene	4.49	0.01	ug/L	ND	89.8	50-140			
Benzo [a] anthracene	4.10	0.01	ug/L	ND	82.0	50-140			
Benzo [a] pyrene	5.14	0.01	ug/L	ND	103	50-140			
Benzo [b] fluoranthene	5.71	0.05	ug/L	ND	114	50-140			
Benzo [g,h,i] perylene	4.30	0.05	ug/L	ND	86.0	50-140			
Benzo [k] fluoranthene	5.48	0.05	ug/L	ND	110	50-140			
Chrysene	5.18	0.05	ug/L	ND	104	50-140			
Dibenzo [a,h] anthracene	4.64	0.05	ug/L	ND	92.7	50-140			
Fluoranthene	4.59	0.01	ug/L	ND	91.9	50-140			
Fluorene	4.11	0.05	ug/L	ND	82.1	50-140			
Indeno [1,2,3-cd] pyrene	4.42	0.05	ug/L	ND	88.5	50-140			
1-Methylnaphthalene	3.85	0.05	ug/L	ND	77.1	50-140			
2-Methylnaphthalene	4.23	0.05	ug/L	ND	84.6	50-140			
Naphthalene	4.25	0.05	ug/L	ND	84.9	50-140			
Phenanthrene	4.49	0.05	ug/L	ND	89.9	50-140			
Pyrene	4.45	0.01	ug/L	ND	89.0	50-140			
Surrogate: 2-Fluorobiphenyl	15.3		ug/L		76.3	50-140			
Surrogate: Terphenyl-d14	24.5		ug/L		122	50-140			

Report Date: 04-Jun-2021 Order Date: 28-May-2021

Project Description: PE5267

Certificate of Analysis

Client: Paterson Group Consulting Engineers
Client PO: 33033

Method Quality Control: Spike

Analyte	Result	Reporting Source %REC %REC Limit Limit				RPD	RPD Limit	Notes	
Benzene	31.4	0.5	ug/L	ND	78.4	60-130			
Ethylbenzene	35.8	0.5	ug/L	ND	89.4	60-130			
Toluene	35.5	0.5	ug/L	ND	88.6	60-130			
m,p-Xylenes	70.7	0.5	ug/L	ND	88.4	60-130			
o-Xylene	34.5	0.5	ug/L	ND	86.4	60-130			
Surrogate: Toluene-d8	80.9		ug/L		101	50-140			

Client: Paterson Group Consulting Engineers

Order #: 2122570

Report Date: 04-Jun-2021 Order Date: 28-May-2021

Project Description: PE5267

Qualifier Notes:

Client PO: 33033

QC Qualifiers:

Certificate of Analysis

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 2122570

Paracel Order Number (Lab Use Only)

Chain Of Custody (Lab Use Only)

Nº 126670

Client Name: Rateson	Project Ref: PES267	Page _ of	of				
Contact Name: Kary Munch	Quote #:	Turnaround T	ime				
Address:	10#: 33033	☐ 1 day	☐ 3 day				
154 Colonnade Ad	E-mail: Krnunch@patersongroup.ca	☐ 2 day	☐ Regular				
Telephone: (13-226-7738)	Jeamposaronc@patersongroup.ca	Date Required:					

Address:			10#: 53035						_	☐ 1 day			L	□ 3 day						
1St Columnade Rd				[composaronc@patersongroup.ca									☐ 2 day				Ċ	☐ Regular		
Telephone: (13-226-77-38)					1 composarion Copalarson group ca										Date Required:					
Regulation 153/04 Other Regulation			Matrix Type: S (Soil/Sed.) GW (Ground Water)								Required Analysis									
☐ Table 1 ☐ Res/Park ☐ Med/Fine	REG 558	☐ PWQ0	SW (Surface Water) SS (Storm/Sanitary Sewer)										_							
☐ Table 2 ☐ Ind/Comm ☐ Coarse	☐ CCME	☐ MISA			P (P	aint) A (Air) O (Oth	ier)	٦,												
☐ Table 3 ☐ Agri/Other	☐ SU - Sani	☐ SU - Storm			ers			J X			CP									
☐ Table	Mun:	,		me	ntain	Sample	Taken	1-F4-	9		by IC									
For RSC: Yes No	Other:		Matrix	Air Volume	of Containers		,	PHCs E	č	Hs	Metals		B (HWS)							
Sample ID/Location	on Name			Air	#	Date	Time	PH	VOCs	PAHS	ž	H C	0	_	<u> </u>	1				
1 MW1-21-GW1			GW		4	2(32(303)		\perp		<u>V</u>	<u> </u>	/ v	1		$oxed{oxed}$					
2 MW2-21-GW1					3		,		Ш	4		V	1	L			. ,	. :		
3 MW3-21-GW1	,				7							VΙ	1					- 1		
4 MWA-21-GW1	. 10				1										7					
5 DOR 1					4							V								
6									П									1		
7									П		7									
8	-							\top	П		\forall	\top	T							
9								\dagger	П	7	\dagger	\top	\top		\top					
10								\dagger	Н	7	\dagger	\dagger	+		\vdash					
Comments:												М	ethod	of Deliv	erv:					
Comments.													1	ACI	9CE	4	Lou.	CIEC		
Relinquished By (Sign):		Received By D	river/D	epot:	1	EousE 1 3 10	Received at Lab:		860	ev	ı	V	erified			the				
Relinquished By (Print):	1 (000	Date/Time:	18	04	5/2	1 310	Date/Time:	8.10	a	17	25	- D:	ate/Tin	ne: M	ay 20			(1:24		
20 011	of miles	suggife >	4	-	/~		- 1(1/	100							10	1	1	0.0		

Revision 3.0

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 33034 Project: PE5267 Custody: 126671

Report Date: 7-Jun-2021 Order Date: 1-Jun-2021

Order #: 2123228

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 2123228-01 DUP2

Approved By:

Dale Robertson, BSc Laboratory Director

Client PO: 33034

Order #: 2123228

Report Date: 07-Jun-2021 Order Date: 1-Jun-2021

Order Date: 1-Jun-2021
Project Description: PE5267

Analysis Summary Table

Client: Paterson Group Consulting Engineers

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - water	MOE E3056 - colourimetric	1-Jun-21	2-Jun-21
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	7-Jun-21	7-Jun-21
Metals, ICP-MS	EPA 200.8 - ICP-MS	3-Jun-21	4-Jun-21

Order #: 2123228

Report Date: 07-Jun-2021

Order Date: 1-Jun-2021 **Project Description: PE5267**

Client: Paterson Group Consulting Engineers

Client PO: 33034

Certificate of Analysis

Client ID: DUP2 Sample Date: 25-May-21 09:00 2123228-01 Sample ID: Water MDL/Units Metals Mercury 0.1 ug/L < 0.1 0.5 ug/L Antimony <0.5 1 ug/L Arsenic <1 1 ug/L Barium 701 0.5 ug/L Beryllium < 0.5 10 ug/L Boron 87 --0.1 ug/L Cadmium <0.1 1 ug/L Chromium <1 Chromium (VI) 10 ug/L <10 0.5 ug/L Cobalt < 0.5 0.5 ug/L Copper 4.8 0.1 ug/L Lead 0.1 0.5 ug/L Molybdenum 3.2 1 ug/L Nickel 4 Selenium 1 ug/L <1 Silver 0.1 ug/L <0.1 200 ug/L Sodium 237000 0.1 ug/L Thallium 0.2 0.1 ug/L Uranium 4.1 0.5 ug/L Vanadium 0.6 Zinc 5 ug/L 9

Order #: 2123228

Report Date: 07-Jun-2021 Order Date: 1-Jun-2021

 Client:
 Paterson Group Consulting Engineers
 Order Date: 1-Jun-2021

 Client PO:
 33034
 Project Description: PE5267

Method Quality Control: Blank

mounta Quanty Control Diam									
Analyte	Dogult	Reporting		Source	W BEO	%REC	DDD	RPD	Natas
Allalyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Mercury	ND	0.1	ug/L						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium (VI)	ND	10	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
		-	J. –						

Order #: 2123228

Report Date: 07-Jun-2021 Order Date: 1-Jun-2021

Project Description: PE5267

Client: Paterson Group Consulting Engineers

Client PO: 33034

Method Quality Control: Duplicate

		Reporting		Source	%REC			RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Mercury	0.12	0.1	ug/L	ND			NC	20	
Antimony	0.55	0.5	ug/L	ND			NC	20	
Arsenic	ND	1	ug/L	ND			NC	20	
Barium	235	1	ug/L	228			2.9	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	32	10	ug/L	31			4.1	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Chromium (VI)	63	10	ug/L	64			1.6	20	
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	7.74	0.5	ug/L	7.85			1.4	20	
Copper	2.11	0.5	ug/L	2.18			3.2	20	
Lead	0.17	0.1	ug/L	ND			NC	20	
Molybdenum	5.18	0.5	ug/L	5.10			1.5	20	
Nickel	6.5	1	ug/L	6.8			3.6	20	
Selenium	ND	1	ug/L	ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	354000	200	ug/L	380000			7.1	20	
Thallium	0.21	0.1	ug/L	0.15			NC	20	
Uranium	0.8	0.1	ug/L	0.8			1.2	20	
Vanadium	ND	0.5	ug/L	ND			NC	20	
Zinc	ND	5	ug/L	ND			NC	20	

Order #: 2123228

Report Date: 07-Jun-2021 Order Date: 1-Jun-2021

Project Description: PE5267

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33034

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	3.31	0.1	ug/L	ND	110	70-130			
Antimony	52.1	0.5	ug/L	ND	104	80-120			
Arsenic	53.2	1	ug/L	ND	106	80-120			
Barium	272	1	ug/L	228	88.9	80-120			
Beryllium	42.9	0.5	ug/L	ND	85.8	80-120			
Boron	66	10	ug/L	31	71.2	80-120		C	M-07
Cadmium	45.7	0.1	ug/L	ND	91.3	80-120			
Chromium (VI)	257	10	ug/L	64	96.5	70-130			
Chromium	57.3	1	ug/L	ND	114	80-120			
Cobalt	60.7	0.5	ug/L	7.85	106	80-120			
Copper	51.0	0.5	ug/L	2.18	97.7	80-120			
Lead	39.1	0.1	ug/L	ND	78.1	80-120		C	M-07
Molybdenum	52.8	0.5	ug/L	5.10	95.4	80-120			
Nickel	56.8	1	ug/L	6.8	100	80-120			
Selenium	44.4	1	ug/L	ND	87.1	80-120			
Silver	45.7	0.1	ug/L	ND	91.5	80-120			
Sodium	8990	200	ug/L	ND	89.9	80-120			
Thallium	46.3	0.1	ug/L	0.15	92.3	80-120			
Uranium	44.1	0.1	ug/L	8.0	86.7	80-120			
Vanadium	59.1	0.5	ug/L	ND	118	80-120			
Zinc	45	5	ug/L	ND	82.9	80-120			

Order #: 2123228

Report Date: 07-Jun-2021 Order Date: 1-Jun-2021

Project Description: PE5267

Certificate of Analysis Client: Paterson Group

Client: Paterson Group Consulting Engineers Client PO: 33034

Qualifier Notes:

QC Qualifiers :

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

Paracel ID: 2123228

Paracel Order Number (Lab Use Only) Chain Of Custody

(Lab Use Only)

Nº 126671

2123728

Client Name: Project Ref: DF5267 of Page Contact Name: Quote #: **Turnaround Time** Address: ☐ 3 day ☐ 1 day E-mail: /camp@sarcone@patersoppap.ca ☑ Regular ☐ 2 day Telephone: Date Required: Regulation 153/04 Other Regulation Matrix Type: S (Soil/Sed.) GW (Ground Water) Required Analysis ☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 □ PWQo SW (Surface Water) SS (Storm/Sanitary Sewer) ☐ Table 2 ☐ Ind/Comm ☐ Coarse P (Paint) A (Air) O (Other) □ CCME ☐ MISA Table 3 Agri/Other ☐ SU - Sani ☐ SU - Storm PHCs F1-F4+BTEX # of Containers ☐ Table Ω Mun: Sample Taken Air Volume ρλ For RSC: Yes No Other: B (HWS) Metals Matrix VOCs Z, Sample ID/Location Name Date Time 1 GW 5/25/2021 2 3 4 5 6 7 8 9 10 Comments: Method of Delivery:

MERCEL COURIEC Relinquished By (Sign): Received By Driver/Depot: Verified By: Odema Relinquished By (Print Date/Time: Date/Time: 5/31 Temperature: pH Verified: Q

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5

Attn: Karyn Munch

Client PO: 32202 Project: PE5267 Custody: 131141

Report Date: 22-Jun-2021 Order Date: 16-Jun-2021

Order #: 2125366

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2125366-01	TP1-21-GS3
2125366-02	TP2-21-GS4
2125366-03	TP3-21-GS3
2125366-04	TP4-21-GS2
2125366-05	TP5-21-GS2
2125366-06	TP6-21-GS5
2125366-09	DUP3
2125366-10	DUP4

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Order #: 2125366

Report Date: 22-Jun-2021 Order Date: 16-Jun-2021

 Client:
 Paterson Group Consulting Engineers
 Order Date: 16-Jun-2021

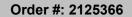
 Client PO:
 32202
 Project Description: PE5267

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	17-Jun-21	17-Jun-21
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	17-Jun-21	18-Jun-21
Mercury by CVAA	EPA 7471B - CVAA, digestion	21-Jun-21	22-Jun-21
PHC F1	CWS Tier 1 - P&T GC-FID	17-Jun-21	17-Jun-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	16-Jun-21	17-Jun-21
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	18-Jun-21	18-Jun-21
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	17-Jun-21	21-Jun-21
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	17-Jun-21	17-Jun-21
Solids, %	Gravimetric, calculation	17-Jun-21	18-Jun-21

Order #: 2125366

Certificate of Analysis


Client: Paterson Group Consulting Engineers

Client PO: 32202 Project Description: PE5267

	Client ID: Sample Date: Sample ID: MDL/Units	TP1-21-GS3 15-Jun-21 09:00 2125366-01 Soil	TP2-21-GS4 15-Jun-21 09:00 2125366-02 Soil	TP3-21-GS3 15-Jun-21 09:00 2125366-03 Soil	TP4-21-GS2 15-Jun-21 09:00 2125366-04 Soil
Physical Characteristics	WDL/OIIItS		COII	0011	0011
% Solids	0.1 % by Wt.	93.3	90.3	87.7	94.9
Metals				-	
Antimony	1.0 ug/g dry	-	<1.0	2.1	<1.0
Arsenic	1.0 ug/g dry	-	3.2	22.3	3.9
Barium	1.0 ug/g dry	-	190	181	149
Beryllium	0.5 ug/g dry	-	<0.5	0.7	<0.5
Boron	5.0 ug/g dry	-	8.7	6.9	7.1
Cadmium	0.5 ug/g dry	-	<0.5	3.1	<0.5
Chromium	5.0 ug/g dry	-	17.6	20.6	15.1
Chromium (VI)	0.2 ug/g dry	-	<0.2	<0.2	<0.2
Cobalt	1.0 ug/g dry	-	4.9	7.4	4.9
Copper	5.0 ug/g dry	-	11.4	51.5	11.3
Lead	1.0 ug/g dry	-	11.1	270	17.8
Mercury	0.1 ug/g dry	-	<0.1	1.0	0.1
Molybdenum	1.0 ug/g dry	-	<1.0	2.3	<1.0
Nickel	5.0 ug/g dry	-	12.4	17.8	10.9
Selenium	1.0 ug/g dry	-	<1.0	4.3	<1.0
Silver	0.3 ug/g dry	-	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	-	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	-	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	-	20.1	26.4	22.5
Zinc	20.0 ug/g dry	-	27.2	1680	48.6
Volatiles					
Acetone	0.50 ug/g dry	<0.50	-	-	-
Benzene	0.02 ug/g dry	<0.02	-	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-

Report Date: 22-Jun-2021

Order Date: 16-Jun-2021

Client: Paterson Group Consulting Engineers

Client PO: 32202

Report Date: 22-Jun-2021 Order Date: 16-Jun-2021

Project Description: PE5267

	Client ID: Sample Date: Sample ID:	TP1-21-GS3 15-Jun-21 09:00 2125366-01	TP2-21-GS4 15-Jun-21 09:00 2125366-02	TP3-21-GS3 15-Jun-21 09:00 2125366-03	TP4-21-GS2 15-Jun-21 09:00 2125366-04
	MDL/Units	Soil	Soil	Soil	Soil
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	•
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	_	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	_	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	_	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
4-Bromofluorobenzene	Surrogate	118%	-	-	-
Dibromofluoromethane	Surrogate	102%	-	-	-
Toluene-d8	Surrogate	118%	-	-	-
Benzene	0.02 ug/g dry	-	<0.02	-	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	-	-
Toluene	0.05 ug/g dry	-	<0.05	-	-

Order #: 2125366

Report Date: 22-Jun-2021

Order Date: 16-Jun-2021

Project Description: PE5267

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 32202

	Client ID: Sample Date: Sample ID:	TP1-21-GS3 15-Jun-21 09:00 2125366-01 Soil	TP2-21-GS4 15-Jun-21 09:00 2125366-02 Soil	TP3-21-GS3 15-Jun-21 09:00 2125366-03 Soil	TP4-21-GS2 15-Jun-21 09:00 2125366-04 Soil
m,p-Xylenes	MDL/Units 0.05 ug/g dry		<0.05		
o-Xylene	0.05 ug/g dry	-		-	-
•	0.05 ug/g dry	-	<0.05	-	-
Xylenes, total Toluene-d8	Surrogate	<u>-</u>	<0.05 115%	-	-
lydrocarbons	Jamogato		11070		
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	-	_
F2 PHCs (C10-C16)	4 ug/g dry	5	5	-	-
F3 PHCs (C16-C34)	8 ug/g dry	386	24	-	-
F4 PHCs (C34-C50)	6 ug/g dry	134	15	_	_
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	-	<0.02	15.5	-
Acenaphthylene	0.02 ug/g dry	-	<0.02	1.43	-
Anthracene	0.02 ug/g dry	-	<0.02	34.0	-
Benzo [a] anthracene	0.02 ug/g dry	-	<0.02	50.9	-
Benzo [a] pyrene	0.02 ug/g dry	_	<0.02	48.5	-
Benzo [b] fluoranthene	0.02 ug/g dry	-	<0.02	43.0	-
Benzo [g,h,i] perylene	0.02 ug/g dry	-	<0.02	23.3	-
Benzo [k] fluoranthene	0.02 ug/g dry	-	<0.02	23.6	-
Chrysene	0.02 ug/g dry	-	<0.02	52.4	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	<0.02	6.01	-
Fluoranthene	0.02 ug/g dry	-	<0.02	123	-
Fluorene	0.02 ug/g dry	-	<0.02	12.8	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	_	<0.02	21.1	-
1-Methylnaphthalene	0.02 ug/g dry	-	<0.02	3.91	-
2-Methylnaphthalene	0.02 ug/g dry	-	<0.02	5.39	-
Methylnaphthalene (1&2)	0.04 ug/g dry		<0.04	9.30	-
Naphthalene	0.01 ug/g dry	-	<0.01	9.72	-
Phenanthrene	0.02 ug/g dry	-	<0.02	123	-
Pyrene	0.02 ug/g dry		<0.02	97.6	-
2-Fluorobiphenyl	Surrogate	-	72.1%	114%	-
Terphenyl-d14	Surrogate	-	89.1%	168% [5]	-

Order #: 2125366

Report Date: 22-Jun-2021 Order Date: 16-Jun-2021

Project Description: PE5267

Client: Paterson Group Consulting Engineers

Client PO: 32202

Certificate of Analysis

TP6-21-GS5 Client ID: TP5-21-GS2 DUP3 DUP4 Sample Date: 15-Jun-21 09:00 15-Jun-21 09:00 15-Jun-21 09:00 15-Jun-21 09:00 2125366-05 2125366-06 2125366-09 2125366-10 Sample ID: Soil Soil MDL/Units Soil Soil **Physical Characteristics** 0.1 % by Wt. % Solids 90.4 90.5 89.0 93.4 Metals 1.0 ug/g dry Antimony 2.0 <1.0 1.0 ug/g dry Arsenic 5.0 3.2 1.0 ug/g dry Barium 90.9 121 0.5 ug/g dry Beryllium < 0.5 < 0.5 5.0 ug/g dry Boron 9.3 5.5 0.5 ug/g dry Cadmium < 0.5 < 0.5 5.0 ug/g dry Chromium _ 18.6 12.7 0.2 ug/g dry <0.2 Chromium (VI) < 0.2 1.0 ug/g dry Cobalt 5.2 4.3 _ 5.0 ug/g dry Copper 25.8 10.5 1.0 ug/g dry 136 17.8 Lead _ _ 0.1 ug/g dry Mercury 0.2 0.1 1.0 ug/g dry Molybdenum 2.3 <1.0 _ 5.0 ug/g dry 12.8 9.7 Nickel 1.0 ug/g dry Selenium <1.0 <1.0 -_ 0.3 ug/g dry Silver <0.3 < 0.3 Thallium 1.0 ug/g dry <1.0 <1.0 _ _ 1.0 ug/g dry Uranium <1.0 <1.0 10.0 ug/g dry Vanadium 24.3 18.0 _ 20.0 ug/g dry 7inc 161 47.7 Semi-Volatiles 0.02 ug/g dry Acenaphthene 1.42 <0.40 [1] 11.0 _ 0.02 ug/g dry 0.45 Acenaphthylene 1.01 1.31 0.02 ug/g dry 0.59 Anthracene 2.40 32.9 _ 0.02 ug/g dry 1.11 Benzo [a] anthracene 6.74 43.6 0.02 ug/g dry 1.25 7.22 38.9 Benzo [a] pyrene 0.02 ug/g dry 1.29 Benzo [b] fluoranthene 7.37 35.9 0.02 ug/g dry 0.81 Benzo [g,h,i] perylene 3.95 18.5 0.02 ug/g dry 0.59 Benzo [k] fluoranthene 4.47 19.2 0.02 ug/g dry 1.41 Chrysene 7.59 44.0 0.02 ug/g dry Dibenzo [a,h] anthracene 1.07 <0.40 [1] 5.30 Fluoranthene 0.02 ug/g dry 2.49 18.7 105 0.02 ug/g dry Fluorene <0.40 [1] 1.23 15.7

Client: Paterson Group Consulting Engineers

Certificate of Analysis

Order #: 2125366

Report Date: 22-Jun-2021

Order Date: 16-Jun-2021

Client PO: 32202 Project Description: PE5267

	Client ID:	TP5-21-GS2	TP6-21-GS5	DUP3	DUP4
	Sample Date:	15-Jun-21 09:00	15-Jun-21 09:00	15-Jun-21 09:00	15-Jun-21 09:00
	Sample ID:	2125366-05	2125366-06	2125366-09	2125366-10
	MDL/Units	Soil	Soil	Soil	Soil
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	3.61	0.67	17.0	-
1-Methylnaphthalene	0.02 ug/g dry	1.96	<0.40 [1]	3.72	-
2-Methylnaphthalene	0.02 ug/g dry	2.43	<0.40 [1]	5.42	-
Methylnaphthalene (1&2)	0.04 ug/g dry	4.39	<0.80 [1]	9.15	-
Naphthalene	0.01 ug/g dry	3.10	0.36	10.1	-
Phenanthrene	0.02 ug/g dry	15.7	2.18	115	-
Pyrene	0.02 ug/g dry	15.2	2.07	78.9	-
2-Fluorobiphenyl	Surrogate	85.1%	88.5%	70.5%	-
Terphenyl-d14	Surrogate	103%	122%	87.1%	-

Order #: 2125366

Report Date: 22-Jun-2021

Order Date: 16-Jun-2021

Client: Paterson Group Consulting Engineers Client PO: 32202 **Project Description: PE5267**

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
lydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Melyhdonum	ND ND	0.1 1.0	ug/g						
Molybdenum Nickel	ND ND	1.0 5.0	ug/g						
Selenium	ND ND	1.0	ug/g						
Silver	ND ND	0.3	ug/g ug/g						
Thallium	ND ND	1.0	ug/g ug/g						
Uranium	ND	1.0	ug/g ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles			33						
	ND	0.00							
Acenaphthylana	ND	0.02	ug/g						
Acenaphthylene Anthracene	ND ND	0.02 0.02	ug/g						
Benzo [a] anthracene	ND ND	0.02	ug/g						
Benzo [a] pyrene	ND ND	0.02	ug/g ug/g						
Benzo [b] fluoranthene	ND ND	0.02	ug/g ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.23		ug/g		92.1	50-140			
Surrogate: Terphenyl-d14	1.45		ug/g		109	50-140			
/olatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						

Order #: 2125366

Report Date: 22-Jun-2021

Order Date: 16-Jun-2021

Project Description: PE5267

Client: Paterson Group Consulting Engineers

Client PO: 32202

Method Quality Control: Blank

Analyte	Doc: II	Reporting		Source		%REC		RPD	NI=4-
analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g ug/g						
Tetrachloroethylene	ND	0.05	ug/g ug/g						
Toluene	ND ND	0.05	ug/g ug/g						
1,1,1-Trichloroethane	ND ND	0.05	ug/g ug/g						
1,1,2-Trichloroethane	ND ND	0.05	ug/g ug/g						
Trichloroethylene	ND ND	0.05	ug/g ug/g						
Trichlorofluoromethane	ND ND	0.05	ug/g ug/g						
Vinyl chloride	ND ND	0.03	ug/g ug/g						
m,p-Xylenes	ND ND	0.02	ug/g ug/g						
o-Xylene	ND ND	0.05	ug/g ug/g						
Xylenes, total	ND ND	0.05	ug/g ug/g						
Surrogate: 4-Bromofluorobenzene	9.26	0.03			116	50-140			
•	9.26 8.21		ug/g		103	50-140 50-140			
Surrogate: Dibromofluoromethane			ug/g						
Surrogate: Toluene-d8	9.27		ug/g		116	50-140			
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	9.27		ug/g		116	50-140			

Client PO: 32202

Order #: 2125366

Certificate of Analysis Client: Paterson Group Consulting Engineers

Order Date: 16-Jun-2021 **Project Description: PE5267**

Report Date: 22-Jun-2021

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND			NC	40	
F2 PHCs (C10-C16)	ND ND	4	ug/g dry ug/g dry	ND			NC	30	
F3 PHCs (C16-C34)	11	8	ug/g dry	14			27.8	30	
F4 PHCs (C34-C50)	15	6	ug/g dry	35			NC	30	
Metals	10	Ü	ag/g ary	00			110	00	
Antimony	ND	1.0	ug/g dry	ND			NC	30	
Arsenic	3.1	1.0	ug/g dry	3.2			3.8	30	
Barium	295	1.0	ug/g dry	301			2.2	30	
Beryllium	1.1	0.5	ug/g dry	1.1			2.5	30	
Boron	13.4	5.0	ug/g dry	13.4			0.5	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g dry	ND 50.0			NC	35	
Chromium	49.8 15.5	5.0	ug/g dry	50.0 15.5			0.3	30 30	
Copper	15.5	1.0 5.0	ug/g dry	15.5			0.1 2.7	30 30	
Copper	27.4	5.0	ug/g dry	28.2					
Lead Mercury	10.3 ND	1.0 0.1	ug/g dry	10.7 ND			4.4 NC	30 30	
•	ND ND	1.0	ug/g dry	ND ND			NC NC	30	
Molybdenum Nickel	32.3	5.0	ug/g dry	32.5			NC 0.7	30	
Selenium	32.3 ND	5.0 1.0	ug/g dry ug/g dry	32.5 ND			0.7 NC	30	
Silver	ND ND	0.3		ND			NC	30	
Thallium	ND ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND ND	1.0	ug/g dry ug/g dry	ND			NC	30	
Vanadium	63.7	10.0	ug/g dry ug/g dry	64.2			0.8	30	
Zinc	86.0	20.0	ug/g dry ug/g dry	89.6			4.1	30	
	00.0	20.0	ug/g ury	0.0			7.1	50	
Physical Characteristics		. .	0/ 1	00.			. .	0.5	
% Solids	83.7	0.1	% by Wt.	83.4			0.4	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g dry	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g dry	ND			NC	40	
Anthracene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [a] pyrene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [b] fluoranthene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g dry	ND			NC	40	
Chrysene	ND	0.02	ug/g dry	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g dry	ND			NC	40	
Fluoranthene	ND 0.068	0.02	ug/g dry	ND 0.070			NC	40 40	
Fluorene	0.068	0.02	ug/g dry	0.070			2.2	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g dry	ND			NC	40	
1-Methylnaphthalene	ND ND	0.02	ug/g dry	ND			NC	40 40	
2-Methylnaphthalene	ND ND	0.02	ug/g dry	ND			NC	40 40	
Naphthalene	ND	0.01	ug/g dry	ND 0.143			NC	40 40	
Phenanthrene	0.088	0.02 0.02	ug/g dry	0.143			NC 1.1	40 40	
Pyrene Surrogate: 2-Fluorobiphenyl	0.021	0.02	ug/g dry	0.020	67.9	50 140	1.1	40	
, ,	1.13		ug/g dry		67.8	50-140 50-140			
Surrogate: Terphenyl-d14	1.49		ug/g dry		89.3	50-140			
Volatiles									
Acetone	ND	0.50	ug/g dry	ND			NC	50	
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g dry	ND			NC	50	
Bromoform	ND	0.05	ug/g dry	ND			NC	50	
Bromomethane	ND	0.05	ug/g dry	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND			NC NC	50 50	
Chlorobenzene	ND	0.05	ug/g dry	ND					

Order #: 2125366

Report Date: 22-Jun-2021 Order Date: 16-Jun-2021

 Client:
 Paterson Group Consulting Engineers
 Order Date: 16-Jun-2021

 Client PO:
 32202
 Project Description: PE5267

Method Quality Control: Duplicate

Analyte	Dog:#	Reporting Limit	11.2	Source	0/856	%REC	DDD	RPD	Nata -
Malyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Chloroform	ND	0.05	ug/g dry	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g dry	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g dry	ND			NC	50	
Hexane	ND	0.05	ug/g dry	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g dry	ND			NC	50	
Styrene	ND	0.05	ug/g dry	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND			NC	50	
Toluene	ND	0.05	ug/g dry	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g dry	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND			NC	50	
o-Xylene	ND	0.05	ug/g dry	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	9.64		ug/g dry		112	50-140	-		
Surrogate: Dibromofluoromethane	9.03		ug/g dry		105	50-140			
Surrogate: Toluene-d8	9.92		ug/g dry		115	50-140			
Benzene	ND	0.02	ug/g dry	ND	770	00 140	NC	50	
Ethylbenzene	ND ND	0.02	ug/g dry	ND			NC	50	
Toluene	ND ND	0.05	ug/g dry	ND			NC	50	
m,p-Xylenes	ND ND	0.05	ug/g dry ug/g dry	ND ND			NC NC	50 50	
o-Xylene	ND ND	0.05	ug/g dry ug/g dry	ND			NC	50 50	
o-Ayiene Surrogate: Toluene-d8	9.92	0.05	ug/g dry ug/g dry	טאו	115	50-140	INC	50	

Order #: 2125366

Report Date: 22-Jun-2021 Order Date: 16-Jun-2021

 Client:
 Paterson Group Consulting Engineers
 Order Date: 16-Jun-2021

 Client PO:
 32202
 Project Description: PE5267

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	192	7	ug/g	ND	96.0	80-120			
F2 PHCs (C10-C16)	75	4	ug/g	ND	80.4	60-140			
F3 PHCs (C16-C34)	249	8	ug/g	14	102	60-140			
F4 PHCs (C34-C50)	222	6	ug/g	35	128	60-140			
Metals									
Antimony	52.3	1.0	ug/g	ND	104	70-130			
Arsenic	53.3	1.0	ug/g	1.3	104	70-130			
Barium	181	1.0	ug/g	121	122	70-130			
Beryllium	54.4	0.5	ug/g	0.5	108	70-130			
Boron	53.5	5.0	ug/g	5.4	96.3	70-130			
Cadmium	51.1	0.5	ug/g	ND	102	70-130			
Chromium (VI)	0.1	0.2	ug/g	ND	67.0	70-130		(QM-05
Chromium	74.5	5.0	ug/g	20.0	109	70-130			•
Cobalt	59.0	1.0	ug/g	6.2	106	70-130			
Copper	62.3	5.0	ug/g	11.3	102	70-130			
Lead	46.6	1.0	ug/g	4.3	84.7	70-130			
Mercury	1.62	0.1	ug/g	ND	108	70-130			
Molybdenum	52.8	1.0	ug/g	ND	105	70-130			
Nickel	65.1	5.0	ug/g	13.0	104	70-130			
Selenium	49.9	1.0	ug/g	ND	99.4	70-130			
Silver	39.4	0.3	ug/g	ND	78.8	70-130			
Thallium	52.0	1.0	ug/g	ND	104	70-130			
Uranium	46.5	1.0	ug/g	ND	92.5	70-130			
Vanadium	81.0	10.0	ug/g	25.7	111	70-130			
Zinc	85.4	20.0	ug/g	35.8	99.1	70-130			
Semi-Volatiles									
Acenaphthene	0.117	0.02	ug/g	ND	56.4	50-140			
Acenaphthylene	0.107	0.02	ug/g	ND	51.3	50-140			
Anthracene	0.122	0.02	ug/g	ND	58.6	50-140			
Benzo [a] anthracene	0.118	0.02	ug/g	ND	56.7	50-140			
Benzo [a] pyrene	0.149	0.02	ug/g	ND	89.5	50-140			
Benzo [b] fluoranthene	0.113	0.02	ug/g	ND	54.2	50-140			
Benzo [g,h,i] perylene	0.109	0.02	ug/g	ND	52.2	50-140			
Benzo [k] fluoranthene	0.115	0.02	ug/g	ND	55.2	50-140			
Chrysene	0.128	0.02	ug/g	ND	61.5	50-140			
Dibenzo [a,h] anthracene	0.128	0.02	ug/g	ND	61.6	50-140			
Fluoranthene	0.112	0.02	ug/g	ND	53.9	50-140			
Fluorene	0.181	0.02	ug/g	0.070	53.6	50-140			
Indeno [1,2,3-cd] pyrene	0.106	0.02	ug/g	ND	50.7	50-140			
1-Methylnaphthalene	0.145	0.02	ug/g	ND	69.5	50-140			
2-Methylnaphthalene	0.140	0.02	ug/g	ND	67.2	50-140			
Naphthalene	0.156	0.01	ug/g	ND	74.8	50-140			
Phenanthrene	0.276	0.02	ug/g	0.143	63.5	50-140			
Pyrene	0.127	0.02	ug/g	0.020	51.0	50-140			
Surrogate: 2-Fluorobiphenyl	1.07	-	ug/g		64.0	50-140			
Surrogate: Terphenyl-d14	1.33		ug/g		79.6	50-140			
/olatiles			. =						

Order #: 2125366

Report Date: 22-Jun-2021 Order Date: 16-Jun-2021

Project Description: PE5267

Certificate of Analysis

Client: Paterson Group Consulting Engineers Client PO: 32202

Method Quality Control: Spike

RPD Reporting Source %REC RPD Result Units %REC Notes Analyte Limit Limit Limit Result ND Benzene 4.49 0.02 ug/g 112 60-130 Bromodichloromethane 4.37 0.05 ND 109 60-130 ug/g 0.05 ND Bromoform 4.42 ug/g 110 60-130 4.66 0.05 ND 117 50-140 Bromomethane ug/g 4 31 0.05 ND 108 60-130 Carbon Tetrachloride ug/g Chlorobenzene 4.07 0.05 ug/g ND 102 60-130 Chloroform 4.56 0.05 ND 114 60-130 ug/g Dibromochloromethane 4.23 0.05 ug/g ND 106 60-130 Dichlorodifluoromethane 4.66 0.05 ND 116 50-140 ug/g 0.05 ND 98.3 60-130 1.2-Dichlorobenzene 3.93 ug/g ND 1,3-Dichlorobenzene 4.10 0.05 ug/g 102 60-130 1,4-Dichlorobenzene 4.08 0.05 ND 102 60-130 ug/g 1,1-Dichloroethane ND 114 60-130 4.56 0.05 ug/g 1,2-Dichloroethane 4.45 0.05 ug/g ND 111 60-130 1,1-Dichloroethylene 4.60 0.05 ND 115 60-130 ug/g cis-1,2-Dichloroethylene 4.25 0.05 ND 106 60-130 ug/g trans-1,2-Dichloroethylene 4.40 0.05 ug/g ND 110 60-130 1,2-Dichloropropane 4.42 0.05 ug/g ND 110 60-130 cis-1,3-Dichloropropylene 3.96 0.05 ug/g ND 98.9 60-130 trans-1,3-Dichloropropylene 3.88 0.05 ND 97.1 60-130 ug/g 60-130 0.05 ND Ethylbenzene 4.56 ug/g 114 Ethylene dibromide (dibromoethane, 1,2-4.36 0.05 ug/g ND 109 60-130 Hexane 4.85 0.05 ND 121 60-130 ug/g Methyl Ethyl Ketone (2-Butanone) 0.50 ND 102 50-140 10.2 ug/g Methyl Isobutyl Ketone 10.4 0.50 ND 104 50-140 ua/a 109 Methyl tert-butyl ether 10.9 0.05 ND 50-140 ug/g ND Methylene Chloride 4.50 0.05 ug/g 113 60-130 Styrene 4.39 0.05 ug/g ND 110 60-130 1,1,1,2-Tetrachloroethane 4.57 0.05 ND 114 60-130 ug/g 1,1,2,2-Tetrachloroethane 4.34 0.05 ug/g ND 109 60-130 4.23 0.05 ND 106 60-130 Tetrachloroethylene ug/g ND Toluene 4 50 0.05 ug/g 112 60-130 1,1,1-Trichloroethane 4.72 0.05 ug/g ND 118 60-130 1,1,2-Trichloroethane 4.34 0.05 ug/g ND 108 60-130 Trichloroethylene 4.55 0.05 ug/g ND 114 60-130 Trichlorofluoromethane 4.25 0.05 ug/g ND 106 50-140 Vinyl chloride 4.24 0.02 ug/g ND 106 50-140 m,p-Xylenes 8.96 0.05 ug/g ND 112 60-130 o-Xylene 4.20 0.05 ug/g ND 105 60-130 Surrogate: 4-Bromofluorobenzene 7 93 ug/g 99.2 50-140 Surrogate: Dibromofluoromethane 8.46 106 50-140 ug/g Surrogate: Toluene-d8 7.83 97.9 50-140 ug/g Benzene 4.49 0.02 ug/g ND 112 60-130 Ethylbenzene 4.56 0.05 ug/g ND 114 60-130 0.05 60-130 Toluene 4.50 ug/g ND 112 8.96 0.05 ND 112 60-130 m,p-Xylenes ug/g 4 20 0.05 ND 105 60-130 o-Xylene ug/g 7.83 97.9 50-140 Surrogate: Toluene-d8 ug/g

Client: Paterson Group Consulting Engineers

Order #: 2125366

Report Date: 22-Jun-2021 Order Date: 16-Jun-2021

Client PO: 32202 Project

Project Description: PE5267

Qualifier Notes:

Sample Qualifiers:

Certificate of Analysis

- 1: Elevated detection limits due to the nature of the sample matrix.
- 5: The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

QC Qualifiers :

QM-05: The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 2125366

Paracel Order Number (Lab Use Only)

Chain Of Custody

(Lab Use Only)

Nº 131141

Client Name: Poto SOC	-) '	2125	266			
Contact Name: KGCNO M.		Project Re	f: PE5267	+				Page _ of	
Address: Karan Much		Quote #:						rnaround Ti	
194 Calando DA		PO#: 32202					☐ 1 day	☐ 1 day	
- COLOURAGE NO		E-mail:	Gard Oberforson	group.ca	COMPasarco	nel	☐ 2 day		Regular
Telephone: 613-226-77381		K	wwwpobayezov Garat Esquezov	pap.(9	Zambazara	Wash .cd	Date Required	d:	
Regulation 153/04 Other Regulation	on ,								2 15 524 7 54
☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 ☐ P	WQO	SW (Surface	S (Soil/Sed.) GW Water) SS (Storm/	(Ground Water) Sanitary Sewer)			Required Anal	ysis	
Table 2 Ind/Comm Coarse COME N	ИISA	P	(Paint) A (Air) O (C	Other)			Π.		
Table 3 Agri/Other Su-Sani S	U - Storm	5			BTEX		Mercine		
For DCC CD CD		olume	Samp	le Taken	-F4+B	ICP ICP			
For RSC: Yes No Other:	÷				[2]	ls by	1 11 1	4	
Sample ID/Location Name	Matrix	Air V	Date	Time	PHCs VOCs	Metals Hg CrVI	B (HWS)		
161.00	S	2	6/191202	1	1 7	2 1 0		+	
2 777364		2	47 57 808	1	1/1/	11.7			
TV3-63		Ť	, ,			V V V	1 22	-	
1 TP4-62		1			+	1 / /			
5 TP5-3'GZ		1			+++	V V V		1	
TP6-21-GS		- \							
TP7-66						$\sqrt{ \sqrt{ \sqrt{ } }}$			
TV8-65		1							
7123	-	1					V	1	
DUDA									
ments:	7		4			\sqrt{M}		S.,	
MI . TOU OF COUL						Meth	nod of Delivery:		
guished By (Sign):							FACAL	EL La	WHEL
Receive	ed By Driver/Depo	ot:	TOUSE	Received at Lab:	2.00	Verifi	ed By:	P.S.	
quished by white Sorahy Composor and Date/Time:	ime: 16 1	dolo	LUSE	Date Fine:		ON MAI	Timat	Des	
Time: 6/16/2021 Temper		1/2	0000	Temperature:	Part of the second			6,2021	15:49
n of Custody (Env.) xlsx			Pavision 3.0	remperature; 2	10, 1°c	pH V	erified: By		

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South

Nepean, ON K2E 7J5

Fax: (613) 226-7381

Fax: (613) 226-6344

Attn: Karyn Munch

Paracel Report No 2125366 Order Date: 16-Jun-21

Client Project(s): PE5267 Report Date: 22-Jun-21 Client PO: 32202

Reference: Standing Offer

CoC Number: **131141**

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel IDClient IDAnalysis2125366-07TP7-21-GS6Methyl Mercury - soil2125366-08TP8-21-GS5Methyl Mercury - soil

PARACEL LABORATORIES LTD (Ottawa-

London-Kingston) ATTN: Mark Foto

360 York Road, Unit 16B

Niagara-on-the-lake ON K1G 4J8

Date Received: 17-JUN-21

Report Date: 09-JUL-21 08:10 (MT)

Version: FINAL

Client Phone: 905-682-9300

Certificate of Analysis

Lab Work Order #: L2603660

Project P.O. #: NOT SUBMITTED

Job Reference: 2125366

C of C Numbers: Legal Site Desc:

Costas Farassoglou Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON K2E 7J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2603660 CONTD....

PAGE 2 of 3 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Speciated Metals 0.000176 0.000050 mg/kg 05-JUL-21 07-JUL-21 R55 L2603660-2 TP8-21-GS5 Sampled By: CLIENT on 15-JUN-21 Matrix: SOIL TP8-21-GS5 TP8-21-GS5	Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
Physical Tests 13.2 0.25 % 06-JUL-21 R55 Speciated Metals 0.000176 0.000050 mg/kg 05-JUL-21 07-JUL-21 R55 L2603660-2 TP8-21-GS5 TP8-21	Sampled By: CLIENT on 15-JUN-21							
Speciated Metals 0.000176 0.000050 mg/kg 05-JUL-21 07-JUL-21 R55 L2603660-2 TP8-21-GS5								
Methylmercury (as MeHg) 0.000176 0.000050 mg/kg 05-JUL-21 07-JUL-21 R55 L2603660-2 TP8-21-GS5		13.2		0.25	%		06-JUL-21	R5513422
L2603660-2 TP8-21-GS5 Sampled By: CLIENT on 15-JUN-21 Matrix: SOIL Physical Tests Moisture 19.1 0.25 % 06-JUL-21 R55 Speciated Metals								
Sampled By: CLIENT on 15-JUN-21 Matrix: SOIL Physical Tests Moisture 19.1 0.25 % 06-JUL-21 R55 Speciated Metals		0.000176		0.000050	mg/kg	05-JUL-21	07-JUL-21	R5516044
Moisture 19.1 0.25 % 06-JUL-21 R55 Speciated Metals <td>Sampled By: CLIENT on 15-JUN-21</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Sampled By: CLIENT on 15-JUN-21							
Speciated Metals	Physical Tests							
		19.1		0.25	%		06-JUL-21	R5513422
Methylmercury (as MeHg) 0.000092 0.000050 mg/kg 05-JUL-21 07-JUL-21 R55								
	Methylmercury (as MeHg)	0.000092		0.000050	mg/kg	05-JUL-21	07-JUL-21	R5516044

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2603660 CONTD....

PAGE 3 of 3 Version: FINAL

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MEHG-GCAF-VA	Soil	Methylmercury in Soil by GCAFS	DeWild et al. (2004)

This method follows procedures published by DeWild, Olund, Olsen and Tate (2004) for the US Geological Survey (Techniques and Methods 5A-7). Samples are leached with an acidic copper sulphate solution to solubilize methylmercury for inorganic complexes. The methylmercury is then extracted into dichloromethane and then an aliquot is back extracted into ultra-pure water. The extract is analyzed by aqueous phase ethylation, purge and trap, desorption and GC separation. The separated species are then pyrolized to elemental Hg and quantified by cold vapour atomic flourescence spectroscopy. Results are reported "as MeHg".

MOISTURE-VA Soil Moisture content CCME PHC in Soil - Tier 1 (mod)

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of two hours.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

Workorder: L2603660 Report Date: 09-JUL-21 Page 1 of 2

Client: PARACEL LABORATORIES LTD (Ottawa-London-Kingston)

360 York Road, Unit 16B

Niagara-on-the-lake ON K1G 4J8

Contact: Mark Foto

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MEHG-GCAF-VA Batch R5516044	Soil							
WG3569426-2 CRM Methylmercury (as MeHo	g)	SQC-MEHG-RN	/ 108.1		%		70-130	07-JUL-21
WG3569426-4 DUP Methylmercury (as MeHo	g)	L2603537-1 <0.000050	<0.000050	RPD-NA	mg/kg	N/A	30	07-JUL-21
WG3569426-3 LCS Methylmercury (as MeHo	g)		90.3		%		70-130	07-JUL-21
WG3569426-1 MB Methylmercury (as MeHo	g)		<0.000050		mg/kg wwt		0.00005	07-JUL-21
MOISTURE-VA	Soil							
Batch R5513422 WG3569897-3 DUP Moisture		L2603537-1 23.2	23.0		%	0.7	20	06-JUL-21
WG3569897-2 LCS Moisture			100.1		%		90-110	06-JUL-21
WG3569897-1 MB Moisture			<0.25		%		0.25	06-JUL-21

Quality Control Report

Page 2 of 2

Workorder: L2603660 Report Date: 09-JUL-21

Client: PARACEL LABORATORIES LTD (Ottawa-London-Kingston)

360 York Road, Unit 16B

Niagara-on-the-lake ON K1G 4J8

Contact: Mark Foto

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontract Order

SENDING LABORATORY:

Paracel Laboratories Ltd. 300-2319 St. Laurent Blvd.

Ottawa, ON K1G 4J8 Phone: 613-731-9577

Fax: 613-731-9064

RECEIVING LABORATORY:

ALS Laboratory Group (Ottawa)

7-190 Colonnade Rd Ottawa, ON K2E7J5 Phone: (613) 225-8279

Fax: (613) 225-2801

INVOICE TO:

Paracel Laboratories Ltd.

300-2319 St. Laurent Blvd.

Ottawa, ON K1G 4J8 Phone: 613-731-9577

Fax: 613-731-9064

Date Requested: Project Number:

16-Jun-21 2125366

Submitted By:

Bernice Samuel

Required Regulation

Turnaround Time

Sample ID	Matrix	Analyses Requested:	Sampled Commer	its
TP7-21-G\$6	Soil	Solids, %	15-Jun-21 09:00	
		Methyl Mercury - soil		
TP8-21-G\$5	Soil	Solids, %	15-Jun-21 09:00	
		Methyl Mercury - soil		

Please email all results to mfoto@paracellabs.com, dbloom@paracellabs.com, drobertson@paracellabs.com

Released By

Temperature prior to Shipping:

10.07

10:30 AM

-) ICE PACK

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

Paterson Group Consulting Engineers

 154 Colonnade Road South
 Tel: (613) 226-7381

 Nepean, ON K2E 7J5
 Fax: (613) 226-6344

Attn: Karyn Munch

 Paracel Report No.
 2126129
 Order Date:
 21-Jun-21

 Client Project(s):
 PE5267
 Report Date:
 21-Jul-21

Client PO: **32203**

Reference: Standing Offer

CoC Number: **131142**

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID Client ID Analysis

2126129-01 TP1-21-GS4 Methyl Mercury - soil

PARACEL LABORATORIES LTD (Ottawa-

London-Kingston) ATTN: Mark Foto

360 York Road, Unit 16B

Niagara-on-the-lake ON K1G 4J8

Date Received: 22-JUN-21

Report Date: 21-JUL-21 07:09 (MT)

Version: FINAL

Client Phone: 905-682-9300

Certificate of Analysis

Lab Work Order #: L2604653

Project P.O. #: NOT SUBMITTED

Job Reference: 2126129

C of C Numbers: Legal Site Desc:

Costas Farassoglou Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON K2E 7J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2604653 CONTD....

PAGE 2 of 3 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2604653-1 TP1-21-GS4 Sampled By: CLIENT on 15-JUN-21 @ 09:00 Matrix: SOIL							
Physical Tests							
Moisture	5.79		0.25	%		06-JUL-21	R5513422
Speciated Metals	0.70		0.20	,,		000022.	110010122
Methylmercury (as MeHg)	<0.000050		0.000050	mg/kg	15-JUL-21	16-JUL-21	R5525345
* Refer to Referenced Information for Qualifiers (if any) and							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2604653 CONTD....

PAGE 3 of 3 Version: FINAL

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MEHG-GCAF-VA	Soil	Methylmercury in Soil by GCAFS	DeWild et al. (2004)

This method follows procedures published by DeWild, Olund, Olsen and Tate (2004) for the US Geological Survey (Techniques and Methods 5A-7). Samples are leached with an acidic copper sulphate solution to solubilize methylmercury for inorganic complexes. The methylmercury is then extracted into dichloromethane and then an aliquot is back extracted into ultra-pure water. The extract is analyzed by aqueous phase ethylation, purge and trap, desorption and GC separation. The separated species are then pyrolized to elemental Hg and quantified by cold vapour atomic flourescence spectroscopy. Results are reported "as MeHg".

MOISTURE-VA Soil Moisture content CCME PHC in Soil - Tier 1 (mod)

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of two hours.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

Workorder: L2604653

Report Date: 21-JUL-21

Page 1 of 3

Client:

PARACEL LABORATORIES LTD (Ottawa-London-Kingston)

360 York Road, Unit 16B

Niagara-on-the-lake ON K1G 4J8

Contact: Mark Foto

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MEHG-GCAF-VA	Soil							
Batch R552	5345							
WG3577033-2 C Methylmercury (as	CRM MeHa)	SQC-MEHG-	RM 111.1		%		70-130	19-JUL-21
	.cs						70 100	10 002 21
Methylmercury (as			94.5		%		70-130	16-JUL-21
WG3577033-1 M Methylmercury (as	1B MeHg)		<0.00005	0	mg/kg wwt		0.00005	16-JUL-21
MOISTURE-VA	Soil							
Batch R5513422								
WG3569897-3 D Moisture	OUP	L2603537-1 23.2	23.0		%	0.7	20	06-JUL-21
WG3569897-2 L Moisture	cs		100.1		%		90-110	06-JUL-21
WG3569897-1 N	1B							
Moisture	יו		<0.25		%		0.25	06-JUL-21

Quality Control Report

Workorder: L2604653 Report Date: 21-JUL-21

Client: PARACEL LABORATORIES LTD (Ottawa-London-Kingston)

360 York Road, Unit 16B

Niagara-on-the-lake ON K1G 4J8

Contact: Mark Foto

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
 CRM Certified Reference Material
 CCV Continuing Calibration Verification
 CVS Calibration Verification Standard
 LCSD Laboratory Control Sample Duplicate

Page 2 of 3

Quality Control Report

Workorder: L2604653 Report Date: 21-JUL-21

Client: PARACEL LABORATORIES LTD (Ottawa-London-Kingston)

360 York Road, Unit 16B

Niagara-on-the-lake ON K1G 4J8

Contact: Mark Foto

Hold Time Exceedances:

Page 3 of 3

Sample **ALS Product Description** ID Rec. HT Actual HT Units Sampling Date **Date Processed** Qualifier **Speciated Metals** Methylmercury in Soil by GCAFS 15-JUN-21 09:00 15-JUL-21 17:00 28 30 days **EHT**

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2604653 were received on 22-JUN-21 14:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

300 - 2319 St. Laurent Bivd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontract Order

SENDING LABORATORY:

Paracel Laboratories Ltd.

300-2319 St. Laurent Blvd. Ottawa, ON K1G 438

Phone: 613-731-9577

Fax: 613-731-9064

Date Requested:

22-Jun-21 Project Number: 2126129 **Donna Garner**

Submitted By:

RECEIVING LABORATORY:

ALS Laboratory Group (Vancouver)

8081 Lougheed Highway Burnaby, BC V5A 1W9 Phone: (604) 253-4188

Fax:

INVOICE TO:

Paracel Laboratories Ltd.

300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

Phone: 613-731-9577

Fax: 613-731-9064

Required Regulation

Turnaround

Time

Sample ID

Matrix

Analyses Requested:

5ampled

Comments

TP1-21-GS4

Methyl Mercury - soil Soil

15-Jun-21 09:00

LZ6041653

H 06/23/21 9am 117 method 100 packs

Please email all results to mfoto@paracellabs.com, dbloom@paracellabs.com, drobertson@paracellabs.com

Date / Time // // Received By

Temperature prior to Shipping:

14:00

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5

Attn: Mark D'Arcy

Client PO: 32061 Project: PE5267 Custody: 131493

Report Date: 27-May-2021 Order Date: 20-May-2021

Order #: 2121586

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2121586-01	BH1-21-SS3
2121586-02	BH1-21-SS5/6
2121586-03	BH2-21-SS4
2121586-04	BH3-21-SS2
2121586-05	BH3-21-SS4/5
2121586-06	BH4-21-SS2
2121586-07	DUP

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Client PO: 32061

Order #: 2121586

Report Date: 27-May-2021 Order Date: 20-May-2021

Client: Paterson Group Consulting Engineers **Project Description: PE5267**

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	21-May-21	22-May-21
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	21-May-21	26-May-21
Mercury by CVAA	EPA 7471B - CVAA, digestion	27-May-21	27-May-21
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	21-May-21	25-May-21
PHC F1	CWS Tier 1 - P&T GC-FID	21-May-21	22-May-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	21-May-21	22-May-21
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	25-May-21	25-May-21
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	22-May-21	26-May-21
Solids, %	Gravimetric, calculation	25-May-21	25-May-21

Certificate of Analysis

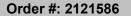
Client: Paterson Group Consulting Engineers

Client PO: 32061 **Project Description: PE5267**

BH1-21-SS5/6 Client ID: BH1-21-SS3 BH2-21-SS4 BH3-21-SS2 Sample Date: 14-May-21 09:00 14-May-21 09:00 17-May-21 09:00 17-May-21 09:00 2121586-01 2121586-02 2121586-03 2121586-04 Sample ID: MDL/Units Soil Soil Soil Soil **Physical Characteristics** % Solids 0.1 % by Wt. 91.9 89.4 83.8 92.5 **General Inorganics** 0.05 pH Units 8.57 Metals 1.0 ug/g dry Antimony 1.5 2.0 1.0 ug/g dry Arsenic 4.5 7.4 Barium 1.0 ug/g dry 584 159 _ 0.5 ug/g dry Beryllium < 0.5 < 0.5 5.0 ug/g dry Boron 8.8 19.0 _ Cadmium 0.5 ug/g dry <0.5 8.0 5.0 ug/g dry Chromium 22.6 24.1 0.2 ug/g dry Chromium (VI) <0.2 <0.2 1.0 ug/g dry Cobalt 5.2 6.0 5.0 ug/g dry Copper 17.3 43.2 1.0 ug/g dry Lead 61.9 212 0.1 ug/g dry Mercury 0.2 1.3 1.0 ug/g dry Molybdenum 2.4 1.2 5.0 ug/g dry Nickel 11.6 14.8 1.0 ug/g dry Selenium <1.0 <1.0 0.3 ug/g dry Silver <0.3 0.3 1.0 ug/g dry Thallium <1.0 <1.0 1.0 ug/g dry Uranium <1.0 <1.0 10.0 ug/g dry Vanadium 25.6 28.7 20.0 ug/g dry Zinc 261 271 Volatiles Benzene 0.02 ug/g dry < 0.02 < 0.02 0.05 ug/g dry Ethylbenzene < 0.05 < 0.05 0.05 ug/g dry Toluene < 0.05 < 0.05 0.05 ug/g dry m,p-Xylenes < 0.05 < 0.05 0.05 ug/g dry o-Xylene < 0.05 < 0.05 0.05 ug/g dry Xylenes, total < 0.05 < 0.05 Toluene-d8 116% Surrogate 116% **Hydrocarbons** F1 PHCs (C6-C10) 7 ug/g dry <7 <7 4 ug/g dry F2 PHCs (C10-C16) <4 7

Report Date: 27-May-2021

Order Date: 20-May-2021



Report Date: 27-May-2021 Order Date: 20-May-2021

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 32061 **Project Description: PE5267**

	Client ID: Sample Date: Sample ID:	BH1-21-SS3 14-May-21 09:00 2121586-01	BH1-21-SS5/6 14-May-21 09:00 2121586-02	BH2-21-SS4 17-May-21 09:00 2121586-03	BH3-21-SS2 17-May-21 09:00 2121586-04
	MDL/Units	Soil	Soil	Soil	Soil
F3 PHCs (C16-C34)	8 ug/g dry	43	-	-	53
F4 PHCs (C34-C50)	6 ug/g dry	29	-	-	37
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	-	0.27	<0.02	-
Acenaphthylene	0.02 ug/g dry	-	0.23	0.15	-
Anthracene	0.02 ug/g dry	-	0.75	0.11	-
Benzo [a] anthracene	0.02 ug/g dry	-	1.50	0.24	-
Benzo [a] pyrene	0.02 ug/g dry	-	1.38	0.35	-
Benzo [b] fluoranthene	0.02 ug/g dry	-	1.29	0.31	-
Benzo [g,h,i] perylene	0.02 ug/g dry	-	0.70	0.25	-
Benzo [k] fluoranthene	0.02 ug/g dry	-	0.75	0.16	-
Chrysene	0.02 ug/g dry	-	1.44	0.22	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	0.11	0.06	-
Fluoranthene	0.02 ug/g dry	-	2.89	0.39	-
Fluorene	0.02 ug/g dry	-	0.26	<0.02	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	0.66	0.22	-
1-Methylnaphthalene	0.02 ug/g dry	-	0.13	<0.02	-
2-Methylnaphthalene	0.02 ug/g dry	-	0.16	0.03	-
Methylnaphthalene (1&2)	0.04 ug/g dry	-	0.29	<0.04	-
Naphthalene	0.01 ug/g dry	-	0.21	0.04	-
Phenanthrene	0.02 ug/g dry	-	2.78	0.23	-
Pyrene	0.02 ug/g dry	-	2.32	0.36	-
2-Fluorobiphenyl	Surrogate	-	97.7%	78.9%	-
Terphenyl-d14	Surrogate	-	121%	103%	-

Client: Paterson Group Consulting Engineers

Client PO: 32061

Report Date: 27-May-2021 Order Date: 20-May-2021

Project Description: PE5267

	Client ID: Sample Date: Sample ID: MDL/Units	BH3-21-SS4/5 17-May-21 09:00 2121586-05 Soil	BH4-21-SS2 17-May-21 09:00 2121586-06 Soil	DUP 17-May-21 09:00 2121586-07 Soil	- - -
Physical Characteristics			1	T	· · · · · · · · · · · · · · · · · · ·
% Solids	0.1 % by Wt.	84.9	93.1	84.9	-
Metals	1.0 ug/g dry		1		<u> </u>
Antimony		<1.0	<1.0	<1.0	-
Arsenic	1.0 ug/g dry	6.2	2.7	5.2	-
Barium	1.0 ug/g dry	150	106	132	-
Beryllium	0.5 ug/g dry	0.5	<0.5	0.5	-
Boron	5.0 ug/g dry	8.4	5.5	6.8	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	-
Chromium	5.0 ug/g dry	25.7	16.0	24.2	-
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	-
Cobalt	1.0 ug/g dry	5.7	5.4	5.2	-
Copper	5.0 ug/g dry	16.3	20.9	15.9	-
Lead	1.0 ug/g dry	72.4	21.8	78.1	-
Mercury	0.1 ug/g dry	0.5	<0.1	0.4	-
Molybdenum	1.0 ug/g dry	1.2	<1.0	1.0	-
Nickel	5.0 ug/g dry	16.3	9.6	15.3	-
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	-
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Vanadium	10.0 ug/g dry	31.4	17.7	30.3	-
Zinc	20.0 ug/g dry	67.4	103	69.3	-
Semi-Volatiles	+				-
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	0.03	-
Acenaphthylene	0.02 ug/g dry	0.02	0.14	0.04	-
Anthracene	0.02 ug/g dry	0.04	0.09	0.09	-
Benzo [a] anthracene	0.02 ug/g dry	0.12	0.18	0.21	-
Benzo [a] pyrene	0.02 ug/g dry	0.15	0.23	0.20	-
Benzo [b] fluoranthene	0.02 ug/g dry	0.16	0.26	0.24	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.09	0.19	0.12	-
Benzo [k] fluoranthene	0.02 ug/g dry	0.09	0.11	0.12	-
Chrysene	0.02 ug/g dry	0.16	0.18	0.19	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	0.04	0.03	-
Fluoranthene	0.02 ug/g dry	0.24	0.24	0.44	-
Fluorene	0.02 ug/g dry	<0.02	<0.02	0.03	_
L			<u> </u>	ļ	ļ

Report Date: 27-May-2021

Order Date: 20-May-2021 **Project Description: PE5267**

Client: Paterson Group Consulting Engineers

Client PO: 32061

Certificate of Analysis

	Client ID: Sample Date: Sample ID:	17-May-21 09:00 2121586-05	BH4-21-SS2 17-May-21 09:00 2121586-06	DUP 17-May-21 09:00 2121586-07	- - -
	MDL/Units	Soil	Soil	Soil	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.08	0.15	0.11	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	0.12	<0.02	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	0.17	0.03	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	0.29	0.05	-
Naphthalene	0.01 ug/g dry	0.02	0.11	0.03	-
Phenanthrene	0.02 ug/g dry	0.17	0.13	0.35	-
Pyrene	0.02 ug/g dry	0.21	0.22	0.38	-
2-Fluorobiphenyl	Surrogate	55.9%	97.6%	101%	-
Terphenyl-d14	Surrogate	90.3%	104%	124%	-

Report Date: 27-May-2021 Order Date: 20-May-2021

Project Description: PE5267

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 32061

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02 0.02	ug/g						
Benzo [b] fluoranthene Benzo [g,h,i] perylene	ND ND	0.02	ug/g ug/g						
Benzo [k] fluoranthene	ND ND	0.02	ug/g ug/g						
Chrysene	ND ND	0.02	ug/g ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.36		ug/g		102	50-140			
Surrogate: Terphenyl-d14	1.86		ug/g		140	50-140			
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	9.41		ug/g		118	50-140			

Client: Paterson Group Consulting Engineers

Order Date: 20-May-2021 Client PO: 32061 **Project Description: PE5267**

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	مانما ا	Source	0/ DEC	%REC	DDD	RPD	Notos
, mary to	Result	LIIIIIL	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
pH	7.80	0.05	pH Units	7.67			1.7	2.3	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	18			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	15			NC	30	
Metals									
Antimony	3.0	1.0	ug/g dry	2.0			NC	30	
Arsenic	4.6	1.0	ug/g dry	4.5			1.2	30	
Barium	610	1.0	ug/g dry	584			4.4	30	
Beryllium	ND	0.5	ug/g dry	ND			NC	30	
Boron	18.4	5.0	ug/g dry	19.0			3.4	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g dry	ND			NC	35	
Chromium	24.1	5.0	ug/g dry	22.6			6.5	30	
Cobalt	5.7	1.0	ug/g dry	5.2			8.3	30	
Copper	18.0	5.0	ug/g dry	17.3			3.8	30	
Mercury	0.144	0.1	ug/g dry	0.152			5.0	30	
Molybdenum	3.0	1.0	ug/g dry	2.4			20.7	30	
Nickel	12.3	5.0	ug/g dry	11.6			5.4	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	31.5	10.0	ug/g dry	28.7			9.1	30	
Zinc	279	20.0	ug/g dry	261			6.7	30	
Physical Characteristics									
% Solids	77.5	0.1	% by Wt.	78.3			1.0	25	
Semi-Volatiles									
Acenaphthene	0.208	0.02	ug/g dry	0.272			26.7	40	
Acenaphthylene	0.159	0.02	ug/g dry	0.226			34.9	40	
Anthracene	0.551	0.02 0.02	ug/g dry	0.753			31.0	40	
Benzo [a] anthracene	1.14 1.15	0.02	ug/g dry	1.50			27.4 18.6	40 40	
Benzo [a] pyrene	1.13	0.02	ug/g dry	1.38 1.29			22.2	40	
Benzo [b] fluoranthene Benzo [g,h,i] perylene	0.526	0.02	ug/g dry ug/g dry	0.695			22.2 27.7	40	
Benzo [k] fluoranthene	0.526	0.02	ug/g dry ug/g dry	0.095			10.3	40	
Chrysene	1.10	0.02	ug/g dry ug/g dry	1.44			26.8	40	
Dibenzo [a,h] anthracene	0.156	0.02	ug/g dry	0.106			38.5	40	
Fluoranthene	2.39	0.02	ug/g dry	2.89			18.9	40	
Fluorene	0.216	0.02	ug/g dry	0.262			19.5	40	
Indeno [1,2,3-cd] pyrene	0.516	0.02	ug/g dry	0.664			25.0	40	
1-Methylnaphthalene	0.061	0.02	ug/g dry	0.130			71.5		QR-05
2-Methylnaphthalene	0.080	0.02	ug/g dry	0.161			67.0		QR-05
Naphthalene	0.112	0.01	ug/g dry	0.212			61.8	40	QR-05
Phenanthrene	2.16	0.02	ug/g dry	2.78			24.9	40	
Pyrene	1.94	0.02	ug/g dry	2.32			18.0	40	
Surrogate: 2-Fluorobiphenyl	0.749		ug/g dry		50.2	50-140			
Surrogate: Terphenyl-d14	1.46		ug/g dry		97.9	50-140			
/olatiles									
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry	ND			NC	50	
Toluene	ND	0.05	ug/g dry	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND			NC	50	
o-Xylene	ND	0.05	ug/g dry	ND			NC	50	

Report Date: 27-May-2021

Client PO: 32061

Order #: 2121586

Report Date: 27-May-2021

Order Date: 20-May-2021 **Project Description: PE5267**

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Method Quality Control: Duplicate									
		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%RFC	l imit	RPD	l imit	Notes

10.5 Surrogate: Toluene-d8 117 50-140 ug/g dry

Client: Paterson Group Consulting Engineers

Client PO: 32061

Report Date: 27-May-2021 Order Date: 20-May-2021

Project Description: PE5267

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	230	7	ug/g	ND	115	80-120			
F2 PHCs (C10-C16)	73	4	ug/g	ND	82.9	60-140			
F3 PHCs (C16-C34)	247	8	ug/g	18	106	60-140			
F4 PHCs (C34-C50)	163	6	ug/g	15	108	60-140			
Metals									
Antimony	56.2	1.0	ug/g	ND	111	70-130			
Arsenic	61.6	1.0	ug/g	1.8	120	70-130			
Barium	53.7	1.0	ug/g	ND	107	70-130			
Beryllium	52.9	0.5	ug/g	ND	106	70-130			
Boron	55.9	5.0	ug/g	7.6	96.5	70-130			
Cadmium	54.3	0.5	ug/g	ND	108	70-130			
Chromium (VI)	0.1	0.2	ug/g	ND	49.5	70-130		(QM-05
Chromium	68.8	5.0	ug/g	9.0	120	70-130			
Cobalt	59.4	1.0	ug/g	2.1	115	70-130			
Copper	61.9	5.0	ug/g	6.9	110	70-130			
Lead	53.8	1.0	ug/g	ND	108	70-130			
Mercury	1.53	0.1	ug/g	0.152	92.2	70-130			
Molybdenum	59.1	1.0	ug/g	1.0	116	70-130			
Nickel	60.4	5.0	ug/g	ND	112	70-130			
Selenium	54.3	1.0	ug/g	ND	108	70-130			
Silver	54.9	0.3	ug/g	ND	110	70-130			
Thallium	53.9	1.0	ug/g	ND	108	70-130			
Uranium	60.2	1.0	ug/g	ND	120	70-130			
Vanadium	73.3	10.0	ug/g	11.5	124	70-130			
Zinc	164	20.0	ug/g	104	119	70-130			
Semi-Volatiles			- 3 3						
Acenaphthene	0.165	0.02	ug/g	ND	98.9	50-140			
Acenaphthylene	0.101	0.02	ug/g ug/g	ND	60.6	50-140			
Anthracene	0.125	0.02	ug/g	ND	74.7	50-140			
Benzo [a] anthracene	0.116	0.02	ug/g	ND	69.8	50-140			
Benzo [a] pyrene	0.132	0.02	ug/g	ND	78.9	50-140			
Benzo [b] fluoranthene	0.149	0.02	ug/g	ND	89.2	50-140			
Benzo [g,h,i] perylene	0.143	0.02	ug/g ug/g	ND	86.1	50-140			
Benzo [k] fluoranthene	0.138	0.02	ug/g ug/g	ND	83.0	50-140			
Chrysene	0.141	0.02	ug/g ug/g	ND	84.4	50-140			
Dibenzo [a,h] anthracene	0.137	0.02	ug/g ug/g	ND	82.0	50-140			
Fluoranthene	0.116	0.02	ug/g ug/g	ND	69.6	50-140			
Fluorene	0.115	0.02	ug/g ug/g	ND	69.1	50-140			
Indeno [1,2,3-cd] pyrene	0.128	0.02	ug/g ug/g	ND	76.7	50-140			
1-Methylnaphthalene	0.142	0.02	ug/g ug/g	ND	85.4	50-140			
2-Methylnaphthalene	0.149	0.02	ug/g ug/g	ND	89.5	50-140			
Naphthalene	0.164	0.01	ug/g ug/g	ND	98.3	50-140			
Phenanthrene	0.132	0.02	ug/g ug/g	ND	79.1	50-140			
Pyrene	0.118	0.02	ug/g ug/g	ND	70.7	50-140			
Surrogate: 2-Fluorobiphenyl	1.06	0.02	ug/g ug/g	ND	70.7 79.4	50-140 50-140			
Surrogate: Terphenyl-d14	1.67		ug/g ug/g		125	50-140 50-140			
/olatiles			3' 3			•			

Report Date: 27-May-2021 Order Date: 20-May-2021

Project Description: PE5267

Certificate of Analysis

Client: Paterson Group Consulting Engineers
Client PO: 32061

Method Quality Control: Spike RPD Reporting Source %REC %REC RPD Result Units Notes Analyte Limit Limit Limit Result ND Ethylbenzene 5.04 0.05 60-130 ug/g 126 Toluene 4.65 0.05 ug/g ND 116 60-130 m,p-Xylenes 9.64 0.05 ug/g ND 120 60-130 o-Xylene 4.99 0.05 ND 125 60-130 ug/g 102 50-140 Surrogate: Toluene-d8 8.19 ug/g

Report Date: 27-May-2021 Order Date: 20-May-2021

 Client: Paterson Group Consulting Engineers
 Order Date: 20-May-2021

 Client PO: 32061
 Project Description: PE5267

Qualifier Notes:

QC Qualifiers:

Certificate of Analysis

QM-05: The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.

QR-05: Duplicate RPDs higher than normally accepted. Remaining batch QA\QC was acceptable. May be sample

effect.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 2121586

Office 19 St. Laurent Blvd. , Ontario K1G 4J8 0-749-1947 cel@paracellabs.com

Paracel Order Number (Lab Use Only)

212/00/

Chain Of Custody (Lab Use Only)

Nº 131493

	paracerabs.com		
Client Name: Parenson Groud	Project Ref: PE 5267	Page 0	f
iontact Name: Mark D'Arcy	Quote #;	Turnaround 1	
	PO N: 32061	☐ 1 day	☐ 3 day
	E-mail: mdarcy@patersongroup.ca Jandrechek@	☐ 2 day	Regular
elephone: 613-226-7381	jandrecheke " " "		/ \

Date Required: Regulation 153/04 Other Regulation Matrix Type: \$ (Soil/Sed.) GW (Ground Water) ☐ Table 1 🛛 Res/Park ☐ Med/Fine Required Analysis ☐ REG 558 □ PWQ0 SW (Surface Water) SS (Storm/Sanitary Sewer) ☐ Table 2 ☐ Ind/Comm X Coarse P (Paint) A (Air) O (Other) ☐ CCME ☐ MISA ▼ Table 3 ☐ Agri/Other PHCs F1-F4+BTEX SU - Sani ☐ SU - Storm ☐ Table by ICP Mun: Sample Taken Air Volume For RSC: Yes No Other: Matrix Metals PAHs VOCs # of Cr.S Sample ID/Location Name Date Time 2 14-MAY-21 5 2 14-MAY-21 S 3 17-MAY-21 S -SS4/5 7 8 9 10 Comments: Relinquished By (Sign): Received By Driver/Depot Received at Verified By Relinguished By (Print 3 34

Chain of Custody (Env.) xlsx

Revision 3.0

Temperature:

APPENDIX 2

REMEDIAL ACTION PLAN

Remedial Action Plan

Re: Environmental Remedial Action Plan and Associated

Increment Items and Quantities

Proposed Residential Development

70 Nicholas Street (Part of 55 Colonel By Drive) - Ottawa

To: The Cadillac Fairview Corporation Limited – Mr. Aaron Cameron

Date: June 10, 2022 **File:** PE5267-RAP.01

Further to your request and authorization, Paterson Group (Paterson) completed a remedial action plan and associated cost estimate (incremental) for the property addressed 70 Nicholas Street in the City of Ottawa (subject site).

The boundaries of the area included in this remedial action plan are shown in blue and defined as Site Area for Generic RSC Approach on Drawing PE5267-3 – Test Hole Location Plan appended to the Phase II ESA.

Environmental Site Conditions

Historical Background

Paterson completed a Phase I – Environmental Site Assessment (Phase I ESA) for the subject site in January 2022.

Based on the findings of the Phase I ESA, several areas of potential environmental concern (APECs) were identified as a result of the following historical on- or off-site potentially contaminating activities (PCAs):

A former on-site warehouse/workshop on the northern portion of the subject site (PCA: Other; APEC 1)
Historical on-site coal storage on the northeastern portion of the subject site (associated with the aforementioned warehouse/workshop) (PCA: Other; APEC 2)
Historical on-site coal storage on the southern portion of the subject site (associated with the Canadian Granite Company) (PCA: Other; APEC 3)
A former garage on the southwestern portion of the subject site (PCA 52; APEC 4)
Use of de-icing salt for safety purposes (PCA: Other; APEC 5)

Former railway spur line on the western portion of the subject site (PCA: Other APEC 6)
Fill material of unknown quality across the subject site (PCA 30; APEC 7)
Former off-site rail yard and lines to the west of the site (PCA: 46; APEC 8)
Former coal storage to the west of the subject site (PCA: Other; APEC 9)

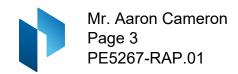
A Phase II-ESA was carried out to assess the APECs identified in the Phase I ESA. The findings of the Phase II ESA are summarized below.

Building Demolition Debris Mixed With Contaminated Fill

Based on the findings of the Phase II ESA, fill material impacted with concentrations of metals, polycyclic aromatic hydrocarbons (PAHs) and/or petroleum hydrocarbons (PHC - F₃) exceeding the MECP Table 3 standards are present in the fill material across the site.

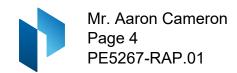
While the fill material generally consists of silty sand with crushed stone, building demolition debris was identified in the fill at each test hole location. The debris is associated with former building foundations as well as the importation of poor-quality fill material. Based on available information to date, approximately 25% of the total volume of impacted soil is expected to be comprised of demolition debris.

Large pieces of demolition debris will have to be segregated and disposed off site as demolition debris, at an approved waste disposal facility. However, it is expected that it will not be possible to segregate much of the debris from the impacted fill material; this material will be removed from the subject site as contaminated soil mixed with debris.


It was recommended that an environmental site remediation program be completed in conjunction with the redevelopment of the property.

Groundwater

Based on the findings of the Phase II ESA, groundwater data available to date complies with the MECP Table 3 standards. However, there is the potential to encounter impacted water during the construction excavation as a result of groundwater or precipitation mixing with impacted soil.


Remedial Action Plan Summary

The suggested remedial action plan consists of a generic approach, where the excavation and subsequent disposal of contaminated soil at an approved waste disposal facility would be undertaken during the redevelopment of the subject site.

Due to a change in land use, the proposed residential development will require a Record of Site Condition (RSC) to be filed with the Ontario Ministry of the Environment, Conservation and Parks (MECP). To meet the conditions of an RSC, the suggested remedial action plan is as follows:

Existing groundwater monitoring wells are required to be decommissioned by a licenced well driller in accordance with Ontario Regulation (O. Reg.) 903.
A remediation program using a full depth generic approach will be implemented. This will involve the excavation and removal of all impacted soil from the subject site. Prior to its off-site disposal, a leachate analysis of a representative sample of contaminated soil must be completed in accordance with Ontario Regulation 347/558.
It is expected that building demolition debris and/or fill material will be encountered on the majority of the subject site up to 5m below ground surface. All impacted fill and demolition debris will require disposal at an off-site approved waste disposal facility.
Impacted soil and building demolition debris, will be placed in trucks and hauled to an approved waste disposal facility. Excess non-impacted soil to be removed from the property will be placed in trucks and hauled off-site for possible re-use as clean material or for disposal. Excess soil is required to be handled in accordance with O.Reg. 406/19 – On-Site and Excess Soil Management.
During the excavation of impacted soil, soil will be screened using visual and olfactory observations as well as a portable soil vapour analyser. Field observations will be used in combination with the collection and analysis of verification samples to determine the remedial excavation limits.
If encountered, impacted groundwater could be removed by a licenced pumping contractor for off-site disposal. Groundwater treatment will continue until the on-site groundwater concentrations are compliant with the MECP Table 3 standards and/or City of Ottawa sewer use by-law.
Prior to pumping 50,000 L/day, a permit to take water (PTTW) from the MECP is required.
Prior to discharging groundwater to the municipal sewer system, an Approval or Agreement from the City of Ottawa Sewer Use Program is required. Testing, reporting and discharge requirements need to be carried out in compliance with the agreement.
A confirmatory soil sampling program will be completed to ensure that the site meets the MECP Table 3 standards.

Post-remedi	iation groundwater	monitoring w	ells may be	required	to su	pport an F	RSC.
If required,	post-remediation	groundwater	monitoring	wells w	ill be	installed	and
sampled in a	accordance with O	.Reg 153/04	to confirm gr	oundwat	er qua	ılity.	

A remediation report will be prepared and an RSC will be submitted to the MECP for acknowledgement.

Quantities

Based on the available information, the total estimated incremental remedial quantities consist of the following:

Disposal of impacted soil at an approved landfill site	14,250 mt
Disposal of demolition building debris at an approved landfill site	4,570 mt
Treatment of impacted groundwater (if required).	1 000 000 I

We trust that this information satisfies your requirements,

Best Regards,

Paterson Group Inc.

Karyn Munch, P.Eng.

Report Distribution

☐ The Cadillac Fairview Corporation

☐ Paterson Group Inc.

