

Site Servicing Report

2625 Sheffield Road, Ottawa, Ontario

Amazon Logistics

60634622

October 2022

AECOM Canada Ltd. 50 Sportsworld Crossing Road, Suite 290 Kitchener, ON N2P 0A4 Canada

T: 519.650.5313 F: 519.650.3424 www.aecom.com

Kelby Lodoen Unseth, MCIP, RPP Planner II/Development Review City of Ottawa 100 Laurier Avenue West, 4th Floor Ottawa, Ontario K1P 1J1 October 6, 2022

Project # 60634622

Subject: Site Servicing Report - 2625 Sheffield Road, Ottawa, Ontario

Dear Mr. Unseth:

Please find our Site Servicing Report, which is provided in support of the proposed Site Plan Application for the proposed works located at 2625 Sheffield Road, Ottawa, Ontario, Canada (to be referred to in this report as "Site").

This report presents the stormwater management plan and how the layout of the proposed site servicing (sanitary, water, stormwater) satisfy requirements set by the City of Ottawa and the Ministry of Environment, Conservation, and Parks (MECP). Please also be advised that no portion of the Site is located within a regulated area designated by the Rideau Valley Conservation Authority (RVCA) as per Ontario Regulation 174/06.

We request an approval of the subject application. If you have any questions or require additional information or clarification, please do not hesitate to contact the undersigned at 519-650-8669 or via e-mail: kosta.paliouras@aecom.com.

Sincerely,

AECOM Canada Ltd.

Konstantinos (Kosta) Paliouras, P.Eng

Senior Water Resources Engineer/Project Manager

kosta.paliouras@aecom.com

Encl.

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13 © 2009-2015 AECOM Canada Ltd. All Rights Reserved.

Quality Information

Prepared by

Kosta Paliouras, P.Eng

Senior Water Resources Engineer

Reviewed by

Asif Bhatti, P.Eng

Senior Water Resources Engineer

willholi

Distribution List

# Hard Copies	PDF Required	Association / Company Name
	✓	Amazon Logistics
	✓	AECOM Canada Ltd.

Amazon Logistics
Site Servicing Report
2625 Sheffield Road, Ottawa, Ontario

Prepared for:

Amazon Logistics

Prepared by:

Kosta Paliouras, P.Eng. Senior Project Manager

AECOM Canada Ltd. 50 Sportsworld Crossing Road, Suite 290 Kitchener, ON N2P 0A4 Canada

T: 519.650.5313 F: 519.650.3424 www.aecom.com

Executive Summary

This report addresses the proposed site servicing at 2625 Sheffield Road in Ottawa, Ontario, Canada.

The proposed works consists of demolishing the existing building structure and construction of a proposed building structure with a regrade and repave an existing parking lot area. Due to the construction of the proposed building, additional water quality and quantity controls are required to prevent detrimental impacts to the downstream outlets (municipal infrastructure on Sheffield Road and Humber Place). The objective for these stormwater management facilities is to provide water quality treatment, water quantity control, and groundwater recharge in accordance with the City's requirements for development.

The proposed stormwater management facilities will consist of multiple infiltration basins and two (2) underground chamber storage systems (StormTech MC-3500 systems or approved equivalent) with the capacity to accept surface runoff up to and including the 100-year storm event for the proposed building and parking lot area and provide water quality and quantity treatment prior to discharging downstream. The proposed infiltration basins will consist of clear stone bedding and capture runoff form the roof areas to encourage groundwater recharge. The chamber storage systems will consist of storage chambers with clear stone granular material bedding, surrounded by an impermeable liner to discourage infiltration of runoff from the parking lot area. The proposed underground chamber storage systems will then discharge to the municipal infrastructure on Humber Place and Sheffield Road and ultimately to Green's Creek.

The proposed stormwater management measures have met the design objectives of the City of Ottawa.

Table of Contents

1.	Introduction	1
2.	Background Information	2
	2.1 General Site Information	2
	2.2 Existing Water and Wastewater Services	4
	2.3 Existing Stormwater Management and Drainage Patterns	4
3.	Design Criteria	7
4.	Proposed Conditions Site Servicing	8
	4.1 Proposed Water and Wastewater Services	8
	4.1.1 Water Supply Servicing Design	
	4.1.2 Sanitary Servicing Design	
	4.2 Proposed Stormwater Management and Drainage Patterns	
	4.3 Water Quantity	
	4.3.1 Hydrological Model Development	
	4.4 Water Quality	
5.	Erosion and Sediment Control	15
6.	Operations and Maintenance	16
7.	Conclusions	17
Figu	res	
Figure 1	I: Site Location	3
Figure 2		
Figure 3	-	
Figure 4	· · · · · · · · · · · · · · · · · · ·	
Figure 5	5: Proposed Condition Flow Schematic	11
Table	es	
Table 1:	: Water Demand Proposed Conditions	8
Table 2:	·	
Table 3:		
Table 4:	•	
Table 5:	: Simulated Discharge Rate to Humber Place (m³/s)	14
Table 6:	• • • • • • • • • • • • • • • • • • • •	
Table 7:	1	
Table 8:	: Proposed Storage - Stage-Discharge (DTY3-S – 6-hour Storm Duration)	14

Appendices

Appendix A.	Geotechnical Report
Appendix B.	Regulatory Information
Appendix C.	Pre-consultation Comments
Appendix D.	City of Ottawa Existing Drawings
Appendix E.	Design Drawings
Appendix F.	Supporting Engineering Documentation and Calculations – Infiltration Basin Calculations
Appendix G.	Supporting Engineering Documentation and Calculations - Oil/Grit Separator and Storm Sewer
Appendix H.	Supporting Engineering Documentation and Calculations – Underground Storage System
Appendix I.	PCSWMM Input/Output Documentation – Existing Conditions
Appendix J.	PCSWMM Input/Output Documentation – Proposed Conditions

1. Introduction

AECOM Canada Limited (AECOM) has prepared the following Site Servicing Report for the industrial facility located at 2625 Sheffield Road in Ottawa, Ontario, Canada (to be referred to in this report as "Site").

The proposed works consists of demolishing the existing building structure and construction of a proposed building structure with a regrade and repave an existing parking lot area. Due to the construction of the proposed building, additional water quality and quantity controls are required to prevent detrimental impacts to the downstream outlets (municipal infrastructure on Sheffield Road and Humber Place). The key objective of this report is to provide a summary of existing Site conditions and illustrate how the proposed stormwater management measures would address adverse water quality/quantity, erosion control, and water balance objectives detailed by City of Ottawa staff and regulatory agencies.

2. Background Information

2.1 General Site Information

The Site is located at 2625 Sheffield Road in Ottawa, Ontario (Site location is provided in **Figure 1**). The Site is bordered by Humber Place to the south, industrial property to the north, Sheffield Road to the west, and a CN Rail railway to the east. The Site is approximately 7.05 hectares (ha) in total size, with an existing building structure footprint of approx. 3.346 ha.

The existing building structure was constructed in multiple stages. The Site was first developed in the 1960s, with building expansions in the 1970s and 1990s.

A Draft Geotechnical Study was completed by AECOM for the Site in January 2021 and borehole logs are provided in **Appendix A**. According to borehole investigations within the vicinity of the Site, the underlying soils consist of clayey silt material. No groundwater was observed during the investigation and in the monitoring wells.

The Site is located within the Ottawa Drain, a tributary of Green's Creek. AECOM has reviewed updated regulated area mapping available from the Rideau Valley Conservation Authority (RVCA) via the online regulated area mapping tool and mapping is provided in **Appendix B**. No portions of the Site is located within a regulated area as per Ontario Regulation 174/06 (Regulation of Development, Interference, with Wetlands and Alterations to Shorelines and Watercourses) and a permit from the RVCA would not be required.

There is also no Certificate of Approval or Environmental Compliance Approval permit associated with the Site, according to Ministry of Environment, Conservation, and Parks (MECP) records. Pre-consultation with the MECP (included in **Appendix C**) indicates that no ECA is required for the Site, as under Ontario Regulation 525/98 states that Subsection 53 (1) and (3) of the Act do not apply to lands designed as:

- one parcel, for which the Site and all proposed works will be contained;
- that discharge into a storm sewer that is not combined, for which is not the case at the Site, as sanitary and storm services currently are and will continue to be separate;
- does not service industrial or a structure located on industrial land; and
- is not located on industrial land.

Ontario Water Resources Act defines industrial land as "land used for the production, processing, repair, maintenance or storage of goods of materials, or the processing, storage, transfer or disposal of waste, but does not include land used primarily for the purpose of buying or selling, (a) goods or materials other than fuel, or (b) services other than vehicle repair services."

Though the Site is located within a "Heavy Industrial Zone" according to the zoning by-law, the primary purpose of the proposed development will be for the distribution of goods and material, with only van and truck traffic through the proposed parking lot area. There will be no machinery or on-site processes that would require industrial water use to discharge to the municipal system and no outdoor storage of processed material or any contaminate material. Contaminates would include total suspended solids (TSS), vehicular oil and chlorides from the parking lot area. The proposed infiltration basins will only accept discharge from the proposed roof areas and an impermeable liner is proposed for the proposed underground chamber storage systems and therefore none of the runoff from the parking lot area will infiltrated into the underlying soil. The level of concern would be minimal.

2.2 Existing Water and Wastewater Services

The site is currently serviced from the existing 300 mm diameter watermain on Sheffield Road by two existing 200 mm diameter water service connections. The water service enters the west of the site through the office entrance driveway along Sheffield Road as well as the second most southern truck entrance. The service along the office entrance driveway supplies domestic water to the building in a 75 mm shoot-off, as well to an on-site hydrant system located around the building in a 200 mm diameter firemain. This firemain loop re-connects to the existing 300 mm diameter municipal main on Humber Place at the southeast corner of the site. The post-development design is not proposing any changes to the water servicing on the site.

The building currently discharges to two (2) sanitary services, one connection at the existing MH 1A on Sheffield and another connection to the existing MH 5A on Sheffield. The southerly sanitary service flow into a 200 mm sanitary flows in a 200 mm diameter service by gravity to the existing 375 mm diameter sanitary sewer on Sheffield Drive, in the southwest corner of the site.

2.3 Existing Stormwater Management and Drainage Patterns

Existing drainage patterns at 2625 Sheffield Road (as indicated in **Figure 2** and **Figure 3**) consist of overland flow into an existing municipal storm sewer system and ultimately discharging into the City municipal system on Humber Place and Sheffield Road. Plan and profile servicing drawings for the Humber Place and Sheffield Road were obtained from the City and are provided in **Appendix D**.

The existing drainage patterns consist of the following flow paths:

- Runoff from the main parking lot area, located south of the existing building structure (Area 101) discharges overland directly into the existing City municipal storm sewer system on Humber Place. The existing storm sewer system ultimately discharges to the Ottawa Drain then to Green Creek.
- Runoff from the roof of the existing building structure is collected and discharges into the municipal storm sewer system on Sheffield Road and Humber place. A portion of the building roof structure (Building #1) discharges to the municipal storm sewer system on Sheffield Road, with another portion of the building roof structure (Building #2) discharges to the municipal storm sewer system on Humber Place.
- A portion of the existing parking lot area located north of the building structure, the access road east of the existing building structure, and portion of the main parking lot area (Area 200 series) discharges directly to a vegetated swale adjacent to the CN Rail railway and ultimately discharges to Green's Creek.
- A portion of the parking lot area located north of the existing building structure and the landscaped area adjacent to Sheffield Road (Areas 300 series) discharges directly to the City municipal storm sewer system on Sheffield Road. The existing storm sewer system ultimately discharges to Green's Creek.

According to site assessments, there are currently no on-Site surface water quality and quantity control infrastructure.

METRIC NOTE

ALL DISTANCES SHOWN HEREON ARE IN METERS AND CAN BE CONVERTED TO IMPERIAL FEET BY DIVIDING BY 0.3048.

SURVEY NOTES

DISTANCE NOTE

ALL DISTANCES ELECTRONICALLY MEASURED ON THIS PLAN ARE GRID DISTANCES.

HORIZONTAL DATUM

UNIVERSAL TRANSVERSE MERCATOR (UTM) PROJECTION, ZONE 18

NAD-83 VERTICAL DATUM - 1978 RE-ADJUSTMENT (GEODETIC)

TOPOGRAPHIC DETAIL SHOWN HEREON WAS ACQUIRED IN JUNE, 2020 BY AECOM.

PROPERTY BOUNDARIES

DERIVED FROM GIS AND FIELD OBSERVATIONS AND REGISTERED PLANS 5R-12728 DATED MAY 25, 1989 AS WELL AS REF NO. 8-783 GR DATED NOV 12, 1982. ALL DIMENSIONS ARE APPROXIMATE. THIS DOCUMENT IN ITSELF CAN NOT BE USED TO ESTABLISH PROPERTY LIMITS.

TBM #1 - TOP NUT OF HYDRANT LOCATED AT NORTH WEST CORNER OF 2625 SHEFFIELD ROAD ELEVATION = 67.198m TBM #2 - STANDARD IRON BAR (SIB) LOCATED AT SOUTH WEST CORNER OF 2625 SHEFFIELD ROAD ELEVATION = 66.015m

PROPERTY LINE

PROPERTY BOUNDARY INFORMATION SHOWN HEREIN IS

SITE BENCHMARKS

EX. CONTOUR

EX. CHAIN LINK FENCE

AREA BOUNDARY MAJOR OVERLAND FLOW

PROPERTY BAR

EX. SPOT ELEVATION EX. VEGETATION □ □ □ ○ EX. CB, DCB, CBMH AND MH

> EX. POST & WIRE FENCE EXISTING DRAINAGE

REGISTRATION

PROJECT

DYT3

CLIENT

647 533 5057 tel

CONSULTANT

www.aecom.com

AECOM Canada Ltd.

Kitchener, Ontario, N2P 0A4

50 Sportsworld Crossing Road, Suite 290

IT IS THE RESPONSIBILITY OF THE CONTRACTORS TO INFORM THEMSELVES OF THE EXACT LOCATION OF, AND ASSUME ALL LIABILITY FOR DAMAGE TO ALL UTILITIES, SERVICES AND STRUCTURES WHETHER ABOVE GROUND OR BELOW GRADE BEFORE COMMENCING THE WORK, SUCH INFORMATION IS NOT NECESSARILY SHOWN ON THE DRAWING, AND WHERE SHOWN, THE ACCURACY

WITH THE SOLE EXCEPTION OF THE BENCHMARK(S) SPECIFICALLY DESCRIBED FOR THIS PROJECT, NO ELEVATION INDICATED OR ASSUMED HEREON IS TO BE USED AS A REFERENCE ELEVATION FOR ANY PURPOSE.

519 650 5313 tel 519 650 3424 fax

2625 SHEFFIELD ROAD

OTTAWA, ONTARIO

CHOICE PROPERTIES REIT 700-22 ST.CLAIR AVENUE EAST TORONTO, Ontario, M4T 2S5

ISSUE/REVISION

EXISTING STORM WATER

SHEET NUMBER

60634622

SHEET TITLE

DRAINAGE AREAS

FIGURE 2

#18547

FIGURE 3: EXISTING CONDITIONS FLOW SCHEMATIC (DYT3)

3. Design Criteria

Stormwater management within City of Ottawa conforms to the following regulatory documents:

- City of Ottawa Sewer Design Guidelines (October 2012) and subsequent Technical Bulletins.
- Ministry of Environment, Conservation, and Parks (MECP) Stormwater Management Planning and Design Manual (MECP, March 2003)
- TRCA/Credit Valley Conservation (CVC)/Lake Simcoe Region Conservation Authority (LSRC) Low Impact Development Stormwater Management Planning and Design Guide (2019)

Pre-consultation was completed in December 2020 with the City of Ottawa and RVCA, and comments are included in **Appendix C**. Based on the prevailing policy framework, general design criteria, objectives and practices have been identified to complete the assessment of the proposed drainage infrastructure within the study area limits using current policies and guidelines. Below are the design criteria, based on those regulations noted above:

Water Quantity

It is the policy of the City to require that 100-year post-development peak flows are controlled to predevelopment 2-year peak flow to Humber Place. In their pre-consultation response, the City has requested that the allowable runoff coefficient for the pre-development drainage area is the lesser of the existing pre-development conditions to a maximum of 0.5.

Water Quality

According to the correspondence from the RVCA, the proposed water quality control measures are to be designed to provide Enhanced (Level 1) water quality control (80% total suspended solids [TSS] removal) and shall use the treatment train approach to stormwater management with source, conveyance and end-of-pipe measures.

Water Balance

The general hydrological cycle of the Site to be maintained, by replenishing the underlying aquifer through infiltration (where possible). The vast majority of the current Site conditions is impervious and the proposed works would have similar impervious levels. Where possible, roof drainage will be directed to proposed infiltration basins.

According to the 2012 TRCA/CVC Low Impact Development (LID) Guidelines though, it is not advised that runoff from high traffic areas to infiltrate into the underlying soils. Due to the purpose of the Site, there will be consistent van and truck traffic through the proposed parking lot area. The extent of untreated surface runoff discharging into any proposed infiltrative infrastructure during proposed conditions would originate from parking lot area and would include high levels of TSS and untreated contaminates such as oil and chlorides. Utilizing infiltrative infrastructure as part of the "treatment train" approach, before discharging through an oil/grit separator, would result in the infiltrative infrastructure becoming clogged with sediment quickly (becoming more ineffective when used in low permeable underlying soils) and allow for contaminates such as chlorides and oil to infiltrate into the groundwater when operational.

Additional measures that were consider include the following:

- Maintaining existing drainage patterns, where possible;
- Adjoining and/or downstream properties not to be adversely impacted by the proposed development;
- Water quality and quantity of runoff discharged from the Site to be controlled at the source;
- Discharge water may not also exceed over 45 degrees Celsius; and
- Erosion is limited to preserve the stability of small streams and rivers.

4. Proposed Conditions Site Servicing

Proposed Conditions Site Servicing Drawings are provided at the end of the report.

4.1 Proposed Water and Wastewater Services

4.1.1 Water Supply Servicing Design

The development is proposed to be serviced via two 200 mm diameter service laterals, one located on the northwest side through the office entrance driveway along Sheffield Road and the other one located northeast side of the proposed building connected by the about mentioned loop.

The following table summarizes the preliminary water supply demand estimate for the proposed development based on Ottawa's Water Distribution Design Guidelines and fire flow requirements using Fire Underwriters Survey (FUS) method. Refer to **Appendix E** for detailed calculations.

Table 1: Water Demand Proposed Conditions

Parameter	Demand (L/s)	Demand (gpm)
Average Daily Demand	2.86	45.33
Max. Day Demand	4.29	68.00
Peak Hour Demand	7.72	122.36
Fire Flow Demand	267.00	4232.05
Total Demand = Max. Day + Fire Flow	271.29	4300.05

Boundary conditions have been requested to the City of Ottawa, once the information is available the above calculations may be evaluated/revised as to conform all relevant City Guidelines and Policies.

4.1.2 Sanitary Servicing Design

It is anticipated that the proposed development will discharge to the two (2) existing sanitary connections mentioned above via 200 mm diameter service laterals.

The post-development sanitary flow was calculated according to Ontario Building Code section 7. Refer to **Appendix E** for detailed calculations.

Table 2: Sanitary Proposed Conditions

Parameter	Flows (L/s)	Flows (gpm)
Sanitary Flow (Building)	4.35	69

Boundary conditions have been requested to the City of Ottawa, once the information is available the above calculations may be evaluated/revised as to conform all relevant City Guidelines and Policies.

4.2 Proposed Stormwater Management and Drainage Patterns

Due to the demolition of the existing building structure and the expansion of the parking lot area, additional surface runoff will discharge off-Site and would require additional water quality and quantity control to not cause detrimental impacts to the downstream outlet.

Ref: 60634622

Subcatchments under the proposed conditions were revised as shown in **Figure 4** and the respective flow schematic is shown in **Figure 5**. Proposed drainage patterns consist of the following flow paths:

- Runoff from a portion of the proposed roof of the building structure (Area 101) will be collected and discharges into a proposed infiltration basin to store up to 10 mm depth of runoff (Calculations are provided in **Appendix F**). The proposed infiltration basins will consist of 50 mm diameter clear stone, with an overflow outlet to the proposed storm sewer system and ultimately to the municipal storm sewer system on Sheffield Road. The municipal storm sewer system ultimately discharges to Green's Creek. Infiltration calculations are provided in .
- The parking lot area located north of the proposed building structure and existing vegetated area (Areas 1 to 10) will be regraded to allow conveyance of all storm events up to and including the 100-year storm event through a proposed storm sewer infrastructure (sizing calculations provided in Appendix G). Surface ponding will be limited to 0.30 m depth over the proposed catch basin and catch basin structures during storm events greater than the 100-year storm event.

The proposed storm sewer system will discharge into a proposed underground storage system (StormTech MC-3500 or approved equivalent with total storage volume capacity of approximately 1,530 m³) to provide water quality and quantity control. Stage-storage table and product information for the proposed underground storage system is provided in **Appendix H**. The proposed system consists of an open bottom chamber, with surface runoff intercepted by the open-bottom chambers, which will then enter into the underground stone reservoirs and discharged controlled off-Site. The underground storage system will be wrapped with impermeable liner to discourage infiltration of surface runoff from the parking lot area. The system will also provide pre-treatment, which will consist of a row of chambers (known as an 'isolator row') wrapped in woven geotextile fabric (with two layers at the bottom). This acts as a filter strip that provides additional enhanced suspended solids and pollutant removal while providing surface area for runoff reduction.

The proposed underground storage system will then discharge into the proposed MH44 via two (2) outlet pipes w/ orifice plates to control flow during various storm events. A 75 mm orifice opening on a proposed 300 mm pipe will control flow for storms less than the 4-hour 25 mm storm event, allowing for discharge over a minimum 24-hr detention period. For storm event larger than the 4-hour 25 mm storm event, a proposed 150 mm pipe will provide additional flow control for discharging downstream.

The propose MH44 ultimately discharges to a proposed oil/grit separator (OGS, ADS FD-5HC or approved equivalent) to provide water quality control during first-flush conditions. The proposed OGS unit is Canadian ETV certified and is sized as part of a proposed treatment train approach to ultimately provide Enhanced-level treatment from the proposed parking lot areas. Sizing calculations and Canadian ETV certification for the proposed OGS unit is provided in **Appendix G.** Ultimately the proposed OGS discharges into the existing municipal storm sewer system on Sheffield Road and to Green's Creek.

- A portion of the landscaped area and entrance way along Sheffield Road (Area 2003) discharges to the existing municipal storm sewer system on Sheffield Road and ultimately to Green's Creek.
- Runoff from a portion of the proposed roof of the building structure (Area 102 and 103) will be collected and discharges into a proposed infiltration basin to store up to 10 mm depth of runoff. The proposed infiltration basins will consist of 50 mm diameter clear stone, with an overflow outlet to the proposed storm sewer system and ultimately to the municipal storm sewer system on Sheffield Road. The municipal storm sewer system ultimately discharges to Green's Creek. Infiltration calculations are provided in **Appendix F**.

VIA RAIL CANADA CBMH 8-(1200mmØ) T/G=67.00 INV=64.632-SE INV=64.692-NW C = 0.40.21ha **AREA 2005** T/G=66 64 INV=63.912-W C=0.4 AREA 12 0.04ha C=0.90 C=0.90DCB 16-(1200mmØ) T/G=66.74 INV=64.272-SE AREA 11 AREA 15 INV=64.992-SE INV=65.329-SE T/G=66.32 INV=64.332-NW 0.16ha 0.16ha INV=65.067-NW AREA 14 INV=64.798-SW C = 0.90_ C=0.90 PROP. 52.5m-450mmØ STM @ 0.50% PROP. 60.0m-525mmØ STM @ 0.50% PROP. 60.0m-525mmØ STM @ 0.50% -PROP. 29.9m-525mmØ STM @ 0.50% 0.13ha 0.09ha —PROP. 8.9m-600mmØ STM @ 0.50% AREA 3 CBMH 1-(1800mmØ) C=0.90 T/G=66.66 AREA 17 INV=63.537-SW T/G=67.00 T/G=67.00 T/G=67.00 0.36ha T/G=66.80 T/G=66.74 INV=63.762-E INV=64 777-S C = 0.90INV=64.057-SE AREA 16 INV=64.417-SE INV=63.732-S INV=65.114-SE INV=63.687-N INV=64.117-NW INV=64.852-NW INV=64.477-N INV=63.792-NW C=0.90-PROP. 4.0m-750mmØ STM @ 0.50% nØ STM @ 0.50% PROP. 53.0m-600mmØ STM @ 0.50% PROP. 52.5m-525mmØ STM @ 0.50% PROP. 60.0m-600mmØ STM @ 0.50% PROP. 60.0m-600mmØ STM @ 0.50% 0.15ha -- PROP. 9.4m-300mmØ STM @ 0.50% AREA 2 PROP. 9.4m-200mmØ STM @ 1.00% **AREA 19** C=0.90 C=0.90 TANK INLET 0.16ha 0.17ha T/G=66.70 -- PROP. 3.1m-375mmØ STM @ 0.50% CBMH 15-(1200mmØ) —PROP. 4.0m-375mmØ STM @ 0.50% T/G=66.3 AREA 5 INV=64.466-SW INV=63.995-N-INV=64.526-NE C=0.90 PROP. 4.0m-300mmØ STM @ 2.00% — -INV=65.061-NW T/G=67.19 INV=64.100-SE INV=64.075-S ---0.15ha AREA 6 OGS 1-(1800mmØ) -- PROP. 4.0m-300mmØ STM @ 0.50% T/G=66.38 -INV=65.041-SE AREA 20 INV=63.039-SE 0.15ha **AREA 2001** INV=63.099-NW C=0.90 CB 28-(300mmØ) MH 45-(1200mmØ) T/G=66.22 C = 0.40.28ha T/G=66.91 T/G=66.57 PROP. 32.8m-450mmØ STM @ 1.00% T/G=66.83 HINV=63.189-NW INV=65.386-W 0.07ha INV=65.485-SW **AREA 23** INV=63.114-SE -- PROP. 30.4m-450mmØ STM @ 1.00% INV=64.006-NW C = 0.90INV=63.995-NW ---PROP. 4.0m-300mmØ STM @ 2.00% — —PROP. 32.9m-375mmØ STM @ 0.50% -INV=64.898-SE 0.16ha PROP. 4.0m-250mmØ STM @ 0.50% INV=64.075-SE-PROP. 13.2m-525mmØ STM @ 0.50% AREA 1 ✓-INV=64.878-NW —PROP. 14.4m-250mmØ STM @ 0.50% ---INV=65.041-SE BASIN 2 OUTLET C=0.90 AREA DRAIN 2 PROP. 8.2m-300mmØ STM @ 0.50% T/G=67.18 T/G=67.26 0.25ha %00.8 INV=63.802-SE INV=64.557-W INV=65.113-NW INV=65.157-NE CBMH 14-(1200mmØ) AREA 21 INV=65.041-SE INV=65.082-E **AREA 101** AREA DRAIN 1 HUMBER T/G=66.32 **AREA 102** INV=64.782-SE T/G=67.43 C=0.90 **—** INV=64.106-SW C=0.90 INV=65.112-NW C=0.90 INV=64.166-NE /G=65.91 T/G=65.74 1.37ha 0.21ha PROP. 14.3m-250mmØ STM @ 0.50% INV=63.889-NW INV=63.583-E 1.13ha NV=63.949-NE INV=63.773-SW T/G=67.26 PROP. 31.8m-525mmØ STM @ 0.56% — INV=63.848-SE PROP. 15.2m-525mmØ STM @ 0.509 INV=63.623-NW -- PROP. 9.8m-450mmØ STM @ 0.50% MH 25-(1800mm) INV=64.075-SE -T/G=67.04 NW TANK INLET ─-INV=64.878-NW INV=64.415-SW PROP. 4.0m-300mmØ STM @ 2.00% — T/G=66.48 —PROP. 4.0m-300mmØ STM @ 0.50% AREA 22 INV=64.475-E INV=64.030-NE INV=63.995-NW — ─-INV=64.898-SE INV=65.041-S INV=65.052-N PROP. 2.2m-150mmØ STM @ 0.50% AREA 4 C=0.90 NW TANK OUTLET C=0.90 0.32ha T/G=64.86 —INV=65.052-NW INV=63.749-W NV=65.052-NW CBMH 19-(1200mmØ PROP. 2.2m-150mmØ STM @ 0.50% T/G=67.26 0.28ha CBMH 21-(1200mmØ) CBMH 22-(1200mmØ) INV=64.600-W T/G=67.04 T/G=67.04 INV=64.937-SE INV=65.172-NW INV=65.532-NW T/G=67.13 INV=66.197-NW PROP. 2.5m-200mmØ STM @ 1.01% -INV=65.041-SE INV=64.877-N CBMH 12-(1200mmØ) INV=65.682-SE T/G=65.74 INV=64.134-W PROP. 2.5m-300mmØ STM @ 0.50% -INV=64.058-NE INV=64.644-S MH 44-(1200mmØ) T/G=67.02 PROP. 60.0m-450mmØ STM @ 0.50% PROP. 51.5m-300mmØ STM @ 1.00% INV=63.512-SW AREA 2004 INV=63.737-E INV=64.575-E AREA 8 C=0.4 PROP. 11.6m-375mmØ STM @ 0.50% AREA 10 10.02ha PROP. 4.8m-750mmØ STM @ 0.50% PROP. 3.9m-750mmØ STM @ 0.50% OGS 2-(1800mmØ) **-**©≃0.90 - AREA 2003 T/G=66.48 INV=64.989-NW AREA 9 INV=63.454-W 0.08ha **1**€0.4 INV=65.049-SE INV=63.454-NE T/G=66.42 C=0.90 ←PROP. 10.4m-450mmØ STM @ 0.50% 0.16ha IINV=64.110-E **AREA** 7 PROP. 8.7m-375mmØ STM @ 0.50% -0.12ha MH 13-(1500mmØ) INV=64.050-N C=0.90 NW TANK INLET T/G=64.09 INV=63.410-E T/G=66.79 0.04ha INV=64.030-S SHEFFIELD ROAD

SURVEY NOTES

METRIC NOTE

ALL DISTANCES SHOWN HEREON ARE IN METERS AND CAN BE CONVERTED TO IMPERIAL FEET BY DIVIDING BY 0.3048.

DISTANCE NOTE

ALL DISTANCES ELECTRONICALLY MEASURED ON THIS PLAN ARE GRID DISTANCES.

HORIZONTAL DATUM

UNIVERSAL TRANSVERSE MERCATOR (UTM) PROJECTION, ZONE 18 NORTH, NAD-83 CSRS.

VERTICAL DATUM

NAD-83 VERTICAL DATUM - 1978 RE-ADJUSTMENT (GEODETIC)

2020 BY AECOM.

COMPLETION NOTE TOPOGRAPHIC DETAIL SHOWN HEREON WAS ACQUIRED IN JUNE,

PROPERTY BOUNDARIES

PROPERTY BOUNDARY INFORMATION SHOWN HEREIN IS DERIVED FROM GIS AND FIELD OBSERVATIONS AND REGISTERED PLANS 5R-12728 DATED MAY 25, 1989 AS WELL AS REF NO. 8-783 GR DATED NOV 12. 1982. ALL DIMENSIONS ARE APPROXIMATE. THIS DOCUMENT IN ITSELF CAN NOT BE USED TO ESTABLISH PROPERTY LIMITS.

SITE BENCHMARKS

TBM #1 - TOP NUT OF HYDRANT LOCATED AT NORTH WEST CORNER OF 2625 SHEFFIELD ROAD ELEVATION = 67.198m

TBM #2 - STANDARD IRON BAR (SIB) LOCATED AT SOUTH WEST CORNER OF 2625 SHEFFIELD ROAD ELEVATION = 66.015m

OTTAWA, ONTARIO 2625 SHEFFIELD ROAD

CLIENT

CHOICE PROPERTIES REIT 700-22 ST.CLAIR AVENUE EAST TORONTO, Ontario, M4T 2S5

CONSULTANT

AECOM Canada Ltd. 50 Sportsworld Crossing Road, Suite 290 Kitchener, Ontario, N2P 0A4 519 650 5313 tel 519 650 3424 fax www.aecom.com

CANNOT BE GUARANTEED.

IT IS THE RESPONSIBILITY OF THE CONTRACTORS TO INFORM THEMSELVES OF THE EXACT LOCATION OF, AND ASSUME ALL LIABILITY FOR DAMAGE TO ALL UTILITIES, SERVICES AND STRUCTURES WHETHER ABOVE GROUND OR BELOW GRADE BEFORE COMMENCING THE WORK. SUCH INFORMATION IS NOT NECESSARILY SHOWN ON THE DRAWING, AND WHERE SHOWN, THE ACCURACY

WITH THE SOLE EXCEPTION OF THE BENCHMARK(S) SPECIFICALLY DESCRIBED FOR THIS PROJECT, NO ELEVATION INDICATED OR ASSUMED HEREON IS TO BE USED AS A REFERENCE ELEVATION FOR ANY PURPOSE.

REGISTRATION

ISSUE/REVISION

KEY PLAN

PROJECT NUMBER

60634622

SHEET TITLE

PROPOSED STORMWATER DRAINAGE AREAS

SHEET NUMBER

FIGURE 4

FIGURE 5: PROPOSED CONDITIONS FLOW SCHEMATIC (DYT3)

The parking lot area located south and west of the proposed building structure and existing vegetated area (Areas 11 to 24) will be regraded to allow conveyance of all storm events up to and including the 100-year storm event through a proposed storm sewer infrastructure (sizing calculations provided in **Appendix G**). Surface ponding will be limited to 0.30 m depth over the proposed catch basin and catch basin structures during storm events greater than the 100-year storm event.

The proposed storm sewer system will discharge into a proposed underground storage system (StormTech MC-3500 or approved equivalent with total storage volume capacity of approximately 1,905 m³) to provide water quality and quantity control. Stage-storage table and product information for the proposed underground storage system is provided in **Appendix H**. The proposed system consists of an open bottom chamber, with surface runoff intercepted by the open-bottom chambers, which will then enter into the underground stone reservoirs and discharged controlled off-Site. The underground storage system will be wrapped with impermeable liner to discourage infiltration of surface runoff from the parking lot area. The system will also provide pre-treatment via an isolator row.

The proposed underground storage system will then discharge into the proposed MH45 via two (2) outlet pipes w/ orifice plates to control flow during various storm events. A 75 mm orifice opening on a proposed 300 mm pipe will control flow for storms less than the 4-hour 25 mm storm event, allowing for discharge over a minimum 24-hr detention period. For storm event larger than the 4-hour 25 mm storm event, a proposed 300 mm pipe will provide additional flow control for discharging downstream.

The propose MH45 ultimately discharges to a proposed oil/grit separator (OGS, ADS FD-5HC or approved equivalent) to provide water quality control during first-flush conditions. The proposed OGS unit is Canadian ETV certified and is sized as part of a proposed treatment train approach to ultimately provide Enhanced-level treatment from the proposed parking lot areas. Sizing calculations and Canadian ETV certification for the proposed OGS unit is provided in **Appendix G.** The proposed OGS discharges into the existing municipal storm sewer system on Humber Place and ultimately to Green's Creek.

- A portion of the landscaped area along Humber Place (Areas 2004 and 2005) discharges to the existing municipal storm sewer system on Humber Place and ultimately to Green's Creek.
- A portion of the landscaped area along the CN Rail (Area 2002) discharges to the CN Railway land and ultimately to Green's Creek

4.3 Water Quantity

4.3.1 Hydrological Model Development

AECOM developed PCSWMM (Personal Computer Stormwater Management Model, 2021 version 7.4.3240) model for both existing and proposed conditions to confirm and compare the proposed peak flow and runoff volumes from the Site to those under existing conditions.

Site conditions were determined using aerial photography, discussions with design staff, and Site inspections. General modelling Site parameters are listed in **Table 3**. Existing and proposed conditions catchment parameters are provided in **Appendix I** and **Appendix J** respectively. Stage-storage and stage-discharge curves presented in **Appendix H** were provided by the manufacturer for the underground retention chamber system and were included in the hydrological model for analysis.

Table 3: Main Hydrological Parameters Used

Hydrological Parameters	Values
Manning Roughness Coefficient (Impervious Surface)	0.013
Manning Roughness Coefficient (pervious Surface)	0.2
Depression Storage (Impervious Surface)	1.57
Depression Storage (Pervious Surface)	4.67
Drying Time	7
Maximum Infiltration Rate	75
Minimum Infiltration Rate	0.5

The model was simulated for 4-hour 25 mm storm event, Chicago 3-hour and 6-hour 2-year, 5-year and 100-year design storm events which were derived from Section 5.4.2 and 5.4.3.2 respectively of the City of Ottawa Stormwater Management Design Guidelines (October 2012). Rainfall amounts are provided in **Table 4**. The proposed conditions peak discharge rates leaving the Site would be compared to that under existing condition to design the stormwater management requirements for water quantity and erosion control.

Table 4: Rainfall Amounts

Storm Event		Rainfall Amount (mm)
4-hour 25 mm		25.00
2-year 3-hour		31.88
	6-hour	36.86
5-year	3-hour	42.54
	6-hour	49.04
100-year	3-hour	71.68
	6-hour	82.33

4.3.2 Hydrological Model Results

The PCSWMM hydrological modelling simulations were completed for existing and proposed Site conditions, with output files provided in **Appendix I** and **Appendix J** respectively. Peak flows to the City's municipal storm sewer system on Humber Place and Sheffield Road for the 25 mm storm and Chicago 3-hr and 6-hr, 2-year, 5-year and 100-year storm events during existing and proposed conditions are provided in **Table 5** and **Table 6**, respectively. A stage-discharge table of the proposed north and south underground storage system is presented in **Table 7** and **Table 8**, respectively.

The hydrological model produced the following results:

- For proposed conditions, as per City guidelines and reiterated during pre-consultation, the 100-year proposed development discharge to Humber Place and Sheffield Road was compared to the 5-year existing development flow rate (with a runoff coefficient of 0.5). Utilizing the proposed stormwater management measures indicated in Section 4.2, proposed conditions discharge rates to Humber Place and Sheffield Road will be maintained to less than the allocated existing conditions discharge rate. For **Table 5** and **Table 6** below, flows were taken at the outfall node.
- Maximum runoff volumes and water depths within the proposed underground storage system were modelled during the 6-hour 100-year storm event.

Table 5: Simulated Discharge Rate to Humber Place (m³/s)

Scenario	Drainage		Drainage 2-year Chicago		5-year Chicago		100-year Chicago	
Scenario	Area (ha)	23 IIIII	3-hr	6-hr	3-hr	6-hr	3-hr	6-hr
Existing	1.370	0.090	0.150	0.150	0.210	0.220	0.380	0.390
Proposed	3.53	0.01	0.012	0.018	0.055	0.061	0.127	0.135

Table 6: Simulated Discharge Rate to Sheffield Road (m³/s)

Scenario	Drainage 25 mm		2-year (Chicago	5-year (Chicago	100-year	Chicago
Scenario	Area (ha)	23 11111	3-hr	6-hr	3-hr	6-hr	3-hr	6-hr
Existing	4.47	0.300	0.480	0.490	0.690	0.730	1.220	1.280
Proposed	3.24	0.030	0.039	0.042	0.067	0.079	0.219	0.236

Table 7: Proposed Storage – Stage-Discharge (DYT3-N – 6-hour Storm Duration)

Storm	Water Depth	Water Elevation	Storage Volume	Peak Flow (m³/s)		Max. Outflow
Event	m	m	m ³	75 mm Orifice	200 mm	(m³/s)
25 mm*	0.74	64.49	587.0	0.010	0	0.010
2-year	0.93	64.68	783.0	0.012	0.015	0.027
5-year	1.06	64.81	924.6	0.013	0.061	0.074
100-yr	1.51	65.26	1371	0.014	0.208	0.223

Note: * - 4-hour storm duration

Table 8: Proposed Storage - Stage-Discharge (DTY3-S – 6-hour Storm Duration)

Storm	Water Depth	Water Elevation Storage Volume Peak Flow (m³/s)		v (m³/s)	Max. Outflow	
Event	m	m	m ³	75 mm Orifice	200 mm	(m³/s)
25 mm*	0.70	63.93	679.7	0.010	0	0.010
2-year	0.91	64.15	956.8	0.012	0.007	0.018
5-year	1.04	64.27	1115.0	0.012	0.048	0.060
100-yr	1.54	64.78	1728	0.015	0.117	0.132

Note: * - 4-hour storm duration

4.4 Water Quality

Annual TSS loading removal calculations were completed to determine if the proposed stormwater management measures would meet regulatory requirements for TSS. Treatment effectiveness information for the OGS and isolator row are provided in **Appendix H.**

Currently, there are no on-Site water quality controls. According to the calculations (summarized in **Appendix G**), the proposed stormwater management measures would provide over 80% annual pollutant loadings removal for TSS (and associated contaminates associated with particulates). The proposed OGS and isolator row, working as part of a 'treatment train' approach, will improve water quality discharging from the Site.

5. Erosion and Sediment Control

All activities should be controlled to prevent the entry of petroleum products, debris, rubble, concrete, or other deleterious substances into the natural features during construction. To prevent the discharge of these substances, several on-Site erosion and sediment controls (E&SC) measures are recommended. These would include the following E&SC measures (at a minimum):

- Light duty silt fencing; and
- Vegetate exposed graded soils with native, non-invasive grass seed species until final landscaping transpires.

These E&SC controls are illustrated in drawings provided in **Appendix E**. The E&SC Plan is in concordance with City and MECP guidelines and are recommended to be inspected daily, maintained, and continuously evaluated and upgraded when necessary or when directed by AECOM or City staff. The E&SC controls would be required to be installed prior to construction, especially prior to Site clearing. During construction, the selected contractor should monitor the local weather forecast to anticipate weather conditions and inspection of the E&SC controls should occur within 24 hrs of a 15 mm or greater rainfall event. Additional E&SC materials should be kept on-Site for emergencies and repairs. The selected contractor would seek final permission for the stockpile of material and storage of petroleum products and ensure that the proper E&SC controls are in place prior to placement or storage of material on-Site. At the end of construction, E&SC controls should be removed only when the Site conditions have been stabilized and vegetation has been established on disturbed areas, as approved by the on-Site inspector and City staff.

Groundwater levels is expected to fluctuate seasonally and dependent on precipitation events. The dewatering may not be required as no groundwater was observed during the current investigation. However, the dewatering assessment will be done during the construction, if necessary.

Please note that the E&SC Plan is a dynamic document that may be subject to change or modifications as a result of site developments or changes on-Site.

6. Operations and Maintenance

To meet regulatory requirements, the proposed stormwater management measures would need to be operated and maintained regularly effectively and efficiently. The following operation and maintenance measures would be required once the proposed stormwater management measures have been installed and in operation:

- The underground retention chamber system, isolator row, and OGS should be operated and maintained as per manufacturer's recommendations. The Operations and Maintenance (O&M) reports for the recommended products are provided in **Appendix G** and **H** respectively.
- The catch basins and storm sewer systems should be inspected and clean of sediment accumulation, with catch basin sumps to be clear of sediment accumulated as needed.

7. Conclusions

The proposed stormwater management facility meets the design objectives of the City.

Ref: 60634622

Drawings

Appendix A

Geotechnical Report

RECORD OF BOREHOLE: BH-1

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road

COORDINATES: N 5031369.8; E 451948.7

DATUM: Geodetic

AECOM PROJECT #: 60634622

START DATE: Jan 12, 2021 END DATE: Jan 12, 2021

BORING METHOD: 203 mm O.D. Solid Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

CLIENT: Amazon Logistics CONTRACTOR: Aardvark Drilling Inc. SAMPLER HAMMER, 64kg; DROP, 760mm SHEAR STRENGTH Cu, kPa nat V. - + Q - ● rem V. - ⊕ U - △ Standard Penetration Testing (SPT) Number (blows/0.3m) SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE (METRES) ADDITIONAL LAB. TESTING & GRAIN SIZE WELL INSTALLATION STRATA PLOT 40 60 80 NUMBER N VALUE AND WATER LEVELS ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DISTRIBUTION (%) DEPTH OW Wp -(m) 300 400 200 20 PAVEMENT GR SA SI CL 64.30 ASPHALT: 60 mm thick 0.06 FILL: sand and gravel, 700 mm thick, some clay with buried asphalt, grey, SS 53 0 33 62 (5) moist, very dense Power Auger Drilling SILTY CLAY: some sand, grey/brown, 2 SS 25 O SS 17 3 0 10 46 44 END OF BOREHOLE 1. This log is to be read with the subject report and project number as presented 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project.

3. No abnormal odour or staining was observed unless otherwise indicated.

4. No groundwater was observed in the open hole upon the completion. 60634622_DYT3.GPJ GAL-MISS.GDT 21-2-16 9 00 (LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

BH

1:50

AECOM

LOGGED: WH

RECORD OF BOREHOLE: BH-2

LOCATION: 2625 Sheffield Road COORDINATES: N 5031340.7; E 451960.8

DATUM: Geodetic

AECOM PROJECT#: 60634622

START DATE: Jan 12, 2021 END DATE: Jan 12, 2021

BORING METHOD: 203 mm O.D. Solid Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

CLIENT: Amazon Logistics CONTRACTOR: Aardvark Drilling Inc. SAMPLER HAMMER, 64kg; DROP, 760mm SHEAR STRENGTH Cu, kPa nat V. - + Q - ● rem V. - ⊕ U - △ Standard Penetration Testing (SPT) Number (blows/0.3m) SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE (METRES) ADDITIONAL LAB. TESTING & GRAIN SIZE WELL INSTALLATION STRATA PLOT 40 60 80 NUMBER N VALUE AND WATER LEVELS ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DISTRIBUTION (%) DEPTH OW Wp -(m) 300 400 200 20 PAVEMENT GR SA SI CL 64.60 ASPHALT: 150 mm thick 64:49 0.15 FILL: sand and gravel, 600 mm thick, some silt, grey, moist, very dense SS 42 0 1 23 67 (10) 63.85 Power Auger Drilling FILL: sand, some gravel, trace silt, brown, moist, dense 2 SS 46 C SILTY CLAY: trace gravel, some sand, brown, moist, stiff 3 ss 12 0 62.47 END OF BOREHOLE This log is to be read with the subject report and project number as presented 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project.

3. No abnormal odour or staining was observed unless otherwise indicated.

4. No groundwater was observed in the open hole upon the completion. (LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

1:50

DYT3.GPJ GAL-MISS.GDT 21-2-16

60634622

BH 001

AECOM

LOGGED: WH

RECORD OF BOREHOLE: BH-3

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road

COORDINATES: N 5031373.6; E 451984.0

DATUM: Geodetic

AECOM PROJECT#: 60634622

START DATE: Jan 12, 2021 END DATE: Jan 12, 2021

BORING METHOD: 203 mm O.D. Solid Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

CLIENT: Amazon Logistics

CONTRACTOR: Aardvark Drilling Inc.

SAMPLER HAMMER, 64kg; DROP, 760mm

SOIL PROFILE

SAMPLES

Standard Penetration Testing (SPT) Number (blows/0.3m) or rem V: -+ Q - o

SOIL PROFILE SAMPLES SAMPLES	ADDITIONAL LAB. TESTING & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL 27 72 (1)	
PAVEMENT 64.00 ASPHALT: 90 mm thick FILL: sand and gravel, some silt, 670 mm thick, grey, moist, very dense with crushed granulars SILTY CLAY: trace gravel, some sand, brown, moist, stiff to very stiff 2 SS 12	GR SA SI CL	
PAVEMENT ASPHALT: 90 mm thick FILL: sand and gravel, some silt, 670 mm thick, grey, moist, very dense with crushed granulars SILTY CLAY: trace gravel, some sand, brown, moist, stiff to very stiff 2 SS 12	GR SA SI CL	
PAVEMENT O PAVEMENT O O O O O O O O O O O O O		
PAVEMENT 64.00 ASPHALT: 90 mm thick FILL: sand and gravel, some silt, 670 mm thick, grey, moist, very dense with crushed granulars SILTY CLAY: trace gravel, some sand, brown, moist, stiff to very stiff 2 SS 12 O 61.87		
ASPHALT: 90 mm thick FILL: sand and gravel, some silt, 670 mm thick, grey, moist, very dense with crushed granulars SILTY CLAY: trace gravel, some sand, brown, moist, stiff to very stiff 2 SS 12 O 61.87		
FILL: sand and gravel, some silt, 670 mm thick, grey, moist, very dense with crushed granulars SiLTY CLAY: trace gravel, some sand, brown, moist, stiff to very stiff 2 SS 12	27 72 (1)	
crushed granulars 63.24 SILTY CLAY: trace gravel, some sand, brown, moist, stiff to very stiff 2 SS 12	27 72 (1)	
Tushed granulars 63.24 SILTY CLAY: trace gravel, some sand, brown, moist, stiff to very stiff 2 SS 12	27 72 (1)	
SILTY CLAY: trace gravel, some sand, brown, moist, stiff to very stiff 2 SS 12 2 SS 15		
SILTY CLAY: trace gravel, some sand, brown, moist, stiff to very stiff 2 SS 12		
2 61.87 3 88 15		
2 61.87 3 SS 15		
2 61.87 3 88 15		
2 61.87 3 88 15		
2 50 3 88 15		
2 8 15 0 O		
2 61.87 3 SS 15 O		
61.87		
61.87		
Notes:		
1. This log is to be read with the subject report and project number as presented		
report and project number as presented high above.		
2 Interretation assistance by AFCOM is		
2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project.		
3 mentioned project.		
3. No abnormal odour or staining was observed unless otherwise indicated.		
4. No groundwater was obeserved in the		
open hole.		
5		
8		1
		1
		1
9		
10		
	1	1

(LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

1:50

AECOM_BH

AECOM

LOGGED: WH

RECORD OF BOREHOLE: BH-7

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road COORDINATES: N 50314365.9; E 452069.5

START DATE: Jan 12, 2021 END DATE: Jan 12, 2021

DATUM: Geodetic AECOM PROJECT#: 60634622

BORING METHOD: 203 mm O.D. Solid Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm SAMPLER HAMMER, 64kg; DROP, 760mm CLIENT: Amazon Logistics CONTRACTOR: Aardvark Drilling Inc.

	П	\neg	SOIL PROFILE				MPL		Stand	dard Pe	enetrati per (blo	ion T	resting	0	SHE	AR STF					, -	<u> </u>	, roomin
DEPTH SCALE (METRES)	Ė	BORING ME I HOD		Į p		~			1	, . 20	40	60			I rem \/ - ♠ - ∧						ADDITIONAL LAB. TESTING & GRAIN SIZE DISTRIBUTION	G WELL INSTALLAT	
Ē	9	≥ [2]	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	N VALUE			_					ATER C	_			& G DIS	RAII TRIE	N SIZE BUTION	E AND WATER LEVE
ڪڙ	٥	8		₽¥.	DEPTH (m)	NON	7	> z							Wp	—	— O _M	1	-l WI		(%	b)	
	ļ	n		ST	(111)				1	00	200	300) 40	00		10 :			40				
0		\dashv	PAVEMENT		64.00						1	4				1		1		GR	SA	SI C	CL
			ASPHALT: 80 mm thick		0.00																		
			FILL: sand and gravel, some silt and clay, 680 mm thick, grey, moist, dense	\bowtie	3	1	SS	40							۱ 。					13	75	(12)	
			with crushed granulars	\bowtie																		,	
				\bowtie	63.24																		
			CLAYEY SILT: some to trace gravel, trace sand, grey, moist, stiff to very stiff		0.76																		
1			and dama, groy, motor, dam to very dam			2	SS	8									0						
					1																		
						3	SS	16							.			0		1	13	40 4	46
2		nger															ł.,						
	gu	17														· · · .		.					
	Ē	d Stem															··						
	Auge	Solid																1					
	Power Auger Drilling	O.D.																1					
3	Po				60.95										[:								
		203	SILTY CLAY: grey, moist, firm		3.05							1	·. ``	٠.٠٠٠ .	ļ.								
						4	SS	4					٠٠.				_	\perp_{lo}					
					1									•	:								
					1																		
4					1						`	٠.											
					1					· ·	:	٠.											
					1						1												
					1																		
					1						.												
5					1	5	SS.	. 6.	ŀ.,		'	$\cdot \cdot$					0			0	1	92	7
	L	Ц	END OF BOREHOLF		58.82 5.18	لنا	<u>.</u> :	٠.		1	-	\perp			-	1	1	-	1				
			END OF BOREHOLE Notes:		3.18	:			٠٠٠٠	····	:⁺							1					
			1. This log is to be read with the subject report and project number as presented		'	٠٠.	•		l ····	1													
			above				•	.]	···.														
6			Interpretation assistance by AECOM is required for projects excluding the above mentioned project. No abnormal odour or staining was	١.	ļ																		
			mentioned project. 3 No abnormal odour or staining was		[١.																	
			observed unless otherwise indicated.	· · ·	ĺ · · .																		
			4. Water level encountered at approximately 4.0 mbgs during drilling			:	:																
			operations.	·	·																		
7																							
,					``'																		
																		1					
																		1					
8																		1					
0																		1					
																		1					
^																							
9																							
10																							
	L																						
			READ IN CONJUNCTION WITH REPORT) CALE							_	_				4								LOGGED: WILL
			OALL							Д			U		1								LOGGED: WH
1:	50											_	_									(CHECKED: TA

RECORD OF BOREHOLE: BH-10

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road COORDINATES: N 5031373.2; E 452134.3

START DATE: Jan 12, 2021 END DATE: Jan 12, 2021

DATUM: Geodetic

BORING METHOD: 203 mm O.D. Solid Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm SAMPLER HAMMER, 64kg; DROP, 760mm AECOM PROJECT#: 60634622 CLIENT: Amazon Logistics CONTRACTOR: Aardvark Drilling Inc.

		SOIL PROFILE				MPLI				netration er (blows			SHE	AR STR				MINIER, OAKG, DIKO	, , , , , , , , , , , , , , , , , , , ,
DEPTH SCALE (METRES)	BORING METHOD		 -												nat V. rem V	l Cu, kP - + ' ⊕	Ų - ● U - △	ADDITIONAL	
%	ΜE		STRATA PLOT	[_,	监	,,	Щ	2	20 4	10 6	60 E	80 L	2	0 4	0 6	β0 E	10	ADDITIONAL LAB. TESTING & GRAIN SIZE DISTRIBUTION	WELL INSTALLATION AND WATER LEVE
Ē	NG	DESCRIPTION	₹	ELEV.	MBE	TYPE	N VALUE						WA	TER CC		T PERC	ENT	DISTRIBUTION	AND WATER LEVE
ے آت	ORI		₽	DEPTH (m)	NUMBER	⊢	> Z						Wp	-	-OW		-l WI	(%)	
	Ф		ST	(111)				10	00 2	00 3	00 4	00	1	0 2			10		
٦		PAVEMENT	L	64.60				L_	L_		<u></u>	L_	L	L_	<u></u>	<u></u>	L_	GR SA SI CL	
0	\top	ASPHALT: 180 mm thick		0.00 64.42															
		FILL: sand and gravel, 660 mm thick, some silt, brown, moist, very dense		0.18	\neg †			1											
			₩		1	ss	74						ے ا	}					
	Auge		₩										`	1					
	Power Auger Drilling 203 mm O.D. Solid Stem Auger	FILL gravelly and some silt moint	₩	63.84 0.76	-	_													
	E Sp	FILL: gravelly sand, some silt, moist, compact with possible cobbles	₩	0.70															
'	Soll	· '	₩		2	SS	23						0						
	Wer /		₩																
	g E		₩																
	233		₩		24	22													
	'	1	₩	62.77	ЗА	SS	8						0.						
		CLAYEY SILT: some sand, grey, moist,		1.83	3B			1							_				
2		stiff		62.47	OD								<u> </u>		<u> </u>				
		END OF BOREHOLE Notes:		2.13	ſ	Ī									[··.	ļ Ī			
		1. This log is to be read with the subject											l .		[:			
		This log is to be read with the subject report and project number as presented										L. .			'	ŀ			
		above. 2 Interpretation assistance by AFCOM is									.	.							
		2. Interpretation assistance by AECOM is required for projects excluding the above											ŀ.,						
3		I mentioned project.																	
		No abnormal odour or staining was observed unless otherwise indicated.									· `		ľ						
		No groundwater was observed in the									· ·	ļ., '·	 						
		open hole upon the completion.										٠.	:						
4									ļ.····										
4									ļ,										
									• •		ļ .·								
											-								
									•										
										· ·									
_							• • • •	·											
5							٠												
					•].	.	·		,										
				∹.	. 1	٠	٠.												
						. 1	:												
							٠.	· ·											
6							٠.,												
Ĭ			ļ.···																
		-			٠٠.														
		· · · · · · · · · · · · · · · · · · ·			. 1														
		`··	`	Į. I	:	:													
]	·	[`															
7			Ι,	·	.														
				`															
8																			
9																			
10																			
								l	I				l		I		L	<u> </u>	
(1.00	TO P	SE BEAD IN CON II INCTION WITH BEDORT!																	
		BE READ IN CONJUNCTION WITH REPORT)							A !				4					1.	OCCED: WL
	PTH S	SE READ IN CONJUNCTION WITH REPORT) SCALE							Δ)/	1						OGGED: WH

CLIENT: Amazon Logistics

RECORD OF BOREHOLE: BH-11

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road COORDINATES: N 5031311.5; E 452152.4

START DATE: Jan 12, 2021 END DATE: Jan 12, 2021

DATUM: Geodetic AECOM PROJECT#: 60634622

BORING METHOD: 203 mm O.D. Solid Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm SAMPLER HAMMER, 64kg; DROP, 760mm

CONTRACTOR: Aardvark Drilling Inc.

			Amazon Logistics SOIL PROFILE					LES	Stan	dard	d Pen	etratio	n Te	sting		SHE	AR ST	REN					_, , 0	.ng, L		P, 760mm
DEPTH SCALE (METRES)	F	BORING METHOD	OOIL FROFILE	Τ⊨			v11-L		Standard Penetration Testing (SPT) Number (blows/0.3m) 0								SHEAR STRENGTH Cu, kPa nat V + Q - ● rem V ⊕ U - △							ADDITIONAL LAB. TESTING & GRAIN SIZE DISTRIBUTION	L	WELL INSTALLATION
TRE		3 ME		STRATA PLOT	ELEV.	NUMBER	ш	N VALUE		20	4	10	60	80)	1 2	20 TER C	40	6	0	80	L	.AB. T & GRA	ESTIN IN SIZ	IG 'E	AND WATER LEVEL
		RINC	DESCRIPTION	ATA	DEPTH	UMB	TYPE	\X								1			OW OW				ISTRI ')	BUTIC %)	ON	
ב		BO		STR	(m)	z		z		100	21	00	300	40	0	Wp .	10	20	3		⊣ WI 40					
			PAVEMENT		64.90					Ť			Ť	Ĭ				Ť	J			GI	R SA	SI	CL	
0		П	ASPHALT: 180 mm thick		0.00 64.72																					
			FILL: sand and gravel, 1040 mm thick, trace silt and clay, brown, moist, very	₩	0.18																					
		ger	dense to compact	₩	}	1	SS	56								0						2	1 78	(1)		
	<u>p</u>	m At		₩	}				1																	
1	r Drill	Solid Stem Auger		₩		2A	88	15								0										
	Auge	Soli		₩	63.68	271		"																		
	Power Auger Drilling	n O.D.	CLAYEY SILT: trace gravel, trace sand, grey, moist, stiff		1.22	2B	SS											þ								
	ľ	203 mm	grey, moist, sun						1								l									
		2				3	SS	11								Ι.		.:								
2							00	' '									١٠.	.]								
	H		END OF BOREHOLE		62.77 2.13			-		+			+				1	+	٠			+				
			Notes: 1. This log is to be read with the subject													'.'		1.		· :						
			1. This log is to be read with the subject report and project number as presented above.												٠.,											
			2. Interpretation assistance by AECOM is required for projects excluding the above											$ \cdot $												
3			mentioned project.												· .·											
			No abnormal odour or staining was observed unless otherwise indicated.										·													
			4. No groundwater was observed in the open hole upon the completion.												٠. '	·										
			open note upon the completion.												•											
										.	٠					•										
4											٠.		· ···	٠٠.	٠.,											
										.			٠ .	٠.,	.*											
											٠.]														
													\cdot													
5								····	ļ.,				·ĺ													
J								· · ·	:																	
										1																
					.	٠٠.		1 :	1	١٠.	••															
							٠.		··																	
6				١				'																		
				ļ .		ŀ.,																				
			· ·		· · ·	٠ ا																				
			*·	· · ·	ļ	:	÷																			
			·	· · .																						
7						ľ																				
8																										
9																										
-																										
10																										
			READ IN CONJUNCTION WITH REPORT)		•	•		'						_	_	_						_				
DE	PΊ	TΗS	CALE								۱,		ď			1									LC	OGGED: WH
1:	50)								_	1			_	7	_									CHI	ECKED: TA

RECORD OF BOREHOLE: BH-12

LOCATION: 2625 Sheffield Road

COORDINATES: N 5031275.1; E 452165342.0

START DATE: Jan 12, 2021 END DATE: Jan 12, 2021

DATUM: Geodetic
AECOM PROJECT #: 60634622

AECOM PROJECT #: 60634622 BORING METHOD: 203 mm O.D. Solid Stem Auger PENETRATION TEST HAMMER, 64kg; DROP, 760mm CLIENT: Amazon Logistics CONTRACTOR: Aardvark Drilling Inc. SAMPLER HAMMER, 64kg; DROP, 760mm SHEAR STRENGTH Cu, kPa nat V. - + Q - ● rem V. - ⊕ U - △ Standard Penetration Testing (SPT) Number (blows/0.3m) SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE (METRES) ADDITIONAL LAB. TESTING & GRAIN SIZE STRATA PLOT WELL INSTALLATION 40 60 80 NUMBER N VALUE AND WATER LEVELS ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DISTRIBUTION (%) DEPTH OW Wp -(m) 300 400 200 20 PAVEMENT GR SA SI CL 64.60 ASPHALT: 90 mm thick 0.00 FILL: sand and gravel, some silt, brown, moist, compact with crushed granulars SS 22 0 Power Auger Drilling 2A SS 18 0 **CLAYEY SILT:** some gravel, trace sand, brown, moist, very stiff 2B SS 0 203 3 ss 16 0 21 51 28 62.47 2.13 END OF BOREHOLE 1. This log is to be read with the subject report and project number as presented 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project.

3. No abnormal odour or staining was observed unless otherwise indicated.

4. No groundwater was observed in the open hole upon the completion.

(LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

1:50

60634622_DYT3.GPJ GAL-MISS.GDT 21-2-16

BH 001

AECOM

LOGGED: WH

SHEET 1 OF 1

RECORD OF BOREHOLE: BH-14

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road

COORDINATES: N 5031239.3; E 452118.1

DATUM: Geodetic

AECOM PROJECT #: 60634622

START DATE: Jan 11, 2021 END DATE: Jan 11, 2021

BORING METHOD: 203 mm O.D. Solid Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

CLIENT: Amazon Logistics CONTRACTOR: Aardvark Drilling Inc. SAMPLER HAMMER, 64kg; DROP, 760mm SHEAR STRENGTH Cu, kPa nat V. - + Q - ● rem V. - ⊕ U - △ Standard Penetration Testing (SPT) Number (blows/0.3m) SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE (METRES) ADDITIONAL LAB. TESTING & GRAIN SIZE WELL INSTALLATION STRATA PLOT 40 60 80 NUMBER N VALUE AND WATER LEVELS ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DISTRIBUTION (%) DEPTH OW Wp -(m) 300 400 200 20 PAVEMENT GR SA SI CL 64.60 ASPHALT: 40 mm thick 0.04 FILL: sand and gravel, 1330 mm thick, trace silt and clay, brown/grey, moist, compact to dense with buried asphalt Power Auger Drilling SS 23 30 67 (3) 2 SS 42 0 END OF BOREHOLE 1. This log is to be read with the subject report and project number as presented above.

2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project.

3. No abnormal odour or staining was observed unless otherwise indicated.
4. No groundwater was observed in the open hole upon the completion. 60634622_DYT3.GPJ GAL-MISS.GDT 21-2-16 9 001 (LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

1:50

BH

AECOM

LOGGED: WH

RECORD OF BOREHOLE: BH-15

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road

COORDINATES: N 5031205.4; E 452137.5

DATUM: Geodetic

AECOM PROJECT #: 60634622

START DATE: Jan 11, 2021 END DATE: Jan 11, 2021

BORING METHOD: 203 mm O.D. Solid Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

CLIENT: Amazon Logistics CONTRACTOR: Aardvark Drilling Inc. SAMPLER HAMMER, 64kg; DROP, 760mm SHEAR STRENGTH Cu, kPa nat V. - + Q - ● rem V. - ⊕ U - △ Standard Penetration Testing (SPT) Number (blows/0.3m) SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE (METRES) ADDITIONAL LAB. TESTING & GRAIN SIZE WELL INSTALLATION STRATA PLOT 40 60 80 NUMBER N VALUE AND WATER LEVELS ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DISTRIBUTION (%) DEPTH OW Wp -(m) 300 400 200 PAVEMENT GR SA SI CL 64.30 ASPHALT: 90 mm thick 0.00 FILL: sand and gravel, some silt, brown, moist, compact with buried asphalt and SS >50 0 construction debris 2A SS 0 **CLAYEY SILT:** some to trace sand, grey, moist, stiff 2B SS SS 12 3 0 END OF BOREHOLE 1. This log is to be read with the subject report and project number as presented 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project.

3. No abnormal odour or staining was observed unless otherwise indicated.

4. No groundwater was observed in the open hole upon the completion. 60634622_DYT3.GPJ GAL-MISS.GDT 21-2-16 00 (LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

BH

1:50

AECOM

LOGGED: WH CHECKED: TA

DATUM: Geodetic

RECORD OF BOREHOLE: BH-16

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road COORDINATES: N 5031180.9; E 452172.4

START DATE: Jan 11, 2021 END DATE: Jan 11, 2021

BORING METHOD: 203 mm O.D. Solid Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

AECOM PROJECT #: 60634622 CLIENT: Amazon Logistics CONTRACTOR: Aardvark Drilling Inc. SAMPLER HAMMER, 64kg; DROP, 760mm SHEAR STRENGTH Cu, kPa nat V. - + Q - ● rem V. - ⊕ U - △ Standard Penetration Testing (SPT) Number (blows/0.3m) SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE (METRES) ADDITIONAL LAB. TESTING & GRAIN SIZE STRATA PLOT WELL INSTALLATION 40 60 80 NUMBER N VALUE AND WATER LEVELS ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DISTRIBUTION (%) DEPTH OW Wp -(m) 300 400 200 PAVEMENT GR SA SI CL 64.30 ASPHALT: 90 mm thick 0.00 FILL: sand and gravel, some silt, brown, moist, compact with buried asphalt and SS 77 0 37 62 (1) construction debris Power Auger Drilling CLAYEY SILT: some to trace sand, grey, moist, stiff 2 SS 19 SS 14 3 END OF BOREHOLE 1. This log is to be read with the subject report and project number as presented 2. Interpretation assistance by AECOM is required for projects excluding the above mentioned project.

3. No abnormal odour or staining was observed unless otherwise indicated.

4. No groundwater was observed in the open hole upon the completion. 60634622_DYT3.GPJ GAL-MISS.GDT 21-2-16 00 (LOG TO BE READ IN CONJUNCTION WITH REPORT)

DEPTH SCALE

1:50

BH

AECOM

LOGGED: WH

CHECKED: TA

RECORD OF BOREHOLE: BH-17

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road

COORDINATES: N 5031175.2; E 452190.1 DATUM: Geodetic

START DATE: Jan 11, 2021 END DATE: Jan 11, 2021

AECOM PROJECT#: 60634622

BORING METHOD: 203 mm O.D. Solid Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

щ	[9]	SOIL PROFILE			SAI	MPLI	ES	Standard Per (SPT) Number	netration er (blow	n Testino s/0.3m)	0	SHE	AR STE	RENGTI nat V. rem V	l Cu, kl	Pa Q - ●				
DEPTH SCALE (METRES)	i	3 METH		PLOT	ELEV.	ER	ш	J.	1			30	- 2	20 -	40 (50	30	ADD LAB. & GR DISTE	ITION TEST AIN S	IAL ING SIZE	WELL INSTALLATIO
ME)		BORING METHOD	DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	TYPE	N VALUE	100 2	00 3	00 4	 00	Wp	<u> </u>	ONTEN OW 20 :		ENT - WI 40	DISTF	RIBUT (%)	ION	
			PAVEMENT		64.00							Ī		Ī	Ī		Ī	GR S	A SI	CL	
- 0			ASPHALT: 110 mm thick	XXX	6 3.89 0.11																
	6	Auger	FILL: sand and gravel, some silt, brown, moist, very dense with crushed granulars		62 24	1	SS	79					0					46 50	3 (1)	
· 1	uger Drilling	nm O.D. Solid Stem Auger	CLAYEY SILT: some to trace sand, grey, moist, stiff		63.24 0.76	2	SS	8													
	ower /	л О.D.																			
	1	203 mm (
						3	ss	13							,	,					
2		Ш			61.87										·						
			END OF BOREHOLE Notes:		2.13																
			This log is to be read with the subject report and project number as presented												ļ ···						
			above. 2. Interpretation assistance by AECOM is required for projects excluding the above																		
- 3			mentioned project.																		
			No abnormal odour or staining was observed unless otherwise indicated.								·		ľ								
			4. No groundwater was observed in the open hole upon the completion.										· · .								
4										••••	···										
											,··										
											ľ										
											<u> </u>										
5						ŀ		• • • •	<u> </u>												
							\cdot		i												
						٠]	٠٠.														
						Ì	٠٠.	•	··												
6					···			••													
						٠															
			, · · ·			:															
			·····																		
- 7				'••																	
. 8																					
. 9																					
-																					
- 10																					
10																					
			READ IN CONJUNCTION WITH REPORT)						A		~) /	A	1	'					LC	DGGED: WH

DATUM: Geodetic

RECORD OF BOREHOLE: BH-18

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road COORDINATES: N 5031139.8; E 452131.3

START DATE: Jan 11, 2021

END DATE: Jan 11, 2021 BORING METHOD: 203 mm O.D. Solid Stem Auger AECOM PROJECT#: 60634622

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

CLIENT: Amazon Logistics CONTRACTOR: Aardvark Drilling Inc.

SAMPLER HAMMER, 64kg; DROP, 760mm

U _		₽ [SOIL PROFILE			SAN	MPLE	ES	Standa (SPT) N	ra Pen Numbe	etration r (blows	ı estin (0.3m)	g O	SHE	AR STR	⊨NGTF nat V.	1 Cu, kF	a Q-●	ADDITION	
(METRES)		BORING METHOD		Ь <u>-</u>			T	ш	20				30	:	20 4	rem V IO 6	⊕ §0 8	U - △ 80	ADDITIONAL LAB. TESTING	WELL INSTALLATION
ÆŢ,		<u>₹</u>	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	N VALUE						_	TER CO		_		& GRAIN SIZE DISTRIBUTION	AND WATER LEVE
ڪ د		8		RA	DEPTH (m)	N	4	> N						Wp	1	-OW		l WI	(%)	
	L	m	DAYEMENT.	S	()		4		100	0 20	00 3	00 <u>4</u>	00		10 2	20 3	80 4	10	00.5: :	
0	L	\dashv	PAVEMENT ASPHALT: 60 mm thick		63.40														GR SA SI CL	
			FILL: sand and gravel, 700 mm thick, trace silt and clay, brown/grey, moist,	₩	0.06															
			trace silt and clay, brown/grey, moist, very dense	\bowtie		1	ss	>50						0						
		nm O.D. Solid Stem Auger	very derise																	
	ina	tem /	SILTY CLAY: some sand, grey, moist,	***	62.64 0.76		-													
1	er Dr	Spig	firm to stiff				_													
	Aug	D. S.				2	SS	6									Р			
	owe	O E					_													
	ľ	203 mm O.D.					_													
						3	ss	10						l .			0		1 33 37 29	
2						٦	55	10						/					1 33 37 29	
	H	Н	END OF BOREHOLE	PXX	61.27 2.13										-					
			Notes:												'					
			1. This log is to be read with the subject report and project number as presented																	
			above.																	
3			2. Interpretation assistance by AECOM is required for projects excluding the above										ļ	ŀ.,						
_			mentioned project. 3. No abnormal odour or staining was																	
			No abnormal odour or staining was observed unless otherwise indicated. No groundwater was observed in the											[
			open hole upon the completion.										٠	٠٠.						
4									.											
·											٠٠									
										•										
5								٠٠٠.	ŀ.,		• • •	1								
Ū								٠٠.												
										• • • • • • • • • • • • • • • • • • • •										
						٠				• • •										
						ľ	· · ·		··											
6								•												
						.														
			<i>,</i>																	
			₹.																	
	ĺ		**•.																	
7				``																
•					``··`															
	ĺ																			
	ĺ																			
	ĺ																			
8																				
Ū																				
	ĺ																			
	ĺ																			
9	ĺ																			
J																				
	ĺ																			
10																				
	1	- 1		1	ı							I		l	1	1	1	1	1	

1:50

A=COM

CHECKED: TA

RECORD OF BOREHOLE: BH-19

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road

COORDINATES: N 5031134.8; E 452084.5

DATUM: Geodetic

AECOM PROJECT#: 60634622

START DATE: Jan 11, 2021 END DATE: Jan 11, 2021

BORING METHOD: 203 mm O.D. Solid Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

щ	9	8	SOIL PROFILE			SA	MPL	ES	Standard Pe (SPT) Numb	netration er (blows	Testing	0	SHE	AR STR	ENGTH nat V.	l Cu, kl	Pa Q-●				
SCAL	i.	MET		PLOT	ELEV.	ER		JE				0	2	20 4	0 6	50	80	AD LAB & G	DITI . TE RAIN	ONAL STING N SIZE	WELL INSTALLATIO AND WATER LEVEL
DEPTH SCALE (METRES)	0.410	BORING METHOD	DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	TYPE	N VALUE					WA Wp	TER CC	ONTEN.		H WI	DIST	rrib (%	UTION	7.1.5 77.112.112.12
	_	<u> </u>	PAVEMENT	ST					100 2	200 3	00 4	00		10 2	20 3	30	40	GR :	SA	SI CL	
- 0		П	ASPHALT: 130 mm thick		64.00 69.99													<u> </u>			
			FILL: crusher run limestone, grey, moist, very dense	\bowtie	0.13	1A	SS	72					0					44	56	(0)	
		Jer		₩	63.54 0.46								_								
	ng	Stem Auger	FILL: sand and gravel, some silt and clay, grey, moist, very dense	\bowtie	63.24	1B	SS						0								
	Power Auger Drilling	d Ste	CLAYEY SILT: some to trace sand, grey/brown, moist, very stiff to stiff		0.76																
` '	Auge	Solid:				2	SS	13							'	þ					
	ower	л О.D.																			
	а	203 mm																			
		2				3	SS	8					,			0	1	0	10	49 41	
2					64.0-		~							:]				**	
ŀ		뮈	END OF BOREHOLE	rxxx	61.87 2.13										••						
			Notes: 1. This log is to be read with the subject report and project number as presented										''	1 .	··	:					
			above.									··· <u>.</u>		1	`	ŗ					
			2. Interpretation assistance by AECOM is required for projects excluding the above								.			1							
3			mentioned project.								:		.								
			No abnormal odour or staining was observed unless otherwise indicated. No groundwater was observed in the								٠٠.		İ								
			open hole upon the completion.																		
4										· · · · · ·											
									- - -	.···		7.7									
										··		ļ.·									
								٠٠٠.	.		ŀ										
5								٠٠.	``:												
					٠.				<i>i</i>												
					٠.																
							· .		·												
6				١.					·												
				ŀ		٠.															
			, in the second sec																		
			<.	· · .	ļ. I	:	:														
			••	· · .	` :									1							
7						•								1							
														1							
														1							
8														1							
J														1			1				
														1			1				
														1							
														1							
9																					
														1							
														1							
10																					
(LOG	3 T	O BE	READ IN CONJUNCTION WITH REPORT)							1			<u> </u>	1			1				
DEI	РΤ	'H S	CALE						A				4							L	OGGED: WH
1:	50									_										CH	ECKED: TA

RECORD OF BOREHOLE: BH-20

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road COORDINATES: N 5031101.7; E 452049.5

START DATE: Jan 11, 2021 END DATE: Jan 11, 2021

DATUM: Geodetic AECOM PROJECT #: 60634622

BORING METHOD: 203 mm O.D. Solid Stem Auger

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

1	Q	SOIL PROFILE			SA	MPL	ES	Standard Pe (SPT) Numb	enetration	Testing]	SHEA	R STR	ENGTH	l Cu, kF	Pa -		
(METRES)	王		 -										AR STR	nat V. rem V	- + - ⊕	Ų - ♥ U - △	ADDITIONAL	
TRE	BORING METHOD		STRATA PLOT	ELEV.	ER	ш	핅	20	40	30 0	30 	2	0 4	0 6	i0 8	30	ADDITIONAL LAB. TESTING & GRAIN SIZE DISTRIBUTION	WELL INSTALLATION AND WATER LEVEL
WE.	SING	DESCRIPTION	Ϋ́	DEPTH	NUMBER	TYPE	N VALUE					l	TER CC				DISTRIBUTION (%)	
	BOF		TR/	(m)	ž	_	z	100	200 2	00 4		Wpl		OW.		-l WI	(50)	
_		PAVEMENT	1 0					100	200 3	00 4	00	1	0 2	10 3	0 4	10 	GR SA SI CL	
0		ASPHALT: 100 mm thick		64.00 0.00					+									
		FILL: sand and gravel, 660 mm thick, trace silt, grey, moist, very dense		0.10														
	<u>_</u>		\bowtie	∄ ∣	1	ss	>50											
	Auger		\bowtie															
	Stem	CLAYEY SILT: trace sand, grey/brown,	m	63.24 0.76														
1	Solid 3	moist, very stiff			2	SS	21						0					
	Power Auger Drilling																	
	Pow																	
	203												· · .					
					3	SS	18					.			0			
2				61.87														
ı		END OF BOREHOLE	1	2.13									•	٠				
		Notes: 1. This log is to be read with the subject										'	,	٠	:			
		This log is to be read with the subject report and project number as presented above.									ļ			٠.	ŀ			
		2. Interpretation assistance by AECOM is																
3		Interpretation assistance by AECOM is required for projects excluding the above mentioned project.																
		No abnormal odour or staining was observed unless otherwise indicated.																
		No groundwater was observed in the open hole upon the completion.								``.	ļ., ^{;,}	.						
		open hole upon the completion.									٠.							
4								ļ	1	ļ								
								· . ·	: ····	'								
								٠.			ľ							
										}								
5								· .	:									
						٠.,		l "	•]									
					٠													
							ŀ.,	· · .										
6			l				ļ ``											
					•													
		/																
		<u> </u>	···		:	÷												
			· .															
7			'	•••••														
8																		
9																		
10																		
		i	1	1		1				1	1	l	1	I	l	1	I	

1:50

AECOM

LOGGED: WH CHECKED: TA

DATUM: Geodetic

RECORD OF BOREHOLE: BH-21

LOCATION: 2625 Sheffield Road COORDINATES: N 5031155.8; E 452042.6

START DATE: Jan 11, 2021 END DATE: Jan 11, 2021

AECOM PROJECT#: 60634622 CLIENT: Amazon Logistics

BORING METHOD: 203 mm O.D. Solid Stem Auger

SHEET 1 OF 1

PENETRATION TEST HAMMER, 64kg; DROP, 760mm CONTRACTOR: Aardvark Drilling Inc. SAMPLER HAMMER, 64kg; DROP, 760mm

<u>.</u>	2	ģ [SOIL PROFILE			SAI	MPLE	S	Standard F (SPT) Num	enetration ber (blov	n restir vs/0.3m)	ng) o	SHE	AR STR	⊨NGT⊦ nat V.	Cu, kF	a Q- ●	ADDITION	
(METRES)	Ę			[6]		2		ш	20	40		80	2	20 4	rem V IO 6	'⊕ §0 8	U - △ 80	ADDITIONAL LAB. TESTING	WELL INSTALLATIO
MET	9	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	N VALUE	-	•			1	TER CC				& GRAIN SIZE DISTRIBUTION (%)	AND WATER LEVE
7		BOR		TRA	(m)	N	-	ź	400	200	200		l vvp		- Ow		H WI	(70)	
		\dashv	PAVEMENT	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	64.00		1		100	200	300 4	+00	 	10 2	20 3	30 4	10	GR SA SI CL	
0		П	ASPHALT: 100 mm thick	XXX	0.00 0.10						1	1							
		uger	FILL: sand and gravel, some to trace silt, brown/grey, moist, very dense to compact		0.10	1	ss	61					0					47 49 (4)	
1	ger Drilling	nm O.D. Solid Stem Auger				2	ss	19					0						
	Power Aug				62.48	2	33	18											
		203	CLAYEY SILT: trace gravel, grey, moist, stiff		1.52	3	ss	11							_	-	<u></u>		
2		Ц	END OF DODELIOLE		61.87 2.13							1	1	· ř .	<u>. </u>				
			END OF BOREHOLE Notes: 1. This log is to be read with the subject report and project number as presented above. 2. Interpretation assistance by AECOM is required for projects excluding the above		2.13									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
3			mentioned project. 3. No abnormal dour or staining was observed unless otherwise indicated. 4. No groundwater was observed in the open hole upon the completion.																
4																			
								٠											
5								٠	``										
										·									
6								٠											
			/																
			^{≼,} .,		ļ														
-				··.															
7																			
8																			
9																			
40																			
10	ĺ			1															

1:50

A=COM

CHECKED: TA

RECORD OF BOREHOLE: BH-22

SHEET 1 OF 1

LOCATION: 2625 Sheffield Road

COORDINATES: N 5031125.4; E 452039.9

DATUM: Geodetic

AECOM PROJECT#: 60634622 CLIENT: Amazon Logistics

START DATE: Jan 11, 2021 END DATE: Jan 11, 2021

BORING METHOD: 203 mm O.D. Solid Stem Auger CONTRACTOR: Aardvark Drilling Inc.

PENETRATION TEST HAMMER, 64kg; DROP, 760mm SAMPLER HAMMER, 64kg; DROP, 760mm

ш		8	SOIL PROFILE			SA	AMPI	LES	Stand (SPT	dard Pe	enetrati	on Testi ws/0.3m	ng ı) o	SH	EAR ST	RENGT nat V	H Cu, k	Pa Q - ● U - △		
DEPTH SCALE (METRES)		BORING METHOD		Ь				L	1) Nu iii 20	40	60	80					Ũ - ∆ 80	ADDITIONAL LAB. TESTING & GRAIN SIZE DISTRIBUTION	WELL INSTALLATION
ETR		Σ	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	N VALUE					_	w	ATER C				& GRAIN SIZE	AND WATER LEVEL
5		ZR.	DESCRIPTION	RAT.	DEPTH	١Ş	≿	\$ 2] w		— O ^M		- wı	(%)	
	L	ĕ		ST	(m)	Ĺ		Ļ		100	200	300	400	<u> </u>				40		
0	L		PAVEMENT	86.87	64.30	_				1				_					GR SA SI CL	
			TOPSOIL: 50 mm thick		0.0	5			1											
			FILL: silty clay, trace gravel, some sand, brown, moist, very stiff with buried	\bowtie		1	ss	19							0					
		nger	organics	\bowtie	63.64	4														
		em A	CLAYEY SILT: trace gravel, grey/brown,		0.60				1											
1	ċ	er Dr	moist, very stiff																	
	, V	r Aug D. Sc				2	55	28							0					
	3	Power Auger Drilling nm O.D. Solid Stem Auger				-		+	-											
		Pov 203 mm							1											
		''				3	SS	21											0 19 49 32	
2					62.11	,									` ``.	. .				
	r		END OF BOREHOLE	TVV	2.13			+						1	· [···	1				
			Notes: 1. This log is to be read with the subject report and project number as presented											'		···.				
			above.										···.				1			_
			Interpretation assistance by AECOM is required for projects excluding the above																	<u>∑</u> Jan 14, 2021
3			mentioned project.																	2021
			No abnormal odour or staining was observed unless otherwise indicated.									· · · .								
			No groundwater was observed in the open hole upon the completion.										1	· · · .						
													'		.					
4										ļ.···.										
7										ļ. ·	:	. ` ` `	•							
										`.	1									
										'		<u>.:[</u>								
5								1	†·.		'	.								
					٠,		١.,	.] "											
						ļ · ·			1.											
							'	١												
6					···															
			. ِ			Ť÷.														
			<u> </u>			١.														
			``···		ł.,	ŀ														
7																				
7					`	1														
8																				
9																				
	Ĭ																			
10																				
(LO	G.	TO B	E READ IN CONJUNCTION WITH REPORT)	1		1			<u> </u>	1										
			SCALE							Λ				A					L	OGGED: WH
	_	0								H	=	L	JN	7						ECKED: TA

Appendix **B**

Regulatory Information

RVCA Regulations Mapping

Appendix C

Pre-consultation Comments

APPLICANT'S STUDY AND PLAN IDENTIFICATION LIST

S indicates that the study or plan is required with application submission.

A indicates that the study or plan may be required to satisfy a condition of approval/draft approval.

For information and guidance on preparing required studies and plans refer to:

http://ottawa.ca/en/development-application-review-process-0/guide-preparing-studies-and-plans

S/A	Number of copies	ENG	INEERING	S/A	Number of copies
S		Site Servicing Plan	2. Site Servicing Study	S	
S		3. Grade Control and Drainage Plan	4. Geotechnical Study	S	
		5. Composite Utility Plan	6. Groundwater Impact Study		
		7. Servicing Options Report	8. Wellhead Protection Study		
S		Community Transportation Study and / or Transportation Impact Study	10.Erosion and Sediment Control Plan	S	
S		11.Storm water Management Report	12.Hydro geological and Terrain Analysis		
		13.Hydraulic Water main Analysis	14.Noise / Vibration Study		
		15.Roadway Modification Design Plan	16.Confederation Line Proximity Study		

S/A	Number of copies	PLANNING	/ DESIGN / SURVEY	S/A	Number of copies
		17.Draft Plan of Subdivision	18.Plan Showing Layout of Parking Garage		
		19.Draft Plan of Condominium	20.Planning Rationale	S	
S		21.Site Plan	22.Minimum Distance Separation (MDS)		
		23.Concept Plan Showing Proposed Land Uses and Landscaping	24.Agrology and Soil Capability Study		
		25.Concept Plan Showing Ultimate Use of Land	26.Cultural Heritage Impact Statement		
S		27.Landscape Plan	28.Archaeological Resource Assessment Requirements: S (site plan) A (subdivision, condo)		
S		29.Survey Plan	30.Shadow Analysis		
S		31.Architectural Building Elevation Drawings (dimensioned)	32.Design Brief	S	
		33.Wind Analysis			

S/A	Number of copies	ENV	IRONMENTAL	S/A	Number of copies
S		34.Phase 1 Environmental Site Assessment	35.Impact Assessment of Adjacent Waste Disposal/Former Landfill Site		
Α		36.Phase 2 Environmental Site Assessment (depends on the outcome of Phase 1)	37.Assessment of Landform Features		
		38.Record of Site Condition	39.Mineral Resource Impact Assessment		
S		40.Tree Conservation Report	41.Environmental Impact Statement / Impact Assessment of Endangered Species	Α	
		42.Mine Hazard Study / Abandoned Pit or Quarry Study	43.Integrated Environmental Review (Draft, as part of Planning Rationale)		

mber of copies	
gital versions of all submissions	

Meeting Date: August 18, 2022	Application Type: SPC – complex
File Lead (Assigned Planner): Kelby Lodoen Unseth	Infrastructure Approvals Project Manager: Sharif Sharif
Site Address (Municipal Address): 2625 Sheffield Rd	*Preliminary Assessment: 1 \square 2 \square 3 \square 4 \square 5 \square

*One (1) indicates that considerable major revisions are required before a planning application is submitted, while five (5) suggests that proposal appears to meet the City's key land use policies and guidelines. This assessment is purely advisory and does not consider technical aspects of the proposal or in any way guarantee application approval.

It is important to note that the need for additional studies and plans may result during application review. If following the submission of your application, it is determined that material that is not identified in this checklist is required to achieve complete application status, in accordance with the Planning Act and Official Plan requirements, the Planning, Infrastructure and Economic Development Department will notify you of outstanding material required within the required 30 day period. Mandatory pre-application consultation will not shorten the City's standard processing timelines, or guarantee that an application will be approved. It is intended to help educate and inform the applicant about submission requirements as well as municipal processes, policies, and key issues in advance of submitting a formal development application. This list is valid for one year following the meeting date. If the application is not submitted within this timeframe the applicant must again pre-consult with the Planning, Infrastructure and Economic Development Department.

> Visit us: Ottawa.ca/planning Visitez-nous: Ottawa.ca/urbanisme

D

Meeting: Thursday August 18, 2022 @ 11am

City Attendees:

Kelby Lodoen Unseth – Planner Sharif Sharif – Infrastructure Project Manager Matthew Hayley – Environmental Planner Ann O'Connor – Urban Design Mark Richardson – Forestry

Location:

2625 Sheffield Road

Property Overview and Discussion:

The property is zone Heavy Industrial (IH). The purpose of the IH Zone is to:

- 1) permit a wide range of industrial uses, including those which, by their nature, generate noise, fumes, odours, and are hazardous or obnoxious, in accordance with the Employment Area designation of the Official Plan or, the General Urban Area designation where applicable;
- 2) allow in certain Employment Areas or General Urban Areas, a variety of complementary uses such as recreational, health and fitness uses and service commercial (e.g. convenience store, personal service business, restaurant, automobile service station and gas bar), occupying small sites as individual occupancies or in groupings as part of a small plaza, to serve the employees of the Employment or General Urban Area, the general public in the immediate vicinity, and passing traffic:
- 3) prohibit retail uses in areas designated as Employment Area but allow limited sample and showroom space that is secondary and subordinate to the primary use of buildings for the manufacturing or warehousing of the product; and
- 4) provide development standards that would ensure that the industrial uses would not impact on the adjacent non-industrial areas.

The current City of Ottawa Official Plan designates the property as Urban Employment, which identifies lands for a range of employment uses.

The new City of Ottawa Official Plan designates the property as Industrial and Logistics (Section 6.4) under Transect B3 (Outer Urban Transect). The Industrial and Logistics designation is characterized by traditional land uses such as warehousing, distribution, among other uses, requiring a range of parcel sizes.

Meeting: Thursday August 18, 2022 @ 11am

Discussion:

The site appears to have strong pedestrian connections through the parking areas which is a positive. It is understood that the pedestrian walkway will be extended to the street near the north end of the property with a bus pad to be constructed. It may also be helpful to extend the walkway from the southern portion of the building to the street for pick-up and drop offs.

The City will be looking for a strong landscape plan as the site has substantial street frontage on both Sheffield Road and Humber Place. Although it is noted that above ground hydro lines run along Sheffield Road.

The vehicle and bicycle parking requirements will be confirmed through the Site Plan Control application, and the RVCA and VIA rail will be circulated on the development application.

The outdoor amenity area will be an asset, but consideration should be made to how much the location is shaded, due to the building height on three sides, and if a secondary space with more sun could be accommodated.

Property:

Meeting: Thursday August 18, 2022 @ 11am

Site Plan Concept:

Transportation:

- 1. A TIA is warranted proceed to scoping.
- 2. The application will not be deemed complete until the submission of the draft step 2-4, including the functional draft RMA package (if applicable) and/or monitoring report (if applicable).
- 3. Although a full review of the TIA Strategy report (Step 4) is not required prior to an application, it is strongly recommended.
- 4. Synchro files are required at Step 4.
- 5. ROW protection is N/A.
- 6. Corner sight triangle: 5m x 5m

Meeting: Thursday August 18, 2022 @ 11am

- The throat length requirements should follow the TAC guidelines for a collector road.
- 8. Noise study is not required.

Environment:

- 9. Natural Heritage The property to the east is part of the National Capital Commission (NCC) Greenbelt and is identified New OP as Greenbelt Linkage in Schedule C12 and is indicated as a natural heritage feature on Schedule C11-C. As described above, adjacent lands to the development are to be identified as "greenbelt linkage", this means that the site will need to ensure there is no negative impact on the linkage. However, an EIS is not triggered if the proposed development site is more than 30 m from the NCC lands. Given the adjacent natural area, lighting of the site will be a concern since it may attract wildlife from the greenbelt lands, some advice and guidance available in the EIS Guidelines and the Bird-safe guidelines.
- 10. <u>Bird-safe</u> Design Given the size and type of the proposal the proposal will need to review and incorporate bird safe design elements. Some of the risk factors include glass and related design traps such as corner glass and fly-through conditions, ventilation grates and open pipes, landscaping, light pollution. More guidance and solutions are available in the guidelines which can be found here: https://documents.ottawa.ca/sites/documents/files/birdsafedesign_guidelines_en.pdf
- 11. Extreme heat Please consider features that reduce the urban heat island effect (see OP 10.3.3) produced by the parking lot and a building footprint. For example, this impact can be reduced by adding large canopy trees, green roofs or vegetation walls, or constructing the parking lot or building differently.

Forestry:

TCR requirements:

- 12.a Tree Conservation Report (TCR) must be supplied for review along with the suite of other plans/reports required by the City
 - a) an approved TCR is a requirement of Site Plan approval.
 - b) The TCR may be combined with the LP provided all information is supplied
- 13. Any removal of privately-owned trees 10cm or larger in diameter, or city-owned trees of any diameter requires a tree permit issued under the Tree Protection Bylaw (Bylaw 2020 340); the permit will be based on an approved TCR and made available at or near plan approval.

Meeting: Thursday August 18, 2022 @ 11am

- 14. The Planning Forester from Planning and Growth Management as well as foresters from Forestry Services will review the submitted TCR
 - a) If tree removal is required, both municipal and privately-owned trees will be addressed in a single permit issued through the Planning Forester
 - b) Compensation may be required for city owned trees if so, it will need to be paid prior to the release of the tree permit
- 15. The TCR just contain 2 separate plans:
 - a) Plan/Map 1 show existing conditions with tree cover information
 - b) Plan/Map 2 show proposed development with tree cover information
 - c) Please ensure retained trees are shown on the landscape plan
- 16. the TCR must list all trees on site, as well as off-site trees if the CRZ extends into the developed area, by species, diameter and health condition
- 17. please identify trees by ownership private onsite, private on adjoining site, city owned, co-owned (trees on a property line)
- 18. If trees are to be removed, the TCR must clearly show where they are, and document the reason they cannot be retained
- 19. All retained trees must be shown, and all retained trees within the area impacted by the development process must be protected as per City guidelines available at Tree Protection Specification or by searching Ottawa.ca
 - a) the location of tree protection fencing must be shown on the plan
- 20. the City encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site.

LP tree planting requirements:

For additional information on the following please contact adam.palmer@Ottawa.ca

- 22. Minimum Setbacks
 - a) Maintain 1.5m from sidewalk or MUP/cycle track or water service laterals.
 - b) Maintain 2.5m from curb
 - c) Coniferous species require a minimum 4.5m setback from curb, sidewalk or MUP/cycle track/pathway.
 - d) Maintain 7.5m between large growing trees, and 4m between small growing trees. Park or open space planting should consider 10m spacing, except where otherwise approved in naturalization / afforestation areas. Adhere to

Meeting: Thursday August 18, 2022 @ 11am

Ottawa Hydro's planting guidelines (species and setbacks) when planting around overhead primary conductors.

23. Tree specifications

- a) Minimum stock size: 50mm tree caliper for deciduous, 200cm height for coniferous.
- b) Maximize the use of large deciduous species wherever possible to maximize future canopy coverage
- c) Tree planting on city property shall be in accordance with the City of Ottawa's Tree Planting Specification; and include watering and warranty as described in the specification (can be provided by Forestry Services).
- d) Plant native trees whenever possible
- e) No root barriers, dead-man anchor systems, or planters are permitted.
- No tree stakes unless necessary (and only 1 on the prevailing winds side of the tree)

24. Hard surface planting

- a) Curb style planter is highly recommended
- b) No grates are to be used and if guards are required, City of Ottawa standard (which can be provided) shall be used.
- c) are to be planted at grade

25. Soil Volume

a) Please document on the LP that adequate soil volumes can be met:

Tree Type/Size	Single Tree Soil Volume (m3)	Multiple Tree Soil Volume (m3/tree)
Ornamental	15	9
Columnar	15	9
Small	20	12
Medium	25	15
Large	30	18
Conifer	25	15

b) Please note that these soil volumes are not applicable in cases with Sensitive Marine Clay.

26. Sensitive Marine Clay

a) Please follow the City's 2017 Tree Planting in Sensitive Marine Clay guidelines

27. Tree Canopy Cover

a) The landscape plan shall show how the proposed tree planting will replace and increase canopy cover on the site over time, to support the City's 40%

Meeting: Thursday August 18, 2022 @ 11am

- b) At a site level, efforts shall be made to provide as much canopy cover as possible, through tree planting and tree retention, with an aim of 40% canopy cover at 40 years, as appropriate.
- c) Indicate on the plan the projected future canopy cover at 40 years for the site.

Urban Design:

- 28. A Design Brief that follows the provided Terms of Reference is required upon submission of the application.
- 29. Consider ways to simplify wayfinding and vehicular circulation on site.
 - a) Consider reducing the amount of egresses. It appears there are six egresses proposed: two onto Humber Place and four onto Sheffield Road. Are all of these necessary to meet the needs of the site?
 - b) Clarify on the Site Plan if there are fences/barriers proposed between the different programmed areas (areas of different colour-coding on the concept plan).
 - c) If different egresses are needed for different purposes, consider clearly labelling these egresses for the benefit of drivers, so they are able to clearly understand which entrance is appropriate for them. Please illustrate the signs on the Site Plan.
- 30. Consider providing a simplified Site Plan that removes the various flow directions and colour-coded parking breakdowns. This other Site Plan should focus on providing clarity on:
 - a) setbacks (to building, parking lot, and internal roads);
 - b) providing all dimensions in metres (including for the proposed building, proposed amenity area, parking spaces, width of drive aisles and egresses, all setbacks etc.);
 - c) clearly identifying building entrances, all pedestrian pathways, surface materials, vehicular access/navigation on-site, etc.
 - d) clearly identifying the building footprint (including the loading area in the back that will be within the footprint).
- 31. Consider how the building facade facing Sheffield Rd can be designed to announce the building to the street. For example, consider:
 - a) Incorporating glazing into the office portion
 - b) Making prominent entrances
 - c) Incorporating design elements to identify that this is the front of the building, and
 - d) Removing/reducing blank walls facing Sheffield
- 32. Consider pedestrian flow on site.
 - a) Support for the design of the pathways connecting to the bus stop and the provision of a new bus stop.

Meeting: Thursday August 18, 2022 @ 11am

- b) Consider providing a pedestrian pathway from Sheffield Rd to the entrance of the building, facing Sheffield Rd.
- c) Continue to consider the desire-lines and safety of the drivers/staff walking around the site.
- 33. Consider how to facilitate a great amenity space.
 - Consider moving the smoking area away from the picnic tables where nonsmokers may choose to eat;
 - b) Consider adding a tree to provide shade;
 - c) Consider a location that will get sunlight;
 - d) Consider the most convenient location for staff:
 - e) Consider the views from people using the amenity area.
- 34. Consider ways to incorporate meaningful landscaping and tree plantings on-site.

Planning:

- 35. Stie Plan Control: https://ottawa.ca/en/planning-development-and-construction/development-information-residents/development-application-review-process/development-application-submission/development-applications/site-plan-control
- 36. City of Ottawa Accessibility Design Standards:
 https://documents.ottawa.ca/sites/documents/files/documents/accessibility_design_standards_en.pdf
- 37. Please ensure that the Parking, Queuing and Loading Provisions are following and appropriate vehicle and bicycle parking is provided on-site (https://ottawa.ca/en/part-4-parking-queuing-and-loading-provisions-sections-100-114#bicycle-parking-space-rates-and-provisions-sec-111).
- 38. Please ensure that the Landscaping Provisions for Parking Lots is followed (https://ottawa.ca/en/part-4-parking-queuing-and-loading-provisions-sections-100-114#section-110-landscaping-provisions-parking-lots).
- 39. The Planning Rationale Terms of Reference may be found here.
- 40. For information on Applications, including fees, please visit:

 https://ottawa.ca/en/planning-development-and-construction/development-application-review-process/development-application-submission/development-application-forms#site-plan-control
- 41. The application processing timeline generally depends on the quality of the submission. For more information on standard processing timelines, please visit: https://ottawa.ca/en/city-hall/planning-and-development/information-

Meeting: Thursday August 18, 2022 @ 11am

<u>developers/development-application-review-process/development-application-submission/development-application-forms#site-plan-control</u>

42. Bird-safe design guidelines:
https://documents.ottawa.ca/sites/documents/files/birdsafe_designguidelines_en.pdf

Engineering:

List of Reports and Plans (Site Plan Control):

- Site Servicing Plan
- Grading Plan
- Drainage/ Ponding Plan
- Erosion and Sediment Control Plan
- Stormwater Management and Site Servicing Report
- Geotechnical Investigation Report

Please note the following information regarding the engineering design submissions for the above noted site:

46. The Servicing Study Guidelines for Development Applications are available at the following address:

https://ottawa.ca/en/city-hall/planning-and-development/how-developproperty/development-application-review-process-2/guide-preparing-studies-and-plans

- 47. Servicing and site works shall be in accordance with the following documents:
 - Ottawa Sewer Design Guidelines, Second Edition, (October 2012), including Technical Bulletins, ISDTB-2014-01, PIEDTB-2016-01, ISTB 2018-01, ISTB-2018-04, and ISTB-2019-02
 - Ottawa Design Guidelines Water Distribution, First Edition, (July 2010), including Technical Bulletins ISD-2010-2, ISDTB-2014-02, ISTB-2018-02, and ISTB-2021-03
 - Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (Revised 2008)
 - City of Ottawa Slope Stability Guidelines for Development Applications (Revised 2012)

Meeting: Thursday August 18, 2022 @ 11am

- City of Ottawa Environmental Noise Control Guidelines (January, 2016)
- City of Ottawa Hydrogeological and Terrain Analysis Guidelines (March 2021)
- City of Ottawa Park and Pathway Development Manual (2012)
- City of Ottawa Accessibility Design Standards (2012)
- Ottawa Standard Tender Documents (latest version)
- Ontario Provincial Standards for Roads & Public Works (2013)
- 48. Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at lnformationCentre@ottawa.ca or by phone at (613) 580-2424 x 44455
- 49. The Stormwater Management Criteria for the subject site is to be based on the following:
 - The pre-development runoff coefficient or a maximum equivalent 'C' of 0.5, whichever is less (§ 8.3.7.3).
 - For separated sewer system built pre-1970 the design of the storm sewers are based on a 2 year storm.
 - Flows to the storm sewer in excess of the 2-year pre-development storm release rate, up to and including the 100-year storm event, must be detained on site
 - Ensure no overland flow for all storms up to and including the 100-year event.
 - The 2-yr storm event using the IDF information derived from the Meteorological Services of Canada rainfall data, taken from the MacDonald Cartier Airport, collected 1966 to 1997.
 - A calculated time of concentration (Cannot be less than 10 minutes).
 - Quality control and sub watershed requirements to be provided by Rideau Valley Conservation Authority (RVCA)

Meeting: Thursday August 18, 2022 @ 11am

50. Deep Services:

Meeting: Thursday August 18, 2022 @ 11am

- i. A plan view of the approximate services may be seen above. Services should ideally be grouped in a common trench to minimize the number of road cuts. The sizing of available future services is:
 - a. Humber PI:
 - i. Storm 1950 mm (Trunk Sewer).
 - b. Sheffield Road:
 - i. Sanitary 370 mm.
 - ii. Storm 375/525 mm.
 - iii. Water 300 mm.
- ii. Provide existing servicing information and the recommended location for the proposed connections. Services should ideally be grouped in a common trench to minimize the number of road cuts.
- iii. Connections to trunk sewers and easement sewers are not permitted.
- iv. Provide information on the monitoring manhole requirements should be located in an accessible location on private property near the property line (ie. Not in a parking area).
- v. Review provision of a high-level sewer.
- vi. Provide information on the type of connection permitted

Sewer connections to be made above the springline of the sewermain as per:

- a. Std Dwg S11.1 for flexible main sewers connections made using approved tee or wye fittings.
- b. Std Dwg S11 (For rigid main sewers) *lateral must be less that 50% the diameter of the sewermain,*
- c. Std Dwg S11.2 (for rigid main sewers using bell end insert method) for larger diameter laterals where manufactured inserts are not available; lateral must be less than 50% the diameter of the sewermain,
- d. Connections to manholes permitted when the connection is to rigid main sewers where the lateral exceeds 50% the diameter of the sewermain.
 Connect obvert to obvert with the outlet pipe unless pipes are a similar
- e. No submerged outlet connections.
- vii. Please provide estimated storm and sanitary flows before the first submission, to allow the City to confirm whether there are any downstream capacity constraints.
- 51. Civil consultant must request boundary conditions from the City's assigned Project Manager prior to first submission. Water Boundary condition requests must include the location of the service and the expected loads required by the proposed development. Please provide the following information:
 - i. Location of service(s)

Meeting: Thursday August 18, 2022 @ 11am

ii.	Type of development and the amount of fire flow required (as pe
	FUS, 1999).

- iii. Average daily demand: ____ l/s.
- iv. Maximum daily demand: ____l/s.
- v. Maximum hourly daily demand: ____ l/s.
- vi. Hydrant location and spacing to meet City's Water Design guidelines.
- vii. Water supply redundancy will be required for more than 50 m3/day water demand.
- 52. Phase 1 ESAs and Phase 2 ESAs must conform to clause 4.8.4 of the Official Plan that requires that development applications conform to Ontario Regulation 153/04.
- 53. All development applications should be considered for an Environmental Compliance Approval (ECA) by the Ministry of the Environment, Conservation, and Parks (MECP);
 - a. The consultants determine if an approval for sewage works under Section 53 of OWRA is required and determines what type of application. The City's project manager may help confirm and coordinate with the MECP as required.
 - b. The project will be either transfer of review (standard), transfer of review (additional), direct submission, or exempt as per O. Reg. 525/98.
 - c. Pre-consultation is not required if applying for standard or additional works (Schedule A of the Agreement) under Transfer Review.
 - d. Pre-consultation with local District office of MECP is recommended for direct submission.
 - e. Consultant completes an MECP request form for a pre-consultation. Send request to moeccottawasewage@ontario.ca
 - f. ECA applications are required to be submitted online through the MECP portal. A business account required to submit ECA application. For more information visit https://www.ontario.ca/page/environmental-compliance-approval

NOTE: Site Plan Approval, or Draft Approval, is required before an application is sent to the MECP.

- 54. General Engineering Submission requirements:
 - a. All industrial zone site must be verified eligibility/exemption for ECA process.
 - b. Water supply redundancy will be required for more than 50 m3/day water demand.

Meeting: Thursday August 18, 2022 @ 11am

- c. Discharge to Humber PI storm trunk require back water valve for storm sewer within the site as per previous discussion. Provide the correspondence with the report.
- d. As per section 53 of the Professional Engineers Act, O. Reg 941/40, R.S.O. 1990, all documents prepared by engineers must be signed and dated on the seal.
- e. All required plans are to be submitted on standard A1 size sheets (594mm x 841mm) sheets, utilizing a reasonable and appropriate metric scale as per City of Ottawa Servicing and Grading Plan Requirements: title blocks are to be placed on the right of the sheets and not along the bottom. Engineering plans may be combined, but the Site Plans must be provided separately. Plans shall include the survey monument used to confirm datum. Information shall be provided to enable a non-surveyor to locate the survey monument presented by the consultant.
- f. All required plans & reports are to be provided in *.pdf format (at application submission and for any, and all, re-submissions).

Parks

55. Comments outstanding.

Attachments:

- Plan and study list
- Urban Design Terms of Reference

For any questions, please feel free to contact me at the information below. Please provide all submission documents electronically as paper copies of plans and reports are not being requested at this time.

Best regards,

Kelby Lodoen Unseth MCIP, RPP

Helly Lodoer Unset

Planner II | Urbaniste II

Development Review (South Services) | Examen des projets d'aménagement (services sud)

Meeting: Thursday August 18, 2022 @ 11am

Planning, Infrastructure and Economic Development | Services de planification, d'infrastructure et de développement économique

City of Ottawa | Ville d'Ottawa

13.580.2424 ext./poste 12852

15.580.2424 ext./poste 12852

16.580.2424 ext./poste 12852

Enc.

Design Brief

Description:

A Design Brief is the core submission document that illustrates how the development is designed to work with its existing and planned context, to improve its surroundings and also demonstrate how the proposal supports the overall goals of the Official Plan, relevant secondary plans, Council approved plans and design guidelines. The purpose of the Terms of Reference is to assist the applicant to organize and substantiate the design justification in support of the proposed development and to assist staff and the public in the review of the proposal.

Authority to Request a Design Brief:

The *Planning Act* gives municipalities the authority to require that a Design Brief be prepared. Under Sections 22(4), (5) and Section 41(4) of the *Planning Act*, a Council has the authority to request such other information or material that the authority needs in order to evaluate and make a decision on an application. Section 5.2.6 of the Official Plan sets out the general requirement for a Design Brief.

Preparation:

The Design Brief should be signed by an urban designer, licenced architect, landscape architect, or a full member of the Canadian Institute of Planners.

When Required:

A Design Brief is required for a Site Plan Control planning application.

A Scoped Design Brief* is required when the following planning applications are applied for and not accompanied by a Site Plan Control application:

- Official Plan Amendment
- Zoning By-law Amendment (exception: a change in use which does not result in an increase in height or massing)

The requirement and scope of a Design Brief will be determined at the formal pre-application consultation meeting. Should an application be required to go to the <u>Urban Design Review Panel (UDRP)</u>, the Design Brief may be submitted as part of the submission materials to the panel.

Contents for Design Brief Submissions:

A Design Brief will contain and/or address the points identified during the pre-consultation meeting. Failure to address the critical elements identified in the pre-consultation meeting may result in the application being considered incomplete.

- * A Scoped Design Brief is composed of:
 - Section 1 should be combined into the Planning Rationale submission, and
 - Section 2 items will be confirmed in the pre-application consultation meeting.

Design Brief

SECTION 1 Note: This section may be combined with the Planning Rationale report

Application Sub Not Required	mission: Required x	State the: type of application, legal description, municipal address, purpose of the application and provide an overall vision statement and goals for the proposal.
Response to Cit Not Required	ty Documen Required X	State the Official Plan land use designation for the subject property and demonstrate how the proposal conforms to the Official Plan as it relates to the design of the subject site. Reference specific policy numbers from the Official Plan to show consistency. Justify areas of non-compliance
	X	and explain why there is non-compliance. State the applicable plans which apply to the subject proposal: community design plan, secondary plan, concept plan and design guideline. Reference the relevant design related polices within the applicable plans/guidelines and provide a comprehensive analysis as to how the proposed development incorporates the objectives or why it does not incorporate the objectives.
Context Plan: Not Required	Required X	Provide a contextual analysis that discusses/illustrates abutting properties, key destinations and linkages within a 100 meter radius (a larger radius may be requested for larger/more complex projects), such as transit stations, transportation networks for cars, cyclists, and pedestrians, focal points/nodes, gateways; parks/open spaces, topography, views towards the site, the urban pattern (streets, blocks), future and current proposals (if applicable), public art and heritage resources.
	X	Photographs to illustrate existing site conditions and surrounding contexts. Include a map pinpointing (with numbers) where each photo is taken and correspond these numbers with the site photos. Arrows illustrating the direction the photo is taken is also useful.

Design Brief

SECTION 2

Design Proposal:

The purpose of the Design Proposal is to show the building elevations, exterior details, transitions in form, treatment of the public realm and compatibility with adjacent buildings, using 3-D models, illustrations, diagrams, plans, and cross sections. Referencing Official Plan, Section 5.2.1, as determined at time of pre-application consultation meeting, submissions will need to address the following in the form of labelled graphics and written explanation:

<i>Massing and So</i> Not Required	c ale Required	
	X.	 Images which show: <u>Building massing</u> – from: at least two sides set within it current context (showing the entire height and width of the building) OR all four sides set within it current context (showing the entire height and width of the building).
	X	 Views – of the entire block, from: at least two perspectives to show how the proposed building is set within its current context OR all four perspectives to show how the proposed building is set within its current context.
X		<u>Building transition</u> – to adjacent uses, with labelled explanation of the transition measures used.
	X	<u>Grading</u> – if grades are an issue.
X		Alternative building massing – additional imagery and site layouts considered and provide justification for the ultimate proposal sought.
Public Realm Not Required	Required	Labelled graphics and a written explanation which show: <u>Streetscape</u> – cross sections which illustrate the street design and right of way (referencing the City's design manuals).
	X	Relationship to the public realm – illustrating how the first few storeys of the proposed development responds to and relates to the existing context (e.g. through a podium plan and first floor plan). This is to include detailed explanation on: • Architectural responses • Landscaping details • Public art features (in accordance with Official Plan, Section 4.11) • For developments in Design Priority Areas, detail the building and site features, (in accordance with Official Plan, Section 4.11) which will enhance the public realm. Provide explanation for features

which are not provided.

Design Brief

Building Design Not Required	Required X	Labelled graphics (e.g. building elevations and floor plans) and a written explanation which document the proposed exterior architectural details and design (in accordance with Official Plan, Section 5.2.1).
X		For high-rise development applications, detail the building design and massing and scale elements and how they relate to the proposed high-rise development (in accordance with Official Plan, Section 5.2.1).
Sustainability Not Required	Required x	Any sustainable design features to be incorporated, such as green roofs or walls, sun traps, reflective or permeable surfaces.
Heritage Not Required	Required	How the building relates to the historic details, materials, site and setting of any existing historic resources on or adjacent to the subject property (if applicable).

Additional Contents:

Some proponents may be requested to provide submission material which complements the Design Brief. These additional requirements could be incorporated into the Design Brief submission for ease of review. These will be identified at the time of application consultation meeting:

- Site Plan
- Landscape Plan
- Elevations
- Plan showing existing and proposed servicing
- Shadow Analysis
- Wind Analysis

Submission Requirements

Digital copies only

Paliouras, Kosta

From: Ahmed, Aziz (MECP) <Aziz.Ahmed@ontario.ca>

Sent: Monday, August 29, 2022 9:22 AM

To: Paliouras, Kosta

Cc: Kuljanin, Milan; Warnock, Charles; Primeau, Charlie (MECP)

Subject: [EXTERNAL] RE: 2625 Sheffield Road Ottawa ON

Kosta,

All is well, hope the same with you.

Based on the analysis you have provided that the works meets the criteria in s.3 of R525/98, I agree that the change in configuration of the development alone does not alter the exemption from the requirement to obtain an ECA.

Stay safe,

Aziz

Aziz S. Ahmed, P.Eng. | Manager

Municipal Water and Wastewater Permissions Section, Environmental Permissions Branch | Environmental Assessment and Permissions Division **Ministry of the Environment, Conservation and Parks** | 40 St. Clair Ave. West, 2nd Floor, Toronto, ON M4V 1M2 Tel: 416.314.4625 | Cell: 416.712.7427 | Toll Free: 1-888-999-1305 | Fax: 416.314.1037 ⊠: Aziz.Ahmed@ontario.ca

If you have any accommodation needs or require communication supports or alternate formats, please let me know.

Si vous avez des besoins en matière d'adaptation, ou si vous nécessitez des aides à la communication ou des médias substituts, veuillez me le faire savoir.

From: Paliouras, Kosta <kosta.paliouras@aecom.com>

Sent: August-29-22 9:16 AM

To: Ahmed, Aziz (MECP) <Aziz.Ahmed@ontario.ca> Cc: Kuljanin, Milan <Milan.Kuljanin@aecom.com> Subject: FW: 2625 Sheffield Road Ottawa ON

CAUTION -- EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender.

Good morning Aziz

I hope all is fine and you've had a good summer.

In October 2021, you indicated to the City of Ottawa staff that the proposed works at 2625 Sheffield Road in Ottawa, ON would not require a Sewage Works ECA permit (email chain is below). Since October 2021, there was a change to the layout of the Site but the nature of the Site has not changed.

Attached is a letter requesting an exemption from requiring an Sewage Works ECA for the Site works.

Please review and let me know if you have any questions

Thank you, Kosta

Kosta Paliouras, P.Eng

Senior Water Resources Engineer/Project Manager/Group Leader, Water

D +1-519-650-8669 M +1-226-749-0964

kosta.paliouras@aecom.com

In light of the COVID-19 situation, I am currently working remotely away from the office. In any instance, please contact me at any of the numbers above

From: Sharif, Golam <<u>sharif.sharif@ottawa.ca</u>>
Sent: Tuesday, October 26, 2021 11:30 AM
To: Kuljanin, Milan <<u>Milan.Kuljanin@aecom.com</u>>

Subject: [EXTERNAL] FW: 2625 Sheffield Road Ottawa ON

Good Morning Milan,

I have received a confirmation from the Toronto Office regarding the MECP ECA exemption. Please see the response below. I believe, according to the information you provided for the proposed development the land use do not fall under industrial use, thus Toronto Office confirmed no ECA will be required.

Please include this correspondence in your updated SWM and servicing report.

Thank you.

Sharif

From: Warnock, Charles < Charles.Warnock@ottawa.ca>

Sent: October 26, 2021 10:53 AM

To: Sharif, Golam < subject: 2625 Sheffield Road Ottawa ON

Hi Sharif, please see the response below from the MECP.

They have concluded that the land use is not Industrial.

If the proposal meets all conditions of O.Reg. 525/98 then I see no requirement to obtain an ECA.

Thanks. Charles

From: Ahmed, Aziz (MECP) <Aziz.Ahmed@ontario.ca>

Sent: October 26, 2021 9:54 AM

To: Warnock, Charles < Charles.Warnock@ottawa.ca>

Subject: RE: 2625 Sheffield Road Ottawa ON

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Charles,

Hope you are well. Based on the landuse described, I agree that this does not fall under the classification of industrial use.

I would also like to draw your attention to the following:

We are happy to inform you that we have posted a notice on the Environmental Registry of Ontario (ERO) about our proposal to amend O. Reg. 525/98 under the *Ontario Water Resources Act*. The proposed changes would remove the requirement to obtain an Environmental Compliance Approval for low risk sewage works.

The proposal notice will be available for public comment for 45 days, closing on December 9, 2021. The <u>posting</u> can be accessed on the Environmental Registry of Ontario. The feedback that we receive during this 45-day consultation period will help finalize the amendments to the regulations.

Please provide comments on this if you are interested, including the definition of industrial land, and services on private property which you have raised previously.

Stay safe,

Aziz

Aziz S. Ahmed. P.Eng. | Manager

Municipal Water and Wastewater Permissions Section, Environmental Permissions Branch | Environmental Assessment and Permissions Division Ministry of the Environment, Conservation and Parks | 40 St. Clair Ave. West, 2nd Floor, Toronto, ON M4V 1M2 Tel: 416.314.4625 | Cell: 416.712.7427 | Toll Free: 1-888-999-1305 | Fax: 416.314.1037 ⊠: Aziz.Ahmed@ontario.ca

If you have any accommodation needs or require communication supports or alternate formats, please let me know.

Si vous avez des besoins en matière d'adaptation, ou si vous nécessitez des aides à la communication ou des médias substituts, veuillez me le faire savoir.

From: Warnock, Charles < Charles. Warnock@ottawa.ca>

Sent: October-26-21 9:50 AM

To: Ahmed, Aziz (MECP) < Aziz. Ahmed@ontario.ca>

Subject: 2625 Sheffield Road Ottawa ON

CAUTION -- **EXTERNAL** E-MAIL - Do not click links or open attachments unless you recognize the sender.

Hi Ahmed, I hope you are well and having a good day.

I am just following up on this email.

Thanks and have a good day.

Charles

From: Warnock, Charles

Sent: October 21, 2021 11:38 AM

To: Aziz Ahmed (aziz.ahmed@ontario.ca) <aziz.ahmed@ontario.ca>

Subject: 2625 Sheffield Road Ottawa ON

Hi Ahmed, I hope you are well and having a good day.

I am just following up on this email.

Thanks and have a good day.

Charles

From: Warnock, Charles

Sent: October 13, 2021 1:40 PM

To: Aziz Ahmed (aziz.ahmed@ontario.ca) <aziz.ahmed@ontario.ca>

Subject: 2625 Sheffield Road Ottawa ON

Hi Aziz, I hope all is well with you and that you had a nice long weekend.

Would the MECP consider that an Industrial ECA is not required for this site? Furthermore, if no Industrial ECA is required it meets the other requirements for an exemption and therefore no ECA would be required.

We have a site plan application at 2625 Sheffield Road Ottawa ON.

The owner is Choice Properties Reit.

AECOM the civil consultant for the owner has made a request to ask the MECP if an Industrial ECA is required

The proposed works consists of developing an existing vegetated area to expand a large parking area only. There is no expansion of the existing building and will not require an expansion of the existing sanitary and water servicing. Due to the expansion of the parking lot area into existing vegetated area, additional surface runoff will discharge off-Site and would require additional water quality and quantity controls to minimize detrimental impacts to the downstream outlet. The objective for these stormwater management facilities is to provide water quality treatment, water quantity control, and groundwater recharge in accordance with the City's requirements for development.

The proposed stormwater management facilities will consist of an underground chamber storage systems (StormTech MC-3500 systems or approved equivalent) with the capacity to accept surface runoff up to and including the 100-year storm event for the proposed parking lot area and provide water quality treatment prior to discharging downstream. The chamber storage systems will consist of storage chambers with clear stone granular material bedding, surrounded by a permeable liner to encourage infiltration of runoff from the parking lot area. The proposed underground chamber storage systems will then ultimately discharge to the municipal infrastructure on Leeds Road. Existing drainage patterns from the existing building structure and parking lot area located north and west of the building structure will be maintained. The existing discharge control and location will be maintained to regulate discharge as per City's requirements.

The Site is zoned 'IH' (Heavy Industrial Use). AECOM has indicated that "there will be no machinery or on-site processes that would require industrial water use to discharge to the municipal system and no outdoor storage of processed material or any contaminate material. Due to the purpose of the Site, there will be consistent van and truck traffic through the proposed parking lot area. The extent of untreated surface runoff would originate from parking lot area and would include total suspended solids (TSS), vehicular oil and chlorides. The level of concern is minimal."

Ontario Water Resources act defines industrial land as "

land used for the production, processing, repair, maintenance or storage of goods or materials, or the processing, storage, transfer or disposal of waste, but does not include land used primarily for the purpose of buying or selling, (a) goods or materials other than fuel, or (b) services other than vehicle repair services."

The proposed use meets the MECP's definition of Industrial lands however the consultant has indicated that "The level of concern is minimal."

The SWMF services only the subject parcel and the site outlets to an existing storm sewer.

Ontario Regulation 525/98 states that Subsection 53 (1) and (3) of the Act do not apply to lands designed as:

- one parcel,
- that discharge into a storm sewer that is not combined,
- does not service industrial and or located on industrial land."

The development is a single parcel of land, out letting to a storm sewer that is not combined.

Please let of us know if an Industrial ECA is required.

Thank you in advance. Charles

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

5

AECOM Canada Ltd. 50 Sportsworld Crossing Road, Suite 290 Kitchener, ON N2P 0A4 Canada

T: 519.650.5313 F: 519.650.3424 www.aecom.com

Aziz S. Ahmed, P.Eng.
Manager, Municipal Water and Wastewater Permissions Section
Environmental Branch - Environmental Assessment and Permissions
Division
Ministry of the Environment, Conservation, and Parks
40 St. Clair Avenue West, 2nd Floor
Toronto, Ontario M4V 1M2

August 29, 2022

Project # 60684725

DRAFT

Subject: Environmental Compliance Approval (ECA) Exemption
DYT3 Distribution Facility
2625 Sheffield Road, Ottawa, Ontario

Dear Mr. Ahmed:

The following letter is to indicate that the proposed distribution facility at 2625 Sheffield Road in Ottawa, Ontario (Site) is exempted from requiring an Environmental Compliance Approval (ECA) permit from the Ministry of Environment, Conservation, and Parks (MECP), as per Ontario Regulation 525/98.

Existing Site conditions consist of a building structure, parking lot area, and vegetated area. The Site is approximately 7.06 hectares (ha) in total size, with an existing building structure footprint of approx. 3,796 square metres (m²). The proposed works consists of demolishing the existing building structure and parking lot area and redeveloping for a proposed 2,490 m² building structure and regraded parking lot area. Additional stormwater management infrastructure (such as infiltration basins, storm sewers, underground chamber storage, etc.) will be required to meet City of Ottawa discharge requirements.

Exemption Reasoning

Ontario Regulation 525/98 states that Subsection 53 (1) and (3) of the Act do not apply to lands designed as:

- one parcel, for which the Site and all proposed works will be contained;
- that discharge into a storm sewer that is not combined, for which is not the case at the Site, as sanitary and storm services currently are and will continue to be separate;
- does not service industrial or a structure located on industrial land; and
- is not located on industrial land.

Ontario Water Resources Act defines industrial land as "land used for the production, processing, repair, maintenance or storage of goods of materials, or the processing, storage, transfer or disposal of waste, but does not include land used primarily for the purpose of buying or selling, (a) goods or materials other than fuel, or (b) services other than vehicle repair services."

Though the Site is located within a "Heavy Industrial Zone" according to the zoning by-law, the primary purpose of the proposed development will be for the distribution of goods and material, with only van and truck traffic through the proposed parking lot area. There will be no machinery or on-site processes that would require industrial water use to discharge to the municipal system and no outdoor storage of processed material or any contaminate material. Contaminates would include total suspended solids (TSS), vehicular oil and chlorides from the parking lot area. The proposed infiltration basins will only accept discharge from the proposed roof areas and an impermeable liner is proposed for the proposed underground chamber storage systems and

therefore none of the runoff from the parking lot area will infiltrated into the underlying soil. The level of concern would be minimal.

I hope this letter is to your satisfaction. If there are any questions, feel free to contact me at *kosta.paliouras@aecom.com* or 519-650-8669.

Sincerely,

AECOM Canada Ltd.

Kosta Paliouras, P.Eng.

Senior Water Resources Engineer/Project

Manager/Group Leader, Water kosta.paliouras@aecom.com

Appendix D

City of Ottawa Existing Drawings

Description Drawn By Appr'd By

JUNE 25, 1990 J. PINHEY Field Book # 5225 , 5226 , 5227 NOV. 16, 1990

Designed By

Observed By

Proposed storm and sanitary sewers may be constructed in a

This plan supercedes (in whole or in part) plan no:
 Actual rock line recorded during construction of existing

- Caution, while illustrations and utilities shown are taken allable information , they cannot be guaranteed.

See additional notes on sheet # (

Department Of Engineering And Works Engineering Branch

Design And Construction Division

D.Curry P.Eng. W.R. Cole P.Eng.

STORM SEWER AND ROAD RECONSTRUCTION

SHEFFIELD ROAD FROM CH: 1500.00 TO CH: 1670.00

900 Survey Books: Scoles: 4706,4761,4869, HOR. I: 250 VERT. I: 50

Appendix **E**

Design Drawings

Domestic Water and Sanitary Load Calculation Chart

Project Name: DYT3
Project Number: 60634622
Date: 14-Sep-2022

References

FUs: OBC 2012 Tables 7.4.9.3., 7.6.3.2.A, B, C and D FUs to gpm for drains: OBC 2012 Tables 7.4.10.5 and A.7.4.10.5

Horizontal sanitary sizing: OBC 2012 7.4.10.8

Number of floors

Basement (Yes/No)

Building type

Office Building

		No of	No of		SAN	ITARY			PUB	LIC USE		
FIXTURE	SUPPLY / OUTLET	FIXTURES	FIXTURES	TOTAL			CC	DLD	H	ОТ	TO	TAL
		PRIVATE	PUBLIC		F.U.	TOTAL	F.U.	TOTAL	F.U.	TOTAL	F.U.	TOTA
Bathroom group with 6 LPF flush tank (max 3 fixtures)	N/A			0	6	0	-	-	-	-	-	-
Bathtub, regular	1/2" H&CW / 1.5"			0	1.5	0	3	0	3	0	4	0
Bathtub with 3/4" spout	3/4" H&CW / 1.5"			0	1.5	0	7.5	0	7.5	0	10	0
Clothes washer, 3.5 kg	1/2" H&CW / 2"			0	1.5	0	2.25	0	2.25	0	3	0
Clothes washer, 6.8 kg	1/2" H&CW / 2"			0	2	0	3	0	3	0	4	0
Clothes washer, commercial	manufact.			0	3	0	0	0	0	0	0	0
Dishwasher, commercial	manufact./ 2"			0	3	0	0	0	0	0	0	0
Dishwasher, domestic	1/2" HW / 1.5"			0	1	0	-	-	-	-	-	-
Drinking fountain	1/2" CW / 1.25"		14	14	2	28	0.25	3.5	-	-	0.25	3.5
Floor drain	-/3"		16	16	3	48	-	-	-	-	-	-
Hose bib	1/2" CW / -		4	4	-	-	2.5	10	-	-	2.5	10
Hose bib	3/4" CW / -			0	-	-	6	0	-	-	6	0
Hose bib, combination	1/2" H&CW / -			0	-	-	1.9	0	1.9	0	2.5	0
Lavatory, 8.3 L/min or less	1/2" H&CW / 1.25"		13	13	1	13	1.5	19.5	1.5	19.5	2	26
Shower head, 9.5 L/min or less	1/2" H&CW / 1.5"			0	1.5	0	3	0	3	0	4	0
Shower, multi-head, FU per head	manufact. / 2"			0	3	0	3	0	3	0	4	0
Sink, bar	1/2" H&CW / 1.5"			0	1.5	0	1.5	0	1.5	0	2	0
Sink, kitchen, commercial, per faucet	1/2" H&CW / 2"		1	1	2	2	3	3	3	3	4	4
Sink, kitchen, domestic, 8.3 L/min or less	1/2" H&CW / 1.5"		2	2	1.5	3	1	2	1	2	1.4	2.8
Sink, laundry	1/2" H&CW / 1.5"			0	1.5	0	1	0	1	0	1.4	0
Sink, mop (janitor's)	1/2" H&CW / 3"		2	2	3	6	2.25	4.5	2.25	4.5	3	6
Urinal, flush valve	3/4" CW / 2"		3	3	4	12	N/A	45	-	-	N/A	45
Urinal, flush tank	1/2" CW / 1.5"			0	1.5	0	3	0	-	-	3	0
WC, 6 LPF or less, tank	1/2" CW / 3"			0	4	0	2.2	0	-	-	2.2	0
WC, flush valve	1" CW / 3"		12	12	6	72	N/A	185	-	-	N/A	185
Penal Fixture	1" CW / 3"			0	6	0	N/A	0	-	-	N/A	0
Reserve for MHE-Sanitary only			1	1	5	5		0		0		0
Reserve for Landscape and MHE-Plumb	ing only		1	1		0	75	75	10	10	85	85
			69	69	Total =	189	Total =	347.5	Total =	39	Total =	367.
			09	03	i Utai –	103	i Otai –	347.3	i Utai –	39	i Otai –	307.

SANITARY					
Plumbing System Sanitary Load	=	189 FUs	= 69 gpm	Main Drain Size	= 6 " per OBC
Other Sanitary Load (pool drain, cooling tower, sump pit			= gpm		
Building Sanitary Load	=	189 FUs	= 69 gpm	Building Sewer Size	= 6" per OBC
				•	
DOMESTIC COLD AND HOT WATER					
Total Cold Water	=	348 FUs	= 119.08 gpm	Dom. Cold Water Pipe	= 3 " per OBC
Total Hot Water	=	39 FUs	= 40.8 gpm	Dom. Hot Water Pipe	= 2 " per OBC
System Domestic Water	=	367 FUs	= 121.94 gpm	Main Cold Water Pipe	= 3" per OBC

City of Ottawa Water Demands

Project: 2625 Sheffield Road-DYT3-Ottawa

Project No.: 60648725

Designed By: German Verbel

Checked By:

 Date:
 9/27/2022

 Site Area (ha):
 7.06

Average Daily Demand

Demand Type	Amount	Units
Residential	350	L/c/d
Industrial - Light	35,000	L/gross ha/d
Industrial - Heavy	55,000	L/gross ha/d
Commercial and Institutional		
Shopping Centres	2500	L/(1000m2/d)
Hospitals	900	L/(bed/day)
Schools	70	L/(Student/d)
Trailer Parks no Hook-Ups	340	L/(space/d)
Trailer Parks with Hook-Ups	800	L/(space/d)
Campgrounds	225	L/(campsite/d)
Mobile Home Parks	1000	L/(Space/d)
Motels	150	L/(bed-space/d)
Hotels	225	L/(bed-space/d)
Tourist Commercial	28,000	L/gross ha/d
Other Commercial	28,000	L/gross ha/d
Average Daily Demand	2.86	L/s

Maximum Daily Demand

Residential	2.5 x avg. day	L/c/d
Industrial	1.5 x avg. day	L/gross ha/d
Commercial	1.5 x avg. day	L/gross ha/d
Institutional	1.5 x avg. day	L/gross ha/d
Maximum Daily Demand	4.29	L/s

Maximum Hour Demand

Residential	2.2 x max. day	L/c/d
Industrial	1.8 x max. day	L/gross ha/d
Commercial	1.8 x max. day	L/gross ha/d
Institutional	1.8 x max. day	L/gross ha/d
Maximum Daily Demand	7.72	L/s

Ottawa Design Guidelines - Water Distribution First Edition, July 2010 - WDG001 Technical Bulletin ISD-2010-2

Fire Flow Calculations

AECOM

1999 Fire Underwriters Survey (FUS) Method

Project: DYT3 2625 Sheffield Road Ottawa, Ontario

Calculated by: GV

Checked by: KS

Project #: 60648725

Date: 23-Sep-22

Date: 23-Sep-22

Building A

Fire Flow Formula	$F = 220 \cdot C \cdot $	\overline{A}
rire riow rormula	$F = 220 \cdot C \cdot $	A

A) C = Structure Coefficient

- 1.5 Wood Frame Construction Essentially all combustible (Max Value of C)
- 1.0 Ordinary Construction Brick/Masonry Walls, Combustible Floor & Interior
- 0.8 Non-Combustible Unprotected metal structural, masonry, or metal walls
- 0.6 Fire Resistive Construction Fully protected frame, floors, roof (Min Value of C)

B) A = Floor Area

D)

C) # Floors (excl. basement)

 $A = 24460.00 \text{ m}^2$

C =

Includes all storeys, but exclude basements >50% below grade.

For fire-resistive buildings with unprotected vertical openings: add two largest adjoining floors plus 50% of any floors immediately above/below them up to to 8 For fire-resistive buildings with protected vertical openings (1hr rating): add largest floors plus 25% of each adjoining floor area

F =	27526	(L/min)
Rounded =	28000	(L/min)

Occupancy Reduction/Surcharge

E) Ty	pe of	occu	pancy	/cont	tents

Combustible

- Non-Combustible Free Burning
- Limited Combustible Rapid Burning

Fire hazard adjustment = Adjustment =

15% 4200 (L/min)

8.0

 $F_{adj} = 32200 (L/min)$

Generally Low-Hazard Occupancy is Non-/Limited Combustible (National Building Group A, B, C, D)
Generally High-Hazard Occupancy is Free/Rapid Burning (National Building Group F, Division 1 & 2)

F) Sprinkler System Reduction

Revised F may be reduced up to:

- 50% for a complete automatic sprinkler system (incl. water flow/control valve alarm system)
- 30% for a sprinkler system conforming to NFPA Code 13
- Add'l credit up to 10% can be applied if water supply is standard for both the sprinkler system and fire dept hose lines

Reduction = 50.00% Reduction = -16100 (L/min)

G) Exposure Surcharge

Sum of all exposures must be less than 75%

If building face is unpierced party wall (min. 2hr rating), choose "Fire Wall"

Distance to nearest b	uilding (m)	% addition
North	>45m	0%
ı" East	>45m	0%
South	>45m	0%
West	>45m	0%
Sur	charge %	Nº/a

Surcharge % U% Surcharge Add'n 0 (L/min)

H) Total Fire Flow

Minimum 2000L/min; Max 40 000L/min (rounded to nearest 1000L/min)

= 16000 L/min = **267 L/sec**

GROUND FLOOR - FIRE PROTECTION

SPRINKLER HAZARD CLASSIFICATIONS

AREA

12 m²

 12 m^2

AREA

9 m²

WEIGHT

kg/m lbs/ft.

35 23

83 56

MAX PROTECTION | DESIGN DENSITY

4.1 mm/min

6.1 mm/min

8.1 mm/min

IN DESIGN AREA

K MAX PROTECTION NO. OF SPRINKLERS | MINIMUM PRESSURE

REQUIREMENT 15 PSI

20 PSI

20 PSI

REQUIREMENT

25 PSI

GENERAL FIRE PROTECTION SYSTEM NOTES:

1. FIRE PROTECTION CONTRACTOR SHALL PROVIDE DRAWINGS AND HYDRAULIC CALCULATIONS SIGNED AND SEALED BY A PROFESSIONAL ENGINEER. 2. THE SPRINKLER LAYOUTS SHALL INCLUDE ALL PIPING AND SPRINKERS NECESSARY TO SUIT THE ARCHITECTURAL CEILING PLANS. PROPOSED

LAYOUTS SHALL BE PROVIDED AS SHOP DRAWINGS FOR REVIEW PRIOR TO INSTALLATION. 3. INSTALL AUTOMATIC SPRINKLERS BELOW OBSTRUCTIONS 600 mm WIDE AND LARGER SUCH AS DUCTS, DECKS, OPEN GRATE FLOORING, CUTTING

TABLES, AND OVERHEAD DOORS IN ACCORDANCE WITH NFPA 13. REFER TO STANDARD DETAILS FOR MORE OBSTRUCTION REQUIREMENTS AND CLEARANCES OF ESFR SPRINKLERS. COORDINATE WITH ALL OTHER TRADES PRIOR TO SYSTEM INSTALLATION. 4. OFFSET SPRINKLER PIPING AWAY FROM VERTICAL

OBSTRUCTIONS SUCH AS VERTICAL DUCTWORK AND COLUMNS IN ACCORDANCE WITH NFPA 13. SPRINKLERS SHOULD BE KEPT 30mm AWAY FROM VERTICA OBSTRUCTIONS UP TO 300 mm WIDE, 600 mm AWAY FROM VERTICAL OBSTRUCTIONS 300 mm TO 600 mm WIDE, AND ON EITHER SIDE OF THE OBSTRUCTION OR VERTICAL OBSTRUCTIONS LARGER THAN 600 mm WIDE.

5. INSTALL AUTOMATIC SPRINKLERS TO ACCOMODATE HVLS FANS IN ACCORDANCE WITH NFPA 13. 6. FIRE PROTECTION CONTRACTOR TO PROVIDE VENTS AND DRAINAGE CONNECTION FOR

COMMISSIONING AND SERVICING OF THE SYSTEM. 7. PROVIDE HIGH TEMPERATURE HEADS WITH GUARDS IN ALL ELECTRICAL, COMMUNICATIONS AND SPRINKLER ROOMS.

8. FLOW INDICATION AND PRESSURE SWITCHES ARE SHOWN ON SCHEMATICS FOR CLARITY AND ARE CONSIDERED PART OF A COMPLETE LISTED ALARM CHECK VALVE ASSEMBLY.

9. ELEVATED PLATFORMS AND CONVEYERS WIDER THAN 1.2 m (48 in.) SHALL BE PROVIDED WITH SPRINKLER PROTECTION UNDERNEATH. SPRINKLER SHALL BE UPRIGHT OR PENDENT K11.2 QUICK- RESPONSE SPRINKLERS LISTED FOR STORAGE APPLICATIONS. SYSTEMS SHALL BE DESIGNED TO PROTECT EXTRA HAZARD GROUP 2 AND ALL CRITERIA SHALL BE VALIDATED BY THE AUTHORITY HAVING JURISDICTION.

10. SPRINKLERS SHALL NOT BE REQUIRED BELOW CONVERYORS THAT ARE 1.2 m (4 ft.) WIDE OR LESS, ARE OVER PERSONNEL WALKWAYS, WOULD NOT ALLOW FOR COMBUSTIBLE STORAGE UNDERNEATH, AND/OR ARE FLOOR MOUNTED UP TO A HEIGHT OF 900 mm (3 ft.), UNLESS REQUESTED BY THE AUTHORITY HAVING JURISDICTION.

11. WHERE SPRINKLERS ARE REQUIRED UNDERNEATH CONVEYORS AND/OR CONVEYOR EQUIPMENT PLATFORMS, PROVIDE HEAD GUARDS FOR THOSE SPRINKLERS.

12. AT THE COMPLETION OF THE PROJECT, FIRE PROTECTION CONTRACTOR SHALL ISSUE A LETTER SIGNED AND SEALED BY A PROFESSIONAL ENGINEER CONFIRMING THE INSTALLATION COMPLIES WITH

13. REFER TO ARCHITECTURAL DRAWINGS FOR REFLECTED CEILING PLANS.

PROJECT

DYT3 GEN 3.1 BTS, OTTAWA, ONTARIO **2625 SHEFFIELD ROAD**

CLIENT

CONSULTANT

AECOM Canada Architects Ltd. 50 Sportsworld Crossing Road, Suite 290 Kitchener, Ontario, N2P 0A4 519 650 5313 tel 519 650 3424 fax www.aecom.com

THIS DRAWING HAS BEEN PREPARED FOR THE USE OF AECOM'S CLIENT AND MAY NOT BE USED, REPRODUCED OR RELIED UPON BY THIRD PARTIES, EXCEPT AS AGREED BY AECOM AND ITS CLIENT, AS REQUIRED BY LAW OR FOR USE BY GOVERNMENTAL REVIEWING AGENCIES. AECOM ACCEPTS NO RESPONSIBILITY, AND DENIES ANY LIABILITY WHATSOEVER, TO ANY PARTY THAT MODIFIES THIS DRAWING WITH OUT AECOM'S EXPRESS WRITTEN CONSENT.

DO NOT SCALE THIS DOCUMENT. ALL MEASUREMENTS MUST BE OBTAINED FROM STATED DIMENSIONS.

IT IS THE RESPONSIBILITY OF THE CONTRACTORS TO INFORM THEMSELVES OF THE EXACT LOCATION OF, AND ASSUME ALL LIABILITY FOR DAMAGE TO ALL UTILITIES, SERVICES AND STRUCTURES WHETHER ABOVE GROUND OR BELOW GRADE BEFORE COMMENCING THE WORK. SUCH INFORMATION IS NOT NECESSARILY SHOWN ON THE DRAWING, AND WHERE SHOWN, THE ACCURACY

WITH THE SOLE EXCEPTION OF THE BENCHMARK(S) SPECIFICALLY DESCRIBED FOR THIS PROJECT, NO ELEVATION INDICATED OR ASSUMED HEREON IS TO BE USED AS A REFERENCE ELEVATION FOR ANY PURPOSE.

REGISTRATION

ISSUE/REVISION DATE DESCRIPTION

PROJECT NUMBER

PROTECTION

SHEET TITLE

OVERALL FLOOR PLAN - FIRE

SHEET NUMBER

M3.00

Printed on ____% Post-Consume Recycled Content Paper

OCCUPANCY

LIGHT HAZARD

OCCUPANCY

150 mm (6 in.)

200 mm (8 in.) 250 mm (10 in.)

ORDINARY HAZARD GROUP 1

ORDINARY HAZARD GROUP 2

GROUP A PLASTICS | 25.2

SIZE OF SPRINKLER MAIN

FACTOR

WEIGHT OF FULL SPRINKLER MAINS

GENERAL FIRE PROTECTION SYSTEM NOTES:

- 1. FIRE PROTECTION CONTRACTOR SHALL PROVIDE DRAWINGS AND HYDRAULIC CALCULATIONS SIGNED AND SEALED BY A PROFESSIONAL ENGINEER.
- 2. THE SPRINKLER LAYOUTS SHALL INCLUDE ALL PIPING AND SPRINKERS NECESSARY TO SUIT THE ARCHITECTURAL CEILING PLANS. PROPOSED LAYOUTS SHALL BE PROVIDED AS SHOP DRAWINGS FOR REVIEW PRIOR TO INSTALLATION.
- 3. INSTALL AUTOMATIC SPRINKLERS BELOW OBSTRUCTIONS 600 mm WIDE AND LARGER SUCH AS DUCTS, DECKS, OPEN GRATE FLOORING, CUTTING TABLES, AND OVERHEAD DOORS IN ACCORDANCE WITH NFPA 13. REFER TO STANDARD DETAILS FOR MORE OBSTRUCTION REQUIREMENTS AND CLEARANCES OF ESFR SPRINKLERS. COORDINATE WITH ALL OTHER TRADES PRIOR TO SYSTEM INSTALLATION.
- 4. OFFSET SPRINKLER PIPING AWAY FROM VERTICAL OBSTRUCTIONS SUCH AS VERTICAL DUCTWORK AND COLUMNS IN ACCORDANCE WITH NFPA 13. SPRINKLERS SHOULD BE KEPT 30mm AWAY FROM VERTICA OBSTRUCTIONS UP TO 300 mm WIDE, 600mm AWAY FROM VERTICAL OBSTRUCTIONS 300 mm TO 600 mm WIDE, AND ON EITHER SIDE OF THE
- OBSTRUCTION OR VERTICAL OBSTRUCTIONS LARGER THAN 600 mm WIDE. 5. INSTALL AUTOMATIC SPRINKLERS TO ACCOMODATE HVLS FANS IN ACCORDANCE WITH
- 6. FIRE PROTECTION CONTRACTOR TO PROVIDE VENTS AND DRAINAGE CONNECTION FOR COMMISSIONING AND SERVICING OF THE SYSTEM.
- 7. PROVIDE HIGH TEMPERATURE HEADS WITH GUARDS IN ALL ELECTRICAL, COMMUNICATIONS AND SPRINKLER ROOMS.
- 8. FLOW INDICATION AND PRESSURE SWITCHES ARE SHOWN ON SCHEMATICS FOR CLARITY AND ARE CONSIDERED PART OF A COMPLETE LISTED ALARM CHECK VALVE ASSEMBLY. 9. ELEVATED PLATFORMS AND CONVEYERS WIDER THAN 1.2 m (48 in.) SHALL BE PROVIDED WITH SPRINKLER PROTECTION UNDERNEATH. SPRINKLER SHALL BE UPRIGHT OR

PENDENT K11.2 QUICK-RESPONSE SPRINKLERS LISTED FOR STORAGE APPLICATIONS.

SYSTEMS SHALL BE DESIGNED TO PROTECT EXTRA HAZARD GROUP 2 AND ALL CRITERIA

- SHALL BE VALIDATED BY THE AUTHORITY HAVING JURISDICTION. 10. SPRINKLERS SHALL NOT BE REQUIRED BELOW CONVERYORS THAT ARE 1.2 m (4 ft.) WIDE OR LESS, ARE OVER PERSONNEL WALKWAYS, WOULD NOT ALLOW FOR COMBUSTIBLE STORAGE UNDERNEATH, AND/OR ARE FLOOR MOUNTED UP TO A HEIGHT OF 900 mm (3 ft.),
- UNLESS REQUESTED BY THE AUTHORITY HAVING JURISDICTION. 11. WHERE SPRINKLERS ARE REQUIRED UNDERNEATH CONVEYORS AND/OR CONVEYOR EQUIPMENT PLATFORMS, PROVIDE HEAD GUARDS FOR THOSE SPRINKLERS.
- 12. AT THE COMPLETION OF THE PROJECT, FIRE PROTECTION CONTRACTOR SHALL ISSUE A LETTER SIGNED AND SEALED BY A PROFESSIONAL ENGINEER CONFIRMING THE INSTALLATION COMPLIES WITH NFPA 13.
- 13. REFER TO ARCHITECTURAL DRAWINGS FOR REFLECTED CEILING PLANS.

SPRINKLER HAZARD CLASSIFICATIONS						
OCCUPANCY		MAX PROTECTION AREA	DESIGN DENSITY	MINIMUM PRESSURE REQUIREMENT		
LIGHT HAZARD		20 m ²	4.1 mm/min	15 PSI		
ORDINARY HAZARD	GROUP 1	12 m ²	6.1 mm/min	20 PSI		
ORDINARY HAZARD	GROUP 2	12 m ²	8.1 mm/min	20 PSI		
OCCUPANCY	K FACTOR	MAX PROTECTION AREA	NO. OF SPRINKLERS IN DESIGN AREA	MINIMUM PRESSURE REQUIREMENT		
GROUP A PLASTICS	25.2	9 m ²	12	25 PSI		

WEIGHT OF FULL SPRINKLER MAINS						
SIZE OF SPRINKLER MAIN WEIGHT						
	kg/m	lbs/ft.				
150 mm (6 in.)	35	23				
200 mm (8 in.)	60	40				
250 mm (10 in.)	83	56				

PROJECT

DYT3 GEN 3.1 BTS, **OTTAWA, ONTARIO 2625 SHEFFIELD ROAD**

CLIENT

CONSULTANT

AECOM Canada Architects Ltd. 50 Sportsworld Crossing Road, Suite 290 Kitchener, Ontario, N2P 0A4 519 650 5313 tel 519 650 3424 fax www.aecom.com

THIS DRAWING HAS BEEN PREPARED FOR THE USE OF AECOM'S CLIENT AND MAY NOT BE USED, REPRODUCED OR RELIED UPON BY THIRD PARTIES, EXCEPT AS AGREED BY AECOM AND ITS CLIENT, AS REQUIRED BY LAW OR FOR USE BY GOVERNMENTAL REVIEWING AGENCIES. AECOM ACCEPTS NO RESPONSIBILITY, AND DENIES ANY LIABILITY WHATSOEVER, TO ANY PARTY THAT MODIFIES THIS DRAWING WITH OUT AECOM'S EXPRESS WRITTEN CONSENT

DO NOT SCALE THIS DOCUMENT. ALL MEASUREMENTS MUST BE OBTAINED FROM STATED DIMENSIONS.

IT IS THE RESPONSIBILITY OF THE CONTRACTORS TO INFORM THEMSELVES OF THE EXACT LOCATION OF, AND ASSUME ALL LIABILITY FOR DAMAGE TO ALL UTILITIES, SERVICES AND STRUCTURES WHETHER ABOVE GROUND OR BELOW GRADE BEFORE COMMENCING THE WORK. SUCH INFORMATION IS NOT NECESSARILY SHOWN ON THE DRAWING, AND WHERE SHOWN, THE ACCURACY

WITH THE SOLE EXCEPTION OF THE BENCHMARK(S) SPECIFICALLY DESCRIBED FOR THIS PROJECT, NO ELEVATION INDICATED OR ASSUMED HEREON IS TO BE USED AS A REFERENCE ELEVATION FOR ANY PURPOSE.

REGISTRATION

ISSUE/REVISION DATE DESCRIPTION

PROJECT NUMBER

0000000

SHEET TITLE

ENLARGED FLOOR PLAN - FIRE PROTECTION

SHEET NUMBER

M3.01

Appendix **F**

Supporting Engineering Documentation and Calculations – Infiltration Basin Calculations

Infiltraiton Basin Sizing - DYT3

Site Conditions			
Rainfall Amount	10 mm		
	0.01 m		
Site Areas			
Total Building Area	2 ha		
	24800 m ²		
Area 101 Footprint Area	1.36 ha		
	13600 m ²		
Area 102 Footprint Area	1.12 ha		
	11200 m ²		
Runoff Coefficient			
Impervious Area	0.9		
Area 101		Area 102	
Required Clear Stone Bedding Infiltration Basin Sizing Calc	ulation	Required Clear Stone Bedding Infiltration Basin Sizing Calcu	lation
Volume (Total - Building Area)	122.40 m ³	Volume (Total - Building Area)	100.80 m ³
Stone Void Ratio	0.4	Stone Void Ratio	0.4
Depth	0.75 m	Depth	0.75 m
Length	66.72 m	Length	165.00 m
Width	6.12 m	Width	2.04 m
Proposed Clear Stone Bedding Infiltration Basin Sizing Calc		Proposed Clear Stone Bedding Infiltration Basin Sizing Calcu	
Volume (Total - Building Area)	132.00 m ³	Volume (Total - Building Area)	108.00 m ³
Stone Void Ratio	0.4	Stone Void Ratio	0.4
Depth	0.75 m	Depth	0.75 m
Length	110.00 m	Length	90.00 m
Width	4.00 m	Width	4.00 m
Infiltration Basin Bottom Area (Equation 4.3, MECP 2003)		Infiltration Basin Bottom Area (Equation 4.3, MECP 2003)	-
Runoff Volume	132.00 m ³	Runoff Volume	108.00 m ³
Percolation Rate	42 mm/hr	Percolation Rate	42 mm/hr
Factor of Safety	2.5	Factor of Safety	2.5
Porosity		Porosity	0.4
Retention Time	48 hr	Retention Time	48 hr
Bottom Area	409.23 m ²	Bottom Area	334.82 m ²
Proposed Bottom Area	440.00 m ²	Proposed Bottom Area	360.00 m ²
Maximum Allowable Basin Depth (Equation 4.2, MECP, 20		Maximum Allowable Basin Depth (Equation 4.2, MECP, 200	3)
Percolation Rate	42 mm/hr	Percolation Rate	42 mm/hr
Factor of Safety	2.5	Factor of Safety	2.5
Retention Time	48 hr	Retention Time	48 hr
Maximum Allowable Depth	0.81 m	Maximum Allowable Depth	0.81 m
Proposed Depth	0.75 m	Proposed Depth	0.75 m

Appendix **G**

Supporting Engineering Documentation and Calculations – Oil/Grit Separator and Storm Sewer

ADS Treatment Train Sizing

Project Name: DYT3 - North

Consulting Engineer: AECOM

Location: Ottawa, ON

Sizing Completed By: C. Neath Email: cody.neath@adspipe.com

Summary of Results		
Isolator Row PLUS TSS Removal:	80.6%	
FD-4HC TSS Removal:	34.0%	
Combined TSS Removal:	87.0%	
Total Volume Treated:	99.4%	

Individual OGS Results		
Model TSS Removal		Volume Treated
FD-4HC	34.0%	>90%
FD-5HC	37.0%	>90%
FD-6HC	39.0%	>90%
FD-8HC	42.0%	>90%
FD-10HC	44.0%	>90%

Overall System Capacities		
Total Sediment Storage Capacity: 6.88 m³		
Oil Storage Capacity:	723 L	
Max. OGS Pipe Diameter:	600 mm	
Peak OGS Flow Capacity:	510 L/s	
Peak Stormtech Inlet Flow Capacity:	311 L/s	
Peak IR PLUS Water Quality Flow:	211.1 L/s	

OGS Specifications		
Inlet Pipe Diameter (A):	375 mm	
Unit Diameter (B):	1,200 mm	
Outlet Pipe Diameter (C):	375 mm	
Rim Elevation (D):	66.74 m	
Bottom of Sump Elevation (E):	61.97 m	
Inlet Pipe Elevation (F):	63.53 m	
Outlet Pipe Elevation (G):	63.47 m	

Site Details		
Site Area (ha): 2.33		
Rational C:	0.9	
Particle Size Distribution: ETV		
Rainfall Station:	Ottawa, ONT	

Notes: OGS results based on ETV PSD and results from ETV testing protocols.

Stormtech Details		
Chamber Model:	MC-3500	
No. Chambers in Isolator Row PLUS:	19	
Volume Treated by Isolator Row PLUS:	99.2%	

Notes: Refer to Stormtech drawings for full IR+ configuration.

Isolator Row PLUS must include Flared End Ramp (FLAMP) for proper performance.

Notes:

Isolator Row PLUS removal efficiency based on verified ETV test report. For dimensions and configuration of Isolator Row PLUS, please see Stormtech drawing package.

Project Name: DYT3 - North

Consulting Engineer: AECOM

Location: Ottawa, ON

Net Annual Removal Efficiency Summary

Rainfall Intensity	Fraction of	Removal Efficiency		Combined	Combined Weighted
Kaiman intensity	Rainfall	FD-4HC	IR PLUS ⁽²⁾	Removal Efficiency	Removal Efficiency
mm/hr	%	%	%	%	%
0.50	0.1%	55.1%	81.2%	91.6%	0.1%
1.00	14.1%	50.1%	81.2%	90.6%	12.8%
1.50	14.2%	47.2%	81.2%	90.1%	12.8%
2.00	14.1%	45.2%	81.2%	89.7%	12.7%
2.50	4.2%	43.5%	81.2%	89.4%	3.7%
3.00	1.5%	42.2%	81.2%	89.1%	1.3%
3.50	8.5%	41.1%	81.2%	88.9%	7.6%
4.00	5.4%	40.2%	81.2%	88.8%	4.8%
4.50	1.2%	39.3%	81.2%	88.6%	1.0%
5.00	5.5%	38.6%	81.2%	88.4%	4.9%
6.00	4.3%	37.2%	81.2%	88.2%	3.8%
7.00	4.5%	36.1%	81.2%	88.0%	4.0%
8.00	3.1%	0.0%	81.2%	81.2%	2.5%
9.00	2.3%	0.0%	81.2%	81.2%	1.9%
10.00	2.6%	0.0%	81.2%	81.2%	2.1%
20.00	9.2%	0.0%	81.2%	81.2%	7.5%
30.00	2.6%	0.0%	81.2%	81.2%	2.1%
40.00	1.2%	0.0%	73.6%	73.6%	0.9%
50.00	0.5%	0.0%	58.9%	58.9%	0.3%
100.00	0.7%	0.0%	29.4%	29.4%	0.2%
150.00	0.1%	0.0%	19.6%	19.6%	0.0%
200.00	0.0%	0.0%	14.7%	14.7%	0.0%
		Total N	<u> </u> let Annual Ren	l noval Efficiency	87.0%
		Total Runoff Volume Treated		99.4%	

Notes:

- (1) Rainfall Data: 1960:2007, HLY03, Ottawa, ONT, 6105976 & 6105978.
- (2) IR PLUS removal based on ETV PSD and ETV protocols.
- (3) Rainfall adjusted to 5 min peak intensity based on hourly average.
- (4) Combined removal efficiencies calculated based on NCDENR Stormwater BMP Manual, Section 3.9.4, where Total Removal Efficiency = 1st BMP Efficiency + 2nd BMP Efficiency (1st BMP Efficiency x 2nd BMP Efficiency)

ADS Treatment Train Sizing

Project Name: DYT3 - South

Consulting Engineer: AECOM

Location: Ottawa, ON

Sizing Completed By: C. Neath Email: cody.neath@adspipe.com

Summary of Results		
Isolator Row PLUS TSS Removal:	76.7%	
FD-4HC TSS Removal:	26.0%	
Combined TSS Removal:	81.5%	
Total Volume Treated:	95.6%	

Individual OGS Results		
Model TSS Removal		Volume Treated
FD-4HC	26.0%	>90%
FD-5HC	28.0%	>90%
FD-6HC	29.0%	>90%
FD-8HC	32.0%	>90%
FD-10HC	34.0%	>90%

Overall System Capacities			
Total Sediment Storage Capacity: 5.28 m ³			
Oil Storage Capacity:	723 L		
Max. OGS Pipe Diameter:	600 mm		
Peak OGS Flow Capacity:	510 L/s		
Peak Stormtech Inlet Flow Capacity:	311 L/s		
Peak IR PLUS Water Quality Flow:	155.5 L/s		

OGS Specifications		
Inlet Pipe Diameter (A):	375 mm	
Unit Diameter (B): 1,200 mm		
Outlet Pipe Diameter (C):	375 mm	
Rim Elevation (D):	66.64 m	
Bottom of Sump Elevation (E):	61.56 m	
Inlet Pipe Elevation (F):	63.12 m	
Outlet Pipe Elevation (G):	63.06 m	

Site Details		
Site Area (ha): 4.21		
Rational C:	0.9	
Particle Size Distribution:	ETV	
Rainfall Station:	Ottawa, ONT	

Notes: OGS results based on ETV PSD and results from ETV testing protocols.

Stormtech Details					
Chamber Model:	MC-3500				
No. Chambers in Isolator Row PLUS:	14				
Volume Treated by Isolator Row PLUS:	94.5%				

Notes: Refer to Stormtech drawings for full IR+ configuration.

Isolator Row PLUS must include Flared End Ramp (FLAMP) for proper performance.

Notes:

Isolator Row PLUS removal efficiency based on verified ETV test report. For dimensions and configuration of Isolator Row PLUS, please see Stormtech drawing package.

Project Name: DYT3 - South

Consulting Engineer: AECOM
Location: Ottawa, ON

Net Annual Removal Efficiency Summary

Rainfall Intensity	Fraction of Rainfall	Remova	I Efficiency	Combined	Combined Weighted Removal Efficiency	
Namian intensity		FD-4HC	IR PLUS ⁽²⁾	Removal Efficiency		
mm/hr	%	%	%	%	%	
0.50	0.1%	50.9%	81.2%	90.8%	0.1%	
1.00	14.1%	45.9%	81.2%	89.8%	12.7%	
1.50	14.2%	43.0%	81.2%	89.3%	12.7%	
2.00	14.1%	40.9%	81.2%	88.9%	12.6%	
2.50	4.2%	39.3%	81.2%	88.6%	3.7%	
3.00	1.5%	38.0%	81.2%	88.3%	1.3%	
3.50	8.5%	36.9%	81.2%	88.1%	7.5%	
4.00	5.4%	35.9%	81.2%	88.0%	4.8%	
4.50	1.2%	0.0%	81.2%	81.2%	0.9%	
5.00	5.5%	0.0%	81.2%	81.2%	4.5%	
6.00	4.3%	0.0%	81.2%	81.2%	3.5%	
7.00	4.5%	0.0%	81.2%	81.2%	3.7%	
8.00	3.1%	0.0%	81.2%	81.2%	2.5%	
9.00	2.3%	0.0%	81.2%	81.2%	1.9%	
10.00	2.6%	0.0%	81.2%	81.2%	2.1%	
20.00	9.2%	0.0%	60.0%	60.0%	5.5%	
30.00	2.6%	0.0%	40.0%	40.0%	1.0%	
40.00	1.2%	0.0%	30.0%	30.0%	0.3%	
50.00	0.5%	0.0%	24.0%	24.0%	0.1%	
100.00	0.7%	0.0%	12.0%	12.0%	0.1%	
150.00	0.1%	0.0%	8.0%	8.0%	0.0%	
200.00	0.0%	0.0%	6.0%	6.0%	0.0%	
		Total Net Annual Removal Efficiency			81.5%	
		Total Runoff Volume Treated			95.6%	

Notes:

- (1) Rainfall Data: 1960:2007, HLY03, Ottawa, ONT, 6105976 & 6105978.
- (2) IR PLUS removal based on ETV PSD and ETV protocols.
- (3) Rainfall adjusted to 5 min peak intensity based on hourly average.
- (4) Combined removal efficiencies calculated based on NCDENR Stormwater BMP Manual, Section 3.9.4, where Total Removal Efficiency = 1st BMP Efficiency + 2nd BMP Efficiency (1st BMP Efficiency x 2nd BMP Efficiency)

Operation and Maintenance Manual

First Defense® High Capacity and First Defense® Optimum

Vortex Separator for Stormwater Treatment

Table of Contents

- 3 FIRST DEFENSE® BY HYDRO INTERNATIONAL
 - Introduction
 - OPERATION
 - POLLUTANT CAPTURE AND RETENTION
- 4 MODEL SIZES & CONFIGURATIONS
 - FIRST DEFENSE® COMPONENTS
- 5 MAINTENANCE
 - OVERVIEW
 - MAINTENANCE EQUIPMENT CONSIDERATIONS
 - DETERMINING YOUR MAINTENANCE SCHEDULE
- 6 MAINTENANCE PROCEDURES
 - INSPECTION
 - FLOATABLES AND SEDIMENT CLEAN OUT
- 8 FIRST DEFENSE® INSTALLATION LOG
- 9 FIRST DEFENSE® INSPECTION AND MAINTENANCE LOG

COPYRIGHT STATEMENT: The contents of this manual, including the graphics contained herein, are intended for the use of the recipient to whom the document and all associated information are directed. Hydro International plc owns the copyright of this document, which is supplied in confidence. It must not be used for any purpose other than that for which it is supplied and must not be reproduced, in whole or in part stored in a retrieval system or transmitted in any form or by any means without prior permission in writing from Hydro International plc. First Defense® is a trademarked hydrodynamic vortex separation device of Hydro International plc. A patent covering the First Defense® has been granted.

DISCLAIMER: Information and data contained in this manual is exclusively for the purpose of assisting in the operation and maintenance of Hydro International plc's First Defense®. No warranty is given nor can liability be accepted for use of this information for any other purpose. Hydro International plc has a policy of continuous product development and reserves the right to amend specifications without notice.

I. First Defense® by Hydro International

Introduction

The First Defense® is an enhanced vortex separator that combines an effective and economical stormwater treatment chamber with an integral peak flow bypass. It efficiently removes total suspended solids (TSS), trash and hydrocarbons from stormwater runoff without washing out previously captured pollutants. The First Defense® is available in several model configurations to accommodate a wide range of pipe sizes, peak flows and depth constraints.

The two product models described in this guide are the First Defense® High Capacity and the First Defense® Optimum; they are inspected and maintained identically.

Operation

The First Defense® operates on simple fluid hydraulics. It is self-activating, has no moving parts, no external power requirement and is fabricated with durable non-corrosive components. No manual procedures are required to operate the unit and maintenance is limited to monitoring accumulations of stored pollutants and periodic clean-outs. The First Defense® has been designed to allow for easy and safe access for inspection, monitoring and clean-out procedures. Neither entry into the unit nor removal of the internal components is necessary for maintenance, thus safety concerns related to confined-space-entry are avoided.

Pollutant Capture and Retention

The internal components of the First Defense® have been designed to optimize pollutant capture. Sediment is captured and retained in the base of the unit, while oil and floatables are stored on the water surface in the inner volume (Fig.1).

The pollutant storage volumes are isolated from the built-in bypass chamber to prevent washout during high-flow storm events. The sump of the First Defense® retains a standing water level between storm events. This ensures a quiescent flow regime at the onset of a storm, preventing resuspension and washout of pollutants captured during previous events.

Accessories such as oil absorbent pads are available for enhanced oil removal and storage. Due to the separation of the oil and floatable storage volume from the outlet, the potential for washout of stored pollutants between clean-outs is minimized.

Applications

- · Stormwater treatment at the point of entry into the drainage line
- Sites constrained by space, topography or drainage profiles with limited slope and depth of cover
- Retrofit installations where stormwater treatment is placed on or tied into an existing storm drain line
- · Pretreatment for filters, infiltration and storage

Advantages

- · Inlet options include surface grate or multiple inlet pipes
- Integral high capacity bypass conveys large peak flows without the need for "offline" arrangements using separate junction manholes
- Long flow path through the device ensures a long residence time within the treatment chamber, enhancing pollutant settling
- · Delivered to site pre-assembled and ready for installation

Fig.1 Pollutant storage volumes in the First Defense®.

II. Model Sizes & Configurations

The First Defense® inlet and internal bypass arrangements are available in several model sizes and configurations. The components have modified geometries allowing greater design flexibility to accommodate various site constraints.

All First Defense® models include the internal components that are designed to remove and retain total suspended solids (TSS), gross solids, floatable trash and hydrocarbons (Fig.2). First Defense® model sizes (diameter) are shown in Table 1.

III. Maintenance

First Defense® Components

- 1. Built-In Bypass
- 2. Inlet Pipe
- 3. Inlet Chute

- 4. Floatables Draw-off Port
- 5. Outlet Pipe
- 6. Floatables Storage
- 7. Sediment Storage
- 8. Inlet Grate or Cover

First Defense® Model Sizes				
(ft / m) diameter				
3 / 0.9				
4 / 1.2				
5 / 1.5				
6 / 1.8				
8 / 2.4				
10 / 3.0				

Overview

The First Defense® protects the environment by removing a wide range of pollutants from stormwater runoff. Periodic removal of these captured pollutants is essential to the continuous, long-term functioning of the First Defense®. The First Defense® will capture and retain sediment and oil until the sediment and oil storage volumes are full to capacity. When sediment and oil storage capacities are reached, the First Defense® will no longer be able to store removed sediment and oil.

The First Defense® allows for easy and safe inspection, monitoring and clean-out procedures. A commercially or municipally owned sump-vac is used to remove captured sediment and floatables. Access ports are located in the top of the manhole.

Maintenance events may include Inspection, Oil & Floatables Removal, and Sediment Removal. Maintenance events do not require entry into the First Defense®, nor do they require the internal components of the First Defense® to be removed. In the case of inspection and floatables removal, a vactor truck is not required. However, a vactor truck is required if the maintenance event is to include oil removal and/or sediment removal.

Maintenance Equipment Considerations

The internal components of the First Defense® have a centrally located circular shaft through which the sediment storage sump can be accessed with a sump vac hose. The open diameter of this access shaft is 15 inches in diameter (Fig.3). Therefore, the nozzle fitting of any vactor hose used for maintenance should be less than 15 inches in diameter.

Fig.3 The central opening to the sump of the First Defense®is 15 inches in diameter.

Determining Your Maintenance Schedule

The frequency of clean out is determined in the field after installation. During the first year of operation, the unit should be inspected every six months to determine the rate of sediment and floatables accumulation. A simple probe such as a Sludge-Judge® can be used to determine the level of accumulated solids stored in the sump. This information can be recorded in the maintenance log (see page 9) to establish a routine maintenance schedule.

The vactor procedure, including both sediment and oil / flotables removal, for First Defense® typically takes less than 30 minutes and removes a combined water/oil volume of about 765 gallons.

First Defense® Operation and Maintenance Manual

Inspection Procedures

- Set up any necessary safety equipment around the access port or grate of the First Defense® as stipulated by local ordinances. Safety equipment should notify passing pedestrian and road traffic that work is being done.
- 2. Remove the grate or lid to the manhole.
- Without entering the vessel, look down into the chamber to inspect the inside. Make note of any irregularities. Fig.4 shows the standing water level that should be observed.
- 4. Without entering the vessel, use the pole with the skimmer net to remove floatables and loose debris from the components and water surface.
- Using a sediment probe such as a Sludge Judge[®], measure the depth of sediment that has collected in the sump of the vessel.
- 6. On the Maintenance Log (see page 9), record the date, unit location, estimated volume of floatables and gross debris removed, and the depth of sediment measured. Also note any apparent irregularities such as damaged components or blockages.
- 7. Securely replace the grate or lid.
- 8. Take down safety equipment.
- Notify Hydro International of any irregularities noted during inspection.

Floatables and Sediment Clean Out

Floatables clean out is typically done in conjunction with sediment removal. A commercially or municipally owned sumpvac is used to remove captured sediment and floatables (Fig.4).

Floatables and loose debris can also be netted with a skimmer and pole. The access port located at the top of the manhole provides unobstructed access for a vactor hose to be lowered to the base of the sump.

Scheduling

- Floatables and sump clean out are typically conducted once a year during any season.
- Floatables and sump clean out should occur as soon as possible following a spill in the contributing drainage area.

Fig.4 Floatables are removed with a vactor hose

Recommended Equipment

- · Safety Equipment (traffic cones, etc)
- Crow bar or other tool to remove grate or lid
- Pole with skimmer or net (if only floatables are being removed)
- Sediment probe (such as a Sludge Judge®)
- · Vactor truck (flexible hose recommended)
- First Defense® Maintenance Log

Floatables and Sediment Clean Out Procedures

- Set up any necessary safety equipment around the access port or grate of the First Defense® as stipulated by local ordinances. Safety equipment should notify passing pedestrian and road traffic that work is being done.
- 2. Remove the grate or lid to the manhole.
- **3.** Without entering the vessel, look down into the chamber to inspect the inside. Make note of any irregularities.
- Remove oil and floatables stored on the surface of the water with the vactor hose or with the skimmer or net
- 5. Using a sediment probe such as a Sludge Judge®, measure the depth of sediment that has collected in the sump of the vessel and record it in the Maintenance Log (page 9).
- 6. Once all floatables have been removed, drop the vactor hose to the base of the sump. Vactor out the sediment and gross debris off the sump floor
- 7. Retract the vactor hose from the vessel.
- 8. On the Maintenance Log provided by Hydro International, record the date, unit location, estimated volume of floatables and gross debris removed, and the depth of sediment measured. Also note any apparent irregularities such as damaged components, blockages, or irregularly high or low water levels.
- 9. Securely replace the grate or lid.

Maintenance at a Glance

Inspection	- Regularly during first year of installation - Every ଓ months after the first year of installation
Oil and Floatables Removal	- Once per year, with sediment removal - Following a spill in the drainage area
Sediment Removal	- Once per year or as needed - Following a spill in the drainage area

NOTE: For most clean outs the entire volume of liquid does not need to be removed from the manhole. Only remove the first few inches of oils and floatables from the water surface to reduce the total volume of liquid removed during a clean out.

First Defense® Installation Log

HYDRO INTERNATIONAL REFERENCE NUMBER:				
SITE NAME:				
SITE LOCATION:				
OWNER:	CONTRACTOR:			
CONTACT NAME:	CONTACT NAME:			
COMPANY NAME:	COMPANY NAME:			
ADDRESS:	ADDRESS:			
TELEPHONE:	TELEPHONE:			
FAX:	FAX:			

INSTALLATION DATE: / /

MODEL SIZE (CIRCLE ONE): [3-FT] [4-FT] [5-FT] [6-FT] [8-FT] [10-FT]

INLET (CIRCLE ALL THAT APPLY): GRATED INLET (CATCH BASIN) INLET PIPE (FLOW THROUGH)

First Defense® Inspection and Maintenance Log

Date	Initials	Depth of Floatables and Oils	Sediment Depth Measured	Volume of Sediment Removed	Site Activity and Comments

Stormwater Solutions

94 Hutchins Drive Portland, ME 04102

Tel: (207) 756-6200 Fax: (207) 756-6212

stormwaterinquiry@hydro-int.com

www.hydro-int.com

Turning Water Around...®

Verification Statement

Hydro International First Defense® HC Oil Grit Separator Registration number: (V-2018-10-01) Date of issue: 2018-October-15 (rev 2019-02-01)

Technology type Oil Grit Separator

Technology to remove oil, sediment, trash and debris from

stormwater and snowmelt runoff as well as other pollutants that

attach to sediment particles, such as nutrients and metals

Company Hydro International

Address 94 Hutchins Drive, Portland, Maine Phone +1-207-756 6200

USA 04102

Website https://www.hydro-int.com

E-mail dscott@hydro-int.com

Verified Performance Claims

The Hydro International First Defense® High Capacity (HC) Oil Grit Separator (OGS) was tested by Good Harbour Laboratories Inc. (GHL), Mississauga, Ontario, Canada in 2018. The performance test results were verified by Toronto and Region Conservation Authority (TRCA), Vaughan, Ontario, Canada following the requirements of ISO 14034:2016 and the VerifiGlobal Performance Verification Protocol. The following performance claims were verified:

Capture test1:

Application

With a false floor set to 50% of the manufacturer's recommended maximum sediment storage depth and an influent test sediment concentration of 200 mg/L, the First Defense[®] HC OGS device removes 67, 60, 55, 50, 45, 45, and 41 percent of influent sediment by mass at surface loading rates of 40, 80, 200, 400, 600, 1000, and 1400 L/min/m², respectively.

Scour test1:

With 10.2 cm (4 inches) of test sediment pre-loaded onto a false floor reaching 50% of the manufacturer's recommended maximum sediment storage depth, the First Defense[®] HC OGS device generates adjusted effluent² concentrations of 0, 0, 11, 2, and 0 mg/L at 5-minute duration surface loading rates of 200, 800, 1400, 2000, and 2600 L/min/m², respectively.

¹ The claims can be applied to other units smaller or larger than the tested unit as long as the untested units meet the scaling rule specified in the Procedure for Laboratory of Testing of Oil Grit Separators (Version 3.0, June 2014)

² The effluent suspended sediment concentration is adjusted based on the background concentration and the smallest 5% of particles captured during the 40 L/min/m² sediment capture test (see Table 2)

Technology Application

The First Defense® HC (FDHC) Oil Grit Separator can be used as a stand-alone stormwater treatment technology, depending on water quality objectives, or as a pretreatment component in a treatment train when higher TSS removals are required and polishing or volume reduction best management practices (BMPs), such as infiltration or bio-infiltration, are installed downstream. FDHC applications include: stormwater treatment at the point of entry into the drainage line; sites constrained by space, topography or drainage profiles with limited slope and depth of cover; retrofit installations where stormwater treatment is placed on or tied into an existing storm drain line; pretreatment for filters, infiltration, other sedimentation BMPs and storage.

Technology Description

The Hydro International First Defense® HC (FDHC) is an Oil Grit Separator designed to remove oil, sediment, trash and debris from stormwater and snowmelt runoff as well as other pollutants that attach to sediment particles, such as nutrients and metals. The patented flow modifying internal components are designed to be inserted into standard precast concrete manholes where they collect and treat runoff as part of the drainage system (Figure 1).

Flow entering the manhole via an inlet pipe or inlet grate is diverted into a vortex chamber beneath a separation module that includes both inlet/outlet chutes and bypass weirs. The internal bypass weirs divert flows greater than the maximum design treatment flow rate over the separation module and away from the vortex chamber where oil, sediment, debris and attached pollutants are accumulating. This function prevents high velocities from re-suspending previously captured pollutants during large storm events. The FDHC can be designed and sized to function effectively in either online or offline configurations.

Figure 1: Hydro International First Defense® HC Oil Grit Separator

The test unit was 1.2 m (4 foot) in diameter with a 1.51 m (59 5/8 inches) sump depth measured from the outlet invert to the floor of the unit. The effective treatment area (also known as the effective sedimentation area) is 1.2 m^2 (12.6 ft^2). The maximum sediment storage depth is 0.457 m (18 inches).

Description of Test Procedure

The test data and results for this verification were obtained from independent testing conducted on a 1.2 m (48 inch) diameter Hydro International First Defense® HC OGS device, in accordance with the *Procedure for Laboratory Testing of Oil-Grit Separators (Version 3.0, June 2014)*. The laboratory test procedure was originally prepared by the Toronto and Region Conservation Authority (TRCA) in association with a 31 member advisory committee from various stakeholder groups.

Verification Results

Toronto and Region Conservation Authority verified the performance test data and other information pertaining to the First Defense[®] HC Oil Grit Separator. A Verification Plan was prepared to guide the verification process based on the requirements of ISO 14034:2016 and the VerifiGlobal Performance Verification Protocol.

The test sediment consisted of ground silica (1 – 1000 micron) with a specific gravity of 2.65, uniformly mixed to meet the particle size distribution specified in the testing procedure. The *Procedure for Laboratory Testing of Oil Grit Separators* requires that the three sample average of the test sediment particle size distribution (PSD) meet the specified PSD percent less than values within a boundary threshold of 6%, and a median particle size no greater than 75 μ m. Comparison of the individual sample and average test sediment PSD to the specified PSD shown in Figure 2 indicates that the test sediment used for the capture and scour tests met this condition. The median particle size was 73 μ m. Samples from test sediment batches used for each run met the specified PSD within the required tolerance thresholds.

Figure 2 - The three sample average particle size distribution (PSD) of the test sediment used for the capture and scour test compared to the specified PSD

The capacity of the device to retain sediment was determined at seven surface loading rates using the modified mass balance method. This method involved measuring the mass and particle size distribution of the injected and retained sediment for each test run. Performance was evaluated with a false floor simulating the technology filled to 50% of the manufacturer's recommended maximum sediment storage depth. The test was carried out with clean water that maintained a sediment concentration below 20 mg/L. Based on these conditions, removal efficiencies for individual particle size classes and for the test sediment as a whole were determined for each of the tested surface loading rates (Table 1).

In some instances, the removal efficiencies were above 100% for certain particle size fractions. These discrepancies are not unique to any one test laboratory and are attributed to errors relating to the blending of sediment, collection of representative samples for laboratory submission, and laboratory analysis of PSD. Due to these errors, caution should be exercised in applying the removal efficiencies by particle size fraction for the purposes of sizing the tested device (see Bulletin # CETV 2016-11-0001). The results for "all particle sizes by mass balance" (see Table 1) are based on measurements of the total injected and retained sediment mass, and are therefore not subject to blending, sampling or PSD analysis errors.

Table 1 - Removal efficiencies (%) of the First Defence HC at specified surface loading rates

Particle size	Surface loading rate (L/min/m²)						
fraction (µm)	40	80	200	400	600	1000	1400
>500	100*	100*	100*	81	72	86	80
250 - 500	100*	97	99	100*	100*	59	88
150 - 250	100*	91	95	93	47	100*	84
105 - 150	96	89	94	89	90	70	75
75 - 105	100*	90	95	77	-20**	100	51
53 - 75	74	100*	97	62	100*	46	37
20 - 53	60	33	10	5	4	0	0
8 - 20	29	16	8	3	3	I	1
5 – 8	8	5	8	4	4	4	3
<5	5	3	0	0	0	3	3
All particle sizes By mass balance	66.5	59.9	55.4	50.2	44.9	45.2	40.5

^{*} Removal efficiencies were calculated to be above 100%. Calculated values ranged between 101 and 184% (average 115%). See text and Bulletin # CETV 2016-11-0001 for more information.

Figure 3 - Particle size distribution of sediment retained in the First Defense HC in relation to the injected test sediment average

Figure 3 compares the particle size distribution (PSD) of the three sample average of the test sediment to the PSD of the sediment retained by the FDHC device at each of the tested surface loading rates. As expected, the capture efficiency for fine particles was generally found to decrease as surface loading rates increased, particularly in the 40 to 400 L/min/m² range.

^{**} An outlier in the retained sediment sample sieve data resulted in negative removal for this size fraction. The outlier at the 75 um particle size is shown in Figure 3.

Table 2 shows the results of the sediment scour and re-suspension test for the First Defense HC unit. The scour test involved preloading 10.2 cm (4 inches) of fresh test sediment into the sedimentation sump of the device. The sediment was placed on a false floor to mimic a device filled to 50% of the maximum recommended sediment storage depth. Clean water was run through the device at five surface loading rates over a 30 minute period. Each flow rate was maintained for 5 minutes with a one minute transition time between flow rates. Effluent samples were collected at one minute sampling intervals and analyzed for Suspended Sediment Concentration (SSC) and PSD by recognized methods. The effluent samples were subsequently adjusted based on the background concentration of the influent water. The smallest 5% of particles captured during the 40 L/min/m² sediment capture test (13.5 μ m in this case) was used to further adjust the effluent sediment concentrations, as per the method described in Bulletin # CETV 2016-09-0001. Results showed average adjusted effluent sediment concentrations below 11 mg/L at all surface loading rates. Effluent concentrations would be expected to decrease at higher flow rates since bypass over the insert bypass weirs was observed to begin at 1,032 L/min/m².

Table 2 - Scour test adjusted effluent sediment concentration at each surface loading rate

Run	Surface loading rate (L/min/m²)	Run time (min)	Background sam- ple concentration (mg/L)	Average adjusted effluent suspended sediment concentration (mg/L)*
1	200	1:00 - 6:00	0.8	0
2	800	7:00 – 12:00	1.0	0
3	1400	13:00 – 18:00	1.1	10.6
4	2000	19:00 – 24:00	2.8	2.4
5	2600	25:00 – 30:00	6.6	0

^{*}The effluent suspended sediment concentration is adjusted based on the background concentration and the smallest 5% of particles captured during the 40 L/min/m² sediment capture test, as per the method described in Bulletin # CETV 2016-09-0001.

Variances from the Procedure

Minor variances from the *Procedure for Laboratory Testing of Oil-Grit Separators* used as the basis of testing for this verification were as follows:

- 1. The *Procedure* states that the tested device "must be a full scale commercially available device with the same configuration and components as would be typical for an actual installation." The unit tested for this verification had the same internal components as would be typical for a commercial installation, but the internal components were placed inside a structure constructed of composite materials, rather than a manhole made of concrete, the latter of which is typical for most installations. The dimensions of the structure were the same as would have been the case had the manhole been concrete. The use of alternate materials for the structure was not believed to significantly affect system performance.
- 2. As part of the capture test, evaluation of the 40 and 80 L/min/m² surface loading rate was split into 3 and 2 parts, respectively. The test was conducted in parts because of the long duration (i.e. over 10 hours) needed to feed the required minimum 11.3 kg of test sediment into the unit. At the end of the first and second parts of the test, the flow rates were gradually decreased to prevent capture of particles that would have been washed out under normal circumstances. The requirement to split the test into parts was not anticipated in the *Procedure for Laboratory Testing of Oil-Grit Separators*, but has been a common feature of testing at the 40 L/min/m² surface loading rate. Conducting the test in two parts for the 80 L/ min/m² surface loading rate is less common. The testing did not assess the significance of the breaks, however, the test laboratory and verifier do not believe that the breaks significantly affected the test results.

Hydro International First Defense® HC Oil Grit Separator Verification Statement

3. During the sediment scour test, the flow rate coefficient of variation (COV) at the 200 L/min/m² surface loading rate of 0.045 slightly exceeded the target COV of 0.04. The average flow rate during the test remained within ±10% of the target flow rate.

Quality assurance

Performance testing and verification of the First Defense® HC Oil Grit Separator were performed in accordance with the requirements of ISO 14034:2016 and the VerifiGlobal Performance Verification Protocol. The verifier, Toronto and Region Conservation Authority, has confirmed that quality assurance requirements were addressed throughout the performance testing process and in the generation of performance test results. This includes reviewing all data sheets and data downloads, as well as overall management of the test system, quality control and data integrity.

Verification Summary

In summary, the First Defense® HC Oil Grit Separator is designed to remove oil, sediment, trash and debris from stormwater and snowmelt runoff as well as other pollutants that attach to sediment particles, such as nutrients and metals. Verification of performance claims for the Hydro International First Defense® HC Oil Grit Separator was conducted by Toronto and Region Conservation Authority based on independent third-party performance test results provided by Good Harbour Laboratories, as well as additional information provided by Hydro International. Table 3 summarizes the verification results in relation to the technology performance parameters that were identified to determine the efficacy of the First Defense® HC Oil Grit Separator.

Table 3 - Summary of Verification Results Against Performance Parameters

Performance Parameter	Verified Performance
Sediment Removal Rate	The sediment removal rate of the FDHC is dependent upon flow rate, particle density and particle size. Removal efficiency decreased with increasing surface loading rate from 67% at 40 L/min/m² to 41% at 1400 L/min/m². The weighted average removal efficiency achieved by the unit will vary depending on the rainfall distribution of the jurisdiction in which it is installed, and site characteristics.
Sediment Scour	When pre-loaded with sediment with a particle size distribution matching that of the feed sediment used in the sediment capture test, the FDHC generated effluent suspended solids concentrations of less than 11 mg/L at surface loading rates ranging from 200 to 2600 L/min/m².
Bypass flow rate	The flow rate at which bypass occurs will vary based on model size. For the 1.2 m (4 foot) diameter test unit, the flow rate at which bypass occurred over the insert bypass weirs was 1238 L/min (327 gpm).
Head loss	The loss of hydraulic head across the FDHC was determined by measuring the water elevation difference between the inlet and outlet sides of the insert. Head loss may vary based on model size. For the tested unit the head loss ranged from 2 mm (0.08 inches) at 93.5 L/min (12.3 gpm) to 100 mm (3.94 inches) at 1238 L/min (327 gpm) when bypass was observed to occur. At 327 gpm, when bypass occurred, the depth of the water was 177 mm upstream and 77 mm downstream for a difference of 100 mm (3.94 inches). The highest water elevation difference was 111mm (4.37 inches) at a flow rate of 1635 L/min (431.8 gpm), after which head loss declined up to the maximum measured flow rate of 3036 L/min (801.9 gpm).

Hydro International First Defense® HC Oil Grit Separator Verification Statement

What is ISO 14034?

The purpose of environmental technology verification is to provide a credible and impartial account of the performance of environmental technologies. Environmental technology verification is based on a number of principles to ensure that verifications are performed and reported accurately, clearly, unambiguously and objectively. The International Organization for Standardization (ISO) standard for environmental technology verification (ETV) is ISO 14034, which was published in November 2016.

Benefits of ETV

ETV contributes to protection and conservation of the environment by promoting and facilitating market uptake of innovative environmental technologies, especially those that perform better than relevant alternatives. ETV is particularly applicable to those environmental technologies whose innovative features or performance cannot be fully assessed using existing standards. Through the provision of objective evidence, ETV provides an independent and impartial confirmation of the performance of an environmental technology based on reliable test data. ETV aims to strengthen the credibility of new, innovative technologies by supporting informed decision-making among interested parties.

For more information on the First Defense® HC Oil Grit Separator, contact:	For more information on VerifiGlobal, contact:		
Hydro International	VerifiGlobal c/o ETA-Danmark A/S		
94 Hutchins Drive, Portland, Maine USA	Göteborg Plads 1, DK-2150 Nordhaven		
04102 t +1-207-756 6200	t +45 7224 5900 e: info@verifiglobal.com		
e: dscott@hydro-int.com	w: www.verifiglobal.com		
w: www.hydro-int.com			
Signed for Hydro International:	Signed for VerifiGlobal:		
Original signed by:	Original signed by:		
David Scott	Thomas Bruun		
	Thomas Bruun, Managing Director		
David Scott	Original aigned by		
Technical Product Manager, Americas Stormwater	Original signed by:		
Americas Stormwater	John Neate		
	John Neate, Managing Director		

NOTICE: Verifications are based on an evaluation of technology performance under specific, predetermined operational conditions and parameters and the appropriate quality assurance procedures. VerifiGlobal and the Verification Expert, Toronto and Region Conservation Authority, make no expressed or implied warranties as to the performance of the technology and do not certify that a technology will always operate as verified. The end user is solely responsible for complying with any and all applicable regulatory requirements. Mention of commercial product names does not imply endorsement.

VerifiGlobal and the Verification Expert, Toronto and Region Conservation Authority, provide the verification services solely on the basis of the information supplied by the applicant or vendor and assume no liability thereafter. The responsibility for the information supplied remains solely with the applicant or vendor and the liability for the purchase, installation, and operation (whether consequential or otherwise) is not transferred to any other party as a result of the verification.

Appendix H

Supporting Engineering Documentation and Calculations – Underground Storage System

Project:

DYT3 - North - Rev 2

Chamber Model Units Number of Chambers Number of End Caps Voids in the stone (porosity) Base of Stone Elevation Amount of Stone Above Chambers Amount of Stone Below Chambers -

1477.325 sq.meters Min. Area - 1357.38 sq.meters

☑ Include Perimeter Stone in Calculations

Click for Stage Area Data

Click to Invert Stage Area Data

Click Here for Imperial

StormTe	ch MC-3500 C	Sumulative S	Storage Vo	lumes				
Height of	Incremental Single	Incremental	Incremental	Incremental End	Incremental	Incremental Ch, EC	Cumulative	
System (mm)	Chamber (cubic meters)	Single End Cap (cubic meters)	Chambers (cubic meters)	Cap (cubic meters)	Stone (cupic meters)	and Stone (cubic meters)	System (cupic meters)	Elevation (meters)
1676	0.00	0.00	0.00	0.00	15.002	15.00	1530.15	65.22
1651	0.00	0.00	0.00	0.00	15.002	15.00	1515.15	65.20
1626	0.00	0.00	0.00	0.00	15.002	15.00	1500.14	65.17
1600	0.00	0.00	0.00	0.00	15.002	15.00	1485.14	65.15
1575	0.00	0.00	0.00	0.00	15.002	15.00	1470.14	65.12
1549	0.00	0.00	0.00	0.00	15.002	15.00	1455.14	65.10
1524	0.00	0.00	0.00	0.00	15.002	15.00	1440.14	65.07
1499	0.00	0.00	0.00	0.00	15.002	15.00	1425.13	65.05
1473	0.00	0.00	0.00	0.00	15.002	15.00	1410.13	65.02
1448	0.00	0.00	0.00	0.00	15.002	15.00	1395.13	64.99
1422	0.00	0.00	0.00	0.00	15.002	15.00	1380.13	64.97
1397	0.00	0.00	0.00	0.00	15.002	15.00	1365.13	64.94
1372	0.00	0.00	0.47	0.00	14.815	15.28	1350.12	64.92
1346	0.01	0.00	1.57	0.02	14.367	15.95	1334.84	64.89
1321	0.01	0.00	2.37	0.03	14.040	16.44	1318.89	64.87
1295	0.01	0.00	3.26	0.04	13.682	16.98	1302.44	64.84
1270	0.02	0.00	5.55	0.06	12.761	18.36	1285.46	64.82
1245	0.03	0.00	8.30	0.07	11.653	20.03	1267.10	64.79
1219 1194	0.04	0.00	10.08 11.48	0.09 0.11	10.932 10.368	21.11 21.95	1247.07	64.77 64.74
1194 1168	0.04	0.00	11.48 12.70	0.11 0.12	10.368 9.875	21.95 22.69	1225.96 1204.01	64.74 64.72
1143	0.05	0.00	13.78	0.12	9.436	23.35	1181.32	64.69
1118	0.05	0.00	14.76	0.14	9.038	23.95	1157.96	64.66
1092	0.05	0.01	15.64	0.17	8.679	24.49	1134.02	64.64
1067	0.06	0.01	16.47	0.19	8.340	25.00	1109.53	64.61
1041	0.06	0.01	17.23	0.20	8.031	25.46	1084.53	64.59
1016	0.06	0.01	17.95	0.21	7.737	25.90	1059.07	64.56
991	0.07	0.01	18.62	0.23	7.465	26.31	1033.17	64.54
965	0.07	0.01	19.25	0.24	7.209	26.69	1006.87	64.51
940	0.07	0.01	19.85	0.25	6.964	27.06	980.17	64.49
914	0.07	0.01	20.40	0.26	6.736	27.40	953.11	64.46
889	0.07	0.01	20.93	0.27	6.520	27.73	925.71	64.44
864	0.08	0.01	21.44	0.28	6.314	28.03	897.99	64.41
838	0.08	0.01	21.91	0.29	6.119	28.33	869.95	64.39
813	0.08	0.01	22.37	0.31	5.934	28.60	841.63	64.36
787	0.08	0.01	22.80	0.32	5.757	28.87	813.02	64.33
762 737	0.08 0.08	0.01 0.01	23.21 23.60	0.33 0.34	5.589 5.428	29.12 29.36	784.15 755.03	64.31 64.28
711	0.08	0.01	23.97	0.34	5.276	29.59	725.67	64.26
686	0.09	0.01	24.31	0.36	5.135	29.80	696.08	64.23
660	0.09	0.01	24.64	0.36	5.000	30.01	666.28	64.21
635	0.09	0.01	24.97	0.37	4.864	30.21	636.27	64.18
610	0.09	0.01	25.26	0.38	4.743	30.39	606.06	64.16
584	0.09	0.01	25.55	0.39	4.626	30.57	575.67	64.13
559	0.09	0.01	25.82	0.40	4.514	30.73	545.10	64.11
533	0.09	0.01	26.08	0.41	4.408	30.89	514.37	64.08
508	0.09	0.01	26.32	0.42	4.308	31.04	483.48	64.06
483	0.09	0.01	26.55	0.42	4.211	31.19	452.43	64.03
457	0.09	0.01	26.78	0.43	4.119	31.33	421.25	64.00
432	0.09	0.01	26.99	0.44	4.032	31.46	389.92	63.98
406	0.10	0.01	27.19	0.44	3.950	31.58	358.46	63.95
381	0.10	0.01	27.38	0.45	3.871	31.70	326.88	63.93
356	0.10	0.02	27.56	0.46	3.797	31.81	295.18	63.90
330 305	0.10 0.10	0.02 0.02	27.74 27.91	0.46 0.47	3.722 3.653	31.92 32.03	263.37 231.45	63.88 63.85
305 279	0.10	0.02	27.91	0.47	3.584	32.03 32.13	231.45 199.43	63.85
279 254	0.10	0.02	28.07	0.47	3.485	32.13	167.30	63.80
229	0.00	0.02	0.00	0.00	15.002	15.00	135.02	63.78
203	0.00	0.00	0.00	0.00	15.002	15.00	120.02	63.75
178	0.00	0.00	0.00	0.00	15.002	15.00	105.01	63.72
152	0.00	0.00	0.00	0.00	15.002	15.00	90.01	63.70
127	0.00	0.00	0.00	0.00	15.002	15.00	75.01	63.67
102	0.00	0.00	0.00	0.00	15.002	15.00	60.01	63.65
76	0.00	0.00	0.00	0.00	15.002	15.00	45.01	63.62
51	0.00	0.00	0.00	0.00	15.002	15.00	30.00	63.60
25	0.00	0.00	0.00	0.00	15.002	15.00	15.00	63.57

Project: DYT3 - S

Chamber Model -Units -Number of Chambers -Number of End Caps -Voids in the stone (porosity) -Base of Stone Elevation -Amount of Stone Above Chambers -Amount of Stone Below Chambers -Area of system -

MC-3500	1
Metric	Click Here for Imperial
354	
38	
40	%
63.15	m Include
305	mm Include
229	mm
18/118	ea metere Min /

1748.581 sq.meters

✓ Include Perimeter Stone in Calculations

rea of system -	1841.8	sq.meters	Min. Area -	

StormTe	StormTech MC-3500 Cumulative Storage Volumes							
						Incremental		
Height of	Incremental Single	Incremental	Incremental	Incremental End	Incremental	Chamber, End	Cumulative	- 1
System (mm)	Chamber (cubic meters)	Single End Cap (cubic meters)	Chambers (cubic meters)	Cap (cubic meters)	Stone (cubic meters)	Cap and Stone (cubic meters)	System (cubic meters)	Elevation (meters)
1676	0.00	0.00	0.00	0.00	18.703	18.70	1905.36	64.83
1651	0.00	0.00	0.00	0.00	18.703	18.70	1886.65	64.80
1626	0.00	0.00	0.00	0.00	18.703	18.70	1867.95	64.78
1600	0.00	0.00	0.00	0.00	18.703	18.70	1849.25	64.75
1575 1549	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	18.703 18.703	18.70 18.70	1830.54 1811.84	64.73 64.70
1524	0.00	0.00	0.00	0.00	18.703	18.70	1793.14	64.68
1499	0.00	0.00	0.00	0.00	18.703	18.70	1774.43	64.65
1473	0.00	0.00	0.00	0.00	18.703	18.70	1755.73	64.63
1448	0.00	0.00	0.00	0.00	18.703	18.70	1737.03	64.60
1422 1397	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	18.703 18.703	18.70 18.70	1718.32 1699.62	64.57 64.55
1372	0.00	0.00	0.58	0.00	18.470	19.05	1680.92	64.52
1346	0.01	0.00	1.95	0.03	17.915	19.89	1661.86	64.50
1321	0.01	0.00	2.95	0.04	17.508	20.50	1641.98	64.47
1295	0.01	0.00	4.05	0.06	17.063	21.16	1621.48	64.45
1270	0.02	0.00	6.89	0.07	15.919	22.88	1600.32	64.42
1245 1219	0.03 0.04	0.00 0.00	10.31 12.53	0.09 0.12	14.542 13.647	24.94 26.29	1577.44 1552.49	64.40 64.37
1194	0.04	0.00	14.26	0.14	12.946	27.34	1526.20	64.35
1168	0.04	0.00	15.77	0.16	12.333	28.26	1498.87	64.32
1143	0.05	0.00	17.11	0.18	11.788	29.08	1470.61	64.30
1118	0.05	0.01	18.33	0.20	11.293	29.82	1441.53	64.27
1092 1067	0.05 0.06	0.01 0.01	19.42 20.46	0.22 0.23	10.847 10.426	30.49 31.12	1411.71 1381.23	64.24 64.22
1041	0.06	0.01	21.40	0.25	10.426	31.69	1350.11	64.19
1016	0.06	0.01	22.30	0.27	9.677	32.24	1318.41	64.17
991	0.07	0.01	23.12	0.29	9.339	32.75	1286.17	64.14
965	0.07	0.01	23.91	0.30	9.021	33.23	1253.42	64.12
940 914	0.07 0.07	0.01 0.01	24.65 25.34	0.32 0.33	8.717 8.434	33.68 34.11	1220.19 1186.51	64.09 64.07
889	0.07	0.01	26.00	0.35	8.165	34.51	1152.40	64.04
864	0.08	0.01	26.62	0.36	7.909	34.89	1117.89	64.02
838	0.08	0.01	27.22	0.37	7.667	35.26	1083.00	63.99
813	0.08	0.01	27.78	0.39	7.436	35.60	1047.74	63.96
787 762	0.08 0.08	0.01 0.01	28.32 28.82	0.40 0.41	7.217 7.008	35.93 36.25	1012.14 976.20	63.94 63.91
737	0.08	0.01	29.31	0.43	6.808	36.55	939.96	63.89
711	0.08	0.01	29.77	0.44	6.619	36.83	903.41	63.86
686	0.09	0.01	30.20	0.45	6.444	37.09	866.58	63.84
660	0.09	0.01	30.61	0.46	6.276	37.34	829.49	63.81
635 610	0.09 0.09	0.01 0.01	31.02 31.38	0.47 0.49	6.107 5.957	37.60 37.82	792.15 754.55	63.79 63.76
584	0.09	0.01	31.73	0.50	5.812	38.04	716.72	63.74
559	0.09	0.01	32.07	0.51	5.672	38.25	678.68	63.71
533	0.09	0.01	32.39	0.52	5.541	38.45	640.43	63.69
508	0.09	0.01	32.69	0.53	5.415	38.64	601.99	63.66
483 457	0.09 0.09	0.01 0.01	32.98 33.26	0.54 0.54	5.296 5.181	38.81 38.99	563.35 524.54	63.63 63.61
437	0.09	0.01	33.52	0.55	5.073	39.15	485.55	63.58
406	0.10	0.01	33.77	0.56	4.971	39.30	446.40	63.56
381	0.10	0.01	34.01	0.57	4.872	39.45	407.10	63.53
356	0.10	0.02	34.23	0.58	4.781	39.59	367.65	63.51
330 305	0.10 0.10	0.02 0.02	34.45 34.66	0.58 0.59	4.688 4.602	39.73 39.85	328.06 288.34	63.48 63.46
279	0.10	0.02	34.87	0.60	4.516	39.98	248.48	63.43
254	0.10	0.02	35.14	0.64	4.393	40.17	208.50	63.41
229	0.00	0.00	0.00	0.00	18.703	18.70	168.33	63.38
203	0.00	0.00	0.00	0.00	18.703	18.70	149.63	63.36
178 152	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	18.703 18.703	18.70 18.70	130.92 112.22	63.33 63.30
127	0.00	0.00	0.00	0.00	18.703	18.70	93.52	63.28
102	0.00	0.00	0.00	0.00	18.703	18.70	74.81	63.25
76	0.00	0.00	0.00	0.00	18.703	18.70	56.11	63.23
51	0.00	0.00	0.00	0.00	18.703	18.70	37.41	63.20
25	0.00	0.00	0.00	0.00	18.703	18.70	18.70	63.18

STORMTECH MC-3500 CHAMBER

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

STORMTECH MC-3500 CHAMBER (not to scale)

Nominal Chamber Specifications

Size (L x W x H) 90" x 77" x 45" 2,286 mm x 1,956 mm x 1,143 mm

Chamber Storage 109.9 ft³ (3.11 m³)

Min. Installed Storage* 175.0 ft³ (4.96 m³)

Weight

134 lbs (60.8 kg)

Shipping

15 chambers/pallet 7 end caps/pallet 7 pallets/truck

*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below chambers, 6" (150 mm) of stone between chambers/end caps and 40% stone porosity.

STORMTECH MC-3500 END CAP

(not to scale)

Nominal End Cap Specifications

Size (L x W x H)26.5" x 71" x 45.1"
673 mm x 1,803 mm x 1,145 mm

End Cap Storage 14.9 ft³ (0.42 m³)

Min. Installed Storage*

45.1ft 3 (1.28 m3)

Weight

49 lbs (22.2 kg)

*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below, 6" (150 mm) of stone perimeter, 6" (150 mm) of stone between chambers/end caps and 40% stone porosity.

MC-3500 CHAMBER SPECIFICATION

STORAGE VOLUME PER CHAMBER FT3 (M3)

	Bare Chamber		Chamber and Stone Foundation Depth in. (mm)				
	Storage ft³ (m³)	9" (230 mm)	12" (300 mm)	15" (375 mm)	18" (450 mm)		
MC-3500 Chamber	109.9 (3.11)	175.0 (4.96)	179.9 (5.09)	184.9 (5.24)	189.9 (5.38)		
MC-3500 End Cap	14.9 (.42)	45.1 (1.28)	46.6 (1.32)	48.3 (1.37)	49.9 (1.41)		

Note: Assumes 6" (150 mm) row spacing, 40% stone porosity, 12" (300 mm) stone above and includes the bare chamber/end cap volume.

AMOUNT OF STONE PER CHAMBER

FNOLICUITONO (v.d-3)	Stone Foundation Depth					
ENGLISH TONS (yds³)	9"	12"	15"	18"		
MC-3500 Chamber	8.5 (6.0)	9.1 (6.5)	9.7 (6.9)	10.4 (7.4)		
MC-3500 End Cap	3.9 (2.8)	4.1 (2.9)	4.3 (3.1)	4.5 (3.2)		
METRIC KILOGRAMS (m³)	230 mm	300 mm	375 mm	450 mm		
MC-3500 Chamber	7711 (4.6)	8255 (5.0)	8800 (5.3)	9435 (5.7)		
MC-3500 End Cap	3538 (2.1)	3719 (2.2)	3901 (2.4)	4082 (2.5)		

Note: Assumes 12" (300 mm) of stone above and 6" (150 mm) row spacing and 6" (150 mm) of perimeter stone in front of end caps.

VOLUME EXCAVATION PER CHAMBER YD3 (M3)

		Stone Foundation Depth				
	9" (230 mm)	12" (300 mm)	15" (375mm)	18" (450 mm)		
MC-3500 Chamber	11.9 (9.1)	12.4 (9.5)	12.8(9.8)	13.3 (10.2)		
MC-3500 End Cap	4.0 (3.1)	4.1 (3.2)	4.3 (3.3)	4.4 (3.4)		

Note: Assumes 6" (150 mm) of separation between chamber rows and 24" (600 mm) of cover. The volume of excavation will vary as depth of cover increases.

Working on a project?
Visit us at www.stormtech.com
and utilize the StormTech Design Tool

For more information on the StormTech MC-3500 Chamber and other ADS products, please contact our Customer Service Representatives at 1-800-821-6710

Verification Statement

StormTech Isolator® Row PLUS Registration number: (V-2020-10-01) Date of issue: (2020-October-27)

Technology type Stormwater Filtration Device

Stormwater filtration technology to remove sediments, nutrients,

heavy metals, and organic contaminants from stormwater runoff

Company StormTech, LLC.

Address 520 Cromwell Avenue, Rocky Hill, Phone +1-888-892-2694

CT 06067 USA

Website www.stormtech.com

E-mail info@stormtech.com

Verified Performance Claims

Application

The StormTech Isolator® Row PLUS technology was tested at the Mid-Atlantic Storm Water Research Center (MASWRC), under the supervision of Boggs Environmental Consultants, Inc. The performance test results for two overlapping StormTech Isolator® Row PLUS chambers (commercial unit model SC-740) were verified by Good Harbour Laboratories Inc. (GHL), following the requirements of ISO 14034:2016 and the VerifiGlobal Performance Verification Protocol. Based on the laboratory testing conducted, the verified performance claims are as follows:

Total Suspended Solids (TSS) Removal Efficiency - The StormTech Isolator® Row PLUS achieved $82\% \pm 1\%$ removal efficiency of suspended sediment concentration (SCC) at a 95% confidence level.

Average Loading Rate - Based on the reported flow rate data and the effective sedimentation and filtration treatment area of the test unit, the average loading rate of the test unit was 4.15 ± 0.03 GPM/ft² at a 95% confidence level.

Maximum Treatment Flow Rate (MTFR) - Although the MTFR varies among the StormTech Isolator® Row PLUS model sizes and the number of chambers, the design surface loading rate remains the same (4.13 gpm/ ft² of treatment surface area). The test unit consisted of two overlapping StormTech SC-740 chambers with a nominal MTFR of 225 GPM (0.501 CFS) and an effective filtration treatment area (EFTA) of approximately 54.5 ft².

Detention Time and Volume - The StormTech Isolator Row PLUS detention time and wet volume varies with model size. The unit tested had a wet volume of approximately 65.1 ft³ and a detention time of 2.2 minutes.

Maximum Sediment Storage Depth and Volume - The sediment storage volume and depth vary according to the StormTech Isolator® Row PLUS model sizes and system configuration. For the two overlapping StormTech SC-740 chambers tested, the maximum sediment storage volume is 2.3 ft³ at a sediment depth of 0.5 inches.

Effective Sedimentation/Filtration Treatment Areas - The Effective Sedimentation Area (ESA) and the Effective Filtration Treatment Area (EFTA) increase as the size of the system increases. For the two overlapping StormTech SC-740 chambers tested, the ESA and the ratio of ESA/EFTA were 54.5 ft² and 1.0, respectively.

Sediment Mass Load Capacity - The sediment mass load capacity varies according to the StormTech Isolator® Row PLUS model sizes and system configuration. For the two overlapping StormTech SC-740 chambers tested, the mass loading capture was 158.4 lbs \pm 0.8 lbs (2.91 \pm 0.01 lbs/ ft²) following a total sediment loading of 195.2 lbs.

Technology Application

The StormTech "Isolator® Row PLUS" is a stormwater treatment technology designed for use under parking lots, roadways and heavy earth loads while providing a superior and durable structural system. The technology comprises a row of chambers covered in a non-woven geotextile fabric with a single layer of proprietary woven fabric at the bottom that serves as a filter strip, providing surface area for infiltration and runoff reduction with enhanced suspended solids and pollutant removal. The following features make the Isolator® Row PLUS effective as a water quality solution:

- Enhanced infiltration Surface Area
- Runoff Volume Reduction
- Peak Flow Reduction
- Sediment/Pollutant Removal
- Internal Water Storage (IWS)
- Water Temperature Cooling (Thermal Buffer).

Technology Description

The Isolator® Row PLUS (shown in Figures 1 and 2) is the first row of StormTech chambers that is surrounded with filter fabric and connected to a closely located manhole for easy access. The Isolator® Row PLUS provides for settling and filtration of sediment as stormwater rises in the chamber and ultimately passes through the filter fabric. The open-bottom chambers allow stormwater to flow out of the chambers, while sediment is captured in the Isolator® Row PLUS.

Figure 1: Schematic of the StormTech Isolator® Row PLUS System

StormTech Isolator® Row PLUS Verification Statement

Figure 2: Isolator® Row PLUS Detail

A single layer of proprietary Advanced Drainage Systems (ADS) PLUS fabric is placed between the angular base stone and the Isolator Row PLUS chamber. The geotextile provides the means for stormwater filtration and provides a durable surface for maintenance operations. A 6 oz. non-woven fabric is placed over the chambers.

The Isolator® Row PLUS is designed to capture the "first flush" and offers the versatility to be sized on a volume basis or a flow-rate basis. An upstream manhole not only provides access to the Isolator® Row PLUS but includes a high low/concept such that stormwater flow rates or volumes that exceed the capacity of the Isolator® Row PLUS bypass through a manifold to the other chambers. This is achieved with either a high-flow weir or an elevated manifold. This creates a differential between the Isolator® Row PLUS and the manifold, thus allowing for settlement time in the Isolator® Row PLUS. After Stormwater flows through the Isolator® Row PLUS and into the rest of the StormTech chamber system it is either infiltrated into the soils below or passed at a controlled rate through an outlet manifold and outlet control structure.

StormTech developed and owns the Isolator® Row PLUS technology and has filed a number of patent applications relating to the Isolator® Row PLUS system.¹

Description of Test Procedure for the StormTech Isolator® Row PLUS

In January 2020, two overlapping StormTech SC-740 Isolator® Row PLUS commercial size chambers were installed at the Mid-Atlantic Storm Water Research Center (MASWRC, a subsidiary of BaySaver), in Mount Airy, Maryland, to evaluate the performance of the Isolator® Row PLUS system for Total Suspended Solid (TSS) removal (Figure 3) All testing and data collection procedures were supervised by Boggs Environmental Consultants, Inc. (BEC), who was hired by ADS for third party oversight, and were in accordance with the New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device (January 2013).

Prior to the start of testing, a Quality Assurance Project Plan (QAPP), revision dated January 09, 2020, was submitted and approved by the New Jersey Corporation for Advanced Technology (NJCAT), c/o Center for Environmental Systems, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030.

¹ (U.S. Provisional Application No. 62/753,050, filed October 30, 2018; U.S. Non-Provisional Application No. 16/670,628, filed October 31, 2019; International Application No. PCT/US2019/059283, filed October 31, 2019; U.S. Application No. 16/938,482, filed July 24, 2020; U.S. Application No. 16/938,657, filed July 24, 2020; PCT International Application No. PCT/US2020/043543, filed July 24, 2020; PCT International Application No. PCT/US2020/043557, filed July 24, 2020.

Figure 3: StormTech "Isolator® Row PLUS" Test Set-up at MASWRC

Verification Results

The verification process for the StormTech Isolator® Row PLUS technology was conducted by GHL in accordance with the VerifiGlobal Verification Plan for the StormTech "Isolator® Row PLUS" Technology – 2020-09-09. The technology performance claims verified by GHL are summarized at the front of this Verification Statement and in Table 6 on Page 8 under the heading "Verification Summary".

Particle size distribution analysis was performed by ECS Mid-Atlantic, LLC of Frederick, MD in accordance with ASTM D422-63(2007). ECS is accredited by the American Association of State Highways and Transportation Officials (AASHTO).

ASTM D422-63(2007) is a sieve and hydrometer method where the larger particles, > 75 microns, are measured using a standard sieve stack while the smaller particles are measured based on their settling time using a hydrometer.

The PSD meets the requirements of NJDEP, which is generally accepted as representative of the type of particle sizes an OGS would be designed to treat. Actual PSD is site and rainfall event specific, so it was necessary to choose a standard PSD to make testing and comparison manageable.

Table 1 shows the NJDEP PSD specification. Table 2 and Figure 4 show the incoming material PSD as determined by ECS Mid-Atlantic and confirmed by the verifier.

Table 1: NJDEP PSD Specification

Particle Size (µm)	NJDEP Minimum Specification
1000	98
500	93
250	88
150	73
100	58
75	48
50	43
20	33
8	18
5	8
2	3
d ₅₀	< 75 μm

Table 2 – Particle Size Distribution (PSD) of Test Sediment

		Sample ID			
Mesh (mm)	US Sieve Size	PSD A	PSD B	PSD C	
			Percent Finer		
9.525	0.375	100.0	100.0	100.0	
4.750	#4	100.0	100.0	100.0	
4.000	#5	100.0	100.0	100.0	
2.360	#8	100.0	100.0	100.0	
2.000	#10	100.0	100.0	100.0	
1.180	#16	100.0	100.0	100.0	
1.000	#18	100.0	100.0	100.0	
0.500	#35	100.0	100.0	100.0	
0.425	#40	93.3	93.0	93.6	
0.250	#60	90.3	89.8	90.2	
0.150	#100	79.3	78.1	78.1	
0.125	#120	73.6	71.7	71.7	
0.106	#140	68.4	65.2	64.8	
0.090	#170	60.2	58.3	57.5	
0.075	#200	52.0	50.9	50.3	
0.053	#270	48.0	48.3	47.8	
0.045		46.6	46.7	46.7	
0.032		42.8	42.9	41.0	
0.021	ō	37.1	37.2	35.3	
0.0125	Hydrometer	25.7	25.7	25.8	
0.0090		20.1	20.1	19.2	
0.0064	Î	16.3	16.4	14.5	
0.0032		8.8	8.7	7.8	
0.0014		3.8	3.7	3.8	

The suspended sediment concentration analysis was completed by Fredericktowne Labs Inc., Meyersville, MD. Fredericktown Labs is accredited by the Maryland Department of Environment as Maryland Certified Water Quality Laboratory. The analysis procedure was ASTM D3977-97, Suspended Sediment Concentration. The sampling procedure and submission of samples to the test lab were overseen by the independent observer, Boggs Environmental Consultants, Inc.

All test data and calculations were detailed in the report "NJCAT TECHNOLOGY VERIFICATION Isolator® Row PLUS StormTech, LLC", July 2020, which was submitted to and verified by the New Jersey Corporation for Advanced Technology (NJCAT).

Figure 4– Particle Size Distribution (PSD)

The data in Table 3 (Flow Rate and Temperature) and Table 4 (Removal Efficiency) form the basis for the verified technology performance claim, specifically, flow rate, sediment captured and removal efficiency.

Table 3: Flow Rate and Temperature Summary

Run	Max Flow (gpm)	Min Flow (gpm)	Average Flow (gpm)	Flow COV	Flow Compliance (COV< 0.1)	Maximum Temperature (Fahrenheit)	NJDEP Tem- perature Compliance (< 80 F)
1	232.8	223.9	226.3	0.0078	O78 Y 48.2		Υ
2	228.9	218.6	220.8	0.0104	Υ	51.5	Y
3	229.4	220.0	227.2	0.0094	Υ	44.7	Y
4	230.2	218.7	223.2	0.0138	Υ	40.5	Y
5	228.7	216.9	222.2	0.0103	Υ	44.7	Υ
6	227.6	217.0	224.2	0.0115	Υ	46.7	Υ
7	229.7	221.9	226.4	0.0092	Υ	44.6	Υ
8	230.3	222.2	226.8	0.0089	Υ	43.5	Υ
9	233.2	218.4	225.6	0.0136	Υ	45.5	Υ
10	232.2	219.7	228.4	0.0126	Υ	44.7	Υ
11	226.9	219.2	224.1	0.0088	Y	52.4	Υ
12	232.2	222.1	226.9	0.0107	Y	48.5	Υ
13	234.7	221.2	226.1	0.0109	Y	48.5	Υ
14	231.9	223.4	228.7	0.0103	Υ	45.6	Υ
15	236.8	224.1	231.4	0.0131 Y		52.2	Υ
16	232.5	221.3	229.0	0.0137	Υ	47.8	Y

Table 4: Removal Efficiency Results

Run	Average Influent TSS (mg/L)	Influent Water Volume (gal)	Adjusted Average Effluent TSS (mg/L)	Effluent Water Volume (gal)	Adjusted Average Drain Down TSS (mg/L)	Drain Down Water Volume (gal)	Single Run Re- moval Efficiency (%)	Mass of Captured Sediment (g)	Cumulative Removal Efficiency (%)
1	203	7166	46	6881	34	285	77.8	4282	77.8
2	199	6993	32	6639	27	354	84.0	4415	80.8
3	207	7197	37	6793	27	403	82.6	4654	81.4
4	217	7068	33	6635	29	433	84.9	4923	82.3
5	215	7037	39	6593	29	444	82.2	4705	82.3
6	207	7097	40	6643	31	454	81.2	4504	82.1
7	198	7169	37	6693	30	476	81.6	4386	82.0
8	201	7184	37	6716	32	468	81.6	4473	82.0
9	205	7147	38	6675	30	472	81.8	4539	82.0
10	203	7235	38	6759	31	476	81.4	4523	81.9
11	208	7096	38	6624	30	472	81.8	4567	81.9
12	209	7185	41	6709	30	476	80.7	4584	81.8
13	198	7162	41	6680	32	482	79.7	4277	81.6
14	200	7242	43	6757	34	485	78.8	4318	81.4
15	196	7329	41	6842	32	487	79.5	4320	81.3
16	202	7254	44	6769	31	485	78.9	4384	81.2
Avg.	204.2	7160	39	6713	31	447	81.2	4491	N/A
Cumulative Mass Removed (g)							71854		
Cumulative Mass Removed (lb)							158.4		
		Total Mass L	oaded (lb)				195.2		
		Cumulative l	Removal Effic	eiency (%)			81.2		

Quality Assurance

Performance verification of the StormTech Isolator® Row PLUS technology was performed in accordance with the requirements of ISO 14034:2016 and the VerifiGlobal Performance Verification Protocol. This included reviewing all data sheets and calculated values, as well as overall management of the test system, quality control and data integrity.

Additional information on quality control measures taken can be found in section 5 of the QAPP for StormTech Isolator Row New Jersey Department of Environmental Protection Testing, Rev. 1/9/2020.

Specific QA/QC measures reviewed by the verifier are summarized in Table 5 below.

Table 5. Validation of QA/QC Procedures

QC Parameter	Acceptance Criteria
Independence of observer	Confirmed in letter from Boggs Environmental Consultants, Inc. to NJCAT
Consistency of procedure	Daily logs confirm proper procedure
Existence of QAPP	Confirmed. "QAPP For StormTech Isolator Row New Jersey Department of Environmental Protection Testing", Rev. 1/9/2020)
Use of appropriate sample analysis method – ASTM D3799	Confirmed by method reference on lab reports from Fredericktowne Labs Inc.
Test method appropriate for the technology	Used industry stakeholder approved protocol: New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids

StormTech Isolator® Row PLUS Verification Statement

	Removal by a Filtration Manufactured Treatment Device (January 2013)
Test parameters stayed within required limits	Confirmed in report "NJCAT TECHNOLOGY VERIFICATION Isolator® Row PLUS StormTech, LLC", July 2020
Third party verified data	All testing was observed and reviewed by Boggs Environmental Consultants, Inc.

Variance

Performance claims regarding structural load limitations were not verified as they are outside the scope of the performance testing that was conducted in accordance with the 'Quality Assurance Project Plan (QAPP) for StormTech Isolator Row, New Jersey Department of Environmental Protection Testing', revision dated January 09, 2020.

Verification Summary

The StormTech "Isolator® Row PLUS" is a stormwater treatment technology designed for use under parking lots, roadways and heavy earth loads while providing a superior and durable structural system. The technology comprises a row of chambers wrapped in woven geotextile fabric with two layers at the bottom that serve as a filter strip, providing surface area for infiltration and runoff reduction with enhanced suspended solids and pollutant removal.

The StormTech Isolator® Row PLUS technology was tested at the Mid-Atlantic Storm Water Research Center (MASWRC), under the supervision of Boggs Environmental Consultants, Inc. The performance test results for two overlapping StormTech Isolator® Row PLUS chambers (commercial unit model SC-740) were verified by Good Harbour Laboratories Inc. (GHL), following the requirements of ISO 14034:2016 and the VerifiGlobal Performance Verification Protocol. Table 6 summarizes the verification results in relation to the technology performance parameters that were identified in the Verification Plan to determine the efficacy of the StormTech Isolator® Row PLUS technology.

Table 6 - Summary of Verification Results Against Performance Parameters

Parameters	Verified Claims	Accuracy
Total Suspended Solids (TSS) Removal Efficiency	Based on the laboratory testing conducted, the StormTech Isolator® Row PLUS achieved an average 82% removal efficiency of SSC	± 1% (95% confidence level)
Average Loading Rate	Based on the laboratory testing parameters, the StormTech Isolator® Row PLUS maintained a loading rate of 4.15 GPM/sf	±0.03 GPM/sf (95% confidence level)
Maximum Treatment Flow Rate (MTFR)	Although the MTFR varies among the StormTech Isolator® Row PLUS model sizes and the number of chambers, the design surface loading rate remains the same (4.13 GPM/ft² of treatment surface area). The test unit consisted of two overlapping StormTech SC-740 chambers with a nominal MTFR of 225 GPM (0.501 CFS) and an effective filtration treatment area (EFTA) of approximately 54.5 ft².	± 1.4 GPM (95% confidence level)
Detention Time and Volume	Detention time and wet volume varies with model size. The unit tested had a wet volume of approximately 65.1 ft ³ (based on	N/A

	physical measurement) and a detention time of 2.2 minutes.	
Maximum Sediment Storage Depth and Volume	The sediment storage volume and depth vary according to the StormTech Isolator® Row PLUS model sizes and system configuration. For the two overlapping StormTech SC-740 chambers tested, the maximum sediment storage volume is 2.3 ft³ at a sediment depth of 0.5 inches.	N/A
Effective Sedimenta- tion/ Filtration Treat- ment Area	The effective sedimentation and filtration treatment area increases as the size of the chamber increases. Under the tested conditions using 2 overlapping chambers, the treatment area was 54.5 ft ²	The sedimentation /filtration area was determined from the actual physical dimen- sions of the test unit*
Sediment Mass Load Capacity	The sediment mass load capacity varies according to the StormTech Isolator® Row PLUS model sizes and system configuration. For the two overlapping StormTech SC-740 chambers tested, the mass loading capture was 158.4 lbs (2.91 lbs/ ft²) following a total sediment loading of 195.2 lbs	± 0.8 lbs (±0.01 lbs/ft²) (95% confidence lev- el)

^{*}Note: These numbers are determined based on physical measurement or a dimensional drawing, which is standard practice. Highly accurate measurements are not practical.

In conclusion, the StormTech Isolator® Row PLUS is a viable technology that can be used to remove contaminants from stormwater runoff via filtration. This technology has proven effective at removing suspended sediment from stormwater through in-lab testing using an industry recognized laboratory protocol.

By extension of sediment removal, this technology should also remove particle bound nutrients, heavy metals, and a wide variety of organic contaminants. Performance is a function of pollutant properties, hydraulic retention time, filter media, pre-treatment, and flow rate, such that proper design of the system is critical to achieving the desired results.

What is ISO 14034?

The purpose of environmental technology verification is to provide a credible and impartial account of the performance of environmental technologies. Environmental technology verification is based on a number of principles to ensure that verifications are performed and reported accurately, clearly, unambiguously and objectively. The International Organization for Standardization (ISO) standard for environmental technology verification (ETV) is ISO 14034, which was published in November 2016.

StormTech Isolator® Row PLUS Verification Statement

Benefits of ETV

ETV contributes to protection and conservation of the environment by promoting and facilitating market uptake of innovative environmental technologies, especially those that perform better than relevant alternatives. ETV is particularly applicable to those environmental technologies whose innovative features or performance cannot be fully assessed using existing standards. Through the provision of objective evidence, ETV provides an independent and impartial confirmation of the performance of an environmental technology based on reliable test data. ETV aims to strengthen the credibility of new, innovative technologies by supporting informed decision-making among interested parties.

For more information on the StormTech "Isolator® Row PLUS" technology, contact:	For more information on VerifiGlobal, contact:
StormTech, LLC. 520 Cromwell Avenue, Rocky Hill, CT 06067 USA t: +1-888-892-2694 e: info@stormtech.com w: www.stormtech.com	VerifiGlobal c/o ETA-Danmark A/S Göteborg Plads 1, DK-2150 Nordhaven t +45 7224 5900 e: info@verifiglobal.com w: www. verifiglobal.com
Signed for StormTech:	Signed for VerifiGlobal:
Original signed by:	Original signed by:
Greg Spires	Thomas Bruun
Greg Spires, P.E. General Manager	Thomas Bruun, Managing Director
	Original signed by:
	John Neate
	John Neate, Managing Director

NOTICE: Verifications are based on an evaluation of technology performance under specific, predetermined operational conditions and parameters and the appropriate quality assurance procedures. VerifiGlobal and the Verification Expert, Good Harbour Laboratories, make no expressed or implied warranties as to the performance of the technology and do not certify that a technology will always operate as verified. The end user is solely responsible for complying with any and all applicable regulatory requirements. Mention of commercial product names does not imply endorsement.

VerifiGlobal and the Verification Expert, Good Harbour Laboratories, provide the verification services solely on the basis of the information supplied by the applicant or vendor and assume no liability thereafter. The responsibility for the information supplied remains solely with the applicant or vendor and the liability for the purchase, installation, and operation (whether consequential or otherwise) is not transferred to any other party as a result of the verification.

Isolator® Row O&M Manual

THE ISOLATOR® ROW

INTRODUCTION

An important component of any Stormwater Pollution Prevention Plan is inspection and maintenance. The StormTech Isolator Row is a technique to inexpensively enhance Total Suspended Solids (TSS) removal and provide easy access for inspection and maintenance.

THE ISOLATOR ROW

The Isolator Row is a row of StormTech chambers, either SC-160LP, SC-310, SC-310-3, SC-740, DC-780, MC-3500 or MC-4500 models, that is surrounded with filter fabric and connected to a closely located manhole for easy access. The fabric-wrapped chambers provide for settling and filtration of sediment as storm water rises in the Isolator Row and ultimately passes through the filter fabric. The open bottom chambers and perforated sidewalls (SC-310, SC- 310-3 and SC-740 models) allow storm water to flow both vertically and horizontally out of the chambers. Sediments are captured in the Isolator Row protecting the storage areas of the adjacent stone and chambers from sediment accumulation.

Two different fabrics are used for the Isolator Row. A woven geotextile fabric is placed between the stone and the Isolator Row chambers. The tough geotextile provides a media for storm water filtration and provides a durable surface for maintenance operations. It is also designed to prevent scour of the underlying stone and remain intact during high pressure jetting. A non-woven fabric is placed over the chambers to provide a filter media for flows passing through the perforations in the sidewall of the chamber. The non-woven fabric is not required over the SC-160LP, DC-780, MC-3500 or MC-4500 models as these chambers do not have perforated side walls.

The Isolator Row is typically designed to capture the "first flush" and offers the versatility to be sized on a volume basis or flow rate basis. An upstream manhole not only provides access to the Isolator Row but typically includes a high flow weir such that storm water flowrates or volumes that exceed the capacity of the Isolator Row overtop the over flow weir and discharge through a manifold to the other chambers.

The Isolator Row may also be part of a treatment train. By treating storm water prior to entry into the chamber system, the service life can be extended and pollutants such as hydrocarbons can be captured. Pre-treatment best management practices can be as simple as deep sump catch basins, oil-water separators or can be innovative storm water treatment devices. The design of the treatment train and selection of pretreatment devices by the design engineer is often driven by regulatory requirements. Whether pretreatment is used or not, the Isolator Row is recommended by StormTech as an effective means to minimize maintenance requirements and maintenance costs.

Note: See the StormTech Design Manual for detailed information on designing inlets for a StormTech system, including the Isolator Row.

Looking down the Isolator Row from the manhole opening, woven geotextile is shown between the chamber and stone base.

StormTech Isolator Row with Overflow Spillway (not to scale)

ISOLATOR ROW INSPECTION/MAINTENANCE

INSPECTION

The frequency of inspection and maintenance varies by location. A routine inspection schedule needs to be established for each individual location based upon site specific variables. The type of land use (i.e. industrial, commercial, residential), anticipated pollutant load, percent imperviousness, climate, etc. all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.

The Isolator Row incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row, clean-out should be performed.

MAINTENANCE

The Isolator Row was designed to reduce the cost of periodic maintenance. By "isolating" sediments to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout. If entry into the manhole is required, please follow local and OSHA rules for a confined space entries.

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" are best. Most JetVac reels have 400 feet of hose allowing maintenance of an Isolator Row up to 50 chambers long. The JetVac process shall only be performed on StormTech Isolator Rows that have AASHTO class 1 woven geotextile (as specified by StormTech) over their angular base stone.

StormTech Isolator Row (not to scale)

Note: Non-woven fabric is only required over the inlet pipe connection into the end cap for SC-160LP, DC-780, MC-3500 and MC-4500 chamber models and is not required over the entire Isolator Row.

ISOLATOR ROW STEP BY STEP MAINTENANCE PROCEDURES

STEP 1

Inspect Isolator Row for sediment.

- A) Inspection ports (if present)
 - i. Remove lid from floor box frame
 - ii. Remove cap from inspection riser
 - iii. Using a flashlight and stadia rod, measure depth of sediment and record results on maintenance log.
 - iv. If sediment is at or above 3 inch depth, proceed to Step 2. If not, proceed to Step 3.
- B) All Isolator Rows
 - i. Remove cover from manhole at upstream end of Isolator Row
 - ii. Using a flashlight, inspect down Isolator Row through outlet pipe
 - 1. Mirrors on poles or cameras may be used to avoid a confined space entry
 - 2. Follow OSHA regulations for confined space entry if entering manhole
 - iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches), proceed to Step 2. If not, proceed to Step 3.

STEP 2

Clean out Isolator Row using the JetVac process.

- A) A fixed floor cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
- B) Apply multiple passes of JetVac until backflush water is clean
- C) Vacuum manhole sump as required

STEP 3

Replace all caps, lids and covers, record observations and actions.

STEP 4

Inspect & clean catch basins and manholes upstream of the StormTech system.

SAMPLE MAINTENANCE LOG

	Stadia Ro	Stadia Rod Readings				
Date	Fixed point to chamber bottom (1)	Fixed point to top of sediment (2)	Sediment Depth (1)–(2)	Observations/Actions	Inspector	
3/15/11	6.3 ft	none		New installation. Fixed point is CI frame at grade	MCG	
9/24/11		6.2	0.1 ft	Some grit felt	SM	
6/20/13		5.8	0.5 ft	Mucky feel, debris visible in manhole and in Isolator Row, maintenance due	Ν	
7/7/13	6.3 ft		0	System jetted and vacuumed	MCG	

Appendix

PCSWMM Input/Output Documentation – Existing Conditions

Input

[TITLE]

;;Project Title/Notes

[OPTIONS]
0 1 1

;;Option	Value
FLOW_UNITS	CMS
INFILTRATION	HORTON
FLOW_ROUTING	DYNWAVE
LINK OFFSETS	ELEVATION
MIN_SLOPE	0
ALLOW_PONDING	NO
SKIP_STEADY_STATE	NO

TART_DATE 12/11/2020
START_TIME 00:00:00
REPORT_START_DATE 12/11/2020
REPORT_START_TIME 00:00:00
END_DATE 12/21/2020
END_TIME 00:00:00
SWEEP_START 01/01
SWEEP_END 12/31
DRY_DAYS 0
REPORT_STEP 00:05:00
RET_STEP 00:05:00
RY_STEP 00:05:00
ROUTING_STEP 5
RULE_STEP 00:00:00

INERTIAL DAMPING PARTIAL NORMAL FLOW LIMITED BOTH FORCE_MAIN_EQUATION H-W VARIABLE STEP 0.75 LENGTHENING STEP 0 MIN_SURFAREA 0 MAX_TRIALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOW_TOL 5 LAT_FLOW_TOL 5 MINIMUM_STEP 0.5 THREADS 6

[EVAPORATION]

;;Data Source Parameters
;;
CONSTANT 0.0
DRY_ONLY NO

[RAINGAGES]

;;Name	Format	Interval	SCF	Source	
;;					
25mm	INTENSITY	0:05	1.0	TIMESERIES	25mm
3hr-100yr	INTENSITY	0:10	1.0	TIMESERIES	3hr-100yr
3hr-2yr	INTENSITY	0:05	1.0	TIMESERIES	3hr-2yr
3hr-5yr	INTENSITY	0:05	1.0	TIMESERIES	3hr-5yr
6hr-100yr	INTENSITY	0:10	1.0	TIMESERIES	6hr-100yr
6hr-2yr	INTENSITY	0:05	1.0	TIMESERIES	6hr-2yr
6hr-5yr	INTENSITY	0:05	1.0	TIMESERIES	6hr-5yr

[SUBCATCHMENTS]

;;Name	Rain Gage	Outlet	Area	%Imperv	Width	%Slope	CurbLen	SnowPack
EX_N	6hr-100yr	SHEFFIELD_RD	4.47	40	447	1	0	
EX S	6hr-100vr	HUMBER PL	1.37	40	137	1	0	

[SUBAREAS]

;;Subcatchment	-		S-Imperv	S-Perv	PctZero	RouteTo	PctRouted
;; EX N	0.013		1.57	4.67	0	OUTLET	
rv c	0.013	0.2	1 57	1 67	0	OTTET DE	

[INFILTRATION]

;;Subcatchment	Param1	Param2	Param3	Param4	Param5
;;					
EX N	75	0.5	4	7	0
EX_S	75	0.5	4	7	0

[OUTFALLS]

[00111111111111111111111111111111111111					
;;Name	Elevation	Type	Stage Data	Gated	Route To
;;					
HUMBER PL	62.477	FREE		NO	
SHEFFIELD RD	64	FREE		NO	

[CURVES]

;;Name	Type	X-Value	Y-Value
;;			
ADS	Storage	0.025	530
ADS		0.051	530
ADS		0.076	530
ADS		0.102	530
ADS		0.127	530
ADS		0.152	530
ADS		0.178	530
ADS		0.203	530

ADS		0.229	530
ADS		0.254	590
ADS		0.279	638
ADS		0.305	678
ADS		0.33	711
ADS ADS		0.356 0.381	739 764
ADS		0.406	785
ADS		0.432	803
ADS		0.457	819
ADS		0.483	833
ADS		0.508	846
ADS		0.533	857
ADS		0.559	866
ADS		0.584	875
ADS		0.61	883
ADS ADS		0.635 0.66	889 895
ADS		0.686	901
ADS		0.711	905
ADS		0.737	910
ADS		0.762	913
ADS		0.787	916
ADS		0.813	919
ADS		0.838	921
ADS		0.864	922
ADS ADS		0.889 0.914	924 925
ADS		0.94	925
ADS		0.965	925
ADS		0.991	925
ADS		1.016	925
ADS		1.041	924
ADS		1.067	923
ADS		1.092	921 919
ADS ADS		1.118	917
ADS		1.168	914
ADS		1.194	911
ADS		1.219	908
ADS		1.245	903
ADS		1.27	898
ADS		1.295	892
ADS		1.321	886
ADS ADS		1.346 1.372	880 874
			868
ADS		1.39/	
ADS ADS		1.397	
ADS ADS ADS		1.397 1.422 1.448	862 856
ADS		1.422	862
ADS ADS ADS		1.422 1.448 1.473 1.499	862 856 850 845
ADS ADS ADS ADS ADS		1.422 1.448 1.473 1.499 1.524	862 856 850 845 840
ADS ADS ADS ADS ADS ADS		1.422 1.448 1.473 1.499 1.524 1.549	862 856 850 845 840 834
ADS ADS ADS ADS ADS ADS ADS ADS		1.422 1.448 1.473 1.499 1.524 1.549 1.575	862 856 850 845 840 834
ADS		1.422 1.448 1.473 1.499 1.524 1.549 1.575	862 856 850 845 840 834 830 825
ADS		1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6	862 856 850 845 840 834 830 825
ADS		1.422 1.448 1.473 1.499 1.524 1.549 1.575	862 856 850 845 840 834 830 825
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651	862 856 850 845 840 834 830 825 820 816 811
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651	862 856 850 845 840 834 830 825 820
ADS	Storage Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676	862 856 850 845 840 834 830 825 820 816 811
ADS		1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676	862 856 850 845 840 834 830 825 820 816 811
ADS		1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676	862 856 850 845 840 834 830 825 820 816 811
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676	862 856 850 845 840 834 830 825 820 816 811 1500 1500
ADS		1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 1	862 856 850 845 840 834 830 825 820 816 811 1500 1500 1800
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 1 Time	862 856 850 845 840 834 830 825 820 816 811 1500 1500 1800 1800
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05	862 856 850 845 840 834 834 830 825 820 816 811 1500 1500 1800 1800
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05	862 856 850 845 840 834 830 825 820 816 811 1500 1500 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05 0:10 0:15	862 856 850 845 840 834 830 825 820 816 811 1500 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05 0:15 0:20	862 856 850 845 840 834 830 825 820 816 811 1500 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05 0:10 0:15	862 856 850 845 840 834 830 825 820 816 811 1500 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05 0:10 0:15 0:20 0:25	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05 0:15 0:20 0:25 0:30 0:35 0:40 0:45	862 856 850 845 840 834 830 825 820 816 811 1500 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 Time 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:55 1:00	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 Time 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:25 0:30 0:45 0:45 0:45 0:55 1:00 1:05	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:10 0:15 0:20 0:25 0:30 0:45 0:40 0:45 0:55 1:00 1:55 1:10 1:15 1:20	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676	862 856 845 840 834 830 825 820 816 811 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:55 1:00 1:05 1:10 1:15 1:20 1:25 1:30	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:15 0:10 0:20 0:25 0:30 0:45 0:40 0:45 1:05 1:05 1:05 1:10 1:15 1:20 1:25 1:30 1:35	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05 0:10 0:15 0:20 0:35 0:30 0:35 0:30 0:45 0:55 1:00 1:05 1:10 1:15 1:20 1:25 1:30 1:35 1:40	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:15 0:10 0:20 0:25 0:30 0:45 0:40 0:45 1:05 1:05 1:05 1:10 1:15 1:20 1:25 1:30 1:35	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 1800 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:05 0:15 0:20 0:25 0:30 0:25 0:30 0:45 0:55 1:10 0:55 1:10 1:15 1:20 1:25 1:30 1:35 1:40 1:45	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:15 0:10 0:15 0:20 0:25 0:30 0:45 0:45 0:50 1:10 1:15 1:20 1:25 1:10 1:15 1:20 1:25 1:10 1:15 1:20 1:25 1:10 1:25 1:10 1:25 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:10 0:15 0:10 0:20 0:25 0:30 0:40 0:45 1:05 1:05 1:10 1:15 1:20 1:25 1:30 1:45 1:40 1:45 1:55 2:00 2:05	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 1800 Value
ADS	Storage	1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 1 Time 0:00 0:15 0:10 0:15 0:20 0:25 0:30 0:45 0:45 0:50 1:10 1:15 1:20 1:25 1:10 1:15 1:20 1:25 1:10 1:15 1:20 1:25 1:10 1:25 1:10 1:25 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20	862 856 850 845 840 834 830 825 820 816 811 1500 1800 1800 1800 1800 Value

```
25mm
                               2:20
                                           3.314
25mm
                               2:25
                                           3.314
25mm
                               2:30
25mm
                               2:35
                                           2.817
25mm
                                            2.459
                               2:40
                                            2.459
25mm
                               2:50
                                            2.189
25mm
                               3:00
                                           1.977
                                            1.977
25mm
                               3:05
25mm
                               3:10
                                            1.805
25mm
                               3:15
                                            1.805
                                           1.664
1.545
2.5mm
                               3:25
                               3:30
25mm
                                           1.545
25mm
                               3:35
25mm
                               3:40
25mm
                               3:45
                                           1.444
25mm
                               3:50
                                            1.356
                                            1.356
25mm
                               4:00
                                           0
3hr-100yr
                               0:00
3hr-100yr
                               0:10
                                           6.05
3hr-100yr
                               0:20
                                           7.54
3hr-100yr
                                           10.17
15.98
                               0:30
3hr-100yr
3hr-100yr
3hr-100yr
                                           40.76
178.56
                               0:50
                               1:00
                                           54.04 27.31
3hr-100yr
                               1:10
3hr-100vr
                               1:20
3hr-100yr
                               1:30
                                            18.23
3hr-100yr
                               1:40
                                           13.73
3hr-100yr
3hr-100yr
                               2:00
                                           9.28
3hr-100yr
                                            8.02
                               2:10
3hr-100yr
                               2:20
                                            7.08
                                            6.34
3hr-100vr
                               2:30
3hr-100yr
                               2:40
                                            5.76
3hr-100vr
                               2:50
                                           5.28
3hr-100yr
                               3:00
                                            4.88
;Chicago design storm, a = 732.951, b = 6.199, c = 0.81, Duration = 180 minutes, r = 0.35, rain units = mm/hr.
                               0:00
                                           2.393
3hr-2yr
3hr-2yr
                               0:10
                                           2.823
3hr-2yr
                               0:15
                                           3.109
3hr-2yr
                                            3.466
3hr-2yr
                               0:25
                                           3.927
                                            4.543
3hr-2yr
                               0:30
3hr-2yr
                               0:35
                                            5.41
                                            6.721
3hr-2vr
                               0:40
                               0:45
                                            8.935
3hr-2vr
                               0:50
                                           13.427
3hr-2yr
3hr-2yr
                               1:00
                                           103.571
                                            49.651
3hr-2yr
                               1:05
                                           27.587
17.967
13.238
                               1:10
3hr-2yr
                               1:15
3hr-2yr
3hr-2yr
                               1:25
                                           10.466
3hr-2yr
                               1:30
                                            8.658
3hr-2yr
3hr-2yr
                               1:35
1:40
                                            7.391
                                            6.455
3hr-2yr
                               1:45
                                            5.737
                                           5.169
3hr-2yr
                               1:50
3hr-2yr
                                            4.707
3hr-2vr
                               2.00
                                            4 326
3hr-2yr
                               2:05
                                            4.005
                                           3.731
3.494
3hr-2yr
                               2:10
3hr-2yr
                               2:15
3hr-2yr
                               2:20
                                            3.288
3hr-2yr
                               2:25
                                            3.107
                               2:30
                                            2.945
3hr-2yr
                                           2.801 2.672
3hr-2yr
                               2:35
3hr-2yr
                               2:40
                                           2.555
2.449
2.351
                               2:45
3hr-2yr
3hr-2yr
                               2:55
3hr-2yr
                               3:00
                                           0
; Chicago design storm, a = 998.071, b = 6.053, c = 0.814, Duration = 180 minutes, r = 0.35, rain units = mm/hr.
                                           3.128
3hr-5yr
                               0:00
                                           3.385
3.693
3hr-5yr
                               0:05
3hr-5yr
                               0:10
3hr-5yr
                                            4.069
3hr-5yr
                                            4.54
                               0:20
3hr-5yr
                               0:25
                                            5.147
3hr-5yr
                               0:30
                                           5.959
7.105
                               0:35
3hr-5yr
                                           8.84
11.775
17.755
3hr-5yr
                               0:40
3hr-5yr
                               0:45
3hr-5yr
                                           35.83
                               0:55
```

2.5mm

2:15

4.057

```
3hr-5vr
                                 1:00
                                              141.179
3hr-5yr
                                 1:05
                                              66.682
3hr-5yr
                                 1:10
                                              36.749
23.822
3hr-5yr
                                 1:15
                                              17.501
13.81
3hr-5yr
                                 1:20
3hr-5vr
                                 1:25
                                 1:30
                                              11.408
                                              9.727
3hr-5vr
                                 1:35
3hr-5yr
                                              8.488
3hr-5yr
                                 1:45
                                              7.538
                                              6.786
3hr-5vr
                                 1:50
                                              6.177
5.673
3hr-5yr
                                 1:55
3hr-5yr
                                 2:00
                                 2:05
                                              4.889
3hr-5yr
                                 2:10
3hr-5yr
                                              4.577
                                 2:15
3hr-5yr
                                 2:20
                                              4.306
3hr-5yr
                                 2:25
                                              4.066
3hr-5yr
                                 2:30
                                              3.854
3hr-5vr
                                 2:35
                                              3.665
3hr-5yr
                                              3.495
3hr-5vr
                                 2:45
                                              3.341
3hr-5yr
                                 2:50
                                              3.201
3hr-5yr
                                 2:55
                                              3.073
3hr-5yr
                                              0
                                 3:00
6hr-100yr
                                 0:00
6hr-100yr
                                 0:10
                                              2.91
6hr-100yr
6hr-100yr
                                 0:20
0:30
                                              3.17
                                 0:40
0:50
6hr-100yr
                                              3.88
6hr-100yr
                                              4.39
6hr-100yr
                                 1:00
                                              5.08
                                              6.05
6hr-100yr
                                 1:10
6hr-100yr
6hr-100yr
6hr-100yr
                                 1:30
1:40
                                              10.17
15.98
6hr-100yr
6hr-100yr
                                              40.67
178.56
                                 1:50
                                 2:00
6hr-100yr
                                 2:10
                                              54.04
6hr-100vr
                                 2:20
                                              27.31
6hr-100yr
                                 2:30
                                              18.23
6hr-100yr
6hr-100yr
                                 2:40
2:50
                                              13.73
11.05
6hr-100yr
                                 3:00
                                              9.28
6hr-100yr
                                 3:10
                                              8.02
6hr-100yr
                                 3:20
                                              7.08
6hr-100yr
                                 3:30
                                              6.34
6hr-100yr
6hr-100yr
6hr-100yr
                                              5.28
                                 3:50
                                 4:00
                                              4.88
6hr-100yr
                                 4:10
                                              4.54
6hr-100vr
                                              4.25
                                 4:20
6hr-100yr
                                 4:30
                                              3.99
6hr-100yr
                                 4:40
                                              3.77
6hr-100yr
                                              3.57
6hr-100yr
                                 5:00
                                              3.4
6hr-100yr
                                              3.24
                                 5:10
                                              3.1
6hr-100yr
                                 5:20
6hr-100vr
                                 5:30
6hr-100yr
                                              2.85
                                              2.74
6hr-100vr
                                 5:50
                                 6:00
6hr-100yr
; Chicago design storm, a = 732.951, b = 6.199, c = 0.81, Duration = 360 minutes, r = 0.35, rain units = mm/hr.
6hr-2yr
                                 0:00
                                              1.274
                                 0:05
6hr-2vr
6hr-2yr
                                              1.37
6hr-2vr
                                 0.15
                                              1.425
6hr-2yr
                                              1.485
                                 0:20
6hr-2yr
6hr-2yr
                                              1.55
1.623
                                 0:25
                                 0:30
6hr-2yr
                                 0:35
                                              1.703
                                              1.793
6hr-2yr
                                 0:40
                                 0:45
                                              1.894
6hr-2yr
                                              2.008
6hr-2yr
                                 0:50
6hr-2yr
                                 0:55
                                              2.29
6hr-2yr
                                 1:00
6hr-2yr
                                 1:05
                                              2.677
                                 1:10
6hr-2yr
                                 1:15
6hr-2yr
                                 1:20
                                              3.242
6hr-2yr
6hr-2yr
                                 1:25
                                              3.636
                                              4.15
                                 1:30
6hr-2yr
6hr-2yr
                                 1:35
                                              4.851
                                 1:40
                                              5.864
6hr-2yr
                                 1:45
                                              7.456
6hr-2vr
                                              10.31
                                 1:50
6hr-2yr
                                              16.817
6hr-2yr
                                 2:00
                                              41.518
103.571
                                 2:05
6hr-2yr
                                              39.807
22.769
15.728
6hr-2yr
                                 2:10
6hr-2yr
                                 2:15
6hr-2yr
6hr-2yr
                                              11.97
                                 2:25
```

```
6hr-2vr
                                2:30
                                             9.658
6hr-2yr
                                2:35
                                             8.101
6hr-2yr
6hr-2yr
                                2:40
                                             6.985
                                 2:45
                                             6.147
6hr-2yr
6hr-2yr
                                             5.495
4.973
                                 2:50
                                 2:55
                                 3:00
                                             4.546
6hr-2vr
                                 3:05
                                             4.191
6hr-2yr
6hr-2yr
                                 3:15
                                             3.632
                                 3:20
                                             3.409
6hr-2yr
6hr-2yr
                                 3:25
                                             3.213
6hr-2yr
                                 3:30
                                             3.04
6hr-2yr
                                             2.886
                                             2.748
2.624
6hr-2yr
                                 3:40
6hr-2yr
                                 3:45
6hr-2yr
                                 3:50
                                             2.511
6hr-2yr
                                 3:55
                                             2.409
6hr-2yr
                                 4:00
                                             2.315
6hr-2vr
                                 4:05
                                             2.229
6hr-2yr
                                             2.149
6hr-2vr
                                4:15
                                             2.076
6hr-2yr
                                 4:20
                                             2.008
6hr-2yr
                                 4:25
                                             1.944
                                 4:30
6hr-2yr
                                             1.885
6hr-2yr
                                4:35
                                             1.83
                                             1.778
1.729
6hr-2yr
                                 4:40
6hr-2yr
                                             1.684
1.64
6hr-2yr
                                 4:50
6hr-2yr
                                 4:55
                                             1.599
6hr-2yr
                                 5:00
                                 5:05
6hr-2yr
6hr-2yr
                                 5:10
                                             1.524
6hr-2yr
                                             1.489
                                 5:15
6hr-2yr
                                             1.456
6hr-2yr
6hr-2yr
                                 5:25
                                             1.425
                                 5:30
                                             1.395
                                             1.366
1.339
6hr-2yr
                                 5:35
                                 5:40
6hr-2vr
6hr-2yr
                                 5:45
                                             1.312
6hr-2vr
                                 5:50
                                             1.287
                                 5:55
                                             1.263
6hr-2yr
6hr-2yr
                                 6:00
; Chicago design storm, a = 998.071, b = 6.053, c = 0.814, Duration = 360 minutes, r = 0.35, rain units = mm/hr.
                                             1.659
1.72
1.786
6hr-5vr
                                0:00
                                 0:05
6hr-5vr
                                0:10
6hr-5yr
                                             1.857
                                             1.936
6hr-5yr
                                0:20
6hr-5yr
                                0:25
6hr-5yr
                                 0:30
                                             2.117
6hr-5vr
                                             2.222
                                0:35
6hr-5yr
                                 0:40
                                             2.34
6hr-5yr
                                             2.472
                                0:45
6hr-5yr
                                             2.623
6hr-5yr
                                0:55
                                             2.794
                                             2.993
6hr-5vr
                                1:00
                                             3.225
                                 1:05
6hr-5vr
                                 1:10
6hr-5yr
                                             3.834
6hr-5yr
                                 1:20
                                             4.244
4.763
6hr-5yr
6hr-5yr
6hr-5yr
                                1:30
1:35
                                             5.442
6.367
6hr-5yr
                                 1:40
                                             7.706
6hr-5yr
                                 1:45
                                             9.813
6hr-5yr
                                 1:50
                                             13.603
6hr-5vr
                                 1:55
                                             22.285
                                 2:00
                                             55.656
6hr-5yr
6hr-5yr
6hr-5yr
                                             141.179
53.291
                                2:05
                                2:10
6hr-5yr
                                2:15
                                             30.263
6hr-5yr
                                2:20
                                             20.826
6hr-5yr
                                 2:25
                                             15.811
                                             12.736
10.669
6hr-5yr
                                2:30
6hr-5yr
                                 2:35
6hr-5yr
6hr-5yr
                                             9.189
                                2:40
                                 2:45
                                 2:50
                                              7.217
6hr-5yr
                                2:55
                                             6.528
6hr-5yr
                                 3:00
                                             5.965
6hr-5yr
                                 3:05
                                             5.496
6hr-5yr
                                 3:10
                                             5.099
6hr-5yr
6hr-5yr
                                             4.759
4.464
                                 3:15
                                 3:20
6hr-5yr
                                 3:25
                                             4.206
6hr-5vr
                                             3.979
                                 3:30
6hr-5yr
                                              3.776
6hr-5yr
                                 3:40
                                             3.595
3.431
6hr-5yr
                                 3:45
6hr-5yr
                                 3:50
                                             3.283
6hr-5yr
                                 3:55
                                             3.148
6hr-5yr
                                             2.912
                                 4:05
```

6hr-5yr	4:10	2.808
6hr-5yr	4:15	2.711
6hr-5yr	4:20	2.622
6hr-5yr	4:25	2.539
6hr-5yr	4:30	2.461
6hr-5yr	4:35	2.389
6hr-5yr	4:40	2.32
6hr-5yr	4:45	2.257
6hr-5yr	4:50	2.196
6hr-5yr	4:55	2.14
6hr-5yr	5:00	2.086
6hr-5yr	5:05	2.035
6hr-5yr	5:10	1.987
6hr-5yr	5:15	1.942
6hr-5yr	5:20	1.898
6hr-5yr	5:25	1.857
6hr-5yr	5:30	1.818
6hr-5yr	5:35	1.78
6hr-5yr	5:40	1.744
6hr-5yr	5:45	1.71
6hr-5yr	5:50	1.677
6hr-5yr	5:55	1.646
6hr-5yr	6:00	0

[REPORT]
;;Reporting Options
INPUT YES
CONTROLS NO
SUBCATCHMENTS ALL
NODES ALL
LINKS ALL

[TAGS]

[MAP] DIMENSIONS UNITS 922195.2104 Meters 5041730.342 922454.7796 5042003.582

[COORDINATES]

;;Node	X-Coord	Y-Coord
;;		
HUMBER_PL	922268.498	5041894.2
SHEFFIFIN RD	922422 12	5041745 436

[VERTICES]

Y-Coord X-Coord ;;Link ;;----

[POLYGONS]

[POLIGONS]		
;;Subcatchment	X-Coord	Y-Coord
;;		
EX N	922405.17	5041835.648
EX_N	922442.981	5041761.954
EX N	922393.45	5041742.762
EX_N	922362.523	5041813.337
EX_N	922405.17	5041835.648
EX_S	922249.656	5041991.162
EX S	922287.467	5041917.468
EX S	922237.936	5041898.276
EX S	922207.009	5041968.851
EX_S	922249.656	5041991.162
_		

[SYMBOLS]
;;Gage
;;-----X-Coord Y-Coord EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

Element Count

Number of rain gages 7 Number of subcatchments . 2
Number of nodes . . . 2
Number of links 0
Number of pollutants . . . 0
Number of land uses . . . 0

Raingage Summary

Name	Data Source	Data Type	Recording Interval
25mm	25mm	INTENSITY	5 min.
3hr-100yr	3hr-100yr	INTENSITY	10 min.
3hr-2yr	3hr-2yr	INTENSITY	5 min.
3hr-5yr	3hr-5yr	INTENSITY	5 min.
6hr-100yr	6hr-100yr	INTENSITY	10 min.
6hr-2yr	6hr-2yr	INTENSITY	5 min.
6hr-5yr	6hr-5yr	INTENSITY	5 min.

****** Subcatchment Summary ********

Name Area Width %Imperv %Slope Rain Gage _____ 4.47 447.00 40.00 1.0000 25mm 1.37 137.00 40.00 1.0000 25mm SHEFFIELD RD EX_S HUMBER_PL

Node Summary

Name	Туре	Elev.	Depth	Area	Inflow
HUMBER_PL SHEFFIELD RD	OUTFALL OUTFALL	62.48	0.00	0.0	

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CMS Process Models: Rainfall/Runoff YES Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing NO
Mater Quality NO
Infiltration Method HORTON
Surcharge Method EXTRAN
Starting Date 12/11/2020 00:00:00
Ending Date 12/21/2020 00:00:00
Antecedent Dry Days 0.0
Report Time Step 00:05:00
Dry Time Step 00:05:00

**************************************	Volume hectare-m	Depth mm
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	0.146 0.000 0.087 0.055 0.004 -0.374	25.000 0.000 14.982 9.483 0.628
**************************************	Volume hectare-m 	Volume 10^6 ltr

Wet Weather Inflow	0.055	0.554
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.055	0.554
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
EX_N EX_S	25.00 25.00	0.00	0.00	14.98 14.98	9.47 9.47	0.02	9.48 9.48	0.42 0.13	0.30 0.09	0.379

Analysis begun on: Wed Oct 5 21:27:16 2022 Analysis ended on: Wed Oct 5 21:27:16 2022

Total elapsed time: < 1 sec

EPA	STORM	WATER	MANAGEMENT	MODEL	-	VERSION	5.1	(Build	5.1.	.015)
-----	-------	-------	------------	-------	---	---------	-----	--------	------	------	---

*	*	*	*	*	*	*	*	*	*	*	*	*	
Ε	1	e	m	e	n	t		С	0	u	n	t	

Number of rain gages 7 Number of subcatchments . 2
Number of nodes . 2
Number of links 0
Number of pollutants . . . 0
Number of land uses . . . 0

Raingage Summary

Name	Data Source	Data Type	Recording Interval
25mm	25mm	INTENSITY	5 min.
3hr-100yr	3hr-100yr	INTENSITY	10 min.
3hr-2yr	3hr-2yr	INTENSITY	5 min.
3hr-5yr	3hr-5yr	INTENSITY	5 min.
6hr-100yr	6hr-100yr	INTENSITY	10 min.
6hr-2yr	6hr-2yr	INTENSITY	5 min.
6hr-5vr	6hr-5wr	TNTFNSTTV	5 min

****** Subcatchment Summary

Name Width %Imperv %Slope Rain Gage _____ -----447.00 40.00 1.0000 3hr-2yr SHEFFIELD RD EX_S 1.37 137.00 40.00 1.0000 3hr-2yr HUMBER_PL

Node Summary

Name	Type	Elev.	Depth	Area	Inflow
HUMBER_PL SHEFFIELD RD	OUTFALL OUTFALL	62.48 64.00	0.00	0.0	

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CMS Process Models: Rainfall/Runoff YES Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing NO
Mater Quality NO
Infiltration Method HORTON
Surcharge Method EXTRAN
Starting Date 12/11/2020 00:00:00
Ending Date 12/21/2020 00:00:00
Antecedent Dry Days 0.0
Report Time Step 00:05:00
Dry Time Step 00:05:00

**************************************	Volume hectare-m	Depth mm
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	0.186 0.000 0.091 0.092 0.004 -0.410	31.880 0.000 15.601 15.782 0.628
**************************************	Volume hectare-m 	Volume 10^6 ltr

Wet Weather Inflow	0.092	0.922
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.092	0.922
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
EX_N EX_S	31.88 31.88	0.00	0.00	15.60 15.60	12.25 12.25	3.53 3.53	15.78 15.78	0.71 0.22	0.48 0.15	0.495

Analysis begun on: Wed Oct 5 21:27:34 2022 Analysis ended on: Wed Oct 5 21:27:34 2022

Total elapsed time: < 1 sec

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

****** Element Count

Number of rain gages 7 Number of subcatchments ... 2 Number of nodes 2 Number of links ... 0
Number of pollutants ... 0
Number of land uses ... 0

Raingage Summary

Name	Data Source	Data Type	Recording Interval
25mm	25mm	INTENSITY	5 min.
3hr-100yr	3hr-100yr	INTENSITY	10 min.
3hr-2yr	3hr-2yr	INTENSITY	5 min.
3hr-5yr	3hr-5yr	INTENSITY	5 min.
6hr-100yr	6hr-100yr	INTENSITY	10 min.
6hr-2yr	6hr-2yr	INTENSITY	5 min.
6hr-5yr	6hr-5yr	INTENSITY	5 min.

****** Subcatchment Summary ********

Name Area Width %Imperv %Slope Rain Gage Outlet EX_N 4.47 447.00 40.00 1.0000 6hr-2yr EX_S 1.37 137.00 40.00 1.0000 6hr-2yr SHEFFIELD_RD EX_S HUMBER_PL

****** Node Summary

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
HUMBER_PL SHEFFIELD RD	OUTFALL OUTFALL	62.48 64.00	0.00	0.0	

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options Flow Units CMS Process Models: Rainfall/Runoff YES Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing NO
Water Quality NO
Infiltration Method HORTON
Surcharge Method EXTRAN
Starting Date 12/11/2020 00:00:00
Ending Date 12/21/2020 00:00:00
Antecedent Dry Days 0.0
Report Time Step 00:05:00
Dry Time Step 00:05:00

******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.215	36.865
Evaporation Loss	0.000	0.000
Infiltration Loss	0.094	16.058
Surface Runoff	0.119	20.301
Final Storage	0.004	0.628
Continuity Error (%)	-0.330	
******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.119	1.186
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.119	1.186
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	

****** Subcatchment Runoff Summary

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
EX_N EX_S	36.86 36.86	0.00	0.00	16.06 16.06	14.22 14.22	6.08 6.08	20.30	0.91 0.28	0.49 0.15	0.551 0.551

Analysis begun on: Wed Oct 5 21:27:45 2022 Analysis ended on: Wed Oct 5 21:27:45 2022 Total elapsed time: < 1 sec

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

Element Count

Number of rain gages 7 Number of subcatchments 2
Number of nodes 2
Number of links 2
Number of pollutants 0
Number of land uses 0

Raingage Summary

Name	Data Source	Data Type	Recording Interval
25mm	25mm	INTENSITY	5 min.
3hr-100yr	3hr-100yr	INTENSITY	10 min.
3hr-2yr	3hr-2yr	INTENSITY	5 min.
3hr-5yr	3hr-5yr	INTENSITY	5 min.
6hr-100yr	6hr-100yr	INTENSITY	10 min.
6hr-2yr	6hr-2yr	INTENSITY	5 min.
6hr-5vr	6hr-5vr	INTENSITY	5 min

Subcatchment Summary

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet	
EX_N	4.47	447.00	40.00	1.0000 3hr-5yr	SHEFFIELD_RD	
EX S	1.37	137.00	40.00	1.0000 3hr-5vr	HUMBER PL	

Node Summary

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
HUMBER_PL	OUTFALL	62.48	0.00	0.0	
SHEFFIELD RD	OUTFALL.	64 00	0 00	0.0	

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

****** Analysis Options ********

Flow Units CMS Process Models: Rainfall/Runoff YES Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing NO
Mater Quality NO
Infiltration Method HORTON
Surcharge Method EXTRAN
Starting Date 12/21/2020 00:00:00
Ending Date 12/21/2020 00:00:00
Antecedent Dry Days 0.0
Report Time Step 00:05:00
Dry Time Step 00:05:00

**************************************	Volume hectare-m 0.248 0.000	Depth mm 42.540 0.000
Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	0.092 0.154 0.004 -0.516	15.728 26.404 0.628
**************************************	Volume hectare-m 	Volume 10^6 ltr 0.000

Wet Weather Inflow	0.154	1.542
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.154	1.542
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
EX_N EX_S	42.54 42.54	0.00	0.00	15.73 15.73	16.54 16.54	9.86 9.86	26.40 26.40	1.18 0.36	0.69 0.21	0.621

Analysis begun on: Wed Oct 5 21:28:01 2022 Analysis ended on: Wed Oct 5 21:28:01 2022

Total elapsed time: < 1 sec

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

Element Count

Number of rain gages 7 Number of subcatchments . 2
Number of nodes . . . 2
Number of links 0
Number of pollutants . . 0
Number of land uses . . 0

Raingage Summary

Name	Data Source	Data Type	Recording Interval		
2.5mm	25mm	INTENSITY	5 min.		
3hr-100yr	3hr-100yr	INTENSITY	10 min.		
3hr-2yr	3hr-2yr	INTENSITY	5 min.		
3hr-5yr	3hr-5yr	INTENSITY	5 min.		
6hr-100yr	6hr-100yr	INTENSITY	10 min.		
6hr-2yr	6hr-2yr	INTENSITY	5 min.		
6hr-5yr	6hr-5yr	INTENSITY	5 min.		

****** Subcatchment Summary ********

Name Area Width %Imperv %Slope Rain Gage _____ EX_N 4.47 447.00 40.00 1.0000 6hr-5yr EX_S 1.37 137.00 40.00 1.0000 6hr-5yr SHEFFIELD RD EX_S HUMBER_PL

Node Summary

Name	Туре	Elev.	Depth	Area	Inflow
HUMBER_PL SHEFFIELD RD	OUTFALL OUTFALL	62.48 64.00	0.00	0.0	

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

****** Analysis Options

Flow Units CMS Process Models: Rainfall/Runoff YES

**************************************	Volume hectare-m	Depth mm
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	0.286 0.000 0.094 0.190 0.004 -0.461	49.044 0.000 16.153 32.489 0.628
**************************************	Volume hectare-m 	Volume 10^6 ltr

Wet Weather Inflow	0.190	1.897
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.190	1.897
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
EX_N EX_S	49.04 49.04	0.00	0.00	16.15 16.15	19.12 19.12	13.37 13.37	32.49 32.49	1.45 0.45	0.73 0.22	0.662 0.662

Analysis begun on: Wed Oct 5 21:28:15 2022 Analysis ended on: Wed Oct 5 21:28:16 2022

Total elapsed time: 00:00:01

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

Element Count

Number of rain gages 7 Number of subcatchments . 2
Number of nodes . . . 2
Number of links 0
Number of pollutants . . 0
Number of land uses . . 0

Raingage Summary

Name	Data Source	Data Type	Recording Interval
2.5mm	25mm	INTENSITY	5 min.
3hr-100yr	3hr-100yr	INTENSITY	10 min.
3hr-2yr	3hr-2yr	INTENSITY	5 min.
3hr-5yr	3hr-5yr	INTENSITY	5 min.
6hr-100yr	6hr-100yr	INTENSITY	10 min.
6hr-2yr	6hr-2yr	INTENSITY	5 min.
6hr-5yr	6hr-5yr	INTENSITY	5 min.

****** Subcatchment Summary ********

Area Width %Imperv %Slope Rain Gage Outlet Name 4.47 447.00 40.00 1.0000 3hr-100yr 1.37 137.00 40.00 1.0000 3hr-100yr SHEFFIELD RD EX_S HUMBER_PL

Node Summary

Area Inflow Elev. Depth HUMBER_PL OUTFALL OUTFALL 0.0 SHEFFIELD_RD 64.00 0.00

************* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CMS Process Models: Rainfall/Runoff YES RDII . . . NO Snowmelt . . . NO Groundwater NO Flow Routing NO Water Quality NO
Infiltration Method HORTON
Surcharge Method EXTRAN

**************************************	Volume hectare-m	Depth mm
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	0.419 0.000 0.093 0.325 0.004	71.677 0.000 15.893 55.588 0.628
**************************************	Volume hectare-m	Volume 10^6 ltr

Wet Weather Inflow	0.325	3.246
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.325	3.246
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
EX_N EX_S	71.68 71.68	0.00	0.00	15.89 15.89	28.25 28.25	27.33 27.33	55.59 55.59	2.48 0.76	1.22	0.776

Analysis begun on: Wed Oct 5 21:28:29 2022 Analysis ended on: Wed Oct 5 21:28:29 2022

Total elapsed time: < 1 sec

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

****** Element Count

Number of rain gages 7 Number of subcatchments ... 2 Number of nodes 2 Number of links ... 0
Number of pollutants ... 0
Number of land uses ... 0

Raingage Summary

Name	Data Source	Data Type	Recording Interval		
25mm	25mm	INTENSITY	5 min.		
3hr-100yr	3hr-100yr	INTENSITY	10 min.		
3hr-2yr	3hr-2yr	INTENSITY	5 min.		
3hr-5yr	3hr-5yr	INTENSITY	5 min.		
6hr-100yr	6hr-100yr	INTENSITY	10 min.		
6hr-2yr	6hr-2yr	INTENSITY	5 min.		
6hr-5yr	6hr-5yr	INTENSITY	5 min.		

***** Subcatchment Summary ********

Width %Imperv %Slope Rain Gage Outlet 4.47 447.00 40.00 1.0000 6hr-100yr 1.37 137.00 40.00 1.0000 6hr-100yr SHEFFIELD_RD EX_S HUMBER_PL

****** Node Summary

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
HUMBER_PL SHEFFIELD RD	OUTFALL OUTFALL	62.48 64.00	0.00	0.0	

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

****** Analysis Options

Flow Units CMS Process Models: Rainfall/Runoff YES Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing NO
Water Quality NO
Infiltration Method HORTON
Surcharge Method EXTRAN
Starting Date 12/11/2020 00:00:00
Ending Date 12/21/2020 00:00:00
Antecedent Dry Days 0.0
Report Time Step 00:05:00
Dry Time Step 00:05:00

******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.481	82.325
Evaporation Loss	0.000	0.000
Infiltration Loss	0.096	16.366
Surface Runoff	0.384	65.763
Final Storage	0.004	0.628
Continuity Error (%)	-0.524	
******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.384	3.841
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.384	3.841
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	

****** Subcatchment Runoff Summary

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
EX_N EX_S	82.33 82.32	0.00	0.00	16.37 16.37	32.50 32.50	33.26 33.26	65.76 65.76	2.94 0.90	1.28 0.39	0.799

Analysis begun on: Wed Oct 5 21:28:42 2022 Analysis ended on: Wed Oct 5 21:28:42 2022 Total elapsed time: < 1 sec

Appendix J

PCSWMM Input/Output Documentation – Proposed Conditions

Input

[TITLE]

;;Project Title/Notes

[OPTIONS]

[OPTIONS]
;;Option
FLOW_UNITS
INFILTRATION
FLOW_ROUTING
LINK_OFFSETS
MIN_SLOPE
ALLOW_PONDING
SKIP_STEADY_STATE Value CMS HORTON DYNWAVE ELEVATION NO NO

START_DATE
START_TIME
REPORT_START_DATE
REPORT_START_TIME
END_DATE
END_DATE
END_TIME
SWEEP_START
SWEEP_END
DRY DAYS 12/11/2020 00:00:00 12/11/2020 00:00:00 12/21/2020 00:00:00 01/01 12/31 DRY_DAYS REPORT_STEP 0 00:01:00 WET_STEP DRY_STEP 00:01:00 00:01:00 ROUTING_STEP RULE_STEP 00:00:00

INERTIAL_DAMPING
NORMAL_FLOW_LIMITED
FORCE_MAIN_EQUATION
VARIABLE_STEP PARTIAL BOTH H-W 0.75 0 VARIABLE_STEP
LENGTHENING_STEP
MIN_SURFAREA
MAX_TRIALS
HEAD_TOLERANCE
SYS_FLOW_TOL
LAT_FLOW_TOL
MINIMUM_STEP
TUBEADS 8 0.0015 5 5 0.5 THREADS

[EVAPORATION]

;;Data Source Parameters CONSTANT DRY_ONLY 0.0 NO

[RAINGAGES]

;;Name	Format	Interval	SCF	Source	
;;					
25mm	INTENSITY	0:05	1.0	TIMESERIES	25mm
3hr-100yr	INTENSITY	0:10	1.0	TIMESERIES	3hr-100yr
3hr-2yr	INTENSITY	0:05	1.0	TIMESERIES	3hr-2yr
3hr-5yr	INTENSITY	0:05	1.0	TIMESERIES	3hr-5yr
6hr-100yr	INTENSITY	0:10	1.0	TIMESERIES	6hr-100yr
6hr-2yr	INTENSITY	0:05	1.0	TIMESERIES	6hr-2yr
6hr-5yr	INTENSITY	0:05	1.0	TIMESERIES	6hr-5yr

[SUBCATCHMENTS]

;;Name	Rain Gage	Outlet	Area	%Imperv	Width	%Slope	CurbLen	SnowPack
;;		onw. 1.4	0.05					
Area_1	25mm 25mm	CBMH_14	0.25	90	83.333	1	0	
Area_10	25mm	CB_23	0.08	90	26.66/	1		
Area_101	25mm	MH_26	1.37	95	137	0.5	0	
Area_102	25mm	CBMH_11	1.13	95	113	0.5	0	
Area_11	25mm 25mm 25mm	CB_10	0.13	90	43.333	1	0	
Area_12	25mm 25mm	CBMH_9	0.16	90	53.333	1	0	
Area_13	25mm	CBMH_8	0.16	90			0	
Area_14	25mm	CBMH_7	0.17	90	56.667	1	0	
Area_15	25mm	CBMH_6	0.09	90	30	1	0	
Area_16	25mm 25mm	CB_5	0.15	90	50	1	0	
Area 17	2.5mm	CBMH 4	0.17	90	56.667	1	0	
Area 18	25mm	CBMH 3	0.17	90	56.667	1	0	
Area 19	25mm 25mm	CBMH 2	0.17	90	56.667	1	0	
Area 2	25mm	CBMH 15	0.16	90	53.333	1	0	
Area_20	25mm	J13 OF2	0.28	90	93.333	1	0	
Area 2001	25mm	OF2	0.07	25	7	0.5	0	
	25mm	OF2	0.21	90	21	0.5	0	
Area 2003	25mm	OF1 Humber_Pl	0.16	90	16	1	0	
Area 2004	25mm	Humber Pl	0.02	5	13.333	0.5	0	
Area 2005	25mm	Humber Pl	0.04	5	26.667	0.5	0	
Area 21	25mm 25mm	CBMH 11	0.21	90	70	1	0	
Area 22	25mm	CBMH 12	0.32	90	106.667	1	0	
Area 23	2.5mm	CB 29	0.16	90	53.333		0	
Area_3	25mm	DCB_16	0.36	90	120		0	
Area 4	25mm	CBMH 18	0.28	90	93.333	1	0	
Area 5	25mm	CB 27	0.15	90	50	1	0	
Area 6	25mm	CB 28	0.15	90	50	1	0	
Area 7	25mm	CBMH 19	0.04	90	13.333	1	0	
Area_8 Area_9	25mm	CBMH 21	0.12	90	40	1	0	
Area 9	25mm	CBMH 22	0.12	90	40	1	0	

[SUBAREAS]

;;Subcatchment ;;	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero	RouteTo	PctRouted
;;	0 013	0.2	1 67	1 67	100	OTHER DE	
Area_1	0.013	0.2	1.5/	4.67	100	OUTLET	
Area 101	0.013	0.2	1 57	4.67	100	OUTLET	
Area 102	0.013	0.2	1 57	4 67	100	OUTLET	
Area 11	0.013	0.2	1 57	4 67	100	OUTLET	
Area 12	0.013	0.2	1 57	4 67	100	OUTLET	
Area 13	0.013	0.2	1 57	4 67	100	OUTLET	
Area 14	0.013	0.2	1 57	4 67	100	OUTLET	
Area 15	0.013	0.2	1 57	4 67	100	OUTLET	
Area 16	0.013	0.2	1 57	4.67	100	OUTLET	
Area 17	0.013	0.2	1 57	4.67	100	OUTLET	
Area 18	0.013	0.2	1 57	4 67	100	OUTLET	
Area 19	0.013	0.2	1 57	4 67	100	OUTLET	
Area 2	0.013	0.2	1.57	4.67	100	OUTLET	
Area 20	0.013	0.2	1.57	4.67	100	OUTLET	
Area 2001	0.013	0.2	1.57	4.67	100	OUTLET	
Area 2002	0.013	0.2	1.57	4.67	100	OUTLET	
Area 2003	0.013	0.2	2	5	100	OUTLET	
Area 2004	0.013	0.2	1.57	4.67	100	OUTLET	
Area 2005	0.013	0.2	1.57	4.67	100	OUTLET	
Area 21	0.013	0.2	1.57	4.67	100	OUTLET	
Area 22	0.013	0.2	1.57	4.67	100	OUTLET	
Area_23	0.013	0.2	1.57	4.67	100	OUTLET	
Area_3	0.013	0.2	1.57	4.67	100	OUTLET	
Area_4	0.013	0.2	1.57	4.67	100	OUTLET	
Area_5	0.013	0.2	1.57	4.67	100	OUTLET	
Area_6	0.013	0.2	1.57	4.67	100	OUTLET	
Area_7	0.013	0.2	1.57	4.67	100	OUTLET	
Area_8	0.013	0.2	1.57	4.67	100	OUTLET	
Area_9	0.013	0.2	1.57	4.67	100	OUTLET	
[INFILTRATION]	Dawar 1	Damar ?	Dawar 2	- 4	Daware		
;;Subcatchment ;;	t.araill1	Param2	Larailly	Param4 	CIlibibi		
Area 1	75	0.5	4	7	0		
Area 10	75	0.5	4	7	0		
Area 101	75	0.5	4	7	0		
Area_102	75	0.5	4	7	0		
Area_11	75	0.5	4	7	0		
Area 12	75	0.5	4	7	0		
Area 13	75	0.5	4	7	0		
Area 14	75	0.5	4	7	0		
Area_15	75	0.5	4	7	0		
Area_16	75	0.5	4	7	0		
Area_17	75	0.5	4	7 7 7 7 7 7	0		
Area_18	75	0.5	4	7	0		
Area_19	75	0.5	4	7	0		
Area_2	75	0.5	4	7	0		
Area_20	75	0.5	4	7	0		
Area_2001	75	0.5	4	7	0		
Area_2002	75	0.5	4	7	0		
Area_2003	75	0.5	4	7	0		
Area_2004	75	0.5	4	7	0		
Area 2005			4	7	0		
	75	0.5					
Area_21	75 75	0.5	4	7	0		
Area_21 Area_22	75 75 75	0.5 0.5 0.5	4	7 7	0		
Area_21 Area_22 Area_23	75 75 75 75	0.5 0.5 0.5	4 4 4	7 7 7	0		
Area_21 Area_22 Area_23 Area_3	75 75 75 75 75	0.5 0.5 0.5 0.5	4 4 4	7 7 7 7	0 0 0		
Area_21 Area_22 Area_23 Area_3 Area_4	75 75 75 75 75 75	0.5 0.5 0.5 0.5	4 4 4 4	7 7 7 7 7 7	0 0 0		
Area_21 Area_22 Area_23 Area_3 Area_4 Area_5	75 75 75 75 75 75	0.5 0.5 0.5 0.5 0.5 0.5	4 4 4 4 4	7	0 0 0 0		
Area_21 Area_22 Area_23 Area_3 Area_4 Area_5 Area_6	75 75 75 75 75 75 75	0.5 0.5 0.5 0.5 0.5 0.5	4 4 4 4 4 4	7 7	0 0 0 0 0		
Area_201 Area_21 Area_22 Area_23 Area_3 Area_4 Area_5 Area_6 Area_7	75 75 75 75 75 75 75 75	0.5 0.5 0.5 0.5 0.5 0.5	4 4 4 4 4 4 4	7 7 7 7	0 0 0 0 0 0		
Area_8				7 7 7 7	0 0 0 0 0 0		
Area_201 Area_21 Area_22 Area_3 Area_3 Area_4 Area_5 Area_6 Area_6 Area_7 Area_8 Area_9	75 75 75 75 75 75 75 75 75 75	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	4 4 4 4 4 4 4 4 4	7 7 7 7	0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	7 7 7 7 7 7 7 SurDepth	0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	7 7 7 7 7 7 7 SurDepth	0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	7 7 7 7 7 7 7 7 SurDepth	0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	7 7 7 7 7 7 7 7 SurDepth	0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	7 7 7 7 7 7 7 7 SurDepth	0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	7 7 7 7 7 7 7 7 SurDepth	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	7 7 7 7 7 7 7 7 SurDepth	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	7 7 7 7 7 7 7 7 SurDepth	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	7 7 7 7 7 7 7 7 SurDepth	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	7 7 7 7 7 7 7 8urDepth	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10		
Area_9 [JUNCTIONS]	75	0.5	4	SurDepth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Area_9 [JUNCTIONS] ;;Name	75	0.5	4	SurDepth	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10		

MH_20	64.989	2.301 2.496 2.625	0	0	0						
MH_24	64.134	2.496	0	0	10						
MH_25	64.415	2.625	0		0						
MH_26 MH_27	64.55/	2.703	0	0	0						
MH 30	63 732	3 078	0	0	0						
MH 44	63.512	3.508	Ō	Ō	Ō						
MH_45	63.114	3.456	0	0	0						
OGS_1	63.039	2.021 3.078 3.508 3.456 3.341 3.011	0	0 0 0 0	0						
OGS_2	63.469	3.011	0	0	0						
[OUTFALLS]											
;;Name	Elevatio	n Type	Stage Da	ta G	ated Route T	ľo.					
;;			<u>_</u>								
Humber_Pl	62.477 63.41 0	FREE		No.							
OF1 OF2	03.41	FREE		No No							
012	Ü	1100			~						
[STORAGE]											
;;Name					Curve Name/Pa			Fevap		Ksat	IMD
;;									-		
	63.749	3.041	0	TABULAR	STORAGE N		0	0			
		3.334			STORAGE_S		0	0			
[CONDUITS]	T N1		37-2-	T	D	T-066	0+0.66	- T-1+1	Mauril		
;;Name ;;	From Nod	e To	e	Length	Roughness	INULISEL	Outolise		Maxriow		
C1	SU N	MH	1 44	2.5	0.009	64.6	64.575	0			
C10	CB_28	MH	<u>-</u> 26	30.4	0.011	65.386	65.082	0	0		
C11	CB_27	MH	1_26	32.8	0.011	65.485	65.157	0	0		
C12	MH_26	MH	I_25	16.5	0.011	64.557	64.475	0	0		
C13 C14	MH_24 CB 23	CB	MH 22	4.8 51 5	0.UII 0.011	66.197	65 682	0	0		
C14 C15	CBMH 22	CB	BMH 21	60	0.011	65.532	65.232	0	0		
C16	CBMH_21	MH	<u>20</u>	24.5	0.011	65.172	65.049	0	0		
C17	MH_20	CB	MH_19	10.4	0.011	64.989	64.937	0	0		
C18 C19	CBMH_19	MH	1_24	46.5	0.011	64.877	64.644	0	0		
C19 C2	CB_10 MH_44	CB	SMH_9	5∠.5 11 6	0.011	63.329 63.512	63.067	0	0		
C20	CBMH 9	CB	MH 8	60	0.011	64.992	64.692	0	0		
C21	CBMH_8	CB		60	0.011	64.632	64.332	0	0		
C22	CBMH_7	CB	BMH_6	60	0.011	64.272	63.972	0	0		
C23 C24	CBMH_6	J1	.3	29.9	0.011	63.912	63.762	0	0		
C25	CB 5	CB	_S RMH 4	52 S	0.011	65.537	64 852	0	0		
C26	CBMH 4	CB	MH 3	60	0.011	64.777	64.477	Ö	0		
C27	CBMH_3	CB	BMH_2	60	0.011	64.417	64.117	0	0		
C28	CBMH_2	MH	1_30	53.4	0.011	64.057	63.792	0	0		
C29	CBMH_12	CB.	BMH_11	50	0.011	64.058	63.773	0	0		
G2	T1	2411				03./49	03.131	U	0		
C3	J1 MH 30	MH .T1	1_44	2.5	0.011	63 732	63 687	Ω	Λ		
C3 C30 C31	J1 MH_30 MH_27	MH J1 CB	1_44 .3 BMH 11	2.5 9.3 8.2	0.011	63.732 63.889	63.687 63.848	0	0		
C3 C30 C31 C32	J1 MH_30 MH_27 CBMH_11	MH J1 CB SU	1_44 .3 BMH_11 J_S	2.5 9.3 8.2 13.2	0.011 0.011 0.011	63.732 63.889 63.568	63.687 63.848 63.517	0 0 0	0		
C3 C30 C31 C32 C33	J1 MH_30 MH_27 CBMH_11 OGS_1	MH J1 CB SU Hu	1_44 3 BMH_11 J_S Imber_Pl	2.5 9.3 8.2 13.2	0.011 0.011 0.011 0.011	63.732 63.889 63.568 63.039	63.687 63.848 63.517 62.48	0 0 0	0 0		
C3 C30 C31 C32 C33 C34 C35	J1 MH_30 MH_27 CBMH_11 OGS_1 OGS_2 MH_25	MH J1 CB SU Hu OF	1_44 3 3 3 3 3 3 4 5 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	2.5 9.3 8.2 13.2 4 8.7	0.011 0.011 0.011 0.011 0.011	63.732 63.889 63.568 63.039 63.454	63.687 63.848 63.517 62.48 63.41	0 0 0 0	0 0 0 0		
C3 C30 C31 C32 C32 C33 C34 C35	J1 MH_30 MH_27 CBMH_11 OGS_1 OGS_2 MH_25 CBMH 18	MH J1 CB SU Hu OF MH SU	1 44 3 3 MMH_11 J_S umber_Pl F1 1 24	2.5 9.3 8.2 13.2 4 8.7 44.2 3.9	0.011 0.011 0.011 0.011 0.011 0.011	63.732 63.889 63.568 63.039 63.454 64.415 64.05	63.687 63.848 63.517 62.48 63.41 64.194 64.03	0 0 0 0 0	0 0 0 0 0		
C3 C30 C31 C32 C33 C34 C35 C36 C36	J1 MH_30 MH_27 CBMH_11 OGS_1 OGS_2 MH_25 CBMH_18 CB_29	MH J1 CB SU HU OF MH SU MH	1 44 3 3 3 3 4 4 4 5 5 5 5 5 5 6 5 6 5 6 6 6 6 6 6 6	2.5 9.3 8.2 13.2 4 8.7 44.2 3.9	0.011 0.011 0.011 0.011 0.011 0.011 0.011	63.732 63.889 63.568 63.039 63.454 64.415 64.05 64.113	63.687 63.848 63.517 62.48 63.41 64.194 64.03 63.949	0 0 0 0 0 0	0 0 0 0		
C3 C30 C31 C32 C33 C34 C35 C36 C37 C4	J1 MH_30 MH_27 CBMH_11 OGS_1 OGS_2 MH_25 CBMH_18 CB_29 SU_S	MH J1 CB SU HU OF MH SU MH	1.44 3.55 mmber_Pl 1.24 J_N 1.27 1.45	2.5 9.3 8.2 13.2 4 8.7 44.2 3.9 32.9 9.4	0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011	63.732 63.889 63.568 63.039 63.454 64.415 64.05 64.113 64.1	63.687 63.848 63.517 62.48 63.41 64.194 64.03 63.949 64.006	0 0 0 0 0 0	0 0 0 0 0 0		
C3 C30 C31 C32 C32 C33 C34 C35 C36 C37 C4 C5	J1 MH_30 MH_27 CBMH_11 OGS_1 OGS_2 MH_25 CBMH_18 CB_29 SU_S J2	MH J1 CB SU HU OF MH SU MH MH	1.44 MHH_11 J_S mmber_P1 11 1.24 J_N 1.27 1.45 1.45	2.5 9.3 8.2 13.2 4 8.7 44.2 3.9 32.9 9.4 9.4	0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001	63.732 63.889 63.568 63.039 63.454 64.415 64.05 64.113 64.1 63.236	63.687 63.848 63.517 62.48 63.41 64.194 64.03 63.949 64.006 63.189	0 0 0 0 0 0 0	0 0 0 0 0 0 0		
C3 C30 C31 C32 C32 C33 C34 C35 C36 C37 C4 C5 C6 C7	J1 MH_30 MH_27 CBMH_11 OGS_1 OGS_2 MH_25 CBMH_18 CB_29 SU_S J2 MH_45 DCB_16	MH J1 CB SU HU OF MH SU MH MH OG CB	1.44 3 3 MH_11 J_S 11 12 124 127 127 1245 145 145 158 1	2.5 9.3 8.2 13.2 4 8.7 44.2 3.9 32.9 9.4 9.4 3.1 54.4	0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.009 0.011	63.732 63.889 63.568 63.039 63.454 64.415 64.05 64.113 64.1 63.236 63.114 64.798	63.687 63.848 63.517 62.48 63.41 64.194 64.03 63.949 64.006 63.189 63.099 64.526	0 0 0 0 0 0 0 0	0 0 0 0 0 0		
C3 C30 C31 C32 C32 C33 C34 C35 C36 C37 C4 C5 C6 C7 C8	J1 MH_30 MH_27 CBMH_11 OGS_1 OGS_2 MH_25 CBMH_18 CB_29 SU_S J2 MH_45 DCB_16 CBMH_15	MH J1 CB SU Hu OF MH SU MH MH OG CB	1.44 3.3 MH_11 _S I_S 11 124 _N 1.24 -145 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1	2.5 9.3 8.2 13.2 4 8.7 44.2 3.9 32.9 9.4 9.4 3.1 54.4	0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 0.009 0.011 0.011	63.732 63.889 63.568 63.039 63.454 64.415 64.05 64.113 64.1 63.236 63.114 64.798 64.466	63.687 63.848 63.517 62.48 63.41 64.194 64.03 63.949 64.006 63.189 63.099 64.526 64.166	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		
C3 C30 C31 C32 C33 C34 C35 C36 C37 C4 C5 C6 C7 C8	J1 MH_30 MH_27 CBMH_11 OGS_1 OGS_2 MH_25 CBMH_18 CB_29 SU_S J2 MH_45 DCB_16 CBMH_15 CBMH_15 CBMH_15	MH J1 CB SU Hu OF MH SU MH GC CB CB	1.44 3.3 MMH_11 S	2.5 9.3 8.2 13.2 4 8.7 44.2 3.9 32.9 9.4 3.1 54.4 60 15.2	0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 0.001 0.011 0.011 0.011	63.732 63.889 63.568 63.039 63.454 64.415 64.05 64.113 64.1 63.236 63.114 64.798 64.466 64.106	63.687 63.848 63.517 62.48 63.41 64.194 64.03 63.949 64.006 63.189 63.099 64.526 64.166 64.03	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		
C3 C30 C31 C32 C33 C34 C35 C36 C37 C4 C5 C6 C7 C8 C9	J1 MH_30 MH_27 CBMH_11 OGS_1 OGS_2 MH_25 CBMH_18 CB_29 SU_S J2 MH_45 DCB_16 CBMH_14	MH J1 CB SU Hu OF MH SU MH CG CB CB	1.44 3.3 MMH_11 	2.5 9.3 8.2 13.2 4 8.7 44.2 3.9 32.9 9.4 9.4 3.1 54.4 60	0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 0.001 0.011 0.011 0.011	63.732 63.889 63.568 63.039 63.454 64.415 64.05 64.113 64.1 63.236 63.114 64.798 64.466 64.106	63.687 63.848 63.517 62.48 63.41 64.194 64.03 63.949 64.006 63.189 63.099 64.526 64.166 64.03	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		
C3 C30 C31 C32 C33 C34 C35 C36 C37 C4 C5 C6 C7 C8 C9 [ORIFICES] ;; Name	J1 MH_30 MH_27 CBMH_11 OGS_1 OGS_2 MH_25 CBMH_18 CB_29 SU_S J2 MH_45 DCB_16 CBMH_14 From Nod	MH J1 CB SU Hu OF MH SU MH CF CB CB SU	1.44 3.3 1.5 1.5 1.5 1.24 1.24 1.27 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45	2.5 9.3 8.2 13.2 4 8.7 44.2 3.9 32.9 9.4 9.4 3.1 54.4 60 15.2	Roughness	63.732 63.889 63.568 63.039 63.454 64.415 64.05 64.113 64.1 63.236 63.114 64.798 64.466 64.106	63.687 63.848 63.517 62.48 63.41 64.194 64.03 63.949 64.006 63.189 63.099 64.526 64.166 64.03	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		
C3 C30 C31 C32 C33 C34 C35 C36 C37 C4 C5 C6 C7 C8 C9 [ORIFICES] ;; Name ;;	From Nod	e To	Node	Type	Offset	Qcoeff	Gated	CloseTime	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;;Name ;; OR1	From Nod SU_S	e To J2) Node !	Type SIDE	0ffset 63.236	Qcoeff 0.65	Gated NO	CloseTime 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;;Name ;;	From Nod	e To) Node !	Type	Offset	Qcoeff 0.65	Gated	CloseTime	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;;Name ;; OR1 OR2	From Nod SU_S	e To J2) Node !	Type SIDE	0ffset 63.236	Qcoeff 0.65	Gated NO	CloseTime 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	From Nod SU_S SU_N Shape	e To	Node	Type SIDE SIDE	Offset 	Qcoeff 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;; OR1 OR2 [XSECTIONS] ;; Link ;;	SU_S SU_N Shape	e To	Node	Type SIDE SIDE	63.236 63.749 Geom3 Geo	Qcoeff 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;; ;; Carlons] ;; Link ;; ;; C1	SU_S SU_N Shape CIRCULAR	e To	o Node 	TypeSIDE SIDE SIDE	63.236 63.749 Geom3 Geo	Qcoeff 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	SU_S SU_N Shape CIRCULAR CIRCULAR	Geom10.2 0.45	o Node	Type SIDE SIDE SIDE Geom2 0	Geom3 Geom5	Qcoeff 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;; ;; Carlons] ;; Link ;; ;; C1	SU_S SU_N Shape	e To	. Node	TypeSIDE SIDE SIDE	63.236 63.749 Geom3 Geo	Qcoeff 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	SU_S SU_N Shape CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	Geom1 0.2 0.45 0.45 0.525 0.6	Node	SIDE SIDE Geom2 0 0 0 0 0	Geom3 Geom4 Geom5	Qcoeff 0.65 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	SU_S SU_N Shape CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	Geom1 0.2 0.45 0.45 0.525 0.6 0.375) Node	SIDE SIDE Geom2 0 0 0 0 0	Geom3 Geom3 Geom3 Geom3 Geom3 Geom3 Geom3 Geom3 Geom3 Geom4 Geom5	Qcoeff 0.65 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	SU_S SU_N Shape CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	Geom1 0.2 0.45 0.45 0.525 0.6 0.375 0.45) Node	SIDE SIDE Geom2 0 0 0 0 0 0 0	Geom3 Gec 0	Qcoeff 0.65 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;;Name ;;	SU_S SU_N Shape CIRCULAR	Geom1 0.2 0.45 0.45 0.525 0.6 0.375 0.45 0.45 0.45) Node	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3	O.65 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	Shape Shape CIRCULAR	Geom1 Geom1 0.2 0.45 0.45 0.525 0.6 0.375 0.45 0.45 0.45 0.45) Node	Type SIDE SIDE SIDE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 Geom5	O.65 O.65 O.65 DM4 Bai 1 1 1 1 1 1 1	Gated NO NO rrels C	CloseTime 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	Shape CIRCULAR	Geom1 0.2 0.45 0.45 0.525 0.6 0.375 0.45 0.45 0.45) Node	Geom2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3	O.65 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	Shape CIRCULAR	Geom1 Geom1 0.2 0.45 0.45 0.525 0.6 0.375 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	Node	Type	Geom3 Geom5	Qcoeff 0.65 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0 ulvert	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	Shape CIRCULAR	Geom1	Node	Type SIDE SIDE SIDE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 Gec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qcoeff 0.65 0.65 1 1 1 1 1 1 1 1 1 1 1	Gated NO NO rrels C	CloseTime 0 0 ulvert	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	SN_S SU_N Shape CIRCULAR	Geom1 0.2 0.45 0.525 0.6 0.375 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	Node	Type SIDE SIDE O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 Geom3 Geom3 Geom3 Geom3 Geom3 Geom3 Geom3 Geom3 Geom4 Geom5	Qcoeff 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0 ulvert	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	Shape CIRCULAR	Geom1 Geom1 0.2 0.45 0.45 0.525 0.6 0.375 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	Node	Type	Geom3 Geom5	Qcoeff 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0 ulvert	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	Shape CIRCULAR	Geom1	Node	Type	Geom3 Geom3 Geom3 Geom3 Geom3 Geom3 Geom3 Geom3 Geom3 Geom4 Geom5	Qcoeff 0.65 0.65 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Gated NO NO rrels C	CloseTime 0 0 ulvert	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	Shape CIRCULAR	Geom1 0.2 0.45 0.45 0.525 0.6 0.375 0.45 0.45 0.45 0.45 0.45 0.45 0.525 0.525 0.525 0.525) Node	Type SIDE SIDE SIDE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 Geom5	Qcoeff 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0 ulvert	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	Shape CIRCULAR	Geom1	Node	Type SIDE SIDE SIDE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom3 Geom4 Geom5	Qcoeff 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0 ulvert	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
;; Name ;;	Shape CIRCULAR	Geom1	Node	Type	Geom3 Geom4 Geom5	Qcoeff 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	Gated NO NO rrels C	CloseTime 0 0 ulvert	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

C3 CIRCULAR 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
C30 CIRCULAR 0.6 0 0 0 C31 CIRCULAR 0.375 0 0 C32 CIRCULAR 0.525 0 0 C33 CIRCULAR 0.375 0 0 C33 CIRCULAR 0.375 0 0 C34 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.6 0 0 C36 CIRCULAR 0.75 0 0 C37 CIRCULAR 0.75 0 0 C4 CIRCULAR 0.375 0 0 C5 CIRCULAR 0.375 0 0 C6 CIRCULAR 0.375 0 0 C7 CIRCULAR 0.3 0 0 C8 CIRCULAR 0.3 0 0 C9 CIRCULAR 0.375 0 0 C9 CIRCULAR 0.525 0 0 C9 CIRCULAR 0.525 0 0 C9 CIRCULAR 0.6 0 0 C9 CIRCULAR 0.75 0 0					
C30 CIRCULAR 0.6 0 0 0 C31 CIRCULAR 0.375 0 0 C32 CIRCULAR 0.525 0 0 C33 CIRCULAR 0.375 0 0 C33 CIRCULAR 0.375 0 0 C34 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.6 0 0 C36 CIRCULAR 0.75 0 0 C37 CIRCULAR 0.75 0 0 C37 CIRCULAR 0.375 0 0 C37 CIRCULAR 0.375 0 0 C4 CIRCULAR 0.375 0 0 C5 CIRCULAR 0.2 0 0 C5 CIRCULAR 0.3 0 0 C6 CIRCULAR 0.3 0 0 C6 CIRCULAR 0.375 0 0 C7 CIRCULAR 0.375 0 0 C8 CIRCULAR 0.525 0 0 C8 CIRCULAR 0.525 0 0 C9 CIRCULAR 0.525 0 0 C9 CIRCULAR 0.525 0 0 C9 CIRCULAR 0.56 0 0	CIRCULAR	0.075	0	0	0
C30 CIRCULAR 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CIRCULAR	0.075	0	0	0
C30 CIRCULAR 0.6 0 0 0 C31 CIRCULAR 0.375 0 0 C32 CIRCULAR 0.525 0 0 C33 CIRCULAR 0.375 0 0 C34 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.375 0 0 C36 CIRCULAR 0.6 0 0 C36 CIRCULAR 0.75 0 0 C37 CIRCULAR 0.375 0 0 C4 CIRCULAR 0.375 0 0 C5 CIRCULAR 0.375 0 0 C6 CIRCULAR 0.2 0 0 C7 CIRCULAR 0.375 0 0 C7 CIRCULAR 0.525 0 0	CIRCULAR	0.6	0	0	0
C30 CIRCULAR 0.6 0 0 0 C31 CIRCULAR 0.375 0 0 C32 CIRCULAR 0.525 0 0 C33 CIRCULAR 0.575 0 0 C34 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.375 0 0 C36 CIRCULAR 0.6 0 0 C37 CIRCULAR 0.75 0 0 C37 CIRCULAR 0.375 0 0 C37 CIRCULAR 0.375 0 0 C4 CIRCULAR 0.2 0 0 C5 CIRCULAR 0.3 0 0 C6 CIRCULAR 0.3 0 0	CIRCULAR	0.525	0	0	0
C30 CIRCULAR 0.6 0 0 0 C31 CIRCULAR 0.375 0 0 C32 CIRCULAR 0.525 0 0 C33 CIRCULAR 0.375 0 0 C34 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.66 0 0 C36 CIRCULAR 0.75 0 0 C37 CIRCULAR 0.75 0 0 C37 CIRCULAR 0.375 0 0 C4 CIRCULAR 0.2 0 0 C5 CIRCULAR 0.2 0 0	CIRCULAR	0.525	0	0	0
C30 CIRCULAR 0.6 0 0 0 C31 CIRCULAR 0.375 0 0 C32 CIRCULAR 0.525 0 0 C33 CIRCULAR 0.375 0 0 C34 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.6 0 0 C36 CIRCULAR 0.75 0 0 C37 CIRCULAR 0.375 0 0 C4 CIRCULAR 0.375 0 0 C4 CIRCULAR 0.375 0 0 C5 0 0 0 C5 0 0 0 0 C5 0 0 0 0 0 C6 0 0 0 0 0 C7 0 0 0 0 0 C8 0 0 0 0 0 C9	CIRCULAR	0.375	Ō	0	0
C30 CIRCULAR 0.6 0 0 0 C31 CIRCULAR 0.375 0 0 C32 CIRCULAR 0.525 0 0 C33 CIRCULAR 0.575 0 0 C34 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.6 0 0 C36 CIRCULAR 0.75 0 0 C37 CIRCULAR 0.75 0 0 C37 CIRCULAR 0.375 0 0	CIRCULAR	0.3	0	0	0
C30 CIRCULAR 0.6 0 0 0 C31 CIRCULAR 0.375 0 0 C32 CIRCULAR 0.525 0 0 C33 CIRCULAR 0.375 0 0 C334 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.6 0 0 C36 CIRCULAR 0.75 0 0	CIRCULAR	0.2	0	0	0
C30 CIRCULAR 0.6 0 0 C31 CIRCULAR 0.375 0 0 C32 CIRCULAR 0.525 0 0 C33 CIRCULAR 0.375 0 0 C34 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.375 0 0 C35 CIRCULAR 0.6 0 0	CIRCULAR	0.375	0	0	0
C30 CIRCULAR 0.6 0 0 C31 CIRCULAR 0.375 0 0 C32 CIRCULAR 0.525 0 0 C33 CIRCULAR 0.375 0 0 C34 CIRCULAR 0.375 0 0	CIRCULAR	0.75	Ō	0	0
C30 CIRCULAR 0.6 0 0 C31 CIRCULAR 0.375 0 0 C32 CIRCULAR 0.525 0 0 C33 CIRCULAR 0.375 0 0	CIRCULAR	0.6	0	0	0
C30 CIRCULAR 0.6 0 0 C31 CIRCULAR 0.375 0 0 C32 CIRCULAR 0.525 0 0	CIRCULAR	0.375	0	0	0
C30 CIRCULAR 0.6 0 0 C31 CIRCULAR 0.375 0 0	CIRCULAR	0.375	0	0	0
C30 CIRCULAR 0.6 0 0	CIRCULAR	0.525	0	0	0
			Ō	0	Ō
C3 CIRCULAR 0.3 0 0			Ō	Ō	0
	CIRCULAR	0.3	0	0	0
C28 CIRCULAR 0.6 0 0 C29 CIRCULAR 0.375 0 0		0.375	0	0	0

[CURVES] ;;Name	Type	X-Value	Y-Value
;;		0.025	530
ADS	Storage	0.025 0.051	530
ADS			
ADS		0.076	530
ADS		0.102	530
ADS		0.127	530
ADS		0.152	530
ADS		0.178	530
ADS		0.203	530
ADS		0.229	530
ADS		0.254	590
ADS		0.279	638
ADS		0.305	678
ADS		0.33	711
ADS		0.356	739
ADS		0.381	764
ADS		0.406	785
ADS		0.432	803
ADS		0.457	819
ADS		0.483	833
ADS		0.508	846
ADS		0.533	857
		0.559	866
ADS		0.539	
ADS		0.584	875
ADS		0.61	883
ADS		0.635	889
ADS		0.66	895
ADS		0.686	901
ADS		0.711	905
ADS		0.737	910
ADS		0.762	913
ADS		0.787	916
ADS		0.813	919
ADS		0.838	921
ADS		0.864	922
ADS		0.889	924
ADS		0.914	925
ADS		0 94	925
ADS		0.965 0.991	925
ADS		0 991	925
ADS		1.016	925
		1.010	
ADS		1.041	924
ADS		1.067	923
ADS		1.092	921
ADS		1.118	919
ADS		1.143	917
ADS		1.168	914
ADS		1.194	911
ADS		1 010	908
ADS		1.245	903
		1.245	898
ADS			
ADS		1.295	892
ADS		1.321	886
ADS		1.346	880
ADS		1.372	874
ADS		1.397	868
ADS		1.422	862
ADS		1.448	856
ADS		1.473	850
ADS		1.499	845
ADS		1.524	840
ADS		1.549	834
ADS		1.575	830
ADS		1.6	825
ADS		1.626	820
ADS		1.651	816
		T.00T	
		1 677	011
		1.676	811
ADS STORAGE N	Storage		811

STORAGE N			
		0.025	600
STORAGE N		0.051	588.2352941
STORAGE N		0.076	592.2368421
STORAGE N		0.102	588.3333333
STORAGE N		0.127	590.6299213
STORAGE_N		0.152	592.1710526
STORAGE N		0.178	589.9438202
STORAGE N		0.203	591.2315271
STORAGE N		0.229	589.6069869
STORAGE_N		0.254	658.6614173
STORAGE N		0.279	714.8028674
STORAGE N		0.305	758.852459
STORAGE_N		0.33	798.0909091
STORAGE_N		0.356	829.1573034
_		0.381	857.9527559
STORAGE_N STORAGE N		0.406	882.9064039
STORAGE_N		0.432	902.5925926
STORAGE_N		0.457	921.7724289
_			
STORAGE_N		0.483	936.7080745
STORAGE_N		0.508	951.7322835
STORAGE_N		0.533	965.0469043
STORAGE_N		0.559	975.1341682
STORAGE_N		0.584	985.7363014
STORAGE_N		0.61	993.5409836
STORAGE_N		0.635	1002
STORAGE_N		0.66	1009.515152
STORAGE_N		0.686	1014.693878
STORAGE_N		0.711	1020.632911
STORAGE_N		0.737	1024.464043
STORAGE_N		0.762	1029.068241
STORAGE_N		0.787	1033.062262
STORAGE_N		0.813	1035.215252
STORAGE_N		0.838	1038.126492
STORAGE_N		0.864	1039.340278
STORAGE_N		0.889	1041.293588
STORAGE_N		0.914	1042.789934
STORAGE_N		0.94	1042.734043
STORAGE_N		0.965	1043.388601
STORAGE_N		0.991	1042.552977
STORAGE_N		1.016	1042.391732
STORAGE_N		1.041	1041.815562
STORAGE_N		1.067	1039.859419
STORAGE_N		1.092	1038.479853
STORAGE_N		1.118	1035.742397
STORAGE_N		1.143	1033.525809
STORAGE_N		1.168	1030.830479
STORAGE_N		1.194	1026.767169
STORAGE_N		1.219	1023.027071
STORAGE_N		1.245	1017.751004
STORAGE_N		1.27	1012.173228
STORAGE_N		1.295	1005.745174
STORAGE_N		1.321	998.4027252
STORAGE_N		1.346	991.7087667
STORAGE_N			984.0524781
		1.372	
STORAGE_N		1.397	977.1868289
STORAGE_N		1.397 1.422	970.5555556
STORAGE_N STORAGE_N		1.397 1.422 1.448	970.5555556 963.4875691
STORAGE_N STORAGE_N STORAGE_N		1.397 1.422 1.448 1.473	970.5555556 963.4875691 957.3183978
STORAGE_N STORAGE_N STORAGE_N STORAGE_N		1.397 1.422 1.448 1.473 1.499	970.5555556 963.4875691 957.3183978 950.7204803
STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N		1.397 1.422 1.448 1.473 1.499 1.524	970.5555556 963.4875691 957.3183978 950.7204803 944.9737533
STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N		1.397 1.422 1.448 1.473 1.499 1.524 1.549	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684
STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N		1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.4222222
STORAGE N STORAGE N STORAGE N STORAGE N STORAGE N STORAGE N STORAGE N STORAGE N		1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125
STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N		1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326
STORAGE_N		1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.626	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060884 933.422222 928.2125 922.595326 917.7165354
STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N		1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326
STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N STORAGE_N	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327
STORAGE_N	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 938.406084 933.422222 928.2125 922.595326 917.7165354 912.977327
STORAGE_N	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327
STORAGE_N STORAGE_S STORAGE_S STORAGE_S STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327
STORAGE_N STORAGE_S STORAGE_S STORAGE_S STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.406084 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736
STORAGE_N STORAGE_S STORAGE_S STORAGE_S STORAGE_S STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.529 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.406084 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.152	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.406084 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0.025 0.025 0.051 0.076 0.102 0.127 0.152 0.178	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.575 1.6 1.626 1.651 1.676 0.025 0.051 0.076 0.102 0.127 0.152 0.127	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.406084 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.127 0.127 0.128 0.127 0.178 0.203 0.229	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.406084 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.152 0.178 0.203 0.229 0.254 0.279	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.127 0.152 0.178 0.203 0.229 0.254 0.279	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.406084 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.127 0.127 0.128 0.229 0.254 0.229 0.254 0.279 0.305	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.152 0.178 0.203 0.203 0.229 0.254 0.279 0.335 0.336	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.122 0.127 0.152 0.178 0.203 0.229 0.254 0.203 0.229 0.305 0.335 0.336 0.381	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.406084 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.127 0.127 0.128 0.203 0.229 0.254 0.279 0.335 0.336 0.381 0.406	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.152 0.178 0.203 0.229 0.254 0.279 0.335 0.336 0.336 0.336 0.336 0.336	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.524 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0.025 0.051 0.076 0.102 0.127 0.127 0.152 0.178 0.203 0.229 0.254 0.203 0.254 0.279 0.305 0.381 0.381 0.432 0.457	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.406084 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 821 889 946 994 1034 1069 1098 1124 1147
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.127 0.128 0.203 0.229 0.254 0.279 0.305 0.33 0.356 0.381 0.406 0.483	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.555326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.152 0.178 0.203 0.203 0.229 0.254 0.279 0.335 0.336 0.381 0.406 0.432 0.457 0.483 0.508	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.524 1.524 1.525 1.66 1.626 1.651 1.676 0.025 0.051 0.076 0.102 0.127 0.152 0.178 0.203 0.229 0.254 0.279 0.305 0.33 0.336 0.381 0.406 0.457 0.463 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.466 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.467 0.466 0.467 0.466 0.467 0.	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.406084 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 921 889 946 994 1034 1069 1098 1124 1147 1167 1185 1201
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.127 0.127 0.128 0.203 0.229 0.254 0.279 0.330 0.381 0.406 0.432 0.457 0.483 0.598	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.555326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.152 0.178 0.203 0.229 0.254 0.279 0.335 0.356 0.335 0.356 0.332 0.406 0.432 0.457 0.483 0.508 0.559 0.584	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.152 0.178 0.203 0.229 0.254 0.279 0.305 0.33 0.356 0.381 0.406 0.432 0.457 0.483 0.508 0.533 0.559 0.584 0.61	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 941 1069 1098 1124 1147 1167 1185 1201 1215 1227 1238
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.152 0.127 0.152 0.178 0.203 0.229 0.254 0.279 0.305 0.331 0.356 0.381 0.406 0.432 0.457 0.483 0.508 0.533 0.559 0.584 0.61	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0.025 0.051 0.076 0.102 0.127 0.152 0.178 0.203 0.229 0.305 0.33 0.229 0.356 0.381 0.406 0.432 0.457 0.483 0.508 0.533 0.559 0.884 0.61 0.635 0.66	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736
STORAGE_N STORAGE_S	Storage	1.397 1.422 1.448 1.473 1.499 1.524 1.549 1.575 1.6 1.626 1.651 1.676 0 0.025 0.051 0.076 0.102 0.127 0.152 0.127 0.152 0.178 0.203 0.229 0.254 0.279 0.305 0.331 0.356 0.381 0.406 0.432 0.457 0.483 0.508 0.533 0.559 0.584 0.61	970.555556 963.4875691 957.3183978 950.7204803 944.9737533 939.4060684 933.422222 928.2125 922.595326 917.7165354 912.977327 0 736 736 736 736 736 736 736 736 736 736

STORAGE_S		0.711	1270
STORAGE S		0.737	1276
STORAGE_S		0.762	1281
STORAGE_S		0.787	1285
STORAGE_S		0.813	1289
STORAGE_S STORAGE S		0.838	1292 1294
STORAGE_S		0.889	1294
STORAGE_S		0.914	1298
STORAGE_S		0.94	1298
STORAGE_S		0.965	1299
STORAGE_S		0.991	1298
STORAGE_S		1.016	1298 1296
STORAGE_S STORAGE S		1.041	1295
STORAGE_S		1.092	1293
STORAGE_S		1.118	1290
STORAGE_S		1.143	1287
STORAGE_S		1.168	1283
STORAGE_S STORAGE_S		1.194	1278 1273
STORAGE S		1.245	1267
STORAGE_S		1.27	1260
STORAGE_S		1.295	1252
STORAGE_S		1.321	1243
STORAGE_S STORAGE S		1.346	1234 1226
STORAGE S		1.397	1217
STORAGE_S		1.422	1208
STORAGE_S		1.448	1200
STORAGE_S		1.473	1192
STORAGE_S STORAGE S		1.499	1184 1177
STORAGE S		1.549	1169
STORAGE S		1.575	1162
STORAGE_S		1.6	1156
STORAGE_S		1.626	1149
STORAGE_S		1.651	1143
STORAGE_S		1.676	1137
TEST	Storage	0	1193.31
TEST		1.676	1193.31
[TIMESERIES]			
;;Name	Date	Time	Value
;; 25mm		0:00	1.423
;;25mm 25mm		0:00 0:05	1.423
25mm 25mm 25mm		0:05 0:10	1.423 1.423 1.574
25mm 25mm 25mm 25mm		0:05 0:10 0:15	1.423 1.423 1.574 1.574
25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20	1.423 1.423 1.574 1.574 1.769
25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25	1.423 1.423 1.574 1.574 1.769
25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20	1.423 1.423 1.574 1.574 1.769
25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30	1.423 1.423 1.574 1.574 1.769 1.769 2.028
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45	1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.933
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50	1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.028 2.389 2.389 2.933 2.933
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:55	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.933 2.933 3.859
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50	1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.028 2.389 2.389 2.933 2.933
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00 1:05 1:15	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.933 2.933 3.859 3.859 5.821
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:45 0:50 0:55 1:00 1:05 1:10 1:15 1:20	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.028 2.389 2.933 2.933 2.933 3.859 3.859 5.821 5.821 13.337
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:35 0:40 0:45 0:55 1:00 1:15 1:10 1:15 1:20 1:25	1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.933 3.859 3.859 5.821 5.821 13.337 13.337
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00 1:05 1:15 1:20 1:25 1:30	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.933 2.933 3.859 3.859 5.821 13.337 13.337 61.503
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:35 0:40 0:45 0:55 1:00 1:15 1:10 1:15 1:20 1:25	1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.933 3.859 3.859 5.821 5.821 13.337 13.337
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00 1:05 1:15 1:20 1:25 1:30 1:35 1:45	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.933 2.933 3.859 5.821 13.337 61.503 61.503 15.65
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:45 0:50 0:50 0:55 1:00 1:05 1:10 1:15 1:20 1:21 1:35 1:40 1:45 1:50	1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.028 2.389 2.933 2.933 3.859 3.859 5.821 5.821 13.337 13.337 61.503 61.503 15.65 7.793
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:45 0:55 1:00 1:05 1:10 1:15 1:25 1:30 1:35 1:40 1:45 1:55	1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.933 3.859 3.859 5.821 15.821 13.337 61.503 61.503 15.65 17.793
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:55 0:50 0:55 1:00 1:05 1:15 1:20 1:25 1:30 1:35 1:40 1:45 1:55 2:00	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.933 3.859 5.821 13.337 15.65 7.793 5.793
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:45 0:55 1:00 1:05 1:10 1:15 1:25 1:30 1:35 1:40 1:45 1:55	1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.933 3.859 3.859 5.821 15.821 13.337 61.503 61.503 15.65 17.793
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:45 0:50 0:55 0:50 1:00 1:05 1:10 1:20 1:21 1:30 1:35 1:40 1:45 1:50 1:55 2:00 2:05	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.933 3.859 5.821 13.337 61.503 61.503 15.65 7.793 7.294 4.057
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:45 0:50 0:55 0:50 1:00 1:05 1:10 1:20 1:21 1:30 1:35 1:40 1:45 1:50 1:50 2:05 2:15 2:10 2:15 2:20	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.933 2.933 3.859 3.859 5.821 13.337 161.503 61.503 15.65 7.793 7.793 5.294 4.057 4.057 4.057
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:55 0:50 0:55 1:10 1:15 1:25 1:30 1:35 1:40 1:45 1:55 2:00 2:05 2:10 2:15 2:25	1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.389 2.933 3.859 5.821 5.821 13.337 61.503 61.503 61.503 5.55 15.65 7.793 7.793 7.294 4.057 4.0
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:55 0:50 0:55 1:10 1:15 1:20 1:25 1:30 1:35 1:45 1:55 2:20 2:00 2:01 2:01 2:01 2:01 2:01 2:01	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.933 3.859 5.821 13.337 13.337 161.503 15.65 7.793 7.794 4.057 4.057 3.314 4.057
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:45 0:50 0:50 1:00 1:05 1:10 1:20 1:15 1:20 1:25 1:30 1:35 1:40 1:45 1:50 1:50 2:05 2:15 2:10 2:15 2:20 2:25 2:30 2:35	1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.389 2.933 3.859 3.859 3.859 3.859 3.859 5.821 13.337 61.503 15.65 15.65 7.793 7.794 7.79
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:55 0:50 0:55 1:00 1:05 1:15 1:20 1:25 1:30 1:35 1:45 1:50 2:00 2:01 2:15 2:10 2:25 2:10 2:25 2:25 2:25 2:30 2:36 2:46 2:45	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.933 3.859 5.821 13.337 61.503 61.503 15.65 7.793 7.793 5.294 4.057 4.057 3.314 3.314 2.817 2.817 2.817 2.459
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:45 0:50 0:50 1:00 1:05 1:15 1:20 1:25 1:30 1:35 1:45 1:50 1:50 2:05 2:15 2:20 2:215 2:20 2:215 2:20 2:35 2:45 2:45 2:50	1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.389 2.933 3.859 3.859 3.859 3.859 3.859 5.821 13.337 61.503 61.503 15.65 17.793 7.794 7.
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:55 0:50 0:55 1:00 1:00 1:15 1:25 1:30 1:35 1:30 1:35 1:30 1:35 2:25 2:30 2:15 2:25 2:30 2:35 2:40 2:45 2:55	1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.389 2.933 3.859 5.821 5.821 13.337 61.503 61.503 61.503 5.294 4.057 4.057 3.314 4.057 4.
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:50 0:50 1:00 1:05 1:10 1:20 1:25 1:30 1:35 1:45 1:55 2:10 2:00 2:01 2:15 2:15 2:25 2:30 2:35 2:40 2:45 2:55 3:00	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.933 3.859 5.821 13.337 13.337 15.65 7.793 5.294 4.057 4.057 3.314 4.057 3.314 2.817 2.817 2.817 2.819 2.189 2.189 2.189
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:45 0:50 0:50 1:00 1:05 1:15 1:20 1:25 1:25 1:30 1:35 1:45 1:50 1:45 1:50 2:05 2:15 2:20 2:215 2:20 2:215 2:20 2:25 2:35 2:45 2:45 2:50 3:05	1.423 1.423 1.474 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.389 2.933 3.859 3.859 5.821 13.337 61.503 15.65 15.65 17.793 7.7
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:50 0:50 1:00 1:05 1:10 1:20 1:25 1:30 1:35 1:45 1:55 2:10 2:00 2:01 2:15 2:15 2:25 2:30 2:35 2:40 2:45 2:55 3:00	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.933 3.859 5.821 13.337 13.337 15.65 7.793 5.294 4.057 4.057 3.314 4.057 3.314 2.817 2.817 2.817 2.819 2.189 2.189 2.189
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:45 0:50 0:50 1:00 1:05 1:15 1:20 1:25 1:30 1:35 1:45 1:50 1:45 1:50 2:05 2:15 2:20 2:215 2:20 2:25 2:35 2:45 2:45 2:50 3:05 3:10 3:15 3:10 3:15 3:20	1.423 1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.933 3.859 3.859 5.821 13.337 61.503 15.65 15.65 7.793 7.793 5.294 4.057 4.05
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:45 0:50 0:55 1:10 1:15 1:20 1:30 1:35 1:30 1:35 2:00 2:15 2:20 2:15 2:25 2:30 2:15 2:25 2:30 2:35 3:00 3:03 3:05 3:00 3:05 3:00 3:05 3:00 3:05 3:00 3:05 3:00 3:05 3:00 3:05 3:00 3:05 3:00 3:05 3:00 3:05 3:00 3:05 3:00 3:05 3:00	1.423 1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.389 2.933 3.859 3.859 5.821 5.821 13.337 61.503 61.503 61.503 5.55 15.65 7.793 7.793 5.294 4.057 4.0
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:50 0:50 1:00 1:05 1:10 1:20 1:25 1:30 1:35 1:45 1:50 2:00 2:00 2:15 2:10 2:25 2:10 2:25 2:40 2:45 2:50 3:00 3:03 3:03 3:03 3:03 3:03 3:15 3:25 3:30	1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.389 2.933 3.859 5.821 13.337 15.65 7.793 7.793 5.294 4.057 3.314 3.314 4.057 3.314 2.817 2.817 2.817 2.819 2.189 2
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:55 1:00 1:15 1:25 1:30 1:35 1:40 1:45 1:55 2:00 2:10 2:15 2:20 2:25 2:35 2:40 2:45 2:55 3:05 3:15 3:15 3:20 3:25 3:30 3:35 3:35 3:35 3:35	1.423 1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.389 2.933 3.859 3.859 5.821 13.337 61.503 15.65 15.65 17.793 7.793 5.294 4.057 4.057 4.057 4.057 3.314 3.314 2.817 2.459 2.459 2.189 2.1
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:55 0:50 0:55 1:10 1:15 1:20 1:30 1:35 1:30 1:35 1:45 1:55 2:00 2:15 2:25 2:30 2:15 2:25 2:30 2:35 3:30 3:35 3:25 3:30 3:35 3:40	1.423 1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.389 2.933 3.859 3.859 5.821 5.821 13.337 61.503 61.503 61.503 61.503 5.294 4.057 4.055 4.057 4.05
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00 1:05 1:10 1:15 1:25 1:30 1:35 1:30 1:35 2:00 2:05 2:10 2:10 2:10 2:10 2:10 2:10 2:10 2:10	1.423 1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.389 2.933 3.859 3.859 5.821 13.337 61.503 15.65 15.65 17.793 7.793 5.294 4.057 4.057 4.057 4.057 3.314 3.314 2.817 2.459 2.459 2.189 2.1
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:55 0:50 0:55 1:10 1:15 1:25 1:30 1:35 1:45 1:45 1:55 2:00 2:15 2:10 2:15 2:25 2:30 2:35 3:35 3:35 3:35 3:35 3:35 3:35 3:40 3:45 3:55 3:55	1.423 1.423 1.423 1.574 1.574 1.769 1.769 2.028 2.028 2.389 2.389 2.389 2.933 3.859 3.859 5.821 5.821 13.337 61.503 61.503 61.503 61.503 7.793 5.294 4.057 4.057 4.057 3.314 2.817 2.817 2.817 2.817 2.817 2.819 2.189 2.189 2.189 1.977 1.975 1.944 1.444 1.444 1.356 1.356
25mm 25mm 25mm 25mm 25mm 25mm 25mm 25mm		0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00 1:05 1:10 1:15 1:25 1:30 1:35 1:30 1:35 2:00 2:05 2:10 2:10 2:10 2:10 2:10 2:10 2:10 2:10	1.423 1.423 1.423 1.574 1.574 1.769 2.028 2.028 2.389 2.389 2.933 3.859 3.859 5.821 5.821 13.337 61.503 61.503 15.65 15.65 17.793 7.795 7.795 7.797 7.895

```
3hr-100yr
                                0:00
3hr-100yr
                                0:10
                                             6.05
7.54
3hr-100yr
                                0:20
3hr-100yr
3hr-100yr
                                0:30
                                             10.17
                                             15.98
                                0:40
3hr-100yr
                                             40.76
3hr-100vr
                                1:00
                                             178.56
3hr-100yr
                                1:20
                                             27.31
3hr-100vr
                                             18.23
                                1:30
3hr-100yr
                                1:40
                                             13.73
3hr-100yr
                                1:50
                                             11.05
3hr-100yr
3hr-100yr
                                2:10
                                             8.02
3hr-100yr
                                             7.08
                                2:20
                                             6.34
5.76
3hr-100yr
                                2:30
3hr-100yr
                                2:40
3hr-100yr
                                2:50
                                             5.28
3hr-100yr
                                3:00
                                             4.88
; Chicago design storm, a = 732.951, b = 6.199, c = 0.81, Duration = 180 minutes, r = 0.35, rain units = mm/hr.
3hr-2yr
                                0:00
                                             2.393
3hr-2yr
                                0:05
                                             2.588
2.823
3hr-2yr
                                0:10
3hr-2yr
                                0:15
                                             3.109
3hr-2yr
                                0:20
                                             3.466
                                             3.927
3hr-2yr
3hr-2yr
                                0:30
                                             4.543
3hr-2yr
                                0:35
                                             5.41
                                0:40
                                             6.721
8.935
3hr-2yr
3hr-2yr
3hr-2yr
                                0:50
                                             13.427
                                0:55
                                             26.893
3hr-2yr
3hr-2yr
                                1:00
                                             103.571
3hr-2yr
3hr-2yr
                                             49.651
27.587
                                1:05
                                1:10
                                             17.967
13.238
3hr-2yr
                                1:15
3hr-2vr
                                1:20
3hr-2yr
                                1:25
                                             10.466
3hr-2vr
                                1:30
                                             8.658
                                             7.391
3hr-2yr
                                1:35
3hr-2yr
                                1:40
1:45
                                             6.455
5.737
3hr-2yr
3hr-2yr
                                1:50
                                             5.169
                                1:55
                                             4.707
3hr-2yr
3hr-2yr
                                2:00
                                             4.326
3hr-2vr
                                2:05
                                             4.005
3hr-2yr
3hr-2yr
                                2:15
                                             3.494
3hr-2yr
                                2:20
                                             3.288
3hr-2yr
                                2:25
                                             3.107
3hr-2vr
                                2:30
                                             2.945
                                2:35
                                             2.801
3hr-2yr
                                2:40
                                             2.672
3hr-2yr
3hr-2yr
                                2:50
                                             2.449
                                             2.351
                                2:55
3hr-2yr
3hr-2yr
                                3:00
;Chicago design storm, a = 998.071, b = 6.053, c = 0.814, Duration = 180 minutes, r = 0.35, rain units = mm/hr.
3hr-5yr
                                0:00
0:05
                                            3.128
3.385
3hr-5yr
3hr-5yr
3hr-5yr
                                             3.693
4.069
                                0:10
                                0:15
3hr-5yr
                                0:20
                                             4.54
3hr-5yr
                                             5.147
                                0:25
3hr-5yr
                                0:30
                                             5.959
                                             7.105
3hr-5vr
                                0:35
3hr-5yr
                                0:40
                                             8.84
                                0:45
0:50
                                             11.775
17.755
3hr-5yr
3hr-5yr
3hr-5yr
                                0:55
                                             35.83
                                             141.179
3hr-5yr
                                1:00
3hr-5yr
                                1:05
                                             66.682
                                             36.749
23.822
3hr-5yr
                                1:10
3hr-5yr
                                1:15
3hr-5yr
3hr-5yr
                                1:20
1:25
                                             17.501
13.81
                                             11.408
                                1:30
3hr-5yr
                                1:35
3hr-5yr
                                1:40
                                             8.488
3hr-5yr
                                1:45
                                             7.538
3hr-5yr
                                1:50
                                             6.786
                                             6.177
5.673
3hr-5yr
                                1:55
3hr-5yr
                                2:00
3hr-5yr
                                2:05
3hr-5vr
                                             4.889
                                2:10
3hr-5yr
                                             4.577
3hr-5yr
                                2:20
                                             4.306
                                2:25
                                             4.066
3hr-5yr
3hr-5yr
                                2:30
                                             3.854
                                             3.665
3.495
3hr-5yr
                                2:35
3hr-5yr
                                2:45
                                             3.341
```

```
3hr-5vr
                                 2:50
                                              3.201
3hr-5yr
                                 2:55
                                              3.073
3hr-5yr
                                 3:00
                                             0
6hr-100yr
                                             0
2.91
                                 0:00
6hr-100vr
                                 0:10
6hr-100yr
6hr-100vr
                                              3.48
                                 0:30
                                              3.88
6hr-100yr
                                 0:50
                                              4.39
6hr-100vr
                                 1:00
                                              5.08
6hr-100yr
                                 1:10
                                              6.05
6hr-100yr
                                 1:20
                                              7.55
                                              10.17
                                1:40
1:50
                                             15.98
40.67
6hr-100yr
6hr-100yr
6hr-100yr
6hr-100yr
                                 2:00
                                              178.56
                                 2:10
                                              54.04
6hr-100yr
                                 2:20
                                              27.31
6hr-100vr
                                 2:30
                                              18.23
6hr-100vr
                                 2:50
                                             11.05
6hr-100yr
                                 3:00
                                              9.28
6hr-100yr
                                 3:10
                                              8.02
6hr-100yr
                                              7.08
                                 3:20
6hr-100yr
                                 3:30
                                              6.34
                                              5.76
6hr-100yr
                                 3:40
6hr-100yr
6hr-100yr
6hr-100yr
                                 4:00
                                              4.88
                                              4.54
                                 4:10
                                             4.25
6hr-100yr
                                 4:20
6hr-100yr
                                 4:30
                                             3.77
6hr-100yr
                                 4:40
6hr-100yr
                                 4:50
6hr-100yr
6hr-100yr
6hr-100yr
                                             3.24
                                 5:10
                                 5:20
6hr-100yr
6hr-100yr
                                             2.97
                                 5:30
                                 5:40
                                             2.74
6hr-100yr
                                 5:50
6hr-100yr
                                 6:00
; Chicago design storm, a = 732.951, b = 6.199, c = 0.81, Duration = 360 minutes, r = 0.35, rain units = mm/hr. 6hr-2yr 0:00 1.274
                                 0:05
                                             1.32
                                 0:10
6hr-2yr
6hr-2yr
                                              1.425
6hr-2yr
                                 0:20
                                              1.485
6hr-2yr
                                              1.55
6hr-2yr
                                 0:30
                                             1.623
                                              1.703
6hr-2yr
                                 0:35
6hr-2yr
                                 0:40
                                             1.793
6hr-2vr
                                              1.894
                                 0:45
                                 0:50
                                              2.008
6hr-2yr
                                 0:55
                                              2.139
6hr-2yr
                                             2.467
6hr-2yr
                                 1:05
                                              2.677
6hr-2vr
                                 1:10
                                              2.93
                                              3.242
6hr-2yr
                                 1:20
6hr-2yr
                                              3.636
6hr-2yr
                                 1:30
                                              4.15
6hr-2yr
                                 1:35
                                              4.851
6hr-2yr
6hr-2yr
                                1:40
1:45
                                             5.864
7.456
6hr-2yr
                                 1:50
                                              10.31
6hr-2yr
                                 1:55
                                             16.817
6hr-2yr
                                 2:00
6hr-2vr
                                 2.05
                                             103 571
6hr-2yr
                                 2:10
                                              39.807
                                             22.769
15.728
6hr-2yr
                                 2:15
                                 2:20
6hr-2yr
6hr-2yr
                                 2:25
                                             11.97
                                              9.658
6hr-2yr
                                 2:30
                                 2:35
                                              8.101
6hr-2yr
                                2:40
2:45
6hr-2yr
                                              6.985
6hr-2yr
                                              6.147
                                2:50
                                             5.495
4.973
6hr-2yr
6hr-2yr
                                 3:00
                                              4.546
6hr-2yr
                                 3:05
                                              4.191
6hr-2yr
                                 3:10
                                              3.89
6hr-2yr
6hr-2yr
                                 3:15
                                              3.632
                                              3.409
                                 3:20
6hr-2yr
6hr-2yr
                                 3:25
                                              3.213
                                              3.04
                                 3:30
                                              2.886
6hr-2vr
                                              2.748
                                 3:40
6hr-2yr
                                              2.624
6hr-2yr
                                 3:50
                                             2.511 2.409
                                 3:55
6hr-2yr
6hr-2yr
                                 4:00
                                              2.315
                                             2.229
2.149
6hr-2yr
                                 4:05
6hr-2yr
                                 4:15
                                              2.076
```

```
6hr-2yr
                                 4:25
                                              1.944
6hr-2yr
6hr-2yr
                                 4:30
                                              1.885
                                 4:35
                                              1.83
6hr-2yr
6hr-2yr
                                              1.778
1.729
                                 4:40
                                 4:45
                                              1.684
6hr-2vr
                                 4:55
                                              1.64
6hr-2yr
                                              1.599
6hr-2yr
                                 5:05
                                              1.561
                                 5:10
                                              1.524
6hr-2yr
6hr-2yr
                                 5:15
                                              1.489
6hr-2yr
                                 5:20
                                              1.456
6hr-2yr
                                 5:25
                                              1.425
6hr-2yr
                                 5:30
                                              1.395
6hr-2yr
                                 5:35
                                              1.366
                                              1.339
1.312
6hr-2yr
                                 5:40
6hr-2yr
                                 5:45
6hr-2yr
                                 5:50
                                              1.287
6hr-2vr
                                 5:55
                                              1.263
6hr-2yr
                                 6:00
Chicago design storm, a = 998.071, b = 6.053, c = 0.814, Duration = 360 minutes, r = 0.35, rain units = mm/hr.
6hr-5yr
6hr-5yr
                                 0:00
0:05
                                             1.659
1.72
6hr-5yr
                                 0:10
                                              1.786
                                              1.857
6hr-5yr
                                 0:15
6hr-5yr
                                              1.936
6hr-5yr
6hr-5yr
                                 0:25
                                              2.022
                                 0:30
                                              2.117
                                              2.222
6hr-5yr
                                 0:35
                                 0:40
6hr-5yr
6hr-5yr
                                 0:45
                                              2.472
6hr-5yr
                                 0:50
                                              2.623
6hr-5yr
                                              2.794
6hr-5yr
6hr-5yr
                                 1:00
                                              2.993
                                              3.225
                                 1:05
6hr-5yr
                                 1:10
                                              3.501
                                              3.834
6hr-5vr
                                 1:15
                                              4.244
6hr-5yr
                                 1:20
6hr-5vr
                                 1:25
                                              5.442
6hr-5yr
                                 1:30
6hr-5yr
                                 1:35
1:40
                                              6.367
7.706
6hr-5yr
6hr-5yr
                                 1:45
                                              9.813
6hr-5yr
                                 1:50
                                              13.603
22.285
6hr-5yr
                                 1:55
                                              55.656
6hr-5vr
                                 2:00
6hr-5yr
                                              141.179
6hr-5yr
                                 2:10
                                              53.291
6hr-5yr
                                              30.263
                                 2:15
6hr-5yr
                                 2:20
                                              20.826
6hr-5vr
                                 2:25
                                              15.811
                                              12.736
6hr-5yr
                                 2:30
6hr-5yr
                                 2:35
6hr-5yr
6hr-5yr
                                 2:45
                                              8.079
                                              7.217
                                 2:50
6hr-5vr
                                 2:55
                                              6.528
6hr-5vr
                                 3:00
                                              5.965
6hr-5yr
                                              5.496
6hr-5yr
                                 3:10
                                              5.099
6hr-5yr
                                 3:15
                                              4.759
6hr-5yr
6hr-5yr
                                 3:20
                                              4.464
                                 3:25
                                              4.206
6hr-5yr
                                 3:30
                                              3.979
3.776
6hr-5yr
                                 3:35
6hr-5yr
                                 3:40
                                              3.595
6hr-5vr
                                 3 - 4 5
                                              3 431
6hr-5yr
                                              3.283
                                 3:50
6hr-5yr
6hr-5yr
                                              3.148
3.025
                                 3:55
                                 4:00
6hr-5yr
                                 4:05
                                              2.912
                                              2.808
2.711
6hr-5yr
                                 4:10
6hr-5yr
                                 4:15
6hr-5yr
                                 4:20
                                              2.622
6hr-5yr
                                 4:25
                                              2.539
6hr-5yr
6hr-5yr
                                              2.461 2.389
                                 4:30
                                 4:35
                                 4:40
                                              2.32
                                              2.257
6hr-5yr
                                 4:45
6hr-5yr
                                 4:50
                                              2.196
6hr-5yr
                                 4:55
                                              2.14 2.086
6hr-5yr
                                 5:00
6hr-5yr
6hr-5yr
                                              2.035
1.987
                                 5:05
                                 5:10
6hr-5yr
                                 5:15
                                              1.942
6hr-5vr
                                 5:20
                                              1.898
6hr-5yr
                                 5:25
                                              1.857
6hr-5yr
                                 5:30
                                              1.818
1.78
6hr-5yr
                                 5:35
                                              1.744
6hr-5yr
                                 5:40
6hr-5yr
                                 5:45
6hr-5yr
                                              1.646
                                 5:55
```

6hr-2vr

4:20

2.008

6hr-5yr 6:00 0

[REPORT]
;;Reporting Options
INPUT YES
CONTROLS NO
SUBCATCHMENTS ALL
NODES ALL
LINKS ALL

[TAGS]

г	24	7	ъ	1

[]				
DIMENSIONS	922046.74785	5041834.0492	922407.88115	5042274.6388
UNITS	Meters			

;;Node	X-Coord	Y-Coord
;; CB 10	922267.44	5042167.037
CB 23	922183.138	5041946.243
CB_23 CB_27	922183.138 922174.44	5042163.651
CB 28	922183.823	5042138.927
CB 29	922311 039	5041911.888
CB_29 CB_5	922241.227	5042156.669
CBMH 11	922268.343	5041907.04
CBMH 12	922226.064	5041886.711
CBMH 14	922119.051	5042161.391
CBMH 15	922187.216	5042194.27
	922101.491	5042122.208
CBMH_18 CBMH_19	922112.299	5042084.028
CBMH_2	922320.148	5042000.64
CBMH 21	922131.832	5042046.581
CBMH 22	922160.736	5041992.512
CBMH 3	922294.476	5042054.025
	922264.811	5042107.553
CBMH_4 CBMH 6	922368.578	5041956.48
CBMH_7	922344.579	5042017.069
CDMII 0	922319.775	5042064.766
CBMH_9	922291.331	5042119.713
DCB 16	922244.166	5042219.719
J1	922088.074	5042134.4
J13	922346.799	5041946.002
J2	922329.977	5041930.789
MH 20		5042071.917
MH 24	922120.386 922098.64	5042113.25
MH 25	922131.745	5042141.429
MH 26	922150.032	5042150.054
MH 27	922274.874	5041890.955
MH 30	922343.248	5041959.86
MH 44	922084.598	5042122.314
MH 45	922334.286	5042122.314
OGS 1	922335.039	5041923.577
OGS_1 OGS_2	922081.054	5042120.627
Humber Pl	922336.187	5042120.027
OF1	922072.924	5041916.196
OF2	922274.791	5042250.679
SU N	922101.096	5042130.118
SU_N SU S	922332.618	5042130.118

[VERTICES]

,, DIIIV	A COOLU	1 00014
;;		
C1	922096.948	5042121.48
C4	922337.658	5041932.991

[POLYGONS]

;;Subcatchment	X-Coord	Y-Coord
	922156.684	5042195.99
Area 1	922169.821	5042170.099
Area_1 Area_1	922115.018	5042141.948
	922097.108	5042135.258
	922095.563	5042134.473
Area_1	922091.602	5042142.138
	922078.404	5042141.433
	922072.844	5042153.373
Area_1	922156.684	5042195.99
	922182.687	5041970.194
Area_10	922202.152	5041931.834
Area_10		5041925.657
Area_10	922187.058	5041928.291
		5041928.076
Area_10	922164.529	5041960.981
	922182.687	5041970.194
Area_101		5042060.554
		5042006.979
		5042097.159
Area_101	922156.344	5042116.483
		5042120.253
Area_101	922173.064	5042124.967
Area_101		5042151.46
		5042129.891
		5042060.554
Area_102	922274.182	5042060.554

Area_102	922293.417	5042022.648
Area_102	922318.903	5041972.423
Area 102	922292.345	5041958.947
Area_102	922264.29	5041944.711
Area_102	922197.507	5041910.823
Area 102	922189.979	5041925.657
Area 102	922202.152	5041931.834
Area_102		
Area_102	922164.013	5042006.979
Area_102	922274.182	5042060.554
Area_11	922264.237	5042142.698
Area 11	922240.449	5042189.576
Area 11	922262.695	5042201.089
Area_11	922272.999	5042180.783
Area 11	922274.904	5042166.229
Area 11	922280.04	5042166.668
	922287.842	5042154.676
Area_11	922264.237	5042142.698
Area_12	922291.446	5042089.077
Area_12	922264.237	5042142.698
Area 12	922287.841	5042154.676
Area 12	922315.053	5042101.05
Area 12	922291.446	5042089.077
Area 13	922318.655	5042035.455
Area_13	922291.446	5042089.077
	922315.049	5042101.059
Area_13		
Area_13	922342.258	5042047.437
Area_13	922318.655	5042035.455
Area_14	922345.865	5041981.834
Area_14	922318.655	5042035.455
Area 14	922342.258	5042047.437
Area_14	922369.397	5041993.769
Area 14	922345.865	5041981.834
Area 15	922345.805	5041952.636
Area_15	922359.463	5041955.035
Area_15	922357.167	5041959.56
Area_15	922345.865	5041981.834
Area 15	922369.472	5041993.807
Area_15	922371.927	5041988.763
Area_15	922378.739	5041976.704
Area 15	922378.755	5041956.1
Area 15	922369.637	5041951.745
	922367.394	
Area_15		5041953.143
Area_15	922365.821	5041952.667
Area_15	922365.904	5041952.636
Area_16	922264.237	5042142.698
Area_16	922238.998	5042129.891
Area 16	922228.221	5042151.129
Area 16	922229.721	5042154.923
Area 16	922221.355	5042159.491
Area_16	922215.755	5042170.747
Area_16	922217.934	5042178.151
Area_16	922240.449	5042189.576
Area_16	922264.237	5042142.698
Area_17	922291.446	5042089.077
Area_17	922266.207	5042076.27
Area 17	922238.998	5042129.891
Area_17	922264.237	5042142.698
Area 17	922291.446	5042089.077
Area 18	922318.654	5042035.454
Area 18	922293.417	5042022.648
Area_18	922266.207	5042076.27
Area_18	922291.446	5042089.077
Area_18	922318.654	5042035.454
Area_19	922345.865	5041981.834
Area_19	922323.529	5041970.5
Area_19	922318.903	5041972.423
Area_19	922293.417	5042022.648
Area_19	922318.655	5042035.455
Area_19	922345.865	5041981.834
Area 2	922209.215	5042222.737
Area_2	922215.404	5042210.581
	922211.118	
Area_2		5042202.902
Area_2	922210.778	5042201.725
Area_2	922210.247	5042181.824
Area_2	922200.465	5042185.649
Area_2	922169.821	5042170.099
Area_2		5042196.064
Area 2	922156.651	
nica z	922156.651 922209.215	5042222.737
	922209.215	
Area_20	922209.215 922295.881	5041959.172
Area_20 Area_20	922209.215 922295.881 922292.345	5041959.172 5041958.947
Area_20 Area_20 Area_20	922209.215 922295.881 922292.345 922318.903	5041959.172 5041958.947 5041972.423
Area_20 Area_20 Area_20 Area_20	922209.215 922295.881 922292.345 922318.903 922323.528	5041959.172 5041958.947 5041972.423 5041970.499
Area_20 Area_20 Area_20 Area_20 Area_20	922209.215 922295.881 922292.345 922318.903 922323.528 922345.32	5041959.172 5041958.947 5041972.423 5041970.499 5041981.557
Area_20 Area_20 Area_20 Area_20 Area_20 Area_20	922209.215 922295.881 922292.345 922318.903 922323.528 922345.32 922345.865	5041959.172 5041958.947 5041972.423 5041970.499 5041981.557 5041981.834
Area_20 Area_20 Area_20 Area_20 Area_20 Area_20 Area_20	922209.215 922295.881 922292.345 922318.903 922323.528 922345.32 922345.865 922355.492	5041959.172 5041958.947 5041972.423 5041970.499 5041981.557 5041981.834 5041963.045
Area_20 Area_20 Area_20 Area_20 Area_20 Area_20 Area_20 Area_20	922209.215 922295.881 922292.345 922318.903 922323.528 922345.32 922345.865 922355.492 922357.167	5041959.172 5041958.947 5041972.423 5041970.499 5041981.557 5041981.834
Area_20 Area_20 Area_20 Area_20 Area_20 Area_20 Area_20 Area_20	922209.215 922295.881 922292.345 922318.903 922323.528 922345.32 922345.865 922355.492	5041959.172 5041958.947 5041972.423 5041970.499 5041981.557 5041981.834 5041963.045
Area_20	922209, 215 922295, 881 922292, 345 922318, 903 922323, 528 922345, 32 922345, 865 922355, 492 922357, 167 922359, 463	5041959.172 5041958.947 5041972.423 5041970.499 5041981.557 5041981.834 5041963.045 5041959.56 5041955.035
Area_20	922209.215 922295.881 922292.345 922318.903 922323.528 922345.32 922345.865 922355.492 922357.167 922359.463 922365.859	5041959.172 5041958.947 5041972.423 5041970.499 5041981.834 5041963.045 5041959.56 5041955.035 5041955.035
Area_20 Area_20 Area_20 Area_20 Area_20 Area_20 Area_20 Area_20 Area_20 Area_20 Area_20 Area_20	922209.215 922295.881 922292.345 922318.903 922323.528 922345.32 922345.865 922355.492 922357.167 922359.463 922368.907	5041959.172 5041958.947 5041970.499 5041970.499 5041981.834 5041963.045 5041959.56 5041955.035 5041952.653 5041946.111
Area_20	922209, 215 922295, 881 922292, 345 922318, 903 922323, 528 922345, 32 922345, 865 922355, 492 922357, 167 922359, 463 922368, 907 922368, 907 922371, 707	5041959.172 5041972.423 5041972.423 5041970.499 5041981.834 5041963.045 5041959.56 5041955.035 5041952.653 5041946.111 5041938.283
Area_20	922209.215 922292.381 922292.345 922318.903 922335.528 922345.32 922345.865 922355.492 922357.167 922359.463 922365.859 922368.907 922371.707 922325.369	5041959.172 5041958.947 5041972.423 5041970.499 5041981.834 5041963.045 5041959.56 5041955.035 5041952.653 5041946.111 5041938.283 5041919.024
Area_20	922209.215 922295.881 922292.345 922318.903 922323.528 922345.32 922345.865 922355.492 922357.167 922359.463 922368.907 922368.907 922369.146	5041959.172 5041958.947 5041972.423 5041970.499 5041981.834 5041963.045 5041959.56 5041955.035 5041952.653 5041946.111 5041938.283 5041919.024 5041919.508
Area_20	922209.215 922295.881 922292.345 922318.903 922323.528 922345.32 922345.865 922355.492 922357.167 922359.463 922365.859 922368.907 922371.707 922325.369 922320.146 922295.881	5041959.172 5041972.423 5041970.499 5041981.57 5041981.834 5041963.045 5041959.56 5041955.035 5041955.035 5041946.111 5041938.283 5041946.111 5041919.024 5041915.508
Area_20	922209.215 922292.345 922318.903 9223345.32 922345.32 922345.865 922355.492 922357.167 922359.463 922365.859 922368.907 922371.707 922371.707 922371.707 922325.369 922391.46	5041959.172 5041958.947 5041972.423 5041970.499 5041981.834 5041963.045 5041959.56 5041955.035 5041955.035 5041946.111 5041938.283 5041919.024 5041915.508 5041959.172 5042248.266
Area_20	922209.215 922295.881 922292.345 922318.903 922323.528 922345.32 922345.865 922355.492 922357.167 922359.463 922365.859 922368.907 922371.707 922325.369 922320.146 922295.881	5041959.172 5041972.423 5041970.499 5041981.57 5041981.834 5041963.045 5041959.56 5041955.035 5041955.035 5041946.111 5041938.283 5041946.111 5041919.024 5041915.508
Area_20	922209.215 922292.345 922318.903 9223345.32 922345.32 922345.865 922355.492 922357.167 922359.463 922365.859 922368.907 922371.707 922371.707 922371.707 922325.369 922391.46	5041959.172 5041958.947 5041972.423 5041970.499 5041981.834 5041963.045 5041959.56 5041955.035 5041955.035 5041946.111 5041938.283 5041919.024 5041915.508 5041959.172 5042248.266

Area_2001	922063.194	5042152.009
	922264.858	
Area_2001		5042254.388
Area_2001	922259.515	5042248.266
Area_2002	922379.025	5041976.492
Area_2002	922287.841	5042154.678
Area_2002	922297.66	5042167.96
Area 2002	922297.19	5042169.092
Area 2002	922291.55	5042182.669
Area_2002	922289.978	5042186.538
Area 2002	922259.517	5042248.262
Area 2002	922264.919	5042254.612
Area_2002	922379.025	5041976.492
Area_2003	922063.163	5042152.017
Area 2003	922073.048	5042152.971
Area 2003	922078.89	5042141.459
Area_2003	922091.7	5042141.95
Area_2003	922095.563	5042134.474
Area 2003	922095.417	5042131.52
Area_2003	922097.809	5042127.104
Area_2003	922097.503	5042125.683
Area 2003	922084.342	5042119.006
Area_2003	922109.135	5042069.705
Area_2003	922113.823	5042069.046
Area_2003	922116.98	5042062.787
Area_2003	922114.888	5042058.367
Area 2003	922145.979	5041996.588
Area_2003	922150.409	5041998.871
Area_2003	922151.992	5041996.657
Area 2003	922155.734	5041986.203
Area 2003	922153.387	5041982.171
Area_2003	922181.001	5041928.076
Area_2003	922187.058	5041928.291
Area 2003	922189.786	5041925.832
Area_2003	922197.337	5041910.438
Area_2003	922192.103	5041898.561
Area 2003	922063.163	5042152.017
		5041865.313
Area_2004	922209.02	
Area_2004	922235.292	5041858.36
Area_2004	922233.17	5041856.72
Area_2004	922230.811	5041855.444
Area_2004	922228.277	5041854.564
Area_2004	922225.635	5041854.104
	922222.953	5041854.076
Area_2004		
Area_2004	922220.302	5041854.481
Area 2004	922217.757	5041855.423
Area_2004	922215.4	5041856.768
Area_2004	922213.295	5041858.48
Area 2004	922211.498	5041860.514
Area 2004	922210.057	5041862.813
Area_2004	922209.011	5041865.318
Area 2004	922209.02	5041865.313
Area 2005	922371.594	5041938.235
	922368.998	5041945.932
Area_2005		
Area_2005	922365.962	5041952.377
Area 2005	922369.637	5041951.745
Area 2005	922378.755	5041956.1
Area_2005	922378.739	5041976.704
Area 2005	922391.466	5041946.493
Area 2005	922371.707	5041938.282
Area_2005	922371.594	5041938.235
Area 21	922237.628	5041931.182
Area 21	922264.427	5041944.78
Area_21	922274.121	5041925.898
Area 21	922277.379	5041923.323
Area_21	922284.651	5041920.109
Area_21	922298.899	5041916.291
Area_21	922301.752	5041903.119
Area 21	922264.403	5041877.966
Area_21	922237.628	5041931.182
Area_22	922192.103	5041898.562
Area_22	922197.507	5041910.823
Area_22	922237.628	5041931.182
		5041882.443
Area_22	922262.14	
Area_22	922264.403	5041877.966
Area 22	922235.292	5041858.36
	922209.013	
Area_22		5041865.315
Area_22	922192.103	5041898.562
Area 23	922292.345	5041958.947
Area 23	922295.881	5041959.172
3 23		
Area_23	922320.146	5041915.507
Area_23	922301.752	5041903.119
Area 23	922298.899	5041916.291
	922284.651	5041920.109
Area_23		
Area_23	922277.379	5041923.323
Area_23	922274.121	5041925.898
Area 23	922264.411	5041944.772
Area_23	922292.345	5041958.947
Area_3	922280.091	5042166.581
Area_3	922274.904	5042166.229
Area_3	922273.008	5042180.81
Area_3	922262.695	5042201.089
Area_3	922217.934	5042178.15
	000010 077	
Area_3	922210.247	5042181.824
Area_3 Area_3	922210.247 922211.001	5042181.824 5042202.867
Area_3 Area_3	922211.001	5042202.867
Area_3		
Area_3 Area_3	922211.001	5042202.867

Area 3	922209.221	5042222.74
Area 3	922232.117	5042234.358
Area_3	922259.517	5042248.262
Area 3		
111 00 _ 0	922291.901	5042181.949
Area_3	922297.215	5042169.271
Area_3	922297.618	5042167.941
Area 3	922287.842	5042154.676
Area_3	922280.091	5042166.581
Area_4	922143.181	5042156.27
Area_4	922161.483	5042120.204
Area_4	922156.344	5042116.484
Area_4	922118.26	5042097.159
7202 1	922114.257	5042092.55
Area_4		
Area_4	922109.378	5042089.904
Area_4	922101.037	5042085.662
Area 4	922084.076	5042119.088
Area_4	922089.477	5042121.836
Area 4	922097.449	5042125.976
_		
Area_4	922097.726	5042126.825
Area_4	922095.579	5042131.056
Area_4	922095.563	5042134.473
Area_4	922115.018	5042141.948
Area 4	922143.181	5042156.27
Area_5	922152.032	5042138.87
Area_5	922143.185	5042156.239
Area_5	922200.513	5042185.631
Area_5	922210.247	5042181.824
Area_5	922217.934	5042178.15
111 Cu_5	922215.802	5042170.903
Area_5	922152.032	5042138.87
Area 6	922215.755	5042170.747
Area 6	922221.427	5042159.476
Area 6	922229.627	5042155.107
Area 6	922228.053	5042151.46
Area_6	922227.484	5042152.582
Area_6	922173.058	5042124.965
Area_6	922161.483	5042120.204
Area_6	922151.987	5042138.959
Area 6	922215.755	5042170.747
	922128.26	5042077.453
Area_7 Area_7	922122.858	5042074.827
Area 7	922118.32	5042072.395
Area_7	922113.587	5042069.511
Area_7	922108.959	5042069.833
Area_/		
Area_7	922101.037	5042085.662
Area_7	922114.159	5042092.581
Area_7	922118.26	5042097.159
Area 7	922128.26	5042077.453
Area 8	922118.345	5042072.41
Area 8	922128.26	5042077.453
Area_8	922155.476	5042023.817
Area_8	922137.141	5042014.511
Area_8	922114.851	5042058.188
Area 8	922115.066	5042058.458
Area 8	922117.071	5042062.608
Area_8	922113.617	5042069.414
Area_8	922118.345	5042072.41
Area_9	922137.14	5042014.511
Area_9	922155.476	5042023.817
7202 9	922182.686	5041970.194
Area_9		
Area_9	922164.343	5041960.893
Area_9	922153.575	5041982.125
Area 9	922155.734	5041986.203
Area 9	922151.992	5041996.657
Area 9	922150.409	5041998.871
111 0 4 3		
Area_9	922146.183	5041996.693
Area_9	922137.32	5042014.602
Area_9	922137.14	5042014.511
_		
[SYMBOLS]		

[SYMBOLS]
;;Gage
;;-----X-Coord Y-Coord

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

WARNING 03: negative offset ignored for Link C2 WARNING 03: negative offset ignored for Link C32 WARNING 03: negative offset ignored for Link C34

Element Count

Name	Data Source	Type	Interval
25mm	25mm	INTENSITY	5 min.
3hr-100yr	3hr-100yr	INTENSITY	10 min.
3hr-2yr	3hr-2yr	INTENSITY	5 min.
3hr-5yr	3hr-5yr	INTENSITY	5 min.
6hr-100yr	6hr-100yr	INTENSITY	10 min.
6hr-2yr	6hr-2yr	INTENSITY	5 min.
6hr-5yr	6hr-5yr	INTENSITY	5 min.

Name	Area	Width	%Imperv	%Slope	Rain Gage	Outlet
Name	0.25	83.33	90.00	1.0000	25mm	CBMH 14
Area_10	0.08	26.67	90.00	1.0000	2.5mm	CB_23
Area_101	1.37	137.00	95.00	0.5000	2.5mm	MH_26
Area_102	1.13	113.00	95.00	0.5000	2.5mm	CBMH_11
Area_11	0.13	43.33	90.00	1.0000	2.5mm	CB_10
Area 12	0.16	53.33	90.00	1.0000	2.5mm	CBMH 9
Area_13	0.16	53.33	90.00	1.0000	2.5mm	CBMH_8
Area_14	0.17	56.67	90.00	1.0000	2.5mm	CBMH_7
Area_15	0.09	30.00	90.00	1.0000	2.5mm	CBMH_6
Area_16	0.15	50.00	90.00	1.0000	2.5mm	CB_5
Area_17	0.17	56.67	90.00	1.0000	2.5mm	CBMH_4
Area_18	0.17	56.67	90.00	1.0000	2.5mm	CBMH_3
Area_19	0.17	56.67	90.00	1.0000	2.5mm	CBMH_2
Area_2	0.16	53.33	90.00	1.0000	2.5mm	CBMH_15
Area_20	0.28	93.33	90.00	1.0000	2.5mm	J13
Area_2001	0.07	7.00	25.00	0.5000	2.5mm	OF2
Area_2002	0.21	21.00	90.00	0.5000	2.5mm	OF2
Area_2003	0.16	16.00	90.00	1.0000	2.5mm	OF1
Area_2004	0.02	13.33	5.00	0.5000	25mm	Humber_Pl
Area_2005	0.04	26.67	5.00	0.5000	25mm	Humber_Pl
Area_21	0.21	70.00	90.00	1.0000	2.5mm	CBMH_11
Area_22	0.32	106.67	90.00	1.0000	2.5mm	CBMH_12
Area_23	0.16	53.33	90.00	1.0000	2.5mm	CB_29
Area_3	0.36	120.00	90.00	1.0000	2.5mm	DCB_16
Area_4	0.28	93.33	90.00	1.0000	2.5mm	CBMH_18
Area_5	0.15	50.00	90.00	1.0000	25mm	CB_27
Area_6	0.15	50.00	90.00	1.0000	2.5mm	CB_28
Area_7	0.04	13.33	90.00	1.0000	2.5mm	CBMH_19
Area_8	0.12	40.00	90.00	1.0000	2.5mm	CBMH_21
Area_9	0.12	40.00	90.00	1.0000	2.5mm	CBMH_22

Node Summary

Name	Type	Invert Elev.			External Inflow
CB 10	JUNCTION	65.33	1.41	10.0	
CB 23	JUNCTION	66.20	0.93	10.0	
CB 27	JUNCTION	65.48	1.34	10.0	
CB 28	JUNCTION	65.39	1.52	10.0	
CB 29	JUNCTION	64.11	2.43	0.0	
CB 5	JUNCTION	65.11	1.63	10.0	
CBMH 11	JUNCTION	63.58	2.16	10.0	
CBMH 12	JUNCTION	64.06	1.68	10.0	
CBMH 14	JUNCTION	64.11	2.21	10.0	
CBMH 15	JUNCTION	64.47	1.85	10.0	
CBMH 18	JUNCTION	64.05	2.54	0.0	
CBMH 19	JUNCTION	64.88	2.38	10.0	
CBMH 2	JUNCTION	64.06	2.94	10.0	
CBMH 21	JUNCTION	65.17	1.87	10.0	
CBMH 22	JUNCTION	65.53	1.51	10.0	

CBMH 3	JUNCTION	64.42	2.58	10.0
CBMH_4	JUNCTION	64.78	2.22	10.0
CBMH 6	JUNCTION	63.91	2.73	10.0
CBMH 7	JUNCTION	64.27	2.73	10.0
CBMH_8	JUNCTION	64.63	2.37	10.0
CBMH 9	JUNCTION	64.99	2.01	10.0
DCB_16	JUNCTION	64.80		
J1	JUNCTION	63.75	3.27	0.0
J13	JUNCTION	63.54	3.10	10.0
J2	JUNCTION	63.24		0.0
MH_20	JUNCTION	64.99	2.30	0.0
MH_24	JUNCTION	64.13		10.0
MH_25	JUNCTION	64.42		0.0
MH_26	JUNCTION	64.56		
MH_27	JUNCTION			
MH_30	JUNCTION	63.73		0.0
MH_44	JUNCTION	63.51		
MH_45	JUNCTION	63.11		0.0
OGS_1	JUNCTION	63.04		
OGS_2	JUNCTION	63.47	3.01	
Humber_Pl	OUTFALL	62.48		0.0
OF1	OUTFALL	63.41	0.38	
OF2	OUTFALL	0.00	0.00	0.0
SU_N	STORAGE	63.75		0.0
SU_S	STORAGE	63.24	3.33	0.0

Name	From Node	To Node	Type	Length	%Slope H	Roughness
C1	SU N	MH 44	CONDUIT	2.5	1.0001	0.0090
C10	CB 28	MH 26	CONDUIT	30.4	1.0001	0.0110
C11	CB 27	MH 26	CONDUIT	32.8	1.0001	0.0110
C12	MH 26	MH 25	CONDUIT	16.5	0.4970	0.0110
C13	MH 24	CBMH 18	CONDUIT	4.8	0.5000	0.0110
C14	CB 23	CBMH 22	CONDUIT	51.5	1.0001	0.0110
C15	CBMH 22	CBMH 21	CONDUIT	60.0	0.5000	0.0110
C16	CBMH_21	MH_20	CONDUIT	24.5	0.5020	0.0110
C17	MH_20	CBMH_19	CONDUIT	10.4	0.5000	0.0110
C18	CBMH 19	MH 24	CONDUIT	46.5	0.5011	0.0110
C19	CB_10	CBMH_9	CONDUIT	52.5	0.4991	0.0110
C2	MH 44	OGS_2	CONDUIT	11.6	0.3707	0.0110
C20	CBMH 9	CBMH_8	CONDUIT	60.0	0.5000	0.0110
C21	CBMH 8	CBMH_7	CONDUIT	60.0	0.5000	0.0110
C22	CBMH_7	CBMH_6	CONDUIT	60.0	0.5000	0.0110
C23	CBMH 6	J13 [—]	CONDUIT	29.9	0.5017	0.0110
C24	J13	SU_S	CONDUIT	4.0	0.5000	0.0110
C25	CB_5	CBMH_4	CONDUIT	52.5	0.4991	0.0110
C26	CBMH_4	CBMH_3	CONDUIT	60.0	0.5000	0.0110
C27	CBMH_3	CBMH_2	CONDUIT	60.0	0.5000	0.0110
C28	CBMH_2	MH_30	CONDUIT	53.4	0.4963	0.0110
C29	CBMH_12	CBMH_11	CONDUIT	50.0	0.5700	0.0110
C3	J1	MH_44	CONDUIT	2.5	0.4800	0.0110
C30	MH_30	J13	CONDUIT	9.3	0.4839	0.0110
C31	MH_27	CBMH_11	CONDUIT	8.2	0.5000	0.0110
C32	CBMH_11	SU_S	CONDUIT	13.2	0.5000	0.0110
C33	ogs_1	Humber_Pl	CONDUIT	4.0	14.1135	0.0110
C34	OGS_2	OF1	CONDUIT	8.7	0.6782	0.0110
C35	MH_25	MH_24	CONDUIT	44.2	0.5000	0.0110
C36	CBMH_18	SU_N	CONDUIT	3.9	0.5128	0.0110
C37	CB_29	MH_27	CONDUIT	32.9	0.4985	0.0110
C4	SU_S	MH_45	CONDUIT	9.4	1.0001	0.0090
C5	J2	MH_45	CONDUIT	9.4	0.5000	0.0110
C6	MH_45	OGS_1	CONDUIT	3.1	0.4839	0.0110
C7	DCB_16	CBMH_15	CONDUIT	54.4	0.5000	0.0110
C8	CBMH_15	CBMH_14	CONDUIT	60.0	0.5000	0.0110
C9	CBMH_14	SU_N	CONDUIT	15.2	0.5000	0.0110
OR1	SU_S	J2	ORIFICE			
OR2	SU_N	J1	ORIFICE			

Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C10	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C11	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C12	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C13	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C14	CIRCULAR	0.38	0.11	0.09	0.38	1	0.21
C15	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C16	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C17	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C18	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C19	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C2	CIRCULAR	0.38	0.11	0.09	0.38	1	0.13
C20	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C21	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C22	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C23	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36

C24	CIRCULAR	0.75	0.44	0.19	0.75	1	0.93
C25	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C26	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C27	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C28	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C29	CIRCULAR	0.38	0.11	0.09	0.38	1	0.16
C3	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C30	CIRCULAR	0.60	0.28	0.15	0.60	1	0.50
C31	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C32	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C33	CIRCULAR	0.38	0.11	0.09	0.38	1	0.78
C34	CIRCULAR	0.38	0.11	0.09	0.38	1	0.17
C35	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C36	CIRCULAR	0.75	0.44	0.19	0.75	1	0.94
C37	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C4	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C5	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C6	CIRCULAR	0.38	0.11	0.09	0.38	1	0.14
C7	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C8	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C9	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51

************ NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CMS
Process Models:
Rainfall/Runoff YES RDII NO
Snowmelt NO
Groundwater NO

******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.176	25.000
Evaporation Loss	0.000	0.000
Infiltration Loss	0.017	2.383
Surface Runoff	0.160	22.630
Final Storage	0.000	0.000
Continuity Error (%)	-0.049	
**************************************	Volume hectare-m	Volume 10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.160	1.595
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.160	1.596
Flooding Loss		0.000
	0.000	
Evaporation Loss	0.000	0.000

0.000

0.000

0.000

-0.034

0.000

0.000

0.000

****** Time-Step Critical Elements

Exfiltration Loss
Initial Stored Volume

Final Stored Volume
Continuity Error (%)

None

Highest Flow Instability Indexes

Link C2 (2) Link OR1 (1) Link OR2 (1)

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Runoff	Peak Runoff CMS	Runoff Coeff
Area_1	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.06	0.04	0.902
Area_10	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.02	0.01	0.902
Area_101	25.00	0.00	0.00	1.24	23.76	0.01	23.76	0.33	0.19	0.951
Area_102	25.00	0.00	0.00	1.24	23.76	0.01	23.76	0.27	0.16	0.951
Area_11	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.03	0.02	0.902
Area_12	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.04	0.02	0.902
Area_13	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.04	0.02	0.902
Area_14	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.04	0.03	0.902
Area_15	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.02	0.01	0.902
Area_16	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.03	0.02	0.902
Area_17	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.04	0.03	0.902
Area_18	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.04	0.03	0.902
Area_19	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.04	0.03	0.902
Area_2	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.04	0.02	0.902
Area_20	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.06	0.04	0.902
Area_2001	25.00	0.00	0.00	18.74	6.25	0.01	6.27	0.00	0.00	0.251
Area_2002	25.00	0.00	0.00	2.49	22.51	0.01	22.52	0.05	0.03	0.901
Area_2003	25.00	0.00	0.00	2.50	22.51	0.00	22.51	0.04	0.02	0.900
Area 2004	25.00	0.00	0.00	23.68	1.25	0.07	1.32	0.00	0.00	0.053
Area 2005	25.00	0.00	0.00	23.68	1.25	0.07	1.32	0.00	0.00	0.053
Area 21	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.05	0.03	0.902
Area 22	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.07	0.05	0.902
Area 23	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.04	0.02	0.902
Area 3	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.08	0.06	0.902
Area 4	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.06	0.04	0.902
Area 5	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.03	0.02	0.902
Area 6	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.03	0.02	0.902
Area 7	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.01	0.01	0.902
Area 8	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.03	0.02	0.902
Area 9	25.00	0.00	0.00	2.48	22.52	0.02	22.54	0.03	0.02	0.902

Node	Type	Average Depth Meters	-	HGL	Occu	of Max urrence hr:min	-
CB 10	JUNCTION	0.00	0.09	65.42	0	01:40	0.09
CB 23	JUNCTION	0.00	0.06	66.26	0	01:40	0.06
CB 27	JUNCTION	0.00	0.08	65.56	0	01:40	0.08
CB 28	JUNCTION	0.00	0.08	65.47	0	01:40	0.08
CB_29	JUNCTION	0.00	0.10	64.22	0	01:40	0.10
CB_5	JUNCTION	0.00	0.09	65.20	0	01:40	0.09
CBMH_11	JUNCTION	0.01	0.35	63.93	0	04:04	0.35
CBMH_12	JUNCTION	0.00	0.14	64.20	0	01:40	0.14
CBMH_14	JUNCTION	0.01	0.38	64.49	0	04:02	0.38
CBMH_15	JUNCTION	0.00	0.17	64.63	0	01:40	0.17
CBMH_18	JUNCTION	0.02	0.44	64.49	0	04:03	0.44
CBMH_19	JUNCTION	0.00	0.15	65.02	0	01:40	0.15
CBMH_2	JUNCTION	0.00	0.18	64.24	0	01:40	0.18
CBMH_21	JUNCTION	0.00	0.14	65.31	0	01:40	0.14
CBMH_22	JUNCTION	0.00	0.11	65.64	0	01:40	0.11
CBMH_3	JUNCTION	0.00	0.15	64.57	0	01:40	0.15
CBMH_4	JUNCTION	0.00	0.13	64.90	0	01:40	0.13
CBMH_6	JUNCTION	0.00	0.20	64.11	0	01:40	0.20
CBMH_7	JUNCTION	0.00	0.18	64.46	0	01:40	0.18
CBMH_8	JUNCTION	0.00	0.16	64.79	0	01:40	0.16
CBMH_9	JUNCTION	0.00	0.12	65.12	0	01:40	0.12
DCB_16	JUNCTION	0.00	0.14	64.94	0	01:40	0.14
J1 -	JUNCTION	0.01	0.07	63.82	0	04:01	0.07

J13	JUNCTION	0.02	0.40	63.94	0	04:04	0.40
J2	JUNCTION	0.01	0.07	63.31	0	04:05	0.07
MH 20	JUNCTION	0.00	0.14	65.13	0	01:40	0.14
MH_24	JUNCTION	0.01	0.35	64.49	0	04:03	0.35
MH_25	JUNCTION	0.00	0.29	64.70	0	01:40	0.28
MH_26	JUNCTION	0.00	0.31	64.87	0	01:40	0.31
MH_27	JUNCTION	0.00	0.10	63.99	0	01:40	0.10
MH_30	JUNCTION	0.01	0.20	63.94	0	04:03	0.20
MH 44	JUNCTION	0.01	0.07	63.58	0	04:02	0.07
MH_45	JUNCTION	0.01	0.07	63.18	0	04:05	0.07
OGS_1	JUNCTION	0.00	0.03	63.07	0	04:05	0.03
OGS_2	JUNCTION	0.01	0.06	63.53	0	04:02	0.06
Humber_Pl	OUTFALL	0.00	0.00	62.48	0	00:00	0.00
OF1	OUTFALL	0.01	0.06	63.47	0	04:02	0.06
OF2	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU_N	STORAGE	0.05	0.74	64.49	0	04:01	0.74
SU_S	STORAGE	0.05	0.70	63.93	0	04:05	0.70

			Maximum			Lateral	Total	Flow
		Lateral			of Max	Inflow	Inflow	Balance
		Inflow	Inflow		irrence	Volume	Volume	Error
Node	Type	CMS	CMS	days	hr:min	10^6 ltr	10^6 ltr	Percent
CB 10	JUNCTION	0.020	0.020	0	01:40	0.0293	0.0293	-0.009
CB 23	JUNCTION	0.012	0.012	0	01:40	0.018	0.018	-0.006
CB 27	JUNCTION	0.023	0.023	0	01:40	0.0338	0.0338	-0.003
CB 28	JUNCTION	0.023	0.023	0	01:40	0.0338	0.0338	-0.003
CB 29	JUNCTION	0.025	0.025	0	01:40	0.0361	0.0361	-0.005
CB 5	JUNCTION	0.023	0.023	0	01:40	0.0338	0.0338	-0.010
CBMH 11	JUNCTION	0.189	0.262	0	01:40	0.316	0.424	0.077
CBMH 12	JUNCTION	0.049	0.049	0	01:40	0.0721	0.0721	0.212
CBMH 14	JUNCTION	0.038	0.118	0	01:40	0.0563	0.179	-0.120
CBMH 15	JUNCTION	0.025	0.080	0	01:40	0.0361	0.117	0.514
CBMH 18	JUNCTION	0.043	0.330	0	01:40	0.0631	0.543	0.004
CBMH 19	JUNCTION	0.006	0.055	0	01:40	0.00902	0.0811	-0.006
CBMH 2	JUNCTION	0.026	0.101	0	01:40	0.0383	0.149	0.169
CBMH 21	JUNCTION	0.018	0.049	0	01:40	0.027	0.0721	-0.003
CBMH 22	JUNCTION	0.018	0.031	0	01:40	0.027	0.0451	-0.007
CBMH 3	JUNCTION	0.026	0.075	0	01:40	0.0383	0.11	-0.011
CBMH 4	JUNCTION	0.026	0.049	0	01:40	0.0383	0.0721	-0.008
CBMH 6	JUNCTION	0.014	0.108	0	01:40	0.0203	0.16	0.120
CBMH 7	JUNCTION	0.026	0.095	0	01:40	0.0383	0.14	-0.007
CBMH 8	JUNCTION	0.025	0.069	0	01:40	0.0361	0.101	-0.010
CBMH_9	JUNCTION	0.025	0.044	0	01:40	0.0361	0.0654	-0.007
DCB 16	JUNCTION	0.055	0.055	0	01:40	0.0811	0.0811	-0.010
J1 —	JUNCTION	0.000	0.010	0	04:01	0	0.711	-0.006
J13	JUNCTION	0.043	0.251	0	01:40	0.0631	0.378	-0.053
J2	JUNCTION	0.000	0.010	0	04:05	0	0.796	-0.006
MH_20	JUNCTION	0.000	0.049	0	01:40	0	0.0721	-0.001
MH_24	JUNCTION	0.000	0.290	0	01:40	0	0.476	-0.198
MH_25	JUNCTION	0.000	0.235	0	01:40	0	0.393	0.257
MH 26	JUNCTION	0.190	0.236	0	01:40	0.326	0.393	-0.000
MH_27	JUNCTION	0.000	0.024	0	01:40	0	0.0361	0.014
MH_30	JUNCTION	0.000	0.101	0	01:40	0	0.151	-0.116
MH_44	JUNCTION	0.000	0.010	0	04:01	0	0.711	0.007
MH_45	JUNCTION	0.000	0.010	0	04:05	0	0.796	0.001
OGS_1	JUNCTION	0.000	0.010	0	04:05	0	0.796	-0.001
OGS_2	JUNCTION	0.000	0.010	0	04:02	0	0.711	-0.007
Humber_Pl	OUTFALL	0.001	0.010	0	04:00	0.000793	0.797	0.000
OF1	OUTFALL	0.023	0.030	0	01:40	0.036	0.747	0.000
OF2	OUTFALL	0.031	0.031	0	01:40	0.0517	0.0517	0.000
SU_N	STORAGE	0.000	0.448	0	01:40	0	0.719	-0.099
SU_S	STORAGE	0.000	0.513	0	01:40	0	0.799	-0.085

No nodes were surcharged.

No nodes were flooded.

Storage Unit	Average Volume 1000 m3	Pont	Pcnt	Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pent Full	Time of Max Occurrence days hr:min	Maximum Outflow CMS
SU_N	0.032	1	0	0	0.587	23	0 04:01	0.012

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CMS	CMS	10^6 ltr
Humber Pl	24.35	0.004	0.010	0.797
OF1	20.58	0.004	0.030	0.747
OF2	2.58	0.002	0.031	0.052
System	15.84	0.010	0.069	1.596

		Maximum	Time	of Max	Maximum	Max/	Max/
		Flow	Occu	irrence	Veloc	Full	Full
Link	Type	CMS	days	hr:min	m/sec	Flow	Depth
	CONDUIT CONDUIT CONDUIT CONDUIT						
C10	CONDUIT	0.023	0	01:40	1.21	0.07	0.18
C11	CONDUIT	0.023	0	01:40	1.21	0.07	0.18
C12	CONDUIT	0.235	0	01:40	1.77	0.66	0.59
C13	CONDUIT CONDUIT CONDUIT	0.290	0	01:40	1.87	0.56	0.61
C14	CONDUIT	0.012	0	01:40	1.03	0.06	0.16
C15	CONDUIT	0.031	0	01:40	1.03	0.13	0.24
C16	CONDUIT	0.049	0	01:40	1.18	0.20	0.31
C17	CONDUIT	0.049				0.21	0.31
C18	CONDUIT	0.055	0	01:40	1.22	0.23	0.33
C19	CONDUIT	0.020	0	01:40	0.91 0.78	0.08	0.20
C2	CONDUIT	0.010	0	04:02	0.78	0.08	0.18
C20	CONDUIT	0.044	0	01:40	1.13	0.12	0.24
C21	CONDUIT	0.069 0.094				0.19	0.30
C22			0	01:40	1.40	0.26	0.35
C23		0.108	U	U1:40	1.40	0.30	0.38
C24	CONDUIT	0.251	0	01:40	1.79	0.27	0.54
C25	CONDUIT	0.023					
C26		0.049	0	01:40	1.15	0.10	0.21
C27	CONDUIT	0.075 0.101	0	01:40	1.30 1.41	0.15	0.26
C28			0	01:40	1.41	0.20	0.30
C29		0.049			1.26		0.38
C3	CONDUIT	0.010	0	04:01	0.78 1.39	0.13	0.24
C30			0	01:40	1.39	0.20	0.38
C31		0.024			0.99		
C32	CONDUIT	0.262	0	01:40	1.82	0.73	0.73
C33			0	04:05	2.44	0.01	0.08
C34	CONDUIT	0.010	0	04:02	0.85	0.06	0.17
C35	CONDUIT	0.235	0	01:40	1.78 1.94 0.99	0.46	0.48
C36	CONDUIT	0.330	0	01:40	1.94	0.35	0.60
C37		0.024	0	01:40	0.99	0.17	0.28
C4	CONDUIT	0.000	0	00:00	0.00 0.78	0.00	0.00
C5	CONDUIT	0.010	0	04:05	0.78	0.12	0.24
C6		0.010			0.75	0.07	0.18
C7	CONDUIT	0.055	0	01:40	1.21	0.15	0.26
C8	CONDUIT	0.079	0	01:40	1.34	0.22	0.33
C9		0.118	0	01:40	1.48	0.23	
OR1	ORIFICE		0				1.00
OR2	ORIFICE	0.010	0	04:01			1.00

	Adjusted /Actual		Up	Fract Down	ion of	Time Sup	in Flo	w Clas	s Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
C1	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C10	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C11	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C12	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C13	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.00	0.00
C14	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C15	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C16	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C17	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C18	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C19	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C2	1.00	0.00	0.10	0.00	0.79	0.12	0.00	0.00	0.79	0.00
C20	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C21	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C22	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C23	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.03	0.00
C24	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.00	0.00

C25	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C26	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C27	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C28	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.03	0.00
C29	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.04	0.00
C3	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C30	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.01	0.00
C31	1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.01	0.00
C32	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.01	0.00
C33	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C34	1.00	0.00	0.00	0.00	0.77	0.23	0.00	0.00	0.04	0.00
C35	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.04	0.00
C36	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.00	0.00
C37	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C4	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C5	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C6	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C7	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C8	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.05	0.00
C9	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.01	0.00

No conduits were surcharged.

Analysis begun on: Wed Oct 5 20:17:15 2022 Analysis ended on: Wed Oct 5 20:17:45 2022

Total elapsed time: 00:00:30

2-yr, 3-hour

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

WARNING 03: negative offset ignored for Link C2 WARNING 03: negative offset ignored for Link C32 WARNING 03: negative offset ignored for Link C34

Element Count

***** Raingage Summary

Name	Data Source		Recording Interval
25mm	25mm	INTENSITY	5 min.
3hr-100yr	3hr-100yr	INTENSITY	10 min.
3hr-2yr	3hr-2yr	INTENSITY	5 min.
3hr-5yr	3hr-5yr	INTENSITY	5 min.
6hr-100yr	6hr-100yr	INTENSITY	10 min.
6hr-2yr	6hr-2yr	INTENSITY	5 min.
6hr-5yr	6hr-5yr	INTENSITY	5 min.

Subcatchment Summary

Name Area_1 Area_10 Area_101 Area_102 Area_11 Area_12 Area_13 Area_14 Area_15 Area_16 Area_17 Area_18 Area_19 Area_2 Area_2001 Area_2001 Area_2001 Area_2002 Area_2003 Area_2004 Area_2004 Area_2005 Area_21 Area_21 Area_21 Area_22 Area_23 Area_21 Area_22 Area_23 Area_3 Area_3 Area_3 Area_4 Area_6 Area_6 Area_7 Area_6 Area_7 Area_8 Area_9	Area	Width	%Imperv	%Slope	Rain Gage	Outlet
Area_1	0.25	83.33	90.00	1.0000	3hr-2yr	CBMH_14
Area_10	0.08	26.67	90.00	1.0000	3hr-2yr	CB_23
Area_101	1.37	137.00	95.00	0.5000	3hr-2yr	MH_26
Area_102	1.13	113.00	95.00	0.5000	3hr-2yr	CBMH_11
Area_11	0.13	43.33	90.00	1.0000	3hr-2yr	CB_10
Area_12	0.16	53.33	90.00	1.0000	3hr-2yr	CBMH_9
Area_13	0.16	53.33	90.00	1.0000	3hr-2yr	CBMH_8
Area_14	0.17	56.67	90.00	1.0000	3hr-2yr	CBMH_7
Area_15	0.09	30.00	90.00	1.0000	3hr-2yr	CBMH_6
Area_16	0.15	50.00	90.00	1.0000	3hr-2yr	CB_5
Area_17	0.17	56.67	90.00	1.0000	3hr-2yr	CBMH_4
Area_18	0.17	56.67	90.00	1.0000	3hr-2yr	CBMH_3
Area_19	0.17	56.67	90.00	1.0000	3hr-2yr	CBMH_2
Area_2	0.16	53.33	90.00	1.0000	3hr-2yr	CBMH_15
Area_20	0.28	93.33	90.00	1.0000	3hr-2yr	J13
Area_2001	0.07	7.00	25.00	0.5000	3hr-2yr	OF2
Area_2002	0.21	21.00	90.00	0.5000	3hr-2yr	OF2
Area_2003	0.16	16.00	90.00	1.0000	3hr-2yr	OF1
Area_2004	0.02	13.33	5.00	0.5000	3hr-2yr	Humber_Pl
Area_2005	0.04	26.67	5.00	0.5000	3hr-2yr	Humber_Pl
Area_21	0.21	70.00	90.00	1.0000	3hr-2yr	CBMH_11
Area_22	0.32	106.67	90.00	1.0000	3hr-2yr	CBMH_12
Area_23	0.16	53.33	90.00	1.0000	3hr-2yr	CB_29
Area_3	0.36	120.00	90.00	1.0000	3hr-2yr	DCB_16
Area_4	0.28	93.33	90.00	1.0000	3hr-2yr	CBMH_18
Area_5	0.15	50.00	90.00	1.0000	3hr-2yr	CB_27
Area_6	0.15	50.00	90.00	1.0000	3hr-2yr	CB_28
Area_7	0.04	13.33	90.00	1.0000	3hr-2yr	CBMH_19
Area_8	0.12	40.00	90.00	1.0000	3hr-2yr	CBMH_21
Area_9	0.12	40.00	90.00	1.0000	3hr-2yr	CBMH_22

***** Node Summary

Name				Ponded Area	External Inflow
CB_10 CB_23 CB_27 CB_28	JUNCTION JUNCTION	65.33 66.20 65.48 65.39	1.34	10.0 10.0 10.0	
CB_29 CB_5	JUNCTION JUNCTION	64.11 65.11	2.43	0.0	
CBMH_11 CBMH_12 CBMH_14	JUNCTION JUNCTION JUNCTION	63.58 64.06 64.11	1.68	10.0 10.0 10.0	
CBMH_15 CBMH_18 CBMH 19	JUNCTION JUNCTION JUNCTION	64.47 64.05 64.88		10.0 0.0 10.0	
CBMH_2 CBMH_21 CBMH_22	JUNCTION JUNCTION JUNCTION	64.06 65.17 65.53	2.94 1.87 1.51	10.0 10.0 10.0	

CBMH 3	JUNCTION	64.42	2.58	10.0
CBMH_4	JUNCTION	64.78	2.22	10.0
CBMH 6	JUNCTION	63.91	2.73	10.0
CBMH_7	JUNCTION	64.27	2.73	10.0
CBMH_8	JUNCTION	64.63	2.37	10.0
CBMH_9	JUNCTION	64.99	2.01	10.0
DCB_16	JUNCTION	64.80		
J1	JUNCTION	63.75	3.27	0.0
J13	JUNCTION	63.54	3.10	10.0
J2	JUNCTION	63.24		0.0
MH_20	JUNCTION	64.99	2.30	0.0
MH_24	JUNCTION	64.13		10.0
MH_25	JUNCTION	64.42		0.0
MH_26	JUNCTION	64.56		
MH_27	JUNCTION			
MH_30	JUNCTION	63.73		0.0
MH_44	JUNCTION	63.51		
MH_45	JUNCTION	63.11		0.0
OGS_1	JUNCTION	63.04		
OGS_2	JUNCTION	63.47		
Humber_Pl	OUTFALL	62.48		0.0
OF1	OUTFALL	63.41	0.38	
OF2	OUTFALL	0.00	0.00	0.0
SU_N	STORAGE	63.75		0.0
SU_S	STORAGE	63.24	3.33	0.0

Name	From Node	To Node	Type	Length	%Slope	Roughness
C1	SU N	MH 44	CONDUIT	2.5	1.0001	0.0090
C10	CB 28	MH 26	CONDUIT	30.4	1.0001	0.0110
C11	CB 27	MH 26	CONDUIT	32.8	1.0001	0.0110
C12	MH 26	MH 25	CONDUIT	16.5	0.4970	0.0110
C13	MH 24	CBMH 18	CONDUIT	4.8	0.5000	0.0110
C14	CB 23	CBMH 22	CONDUIT	51.5	1.0001	0.0110
C15	CBMH 22	CBMH 21	CONDUIT	60.0	0.5000	0.0110
C16	CBMH 21	MH 20	CONDUIT	24.5	0.5020	0.0110
C17	MH_20	CBMH_19	CONDUIT	10.4	0.5000	0.0110
C18	CBMH 19	MH_24	CONDUIT	46.5	0.5011	0.0110
C19	CB_10	CBMH 9	CONDUIT	52.5	0.4991	0.0110
C2	MH 4 4	OGS_2	CONDUIT	11.6	0.3707	0.0110
C20	CBMH 9	CBMH_8	CONDUIT	60.0	0.5000	0.0110
C21	CBMH 8	CBMH_7	CONDUIT	60.0	0.5000	0.0110
C22	CBMH_7	CBMH_6	CONDUIT	60.0	0.5000	0.0110
C23	CBMH_6	J13	CONDUIT	29.9	0.5017	0.0110
C24	J13	SU_S	CONDUIT	4.0	0.5000	0.0110
C25	CB_5	CBMH_4	CONDUIT	52.5	0.4991	0.0110
C26	CBMH_4	CBMH_3	CONDUIT	60.0	0.5000	0.0110
C27	CBMH_3	CBMH_2	CONDUIT	60.0	0.5000	0.0110
C28	CBMH_2	MH_30	CONDUIT	53.4	0.4963	0.0110
C29	CBMH_12	CBMH_11	CONDUIT	50.0	0.5700	0.0110
C3	J1	MH_44	CONDUIT	2.5	0.4800	0.0110
C30	MH_30	J13	CONDUIT	9.3	0.4839	0.0110
C31	MH_27	CBMH_11	CONDUIT	8.2	0.5000	0.0110
C32	CBMH_11	SU_S	CONDUIT	13.2	0.5000	0.0110
C33	OGS_1	Humber_Pl	CONDUIT	4.0	14.1135	0.0110
C34	OGS_2	OF1	CONDUIT	8.7	0.6782	0.0110
C35	MH_25	MH_24	CONDUIT	44.2	0.5000	0.0110
C36	CBMH_18	SU_N	CONDUIT	3.9	0.5128	0.0110
C37	CB_29	MH_27	CONDUIT	32.9	0.4985	0.0110
C4	SU_S	MH_45	CONDUIT	9.4	1.0001	0.0090
C5	J2	MH_45	CONDUIT	9.4	0.5000	0.0110
C6	MH_45	OGS_1	CONDUIT	3.1	0.4839	0.0110
C7	DCB_16	CBMH_15	CONDUIT	54.4	0.5000	0.0110
C8	CBMH_15	CBMH_14	CONDUIT	60.0	0.5000	0.0110
C9	CBMH_14	SU_N	CONDUIT	15.2	0.5000	0.0110
OR1	SU_S	J2	ORIFICE			
OR2	SU_N	J1	ORIFICE			

Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C10	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C11	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C12	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C13	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C14	CIRCULAR	0.38	0.11	0.09	0.38	1	0.21
C15	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C16	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C17	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C18	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C19	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C2	CIRCULAR	0.38	0.11	0.09	0.38	1	0.13
C20	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C21	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C22	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C23	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36

C24	CIRCULAR	0.75	0.44	0.19	0.75	1	0.93
C25	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C26	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C27	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C28	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C29	CIRCULAR	0.38	0.11	0.09	0.38	1	0.16
C3	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C30	CIRCULAR	0.60	0.28	0.15	0.60	1	0.50
C31	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C32	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C33	CIRCULAR	0.38	0.11	0.09	0.38	1	0.78
C34	CIRCULAR	0.38	0.11	0.09	0.38	1	0.17
C35	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C36	CIRCULAR	0.75	0.44	0.19	0.75	1	0.94
C37	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C4	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C5	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C6	CIRCULAR	0.38	0.11	0.09	0.38	1	0.14
C7	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C8	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C9	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51

************* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CMS Process Models: Rainfall/Runoff YES RDII NO
Snowmelt NO
Groundwater NO

*******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.225	31.880
Evaporation Loss	0.000	0.000
Infiltration Loss	0.017	2.387
Surface Runoff	0.208	29.513
Final Storage	0.000	0.000
Continuity Error (%)	-0.066	
******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.208	2.081
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.208	2.081
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	-0.037	

******* Time-Step Critical Elements

None

Highest Flow Instability Indexes

Link C2 (3) Link OR1 (1) Link OR2 (1)

	Total Precip	Total Runon	Total Evap	Total Infil	Imperv Runoff	Perv Runoff	Total Runoff	Total Runoff	Peak Runoff	Runoff Coeff
Subcatchment	mm	mm	mm	mm	mm	mm	mm	10^6 ltr	CMS	
Area 1	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.07	0.06	0.924
Area 10	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.02	0.02	0.924
Area 101	31.88	0.00	0.00	1.24	30.30	0.35	30.65	0.42	0.26	0.961
Area 102	31.88	0.00	0.00	1.24	30.30	0.35	30.65	0.35	0.21	0.961
Area 11	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.04	0.03	0.924
Area 12	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.05	0.04	0.924
Area 13	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.05	0.04	0.924
Area 14	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.05	0.04	0.924
Area 15	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.03	0.02	0.924
Area 16	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.04	0.04	0.924
Area 17	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.05	0.04	0.924
Area 18	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.05	0.04	0.924
Area 19	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.05	0.04	0.924
Area_2	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.05	0.04	0.924
Area_20	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.08	0.07	0.924
Area_2001	31.88	0.00	0.00	19.96	7.98	3.95	11.93	0.01	0.00	0.374
Area_2002	31.88	0.00	0.00	2.50	28.70	0.68	29.39	0.06	0.04	0.922
Area_2003	31.88	0.00	0.00	2.52	28.71	0.66	29.37	0.05	0.03	0.921
Area_2004	31.88	0.00	0.00	23.95	1.60	6.34	7.94	0.00	0.00	0.249
Area 2005	31.88	0.00	0.00	23.95	1.60	6.34	7.94	0.00	0.00	0.249
Area_21	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.06	0.05	0.924
Area_22	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.09	0.08	0.924
Area_23	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.05	0.04	0.924
Area_3	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.11	0.09	0.924
Area_4	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.08	0.07	0.924
Area_5	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.04	0.04	0.924
Area_6	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.04	0.04	0.924
Area_7	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.01	0.01	0.924
Area_8	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.04	0.03	0.924
Area_9	31.88	0.00	0.00	2.46	28.72	0.73	29.45	0.04	0.03	0.924

		Average	Maximum	Maximum	Time of Max		Reported
		Depth	Depth	HGL	Occu	rrence	Max Depth
Node	Type	Meters	Meters	Meters	days	hr:min	Meters
CB_10	JUNCTION		0.11			01:05	0.11
CB_23	JUNCTION		0.08			01:05	
CB_27	JUNCTION	0.00	0.10	65.59	0	01:05	0.10
CB_28	JUNCTION	0.00	0.10	65.49	0	01:05	0.10
CB_29	JUNCTION	0.00	0.13	64.25	0	01:05	0.13
CB_5	JUNCTION	0.00	0.11	65.23	0	01:05	0.11
CBMH 11	JUNCTION	0.03	0.53	64.12	0	03:08	0.53
CBMH 12	JUNCTION	0.00	0.19	64.25	0	01:05	0.19
CBMH 14	JUNCTION	0.02	0.56	64.67	0	02:58	0.56
CBMH 15	JUNCTION	0.00	0.22	64.68	0	01:05	0.22
CBMH 18	JUNCTION	0.03	0.61	64.66	0	02:59	0.61
CBMH 19	JUNCTION	0.00	0.19	65.07	0	01:05	0.19
CBMH 2	JUNCTION	0.00	0.23	64.29	0	01:05	0.23
CBMH 21	JUNCTION	0.00	0.18	65.35	0	01:05	0.18
CBMH 22	JUNCTION	0.00	0.14	65.67	0	01:05	0.14
CBMH 3	JUNCTION	0.00	0.20	64.61	0	01:05	0.20
CBMH 4	JUNCTION	0.00	0.16	64.94	0	01:05	0.16
CBMH 6	JUNCTION	0.01	0.25	64.17	0	01:05	0.25
CBMH 7	JUNCTION	0.00	0.24	64.51	0	01:05	0.24
CBMH 8	JUNCTION	0.00	0.20	64.83	0	01:05	0.20
CBMH 9	JUNCTION	0.00	0.16		0	01:05	
DCB 16	JUNCTION	0.00	0.18			01:05	0.18
J1 -	JUNCTION	0.01	0.08	63.83	0	02:59	0.08

J13	JUNCTION	0.03	0.60	64.13	0	03:02	0.59
J2	JUNCTION	0.01	0.08	63.31	Ō	03:07	0.08
MH 20	JUNCTION	0.00	0.18	65.17	0	01:05	0.18
MH 24	JUNCTION	0.02	0.53	64.66	0	02:59	0.53
MH 25	JUNCTION	0.01	0.35	64.77	0	01:05	0.35
MH 26	JUNCTION	0.00	0.40	64.95	0	01:05	0.39
MH 27	JUNCTION	0.01	0.23	64.12	0	03:08	0.23
MH 30	JUNCTION	0.01	0.39	64.12	0	03:06	0.39
MH 44	JUNCTION	0.01	0.10	63.62	0	03:00	0.10
MH 45	JUNCTION	0.01	0.07	63.19	0	03:07	0.07
OGS 1	JUNCTION	0.00	0.03	63.07	0	03:08	0.03
OGS 2	JUNCTION	0.01	0.09	63.56	0	02:59	0.09
Humber Pl	OUTFALL	0.00	0.00	62.48	0	00:00	0.00
OF1	OUTFALL	0.01	0.09	63.50	0	03:00	0.09
OF2	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU N	STORAGE	0.06	0.91	64.66	0	02:59	0.91
su_s	STORAGE	0.07	0.88	64.12	0	03:07	0.88

			Maximum			Lateral	Total	Flow
		Lateral			of Max	Inflow	Inflow	Balance
		Inflow	Inflow		irrence	Volume	Volume	Error
Node	Type	CMS	CMS	days	hr:min	10^6 ltr	10^6 ltr	Percent
CB 10	JUNCTION	0.033	0.033	0	01:05	0.0383	0.0383	-0.012
CB 23	JUNCTION	0.020	0.020	0	01:05	0.0236	0.0236	-0.007
CB 27	JUNCTION	0.038	0.038	0		0.0442	0.0442	-0.004
CB 28	JUNCTION	0.038	0.038	0	01:05	0.0442	0.0442	-0.004
CB 29	JUNCTION	0.040	0.040	0	01:05	0.0471	0.0471	0.120
CB 5	JUNCTION	0.038	0.038	0	01:05	0.0442	0.0442	-0.012
CBMH 11	JUNCTION	0.265	0.384	0	01:05	0.408	0.549	-0.020
CBMH 12	JUNCTION	0.080	0.080	0	01:05	0.0942	0.0942	0.854
CBMH 14	JUNCTION	0.063	0.190	0	01:05	0.0736	0.255	-0.264
CBMH 15	JUNCTION	0.040	0.129	0	01:05	0.0471	0.155	0.586
CBMH 18	JUNCTION	0.070	0.480	0	01:05	0.0824	0.697	-0.003
CBMH 19	JUNCTION	0.010	0.088	0	01:05	0.0118	0.106	-0.007
CBMH 2	JUNCTION	0.043	0.160	0	01:05	0.0501	0.194	0.319
CBMH 21	JUNCTION	0.030	0.079	0	01:05	0.0353	0.0942	-0.003
CBMH 22	JUNCTION	0.030	0.050	0	01:05	0.0353	0.0589	-0.010
CBMH 3	JUNCTION	0.043	0.120	0	01:05	0.0501	0.144	-0.012
CBMH 4	JUNCTION	0.043	0.080	0	01:05	0.0501	0.0942	-0.011
CBMH 6	JUNCTION	0.023	0.170	0	01:05	0.0265	0.21	0.058
CBMH_7	JUNCTION	0.043	0.150	0	01:05	0.0501	0.183	0.147
CBMH 8	JUNCTION	0.040	0.111	0	01:05	0.0471	0.133	-0.011
CBMH 9	JUNCTION	0.040	0.072	0	01:05	0.0471	0.0854	-0.010
DCB 16	JUNCTION	0.090	0.090	0	01:05	0.106	0.106	0.166
J1 —	JUNCTION	0.000	0.012	0	02:59	0	0.878	-0.005
J13	JUNCTION	0.070	0.394	0	01:05	0.0824	0.578	-0.037
J2	JUNCTION	0.000	0.011	0	03:07	0	1.03	-0.004
MH_20	JUNCTION	0.000	0.078	0	01:05	0	0.0942	-0.001
MH_24	JUNCTION	0.000	0.420	0		0	0.612	-0.310
MH_25	JUNCTION	0.000	0.332	0	01:05	0	0.508	0.360
MH_26	JUNCTION	0.257	0.331	0	01:05	0.42	0.508	0.047
MH_27	JUNCTION	0.000	0.040	0	01:05	0	0.0471	-0.032
MH_30	JUNCTION	0.000	0.160	0	01:05	0	0.21	-0.281
MH_44	JUNCTION	0.000	0.021	0	02:59	0	0.924	0.006
MH_45	JUNCTION	0.000	0.012	0	03:08	0	1.04	0.001
OGS_1	JUNCTION	0.000	0.012	0	03:08	0	1.04	-0.000
OGS_2	JUNCTION	0.000	0.021	0	02:59	0	0.924	-0.006
Humber_Pl	OUTFALL	0.001	0.012	0	03:05	0.00476	1.04	0.000
OF1	OUTFALL	0.033	0.039		01:05	0.047	0.971	0.000
OF2	OUTFALL	0.043	0.043	0	01:05	0.0701	0.0701	0.000
SU_N	STORAGE	0.000	0.667	0	01:05	0	0.951	-0.092
SU_S	STORAGE	0.000	0.776	0	01:05	0	1.11	-0.107

No nodes were surcharged.

No nodes were flooded.

Storage Unit	Average Volume	Pcnt	Evap Exfil Pent Pent Loss Loss	Maximum Volume	Max Pent	Time of Max Occurrence days hr:min	Maximum Outflow
Storage Unit	1000 m3 0.045	Full 2	Loss Loss	1000 m3 0.767	Full 30	0 02:59	CMS

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CMS	CMS	10^6 ltr
Humber_Pl	26.62	0.005	0.012	1.040
OF1	22.05	0.005	0.039	0.971
OF2	2.60	0.003	0.043	0.070
System	17.09	0.013	0.090	2.081

Link	Туре	Flow CMS	Occu days	hr:min	Maximum Veloc m/sec	Full Flow	Full Depth
C1	CONDUIT CONDUIT	0.010	0	02:59	1.18	0.20	0.31
C10	CONDUIT	0.037	0	01:05	1.40	0.11	0.23
C11	CONDUIT	0.037	0	01:05	1.40	0.11	0.23
C12	CONDUIT CONDUIT	0.332	0	01:05	1.92	0.93	0.75
C13	CONDUIT	0.419	0	01:05	2.02	0.82	0.90
	CONDUIT						
C15	CONDUIT CONDUIT CONDUIT	0.049	0	01:05	1.18	0.21	0.31
C16	CONDUIT	0.078	0	01:05	1.35	0.33	0.39
C17	CONDUIT	0.079	0	01:05	1.35	0.33	0.40
C18	CONDUIT	0.088	0	01:05	1.39 1.05 0.94	0.37	0.42
C19	CONDUIT	0.032	0	01:05	1.05	0.13	0.25
C2	CONDUIT	0.021	0	02:59	0.94	0.17	0.26
C20	CONDUIT	0.071	0	01:05	1.30	0.20	0.30
C21	CONDUIT	0.109	0	01:05	1.46 1.59	0.30	0.38
C22	CONDUIT	0.150	0	01:05	1.59	0.42	0.45
C23	CONDUIT	0.171	0	01:05	1.64	0.47	0.55
C24	CONDUIT	0.394	0	01:05	2.02 1.07 1.32	0.42	0.80
C25	CONDUIT	0.037	0	01:05	1.07	0.10	0.22
C26	CONDUIT	0.078	0	01:05	1.32	0.15	0.26
C27	CONDUIT CONDUIT CONDUIT	0.119	0	01:05	1.48	0.23	0.33
C28	CONDUIT	0.160	0	01:05	1.60	0.31	0.38
C29	CONDUIT	0.080	0	01:05	1.33	0.51	0.57
C3	CONDUIT CONDUIT CONDUIT	0.012	0	02:59	0.80	0.15	0.26
C30	CONDUIT	0.160	0	01:05	1.58	0.32	0.69
C31	CONDUIT	0.040	0	01:05	1.09	0.27	0.66
C32	CONDUIT	0.382	0	01:05	2.05	1.06	1.00
C33	CONDUIT	0.012	0	03:08	2.58	0.02	0.09
C34	CONDUIT	0.021	0	03:00	2.05 2.58 1.05	0.12	0.24
C35	CONDUIT	0.332	0	01:05	1.93	0.65	0.59
C36	CONDUIT	0.480	0	01:05	2.14 1.13	0.51	0.83
C37	CONDUIT	0.040	0	01:05	1.13	0.27	0.36
C4	CONDUIT	0.001	0	03:08	0.54	0.01	0.08
C5	CONDUIT	0.011	0	03:07	0.81 0.79	0.14	0.25
C6	CONDUIT	0.012	0	03:08	0.79	0.08	0.20
C7	CONDUIT	0.089	0	01:05	1.38	0.25	0.34
C8	CONDUIT	0.128	0	01:05	1.53 1.68	0.36	0.66
C9	CONDUIT	0.189	0	01:05	1.68	0.37	
OR1	ORIFICE						1.00
OR2	ORIFICE	0.012	0	02:59			1.00

	Adjusted /Actual		Up	Fract Down	ion of	Time Sup	in Flo	w Clas	s Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
C1	1.00	0.99	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
C10	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C11	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C12	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.01	0.00
C13	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.00	0.00
C14	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C15	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C16	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C17	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C18	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C19	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C2	1.00	0.00	0.11	0.00	0.76	0.13	0.00	0.00	0.79	0.00
C20	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C21	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C22	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.03	0.00
C23	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.03	0.00
C24	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.90	0.01	0.00

C25	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C26	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C27	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C28	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.05	0.00
C29	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.06	0.00
C3	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C30	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.92	0.01	0.00
C31	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.01	0.00
C32	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.90	0.01	0.00
C33	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C34	1.00	0.00	0.00	0.00	0.76	0.24	0.00	0.00	0.04	0.00
C35	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.03	0.00
C36	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.00	0.00
C37	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.03	0.00
C4	1.00	0.99	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
C5	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C6	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C7	1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.02	0.00
C8	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.04	0.00
C9	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.01	0.00

******* Conduit Surcharge Summary

Conduit	 Both Ends			Hours Above Full Normal Flow	Hours Capacity Limited
C32 C9	0.83 0.01	0.83	4.15 1.77	0.02 0.01	0.01

Analysis begun on: Wed Oct 5 20:35:01 2022 Analysis ended on: Wed Oct 5 20:35:31 2022 Total elapsed time: 00:00:30

2-yr, 6-hour

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) WARNING 03: negative offset ignored for Link C2 WARNING 03: negative offset ignored for Link C32 WARNING 03: negative offset ignored for Link C34 *********** Element Count ************* Number of rain gages 7

Name	Data Source	Data Type	Recording Interval					
25mm	25mm	INTENSITY	5 min.					
3hr-100yr	3hr-100yr	INTENSITY	10 min.					
3hr-2yr	3hr-2yr	INTENSITY	5 min.					
3hr-5yr	3hr-5yr	INTENSITY	5 min.					
6hr-100yr	6hr-100yr	INTENSITY	10 min.					
6hr-2yr	6hr-2yr	INTENSITY	5 min.					
6hr-5vr	6hr-5vr	TNTENSITY	5 min.					

Name	Area	Width	%Imperv	%Slope Rain Ga	ge Outlet
Name	0.25	83.33	90.00	1.0000 6hr-2yr	CBMH_14
Area_10	0.08	26.67	90.00	1.0000 6hr-2yr	CB_23
Area_101	1.37	137.00	95.00	0.5000 6hr-2yr	MH_26
Area_102	1.13	113.00	95.00	0.5000 6hr-2yr	CBMH_11
Area_11	0.13	43.33	90.00	1.0000 6hr-2yr	CB_10
Area_12	0.16	53.33	90.00	1.0000 6hr-2yr	CBMH_9
Area_13	0.16	53.33	90.00	1.0000 6hr-2yr	CBMH_8
Area_14	0.17	56.67	90.00	1.0000 6hr-2yr	CBMH_7
Area_15	0.09	30.00	90.00	1.0000 6hr-2yr	CBMH_6
Area_16	0.15	50.00	90.00	1.0000 6hr-2yr	CB_5
Area_17	0.17	56.67	90.00	1.0000 6hr-2yr	CBMH_4
Area_18	0.17	56.67	90.00	1.0000 6hr-2yr	CBMH_3
Area_19	0.17	56.67	90.00	1.0000 6hr-2yr	CBMH_2
Area_2	0.16	53.33	90.00	1.0000 6hr-2yr	CBMH_15
Area_20	0.28	93.33	90.00	1.0000 6hr-2yr	J13
Area_2001	0.07	7.00	25.00	0.5000 6hr-2yr	OF2
Area_2002	0.21	21.00	90.00	0.5000 6hr-2yr	OF2
Area_2003	0.16	16.00	90.00	1.0000 6hr-2yr	OF1
Area_2004	0.02	13.33	5.00	0.5000 6hr-2yr	Humber_Pl
Area_2005	0.04	26.67	5.00	0.5000 6hr-2yr	Humber_Pl
Area_21	0.21	70.00	90.00	1.0000 6hr-2yr	CBMH_11
Area_22	0.32	106.67	90.00	1.0000 6hr-2yr	CBMH_12
Area_23	0.16	53.33	90.00	1.0000 6hr-2yr	CB_29
Area_3	0.36	120.00	90.00	1.0000 6hr-2yr	DCB_16
Area_4	0.28	93.33	90.00	1.0000 6hr-2yr	CBMH_18
Area_5	0.15	50.00	90.00	1.0000 6hr-2yr	CB_27
Area_6	0.15	50.00	90.00	1.0000 6hr-2yr	CB_28
Area_7	0.04	13.33	90.00	1.0000 6hr-2yr	CBMH_19
Area_8	0.12	40.00	90.00	1.0000 6hr-2yr	CBMH_21
Area_9	0.12	40.00	90.00	1.0000 6hr-2yr	CBMH_22

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
CB_10	JUNCTION	65.33	1.41	10.0	
CB_23 CB_27	JUNCTION JUNCTION	66.20 65.48	0.93 1.34	10.0	
CB_28	JUNCTION	65.39		10.0	
CB_29 CB 5	JUNCTION JUNCTION	64.11 65.11	2.43 1.63	0.0 10.0	
CBMH 11	JUNCTION	63.58	2.16	10.0	
CBMH_12	JUNCTION	64.06	1.68	10.0	
CBMH_14	JUNCTION	64.11 64.47			
CBMH_15 CBMH_18	JUNCTION JUNCTION	64.47		10.0	
CBMH_19	JUNCTION	64.88	2.38		
CBMH_2 CBMH_21	JUNCTION JUNCTION	64.06 65.17	2.94 1.87	10.0	
CBMH_22	JUNCTION	65.53	1.51	10.0	

CBMH 3	JUNCTION	64.42	2.58	10.0
CBMH 4	JUNCTION	64.78	2.22	10.0
CBMH 6	JUNCTION	63.91	2.73	10.0
CBMH 7	JUNCTION	64.27	2.73	10.0
CBMH 8	JUNCTION	64.63	2.37	10.0
CBMH 9	JUNCTION	64.99	2.01	10.0
DCB_16	JUNCTION	64.80	1.52	10.0
J1 _	JUNCTION	63.75	3.27	0.0
J13	JUNCTION	63.54	3.10	10.0
J2	JUNCTION	63.24	3.33	0.0
MH_20	JUNCTION	64.99	2.30	0.0
MH_24	JUNCTION	64.13	2.50	10.0
MH_25	JUNCTION	64.42	2.63	0.0
MH_26	JUNCTION	64.56	2.70	0.0
MH_27	JUNCTION	63.89	2.02	0.0
MH_30	JUNCTION	63.73	3.08	0.0
MH_44	JUNCTION	63.51	3.51	0.0
MH_45	JUNCTION	63.11	3.46	0.0
OGS_1	JUNCTION	63.04	3.34	0.0
OGS_2	JUNCTION	63.47	3.01	0.0
Humber_Pl	OUTFALL	62.48	0.38	0.0
OF1	OUTFALL	63.41	0.38	0.0
OF2	OUTFALL	0.00	0.00	0.0
SU_N	STORAGE	63.75		
SU_S	STORAGE	63.24	3.33	0.0

Name	From Node	To Node	Type	Length	%Slope Ro	oughness
C1	SU N	MH 44	CONDUIT	2.5	1.0001	0.0090
C10	CB 28	MH 26	CONDUIT	30.4	1.0001	0.0110
C11	CB 27	MH 26	CONDUIT	32.8	1.0001	0.0110
C12	MH 26	MH 25	CONDUIT	16.5	0.4970	0.0110
C13	MH 24	CBMH 18	CONDUIT	4.8	0.5000	0.0110
C14	CB 23	CBMH 22	CONDUIT	51.5	1.0001	0.0110
C15	CBMH 22	CBMH 21	CONDUIT	60.0	0.5000	0.0110
C16	CBMH 21	MH 20	CONDUIT	24.5	0.5020	0.0110
C17	MH 20	CBMH 19	CONDUIT	10.4	0.5000	0.0110
C18	CBMH 19	MH 24	CONDUIT	46.5	0.5011	0.0110
C19	CB 10	CBMH 9	CONDUIT	52.5	0.4991	0.0110
C2	MH 4 4	ogs 2	CONDUIT	11.6	0.3707	0.0110
C20	CBMH_9	CBMH_8	CONDUIT	60.0	0.5000	0.0110
C21	CBMH_8	CBMH_7	CONDUIT	60.0	0.5000	0.0110
C22	CBMH 7	CBMH_6	CONDUIT	60.0	0.5000	0.0110
C23	CBMH 6	J13	CONDUIT	29.9	0.5017	0.0110
C24	J13	SU_S	CONDUIT	4.0	0.5000	0.0110
C25	CB_5	CBMH_4	CONDUIT	52.5	0.4991	0.0110
C26	CBMH_4	CBMH_3	CONDUIT	60.0	0.5000	0.0110
C27	CBMH_3	CBMH_2	CONDUIT	60.0	0.5000	0.0110
C28	CBMH 2	MH_30	CONDUIT	53.4	0.4963	0.0110
C29	CBMH_12	CBMH_11	CONDUIT	50.0	0.5700	0.0110
C3	J1	MH_44	CONDUIT	2.5	0.4800	0.0110
C30	MH_30	J13	CONDUIT	9.3	0.4839	0.0110
C31	MH_27	CBMH_11	CONDUIT	8.2	0.5000	0.0110
C32	CBMH_11	SU_S	CONDUIT	13.2	0.5000	0.0110
C33	ogs_1	Humber_Pl	CONDUIT	4.0	14.1135	0.0110
C34	OGS_2	OF1	CONDUIT	8.7	0.6782	0.0110
C35	MH_25	MH_24	CONDUIT	44.2	0.5000	0.0110
C36	CBMH_18	SU_N	CONDUIT	3.9	0.5128	0.0110
C37	CB_29	MH_27	CONDUIT	32.9	0.4985	0.0110
C4	SU_S	MH_45	CONDUIT	9.4	1.0001	0.0090
C5	J2	MH_45	CONDUIT	9.4	0.5000	0.0110
C6	MH_45	OGS_1	CONDUIT	3.1	0.4839	0.0110
C7	DCB_16	CBMH_15	CONDUIT	54.4	0.5000	0.0110
C8	CBMH_15	CBMH_14	CONDUIT	60.0	0.5000	0.0110
C9	CBMH_14	SU_N	CONDUIT	15.2	0.5000	0.0110
OR1	SU_S	J2	ORIFICE			
OR2	SU_N	J1	ORIFICE			

Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C10	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C11	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C12	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C13	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C14	CIRCULAR	0.38	0.11	0.09	0.38	1	0.21
C15	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C16	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C17	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C18	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C19	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C2	CIRCULAR	0.38	0.11	0.09	0.38	1	0.13
C20	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C21	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C22	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C23	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36

C24	CIRCULAR	0.75	0.44	0.19	0.75	1	0.93
C25	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C26	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C27	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C28	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C29	CIRCULAR	0.38	0.11	0.09	0.38	1	0.16
C3	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C30	CIRCULAR	0.60	0.28	0.15	0.60	1	0.50
C31	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C32	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C33	CIRCULAR	0.38	0.11	0.09	0.38	1	0.78
C34	CIRCULAR	0.38	0.11	0.09	0.38	1	0.17
C35	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C36	CIRCULAR	0.75	0.44	0.19	0.75	1	0.94
C37	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C4	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C5	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C6	CIRCULAR	0.38	0.11	0.09	0.38	1	0.14
C7	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C8	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C9	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

****** Analysis Options

Flow Units CMS
Process Models:
Rainfall/Runoff YES

Runoff Quantity Continuity	hectare-m	mm
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	0.260 0.000 0.017 0.243 0.000 -0.052	36.865 0.000 2.475 34.409 0.000
**************************************	Volume hectare-m	Volume 10^6 ltr
Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow External Inflow External Outflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume Continuity Error (%)	0.000 0.243 0.000 0.000 0.000 0.243 0.000 0.000 0.000 0.000 0.000	0.000 2.426 0.000 0.000 0.000 2.427 0.000 0.000 0.000 0.000

Volume

Depth

******* Time-Step Critical Elements Link C33 (1.54%)

Highest Flow Instability Indexes

Link C2 (4) Link OR1 (1) Link OR2 (1)

****** Routing Time Step Summary ***********

0.15 sec 1.00 sec 1.00 sec 0.00 2.00 0.00 99.94 % 0.05 % 0.01 % 0.00 %

0.00 %

******* Subcatchment Runoff Summary

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
Area 1	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.09	0.06	0.931
Area_10	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.03	0.02	0.931
Area_101	36.86	0.00	0.00	1.29	35.03	0.56	35.59	0.49	0.28	0.965
Area_102	36.86	0.00	0.00	1.29	35.03	0.56	35.59	0.40	0.23	0.965
Area_11	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.04	0.03	0.931
Area_12	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.05	0.04	0.931
Area_13	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.05	0.04	0.931
Area_14	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.06	0.04	0.931
Area_15	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.03	0.02	0.931
Area_16	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.05	0.04	0.931
Area 17	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.06	0.04	0.931
Area_18	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.06	0.04	0.931
Area_19	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.06	0.04	0.931
Area_2	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.05	0.04	0.931
Area_20	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.10	0.07	0.931
Area_2001	36.86	0.00	0.00	20.55	9.22	7.10	16.32	0.01	0.00	0.443
Area_2002	36.86	0.00	0.00	2.59	33.19	1.10	34.29	0.07	0.04	0.930
Area_2003	36.86	0.00	0.00	2.61	33.19	1.08	34.27	0.05	0.03	0.930
Area_2004	36.86	0.00	0.00	24.74	1.84	10.29	12.13	0.00	0.00	0.329
Area_2005	36.86	0.00	0.00	24.74	1.84	10.29	12.13	0.00	0.00	0.329
Area_21	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.07	0.05	0.931
Area_22	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.11	0.08	0.931
Area_23	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.05	0.04	0.931
Area_3	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.12	0.09	0.931
Area_4	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.10	0.07	0.931
Area_5	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.05	0.04	0.931
Area_6	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.05	0.04	0.931
Area_7	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.01	0.01	0.931
Area_8	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.04	0.03	0.931
Area_9	36.86	0.00	0.00	2.56	33.20	1.13	34.33	0.04	0.03	0.931

***** Node Depth Summary

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL	Occu	irrence	Max Depth
Node	Type	Meters	Meters	Meters	days	hr:min	Meters
CB_10	JUNCTION		0.11			02:10	0.11
CB_23	JUNCTION		0.08			02:10	
CB_27	JUNCTION	0.00	0.10	65.59	0	02:10	0.10
CB_28	JUNCTION	0.00	0.10	65.49	0	02:10	0.10
CB_29	JUNCTION	0.00	0.14	64.25	0	02:10	0.14
CB 5	JUNCTION	0.00	0.12	65.23	0	02:10	0.12
CBMH 11	JUNCTION	0.03	0.57	64.15	0	04:41	0.57
CBMH 12	JUNCTION	0.00	0.19	64.25	0	02:10	0.19
CBMH 14	JUNCTION	0.03	0.58	64.68	0	03:37	0.57
CBMH 15	JUNCTION	0.01	0.22	64.69	0	02:10	0.22
CBMH 18	JUNCTION	0.03	0.63	64.68	0	03:42	0.63
CBMH 19	JUNCTION	0.00	0.19	65.07	0	02:10	0.19
CBMH 2	JUNCTION	0.00	0.23	64.29	0	02:10	0.23
CBMH 21	JUNCTION	0.00	0.18	65.35	0	02:10	0.18
CBMH 22	JUNCTION	0.00	0.14	65.67	0	02:10	0.14
CBMH 3	JUNCTION	0.00	0.20	64.62	0	02:10	0.20
CBMH 4	JUNCTION	0.00	0.16	64.94	0	02:10	0.16
CBMH 6	JUNCTION	0.01	0.26	64.17	0	02:10	0.26
CBMH 7	JUNCTION	0.00	0.24	64.51	0	02:10	0.24
CBMH 8	JUNCTION	0.00	0.20	64.83	0	02:10	0.20
CBMH 9	JUNCTION	0.00	0.16		0	02:10	
DCB 16	JUNCTION	0.00	0.18			02:10	0.18
J1 -	JUNCTION	0.01	0.08	63.83	0	03:39	0.08

J13	JUNCTION	0.04	0.62	64.16	0	04:18	0.62
J2	JUNCTION	0.01	0.08	63.31	0	04:41	0.08
MH_20	JUNCTION	0.00	0.18	65.17	0	02:10	0.18
MH_24	JUNCTION	0.03	0.55	64.68	0	03:42	0.54
MH_25	JUNCTION	0.01	0.37	64.79	0	02:10	0.37
MH_26	JUNCTION	0.00	0.41	64.97	0	02:10	0.41
MH_27	JUNCTION	0.01	0.26	64.15	0	04:41	0.26
MH_30	JUNCTION	0.02	0.42	64.15	0	04:39	0.42
MH_44	JUNCTION	0.01	0.12	63.63	0	03:39	0.12
MH_45	JUNCTION	0.01	0.09	63.20	0	04:41	0.09
OGS 1	JUNCTION	0.01	0.04	63.08	0	04:41	0.04
OGS_2	JUNCTION	0.01	0.10	63.57	0	03:39	0.10
Humber_Pl	OUTFALL	0.00	0.00	62.48	0	00:00	0.00
OF1	OUTFALL	0.01	0.10	63.51	0	03:39	0.10
OF2	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU_N	STORAGE	0.07	0.93	64.68	0	03:39	0.93
SU_S	STORAGE	0.08	0.91	64.15	0	04:41	0.91

			Maximum			Lateral	Total	Flow
		Lateral			of Max	Inflow	Inflow	Balance
		Inflow	Inflow		irrence	Volume	Volume	Error
Node	Type	CMS	CMS	days	hr:min	10^6 ltr	10^6 ltr	Percent
CB 10	JUNCTION	0.033	0.033	0	02:10	0.0446	0.0446	-0.008
CB 23	JUNCTION	0.021	0.021	0		0.0275	0.0275	-0.005
CB 27	JUNCTION	0.038	0.038	0		0.0515	0.0515	-0.003
CB 28	JUNCTION	0.038	0.038	0		0.0515	0.0515	-0.003
CB 29	JUNCTION	0.041	0.041	0	02:10	0.0549	0.0549	0.137
CB 5	JUNCTION	0.038	0.038	0	02:10	0.0515	0.0515	-0.009
CBMH 11	JUNCTION	0.283	0.405	0	02:10	0.474	0.638	-0.024
CBMH 12	JUNCTION	0.082	0.082		02:10	0.11	0.11	0.895
CBMH 14	JUNCTION	0.064	0.194	0	02:10	0.0858	0.28	-0.250
CBMH 15	JUNCTION	0.041	0.132	0	02:10	0.0549	0.179	0.547
CBMH 18	JUNCTION	0.072	0.505	0	02:10	0.0961	0.915	-0.006
CBMH 19	JUNCTION	0.010	0.090	0	02:10	0.0137	0.124	0.005
CBMH 2	JUNCTION	0.044	0.164	0	02:10	0.0584	0.226	0.273
CBMH 21	JUNCTION	0.031	0.080	0	02:10	0.0412	0.11	-0.002
CBMH 22	JUNCTION	0.031	0.051	0	02:10	0.0412	0.0687	-0.007
CBMH 3	JUNCTION	0.044	0.123	0	02:10	0.0584	0.168	0.068
CBMH 4	JUNCTION	0.044	0.081	0	02:10	0.0584	0.11	-0.007
СВМН 6	JUNCTION	0.023	0.174	0	02:10	0.0309	0.243	0.055
CBMH 7	JUNCTION	0.044	0.154	0	02:10	0.0584	0.213	0.159
CBMH 8	JUNCTION	0.041	0.113	0	02:10	0.0549	0.155	-0.008
CBMH 9	JUNCTION	0.041	0.074	0	02:10	0.0549	0.0996	-0.007
DCB 16	JUNCTION	0.092	0.092	0	02:10	0.124	0.124	0.183
J1 —	JUNCTION	0.000	0.012	0	03:39	0	0.953	-0.005
J13	JUNCTION	0.072	0.404	0	02:10	0.0961	0.664	-0.052
J2	JUNCTION	0.000	0.012	0	04:41	0	1.15	-0.004
MH_20	JUNCTION	0.000	0.080	0	02:10	0	0.11	-0.001
MH_24	JUNCTION	0.000	0.445	0	02:10	0	0.764	-0.276
MH_25	JUNCTION	0.000	0.354	0	02:10	0	0.591	0.349
MH_26	JUNCTION	0.278	0.354	0	02:10	0.488	0.591	0.049
MH_27	JUNCTION	0.000	0.041	0	02:10	0	0.0549	-0.048
MH_30	JUNCTION	0.000	0.163	0	02:10	0	0.242	-0.287
MH_44	JUNCTION	0.000	0.027	0	03:39	0	1.08	0.005
MH_45	JUNCTION	0.000	0.018	0	04:41	0	1.21	0.001
OGS_1	JUNCTION	0.000	0.018	0	04:41	0	1.21	-0.000
OGS_2	JUNCTION	0.000	0.027	0	03:39	0	1.08	-0.005
Humber_Pl	OUTFALL	0.001	0.018	0	04:38	0.00728	1.21	0.000
OF1	OUTFALL	0.034	0.042	0	02:10	0.0548	1.13	0.000
OF2	OUTFALL	0.046	0.046	0	02:10	0.0834	0.0834	0.000
SU_N	STORAGE	0.000	0.697	0	02:10	0	1.14	-0.093
SU_S	STORAGE	0.000	0.807	0	02:10	0	1.29	-0.100

No nodes were surcharged.

No nodes were flooded.

Storage Unit	Average Volume 1000 m3	Pont	Evap Pcnt Loss	Pcnt	Maximum Volume 1000 m3	Max Pont Full	Time of Max Occurrence days hr:min	Maximum Outflow CMS
SU N	0.052				0.783	30	0 03:39	0.034

SU_S

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CMS	CMS	10^6 ltr
Humber_Pl	28.18	0.005	0.018	1.213
OF1	23.24	0.006	0.042	1.130
OF2	3.86	0.003	0.046	0.083
System	18.42	0.014	0.097	2.427

		Maximum	Time	of Max	Maximum	Max/	Max/
		Flow	Occi	ırrence	Veloc m/sec	Full	Full
Link	Туре						
C1	CONDUIT	0.015	0	03:39	1.34	0.31	0.39
C10	CONDUIT	0.038	0	02:10	1.41	0.11	0.23
C11	CONDUIT	0.038	0	02:10	1.41	0.11	0.23
C12	CONDUIT	0.354	0	02:10	1.97	0.99	0.78
C13	CONDUIT	0.443	0	02:10	2.04	0.86	0.93
C14	CONDUIT	0.020	0	02:10	1.19	0.10	0.21
C15	CONDUIT CONDUIT CONDUIT	0.050	0	02:10	1.19	0.21	0.31
C16	CONDUIT	0.080	0	02:10	1.36	0.34	0.40
C17	CONDUIT	0.080	0	02:10	1.35	0.34	0.40
C18	CONDUIT CONDUIT CONDUIT	0.090	0	02:10	1.40	0.38	0.42
C19	CONDUIT	0.033	0	02:10	1.05	0.14	0.25
C2	CONDUIT	0.027	0	03:39	1.00	0.21	0.29
C20	CONDUIT	0.073	0	02:10	1.30	0.20	0.31
C21	CONDUIT	0.112	0	02:10	1.47 1.60	0.31	0.38
C22	CONDUIT	0.153	0	02:10	1.60	0.43	0.46
C23	CONDUIT	0.175	0	02:10	1.65	0.48	0.61
C24	CONDUIT	0.405	0	02:10	2.03	0.43	0.84
C25	CONDUIT	0.038	0	02:10	1.08	0.11	0.22
C26					1.32		
C27	CONDUIT	0.122	0	02:10	1.49 1.61	0.24	0.33
C28	CONDUIT	0.163	0	02:10	1.61	0.32	0.39
C29	CONDUIT	0.082	0	02:10	1.32	0.52	0.62
C3	CONDUIT CONDUIT CONDUIT	0.012	0	03:39	0.80	0.15	0.26
C30	CONDUIT	0.164	0	02:10	1.59	0.32	0.74
C31	CONDUIT	0.041	0	02:10	1.08	0.28	0.75
C32	CONDUIT	0.403	0	02:10	2.10	1.12	1.00
C33	CONDUIT	0.018	0	04:41	2.10 2.92 1.12	0.02	0.11
C34	CONDUIT	0.027	0	03:39	1.12	0.16	0.27
C35	CONDUIT	0.356	0	02:10	1.95	0.69	0.62
C36	CONDUIT	0.505	0	02:10	2.17	0.54	0.85
C37							
C4	CONDUIT	0.007	0	04:41	1.06	0.14	0.25
C5	CONDUIT	0.012	0	04:41	0.81	0.14	0.26
C6	CONDUIT	0.018	0	04:41	0.81 0.89	0.13	0.24
C7	CONDUIT	0.091	0	02:10	1.39	0.25	0.34
C8	CONDUIT	0.131	0	02:10	1.53 1.69	0.36	0.69
C9	CONDUIT	0.193	0	02:10	1.69	0.38	0.98
OR1	ORIFICE	0.012	0	04:41			1.00
OR2	ORIFICE	0.012	0	03:39			1.00

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s	
	/Actual	_	Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
C1	1.00	0.98	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
C10	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C11	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C12	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.01	0.00
C13	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.00	0.00
C14	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C15	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C16	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C17	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C18	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C19	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C2	1.00	0.00	0.10	0.00	0.76	0.14	0.00	0.00	0.78	0.00
C20	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C21	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C22	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.04	0.00
C23	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.03	0.00
C24	1.00	0.00	0.00	0.00	0.12	0.00	0.00	0.88	0.01	0.00

C25 C26 C27 C28 C29 C3 C30	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.01 0.07 0.07 0.00 0.09	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 0.99 0.93 0.93 1.00 0.91 0.94	0.00 0.00 0.01 0.05 0.05 0.00 0.01	0.00 0.00 0.00 0.00 0.00 0.00 0.00
C31	1.00									0.00
C32 C33	1.00	0.00	0.00	0.00	0.12	0.00	0.00	0.88	0.01	0.00
C34 C35	1.00	0.00	0.00	0.00	0.74	0.26	0.00	0.00	0.04	0.00
C36	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.90	0.00	0.00
C37 C4	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.03	0.00
C5 C6	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C7	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.03	0.00
C8 C9	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92 0.90	0.04	0.00

******* Conduit Surcharge Summary

Conduit		Hours Full Upstream		Hours Above Full Normal Flow	Hours Capacity Limited
C29	0.01	0.01	1.00	0.01	0.01
C32	4.03	4.03	6.86	0.04	0.01
C9	0.01	0.01	3.57	0.01	0.01

Analysis begun on: Wed Oct 5 21:11:37 2022 Analysis ended on: Wed Oct 5 21:12:08 2022 Total elapsed time: 00:00:31

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

WARNING 03: negative offset ignored for Link C2 WARNING 03: negative offset ignored for Link C32 WARNING 03: negative offset ignored for Link C34

Element Count

Number of rain gages 7
Number of subcatchments 30
Number of nodes 40
Number of links 39
Number of pollutants 0
Number of land uses 0

****** Raingage Summary

Name	Data Source	Data Type	Recording Interval
25mm	25mm	INTENSITY	5 min.
3hr-100yr	3hr-100yr	INTENSITY	10 min.
3hr-2yr	3hr-2yr	INTENSITY	5 min.
3hr-5yr	3hr-5yr	INTENSITY	5 min.
6hr-100yr	6hr-100yr	INTENSITY	10 min.
6hr-2yr	6hr-2yr	INTENSITY	5 min.
6hr-5yr	6hr-5yr	INTENSITY	5 min.

Subcatchment Summary

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
Name	0.25	83.33	90.00	1.0000 3hr-5yr	CBMH_14
Area_10	0.08	26.67	90.00	1.0000 3hr-5yr	CB_23
Area_101	1.37	137.00	95.00	0.5000 3hr-5yr	MH_26
Area_102	1.13	113.00	95.00	0.5000 3hr-5yr	CBMH_11
Area_11	0.13	43.33	90.00	1.0000 3hr-5yr	CB_10
Area_12	0.16	53.33	90.00	1.0000 3hr-5yr	CBMH_9
Area_13	0.16	53.33	90.00	1.0000 3hr-5yr	CBMH_8
Area_14	0.17	56.67	90.00	1.0000 3hr-5yr	CBMH_7
Area_15	0.09	30.00	90.00	1.0000 3hr-5yr	CBMH_6
Area_16	0.15	50.00	90.00	1.0000 3hr-5yr	CB_5
Area_17	0.17	56.67	90.00	1.0000 3hr-5yr	CBMH_4
Area_18	0.17	56.67	90.00	1.0000 3hr-5yr	CBMH_3
Area_19	0.17	56.67	90.00	1.0000 3hr-5yr	CBMH 2
Area_2	0.16	53.33	90.00	1.0000 3hr-5yr	CBMH_15
Area_20	0.28	93.33	90.00	1.0000 3hr-5yr	J13
Area_2001	0.07	7.00	25.00	0.5000 3hr-5yr	OF2
Area_2002	0.21	21.00	90.00	0.5000 3hr-5yr	OF2
Area_2003	0.16	16.00	90.00	1.0000 3hr-5yr	OF1
Area_2004	0.02	13.33	5.00	0.5000 3hr-5yr	Humber_Pl
Area_2005	0.04	26.67	5.00	0.5000 3hr-5yr	Humber Pl
Area_21	0.21	70.00	90.00	1.0000 3hr-5yr	CBMH_11
Area_22	0.32	106.67	90.00	1.0000 3hr-5yr	CBMH_12
Area_23	0.16	53.33	90.00	1.0000 3hr-5yr	CB_29
Area_3	0.36	120.00	90.00	1.0000 3hr-5yr	DCB_16
Area_4	0.28	93.33	90.00	1.0000 3hr-5yr	CBMH_18
Area_5	0.15	50.00	90.00	1.0000 3hr-5yr	CB_27
Area_6	0.15	50.00	90.00	1.0000 3hr-5yr	CB_28
Area_7	0.04	13.33	90.00	1.0000 3hr-5yr	CBMH_19
Area 8	0.12	40.00	90.00	1.0000 3hr-5yr	CBMH 21
Area 9	0.12	40.00	90.00	1.0000 3hr-5yr	CBMH 22
_					_

****** Node Summary

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
CB_10	JUNCTION	65.33	1.41	10.0	
CB_23	JUNCTION	66.20	0.93	10.0	
CB_27	JUNCTION	65.48	1.34	10.0	
CB 28	JUNCTION	65.39	1.52	10.0	
CB 29	JUNCTION	64.11	2.43	0.0	
CB 5	JUNCTION	65.11	1.63	10.0	
CBMH 11	JUNCTION	63.58	2.16	10.0	
CBMH 12	JUNCTION	64.06	1.68	10.0	
CBMH 14	JUNCTION	64.11	2.21	10.0	
CBMH 15	JUNCTION	64.47	1.85	10.0	
CBMH_18	JUNCTION	64.05	2.54	0.0	
CBMH_19	JUNCTION	64.88	2.38	10.0	
CBMH 2	JUNCTION	64.06	2.94	10.0	
CBMH 21	JUNCTION	65.17	1.87	10.0	
CBMH_22	JUNCTION	65.53	1.51	10.0	

CBMH 3	JUNCTION	64.42	2.58	10.0
CBMH 4	JUNCTION	64.78	2.22	10.0
CBMH 6	JUNCTION	63.91	2.73	10.0
CBMH 7	JUNCTION	64.27	2.73	10.0
CBMH 8	JUNCTION	64.63	2.37	10.0
CBMH_9	JUNCTION	64.99	2.01	10.0
DCB_16	JUNCTION	64.80	1.52	10.0
J1	JUNCTION	63.75	3.27	0.0
J13	JUNCTION	63.54	3.10	10.0
J2	JUNCTION	63.24	3.33	0.0
MH_20	JUNCTION	64.99	2.30	0.0
MH_24	JUNCTION	64.13	2.50	10.0
MH_25	JUNCTION	64.42	2.63	0.0
MH_26	JUNCTION	64.56	2.70	0.0
MH_27	JUNCTION	63.89	2.02	0.0
MH_30	JUNCTION	63.73		0.0
MH_44	JUNCTION	63.51	3.51	0.0
MH_45	JUNCTION	63.11		
OGS_1	JUNCTION	63.04	3.34	0.0
OGS_2	JUNCTION	63.47	3.01	0.0
Humber_Pl	OUTFALL	62.48	0.38	0.0
OF1	OUTFALL	63.41	0.38	0.0
OF2	OUTFALL	0.00	0.00	0.0
SU_N	STORAGE	63.75		
SU_S	STORAGE	63.24	3.33	0.0

Name	From Node	To Node	Туре	Length	%Slope	Roughness
C1	SU N	MH 44	CONDUIT	2.5	1.0001	0.0090
C10	CB 28	MH 26	CONDUIT	30.4	1.0001	0.0110
C11	CB 27	MH 26	CONDUIT	32.8	1.0001	0.0110
C12	MH 26	MH 25	CONDUIT	16.5	0.4970	0.0110
C13	MH 24	CBMH 18	CONDUIT	4.8	0.5000	0.0110
C14	CB 23	CBMH 22	CONDUIT	51.5	1.0001	0.0110
C15	CBMH 22	CBMH 21	CONDUIT	60.0	0.5000	0.0110
C16	CBMH_21	MH_20	CONDUIT	24.5	0.5020	0.0110
C17	MH_20	CBMH_19	CONDUIT	10.4	0.5000	0.0110
C18	CBMH 19	MH 24	CONDUIT	46.5	0.5011	0.0110
C19	CB 10	CBMH 9	CONDUIT	52.5	0.4991	0.0110
C2	MH_44	OGS_2	CONDUIT	11.6	0.3707	0.0110
C20	CBMH_9	CBMH_8	CONDUIT	60.0	0.5000	0.0110
C21	CBMH_8	CBMH_7	CONDUIT	60.0	0.5000	0.0110
C22	CBMH_7	CBMH_6	CONDUIT	60.0	0.5000	0.0110
C23	CBMH 6	J13 —	CONDUIT	29.9	0.5017	0.0110
C24	J13	SU_S	CONDUIT	4.0	0.5000	0.0110
C25	CB_5	CBMH_4	CONDUIT	52.5	0.4991	0.0110
C26	CBMH 4	CBMH_3	CONDUIT	60.0	0.5000	0.0110
C27	CBMH_3	CBMH_2	CONDUIT	60.0	0.5000	0.0110
C28	CBMH_2	MH_30	CONDUIT	53.4	0.4963	0.0110
C29	CBMH_12	CBMH_11	CONDUIT	50.0	0.5700	0.0110
C3	J1	MH_44	CONDUIT	2.5	0.4800	0.0110
C30	MH_30	J13	CONDUIT	9.3	0.4839	0.0110
C31	MH_27	CBMH_11	CONDUIT	8.2	0.5000	0.0110
C32	CBMH_11	SU_S	CONDUIT	13.2	0.5000	0.0110
C33	ogs_1	Humber_Pl	CONDUIT	4.0	14.1135	0.0110
C34	OGS_2	OF1	CONDUIT	8.7	0.6782	0.0110
C35	MH_25	MH_24	CONDUIT	44.2	0.5000	0.0110
C36	CBMH_18	SU_N	CONDUIT	3.9	0.5128	0.0110
C37	CB_29	MH_27	CONDUIT	32.9	0.4985	0.0110
C4	SU_S	MH_45	CONDUIT	9.4	1.0001	0.0090
C5	J2	MH_45	CONDUIT	9.4	0.5000	0.0110
C6	MH_45	OGS_1	CONDUIT	3.1	0.4839	0.0110
C7	DCB_16	CBMH_15	CONDUIT	54.4	0.5000	0.0110
C8	CBMH_15	CBMH_14	CONDUIT	60.0	0.5000	0.0110
C9	CBMH_14	SU_N	CONDUIT	15.2	0.5000	0.0110
OR1	SU_S	J2	ORIFICE			
OR2	SU_N	J1	ORIFICE			

Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C10	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C11	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C12	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C13	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C14	CIRCULAR	0.38	0.11	0.09	0.38	1	0.21
C15	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C16	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C17	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C18	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C19	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C2	CIRCULAR	0.38	0.11	0.09	0.38	1	0.13
C20	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C21	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C22	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C23	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36

C24	CIRCULAR	0.75	0.44	0.19	0.75	1	0.93
C25	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C26	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C27	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C28	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C29	CIRCULAR	0.38	0.11	0.09	0.38	1	0.16
C3	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C30	CIRCULAR	0.60	0.28	0.15	0.60	1	0.50
C31	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C32	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C33	CIRCULAR	0.38	0.11	0.09	0.38	1	0.78
C34	CIRCULAR	0.38	0.11	0.09	0.38	1	0.17
C35	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C36	CIRCULAR	0.75	0.44	0.19	0.75	1	0.94
C37	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C4	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C5	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C6	CIRCULAR	0.38	0.11	0.09	0.38	1	0.14
C7	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C8	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C9	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CMS
Process Models:
Rainfall/Runoff YES RDII NO
Snowmelt NO
Groundwater NO

******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm
Total Precipitation Evaporation Loss Infiltration Loss	0.300 0.000 0.017	42.540 0.000 2.395
Surface Runoff	0.283 0.000 -0.080	40.179 0.000
******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr
Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow	0.000 0.283 0.000 0.000	0.000 2.832 0.000 0.000
KDII IIIIIOW	0.000	0.000

0.000	0.000
0.283	2.832
0.000	0.000
0.000	0.000
0.000	0.000
0.283	2.834
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
-0.061	
	0.283 0.000 0.000 0.000 0.283 0.000 0.000 0.000

******* Time-Step Critical Elements Link C33 (1.37%)

Highest Flow Instability Indexes

Link C2 (4) Link OR1 (1) Link OR2 (1)

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
Area 1	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.10	0.09	0.943
Area_10	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.03	0.03	0.943
Area_101	42.54	0.00	0.00	1.24	40.43	0.89	41.32	0.57	0.38	0.971
Area_102	42.54	0.00	0.00	1.24	40.43	0.89	41.32	0.47	0.31	0.971
Area_11	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.05	0.05	0.943
Area_12	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.06	0.06	0.943
Area_13	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.06	0.06	0.943
Area_14	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.07	0.06	0.943
Area_15	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.04	0.03	0.943
Area_16	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.06	0.05	0.943
Area 17	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.07	0.06	0.943
Area 18	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.07	0.06	0.943
Area_19	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.07	0.06	0.943
Area_2	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.06	0.06	0.943
Area_20	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.11	0.10	0.943
Area_2001	42.54	0.00	0.00	20.24	10.64	11.67	22.31	0.02	0.01	0.524
Area_2002	42.54	0.00	0.00	2.51	38.30	1.74	40.05	0.08	0.06	0.941
Area_2003	42.54	0.00	0.00	2.53	38.31	1.73	40.03	0.06	0.05	0.941
Area_2004	42.54	0.00	0.00	24.03	2.13	16.39	18.52	0.00	0.00	0.435
Area 2005	42.54	0.00	0.00	24.03	2.13	16.39	18.52	0.01	0.00	0.435
Area 21	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.08	0.08	0.943
Area 22	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.13	0.12	0.943
Area 23	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.06	0.06	0.943
Area 3	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.14	0.13	0.943
Area_4	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.11	0.10	0.943
Area_5	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.06	0.05	0.943
Area 6	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.06	0.05	0.943
Area 7	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.02	0.01	0.943
Area 8	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.05	0.04	0.943
Area_9	42.54	0.00	0.00	2.47	38.33	1.79	40.12	0.05	0.04	0.943

Node '	Type	Average Depth Meters	Maximum Depth Meters	HGL	Occu	of Max rrence hr:min	-
CB 10	JUNCTION	0.00	0.13	65.46	0	01:05	0.13
CB 23	JUNCTION	0.00	0.09	66.29	0	01:05	0.09
CB 27	JUNCTION	0.00	0.12	65.61	0	01:05	0.12
CB 28	JUNCTION	0.00	0.12	65.51	0	01:05	0.12
CB_29	JUNCTION	0.00	0.16	64.28	0	01:04	0.16
CB_5	JUNCTION	0.00	0.14	65.25	0	01:05	0.14
CBMH_11	JUNCTION	0.04	0.66	64.25	0	02:10	0.66
CBMH_12	JUNCTION	0.00	0.24	64.30	0	01:05	0.24
CBMH_14	JUNCTION	0.03	0.68	64.79	0	01:56	0.68
CBMH_15	JUNCTION	0.01	0.32	64.79	0	01:53	0.32
	JUNCTION	0.04	0.74	64.79	0	01:55	0.74
CBMH_19	JUNCTION	0.00	0.23	65.11	0	01:05	0.23
	JUNCTION	0.00	0.28	64.34	0	01:05	0.28
	JUNCTION	0.00	0.22	65.39	0	01:05	0.22
CBMH_22	JUNCTION	0.00	0.17	65.70	0	01:05	0.17
CBMH_3	JUNCTION	0.00	0.24	64.66	0	01:05	0.24
CBMH_4	JUNCTION	0.00	0.19	64.97	0	01:05	0.19
CBMH_6	JUNCTION	0.01	0.34	64.25	0	02:09	0.33
CBMH_7	JUNCTION	0.00	0.29	64.57	0	01:05	0.29
CBMH_8	JUNCTION	0.00	0.24	64.88	0	01:05	0.24
CBMH_9	JUNCTION	0.00	0.19	65.18	0	01:05	0.19
DCB_16	JUNCTION	0.00	0.22	65.02	0	01:05	0.22
J1	JUNCTION	0.01	0.08	63.83	0	01:55	0.08

J13	JUNCTION	0.04	0.77	64.31	0	02:14	0.75
J2	JUNCTION	0.01	0.08	63.32	Ō	02:10	0.08
MH 20	JUNCTION	0.00	0.22	65.21	0	01:05	0.22
MH 24	JUNCTION	0.03	0.65	64.79	0	01:55	0.65
MH 25	JUNCTION	0.01	0.47	64.88	0	01:05	0.46
MH 26	JUNCTION	0.01	0.55	65.10	0	01:05	0.55
MH 27	JUNCTION	0.01	0.36	64.25	0	02:10	0.36
MH 30	JUNCTION	0.02	0.52	64.25	0	02:11	0.52
MH 44	JUNCTION	0.01	0.19	63.70	0	01:55	0.19
MH 45	JUNCTION	0.01	0.16	63.27	0	02:10	0.16
OGS 1	JUNCTION	0.01	0.07	63.11	0	02:10	0.07
OGS 2	JUNCTION	0.01	0.16	63.63	0	01:55	0.16
Humber Pl	OUTFALL	0.00	0.00	62.48	0	00:00	0.00
OF1	OUTFALL	0.01	0.16	63.57	0	01:55	0.16
OF2	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU N	STORAGE	0.07	1.04	64.79	0	01:55	1.04
su_s	STORAGE	0.09	1.01	64.25	0	02:10	1.01

			Maximum			Lateral	Total	Flow
		Lateral			of Max	Inflow	Inflow	Balance
		Inflow	Inflow		rrence	Volume	Volume	Error
Node	Type	CMS	CMS	days	hr:min	10^6 ltr	10^6 ltr	Percent
40								
CB_10	JUNCTION	0.047	0.047	0	01:05	0.0521	0.0521	-0.013
CB_23	JUNCTION	0.029	0.029	0	01:05	0.0321	0.0321	-0.008
CB_27 CB_28	JUNCTION	0.054	0.054	0	01:05	0.0602	0.0602	-0.005
	JUNCTION	0.054	0.054	0	01:05	0.0602 0.0642	0.0602	-0.005 0.550
CB_29	JUNCTION		0.058	-	01:05			
CB_5	JUNCTION	0.054	0.054	0	01:05	0.0602	0.0602	-0.014
CBMH_11	JUNCTION	0.389	0.556	0	01:05 01:05	0.551	0.743	-0.003 0.786
CBMH_12	JUNCTION	0.115	0.115 0.271	0		0.128	0.128	
CBMH_14 CBMH 15	JUNCTION	0.090	0.271	0	01:05 01:05	0.0642	0.307	-0.410
CBMH_15 CBMH 18	JUNCTION	0.038	0.700	0	01:05	0.0642	0.208	0.631 -0.006
CBMH_10	JUNCTION JUNCTION	0.101	0.700	0	01:05	0.112	0.943	0.268
		0.014	0.126	0	01:05	0.016	0.144	0.268
CBMH_2 CBMH 21	JUNCTION			-				
CBMH_21 CBMH 22	JUNCTION	0.043	0.113	0	01:05	0.0481	0.128	-0.003
CBMH_ZZ CBMH 3	JUNCTION	0.043	0.071 0.172	0	01:05	0.0481	0.0802 0.197	-0.011 0.230
CBMH_3 CBMH 4	JUNCTION	0.061	0.172	0	01:05	0.0682	0.197	-0.012
CBMH_4 CBMH 6	JUNCTION			0	01:05	0.0882	0.128	
	JUNCTION	0.032	0.244	0	01:05		0.249	-0.010 0.346
CBMH_7 CBMH 8	JUNCTION JUNCTION	0.061	0.216	0	01:05 01:05	0.0682	0.249	-0.010
CBMH_6 CBMH 9	JUNCTION	0.058	0.138	0	01:05	0.0642	0.181	-0.010
_		0.038	0.103	0		0.0642	0.116	0.380
DCB_16	JUNCTION	0.129		0	01:05			
J1	JUNCTION		0.012	-	01:55	0	0.911	-0.005
J13 J2	JUNCTION	0.101	0.565 0.012	0	01:05 02:10	0.112	0.791 1.11	-0.108 -0.004
MH 20	JUNCTION JUNCTION	0.000	0.012	0	01:05	0	0.128	-0.004
MH_20 MH_24	JUNCTION	0.000	0.112	0	01:05	0	0.128	-0.001
MH_24 MH_25	JUNCTION	0.000	0.490	0	01:05	0	0.686	0.292
MH 26		0.380		0	01:05	0.566	0.686	0.292
MH_26 MH 27	JUNCTION	0.000	0.487	0	01:05	0.366	0.0639	-0.391
MH_2/ MH_30	JUNCTION JUNCTION	0.000	0.038	0	01:05	0	0.0639	-0.391
		0.000		0	01:05	0	1.25	0.010
MH_44 MH_45	JUNCTION JUNCTION	0.000	0.064	0	01:33	0	1.25	0.010
MH_45 OGS 1		0.000	0.054	0	02:10	0	1.41	-0.000
OGS_1 OGS_2	JUNCTION	0.000	0.054	0	02:10	0	1.41	-0.000
Humber Pl	JUNCTION OUTFALL	0.000	0.055	0	02:10	0.0111	1.42	0.000
OF1		0.004	0.055	0	01:54	0.064	1.42	0.000
OF1 OF2	OUTFALL	0.047		0	01:05	0.064	0.0997	0.000
	OUTFALL	0.063	0.063	0	01:05	0.0997		
SU_N	STORAGE STORAGE	0.000	0.968 1.119	0	01:05	0	1.25 1.51	-0.110 -0.111
SU_S	SIUKAGE	0.000	1.119	U	01:00	U	1.51	-0.111

Surcharging occurs when water rises above the top of the highest conduit.

Node	Type	Hours Surcharged	Max. Height Above Crown Meters	Min. Depth Below Rim Meters
CBMH_11	JUNCTION	1.32	0.024	1.493
CBMH_14	JUNCTION	1.85	0.080	1.534
J13	JUNCTION	0.01	0.023	2.330

No nodes were flooded.

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Pcnt		Maximum Volume 1000 m3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CMS
SU_N	0.054	2	0	0	0.896	35	0 01:55	0.064
SU S	0.080	2		0	1.082	31	0 02:10	0.136

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CMS	CMS	10^6 ltr
Humber_Pl	27.80	0.007	0.055	1.417
OF1	22.80	0.008	0.067	1.317
OF2	3.48	0.005	0.063	0.100
System	18.03	0.020	0.129	2.834

Link	Type	Maximum Flow CMS	Time Occu days	of Max rrence hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
C1	CONDUIT	0.052	0	01:55	1.72	1.09	0.93
C10	CONDUIT	0.054	0	01:05	1.55	0.16	0.27
C11	CONDUIT	0.054	0	01:05	1.55	0.16	0.27
C12	CONDUIT	0.490	0	01:05	2.32	1.37	0.94
C13	CONDUIT	0.611	0	01:05	2.38	1.19	1.00
C14	CONDUIT	0.028	0	01:05	1.32	0.14	0.25
C15	CONDUIT	0.070	0	01:05	1.31	0.29	0.37
C16	CONDUIT	0.112	0	01:05	1.48	0.47	0.48
C17	CONDUIT	0.112	0	01:05	1.48	0.47	0.48
C18	CONDUIT	0.125	0	01:05	1.52	0.53	0.52
C19	CONDUIT	0.046	0	01:05	1.16	0.19	0.30
C2	CONDUIT	0.065	0	01:55	1.31	0.52	0.46
C20	CONDUIT	0.102	0	01:05	1.43	0.28	0.36
C21	CONDUIT	0.157	0	01:05	1.61	0.44	0.46
C22	CONDUIT	0.214	0	01:05	1.74	0.60	0.56
C23	CONDUIT	0.244	0	01:05	1.79	0.68	0.82
C24	CONDUIT	0.565	0	01:05	2.21	0.61	0.99
C25	CONDUIT	0.053	0	01:05	1.19	0.15	0.26
C26	CONDUIT	0.112	0	01:05	1.46	0.22	0.32
C27	CONDUIT	0.171	0	01:05	1.64	0.33	0.40
C28	CONDUIT	0.229	0	01:05	1.76	0.45	0.54
C29	CONDUIT	0.114	0	01:05	1.30	0.73	0.82
C3	CONDUIT	0.012	0	01:55	0.82	0.16	0.27
C30	CONDUIT	0.229	0	01:05	1.74	0.45	0.93
C31	CONDUIT	0.064	0	01:05	1.08	0.43	0.98
C32	CONDUIT	0.555	0	01:05	2.60	1.54	1.00
C33	CONDUIT	0.054	0	02:10	4.04	0.07	0.18
C34	CONDUIT	0.064	0	01:55	1.43	0.38	0.42
C35	CONDUIT	0.485	0	01:05	2.10	0.95	0.80
C36	CONDUIT	0.700	0	01:05	2.34	0.74	0.99
C37	CONDUIT	0.058	0	01:05	1.21	0.39	0.58
C4	CONDUIT	0.042	0	02:10	1.21 1.70 0.82	0.88	0.73
C5	CONDUIT	0.012	0	02:10	0.82	0.15	0.27
C6	CONDUIT	0.054	0	02:10	1.21	0.38	0.42
C7	CONDUIT	0.128	0	01:05	1.21 1.53 1.68	0.36	0.41
C8	CONDUIT	0.183	0	01:05	1.68	0.51	0.81
C9	CONDUIT	0.271	0	01:05	1.84	0.53	1.00
OR1	ORIFICE	0.012	0	02:10			1.00
C7 C8 C9 OR1 OR2	ORIFICE	0.012	0	01:55			1.00

Conduit	Adjusted /Actual Length	Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	w Clas Down Crit	Norm	Inlet Ctrl
C1	1.00	0.98	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
C10	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C11	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C12	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.01	0.00
C13	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.00	0.00
C14	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C15	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C16	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C17	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00

C18	1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.01	0.00
C19	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C2	1.00	0.00	0.10	0.00	0.76	0.14	0.00	0.00	0.78	0.00
C20	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C21	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C22	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.04	0.00
C23	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.03	0.00
C24	1.00	0.00	0.00	0.00	0.12	0.00	0.00	0.88	0.01	0.00
C25	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C26	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C27	1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.01	0.00
C28	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.04	0.00
C29	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.05	0.00
C3	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C30	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.01	0.00
C31	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.02	0.00
C32	1.00	0.00	0.00	0.00	0.12	0.00	0.00	0.88	0.01	0.00
C33	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C34	1.00	0.00	0.00	0.00	0.75	0.25	0.00	0.00	0.04	0.00
C35	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.03	0.00
C36	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.90	0.00	0.00
C37	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.03	0.00
C4	1.00	0.98	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
C5	1.00	0.00	0.00	0.00	0.00	0.01	0.00	0.99	0.00	0.00
C6	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C7	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.03	0.00
C8	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.04	0.00
C9	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.90	0.01	0.00

Conduit				Hours Above Full Normal Flow	Capacity
C1	0.01	0.01	0.01	0.73	0.01
C12	0.01	0.01	0.01	0.10	0.01
C13	1.44	1.44	1.80	0.05	0.01
C23	0.01	0.01	0.01	0.01	0.01
C24	0.01	0.01	0.01	0.01	0.01
C29	0.01	0.01	2.84	0.01	0.01
C30	0.01	0.01	0.01	0.01	0.01
C31	0.01	0.01	1.32	0.01	0.01
C32	4.08	4.11	6.43	0.14	0.01
C36	0.01	0.01	0.44	0.01	0.01
C8	0.01	0.01	2.04	0.01	0.01
C9	1.85	1.85	3.14	0.01	0.01

Analysis begun on: Wed Oct 5 21:15:03 2022 Analysis ended on: Wed Oct 5 21:15:33 2022

Total elapsed time: 00:00:30

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

WARNING 03: negative offset ignored for Link C2 WARNING 03: negative offset ignored for Link C32 WARNING 03: negative offset ignored for Link C34

Element Count

****** Raingage Summary

Name	Data Source	Data Type	Recording Interval
25mm	25mm	INTENSITY	5 min.
3hr-100yr	3hr-100yr	INTENSITY	10 min.
3hr-2yr	3hr-2yr	INTENSITY	5 min.
3hr-5yr	3hr-5yr	INTENSITY	5 min.
6hr-100yr	6hr-100yr	INTENSITY	10 min.
6hr-2yr	6hr-2yr	INTENSITY	5 min.
6hr-5yr	6hr-5yr	INTENSITY	5 min.

Subcatchment Summary

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
Area_1	0.25	83.33	90.00	1.0000 6hr-5yr	CBMH_14
Area_10	0.08	26.67	90.00	1.0000 6hr-5yr	CB_23
Area_101	1.37	137.00	95.00	0.5000 6hr-5yr	MH_26
Area_102	1.13	113.00	95.00	0.5000 6hr-5yr	CBMH_11
Area_11	0.13	43.33	90.00	1.0000 6hr-5yr	CB_10
Area_12	0.16	53.33	90.00	1.0000 6hr-5yr	CBMH_9
Area_13	0.16	53.33	90.00	1.0000 6hr-5yr	CBMH_8
Area_14	0.17	56.67	90.00	1.0000 6hr-5yr	CBMH_7
Area_15	0.09	30.00	90.00	1.0000 6hr-5yr	CBMH_6
Area_16	0.15	50.00	90.00	1.0000 6hr-5yr	CB_5
Area_17	0.17	56.67	90.00	1.0000 6hr-5yr	CBMH_4
Area_18	0.17	56.67	90.00	1.0000 6hr-5yr	CBMH_3
Area_19	0.17	56.67	90.00	1.0000 6hr-5yr	CBMH_2
Area_2	0.16	53.33	90.00	1.0000 6hr-5yr	CBMH_15
Area_20	0.28	93.33	90.00	1.0000 6hr-5yr	J13
Area_2001	0.07	7.00	25.00	0.5000 6hr-5yr	OF2
Area_2002	0.21	21.00	90.00	0.5000 6hr-5yr	OF2
Area_2003	0.16	16.00	90.00	1.0000 6hr-5yr	OF1
Area_2004	0.02	13.33	5.00	0.5000 6hr-5yr	Humber_Pl
Area_2005	0.04	26.67	5.00	0.5000 6hr-5yr	Humber_Pl
Area_21	0.21	70.00	90.00	1.0000 6hr-5yr	CBMH_11
Area_22	0.32	106.67	90.00	1.0000 6hr-5yr	CBMH_12
Area_23	0.16	53.33	90.00	1.0000 6hr-5yr	CB_29
Area_3	0.36	120.00	90.00	1.0000 6hr-5yr	DCB_16
Area_4	0.28	93.33	90.00	1.0000 6hr-5yr	CBMH_18
Area_5	0.15	50.00	90.00	1.0000 6hr-5yr	CB_27
Area_6	0.15	50.00	90.00	1.0000 6hr-5yr	CB_28
Area_7	0.04	13.33	90.00	1.0000 6hr-5yr	CBMH_19
Area_8	0.12	40.00	90.00	1.0000 6hr-5yr	CBMH_21
Name	0.12	40.00	90.00	1.0000 6hr-5yr	CBMH_22

****** Node Summary

Name	Туре			Ponded Area	External Inflow
CB_10 CB_23		65.33 66.20			
CB_27		65.48		10.0	
CB_28		65.39			
CB_29	JUNCTION	64.11			
CB_5	JUNCTION	65.11			
CBMH_11	JUNCTION	63.58	2.16	10.0	
CBMH_12	JUNCTION	64.06	1.68	10.0	
CBMH 14	JUNCTION	64.11	2.21	10.0	
CBMH 15	JUNCTION	64.47	1.85	10.0	
CBMH 18	JUNCTION	64.05	2.54	0.0	
CBMH 19	JUNCTION	64.88	2.38	10.0	
CBMH 2	JUNCTION	64.06	2.94	10.0	
CBMH 21	JUNCTION	65.17	1.87	10.0	
CBMH_22	JUNCTION	65.53	1.51	10.0	

CBMH 3	JUNCTION	64.42	2.58	10.0
CBMH_4	JUNCTION	64.78	2.22	10.0
CBMH 6	JUNCTION	63.91	2.73	10.0
CBMH 7	JUNCTION	64.27	2.73	10.0
CBMH_8	JUNCTION	64.63	2.37	10.0
CBMH_9	JUNCTION	64.99	2.01	10.0
DCB_16	JUNCTION	64.80		
J1	JUNCTION	63.75	3.27	0.0
J13	JUNCTION	63.54	3.10	10.0
J2	JUNCTION	63.24		0.0
MH_20	JUNCTION	64.99	2.30	0.0
MH_24	JUNCTION	64.13		10.0
MH_25	JUNCTION	64.42		0.0
MH_26	JUNCTION	64.56		
MH_27	JUNCTION			
MH_30	JUNCTION	63.73		0.0
MH_44	JUNCTION	63.51		
MH_45	JUNCTION	63.11		0.0
OGS_1	JUNCTION	63.04		
OGS_2	JUNCTION	63.47	3.01	
Humber_Pl	OUTFALL	62.48		0.0
OF1	OUTFALL	63.41	0.38	
OF2	OUTFALL	0.00	0.00	0.0
SU_N	STORAGE	63.75		0.0
SU_S	STORAGE	63.24	3.33	0.0

Name	From Node	To Node	Type	Length	%Slope	Roughness
C1	SU N	MH 44	CONDUIT	2.5	1.0001	0.0090
C10	CB 28	MH 26	CONDUIT	30.4	1.0001	0.0110
C11	CB 27	MH 26	CONDUIT	32.8	1.0001	0.0110
C12	MH 26	MH 25	CONDUIT	16.5	0.4970	0.0110
C13	MH 24	CBMH 18	CONDUIT	4.8	0.5000	0.0110
C14	CB 23	CBMH 22	CONDUIT	51.5	1.0001	0.0110
C15	CBMH 22	CBMH 21	CONDUIT	60.0	0.5000	0.0110
C16	CBMH 21	MH 20	CONDUIT	24.5	0.5020	0.0110
C17	MH_20	CBMH_19	CONDUIT	10.4	0.5000	0.0110
C18	CBMH 19	MH_24	CONDUIT	46.5	0.5011	0.0110
C19	CB_10	CBMH 9	CONDUIT	52.5	0.4991	0.0110
C2	MH_44	OGS_2	CONDUIT	11.6	0.3707	0.0110
C20	CBMH_9	CBMH_8	CONDUIT	60.0	0.5000	0.0110
C21	CBMH_8	CBMH_7	CONDUIT	60.0	0.5000	0.0110
C22	CBMH_7	CBMH_6	CONDUIT	60.0	0.5000	0.0110
C23	CBMH_6	J13	CONDUIT	29.9	0.5017	0.0110
C24	J13	SU_S	CONDUIT	4.0	0.5000	0.0110
C25	CB_5	CBMH_4	CONDUIT	52.5	0.4991	0.0110
C26	CBMH_4	CBMH_3	CONDUIT	60.0	0.5000	0.0110
C27	CBMH_3	CBMH_2	CONDUIT	60.0	0.5000	0.0110
C28	CBMH_2	MH_30	CONDUIT	53.4	0.4963	0.0110
C29	CBMH_12	CBMH_11	CONDUIT	50.0	0.5700	0.0110
C3	J1	MH_44	CONDUIT	2.5	0.4800	0.0110
C30	MH_30	J13	CONDUIT	9.3	0.4839	0.0110
C31	MH_27	CBMH_11	CONDUIT	8.2	0.5000	0.0110
C32	CBMH_11	SU_S	CONDUIT	13.2	0.5000	0.0110
C33	ogs_1	Humber_Pl	CONDUIT	4.0	14.1135	0.0110
C34	OGS_2	OF1	CONDUIT	8.7	0.6782	0.0110
C35	MH_25	MH_24	CONDUIT	44.2	0.5000	0.0110
C36	CBMH_18	SU_N	CONDUIT	3.9	0.5128	0.0110
C37	CB_29	MH_27	CONDUIT	32.9	0.4985	0.0110
C4	SU_S	MH_45	CONDUIT	9.4	1.0001	0.0090
C5	J2	MH_45	CONDUIT	9.4	0.5000	0.0110
C6	MH_45	OGS_1	CONDUIT	3.1	0.4839	0.0110
C7	DCB_16	CBMH_15	CONDUIT	54.4	0.5000	0.0110
C8	CBMH_15	CBMH_14	CONDUIT	60.0	0.5000	0.0110
C9	CBMH_14	SU_N	CONDUIT	15.2	0.5000	0.0110
OR1	SU_S	J2	ORIFICE			
OR2	SU_N	J1	ORIFICE			

Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C10	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C11	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C12	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C13	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C14	CIRCULAR	0.38	0.11	0.09	0.38	1	0.21
C15	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C16	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C17	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C18	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C19	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C2	CIRCULAR	0.38	0.11	0.09	0.38	1	0.13
C20	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C21	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C22	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C23	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36

C24	CIRCULAR	0.75	0.44	0.19	0.75	1	0.93
C25	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C26	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C27	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C28	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C29	CIRCULAR	0.38	0.11	0.09	0.38	1	0.16
C3	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C30	CIRCULAR	0.60	0.28	0.15	0.60	1	0.50
C31	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C32	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C33	CIRCULAR	0.38	0.11	0.09	0.38	1	0.78
C34	CIRCULAR	0.38	0.11	0.09	0.38	1	0.17
C35	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C36	CIRCULAR	0.75	0.44	0.19	0.75	1	0.94
C37	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C4	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C5	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C6	CIRCULAR	0.38	0.11	0.09	0.38	1	0.14
C7	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C8	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C9	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CMS
Process Models:
Rainfall/Runoff YES
 Process Models:
 Rainfall/Runoff
 YES

 RDII
 NO

 Snowmelt
 NO

 Groundwater
 NO

 Flow Routing
 YES

 Ponding Allowed
 NO

 Water Quality
 NO

 Infiltration Method
 HORTON

 Flow Routing Method
 DYNWAVE

 Surcharge Method
 EXTRAN

 Starting Date
 12/11/2020 00:00:00

 Ending Date
 12/21/2020 00:00:00

 Antecedent Dry Days
 0.0

 Report Time Step
 00:01:00

 Wet Time Step
 00:01:00

 Routing Time Step
 1.00 sec

 Variable Time Step
 YES

 Maximum Trials
 8

 Number of Threads
 6

 Head Tolerance
 0.001500 m

**************************************	Volume hectare-m	Depth mm
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	0.346 0.000 0.018 0.328 0.000 -0.065	49.044 0.000 2.482 46.593 0.000
**************************************	Volume hectare-m	Volume 10^6 ltr
Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow	0.000 0.328 0.000 0.000	0.000 3.285 0.000 0.000

rion moderne concrnercy	moocare m	10 0 101

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.328	3.285
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.329	3.286
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	-0.045	

Time-Step Critical Elements Link C33 (2.13%)

Highest Flow Instability Indexes

Link C2 (5) Link OR1 (1)

Minimum Time Step : 0.43 sec
Average Time Step : 0.99 sec
Maximum Time Step : 1.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 2.00
Percent Not Converging : 0.00
Time Step Frequencies : 1.000 - 0.871 sec : 97.27 %
0.871 - 0.758 sec : 0.63 %
0.758 - 0.660 sec : 0.72 %
0.660 - 0.574 sec : 0.63 %
0.574 - 0.500 sec : 0.75 %

Subcatchment Runoff Summary

	Total	Total	Total	Total	Imperv	Perv	Total	Total	Peak	Runoff
	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff		Coeff
Subcatchment	mm	mm	mm	mm	mm	mm	mm	10^6 ltr	CMS	
Area 1	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.12	0.09	0.949
Area 10	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.04	0.03	0.949
Area 101	49.04	0.00	0.00	1.29	46.61	1.17	47.77	0.65	0.41	0.974
Area 102	49.04	0.00	0.00	1.29	46.61	1.17	47.77	0.54	0.34	0.974
Area 11	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.06	0.05	0.949
Area 12	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.07	0.06	0.949
Area 13	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.07	0.06	0.949
Area 14	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.08	0.06	0.949
Area 15	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.04	0.03	0.949
Area 16	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.07	0.06	0.949
Area 17	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.08	0.06	0.949
Area 18	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.08	0.06	0.949
Area 19	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.08	0.06	0.949
Area 2	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.07	0.06	0.949
Area 20	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.13	0.10	0.949
Area 2001	49.04	0.00	0.00	20.73	12.27	16.06	28.33	0.02	0.01	0.578
Area 2002	49.04	0.00	0.00	2.60	44.16	2.31	46.46	0.10	0.06	0.947
Area 2003	49.04	0.00	0.00	2.62	44.16	2.29	46.45	0.07	0.05	0.947
Area 2004	49.04	0.00	0.00	24.83	2.45	21.78	24.23	0.00	0.00	0.494
Area_2005	49.04	0.00	0.00	24.83	2.45	21.78	24.23	0.01	0.00	0.494
Area 21	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.10	0.08	0.949
Area 22	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.15	0.12	0.949
Area 23	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.07	0.06	0.949
Area 3	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.17	0.13	0.949
Area 4	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.13	0.10	0.949
Area 5	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.07	0.06	0.949
Area 6	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.07	0.06	0.949
Area 7	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.02	0.01	0.949
Area 8	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.06	0.04	0.949
Area_9	49.04	0.00	0.00	2.56	44.17	2.35	46.52	0.06	0.04	0.949

		Average	Maximum	Maximum	Time of Max		Reported
		Depth	Depth	HGL	Occu	rrence	Max Depth
Node	Type	Meters	Meters	Meters	days	hr:min	Meters
CB 10	JUNCTION	0.00	0.14	65.47	0	02:10	0.14
CB_10 CB_23	JUNCTION	0.00	0.10	66.29		02:10	0.10
CB_23	JUNCTION	0.00	0.12	65.61		02:10	0.12
CB 28	JUNCTION	0.00	0.12	65.51	0	02:10	0.12
CB_20 CB 29	JUNCTION	0.00	0.12	64.28	0	02:10	0.12
CB_23 CB_5	JUNCTION	0.00	0.14	65.25	0	02:10	0.14
CBMH 11	JUNCTION	0.04	0.70	64.28	0	02:57	0.69
CBMH 12	JUNCTION	0.01	0.75	64.31	0	02:10	0.25
CBMH 14	JUNCTION	0.01	0.71	64.81	0	02:53	0.71
CBMH 15	JUNCTION	0.01	0.35	64.81	0	02:50	0.35
CBMH 18	JUNCTION	0.04	0.76	64.81	0	02:52	0.76
CBMH 19	JUNCTION	0.00	0.70	65.11	0	02:32	0.24
CBMH 2	JUNCTION	0.01	0.29		0	02:10	0.29
CBMH 21	JUNCTION	0.00	0.22	65.39	Ö	02:10	0.22
CBMH 22	JUNCTION	0.00	0.17	65.70	Ö	02:10	0.17
CBMH 3	JUNCTION	0.00	0.24	64.66	Ö	02:10	0.24
CBMH 4	JUNCTION	0.00	0.19		Ō	02:10	0.19
CBMH 6	JUNCTION	0.01	0.36	64.27	Ō	03:08	0.36
CBMH 7	JUNCTION	0.00	0.30	64.57	0	02:10	0.30
CBMH 8	JUNCTION	0.00	0.25	64.88	Ō	02:10	0.25
CBMH 9	JUNCTION	0.00	0.20	65.19	Ō	02:10	0.20
DCB 16	JUNCTION	0.00	0.22	65.02	Ō	02:10	0.22
J1	JUNCTION	0.01	0.08	63.83	Ō	02:52	0.08
J13	JUNCTION	0.05	0.78	64.31	Ō	02:57	0.75

Ј2	JUNCTION	0.01	0.08	63.32	0	03:08	0.08
MH_20	JUNCTION	0.00	0.22	65.21	0	02:10	0.22
MH_24	JUNCTION	0.03	0.68	64.81	0	02:52	0.68
MH_25	JUNCTION	0.01	0.49	64.90	0	02:10	0.48
MH_26	JUNCTION	0.01	0.57	65.13	0	02:10	0.57
MH_27	JUNCTION	0.01	0.38	64.27	0	03:04	0.38
MH_30	JUNCTION	0.03	0.54	64.28	0	03:06	0.54
MH_44	JUNCTION	0.01	0.20	63.71	0	02:54	0.20
MH_45	JUNCTION	0.01	0.17	63.28	0	03:02	0.17
OGS_1	JUNCTION	0.01	0.07	63.11	0	03:08	0.07
OGS_2	JUNCTION	0.01	0.17	63.64	0	02:55	0.17
Humber_Pl	OUTFALL	0.00	0.00	62.48	0	00:00	0.00
OF1	OUTFALL	0.01	0.17	63.58	0	02:53	0.17
OF2	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU_N	STORAGE	0.08	1.06	64.81	0	02:52	1.06
SU_S	STORAGE	0.10	1.04	64.27	0	03:08	1.04

			Maximum	m ·		Lateral	Total	Flow
		Lateral			of Max	Inflow Volume	Inflow	Balance
Node	m	Inflow CMS	Inflow CMS	Occurrence days hr:min		10^6 ltr	Volume 10^6 ltr	Error Percent
Node	Type	CMS	CMS	days	ur:min	100 ICT	100 101	rercent
CB 10	JUNCTION	0.048	0.048	0	02:10	0.0605	0.0605	-0.010
CB 23	JUNCTION	0.030	0.030	0	02:10	0.0372	0.0372	-0.006
CB 27	JUNCTION	0.056	0.056	0	02:10	0.0698	0.0698	-0.004
CB 28	JUNCTION	0.056	0.056	0	02:10	0.0698	0.0698	-0.004
CB 29	JUNCTION	0.059	0.059	0	02:10	0.0744	0.0744	0.570
CB 5	JUNCTION	0.056	0.056	0	02:10	0.0698	0.0698	-0.010
CBMH 11	JUNCTION	0.415	0.587	0	02:10	0.637	0.86	0.024
CBMH 12	JUNCTION	0.119	0.119	0	02:10	0.149	0.149	0.588
CBMH 14	JUNCTION	0.093	0.281	0	02:10	0.116	0.355	-0.502
CBMH 15	JUNCTION	0.059	0.191	0	02:10	0.0744	0.241	0.899
CBMH 18	JUNCTION	0.104	0.741	0	02:10	0.13	1.09	-0.003
CBMH 19	JUNCTION	0.015	0.130	0	02:10	0.0186	0.167	0.246
CBMH 2	JUNCTION	0.063	0.238	0	02:10	0.0791	0.307	0.310
CBMH 21	JUNCTION	0.044	0.117	0	02:10	0.0558	0.149	-0.002
CBMH 22	JUNCTION	0.044	0.074	0	02:10	0.0558	0.093	-0.008
CBMH 3	JUNCTION	0.063	0.179	0	02:10	0.0791	0.228	0.268
CBMH 4	JUNCTION	0.063	0.118	0	02:10	0.0791	0.149	-0.009
CBMH 6	JUNCTION	0.033	0.253	0	02:10	0.0419	0.329	-0.031
CBMH 7	JUNCTION	0.063	0.224	0	02:10	0.0791	0.288	0.369
CBMH_8	JUNCTION	0.059	0.164	0	02:10	0.0744	0.209	-0.007
CBMH_9	JUNCTION	0.059	0.107	0	02:10	0.0744	0.135	-0.008
DCB_16	JUNCTION	0.133	0.133	0	02:10	0.167	0.167	0.399
J1	JUNCTION	0.000	0.013	0	02:52	0	0.978	-0.004
J13	JUNCTION	0.104	0.588	0	02:10	0.13	0.854	-0.156
J2	JUNCTION	0.000	0.012	0	03:08	0	1.18	-0.004
MH_20	JUNCTION	0.000	0.116	0	02:10	0	0.149	-0.001
MH_24	JUNCTION	0.000	0.648	0	02:10	0	0.958	-0.364
MH_25	JUNCTION	0.000	0.520	0	02:10	0	0.793	0.309
MH_26	JUNCTION	0.409	0.520	0	02:10	0.654	0.794	0.091
MH_27	JUNCTION	0.000	0.059	0	02:10	0	0.074	-0.452
MH_30	JUNCTION	0.000	0.237	0	02:10	0	0.321	-0.447
MH_44	JUNCTION	0.000	0.074	0	02:51	0	1.45	0.009
MH_45	JUNCTION	0.000	0.060	0	03:01	0	1.63	0.001
OGS_1	JUNCTION	0.000	0.060	0	03:08	0	1.63	-0.000
OGS_2	JUNCTION	0.000	0.076	0	02:50	0	1.45	-0.010
Humber_Pl	OUTFALL	0.005	0.061	0	02:51	0.0145	1.64	0.000
OF1	OUTFALL	0.050	0.079	0		0.0743	1.52	0.000
OF2	OUTFALL	0.068	0.068	0	02:10	0.117	0.117	0.000
SU_N	STORAGE	0.000	1.017	0	02:10	0	1.45	-0.108
su_s	STORAGE	0.000	1.173	0	02:10	0	1.7	-0.102

Surcharging occurs when water rises above the top of the highest conduit.

Node	Type	Hours Surcharged	Max. Height Above Crown Meters	Min. Depth Below Rim Meters
CBMH 11	JUNCTION	1.78	0.061	1.456
CBMH 14	JUNCTION	2.17	0.107	1.507
CBMH_18	JUNCTION	0.56	0.013	1.777
J13	JUNCTION	0.04	0.026	2.327

No nodes were flooded.

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Pont	Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pont Full	Time of Max Occurrence days hr:min	Maximum Outflow CMS
SU_N SU_S	0.061 0.089	2	0	0	0.925 1.115	36 32	0 02:52 0 03:08	0.074

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CMS	CMS	10^6 ltr
Humber_Pl	28.97	0.008	0.061	1.644
OF1	23.99	0.009	0.079	1.525
OF2	4.75	0.004	0.068	0.117
System	19.24	0.022	0.147	3.286

Link C1 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C2 C20 C21 C21	Туре	Maximum Flow CMS	Time Occu days	of Max rrence hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
C1	CONDUIT	0.061	0	02:44	1.95	1.29	1.00
C10	CONDUIT	0.055	0	02:10	1.57	0.16	0.27
C11	CONDUIT	0.055	0	02:10	1.57	0.16	0.27
C12	CONDUIT	0.520	0	02:10	2.45	1.45	0.95
C13	CONDUIT	0.648	0	02:10	2.48	1.26	1.00
C14	CONDUIT	0.029	0	02:10	1.33	0.14	0.25
C15	CONDUIT	0.073	0	02:10	1.32	0.30	0.38
C16	CONDUIT	0.116	0	02:10	1.50	0.49	0.49
C17	CONDUIT	0.116	0	02:10	1.49	0.49	0.49
C18	CONDUIT	0.130	0	02:10	1.54	0.54	0.53
C19	CONDUIT	0.047	0	02:10	1.17	0.20	0.30
C2	CONDUIT	0.076	0	02:50	1.38	0.60	0.50
C20	CONDUIT	0.105	0	02:10	1.45	0.29	0.37
C21	CONDUIT	0.162	0	02:10	1.63	0.45	0.47
C22	CONDUIT	0.222	0	02:10	1.63 1.76 1.81	0.62	0.57
C23	CONDUIT	0.254	0	02:10	1.81	0.70	0.84
C24 C25 C26	CONDUIT	0.588	0	02:10	2.23	0.63	1.00
C25	CONDUIT	0.055	0	02:10	1.20	0.15	0.26
C26	CONDUIT	0.116	0	02:10	1.47	0.23	0.32
C27	CONDUIT	0.177	0	02:10	1.65	0.35	0.41
C28	CONDUIT	0.237	0	02:10	1.78 1.27 0.82	0.46	0.58
C29	CONDUIT	0.116	0	02:10	1.27	0.74	0.83
C3	CONDUIT	0.013	0	02:52	0.82	0.16	0.27
C30	CONDUIT	0.238	0	02:10	1.76	0.47	0.95
C31	CONDUIT	0.067	0	02:10	1.03	0.45	1.00
C30 C31 C32	CONDUIT	0.586	0	02:10	2.74	1.63	1.00
C33	CONDUIT	0.060	0	03:08	4.17 1.49 2.16	0.08	0.19
C34	CONDUIT	0.074	0	02:53	1.49	0.43	0.46
C35	CONDUIT	0.518	0	02:10	2.16	1.01	0.83
C36	CONDUIT	0.741	0	02:10	2.36	0.79	1.00
C37	CONDUIT	0.059	0	02:10	1.21 1.72	0.40	0.64
C4	CONDUIT	0.048	0	02:58	1.72	1.00	0.88
C5	CONDUIT	0.012	0	03:07	0.82	0.15	0.29
C6	CONDUIT	0.060	0	03:08	1.24	0.42	0.45
C7	CONDUIT	0.132	0	02:10	1.24 1.54 1.69	0.37	0.42
C8	CONDUIT	0.189	0	02:10	1.69	0.53	0.83
C9	CONDUIT	0.278	0	02:10	1.84	0.54	1.00
OR1	ORIFICE	0.012	0	03:08			1.00
OR2	ORIFICE	0.012 0.013	0	02:52			1.00

Conduit	Adjusted /Actual Length	Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	w Clas Down Crit	Norm	Inlet Ctrl
C1	1.00	0.97	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00
C10	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C11	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C12	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.01	0.00
C13	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.00	0.00
C14	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C15	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C16	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C17	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00

C18 C19	1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98 1.00	0.01	0.00
C2	1.00	0.00	0.10	0.00	0.75	0.15	0.00	0.00	0.78	0.00
C20	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C21	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C22	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.04	0.00
C23	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.03	0.00
C24	1.00	0.00	0.00	0.00	0.12	0.00	0.00	0.87	0.01	0.00
C25	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C26	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C27	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.02	0.00
C28	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.04	0.00
C29	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.05	0.00
C3	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C30	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.90	0.01	0.00
C31	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.02	0.00
C32	1.00	0.00	0.00	0.00	0.13	0.00	0.00	0.87	0.01	0.00
C33	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C34	1.00	0.00	0.00	0.00	0.74	0.26	0.00	0.00	0.05	0.00
C35	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.03	0.00
C36	1.00	0.00	0.00	0.00	0.11	0.00	0.00	0.89	0.00	0.00
C37	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.03	0.00
C4	1.00	0.97	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00
C5	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00
C6	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C7	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.03	0.00
C8	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.04	0.00
C9	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.89	0.01	0.00

Conduit	Both Ends			Hours Above Full Normal Flow	Capacity
C1	0.13	0.56	0.13	1.12	0.13
C12	0.01	0.03	0.01	0.09	0.01
C13	1.67	1.67	2.09	0.06	0.01
C23	0.01	0.01	0.04	0.01	0.01
C24	0.04	0.04	0.49	0.01	0.01
C29	0.01	0.01	4.24	0.01	0.01
C30	0.01	0.01	0.04	0.01	0.01
C31	0.65	0.65	1.78	0.01	0.01
C32	5.48	5.53	7.81	0.11	0.01
C35	0.01	0.01	0.69	0.01	0.01
C36	0.56	0.56	0.95	0.01	0.01
C4	0.01	0.01	0.01	0.45	0.01
C8	0.01	0.01	2.53	0.01	0.01
C9	2.17	2.17	4.46	0.01	0.01

Analysis begun on: Wed Oct 5 21:16:09 2022 Analysis ended on: Wed Oct 5 21:16:39 2022

Total elapsed time: 00:00:30

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

WARNING 03: negative offset ignored for Link C2 WARNING 03: negative offset ignored for Link C32 WARNING 03: negative offset ignored for Link C34

Element Count

Name	Data Source	Data Type	Recording Interval
25mm	2.5mm	INTENSITY	5 min.
3hr-100yr	3hr-100yr	INTENSITY	10 min.
3hr-2yr	3hr-2yr	INTENSITY	5 min.
3hr-5yr	3hr-5yr	INTENSITY	5 min.
6hr-100yr	6hr-100yr	INTENSITY	10 min.
6hr-2yr	6hr-2yr	INTENSITY	5 min.
6hr-5yr	6hr-5yr	INTENSITY	5 min.

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet	
Area 1	0.25	83.33	90.00	1.0000 3hr-100yr	CBMH 14	
Area 10	0.08	26.67	90.00	1.0000 3hr-100yr	CB 23	
Area 101	1.37	137.00	95.00	0.5000 3hr-100yr	MH 26	
Area 102	1.13	113.00	95.00	0.5000 3hr-100yr	CBMH 11	
Area_11	0.13	43.33	90.00	1.0000 3hr-100yr	CB_10	
Area_12	0.16	53.33	90.00	1.0000 3hr-100yr	CBMH_9	
Area_13	0.16	53.33	90.00	1.0000 3hr-100yr	CBMH_8	
Area_14	0.17	56.67	90.00	1.0000 3hr-100yr	CBMH_7	
Area_15	0.09	30.00	90.00	1.0000 3hr-100yr	CBMH_6	
Area_16	0.15	50.00	90.00	1.0000 3hr-100yr	CB_5	
Area_17	0.17	56.67	90.00	1.0000 3hr-100yr	CBMH_4	
Area_18	0.17	56.67	90.00	1.0000 3hr-100yr	CBMH_3	
Area_19	0.17	56.67	90.00	1.0000 3hr-100yr	CBMH_2	
Area_2	0.16	53.33	90.00	1.0000 3hr-100yr	CBMH_15	
Area_20	0.28	93.33	90.00	1.0000 3hr-100yr	J13	
Area_2001	0.07	7.00	25.00	0.5000 3hr-100yr	OF2	
Area_2002	0.21	21.00	90.00	0.5000 3hr-100yr	OF2	
Area_2003	0.16	16.00	90.00	1.0000 3hr-100yr	OF1	
Area_2004	0.02	13.33	5.00	0.5000 3hr-100yr	Humber_Pl	
Area_2005	0.04	26.67	5.00	0.5000 3hr-100yr	Humber_Pl	
Area_21	0.21	70.00	90.00	1.0000 3hr-100yr	CBMH_11	
Area_22	0.32	106.67	90.00	1.0000 3hr-100yr	CBMH_12	
Area_23	0.16	53.33	90.00	1.0000 3hr-100yr	CB_29	
Area_3	0.36	120.00	90.00	1.0000 3hr-100yr	DCB_16	
Area_4	0.28	93.33	90.00	1.0000 3hr-100yr	CBMH_18	
Area_5	0.15	50.00	90.00	1.0000 3hr-100yr	CB_27	
Area_6	0.15	50.00	90.00	1.0000 3hr-100yr	CB_28	
Area_7	0.04	13.33	90.00	1.0000 3hr-100yr	CBMH_19	
Area_8	0.12	40.00	90.00	1.0000 3hr-100yr	CBMH_21	
Area_9	0.12	40.00	90.00	1.0000 3hr-100yr	CBMH_22	

Name	Type	Invert Elev.		Ponded Area	
CB 10	JUNCTION	65.33	1.41	10.0	
CB 23	JUNCTION	66.20	0.93	10.0	
CB 27	JUNCTION	65.48	1.34	10.0	
CB 28	JUNCTION	65.39	1.52	10.0	
CB 29	JUNCTION	64.11	2.43	0.0	
CB 5	JUNCTION	65.11	1.63	10.0	
CBMH 11	JUNCTION	63.58	2.16	10.0	
CBMH 12	JUNCTION	64.06	1.68	10.0	
CBMH 14	JUNCTION	64.11	2.21	10.0	
CBMH 15	JUNCTION	64.47	1.85	10.0	
CBMH 18	JUNCTION	64.05	2.54	0.0	
CBMH 19	JUNCTION	64.88	2.38	10.0	
CBMH 2	JUNCTION	64.06	2.94	10.0	
CBMH 21	JUNCTION	65.17	1.87	10.0	
CBMH 22	JUNCTION	65.53	1.51	10.0	

CBMH 3	JUNCTION	64.42	2.58	10.0
CBMH 4	JUNCTION	64.78	2.22	10.0
CBMH 6	JUNCTION	63.91	2.73	10.0
CBMH 7	JUNCTION	64.27	2.73	10.0
CBMH 8	JUNCTION	64.63	2.37	10.0
CBMH_9	JUNCTION	64.99	2.01	10.0
DCB_16	JUNCTION	64.80	1.52	10.0
J1	JUNCTION	63.75	3.27	0.0
J13	JUNCTION	63.54	3.10	10.0
J2	JUNCTION	63.24	3.33	0.0
MH_20	JUNCTION	64.99	2.30	0.0
MH_24	JUNCTION	64.13	2.50	10.0
MH_25	JUNCTION	64.42	2.63	0.0
MH_26	JUNCTION	64.56	2.70	0.0
MH_27	JUNCTION	63.89	2.02	0.0
MH_30	JUNCTION	63.73	3.08	0.0
MH_44	JUNCTION	63.51	3.51	0.0
MH_45	JUNCTION	63.11		
OGS_1	JUNCTION	63.04	3.34	0.0
OGS_2	JUNCTION	63.47	3.01	0.0
Humber_Pl	OUTFALL	62.48	0.38	0.0
OF1	OUTFALL	63.41	0.38	0.0
OF2	OUTFALL	0.00	0.00	0.0
SU_N	STORAGE	63.75		
SU_S	STORAGE	63.24	3.33	0.0

Name	From Node	To Node	Type	Length	%Slope Ro	oughness
C1	SU N	MH 44	CONDUIT	2.5	1.0001	0.0090
C10	CB 28	MH 26	CONDUIT	30.4	1.0001	0.0110
C11	CB 27	MH 26	CONDUIT	32.8	1.0001	0.0110
C12	MH 26	MH 25	CONDUIT	16.5	0.4970	0.0110
C13	MH 24	CBMH 18	CONDUIT	4.8	0.5000	0.0110
C14	CB 23	CBMH 22	CONDUIT	51.5	1.0001	0.0110
C15	CBMH 22	CBMH 21	CONDUIT	60.0	0.5000	0.0110
C16	CBMH 21	MH 20	CONDUIT	24.5	0.5020	0.0110
C17	MH 20	CBMH 19	CONDUIT	10.4	0.5000	0.0110
C18	CBMH 19	MH 24	CONDUIT	46.5	0.5011	0.0110
C19	CB 10	CBMH 9	CONDUIT	52.5	0.4991	0.0110
C2	MH_44	OGS_2	CONDUIT	11.6	0.3707	0.0110
C20	CBMH_9	CBMH_8	CONDUIT	60.0	0.5000	0.0110
C21	CBMH_8	CBMH_7	CONDUIT	60.0	0.5000	0.0110
C22	CBMH_7	CBMH_6	CONDUIT	60.0	0.5000	0.0110
C23	CBMH_6	J13	CONDUIT	29.9	0.5017	0.0110
C24	J13	SU_S	CONDUIT	4.0	0.5000	0.0110
C25	CB_5	CBMH_4	CONDUIT	52.5	0.4991	0.0110
C26	CBMH_4	CBMH_3	CONDUIT	60.0	0.5000	0.0110
C27	CBMH_3	CBMH_2	CONDUIT	60.0	0.5000	0.0110
C28	CBMH_2	MH_30	CONDUIT	53.4	0.4963	0.0110
C29	CBMH_12	CBMH_11	CONDUIT	50.0	0.5700	0.0110
C3	J1	MH_44	CONDUIT	2.5	0.4800	0.0110
C30	MH_30	J13	CONDUIT	9.3	0.4839	0.0110
C31	MH_27	CBMH_11	CONDUIT	8.2	0.5000	0.0110
C32	CBMH_11	SU_S	CONDUIT	13.2	0.5000	0.0110
C33	ogs_1	Humber_Pl	CONDUIT	4.0	14.1135	0.0110
C34	OGS_2	OF1	CONDUIT	8.7	0.6782	0.0110
C35	MH_25	MH_24	CONDUIT	44.2	0.5000	0.0110
C36	CBMH_18	SU_N	CONDUIT	3.9	0.5128	0.0110
C37	CB_29	MH_27	CONDUIT	32.9	0.4985	0.0110
C4	SU_S	MH_45	CONDUIT	9.4	1.0001	0.0090
C5	J2	MH_45	CONDUIT	9.4	0.5000	0.0110
C6	MH_45	OGS_1	CONDUIT	3.1	0.4839	0.0110
C7	DCB_16	CBMH_15	CONDUIT	54.4	0.5000	0.0110
C8	CBMH_15	CBMH_14	CONDUIT	60.0	0.5000	0.0110
C9	CBMH_14	SU_N	CONDUIT	15.2	0.5000	0.0110
OR1	SU_S	J2	ORIFICE			
OR2	SU_N	J1	ORIFICE			

Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C10	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C11	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C12	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C13	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C14	CIRCULAR	0.38	0.11	0.09	0.38	1	0.21
C15	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C16	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C17	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C18	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C19	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C2	CIRCULAR	0.38	0.11	0.09	0.38	1	0.13
C20	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C21	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C22	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C23	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36

C24	CIRCULAR	0.75	0.44	0.19	0.75	1	0.93
C25	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C26	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C27	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C28	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C29	CIRCULAR	0.38	0.11	0.09	0.38	1	0.16
C3	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C30	CIRCULAR	0.60	0.28	0.15	0.60	1	0.50
C31	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C32	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C33	CIRCULAR	0.38	0.11	0.09	0.38	1	0.78
C34	CIRCULAR	0.38	0.11	0.09	0.38	1	0.17
C35	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C36	CIRCULAR	0.75	0.44	0.19	0.75	1	0.94
C37	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C4	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C5	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C6	CIRCULAR	0.38	0.11	0.09	0.38	1	0.14
C7	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C8	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C9	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CMS
Process Models:
Rainfall/Runoff YES
 Process Models:
 Rainfall/Runoff
 YES

 RDII
 NO

 Snowmelt
 NO

 Groundwater
 NO

 Flow Routing
 YES

 Ponding Allowed
 NO

 Water Quality
 NO

 Infiltration Method
 HORTON

 Flow Routing Method
 DYNWAVE

 Surcharge Method
 EXTRAN

 Starting Date
 12/11/2020 00:00:00

 Ending Date
 12/21/2020 00:00:00

 Antecedent Dry Days
 0.0

 Report Time Step
 00:01:00

 Wet Time Step
 00:01:00

 Routing Time Step
 1.00 sec

 Variable Time Step
 YES

 Maximum Trials
 8

 Number of Threads
 6

 Head Tolerance
 0.001500 m

**************************************	Volume hectare-m	Depth mm
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage	0.505 0.000 0.017 0.489 0.000	71.677 0.000 2.413 69.322 0.000
Continuity Error (%)	-0.082	
**************************************	Volume hectare-m	Volume 10^6 ltr
Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow External Inflow External Outflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume	0.000 0.489 0.000 0.000 0.000 0.489 0.000 0.000 0.000	0.000 4.886 0.000 0.000 0.000 4.888 0.000 0.000 0.000
Final Stored Volume Continuity Error (%)	0.000 -0.037	0.000

Time-Step Critical Elements Link C33 (3.80%)

Highest Flow Instability Indexes

Link C2 (4) Link OR1 (1) Link OR2 (1)

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
Area 1	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.17	0.12	0.966
Area_10	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.06	0.04	0.966
Area_101	71.68	0.00	0.00	1.25	68.12	2.34	70.46	0.97	0.65	0.983
Area_102	71.68	0.00	0.00	1.25	68.12	2.34	70.46	0.80	0.53	0.983
Area_11	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.09	0.06	0.966
Area_12	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.11	0.08	0.966
Area_13	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.11	0.08	0.966
Area_14	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.12	0.08	0.966
Area_15	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.06	0.04	0.966
Area_16	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.10	0.07	0.966
Area 17	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.12	0.08	0.966
Area 18	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.12	0.08	0.966
Area 19	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.12	0.08	0.966
Area 2	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.11	0.08	0.966
Area_20	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.19	0.14	0.966
Area_2001	71.68	0.00	0.00	20.52	17.93	33.25	51.18	0.04	0.01	0.714
Area_2002	71.68	0.00	0.00	2.53	64.54	4.64	69.18	0.15	0.10	0.965
Area_2003	71.68	0.00	0.00	2.55	64.54	4.62	69.17	0.11	0.08	0.965
Area_2004	71.68	0.00	0.00	24.23	3.59	43.89	47.48	0.01	0.01	0.662
Area 2005	71.68	0.00	0.00	24.23	3.59	43.89	47.48	0.02	0.01	0.662
Area 21	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.15	0.10	0.966
Area 22	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.22	0.16	0.966
Area 23	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.11	0.08	0.966
Area 3	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.25	0.18	0.966
Area_4	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.19	0.14	0.966
Area_5	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.10	0.07	0.966
Area 6	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.10	0.07	0.966
Area 7	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.03	0.02	0.966
Area 8	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.08	0.06	0.966
Area_9	71.68	0.00	0.00	2.48	64.57	4.70	69.27	0.08	0.06	0.966

Node	Туре	Average Depth Meters	-	HGL	0ccu	of Max urrence hr:min	Max Depth
CB 10	JUNCTION	0.00	0.16	65.49	0	01:10	0.16
CB 23	JUNCTION	0.00	0.11	66.31	0	01:10	0.11
CB 27	JUNCTION	0.00	0.31	65.80	0	01:10	0.30
CB_28	JUNCTION	0.00	0.39	65.78	0	01:10	0.37
CB_29	JUNCTION	0.01	0.86	64.98	0	01:08	0.60
CB_5	JUNCTION	0.00	0.16	65.28	0	01:10	0.16
CBMH_11	JUNCTION	0.06	1.13	64.71	0	01:52	1.13
CBMH_12	JUNCTION	0.02	1.51	65.57	0	01:03	0.84
CBMH_14	JUNCTION	0.04	1.08	65.19	0	01:32	1.08
CBMH_15	JUNCTION	0.01	1.34	65.81	0	01:16	0.72
CBMH_18	JUNCTION	0.05	1.14	65.19	0	01:32	1.14
CBMH_19	JUNCTION	0.00	0.32	65.19	0	01:33	0.32
CBMH_2	JUNCTION	0.02	0.66	64.72	0	01:53	0.66
CBMH_21	JUNCTION	0.00	0.27	65.44	0	01:10	0.27
CBMH_22	JUNCTION	0.00	0.20	65.73	0	01:10	0.20
CBMH_3	JUNCTION	0.00	0.30	64.71	0	01:53	0.30
CBMH_4	JUNCTION	0.00	0.23	65.00	0	01:10	0.23
CBMH_6	JUNCTION	0.02	0.80	64.71	0	01:52	0.80
CBMH_7	JUNCTION	0.01	0.44	64.71	0	01:50	0.44
CBMH_8	JUNCTION	0.00	0.30	64.93	0	01:10	0.30
CBMH_9	JUNCTION	0.00	0.23	65.22	0	01:10	0.23
DCB_16	JUNCTION	0.00	0.39	65.19	0	01:32	0.39
J1	JUNCTION	0.01	0.18	63.93	0	01:32	0.18

J13	JUNCTION	0.06	1.17	64.71	0	01:52	1.17
J2	JUNCTION	0.01	0.14	63.37	0	01:53	0.14
MH_20	JUNCTION	0.00	0.27	65.26	0	01:10	0.27
MH_24	JUNCTION	0.04	1.06	65.19	0	01:31	1.06
MH_25	JUNCTION	0.02	0.99	65.40	0	01:10	0.98
MH_26	JUNCTION	0.01	1.23	65.78	0	01:10	1.22
MH_27	JUNCTION	0.03	0.82	64.71	0	01:52	0.82
MH_30	JUNCTION	0.04	0.98	64.71	0	01:52	0.98
MH_44	JUNCTION	0.02	0.42	63.93	0	01:32	0.42
MH_45	JUNCTION	0.02	0.26	63.37	0	01:53	0.26
OGS_1	JUNCTION	0.01	0.10	63.14	0	01:53	0.10
OGS_2	JUNCTION	0.01	0.35	63.82	0	01:32	0.35
Humber_Pl	OUTFALL	0.00	0.00	62.48	0	00:00	0.00
OF1	OUTFALL	0.01	0.33	63.74	0	01:32	0.33
OF2	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU_N	STORAGE	0.09	1.44	65.19	0	01:32	1.44
SU_S	STORAGE	0.11	1.47	64.71	0	01:53	1.47

Node Inflow Summary

		Maximum	Maximum			Lateral	Total	Flow
		Lateral	Total	Time	of Max	Inflow	Inflow	Balance
		Inflow	Inflow	0ccu	rrence	Volume	Volume	Error
Node	Type	CMS	CMS	days	hr:min	10^6 ltr	10^6 ltr	Percent
CB_10	JUNCTION	0.064	0.064	0	01:10	0.09	0.09	-0.012
CB_23	JUNCTION	0.039	0.039	0	01:10	0.0554	0.0554	-0.007
CB_27	JUNCTION	0.074	0.074	0	01:10	0.104	0.104	0.357
CB_28	JUNCTION	0.074	0.074	0	01:10	0.104	0.104	0.478
CB_29	JUNCTION	0.079	0.079	0	01:10	0.111	0.111	0.583
CB_5	JUNCTION	0.074	0.074	0	01:10	0.104	0.104	-0.013
CBMH_11	JUNCTION	0.636	0.872	0	01:10	0.942	1.27	0.040
CBMH_12	JUNCTION	0.157	0.157	0	01:10	0.222	0.222	0.322
CBMH_14	JUNCTION	0.123	0.378	0	01:07	0.173	0.53	-0.516
CBMH_15	JUNCTION	0.079	0.258	0	01:09	0.111	0.358	0.361
CBMH_18	JUNCTION	0.138	1.071	0	01:10	0.194	1.62	0.006
CBMH_19	JUNCTION	0.020	0.177	0	01:10	0.0277	0.249	0.857
CBMH_2	JUNCTION	0.084	0.323	0	01:10	0.118	0.458	0.370
CBMH_21	JUNCTION	0.059	0.157	0	01:10	0.0831	0.222	0.067
CBMH 22	JUNCTION	0.059	0.098	0	01:10	0.0831	0.139	0.041
CBMH 3	JUNCTION	0.084	0.241	0	01:10	0.118	0.338	0.207
CBMH 4	JUNCTION	0.084	0.157	0	01:10	0.118	0.222	0.640
CBMH 6	JUNCTION	0.044	0.348	0	01:10	0.0623	0.487	-0.394
CBMH 7	JUNCTION	0.084	0.304	0	01:10	0.118	0.427	0.625
CBMH 8	JUNCTION	0.079	0.221	0	01:10	0.111	0.311	0.562
CBMH 9	JUNCTION	0.079	0.142	0	01:10	0.111	0.201	0.228
DCB 16	JUNCTION	0.177	0.177	0	01:10	0.249	0.249	0.955
J1 -	JUNCTION	0.000	0.014	0	01:32	0	0.951	-0.005
J13	JUNCTION	0.138	0.802	0	01:08	0.194	1.14	-0.232
J2	JUNCTION	0.000	0.015	0	01:53	0	1.21	-0.004
MH 20	JUNCTION	0.000	0.157	0	01:10	0	0.221	-0.019
MH 24	JUNCTION	0.000	0.940	0	01:10	0	1.42	-0.507
MH 25	JUNCTION	0.000	0.764	0	01:10	0	1.17	0.262
MH 26	JUNCTION	0.646	0.771	0	01:08	0.965	1.17	0.074
MH 27	JUNCTION	0.000	0.080	0	01:08	0	0.11	-0.540
MH 30	JUNCTION	0.000	0.323	0	01:10	0	0.459	-0.800
MH 44	JUNCTION	0.000	0.207	0	01:32	0	2.15	0.012
MH 45	JUNCTION	0.000	0.124	0	01:53	0	2.42	0.000
ogs 1	JUNCTION	0.000	0.124	0	01:53	0	2.42	-0.000
OGS 2	JUNCTION	0.000	0.207	0	01:32	0	2.15	-0.011
Humber Pl	OUTFALL	0.017	0.127	0	01:50	0.0285	2.45	0.000
OF1	OUTFALL	0.076	0.219	Ō	01:30	0.111	2.26	0.000
OF2	OUTFALL	0.110	0.110	0	01:10	0.181	0.181	0.000
SU N	STORAGE	0.000	1.442	0	01:08	0.101	2.15	-0.100
SU S	STORAGE	0.000	1.654	0	01:08	0	2.42	-0.085
77-7		2.000		Ü		ŭ	2.12	0.000

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged		Below Rim
CB 29	JUNCTION	2.31	0.490	1.562
CBMH 11	JUNCTION	3.90	0.488	1.029
CBMH 12	JUNCTION	2.66	1.140	0.167
CBMH 14	JUNCTION	2.80	0.483	1.131
CBMH 15	JUNCTION	0.87	0.755	0.514
CBMH 18	JUNCTION	2.17	0.389	1.401
CBMH 2	JUNCTION	0.01	0.002	2.281
CBMH 6	JUNCTION	2.15	0.213	1.930
J13 -	JUNCTION	3.32	0.422	1.931
MH 24	JUNCTION	0.70	0.097	1.439
MH 25	JUNCTION	1.20	0.389	1.636
MH 26	JUNCTION	0.04	0.176	1.477
MH 27	JUNCTION	3.20	0.387	1.199
MH_30	JUNCTION	2.69	0.319	2.099

No nodes were flooded.

Storage Volume Summary

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Pont		Maximum Volume 1000 m3	Max Pont Full	Time of Max Occurrence days hr:min	Maximum Outflow CMS
SU_N SU_S	0.067 0.107	3	0	0	1.304	50 48	0 01:32 0 01:53	0.207

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CMS	CMS	10^6 ltr
Humber_Pl	29.10	0.014	0.127	2.446
OF1	23.64	0.018	0.219	2.261
OF2	4.45	0.008	0.110	0.181
System	19.06	0.040	0.370	4.888

					Maximum		
		Flow	0ccu	rrence	Veloc	Full	Full
Link	Type	CMS	days	hr:min	m/sec	Flow	Depth
C1 C10 C11 C12 C13 C14 C15	CONDUIT	0.193	0	01:32	6.13	4.07	1.00
C10	CONDUIT	0.079	0	01:11	1.65	0.24	0.94
C11	CONDUIT	0.087	0	01:10	1.66	0.26	0.85
C12	CONDUIT	0.764	0	01:10	3.53	2.13	1.00
C13	CONDUIT	0.935	0	01:10	3.31	1.82	1.00
C14	CONDUIT	0.039	0	01:10	1.45	0.19	0.29
C15	CONDUIT	0.098	0	01:10	1.40	0.41	0.45
C16	CONDUIT	0.157	0	01:10	1.61 1.60 1.65	0.66	0.59
C17	CONDUIT	0.157	0	01:10	1.60	0.66	0.59
C18	CONDUIT	0.177	0	01:10	1.65	0.74	0.85
C19	CONDUIT	0.064	0	01:10	1.28 1.90 1.52	0.27	0.35
C2	CONDUIT	0.207	0	01:32	1.90	1.64	0.96
C20	CONDUIT	0.142	0	01:10	1.52	0.40	0.45
C21	CONDUIT	0.221	0	01:10	1.70	0.61	0.58
C22	CONDUIT	0.304	0	01:10	1.86 1.95	0.85	0.92
C23	CONDUIT	0.347	0	01:09	1.95	0.96	1.00
C24	CONDUIT	0.800	0	01:07	2.37	0.86	1.00
C25	CONDUIT	0.074	0	01:10	1.31 1.59	0.21	0.31
C26	CONDUIT	0.157	0	01:10	1.59	0.31	0.38
C27	CONDUIT	0.240	0	01:10	1.78	0.47	0.74
C28	CONDUIT	0.323	0	01:10	1.91 1.42 0.84	0.63	1.00
C29	CONDUIT	0.157	0	01:10	1.42	1.00	1.00
C3	CONDUIT	0.014	0	01:33	0.84	0.18	0.63
C30	CONDUIT	0.320	0	01:08	1.73	0.63	1.00
C31	CONDUIT	0.080	0	01:08	1.73 0.97 4.03	0.55	1.00
C32	CONDUIT	0.872	0	01:10	4.03	2.42	1.00
C33	CONDUIT	0.124	0	01:53	5.15	0.16	0.27
C34	CONDUIT	0.207	0	01:32	1.97 2.70	1.21	0.90
C35	CONDUIT	0.764	0	01:10	2.70	1.49	1.00
C36	CONDUIT	1.071	0	01:10	2.67	1.14	1.00
C37	CONDUIT	0.080	0	01:08	1.20 3.49	0.55	1.00
C4	CONDUIT	0.110	0	01:53	3.49	2.31	1.00
C5	CONDUIT	0.015	0	01:53	0.82	0.18	0.54
C6	CONDUIT	0.124	0	01:53	1.52 1.62 1.77	0.86	0.69
C7	CONDUIT	0.179	0	01:09	1.62	0.50	0.88
C8	CONDUIT	0.256	0	01:07	1.77	0.71	1.00
C9	CONDUIT	0.376	0	01:08	1.95	0.73	1.00
OR1	ORIFICE ORIFICE	0.015	0	01:53	1.95		1.00
OR2	ORIFICE	0.014	0	01:32			1.00

Adjusted ------ Fraction of Time in Flow Class -------/Actual Up Down Sub Sup Up Down Norm Inlet

Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
C1 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C2 C20 C21 C21 C22 C23	1.00	0.97	0.00	0.00			0.00		0.00	0.00
C10	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00
C11	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C12	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.01	0.00
C13	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.90	0.00	0.00
C14	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C15	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C16	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00
C17	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00
C18	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.01	0.00
C19	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C2	1.00	0.00	0.09	0.00	0.77	0.14	0.00	0.00	0.78	0.00
C20	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C21	1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.01	0.00
C22	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.03	0.00
C23	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.03	0.00
		0.00	0.00	0.00	0.13	0.00	0.00	0.87	0.01	0.00
C25	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C26	1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.01	0.00
C27	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.01	0.00
C28	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.04	0.00
C29	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.05	0.00
C3	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00
C30	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.90	0.01	0.00
C31	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.02	0.00
C32	1.00	0.00	0.00	0.00	0.13	0.00	0.00	0.87	0.01	0.00
C33	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C34 C35	1.00	0.00	0.00	0.00	0.75	0.25	0.00	0.00	0.04	0.00
C36	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.89	0.03	0.00
C37	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.89	0.00	0.00
C4	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.94	0.03	0.00
C5	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00
C6	1.00	0.00	0.00	0.00	0.03	0.00	0.00	1.00	0.00	0.00
C7	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.96	0.00	0.00
C8	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.02	0.00
C9	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.89	0.04	0.00
	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.05	0.01	0.00

Conduit	Both Ends	Upstream	Dnstream	Hours Above Full Normal Flow	Capacity Limited
C1				2.35	
C10	0.01	0.01	0.07	0.01	0.01
C11	0.01	0.01	0.04	0.01	0.01
C12	0.98	1.01	1.25	0.22	0.18
C13	2.58	2.64	2.76	0.18	0.07
C18	0.01	0.01	0.70	0.01	0.01
C2	0.01	0.69	0.01	1.46	0.01
C22	0.01	0.01	2.15	0.01	0.01
C23	2.46	2.46	3.32	0.01	0.01
C24	3.32	3.32	3.45	0.01	0.01
C27	0.01	0.01	0.01	0.01	0.01
C28			2.69	0.01	0.01
C29	2.66	2.66	4.96	0.03	0.03
C30	3.04	3.04	3.32	0.01	0.01
C31	3.58	3.58	3.90	0.01	0.01
C32	6.08	6.11	8.35	0.23	0.18
C34	0.01	0.01	0.01	0.88	0.01
C35	1.13	1.20	2.22	0.15	0.06
C36	2.17	2.17	2.28	0.09	0.01
C37	2.31	2.31	3.20	0.01	0.01
C4	2.89	3.23	2.89	3.45	2.89
C7	0.01	0.01	0.87	0.01	0.01
C8	1.13	1.13	2.95	0.01	0.01
C9	2.80	2.80	3.93	0.01	0.01

Analysis begun on: Wed Oct 5 21:19:30 2022 Analysis ended on: Wed Oct 5 21:20:01 2022

Total elapsed time: 00:00:31

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

WARNING 03: negative offset ignored for Link C2 WARNING 03: negative offset ignored for Link C32 WARNING 03: negative offset ignored for Link C34

Element Count

Name	Data Source	Data Type	Recording Interval
25mm	25mm	INTENSITY	5 min.
3hr-100yr	3hr-100yr	INTENSITY	10 min.
3hr-2yr	3hr-2yr	INTENSITY	5 min.
3hr-5yr	3hr-5yr	INTENSITY	5 min.
6hr-100yr	6hr-100yr	INTENSITY	10 min.
6hr-2yr	6hr-2yr	INTENSITY	5 min.
6hr-5yr	6hr-5yr	INTENSITY	5 min.

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
Area_1	0.25	83.33	90.00	1.0000 6hr-100yr	CBMH_14
Area_10	0.08	26.67	90.00	1.0000 6hr-100yr	CB_23
Area_101	1.37	137.00	95.00	0.5000 6hr-100yr	MH_26
Area_102	1.13	113.00	95.00	0.5000 6hr-100yr	CBMH_11
Area_11	0.13	43.33	90.00	1.0000 6hr-100yr	CB_10
Area_12	0.16	53.33	90.00	1.0000 6hr-100yr	CBMH_9
Area_13	0.16	53.33	90.00	1.0000 6hr-100yr	CBMH_8
Area_14	0.17	56.67	90.00	1.0000 6hr-100yr	CBMH_7
Area_15	0.09	30.00	90.00	1.0000 6hr-100yr	CBMH_6
Area_16	0.15	50.00	90.00	1.0000 6hr-100yr	CB_5
Area_17	0.17	56.67	90.00	1.0000 6hr-100yr	CBMH_4
Area_18	0.17	56.67	90.00	1.0000 6hr-100yr	CBMH_3
Area_19	0.17	56.67	90.00	1.0000 6hr-100yr	CBMH_2
Area_2	0.16	53.33	90.00	1.0000 6hr-100yr	CBMH_15
Area_20	0.28	93.33	90.00	1.0000 6hr-100yr	J13
Area_2001	0.07	7.00	25.00	0.5000 6hr-100yr	OF2
Area_2002	0.21	21.00	90.00	0.5000 6hr-100yr	OF2
Area_2003	0.16	16.00	90.00	1.0000 6hr-100yr	OF1
Area_2004	0.02	13.33	5.00	0.5000 6hr-100yr	Humber_Pl
Area_2005	0.04	26.67	5.00	0.5000 6hr-100yr	Humber_Pl
Area_21	0.21	70.00	90.00	1.0000 6hr-100yr	CBMH_11
Area_22	0.32	106.67	90.00	1.0000 6hr-100yr	CBMH_12
Area_23	0.16	53.33	90.00	1.0000 6hr-100yr	CB_29
Area_3	0.36	120.00	90.00	1.0000 6hr-100yr	DCB_16
Area_4	0.28	93.33	90.00	1.0000 6hr-100yr	CBMH_18
Area_5	0.15	50.00	90.00	1.0000 6hr-100yr	CB_27
Area_6	0.15	50.00	90.00	1.0000 6hr-100yr	CB_28
Area_7	0.04	13.33	90.00	1.0000 6hr-100yr	CBMH_19
Area_8	0.12	40.00	90.00	1.0000 6hr-100yr	CBMH_21
Area_9	0.12	40.00	90.00	1.0000 6hr-100yr	CBMH_22

Node Summary

Name	Туре			Ponded Area	
CB 10	JUNCTION	65.33	1.41	10.0	
CB 23	JUNCTION	66.20	0.93	10.0	
CB 27	JUNCTION	65.48	1.34	10.0	
CB 28	JUNCTION	65.39	1.52	10.0	
CB 29	JUNCTION	64.11	2.43	0.0	
CB 5	JUNCTION	65.11	1.63	10.0	
CBMH 11	JUNCTION	63.58	2.16	10.0	
CBMH 12	JUNCTION	64.06	1.68	10.0	
CBMH 14	JUNCTION	64.11	2.21	10.0	
CBMH 15	JUNCTION	64.47	1.85	10.0	
CBMH 18	JUNCTION	64.05	2.54	0.0	
CBMH 19	JUNCTION	64.88	2.38	10.0	
CBMH 2	JUNCTION	64.06	2.94	10.0	
CBMH 21	JUNCTION	65.17	1.87	10.0	
CBMH_22	JUNCTION	65.53	1.51	10.0	
CBMH_3	JUNCTION	64.42	2.58	10.0	

JUNCTION	64.78	2.22	10.0
JUNCTION	63.91	2.73	10.0
JUNCTION	64.27	2.73	10.0
JUNCTION	64.63	2.37	10.0
JUNCTION	64.99	2.01	10.0
JUNCTION	64.80	1.52	10.0
JUNCTION	63.75	3.27	0.0
JUNCTION	63.54	3.10	10.0
JUNCTION	63.24	3.33	0.0
JUNCTION	64.99	2.30	0.0
JUNCTION	64.13	2.50	10.0
JUNCTION	64.42	2.63	0.0
JUNCTION	64.56	2.70	0.0
JUNCTION	63.89	2.02	0.0
JUNCTION	63.73	3.08	0.0
JUNCTION	63.51	3.51	0.0
JUNCTION	63.11	3.46	0.0
JUNCTION	63.04	3.34	0.0
JUNCTION	63.47	3.01	0.0
OUTFALL	62.48	0.38	0.0
OUTFALL	63.41	0.38	0.0
OUTFALL	0.00	0.00	0.0
STORAGE			0.0
STORAGE	63.24	3.33	0.0
	JUNCTION JUN	JUNCTION 63.91 JUNCTION 64.27 JUNCTION 64.63 JUNCTION 64.63 JUNCTION 64.80 JUNCTION 63.75 JUNCTION 63.54 JUNCTION 63.54 JUNCTION 63.24 JUNCTION 64.13 JUNCTION 64.13 JUNCTION 64.13 JUNCTION 64.56 JUNCTION 63.89 JUNCTION 63.73 JUNCTION 63.51 JUNCTION 63.71 JUNCTION 63.71 JUNCTION 63.71 JUNCTION 63.71 JUNCTION 63.71 JUNCTION 63.71 JUNCTION 63.11 JUNCTION 63.11 JUNCTION 63.47 OUTFALL 62.48 OUTFALL 62.48 OUTFALL 63.41 OUTFALL 0.00 STORAGE 63.75	JUNCTION 63.91 2.73 JUNCTION 64.27 2.73 JUNCTION 64.63 2.37 JUNCTION 64.99 2.01 JUNCTION 63.75 3.27 JUNCTION 63.54 3.10 JUNCTION 63.24 3.33 JUNCTION 64.99 2.30 JUNCTION 63.75 3.08 JUNCTION 63.89 2.02 JUNCTION 63.73 3.08 JUNCTION 63.51 3.51 JUNCTION 63.51 3.34 JUNCTION 63.11 3.46 JUNCTION 63.47 3.01 OUTFALL 62.48

Link Summary						
Name	From Node	To Node	Type	Length	%Slope F	toughness
C1	SU_N	MH_44	CONDUIT	2.5	1.0001	0.0090
C10	CB_28	MH_26	CONDUIT	30.4		
C11	CB_27	MH_26	CONDUIT	32.8	1.0001	
C12	MH_26	MH_25	CONDUIT	16.5		
C13	MH_24	CBMH_18	CONDUIT	4.8		
C14	CB_23	CBMH_22	CONDUIT	51.5		
C15	CBMH_22	CBMH_21	CONDUIT	60.0		
C16	CBMH_21	MH_20	CONDUIT	24.5		
C17	MH_20	CBMH_19	CONDUIT	10.4		0.0110
C18	CBMH_19	MH_24	CONDUIT	46.5		
C19	CB_10	CBMH_9	CONDUIT	52.5		
C2	MH_44	ogs_2	CONDUIT	11.6		
C20	CBMH_9	CBMH_8	CONDUIT	60.0	0.5000	
C21	CBMH_8	CBMH_7	CONDUIT	60.0	0.5000	
C22	CBMH_7	CBMH_6	CONDUIT	60.0	0.5000	0.0110
C23	CBMH_6	J13	CONDUIT	29.9		
C24	J13	SU_S	CONDUIT	4.0		
C25	CB_5	CBMH_4	CONDUIT	52.5		
C26	CBMH_4	CBMH_3	CONDUIT	60.0		
C27	CBMH_3	CBMH_2	CONDUIT	60.0		
C28	CBMH_2	MH_30	CONDUIT	53.4		
C29	CBMH_12	CBMH_11	CONDUIT	50.0		
C3	J1	MH_44	CONDUIT	2.5		
C30	MH_30	J13	CONDUIT	9.3		
C31	MH_27	CBMH_11	CONDUIT	8.2	0.5000	
C32	CBMH_11	SU_S	CONDUIT	13.2	0.5000	
C33	ogs_1	Humber_Pl	CONDUIT	4.0	14.1135	0.0110
C34	OGS_2	OF1	CONDUIT		0.6782	
C35	MH_25	MH_24	CONDUIT	44.2		0.0110
C36	CBMH_18	SU_N	CONDUIT	3.9	0.5128	0.0110
C37	CB_29	MH_27	CONDUIT	32.9		0.0110
C4	SU_S	MH_45	CONDUIT	9.4	1.0001	0.0090
C5	J2	MH_45	CONDUIT	9.4	0.5000	0.0110
C6	MH_45	OGS_1	CONDUIT	3.1		
C7	DCB_16	CBMH_15	CONDUIT	54.4	0.5000	0.0110
C8	CBMH_15	CBMH_14	CONDUIT	60.0		0.0110
C9	CBMH_14	SU_N	CONDUIT	15.2	0.5000	0.0110
OR1	SU_S	J2	ORIFICE			
OR2	SU_N	J1	ORIFICE			

****** Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.		No. of Barrels	Full Flow
C1	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C10	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C11	CIRCULAR	0.45	0.16	0.11	0.45	1	0.34
C12	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C13	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C14	CIRCULAR	0.38	0.11	0.09	0.38	1	0.21
C15	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C16	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C17	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C18	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C19	CIRCULAR	0.45	0.16	0.11	0.45	1	0.24
C2	CIRCULAR	0.38	0.11	0.09	0.38	1	0.13
C20	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C21	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C22	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C23	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C24	CIRCULAR	0.75	0.44	0.19	0.75	1	0.93

C25	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C26	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C27	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C28	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C29	CIRCULAR	0.38	0.11	0.09	0.38	1	0.16
C3	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C30	CIRCULAR	0.60	0.28	0.15	0.60	1	0.50
C31	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C32	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C33	CIRCULAR	0.38	0.11	0.09	0.38	1	0.78
C34	CIRCULAR	0.38	0.11	0.09	0.38	1	0.17
C35	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51
C36	CIRCULAR	0.75	0.44	0.19	0.75	1	0.94
C37	CIRCULAR	0.38	0.11	0.09	0.38	1	0.15
C4	CIRCULAR	0.20	0.03	0.05	0.20	1	0.05
C5	CIRCULAR	0.30	0.07	0.07	0.30	1	0.08
C6	CIRCULAR	0.38	0.11	0.09	0.38	1	0.14
C7	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C8	CIRCULAR	0.53	0.22	0.13	0.53	1	0.36
C9	CIRCULAR	0.60	0.28	0.15	0.60	1	0.51

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Flow Units ... CMS

Process Models:
Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing YES
Ponding Allowed NO
Water Quality NO
Infiltration Method HORTON
Flow Routing Method DYNWAVE
Surcharge Method EXTRAN
Starting Date 12/21/2020 00:00:00
Ending Date 12/21/2020 00:00:00
Report Time Step 00:01:00
Wet Time Step 00:01:00
Routing Time Step 1.00 sec
Variable Time Step 1.00 sec
Variable Time Step YES
Maximum Trials 8
Number of Threads 6
Head Tolerance 0.001500 m

Total Precipitation	0.580	82.325
Evaporation Loss	0.000	0.000
Infiltration Loss	0.018	2.506
Surface Runoff	0.563	79.876
Final Storage	0.000	0.000
Continuity Error (%)	-0.069	
*******	77-1	77-1
	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.563	5.630
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.563	5.633
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	-0.048	

Volume

Depth

Runoff Quantity Continuity

Link OR2 (1) Link OR1 (1)

Minimum Time Step : 0.50 sec
Average Time Step : 0.98 sec
Maximum Time Step : 1.00 sec
Percent in Steady State : -0.00
Average Iterations per Step : 2.00
Percent Not Converging : 0.01
Time Step Frequencies : 1.000 - 0.871 sec : 95.79 %
0.871 - 0.758 sec : 0.30 %
0.758 - 0.660 sec : 0.29 %
0.660 - 0.574 sec : 0.83 %
0.574 - 0.500 sec : 2.79 %

Subcatchment	Total Precip mm		Total Evap mm		Imperv Runoff mm		Runoff mm	Runoff	Runoff CMS	Runoff Coeff
Area 1	82.33	0.00	0.00	2.58	74.16	5.66	79.82	0.20	0.12	0.970
Area 10	82.32	0.00	0.00	2.58	74.16	5.66	79.82	0.06	0.04	0.970
Area 101	82.32	0.00	0.00	1.30	78.24	2.82	81.06	1.11	0.65	0.985
Area 102	82.32	0.00	0.00	1.30	78.24	2.82	81.06	0.92	0.53	0.985
Area 11	82.33	0.00	0.00	2.58	74.16	5.66	79.82	0.10	0.06	0.970
Area 12	82.32	0.00	0.00	2.58	74.16	5.66	79.82	0.13	0.08	0.970
Area 13	82.32	0.00	0.00	2.58	74.16	5.66	79.82	0.13	0.08	0.970
Area 14	82.32	0.00	0.00	2.58	74.16	5.66	79.82	0.14	0.08	0.970
Area 15	82.33	0.00	0.00	2.58	74.16	5.66	79.82	0.07	0.04	0.970
Area 16	82.33	0.00	0.00	2.58	74.16	5.66	79.82	0.12	0.07	0.970
Area 17	82.32	0.00	0.00	2.58	74.16	5.66	79.82	0.14	0.08	0.970
Area 18	82.32	0.00	0.00	2.58	74.16	5.66	79.82	0.14	0.08	0.970
Area 19	82.32	0.00	0.00	2.58	74.16	5.66	79.82	0.14	0.08	0.970
Area 2	82.32	0.00	0.00	2.58	74.16	5.66	79.82	0.13	0.08	0.970
Area 20	82.33	0.00	0.00	2.58	74.16	5.66	79.82	0.22	0.14	0.970
Area 2001	82.33	0.00	0.00	21.03	20.60	40.72	61.31	0.04	0.01	0.745
Area 2002	82.33	0.00	0.00	2.63	74.12	5.61	79.73	0.17	0.10	0.969
Area 2003	82.32	0.00	0.00	2.65	74.13	5.59	79.72	0.13	0.08	0.968
Area 2004	82.32	0.00	0.00	25.10	4.12	53.14	57.25	0.01	0.01	0.695
Area 2005	82.32	0.00	0.00	25.10	4.12	53.14	57.25	0.02	0.01	0.695
Area 21	82.33	0.00	0.00	2.58	74.16	5.66	79.82	0.17	0.10	0.970
Area 22	82.32	0.00	0.00	2.58	74.16	5.66	79.82	0.26	0.16	0.970
Area 23	82.32	0.00	0.00	2.58	74.16	5.66	79.82	0.13	0.08	0.970
Area 3	82.33	0.00	0.00	2.58	74.16	5.66	79.82	0.29	0.18	0.970
Area 4	82.33	0.00	0.00	2.58	74.16	5.66	79.82	0.22	0.14	0.970
Area 5	82.33	0.00	0.00	2.58	74.16	5.66	79.82	0.12	0.07	0.970
Area 6	82.33	0.00	0.00	2.58	74.16	5.66	79.82	0.12	0.07	0.970
Area 7	82.32	0.00	0.00	2.58	74.16	5.66	79.82	0.03	0.02	0.970
Area 8	82.33	0.00	0.00	2.58	74.16	5.66	79.82	0.10	0.06	0.970
Area 9	82.33	0.00	0.00	2.58	74.16	5.66	79.82	0.10	0.06	0.970

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL	Occu	irrence	Max Depth
Node	Type	Meters	Meters	Meters	days	hr:min	Meters
CB 10	JUNCTION	0.00	0.16	65.49	0	02:10	0.16
CB 23	JUNCTION	0.00	0.11	66.31	Ō	02:10	0.11
CB 27	JUNCTION	0.00	0.48	65.96	0	02:10	0.45
CB 28	JUNCTION	0.00	1.39	66.77	0	02:09	0.54
CB 29	JUNCTION	0.02	0.93	65.04	Ō	02:07	0.67
CB 5	JUNCTION	0.00	0.16	65.28	0	02:10	0.16
CBMH 11	JUNCTION	0.06	1.20		0	02:50	1.20
CBMH 12	JUNCTION	0.02	1.45	65.50	0	02:03	0.93
CBMH 14	JUNCTION	0.05	1.15	65.26	0	02:32	1.15
CBMH 15	JUNCTION	0.02	1.57	66.04	0	02:13	0.80
CBMH 18	JUNCTION	0.05	1.21	65.26	0	02:31	1.21
CBMH 19	JUNCTION	0.00	0.39	65.26	0	02:30	0.39
CBMH 2	JUNCTION	0.02	0.73	64.78	0	02:50	0.72
CBMH 21	JUNCTION	0.00	0.27	65.44	0	02:10	0.27
CBMH 22	JUNCTION	0.00	0.20	65.73	0	02:10	0.20
CBMH 3	JUNCTION	0.01	0.37	64.78	0	02:50	0.36
CBMH_4	JUNCTION	0.00	0.23	65.01	0	02:10	0.23
CBMH_6	JUNCTION	0.03	0.87	64.78	0	02:50	0.87
CBMH 7	JUNCTION	0.01	0.51	64.78	0	02:50	0.51
CBMH 8	JUNCTION	0.00	0.30	64.93	0	02:10	0.30
CBMH_9	JUNCTION	0.00	0.23	65.22	0	02:10	0.23
DCB_16	JUNCTION	0.01	0.47	65.27	0	02:29	0.47
J1 _	JUNCTION	0.01	0.24	63.99	0	02:31	0.24
J13	JUNCTION	0.07	1.24	64.78	0	02:51	1.24

J2	JUNCTION	0.02	0.15	63.38	0	02:51	0.15
MH_20	JUNCTION	0.00	0.27	65.26	0	02:30	0.27
MH 24	JUNCTION	0.04	1.13	65.26	0	02:31	1.13
MH_25	JUNCTION	0.02	1.26	65.67	0	02:09	1.10
MH_26	JUNCTION	0.01	1.59	66.15	0	02:09	1.35
MH_27	JUNCTION	0.03	0.89	64.78	0	02:50	0.89
MH_30	JUNCTION	0.04	1.05	64.78	0	02:50	1.05
MH_44	JUNCTION	0.02	0.47	63.99	0	02:31	0.47
MH_45	JUNCTION	0.02	0.27	63.38	0	02:51	0.27
OGS_1	JUNCTION	0.01	0.10	63.14	0	02:51	0.10
OGS 2	JUNCTION	0.02	0.38	63.85	0	02:31	0.38
Humber Pl	OUTFALL	0.00	0.00	62.48	0	00:00	0.00
OF1	OUTFALL	0.01	0.34	63.75	0	02:31	0.34
OF2	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU N	STORAGE	0.10	1.51	65.26	0	02:31	1.51
SU_S	STORAGE	0.12	1.54	64.78	0	02:51	1.54

			Maximum		_	Lateral	Total	Flow
		Lateral			of Max	Inflow	Inflow	Balance
		Inflow	Inflow		rrence	Volume	Volume	Error
Node	Type	CMS	CMS	days	hr:min	10^6 ltr	10^6 ltr	Percent
CB 10	JUNCTION	0.064	0.064	0	02:10	0.104	0.104	-0.010
CB 23	JUNCTION	0.039	0.039	0	02:10	0.0638	0.0638	-0.006
CB_27	JUNCTION	0.074	0.074	0	02:10	0.12	0.12	0.440
CB_28	JUNCTION	0.074	0.074	0	02:10	0.12	0.12	0.379
CB_29	JUNCTION	0.079	0.079	0		0.128	0.128	0.499
CB_5	JUNCTION	0.074	0.074	0	02:10	0.12	0.12	-0.011
CBMH_11	JUNCTION	0.637	0.874	0	02:10	1.08	1.47	0.034
CBMH_12	JUNCTION	0.158	0.158	0	02:10	0.255	0.255	0.284
CBMH_14	JUNCTION	0.123	0.377	0	02:06	0.2	0.612	-0.406
CBMH_15	JUNCTION	0.079	0.258	0	02:08	0.128	0.413	-0.081
CBMH_18	JUNCTION	0.138	1.080	0	02:10	0.223	1.86	0.005
CBMH_19	JUNCTION	0.020	0.177	0	02:10	0.0319	0.287	0.775
CBMH_2	JUNCTION	0.084	0.325	0	02:10	0.136	0.523	0.118
CBMH 21	JUNCTION	0.059	0.158	0	02:10	0.0958	0.255	0.120
CBMH 22	JUNCTION	0.059	0.099	0	02:10	0.0958	0.16	0.027
CBMH 3	JUNCTION	0.084	0.241	0	02:10	0.136	0.39	0.533
CBMH 4	JUNCTION	0.084	0.158	0	02:10	0.136	0.255	0.562
CBMH 6	JUNCTION	0.044	0.349	0	02:10	0.0718	0.562	-0.377
CBMH 7	JUNCTION	0.084	0.305	0	02:10	0.136	0.493	0.562
CBMH 8	JUNCTION	0.079	0.222	0	02:10	0.128	0.358	0.432
CBMH 9	JUNCTION	0.079	0.143	0	02:10	0.128	0.231	0.306
DCB 16	JUNCTION	0.177	0.177	0	02:10	0.287	0.287	0.838
J1 —	JUNCTION	0.000	0.014	0	02:23	0	1.02	-0.004
J13	JUNCTION	0.138	0.801	0	02:07	0.223	1.31	-0.203
J2	JUNCTION	0.000	0.015	0	02:51	0	1.28	-0.003
MH 20	JUNCTION	0.000	0.158	0	02:10	0	0.255	-0.069
MH 24	JUNCTION	0.000	0.963	0	02:10	0	1.63	-0.450
MH 25	JUNCTION	0.000	0.787	0	02:10	0	1.35	0.228
MH 26	JUNCTION	0.647	0.787	0	02:10	1.11	1.35	0.049
MH 27	JUNCTION	0.000	0.080	0	02:07	0	0.127	-0.483
MH 30	JUNCTION	0.000	0.327	0	02:09	0	0.523	-0.712
MH 44	JUNCTION	0.000	0.223	0	02:31	0	2.48	0.011
MH 45	JUNCTION	0.000	0.132	0	02:51	0	2.78	0.000
OGS 1	JUNCTION	0.000	0.132	0	02:51	0	2.78	-0.000
ogs 2	JUNCTION	0.000	0.223	0	02:31	0	2.48	-0.009
Humber Pl	OUTFALL	0.019	0.135	0	02:44	0.0344	2.82	0.000
OF1	OUTFALL	0.077	0.236	0	02:30	0.128	2.6	0.000
OF2	OUTFALL	0.111	0.111	0	02:10	0.21	0.21	0.000
SU N	STORAGE	0.000	1.428	0	02:10	0	2.48	-0.069
SU S	STORAGE	0.000	1.642	ō	02:09	Ō	2.78	-0.074
_								

Surcharging occurs when water rises above the top of the highest conduit.

Node	Type	Hours Surcharged	Max. Height Above Crown Meters	-
CB_27	JUNCTION	0.01	0.027	0.868
CB 28	JUNCTION	0.02	0.938	0.136
CB 29	JUNCTION	2.73	0.554	1.498
CBMH 11	JUNCTION	4.80	0.560	0.957
CBMH_12	JUNCTION	3.15	1.070	0.237
CBMH_14	JUNCTION	3.66	0.553	1.061
CBMH_15	JUNCTION	1.04	0.987	0.282
CBMH_18	JUNCTION	2.32	0.459	1.331
CBMH 2	JUNCTION	1.01	0.065	2.218
CBMH 6	JUNCTION	2.56	0.285	1.858
J13 —	JUNCTION	4.22	0.493	1.860
MH 24	JUNCTION	0.90	0.167	1.369
MH_25	JUNCTION	1.31	0.660	1.365
MH_26	JUNCTION	0.05	0.545	1.108
MH_27	JUNCTION	4.00	0.459	1.127

MH_30 JUNCTION 3.32 0.389 2.029 OGS_2 JUNCTION 0.31 0.007 2.629

No nodes were flooded.

	Average Volume	Avg Pcnt	Evap E Pont		Maximum Volume	Max Pcnt	Time of Max Occurrence	Maximum Outflow
Storage Unit	1000 m3	Full	Loss	Loss	1000 m3	Full	days hr:min	CMS
SU_N	0.075	3	0	0	1.371	53	0 02:31	0.223
SU S	0.118	3	0	0	1.748	51	0 02:51	0.132

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CMS	CMS	10^6 ltr
Humber_Pl	30.07	0.017	0.135	2.818
OF1	24.82	0.020	0.236	2.605
OF2	5.74	0.007	0.111	0.210
System	20.21	0.043	0.402	5.633

Link	Type	Flow	Occu days	rrence hr:min	Maximum Veloc m/sec	Full Flow	Full Depth
C1	CONDUIT	0.208	0	02:31	6.63	4.40	1.00
C10	COMPILE	0 078	0	02:09	1.66	0.23	1.00
C11	CONDUIT	0.091	0	02:09 02:10	1.66 1.67	0.27	1.00
C12	CONDUIT	0.787	0	02:10	3.63	2.20	1.00
C13	CONDITT	0 947	0	02:10	3.35 1.45	1.85	1.00
C14	CONDUIT	0.039	0	02:10	1.45	0.19	0.30
C15	CONDUIT				1.40		
C16	CONDUIT	0.158	0	02:10	1.61	0.66	0.59
C17	CONDUIT	0.158	0	02:10 02:10	1.61 1.60	0.66	0.67
C18	CONDUIT				1.64		
C19	CONDUIT	0.064	0	02:10	1.28	0.27	0.35
C2	CONDUIT	0.064 0.223	0	02:31	2.02	1.76	1.00
C20	CONDUIT	0.143	0	02:10	1.52		
C21	CONDUIT	0.221 0.305	0	02:10	1.70 1.86	0.62	0.59
C22					1.86	0.85	0.99
C23	CONDUIT	0.347	0	02:07	1.95	0.96	1.00
C24	CONDUIT	0.797	0	02:07	2.36	0.86	1.00
C25	CONDUIT	0.074	0	02:10	1.31	0.21	0.31
C26	CONDUIT		0	02:10	1.59	0.31	0.38
C27	CONDUIT	0.241	0	02:10	1.78	0.47	0.80
C28	CONDUIT	0.327	0	02:09	1.91	0.64	1.00
C29	CONDUIT				1.43		
C3	CONDUIT	0.015	0	02:43	0.84	0.19	0.81
C30	CONDUIT	0.319	0	02:07	1.73 0.97	0.63	1.00
C31							
C32	CONDUIT	0.874	0	02:10	4.04		
C33	CONDUIT	0.132	0	02:10	5.24 2.06	0.17	0.28
C34	CONDUIT		0	02.01	2.00		
C35	CONDUIT	0.787	0	02:10	2.78	1.53	1.00
C36	CONDUIT	1.079	0	02:10	2.63 1.20	1.15	1.00
C37				02:10 02:07			
C4	CONDUIT	0.117	0	02:51	3.73		
C5	CONDUIT	0.015	0	02:52	0.82 1.56	0.19	0.57
C6	CONDUIT	0.132	0	02:51			
C7	CONDUIT	0.180			1.62		
C8	CONDUIT	0.255	0	02:06	1.73 1.89	0.71	1.00
C9	CONDUIT	0.366	0	02:07	1.89	0.71	
OR1	ORIFICE						1.00
OR2	ORIFICE	0.014	0	02:23			1.00

	Adjusted			Fraction of		Time	in Flo	w Clas	s	
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit			Ltd	Ctrl
C1	1.00	0.96	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00
C10	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00
C11	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00
C12	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.01	0.00
C13	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.89	0.00	0.00
C14	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C15	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C16	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00
C17	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00
C18	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.01	0.00
C19	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C2	1.00	0.00	0.09	0.00	0.76	0.15	0.00	0.00	0.77	0.00
C20	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00
C21	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.01	0.00
C22	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.03	0.00
C23	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.90	0.03	0.00
C24	1.00	0.00	0.00	0.00	0.14	0.00	0.00	0.86	0.01	0.00
C25	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C26	1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.01	0.00
C27	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.95	0.02	0.00
C28	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.04	0.00
C29	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.90	0.05	0.00
C3	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00
C30	1.00	0.00	0.00	0.00	0.11	0.00	0.00	0.89	0.01	0.00
C31	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.91	0.02	0.00
C32	1.00	0.00	0.00	0.00	0.14	0.00	0.00	0.86	0.01	0.00
C33	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C34	1.00	0.00	0.00	0.00	0.74	0.26	0.00	0.00	0.05	0.00
C35	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.03	0.00
C36	1.00	0.00	0.00	0.00	0.12	0.00	0.00	0.88	0.00	0.00
C37	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.03	0.00
C4	1.00	0.95	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00
C5	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.96	0.00	0.00
C6	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C7	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.03	0.00
C8	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.90	0.04	0.00
C9	1.00	0.00	0.00	0.00	0.11	0.00	0.00	0.88	0.01	0.00

****** Conduit Surcharge Summary

Conduit	Both Ends	Upstream	Dnstream	Hours Above Full Normal Flow	Capacity Limited
C1				2.65	
C10	0.02	0.02	0.08	0.01	0.01
C11	0.01	0.01	0.05	0.01	0.01
C12	1.11	1.14	1.36	0.23	0.18
C13	3.13	3.17	3.56	0.18	0.09
C18	0.01	0.01	0.90	0.01	0.01
C2	0.30	0.89	0.30	1.57	0.30
C22	0.01	0.01	2.56	0.01	0.01
C23	3.01	3.01	4.22	0.01	0.01
C24	4.22	4.22	4.36	0.01	0.01
C27	0.01	0.01	1.01	0.01	0.01
C28	1.48	1.48	3.32	0.01	0.01
C29	3.15	3.15	5.89	0.05	0.05
C30	3.84	3.84	4.22	0.01	0.01
C31	4.48	4.48	4.80	0.01	0.01
C32	7.02	7.05	9.30	0.23	0.19
C34	0.01	0.30	0.01	1.05	0.01
C35				0.15	0.07
C36	2.32	2.32	2.53	0.10	0.03
C37	2.73	2.73	4.00	0.01	0.01
C4	3.60	4.12	3.60	4.36	3.60
C7	0.01	0.01	1.04	0.01	0.01
C8	1.29	1.29	4.08	0.01	0.01
C9	3.65	3.65	5.22	0.01	0.01

Analysis begun on: Wed Oct 5 21:20:59 2022 Analysis ended on: Wed Oct 5 21:21:30 2022 Total elapsed time: 00:00:31

Kosta Paliouras, P.Eng. Senior Project Manager

AECOM Canada Ltd. 50 Sportsworld Crossing Road, Suite 290 Kitchener, ON N2P 0A4 Canada

T: 519.650.5313 F: 519.650.3424 www.aecom.com

