CONSEIL DES ÉCOLES PUBLIQUES DE L'EST DE L'ONTARIO

KANATA-SUD ELEMENTARY SCHOOL, 755 COPE DRIVE, OTTAWA, ON NOISE IMPACT STUDY

CITY FILE NO: D07-12-22-0058

JULY 19, 2022

wsp

KANATA-SUD ELEMENTARY SCHOOL, 755 COPE DRIVE, OTTAWA, ON NOISE IMPACT STUDY

CONSEIL DES ÉCOLES PUBLIQUES DE L'EST DE L'ONTARIO

CITY FILE NO: D07-12-22-0058 PROJECT NO.: 219-00014-00 DATE: JULY 19, 2022

WSP UNIT 2 126 DON HILLOCK DRIVE AURORA, ON, CANADA L4G 0G9

T: +1 905 750-3080 F: +1 905 727-0463 WSP.COM

VERSION HISTORY

VERSION	DATE	TITLE	COMMENTS	PREPARED BY
1.0	April 1, 2022	Noise Impact Study	Report for Submission	WSP
2.0	July 19, 2022	Noise Impact Study	Updated for Submission	WSP

SIGNATURES

PREPARED BY

Jalal Mian, B.Eng Acoustics, Noise and Vibration Specialist

Senior Engineer, Acoustics, Noise & Vibration

LIMITATIONS STATEMENT

WSP Canada Inc. (WSP) prepared this report solely for the use of the intended recipient, CONSEIL DES ÉCOLES PUBLIQUES DE L'EST DE L'ONTARIO, in accordance with the professional services agreement between the parties. In the event a contract has not been executed, the parties agree that the WSP General Terms for Consultant shall govern their business relationship which was provided to you prior to the preparation of this report.

The report is intended to be used in its entirety. No excerpts may be taken to be representative of the findings in the assessment.

The conclusions presented in this report are based on work performed by trained, professional and technical staff, in accordance with their reasonable interpretation of current and accepted engineering and scientific practices at the time the work was performed.

The content and opinions contained in the present report are based on the observations and/or information available to WSP at the time of preparation, using investigation techniques and engineering analysis methods consistent with those ordinarily exercised by WSP and other engineering/scientific practitioners working under similar conditions, and subject to the same time, financial and physical constraints applicable to this project.

WSP disclaims any obligation to update this report if, after the date of this report, any conditions appear to differ significantly from those presented in this report; however, WSP reserves the right to amend or supplement this report based on additional information, documentation or evidence.

WSP makes no other representations whatsoever concerning the legal significance of its findings.

The intended recipient is solely responsible for the disclosure of any information contained in this report. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report.

WSP has provided services to the intended recipient in accordance with the professional services agreement between the parties and in a manner consistent with that degree of care, skill and diligence normally provided by members of the same profession performing the same or comparable services in respect of projects of a similar nature in similar circumstances. It is understood and agreed by WSP and the recipient of this report that WSP provides no warranty, express or implied, of any kind. Without limiting the generality of the foregoing, it is agreed and understood by WSP and the recipient of this report that WSP makes no representation or warranty whatsoever as to the sufficiency of its scope of work for the purpose sought by the recipient of this report.

In preparing this report, WSP has relied in good faith on information provided by others, as noted in the report. WSP has reasonably assumed that the information provided is correct and WSP is not responsible for the accuracy or completeness of such information.

Benchmark and elevations used in this report are primarily to establish relative elevation differences between the specific testing and/or sampling locations and should not be used for other purposes, such as grading, excavating, construction, planning, development, etc.

The original of this digital file will be kept by WSP for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP, its integrity cannot be assured. As such, WSP does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

This limitations statement is considered an integral part of this report.

EXECUTIVE SUMMARY

WSP Canada Inc. was retained by Conseil des écoles publiques de l'Est de l'Ontario to update the Environmental Noise Impact Study for the proposed Kanata-Sud Secondary School institutional development to be located at 755 Cope Drive in Stittsville, Ontario (the Site). This update is completed to address comments by the City of Ottawa which includes proposed stationary sources at the Site. The Site consists of a main L-shape building and separate classroom portables, a fenced playground for childcare, a separate playground for kindergarten, outdoor sporting areas, and a parking lot.

This is completed to assess the potential noise effects of the environment onto the Site and proposed stationary sources at the Site on surrounding noise-sensitive areas. This report is based on available detailed drawings received on and before July 19, 2022.

The assessment was conducted in accordance with the City of Ottawa and the Ministry of Environment, Parks and Conservation (MECP) noise guidelines.

The significant sources of noise in the vicinity of the proposed development are transportation noise sources, mainly road traffic on Cope Drive and Bobolink Ridge urban collector roads. The significant stationary sources of noise at the Site are rooftop HVAC equipment.

The Site is located outside the Ottawa Macdonald Cartier International Airport Operating Influence Zone which includes Noise Exposure Forecast contours, and thus, aircraft noise assessment is not required.

Based on the predicted sound levels at the proposed development due to road traffic noise sources, exterior wall, door, and window construction meeting the Ontario Building Code (OBC) minimum requirements will be adequate to meet the indoor sound level limits to comply with the City of Ottawa and the MECP noise guidelines. Stationary sources at the Site are predicted to comply with the City of Ottawa and the MECP noise guidelines following the implementation of noise control measures outlined in this report. The proposed development is demonstrated to comply with the applicable noise guidelines.

wsp

1	INTRODUCTION1
1.1	The Site and Surrounding Area1
1.2	The Proposed Development1
2	NOISE IMPACT ASSESSMENT
2.1	Noise Sources2
2.2	Noise Guidelines and Assessment Criteria
2.2.1	Road Sources Assessment Criteria
2.2.2	Stationary Sources Assessment Criteria
2.3	Road Sources
2.3.1	Road Traffic Data
2.3.2	Analysis Method
2.3.3	Results
2.3.4	Recommendations
2.3.5	Warning Clauses
2.4	Stationary Sources
2.4.1	Applicable Sources and Receptors
2.4.2	Analysis Methods
2.4.3	Results
2.4.4	Noise Control Measures
3	CONCLUSIONS
BIBLI	OGRAPHY10

wsp

TABLES

TABLE 2-1	ENCG & NPC-300 INDOOR SOUND LEVEL CRITERIA FOR ROAD NOISE
TABLE 2-2	BUILDING REQUIREMENTS FOR INDOOR SPACES
TABLE 2-3	MECP'S EXCLUSION LIMITS IN DBA3
TABLE 2-4	SUMMARY OF ROAD TRAFFIC DATA
	USED IN THE TRANSPORTATION
	NOISE ANALYSIS 4
TABLE 2-5	SUMMARY OF PREDICTED FACADE
	SOUND LEVELS DUE TO ROAD
	TRAFFIC 5
TABLE 2-6	STATIONARY SOURCE SOUND
	DATA 6
TABLE 2-7	PREDICTED SOUND LEVELS FROM
	STATIONARY SOURCES -
	UNMITIGATED7
TABLE 2-8	PREDICTED SOUND LEVELS FROM
	STATIONARY SOURCES -
	MITIGATED 8
TABLE 3-1	SUMMARY OF NOISE CONTROL
	REQUIREMENTS9

APPENDICES

FIGURES

- A DRAWINGS
- **B** TRAFFIC DATA
- C STAMSON OUTPUTS
- D SOUND DATA
- E SUPPORTING INFORMATION

1 INTRODUCTION

WSP Canada Inc. (WSP) was retained by Conseil des écoles publiques de l'Est de l'Ontario (school) to update the Environmental Noise Impact Study for the proposed Kanata-Sud Secondary School institutional development to be located at 755 Cope Drive in Stittsville, Ontario (the Site). This report was prepared in support of the Site Plan Approval application submission.

This update is completed to address comments by the City of Ottawa (the City) dated May 24, 2022, which includes proposed stationary sources at the Site. This is completed to assess the potential noise effects of the environment onto the Site and proposed stationary sources at the Site on surrounding noise-sensitive areas. This report was based on available detailed drawings received on and before July 19, 2022. The findings and recommendations needed to comply with the applicable noise guidelines are included herein.

1.1 THE SITE AND SURROUNDING AREA

The Site is located west of Robert Grant Avenue and is bounded by:

- To the east, Finsbury Avenue;
- To the south, Cope Drive;
- To the west, Dagenham Street; and,
- To the north, Bobolink Ridge.

The Site is proposed to be surrounded by mostly residential lots. The location of the site is shown in Figure 1.

1.2 THE PROPOSED DEVELOPMENT

This report is based on available detailed drawings prepared by Architecture 49 (A49) and received on and before July 19, 2022, are included in **Appendix A**. The Site consists of a main L-shape building at the southwest corner (1-storey tier on the west leg and 2-storey tier on the south leg), two (2) portable 6-pack classrooms at the southeast corner, playgrounds for childcare and kindergarten, outdoor sporting areas, and a parking lot.

2 NOISE IMPACT ASSESSMENT

2.1 NOISE SOURCES

The City's *Environmental Noise Control Guidelines* (ENCG) stipulates that a noise study shall be prepared when a new development is proposed within distances as follows:

- 100 metres from the right-of-way of an existing or proposed road; arterial, major collector, light rail transit, bus
 rapid transit or transit priority corridor;
- 250 metres from the right-of-way of an existing or proposed highway or secondary main railway line; or,
- 500 metres from the right-of-way of a freeway or 400-series provincial highway or principal main railway line.

The significant sources of noise in the vicinity of the proposed development are transportation noise sources. The road types were identified using the City's "Annex 1 - Road Classification and Rights-of-Way Protection" as provided in **Appendix B**. The road meeting the City's requirements is Cope Drive which is classified as an Urban Collector road. The City has clarified in the May 24, 2022, comments that Bobolink Ridge is a local roadway which is not required to be included. However, the overall conclusions of this assessment would not change and included to simplify this update which is inline with City's comments. For the purposes of this assessment, it is assumed that Bobolink Ridge has the same classification as Cope Drive. Other roads are over 100 metres away from the Site and are not expected to have a significant impact. Thus, other roads are not considered further in the assessment.

The light rail transit corridor, bus rapid transit and transit priority corridors are located greater than 100 m away from the Site and, therefore, were not included in the assessment.

The proposed development is located outside the City of Ottawa's Macdonald–Cartier International Airport Operating Influence Zone which includes Noise Exposure Forecast contours. Therefore, an assessment of aircraft noise is not required in this study.

2.2 NOISE GUIDELINES AND ASSESSMENT CRITERIA

Noise is recognized as a pollutant in the Environmental Protection Act, as uncontrolled noise can affect human activities. Ontario provincial noise control guidelines require that noise concerns are addressed in the planning of any new development.

In land use planning, although elimination or control of the source of pollution is usually a primary objective, there are general limits as to what is practical and technically possible. The City's ENCG follows the MECP's Publication NPC-300, *Environmental Noise Guideline Stationary and Transportation Sources – Approval and Planning* for acceptable levels of road traffic noise impacting noise-sensitive institutional developments and stationary noise on surrounding noise-sensitive residential areas. These limits are discussed in Section "Part C – Land Use Planning" of NPC-300 as well as Section 2 of the ENCG.

2.2.1 ROAD SOURCES ASSESSMENT CRITERIA

Table 2-1 summarizes sound level limits for road traffic applicable for the proposed institutional development.

Table 2-1 ENCG & NPC-300 Indoor Sound Level Criteria for Road Noise

AREA	TIME PERIOD	$L_{EQ} \left(dBA \right)^{\left[1 ight]}$ -ROAD	REFERENCE
Indoor Living/Dining Areas of Schools, Daycares	Daytime (0700 – 2300h)	45	ENCG Table 2.2b

Notes: [1] Daytime: L_{EQ 16HR}; Nighttime: L_{EQ 8-HR}.

The NPC-300 and ENCG provide sound level limits in terms of energy equivalent (average) sound levels $[L_{EQ}]$ in units of A-weighted decibels (dBA) at a specific noise-sensitive location. Outdoor areas are not considered noise-sensitive for institutional developments. Therefore, only indoor locations are identified and only during the daytime period.

To determine the appropriate noise control to achieve the criteria or sound level limits, NPC-300 and ENCG have provided further guidance.

Sound Level in Indoor Spaces - To comply with the indoor sound level criteria listed in **Table 2-1**, the ENCG and NPC-300 provides guidelines based on predicted sound level at the façade/plane of window. If the predicted sound level at the plane of window exceeds, additional considerations such as the type of windows, exterior walls, and doors that can provide noise attenuation must be selected. In addition, warning clauses to inform the future occupants are also required.

Table 2-2 summarizes requirements for type of building façade construction for institutional purpose buildings.

DUIL DING COMPONENT

Table 2-2 Building Requirements for Indoor Spaces

AREA	TIME PERIOD	LEQ (DBA) ^[2]	REQUIREMENTS		
		<u>≤</u> 55	Building components compliant with Ontario Building Code (OBC)		
Plane of Window ^[1]	Daytime (0700 – 2300h)	> 55 and <u><</u> 65	Building components compliant with OBC		
		> 65	Building components designed/selected to meet Indoor Requirements		
Notes: [1] Plane of Window of an institutional purpose building leading to a noise sensitive room, such as teacher's lounge, classrooms, etc.					

[2] Daytime: $L_{EO 16HR}$.

2.2.2 STATIONARY SOURCES ASSESSMENT CRITERIA

For stationary sources, the MECP NPC-300 and ENCG Section 3 provides criteria based on one-hour equivalent sound level. In order to comply with the noise impact from stationary sources, the predicted sound level must comply with the noise guidelines stipulated in NPC-300 and ENCG. Two locations are typically considered: an outdoor location and the plane of window.

Both guidelines provide sound level limits for noise-sensitive receptors based on the acoustical environment of the area. NPC-300 categorizes the acoustical environment into four classes: Class 1 (urban), Class 2 (semi-urban), Class 3 (rural), or Class 4 (special cases). Based on a review of the area using aerial imagery, receptors are conservatively considered as Class 2 Area. Given that the school only operates during the daytime, **Table 2-3** summarizes the daytime sound level limit for a Class 2 Area.

Table 2-3 MECP's Exclusion Limits in dBA

	CLASS 2				
PERIOD	PLANE OF WINDOW ¹	OUTDOOR POR ²			
Daytime (07:00 – 19:00)	50	50			

Notes:

1 Plane of window means a point in space corresponding with the location of the centre of a window of a noise sensitive space

2 PoR means point of reception; representing a point in a receptor location.

2.3 ROAD SOURCES

2.3.1 ROAD TRAFFIC DATA

Road traffic data were obtained from the ENCG **Appendix B** for Cope Drive and Bobolink Ridge. The data obtained from the ENCG provides future traffic volume, day/night split, commercial vehicle percentages, and posted speed limits for various roadways based on roadway class and number of lanes. The ENCG data represents the future traffic volume and corresponding to a "mature state of development", in the City's Official Plan.

The traffic and road parameters used for sound level predictions are shown in **Table 2-4**. The surrounding topography is generally flat and assessed as such.

Road traffic data from ENCG and calculations used for the study are included in Appendix C.

Table 2-4 Summary of Road Traffic Data Used in the Transportation Noise Analysis

ROAD	ROAD CLASSIFICATION	TRAFFIC VOLUMES (AADT)	DAY/NIGHT SPLIT (%)	MEDIUM TRUCKS (%)	HEAVY TRUCKS (%)	POSTED SPEED LIMIT (KPH)
Cope Drive	2-Lane Urban Collector	8,000	92/8	7%	5%	50
Bobolink Ridge	2-Lane Urban Collector	8,000	92/8	7%	5%	50

2.3.2 ANALYSIS METHOD

The predicted sound levels at the receptors were estimated using the future road traffic data presented in **Table 2-4**. The sound level predictions were made using the algorithms ORNAMENT, developed by the MECP, and implemented by STAMSON version 5.04, a computer software also developed by the MECP.

The following factors were taken into account in the analysis:

- Vehicle speeds;
- Road traffic volumes;
- Percentage of trucks;
- Horizontal and vertical road-receiver geometry;
- Ground absorption; and
- Screening provided by terrain, houses, existing barriers, as applicable.

The most impacted receptor locations (in terms of façade and height) were chosen as representative receptor locations for each facade. The modelled receptor locations for road sources are shown in **Figure 2**. STAMSON calculations and distances used in the calculations are included in **Appendix C**.

2.3.3 RESULTS

Sound levels were predicted at the most impacted representative façades during the daytime hours. The predicted sound levels were used to investigate building construction requirements. The results of these predictions are summarized in **Table 2-5**.

Table 2-5 Summary of Predicted Facade Sound Levels due to Road Traffic

RECEPTOR LOCATION	DESCRIPTION	DAYTIME SOUND LEVEL LEQ (dBA)
А	Northern Portable 6 Pack – North façade	55
В	Southern Portable 6 Pack – East façade	59
С	Southern Portable 6 Pack – South façade	63
D	2 Storey Building – East façade	60
Е	2 Storey Building – South façade	64
F	1 Storey Building – South façade	63
G	1 Storey Building – North façade	58

The predicted sound levels shown above indicate that daytime façade sound levels are between 55 dBA and 64 dBA.

2.3.4 RECOMMENDATIONS

As shown in **Table 2-5**, the sound levels at the plane of window are below 65 dBA during the daytime hours. Thus, wall, door and window glazing assemblies meeting the minimum non-acoustical requirements of the Ontario Building Code (OBC) will be sufficient to meet the applicable indoor sound level limits.

2.3.5 WARNING CLAUSES

At the request of the City, a warning clause Type C for road noise is provided. The suggested warning clause wording is as follows; it can be modified or amended by the City's planning department, as appropriate:

Type C

"The school has been fitted with a forced air heating system and ducting, etc. and was sized to accommodate central air conditioning. Installation of central air conditioning by the occupant will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the City's and the Ministry of the Environment's noise criteria. (Note: The location and installation of the outdoor air conditioning device should be done so as to comply with noise criteria of MECP Publication NPC-216, Residential Air Conditioning Devices and thus minimize the noise impacts both on and in the immediate vicinity of the subject property.)"

2.4 STATIONARY SOURCES

2.4.1 APPLICABLE SOURCES AND RECEPTORS

Stationary source is defined in MECP NPC-300 and ENCG as sources of sound that are normally operated within the property lines of a facility. Based on a review of the mechanical schedules and roof plan dated March 21, 2022, significant proposed stationary sources of noise are the rooftop HVAC units. Insignificant sources or sources with

negligible sound level contribution off-site include small boilers and hot water heaters, small fans, and indoor equipment. No emergency generator is planned at the Site and confirmed with A49.

Surrounding noise-sensitive land uses are residential lots surrounding the site in all directions with the exception of one area to the southwest of the school which is open space. Based on residential homes that have been built, receptors are 2-storeys and modelled.

A site layout plan showing the proposed stationary source and applicable receptor locations are shown in Figure 3.

A total of eight (8) rooftop HVAC units (RTUs) are planned on the main school building as shown in **Figure 3**. All eight RTUs were conservatively assumed to operate simultaneously for 60 minutes in a predictable worst-case hour during the day. The school operates only during the daytime between 0700h to 1900h and assessed as such.

Sound power levels for the RTUs were provided by the manufacturer (AAON) for both the exposed condenser section and exhaust fan outlet. The sound level data used in the assessment is summarized in **Table 2-6** and manufacturer's cutsheets are provided in **Appendix D**.

Table 2-6 Stationary Source Sound Data

SOUDCE ID1	DITLIDING DESCRIPTION		OVERALL SOUND	OPERATION
SOURCE ID	BUILDING	DESCRIPTION	POWER LEVEL (dBA)	DAY
RTU_1c		HVAC 8T Unit Condenser	88	60
RTU_1e		HVAC 8T Unit Exhaust Air	87	60
RTU_2c		HVAC 16T Unit Condenser	91	60
RTU_2e	1-Storey Main	HVAC 16T Unit Exhaust Air	87	60
RTU_3c	School Building	HVAC 11T Unit Condenser	84	60
RTU_3e		HVAC 11T Unit Exhaust Air	82	60
RTU_4c		HVAC 9T Unit Condenser	84	60
RTU_4e		HVAC 9T Unit Exhaust Air	79	60
RTU_5c		HVAC 16T Unit Condenser	91	60
RTU_5e		HVAC 16T Unit Exhaust Air	87	60
RTU_6c		HVAC 16T Unit Condenser	91	60
RTU_6e	2-Storey Main	HVAC 16T Unit Exhaust Air	89	60
RTU_7c	School Building	HVAC 9T Unit Condenser	84	60
RTU_7e		HVAC 9T Unit Exhaust Air	83	60
RTU_8c		HVAC 16T Unit Condenser	91	60
RTU_8e		HVAC 16T Unit Exhaust Air	89	60

Notes:

[1] Refer Figure 3 for source locations; locations are referred using these IDs.

The source locations and receptors placed on the proposed development are provided in Figure 3.

2.4.2 ANALYSIS METHODS

In order to estimate the sound levels from stationary sources to the surrounding residential areas, a predictive analysis was completed using a commercially available software package CADNA/A, a computer implementation of the ISO Standard 9613-2 "Acoustics – Attenuation of Sound During Propagation Outdoors", which takes into account the following:

- Source sound power levels;
- Distance attenuation;
- Source-receptor geometry;
- Ground and air (atmospheric) attenuation; and,
- Temperature and humidity effects on noise propagation.

ODED ATION

Key parameters used in the model and sample calculations are located in Appendix E.

2.4.3 RESULTS

The overall sound levels at the proposed development using assumed predictable worst-case operations for the nearby commercial locations are summarized in **Table 2-7**.

Table 2-7 Predicted Sound Levels from Stationary Sources - Unmitigated

POR ID	POR DESCRIPTION	RECEPTOR HEIGHT (M)	PREDICTED SOUND LEVEL (dBA)	DAYTIME SOUND LEVEL LIMIT (dBA)	COMPLIANCE WITH LIMIT?
R01_W	2-storey Residential Home to the North (Window)	4.5	49	50	Yes
R01_O	2-storey Residential Home to the North (Outdoor)	1.5	49	50	Yes
R02_W	2-storey Residential Home to the East (Window)	4.5	47	50	Yes
R02_O	2-storey Residential Home to the East (Outdoor)	1.5	47	50	Yes
R03_W	2-storey Residential Home to the South (Window)	4.5	52	50	No
R03_O	2-storey Residential Home to the South (Outdoor)	1.5	48	50	Yes
R04_W	2-storey Residential Home to the West (Window)	4.5	54	50	No
R04_O	2-storey Residential Home to the West (Outdoor)	1.5	54	50	No
R05_W	2-storey Residential Home to the West (Window)	4.5	55	50	No
R05_O	2-storey Residential Home to the West (Outdoor)	1.5	54	50	No

As shown in **Table 2-7**, the predicted stationary source sound level of the proposed RTUs exceed the sound level limit at receptors to the west and south. Therefore, noise control measures are required for some of the RTUs to comply with the limits and provided in the next Section.

2.4.4 NOISE CONTROL MEASURES

In order to comply with the noise guidelines stipulated in the MECP publication, NPC-300. Acoustic barriers will be required for rooftop units RTU1, RTU2, and RTU6 to mitigate the noise impact from stationary sources.

To comply with the noise guidelines, the following noise control measures are provided:

- RTU1 barrier: an L-shape acoustic barrier modelled at least 0.5 m above the top of unit (5.5 m long west leg and 4.5 m long south leg).
- RTU2 barrier: a 3-sided acoustic barrier modelled at least 0.5 m above the top of unit (5.5 m long west leg, and 4.0 m long north and south legs).
- RTU6 barrier: an L-shape acoustic barrier modelled at least 0.5 m above the top of unit (4.0 m long west leg and 7.5 m long south leg).

The barrier locations and extent required are shown in Figure 3.

Acoustic barriers should be structurally sound, appropriately designed to withstand wind and snow load, constructed without cracks or surface gaps and must meet the minimum surface density of 20 kg/m². Alternatively, the barriers should comply with the requirements and certification of CAN/CSA-Z107.9-00 (R2004) – Standard for Certification of Noise Barriers (Reaffirmed 2004) or recent version.

POR ID	POR DESCRIPTION	RECEPTOR HEIGHT (M)	PREDICTED SOUND LEVEL (dBA)	DAYTIME SOUND LEVEL LIMIT (dBA)	COMPLIANCE WITH LIMIT?
R01_W	2-storey Residential Home to the North (Window)	4.5	49	50	Yes
R01_O	2-storey Residential Home to the North (Outdoor)	1.5	48	50	Yes
R02_W	2-storey Residential Home to the East (Window)	4.5	48	50	Yes
R02_O	2-storey Residential Home to the East (Outdoor)	1.5	47	50	Yes
R03_W	2-storey Residential Home to the South (Window)	4.5	48	50	Yes
R03_O	2-storey Residential Home to the South (Outdoor)	1.5	46	50	Yes
R04_W	2-storey Residential Home to the West (Window)	4.5	50	50	Yes
R04_O	2-storey Residential Home to the West (Outdoor)	1.5	49	50	Yes
R05_W	2-storey Residential Home to the West (Window)	4.5	50	50	Yes
R05_O	2-storey Residential Home to the West (Outdoor)	1.5	48	50	Yes

Table 2-8 Predicted Sound Levels from Stationary Sources - Mitigated

As shown in **Table 2-8**, the proposed school will comply with the applicable sound level limits at the nearby noise sensitive uses.

3 CONCLUSIONS

This report has been prepared to support the Site Plan Approval application. The assessment evaluated the potential for noise impact of transportation sources on the Site, and stationary sources associated with the Site on nearby residential uses.

The predicted sound levels were assessed as per the MECP Publication NPC-300 and ENCG requirements. With appropriate on-site acoustical treatment, a suitable off-site acoustical environment can be achieved. This assessment demonstrates that the Site complies with the applicable guidelines.

 Table 3-1 summarizes the recommendations for the proposed development.

Table 3-1 Summary of Noise Control Requirements

BUILDING	BUILDING COMPONENTS (WALLS, WINDOWS & DOORS) STC	WARNING CLAUSE	NOISE CONTROL MEASURES
1-Storey Main School Building	OBC ¹	Type C	RTU1: at least 0.5 m higher that the unit RTU2: at least 0.5 m higher that the unit
2-Storey Main School Building	OBC ¹	Type C	RTU6: at least 0.5 m higher that the unit
Portables	OBC ¹	Туре С	NPC-216 ²

Notes:

¹ OBC – Meet or exceed the minimum non-acoustical requirement of Ontario Building Code (OBC).

² Where possible, select equipment to comply with noise criteria of MECP Publication NPC-216, Residential Air Conditioning Devices.

The following recommendations are offered:

1. Warning clause Type C

"This school has been fitted with a forced air heating system and ducting, etc. and was sized to accommodate central air conditioning. Installation of central air conditioning by the occupant will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the City's and the Ministry of the Environment's noise criteria. (Note: The location and installation of the outdoor air conditioning device should be done so as to comply with noise criteria of MECP Publication NPC-216, Residential Air Conditioning Devices and thus minimize the noise impacts both on and in the immediate vicinity of the subject property.)"

Acoustic barriers should be structurally sound, appropriately designed to withstand wind and snow load, constructed without cracks or surface gaps and must meet the minimum surface density of 20 kg/m². Alternately, the barriers should comply with the requirements and certification of CAN/CSA-Z107.9-00 (R2004) – Standard for Certification of Noise Barriers (Reaffirmed 2004) or recent version at the time of construction.

BIBLIOGRAPHY

- National Research Council of Canada (1995, September). Building Practice Note (BPN) No. 56: Controlling Sound Transmission into Buildings, Canada
- Ontario Ministry of the Environment and Climate Change (2013). Environmental Noise Guideline Stationary and Transportation Sources – Approval and Planning – Publication NPC-300. Ontario, Canada
- Ontario Ministry of the Environment and Climate Change (1996), STAMSON v5.04: Road, Rail and Rapid Transit Noise Prediction Model, Ontario, Canada
- Ontario Ministry of the Environment (1989). Ontario Road Noise Analysis Method for Environment and Transportation (ORNAMENT), Ontario, Canada
- City of Ottawa (2016; January). Environmental Noise Control Guidelines (ENCG), Ontario, Canada

FIGURES

Document Path: D:\aProjects\219-00014-00\MXD\219-00014-00 Figure 1 Site Location.mxd

FERRAR OA DENN		
ACE	1000 m STUDY A	REA
UK S	400 F0 0 400 Matrix	W E
A A A A A A A A A A A A A A A A A A A	CLIENT:	V S
1 and 1	CONSEIL DES ÉC L'EST DE	OLES PUBLIQUES DE E L'ONTARIO
X	PROJECT: NOIS KANATA-SUD ELI STITTSVIL	E STUDY EMENTARY SCHOOL .LE, ONTARIO
	PROJECT NO:	DATE:
All I	2 13-000 14-00 DESIGNED BY:	JANUAR I 2022
	- DRAWN BY:	
and the second	TP CHECKED BY:	
Stor the	- FIGURE NO:	SCALE:
111115	1 TITLE:	1:10,000
S	SITE LO	CATION PLAN
A A	DISCIPLINE:	RONMENT
1	ISSUE:	REV.: -

Document Path: D:\aProjects\219-00014-00\MXD\219-00014-00 Figure 3 Receptors.mxd

		51)
	LEGEND	
	APPROXIMATE S	ITE LOCATION
EL .	PROPOSED DEV	ELOPMENT
	- RECEPTORS	
	10 5 0 10 Metres	W E
· · · ·	CLIENT:	Ť
THE REAL	Conseil des éc l'est d	COLES PUBLIQUES DE DE L'ONTARIO
	PROJECT: KANATA-SUD ELE STITTSVIL	E STUDY EMENTARY SCHOOL LE, ONTARIO
	PROJECT NO:	DATE:
	219-00014-00	JANUARY 2022
- m	-	
	DRAWN BY:	
	IP CHECKED BY:	
12 Start	-	
1 martin - St	FIGURE NO:	SCALE:
A se	TITLE:	1.1,200
2.0	REC	EPTORS
A SE	DISCIPLINE:	RONMENT
	ISSUE:	REV.:
		-

APPENDICES

A DRAWINGS

5 4 3				2		
	SIT	E AND PARKING INFORMAT	ΓΙΟΝ			
TYPE OF BUILDING OR USE				PARKING CALCULATION		
SCHOOL (GROUP A-2 OCCUPANCY)				20 CLASSROOMS X 1.5 = 30 2 PER 100m ² OF DAYCARE GROSS FLOOR AREA (360m ²) = 12 PORTABLES X 1.5 = 18 TOTAL PARKING REQUIRED = 55 TOTAL PARKING PROVIDED = 58 BARRIER-FREE PARKING SPACES REQUIRED = 3 BARRIER-FREE PARKING SPACES PROVIDED = 3 TOTAL SITE PARKING PROVIDED = 60		
ZONING	REQUIREMENT (I1B)	PROPOSED		BUILDING AREA		
ZONING = 11B - MINOR INSTITUTIONAL ZONE, SUBZONE B/ R1Z RESIDENTIAL FIRST DENSITY, SUBZONE Z			FIRE TRUCK ACCESS ROUTE	THE GFA FOR THE SCHOOL IS AS FOLLOWS:		
MINIMUM LOT AREA: SEC. 170, TABLE 170B (b)	1000m ²	28, 889m ²	IS FROM COUNTY ROAD COPE DRIVE AND SHALL	FIRST FLOOR = 3,329 m ² (EXCLUDING DAYCARE)		
MINIMUM LOT FRONTAGE: SEC. 170, TABLE 170B (a)	30.0m	± 104.61m	CONFORM TO OBC 2012 - 3.2.5.4, 3.2.5.5 AND 3.2.5.6	DAYCARE = 360 m ² TOTAL BUILDING FOOTPRINT = 3,689m ²		
MINIMUM FRONT YARD: SEC. 170, TABLE 170B (c)	6.0m	6.15m		<u>+ SECOND FLOOR = 1,092 m²</u> TOTAL AREA = 4,781 m ²		
MINIMUM REAR YARD: SEC. 170, TABLE 170B (d)	7.5m	± 55.54m		SITE ΔΡΕΔ		
MINIMUM EXTERIOR SIDE YARD:	NO REQUIREMENT	-				
MINIMUM INTERIOR SIDE YARD: SEC. 170, TABLE 170B (e)	7.5m	± 93.47m		SITE AREA = 28,889 m ²		
MINIMUM CORNER SIDE YARD: SEC. 170, TABLE 170B (f)	7.5m	± 16.48m				
MINIMUM LANDSCAPED OPEN SPACE	NO REQUIREMENT	5.3% WITH PARKING LOT		PARCEL IDENTIFICATION NUMBER		
MAXIMUM LOT COVERAGE	NO REQUIREMENT	12.8% LOT COVERAGE		PIN: 04450-1434		
PERCENTAGE OF TOTAL SITE OCCUPIED BY VEGETATION AND LANDSCAPING	NO REQUIREMENT	77% SITE OCCUPIED				
MAXIMUM BUILDING HEIGHT: SEC. 170, TABLE 170B (g)	18.0m	8.7m				
MINIMUM REQUIRED PARKING FOR NEW ELEMENTARY SCHOOL: SEC. 101, TABLE 101, N81	1.5 PER CLASSROOM (w/ PORTABLES)	58				
MINIMUM REQ. WIDTH OF A LANDSCAPED BUFFER FOR PARKING LOT: SEC. 110, TABLE 110(a)	3.0m	3.6m				
MINIMUM NUMBER OF BARRIER-FREE PARKING SPACES: BY-LAW NO. 2017-301, SECTION 111	NO. OF REGULAR PARKING SPACES - MIN. NO. OF ACCESSIBLE PARKING SPACES - 51 - 75 SPACES: 3	3, SEE CALCULATION ABOVE				
MINIMUM NUMBER OF BICYCLE PARKING SPACES: SEC. 111, TABLE 111A (d)	SCHOOL: 1 PER 100m ² OF GFA OFFICE: 4781 /100 = 47.81 ROUNDED TO 48 DAY CARE: 1 PER 250m ² OF GFA = 360 /250 = 1.44 ROUNDED TO 2 TOTAL: 50	50				
BICYCLE PARKING DIMENSIONS: SEC. 111, TABLE 11B	HORIZONTAL: 0.6m by 1.8m	HORIZONTAL: 0.6m by 1.8m				

A1.0

1

BIM 360://219-00014-00 - CEPEO Schools - Kanata - R21/Kanata Arch_R21.rvt 7/15/2022 1:19:13 PM

III 30.019.0214.02. CEPIC School, Kender KET Kandel And KET An Arroson Solid School Sc

APPENDIX B TRAFFIC DATA

Appendix B: Table of Traffic and Road Parameters To Be Used For Sound Level Predictions

Table B1 Traffic And Road Parameters To Be Used For Sound Level Predictions							
Row Width (m)	Implied Roadway Class	AADT Vehicles/Day	Posted Speed Km/Hr	Day/Night Split %	Medium Trucks %	Heavy Trucks % ¹	
NA ²	Freeway, Queensway, Highway	18,333 per lane	100	92/8	7	5	
37.5-44.5	6-Lane Urban Arterial-Divided (6 UAD)	50,000	50-80	92/8	7	5	
34-37.5	4-Lane Urban Arterial-Divided (4-UAD)	35,000	50-80	92/8	7	5	
23-34	4-Lane Urban Arterial-Undivided (4-UAU)	30,000	50-80	92/8	7	5	
23-34	4-Lane Major Collector (4-UMCU)	24,000	40-60	92/8	7	5	
30-35.5	2-Lane Rural Arterial (2-RAU)	15,000	50-80	92/8	7	5	
20-30	2-Lane Urban Arterial (2-UAU)	15,000	50-80	92/8	7	5	
20-30	2-Lane Major Collector (2-UMCU)	12,000	40-60	92/8	7	5	
30-35.5	2-Lane Outer Rural Arterial (near the extremities of the City) (2-RAU)	10,000	50-80	92/8	7	5	
20-30	2-Lane Urban Collector (2-UCU)	8,000	40-50	92/8	7	5	

¹ The MOE Vehicle Classification definitions should be used to estimate automobiles, medium trucks and heavy trucks.

 $^{2}\,$ The number of lanes is determined by the future mature state of the roadway.

Environmental Noise Control Guidelines Part 4: Technical Requirements For Environmental Noise Control Studies And Implementation

Annex 1 – Road Classification and Rights-of-Way Protection

This annex describes road classifications for City roads that, other than local roads, are illustrated on Schedules E to H. Rights-of-way protection requirements for various roads are described in Table 1 of this annex. Additional policies on rights-of-way are also found in the following Sections 1 and 2 of this annex. [Amendment #76, August 04, 2010]

1.0 – Classification Summary

The description that follows of the various classifications of roads is not meant to be interpreted as an absolute standard or limit, which if varied, would automatically necessitate an amendment to this Plan. Rather, these characteristics are intended to act as benchmarks against which variations in any given situation can be assessed in light of the relevant goals and objectives of this Plan. Policy 31 of Section 2.3.1 of this Plan states under what circumstances an amendment is required for changes – additions or deletions – of certain identified road classes on Schedules E to H. The following highlights the classification system used in this Plan for existing and future City roadways:

City Freeway

City freeway describes a limited access highway with high-speed traffic that serves the need for intra-city travel similar to the provincial limited access highways. Highway 174 between Highway 417 (Queensway) and Trim Road in Orléans is the only city freeway.

Arterial Roads

The arterial roads are the major roads of the City that carry large volumes of traffic over the longest distances. The majority of these roadways were formerly identified as regional roads. To best provide access to arterials, block lengths and intersections should be spaced and designed to accommodate all transportation modes; vehicular access to adjacent properties should be controlled to minimize turning movements and to reduce conflicts between travel modes; and arterials road corridors should provide a high degree of connectivity between land uses and places along and across the route. For certain roads such as the Airport Parkway, the City may apply different standards to development with regard to access and setbacks. It is recognised that the arterial road system links to provincial and inter-provincial roads, which are all an integral part of the overall network.

Arterial roads function as major public and infrastructure corridors in the urban communities and villages they traverse. They not only accommodate car and truck traffic, but also serve pedestrians, public utilities, cyclists and public transit buses. The roadway and its boulevard are therefore designed to meet the needs of these users through the provision, where appropriate, of such features as sidewalks, cycling lanes, and bus stops and shelters. In parts of the urban area and villages additional roadside features include: street furniture, pedestrian-scale lighting, and trees and other landscaping. This greenery provides visual appeal, summer shade and a defining sense of the linear nature of these travel corridors. The planning of land uses and the local road network on lands adjacent to arterial roads may occur in a manner that can reduce the need for noise attenuation barriers or fencing along extensive lengths of roadway. [Amendment #15, September 8, 2004] [Amendment #76, August 04, 2010]

Major Collector and Collector Roads

The collector roads connect communities and distribute traffic between the arterial system and the local road system. These roads tend to be shorter and carry lower volumes of traffic than do the arterials. Direct access to collector roads from adjacent properties will be permitted where such access will not introduce traffic safety or capacity concerns. The design and construction of collector roads will

accommodate the safe and efficient operation of transit services. In general, a major collector is a roadway that acts as a connection between an arterial road and collector roads.

Collector roads are the principal streets in urban and village neighbourhoods and are used by local residents, delivery and commercial vehicles, transit and school buses, cyclists, and pedestrians. The reduced speed and volumes of traffic on collector roads, compared with arterial roads, make collectors more accommodating for cyclists and pedestrians. Tree plantings, bus stops, community mailboxes and other streetscape features create roadways that are integrated with their neighbourhood. [Amendment #15, September 8, 2004]

Local Roads

Local roads are found within communities and distribute traffic from arterial and collector streets to individual properties, typically over short distances. Local roads, to varying degrees, also serve a collector road function by distributing traffic between collector streets and other local streets. Pedestrians and cyclists are major users of local roads, starting or finishing their journeys along these roads. [Amendment #15, September 8, 2004]

Lanes

A lane is a public highway that provides a secondary means of access from a public street to abutting lots. [Amendment #150, December 21, 2017]

2.0 – Rights-of-Way Protection Requirements

Section 2.3.1 Transportation indicates that the City will protect rights-of-way for the development of the transportation network of the city. In particular, this involves identifying where lands will be acquired for new rights-of-way or the widening of existing rights-of-way. This section of Annex 1 sets forth the right-of-way (ROW) widths that the City may acquire for roads, shown in Schedule E to H, and additional ROW policies. The ROW distances indicate the width of land that the City has identified will be needed to accommodate the range of possible transportation and infrastructure facilities such as: roadway lanes for cars, truck, bicycles and/or transit vehicles; sidewalks and pathways; central or side boulevards for landscaping; public utilities, lighting; and spaces for street side amenities (bus stops, mail and newspaper boxes, etc.). [Amendment #76, August 04, 2010]

Rights-of-way protection requirements can be grouped in three general categories as follows:

- 1. **a ROW width for a new road** this is where a wholly new road is to be built, with this most often occurring in the urban growth areas outside of the Greenbelt; [Amendment #76, August 04, 2010]
- minor widening of an existing road ROW- these happen where the existing ROW is somewhat less than the street design standard and the widening lands are usually needed to accommodate one or more of the following: [Amendment #76, August 04, 2010]
 - a. an enlargement of the curb lane for cyclists, be it a wider shared lane with motorized vehicles or a newly separately marked cycle lane, either of which remedies the situation of insufficient lane space for cyclists, [Amendment #76, August 04, 2010]
 - an increase in sidewalk width, thus allowing more room for pedestrians needs and the space requirements for street elements such as lighting poles, bus stops, etc. [Amendment #76, August 04, 2010]
 - c. additional room for street landscaping, thereby permitting the introduction of trees and shrubs where none existed before or enlargement of the space for the greenery that may already exist. [Amendment #76, August 04, 2010]

Such minor road widening will occur generally along existing roadways within the Greenbelt.

3. **Major widening of a existing road ROW-** where the widening to be taken is of significant size and would be used for a combination of new traffic lanes and space for cycling, street landscaping and the addition or enlargement of sidewalks. Major road widening of an existing road ROW are typical of

street trees and similar landscaping where existing or planned roadways run immediately adjacent to or along these utility corridors. Therefore in the preparation of community design plans and Environmental Assessment Studies or the review of plans of subdivision the City may require larger road right-of-way requirements or the provision of landscape buffers for proposed roads that will lay adjacent to hydro line corridors so that the street trees and similar landscaping can also be accommodated. [Amendment #76, August 04, 2010]

Table 1- Road of Right-of-Way Protection

Road	ROW to be Protected
Arterials in the rural area (as shown on Schedules G and H of the Official Plan)	ROW to be protected is 30 metres unless otherwise indicated
Collectors in the rural area (as shown on Schedules G and H of the Official Plan)	ROW to be protected is 26 metres unless otherwise indicated
Local roads in the rural area	ROW to be protected is 20 metres unless otherwise indicated
Lanes in the Urban Area	ROW to be protected for lanes where only residential land uses abut is 6 metres unless otherwise indicated
Lanes in the Urban Area	ROW to be protected for lanes where commercial or mixed residential commercial land uses abut is 8 metres unless otherwise indicated

Road	From	То	ROW to be Protected	Classification	Sector
Abbott West	West Ridge	Main	24	collector	urban
Abbott East	Main	lber	26	major collector	urban
Airport Parkway	Bronson	Airport Parkway Private	ECP	arterial	urban
Albert	Empress	Bronson	40 Note: Maximum land requirement from property abutting existing ROW (10.0 m).	arterial	urban
Albert	Bronson	Elgin	VRW Note: Maximum land requirement from property abutting existing ROW (1.25 m). Subject to widening/easement policy.	arterial	urban
Albert	Elgin	MacKenzie King Bridge	VRW Note: Maximum land requirement from property abutting existing ROW (1.25m).	arterial	urban
Albion	Bank	Lester	24	collector	urban
Albion	Lester	Leitrim	G	arterial	urban
Albion	Leitrim	Del Zotto	37.5	arterial	urban
Albion	Del Zotto	Urban area limit	37.5 Note: An additional 5.0 m	arterial	urban

Carbery	Beechfern	Abbott East	24	collector	urban
Carling	March	Herzberg	44.5 Note: Subject to unequal widening: 44.5 m, measured from the existing south ROW limit	arterial	urban
Carling	Herzberg	Greenbelt boundary	G	arterial	urban
Carling	Greenbelt boundary	Holly Acres	44.5	arterial	urban
Carling	Holly Acres	Richmond	37.5	arterial	urban
Carling	Richmond	Bronson	44.5	arterial	urban
Carp	Approx. 600 m south of Craig Side	Approx. 600 m north of March	23	arterial	village
Carp	Richardson Side	Urban Area Limit	37.5	arterial	rural
Carp	Stittsville urban area- north limit	Hazeldean	37.5	arterial	urban
Carp	Hazeldean	Main Street	23	arterial	urban
Catherine	Bronson	Elgin	23	arterial	urban
Cedarview	Baseline	Lytle	G	arterial	urban
Cedarview	Lytle	Fallowfield	37.5 Note: An additional 5.0 m on the either side may be required to construct a rural cross-section.	arterial	urban
Cedarview	Fallowfield	Jockvale	26	major collector	urban
Cedarview	Jockvale	Kennevale	24	collector	urban
Cedarview	Strandherd	Cambrian	37.5	arterial	urban
Cedarview	Cambrian	Urban Limit	24	collector	urban
Centrepoint	63m north of Hemming-woode	Tallwood	26	major collector	urban
Chamberlain	Bronson	Bank	23	arterial	urban
Chesterton	Viewmount	Meadowlands	24	collector	urban
Chimo	Katimavik	Katimavik	24	collector	urban
Clare	34.90m east of Evered	Tweedsmuir	24 Note: North Side	collector	urban
Claridge	Strandherd	Woodroffe	24	collector	urban
Clementine	Bélanger	Ohio	15	local	urban
Clementine	Rockingham	Bélanger	20	local	urban
Cleopatra	West Hunt Club	Merivale	24	collector	urban
Clyde	Maitland	Baseline	34	arterial	urban
Clyde	Baseline	Merivale	34	arterial	urban
Colonial	Trim	Delson	23	arterial	village
Colonial	Western boundary of Village of Sarsfield	Eastern boundary of Village of Sarsfield	23	arterial	village
Colonnade	Merivale	Prince of Wales	26	major collector	urban
Colonnade S.	Colonnade N.	Colonnade N.	24	collector	urban
Conroy	Walkley	Greenbelt boundary	44.5	arterial	urban
Conroy	Greenbelt boundary	Bank	G	arterial	urban
Constance Bay	Dunrobin	Bayview	20	arterial	village
Constellation	Centrepoint	Baseline	24	collector	urban
Cope	Entire Length		24	collector	urban
Cordova	Withrow	Baseline	24	collector	urban

Notes:

- 1. All distances are in metres.
- 2. All unequal widening measured from centreline unless specified.
- 3. "ECP" signifies Existing Corridor Protection
- 4. "G" signifies Greenbelt for which unique rights-of-way protection policy apply as follows: For arterial road segments located entirely within the Greenbelt, the right-of-way requirements vary depending on: the number and width of travel lanes; the treatment of curbs, medians, and road drainage; and other amenities to be provided in the corridor. On this basis, the right-of-way to be acquired by the City and the means to acquire the land will be determined with involvement of the National Capital Commission on a case-by-case basis a road modifications are being planned. In the event that a portion of Greenbelt land is conveyed to another owner, a minimum road-widening requirement of 42.5 m shall apply for an arterial road segment adjacent to that land.

For segments adjacent to the Greenbelt along only one side, the ROW dimension for the urban area side should be protected, with an additional 5.0 m widening requested along the Greenbelt side (to construct the wider rural cross-section). As always, the widening requirements are to be measured from the existing road centerline.

- 5. VRW signifies variable rights-of-way. From the abutting properties a widening and or an easement will be taken.
- 6. The widening of Trim Road will be designed as no more than a 4-lane divided arterial road, with turning lanes at intersections as required, and this will not be altered without the appropriate Environmental Assessment Act reviews and the appropriate Official Plan Amendments.
- 7. "Uneven" means topographic or other features may require an uneven road widening, detail of which will be determined by the City normally upon examination of a development application on adjacent lands. [Amendment 15, September 8, 2004]

[Amendment #76, OMB File #PL100206, August 18, 2011]

C STAMSON OUTPUTS

Document Path: D:\aProjects\219-00014-00\MXD\219-00014-00 Figure 4 Distances Angles.mxd

BREILSSTEINHARK	LEGEND APPROXIMAT PROPOSED I RECEPTORS		DN
	10 5 0	W ⊲ 10 Metres	N E
PTOR B			
	CLIENT:		
Beisestterthe	CONSEIL DES ÉC L'EST D PROJECT: NOIS KANATA-SUD ELE STITTSVIL	E L'ONTARIO E L'ONTARIO E STUDY EMENTARY SCHOO LLE, ONTARIO	DE
	PROJECT NO:	DATE:	
INER ROAD	219-00014-00 DESIGNED BY: - DRAWN BY: TP	JANUARY 2022	
	CHECKED BY:		
	FIGURE NO: C1	SCALE:	
	TITLE: SITE PLAN SHOWING (TRANSPORTAT RECEP	ANGLES AND DIST ION NOISE IMPACT TORS A TO D	ANCES S)
	ISSUE:		REV.:
			-

Document Path: D:\aProjects\219-00014-00\MXD\219-00014-00 Figure 5 Distances Angles.mxd

BELST		50				
	LEGEND	• 				
NER ROAD	APPROXIMAT PROPOSED I RECEPTORS	E SITE LOCATION DEVELOPMENT				
<u> </u>		Ň				
PTOR F	10 5 0	W E S				
	CLIENT: CONSEIL DES É L'EST E	COLES PUBLIQUES DE DE L'ONTARIO				
	PROJECT: NOISE STUDY KANATA-SUD ELEMENTARY SCHOOL STITTSVILLE, ONTARIO					
	PROJECT NO: 219-00014-00 DESIGNED BY:	DATE: JANUARY 2022				
	- DRAWN BY: TP CHECKED BY:					
	- FIGURE NO: C2 TITLE:	SCALE: 1:500				
	SITE PLAN SHOWING (TRANSPORTAT RECEPT	ANGLES AND DISTANCES ION NOISE IMPACTS) FORS E TO G				
	DISCIPLINE: ENVII	RONMENT				
	NOOL.	- -				

STAMSON 5.0 NORMAL REPORT Date: 24-12-2021 13:42:19 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: a.te Time Period: Day/Night 16/8 hours Description: Portable 6 Pack - North Facade Road data, segment # 1: Bobolink Rid (day/night) ------_____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 50 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Bobolink Rid (day/night) ------_____ Angle1 Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 2 (Reflective ground surface) Receiver source distance : 160.00 / 160.00 m Receiver height : 2.50 / 2.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Bobolink Rid (day) -----_ _ Source height = 1.50 mROAD (0.00 + 55.47 + 0.00) = 55.47 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------0.00 65.75 0.00 -10.28 0.00 0.00 0.00 0.00 55.47 -----_____ Segment Leq : 55.47 dBA Total Leq All Segments: 55.47 dBA Results segment # 1: Bobolink Rid (night) -----_ _ _ _ _ _ Source height = 1.50 m

Segment Leq : 47.88 dBA

Total Leg All Segments: 47.88 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 55.47 (NIGHT): 47.88

STAMSON 5.0 NORMAL REPORT Date: 24-12-2021 13:39:47 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: B.te Time Period: Day/Night 16/8 hours Description: Portable 6 Pack - East Facade Road data, segment # 1: Bobolink Rid (day/night) ------_____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 50 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Bobolink Rid (day/night) ------_____ Angle1 Angle2 : 0.00 deg 90.00 deg Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 2 (Reflective ground surface) Receiver source distance : 188.00 / 188.00 m Receiver height : 2.50 / 2.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Road data, segment # 2: Cope Drive (day/night) ------_____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 50 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 2: Cope Drive (day/night) ------

_____ Angle1 Angle2 : -90.00 deg 0.00 deg Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 2 (Reflective ground surface) Receiver source distance : 42.00 / 42.00 m Receiver height : 2.50 / 2.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Bobolink Rid (day) ------_ _ Source height = 1.50 mROAD (0.00 + 51.76 + 0.00) = 51.76 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ----------- 0 90 0.00 65.75 0.00 -10.98 -3.01 0.00 0.00 0.00 51.76 -----_____ Segment Leq : 51.76 dBA Results segment # 2: Cope Drive (day) _____ Source height = 1.50 mROAD (0.00 + 58.27 + 0.00) = 58.27 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------0.00 65.75 0.00 -4.47 -3.01 0.00 0.00 0.00 58.27 ------_____ Segment Leq : 58.27 dBA Total Leq All Segments: 59.15 dBA Results segment # 1: Bobolink Rid (night) ------_____ Source height = 1.50 mROAD (0.00 + 44.17 + 0.00) = 44.17 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ----------- 0 90 0.00 58.16 0.00 -10.98 -3.01 0.00 0.00 0.00 44.17 -----_____

Segment Leq : 44.17 dBA

Total Leq All Segments: 51.56 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 59.15 (NIGHT): 51.56

STAMSON 5.0 NORMAL REPORT Date: 24-12-2021 13:45:44 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: C.te Time Period: Day/Night 16/8 hours Description: Portable 6 Pack - South Facade Road data, segment # 1: Cope Drive (day/night) ------_____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 50 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Cope Drive (day/night) ------_____ Angle1 Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 2 (Reflective ground surface) Receiver source distance : 27.00 / 27.00 m Receiver height : 2.50 / 2.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Cope Drive (day) _____ Source height = 1.50 mROAD (0.00 + 63.20 + 0.00) = 63.20 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------_____ Segment Leq : 63.20 dBA Total Leq All Segments: 63.20 dBA Results segment # 1: Cope Drive (night) ------Source height = 1.50 m

Segment Leq : 55.60 dBA

Total Leg All Segments: 55.60 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 63.20 (NIGHT): 55.60

STAMSON 5.0 NORMAL REPORT Date: 27-12-2021 14:34:02 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: D.te Time Period: Day/Night 16/8 hours Description: 2 Storey Building - East Facade Road data, segment # 1: Bobolink Rid (day/night) ------_____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 50 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Bobolink Rid (day/night) ------_____ Angle1 Angle2 : 0.00 deg 90.00 deg Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 2 (Reflective ground surface) Receiver source distance : 177.00 / 177.00 m Receiver height : 4.50 / 4.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Road data, segment # 2: Cope Drive (day/night) ------_____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 50 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 2: Cope Drive (day/night) ------

_____ Angle1 Angle2 : -90.00 deg 0.00 deg Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 2 (Reflective ground surface) Receiver source distance : 38.00 / 38.00 m Receiver height : 4.50 / 4.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Bobolink Rid (day) ------_ _ Source height = 1.50 mROAD (0.00 + 52.02 + 0.00) = 52.02 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ----------- 0 90 0.00 65.75 0.00 -10.72 -3.01 0.00 0.00 0.00 52.02 -----_____ Segment Leq : 52.02 dBA Results segment # 2: Cope Drive (day) _____ Source height = 1.50 mROAD (0.00 + 58.70 + 0.00) = 58.70 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------0.00 65.75 0.00 -4.04 -3.01 0.00 0.00 0.00 58.70 ------_____ Segment Leq : 58.70 dBA Total Leq All Segments: 59.54 dBA Results segment # 1: Bobolink Rid (night) ------_____ Source height = 1.50 mROAD (0.00 + 44.43 + 0.00) = 44.43 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ----------- 0 90 0.00 58.16 0.00 -10.72 -3.01 0.00 0.00 0.00 44.43 ------_____

Segment Leq : 44.43 dBA

Total Leq All Segments: 51.95 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 59.54 (NIGHT): 51.95

STAMSON 5.0 NORMAL REPORT Date: 27-12-2021 14:40:15 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: e.te Time Period: Day/Night 16/8 hours Description: 2 Storey Building - South Facade Road data, segment # 1: Cope Drive (day/night) ------_____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 50 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Cope Drive (day/night) ------_____ Angle1 Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 2 (Reflective ground surface) Receiver source distance : 25.00 / 25.00 m Receiver height : 4.50 / 4.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Cope Drive (day) _____ Source height = 1.50 mROAD (0.00 + 63.53 + 0.00) = 63.53 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------0.00 65.75 0.00 -2.22 0.00 0.00 0.00 0.00 63.53 ------_____ Segment Leq : 63.53 dBA Total Leq All Segments: 63.53 dBA Results segment # 1: Cope Drive (night) -----Source height = 1.50 m

Segment Leq : 55.94 dBA

Total Leg All Segments: 55.94 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 63.53 (NIGHT): 55.94

STAMSON 5.0 NORMAL REPORT Date: 27-12-2021 15:02:35 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: f.te Time Period: Day/Night 16/8 hours Description: 1 Storey Building - South Facade Road data, segment # 1: Bobolink Rid (day/night) ------_____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 50 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Bobolink Rid (day/night) ------_____ Angle1 Angle2 : -90.00 deg 0.00 deg Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 2 (Reflective ground surface) Receiver source distance : 169.00 / 169.00 m Receiver height : 1.50 / 1.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Road data, segment # 2: Cope Drive (day/night) ------_____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 50 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 2: Cope Drive (day/night) ------

_____ Angle1 Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 2 (Reflective ground surface) Receiver source distance : 30.00 / 30.00 m Receiver height : 1.50 / 1.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Bobolink Rid (day) ------_ _ Source height = 1.50 mROAD (0.00 + 52.22 + 0.00) = 52.22 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------0.00 65.75 0.00 -10.52 -3.01 0.00 0.00 0.00 52.22 -----_____ Segment Leq : 52.22 dBA Results segment # 2: Cope Drive (day) _____ Source height = 1.50 mROAD (0.00 + 62.74 + 0.00) = 62.74 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------0.00 65.75 0.00 -3.01 0.00 0.00 0.00 0.00 62.74 -----_____ Segment Leq : 62.74 dBA Total Leq All Segments: 63.11 dBA Results segment # 1: Bobolink Rid (night) ------_____ Source height = 1.50 mROAD (0.00 + 44.63 + 0.00) = 44.63 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------0.00 58.16 0.00 -10.52 -3.01 0.00 0.00 0.00 44.63 -----_____

Segment Leq : 44.63 dBA

Total Leq All Segments: 55.52 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 63.11 (NIGHT): 55.52

STAMSON 5.0 NORMAL REPORT Date: 27-12-2021 15:01:47 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: G.te Time Period: Day/Night 16/8 hours Description: 1 Storey Building - North Facade Road data, segment # 1: Bobolink Rid (day/night) ------_____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 50 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 1: Bobolink Rid (day/night) ------_____ Angle1 Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods.) No of house rows : 0 / 0 Surface : 2 (Reflective ground surface) Receiver source distance : 95.00 / 95.00 m Receiver height : 1.50 / 1.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Bobolink Rid (day) -----_ _ Source height = 1.50 mROAD (0.00 + 57.73 + 0.00) = 57.73 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------0.00 65.75 0.00 -8.02 0.00 0.00 0.00 0.00 57.73 ------_____ Segment Leq : 57.73 dBA Total Leq All Segments: 57.73 dBA Results segment # 1: Bobolink Rid (night) -----_ _ _ _ _ _ Source height = 1.50 m

Segment Leq : 50.14 dBA

Total Leq All Segments: 50.14 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 57.73 (NIGHT): 50.14

D SOUND DATA

AAON Standard Condenser Fan Radiated Sound Levels

Updated 10/26/2018

															So	und P	ressu	Ire Lev	vel in a	a	Dist	t (ft)
				i					d Davi					_	He	misp	herica		Field		5)
			Die	-	<u> </u>	405	050	soun		/er Le		0000	1 A		40		Sound	I Press	sure L		0000	
	Inlat	Fans	Dia	RPIN	63	125	250	500	1000	2000	4000	8000	LWA	6		5 250	500	1000	2000	4000	8000	dBA
BO 2 8 2 Top	Outlot	1	30	850	79 01	74	71	70	67	02 60	59	59 59	72	60	02	50	00 50	04 55	51 51	40 40	47	61
	Total	· · ·	50	000	83	70	7/	73	60	65	62	61	75	7	000 0000000000000000000000000000000000	63	62	58	5/	40 51	40 50	63
	Inlet				85	79	77	75	71	68	65	64	77	72	3 67	66	63	59	56	53	52	65
RQ 4-6 Ton & RN 6 & 7 Ton	Outlet	1	30	1085	86	83	76	76	72	68	65	63	78	7	5 71	64	65	60	56	53	52	66
	Total		00		89	84	80	79	75	71	68	67	80	7	7 73	68	67	63	59	56	55	69
	Inlet				92	86	85	82	78	75	72	71	84	80) 75	73	70	66	63	60	60	73
RN 8 & 10 Ton	Outlet	1	30	1085	94	90	83	83	79	75	72	71	85	82	2 78	71	72	68	63	60	59	73
	Total				96	91	87	86	82	78	75	74	88	84	1 80	75	74	70	66	63	62	76
	Inlet				88	82	80	78	74	71	68	67	80	76	6 70	69	66	62	59	56	55	68
RN 09 & 11 Ton	Outlet	2	30	1085	89	86	79	79	75	71	68	66	81	78	3 74	67	68	63	59	56	55	69
	Total				92	87	83	82	78	74	71	70	83	80) 76	71	70	66	62	59	58	72
	Inlet				95	89	88	85	81	78	75	74	87	83	3 78	76	73	69	66	63	63	76
RN 13-20 Ton	Outlet	2	30	1085	97	93	86	86	82	78	75	74	88	85	5 81	74	75	71	66	63	62	76
	Total				99	94	90	89	85	81	78	77	91	87	7 83	78	77	73	69	66	65	79
	Inlet				97	91	89	87	83	80	77	76	89	85	5 79	78	75	71	68	65	64	77
RN 25 & 30 Ton	Outlet	3	30	1085	98	95	88	88	84	80	77	75	90	87	7 83	76	76	72	68	65	64	78
	Total				101	96	92	91	86	83	80	79	92	89	85	80	79	75	71	68	67	81
	Inlet				98	92	91	88	84	81	78	77	90	86	5 81	79	76	72	69	66	66	79
RN 26,31 & 40 Ton	Outlet	4	30	1085	100	96	89	89	85	81	78	77	91	88	3 84	77	78	74	69	66	65	79
	Total				102	98	93	92	88	84	81	80	94	90	86	81	80	76	72	69	68	82
DN 50 00 8 70 Ter	Inlet	0	20	1005	100	94	92	90	86	83	80	79	92	88	3 82 0 0 0	81	78	74	/1	68	67	80
RN 50,60 & 70 ION	Outlet	0	30	1085	101	98	91	91	87	83	08	78	93	90		79	79	75	71	68	6/	81
	lotal				104	99	95	94	89	00	05	8Z	95	94		75	82	78	74	72	70	84
	Outlot	Λ	30	1170	92	00	0/ 07	01 97	00	00 95	00 95	/0 79	92	00) 74	75	75 75	74	73	73	66	00 80
P7 45-75	Total	· ·	50	1170	92	80	90	90	80	88	88	81	92	81	3 77	73	78	74	76	76	60	83
RN E 90-140 Top	Inlet				95	89	90	90	89	88	88	81	95	82	3 77	78	78	77	76	76	69	83
I N & I Z 75-140 Ton	Outlet	8	30	1170	95	89	90	90	89	88	88	81	95	83	3 77	78	78	77	76	76	69	83
RZ 90-140	Total				98	92	93	93	92	91	91	84	98	86	3 80	81	81	80	79	79	72	86
	Inlet				97	91	92	92	91	90	90	83	97	85	5 79	80	80	79	78	78	71	85
RZ 145-180	Outlet	12	30	1170	97	91	92	92	91	90	90	83	97	85	5 79	80	80	79	78	78	71	85
	Total				100	94	95	95	94	93	93	86	100	88	82	83	83	82	81	81	74	88
	Inlet				98	92	93	93	92	91	91	84	98	86	80	81	81	80	79	79	72	86
RZ 200-240	Outlet	16	30	1170	98	92	93	93	92	91	91	84	98	86	<u>8 8</u> 0	81	81	80	79	79	72	86
	Total				101	95	96	96	95	94	94	87	101	89	83	84	84	83	82	82	75	89

Tested in Accordance with AMCA 300 - Updated 6-15-15

15.0" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Job Name: Job Tag:	CEPEO Kanata RTU-1 Daycare
Rep Firm: Date:	07-07-2022
Job Tag: Rep Firm: Date:	RTU-1 Daycare 07-07-2022

OPERATING CONDITIONS:

Air Flow:	3,200 CFM
Static Pressure:	0.98 in. Wg.
Relief Dampers DP:	0.44 in. Wg.
-	-
TSP:	1.42 in. Wg.
Site Altitude:	0.00 Ft
TCD @ Coo I aval	1 10 1. 11/-

FAN PERFORMANCE:

RPM:	1998
BHP:	1.51
Efficiency:	47.4%
In/Out Velocity:	1624/1260 FPM
Plenum Out Velocity:	53 FPM

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	15.0 in. x 1
CFM:	3200
Tip Speed:	7,846 FPM
Inertia:	3 WR ²

MOTOR SELECTION:

Rated HP / Bypass:	2 / No
Frame Size:	145T
Nominal RPM:	1760
VAC/PH/HZ:	575/3/60
Efficiency	Premium / 0.865
Enclosure Type:	ODP
Max Inertial Load:	27 WR ²

FAN SOUND POWER (Inlet/Outlet):

Octave	Band:		(Re 10^-12 watts)				
1	2	3	4	5	6	7	8
85	86	86	86	80	76	74	70
85	86	86	86	80	76	74	70
SOUNE	POWEI	R A-Weid	hted: 8	7 / 87 dB			

Exhaust Fan Model: RM150 @ 1998 RPM and 100% Width

22.0" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Air Flow:

TSP:

Static Pressure:

Site Altitude:

Relief Dampers DP:

Job Name:CEPEO KanataJob Tag:RTU-2 KindergartenRep Firm:ClassroomsDate:07-07-2022

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	22.0 in. x 1
CFM:	
Tip Speed:	6100
Inertia:	7,914 FPM
	5 \M/R ²

MOTOR SELECTION:

Rated HP / Bypass:	5 / No
Frame Size:	184T
Nominal RPM:	1760
VAC/PH/HZ:	575/3/60
Efficiency	Premium / 0.895
Enclosure Type:	ODP
Max Inertial Load:	52 WR ²

TSP @ Sea Level:

OPERATING CONDITIONS:

FAN PERFORMANCE:

RPM:	1374
BHP:	3.33
Efficiency:	36.4%
In/Out Velocity:	1865/2054 FPM
Plenum Out Velocity:	102 FPM

FAN SOUND POWER (Inlet/Outlet):

Octave	Band:		(Re 10^-12 watts)				
1	2	3	4	5	6	7	8
89	88	90	85	79	78	73	65
89	88	90	85	79	78	73	65
SOUND POWER A-Weighted: 90 / 90 dB							

Exhaust Fan Model: RM220A @ 1374 RPM and 100% Width

6,100 CFM

0.83 in. Wg.

0.43 in. Wg.

1.26 in. Wg.

1.26 in. Wg.

0.00 Ft

18.5" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Air Flow:

TSP:

RPM:

BHP:

Efficiency:

In/Out Velocity:

Plenum Out Velocity:

Static Pressure:

Site Altitude:

TSP @ Sea Level:

FAN PERFORMANCE:

Relief Dampers DP:

OPERATING CONDITIONS:

Job Name: Job Tag: Rep Firm: Data:	CEPEO Kanata RTU-3 Library and Multipurpose
Date:	07-07-2022

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	18.5 in. x 1
CFM:	
Tip Speed:	4100
Inertia:	6,601 FPM
	3 W/R2

MOTOR SELECTION:

Rated HP / Bypass:	2 / No
Frame Size:	145T
Nominal RPM:	1760
VAC/PH/HZ:	575/3/60
Efficiency	Premium / 0.865
Enclosure Type:	ODP
Max Inertial Load:	27 WR ²

FAN SOUND POWER (Inlet/Outlet):

Octave I	Band:		(Re 10^-12 watts)				
1	2	3	4	5	6	7	8
84	84	83	81	75	72	69	64
84	84	83	81	75	72	69	64
SOUND POWER A-Weighted: 85 / 8				5 / 85 dB			

Exhaust Fan Model: RM185 @ 1363 RPM and 100% Width

4.100 CFM

1.02 in. Wg.

0.26 in. Wg.

1.28 in. Wg.

1.28 in. Wg.

2081/1614 FPM

0.00 Ft

1363

1.39

59.5%

68 FPM

18.5" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Job Name: Job Tag:	CEPEO Kanata RTU-4 Admin
Rep Firm: Date:	07-07-2022

OPERATING CONDITIONS:

Air Flow:	3,650 CFM
Static Pressure:	0.74 in. Wg.
Relief Dampers DP:	0.23 in. Wg.
TSP:	0.97 in. Wg.
Site Altitude:	0.00 Ft
TSP @ Sea Level:	0.97 in. Wg.

FAN PERFORMANCE:

RPM:	1202
BHP:	0.95
Efficiency:	58.9%
In/Out Velocity:	1853/1437 FPM
Plenum Out Velocity:	61 FPM

WHEEL SPECIFICATION:

2,200
18.5 in. x 1
3650
5,822 FPM
3 WR ²

MOTOR SELECTION:

2 / No
145T
1760
575/3/60
Premium / 0.865
ODP
27 WR ²

FAN SOUND POWER (Inlet/Outlet):

Octave	Band:		(Re 10^-12 watts)				
1	2	3	4	5	6	7	8
80	81	81	76	72	69	65	60
80	81	81	76	72	69	65	60
SOUND POWER A-Weighted: 81 / 81 dB							

Exhaust Fan Model: RM185 @ 1202 RPM and 100% Width

22.0" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Job Name: Job Tag:	CEPEO Kanata RTU-5 Gym
Rep Firm: Date:	07-07-2022

OPERATING CONDITIONS:

Air Flow:	6,200 CFM
Static Pressure:	0.67 in. Wg.
Relief Dampers DP:	0.44 in. Wg.
TSP:	1.11 in. Wg.
Site Altitude:	0.00 Et
	0.0011

FAN PERFORMANCE:

RPM:	1365
BHP:	3.21
Efficiency:	33.8%
In/Out Velocity:	1896/2088 FPM
Plenum Out Velocity:	103 FPM

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	22.0 in. x 1
CFM:	6200
Tip Speed:	7,862 FPM
Inertia:	5 WR ²

MOTOR SELECTION:

Rated HP / Bypass:	5 / No
Frame Size:	184T
Nominal RPM:	1760
VAC/PH/HZ:	575/3/60
Efficiency	Premium / 0.895
Enclosure Type:	ODP
Max Inertial Load:	52 WR ²

FAN SOUND POWER (Inlet/Outlet):

			-		•		
Octave Band:				(Re 10^-12 watts)			
1	2	3	4	5	6	7	8
89	88	90	85	79	78	73	65
89	88	90	85	79	78	73	65
SOUND POWER A-Weighted: 90 / 90 dB							

Exhaust Fan Model: RM220A @ 1365 RPM and 100% Width

22.0" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Job Name: Job Tag:	CEPEO Kanata RTU-6 Ground East
Rep Firm:	
Date:	07-07-2022

OPERATING CONDITIONS:

Air Flow:	6,750 CFM
Static Pressure:	0.74 in. Wg.
Relief Dampers DP:	0.50 in. Wg.
TSP:	1.24 in. Wg.
Site Altitude:	0.00 Ft
TSP @ Sea Level:	1.24 in. Wa.

FAN PERFORMANCE:

RPM:	1474
BHP:	4.02
Efficiency:	32.9%
In/Out Velocity:	2064/2273 FPM
Plenum Out Velocity:	112 FPM

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	22.0 in. x 1
CFM:	6750
Tip Speed:	8,490 FPM
Inertia:	5 WR ²

MOTOR SELECTION:

Rated HP / Bypass:	5 / No
Frame Size:	184T
Nominal RPM:	1760
VAC/PH/HZ:	575/3/60
Efficiency	Premium / 0.895
Enclosure Type:	ODP
Max Inertial Load:	52 WR ²

FAN SOUND POWER (Inlet/Outlet):

Octave	Band:			(Re 1	10^-12 w	atts)	
1	2	3	4	5	6	7	8
91	89	92	88	80	80	75	67
91	89	92	88	80	80	75	67
SOUNE	POWE	R A-Weig	ghted: 9	2 / 92 dB			

Exhaust Fan Model: RM220A @ 1474 RPM and 100% Width

18.5" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Air Flow:

TSP:

RPM:

BHP:

Efficiency:

In/Out Velocity:

Plenum Out Velocity:

Static Pressure:

Site Altitude:

TSP @ Sea Level:

FAN PERFORMANCE:

Relief Dampers DP:

OPERATING CONDITIONS:

Job Name:CEPEO KanataJob Tag:RTU-7 Second Floor Zone 1Rep Firm:07-07-2022

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	18.5 in. x 1
CFM:	4400
Tip Speed:	6,650 FPM
Inertia:	3 WR ²

MOTOR SELECTION:

Rated HP / Bypass:	2 / No
Frame Size:	145T
Nominal RPM:	1760
VAC/PH/HZ:	575/3/60
Efficiency	Premium / 0.865
Enclosure Type:	ODP
Max Inertial Load:	27 WR ²

FAN SOUND POWER (Inlet/Outlet):

Octave	Band:		(Re 10^-12 watts)				
1	2	3	4	5	6	7	8
84	84	85	81	76	73	70	65
84	84	85	81	76	73	70	65
SOUNE	POWE	R A-Weig	ghted: 8	5 / 85 dB			

Exhaust Fan Model: RM185 @ 1373 RPM and 100% Width

4,400 CFM

0.64 in. Wg.

0.35 in. Wg.

0.99 in. Wg.

0.99 in. Wg.

2234/1732 FPM

0.00 Ft

1373

1.30

52.7%

73 FPM

22.0" STAR Plenum

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.324 (SN: 6114768-C4GU4Q4U)

JOB INFORMATION:

Air Flow:

TSP:

RPM:

BHP:

Efficiency:

In/Out Velocity:

Plenum Out Velocity:

Static Pressure:

Site Altitude:

TSP @ Sea Level:

FAN PERFORMANCE:

Relief Dampers DP:

OPERATING CONDITIONS:

Job Name:CEPEO KanataJob Tag:RTU-8 Second Floor Zone 2Rep Firm:OtherDate:07-07-2022

WHEEL SPECIFICATION:

Max RPM:	2,200
Diameter x Qty:	22.0 in. x 1
CFM:	6800
Tip Speed:	8,478 FPM
Inertia:	5 WR ²

MOTOR SELECTION:

Frame Size: 184T	Rated HP / Bypass:
	Frame Size:
Nominal RPM: 1760	Nominal RPM:
VAC/PH/HZ: 575/3/60	VAC/PH/HZ:
Efficiency Premium / 0.895	Efficiency
Enclosure Type: ODP	Enclosure Type:
Max Inertial Load: 52 WR ²	Max Inertial Load:

FAN SOUND POWER (Inlet/Outlet):

Octave	Band:			(Re 1	10^-12 w	atts)	
1	2	3	4	5	6	7	8
91	89	92	88	80	80	75	67
91	89	92	88	80	80	75	67
SOUNE	D POWE	R A-Weig	ghted: 9	2 / 92 dB			

Exhaust Fan Model: RM220A @ 1472 RPM and 100% Width

6,800 CFM

0.67 in. Wg.

0.51 in. Wg.

1.18 in. Wg.

1.18 in. Wg.

2080/2290 FPM

0.00 Ft

1472

3.98

31.7%

113 FPM

E SUPPORTING INFORMATION

	Point Source. ISO 9613. Name: "Condenser Fan". ID: "RTU 4c"
Receiver	Nr. X Y Z Refl. DEN Freq. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr
Name: (untitled)	(m) (m) (Hz) dB(A) dB dB (dB) (dB)
ID: R03_W	188 429657.21 5013008.84 5.27 0 E A 83.8 0.0 -188.0 0.0 0.0 46.9 0.4 -2.3 0.0 0.0 0.0 0.0 0.0 0.0 149.2
X: 429685.52 m	191 429657.21 5013008.84 5.27 1 D A 83.8 0.0 0.0 0.0 53.9 0.8 -2.3 0.0 0.0 4.8 0.0 10.2 16.5
Y: 5012952.96 m	191 429657.21 5013006.04 5.27 IN A 63.8 0.0 -106.0 0.0 0.0 5.39 0.0 -2.3 0.0 0.0 4.8 0.0 10.22171.5
Z: 4.50 m	
	Point Source, ISO 9613, Name: "Condenser Fan", ID: "RTU_7c"
	Nr. X Y Z Refl. DEN Freq. Lw 1/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr
Point Source, ISO 9613, Name: "Condenser Fan", ID: "RTU 6c"	
Nr. X Y Z Refl. DEN Freq. Lw 1/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr	194 429704.04 5013013.71 9.27 0 D A 63.8 0.0 100 0.0 0.0 47.1 0.4 7.2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
(m) (m) (Hz) dB(A) dB dB (dB)	194 429704 85 5013013 71 9 27 0 E A 83 8 00 -188 0 0 0 0 0 47 1 0 4 -2 4 0 0 0 0 0 0 0 0 0 149 4
87 42969347 5013011.63 9.52 0 D A 90.8 0.0 0.0 0.0 0.0 0.0 46.5 0.4 -2.4 0.0 0.0 8.1 0.0 0.0 38.1	208 429704.84 5013013.71 9.27 1 D A 83.8 0.0 0.0 0.0 47.2 0.4 -2.4 0.0 0.0 0.0 0.0 5.3 33.2
87 42969347 5013011.63 9.52 0 N A 90.8 0.0 -188.0 0.0 0.0 46.5 0.4 -2.4 0.0 0.0 8.1 0.0 0.0 149.9	208 429704.84 5013013.71 9.27 1 N A 83.8 0.0 -188.0 0.0 0.0 47.2 0.4 -2.4 0.0 0.0 0.0 0.0 5.3 154.8
87 429693.47 5013011.63 9.52 UE A 90.8 0.0 -188.0 0.0 0.0 46.5 0.4 -2.4 0.0 0.0 8.1 0.0 0.0419.9	208 429704.84 5013013.71 9.27 1 E A 83.8 0.0 -188.0 0.0 0.4 -2.4 0.0 0.0 0.0 5.3 154.8
Point Source, ISO 9613, Name: "Exhaust Fan", ID: "RTU_6e"	Daint Source ISO 0642 Name: "Condenses Fee" ID: "DTLL 26"
Nr. X Y Z Refl. DEN Freq. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr	Nr. X Y Z Refi DEN Freq Lw //a Obtime K0 Di Adiy Astm Anr Afol Abous Abar (Cmet RI Lr
(m) (m) (m) (Hz) dB(A) dB dB (dB) (dB) (dB) (dB) (dB) (dB) (d	(m) (m) (m) (H2) (dB(A) (dB (dB) (dB) (dB) (dB) (dB) (dB) (dB)
91 429590.75 5013011.61 8.80 0D A 89.1 0.0 0.0 0.0 46.4 0.3 -2.3 0.0 0.0 11.0 0.0 0.0 33.8	218 429659.38 5013015.00 5.52 0 D A 83.6 0.0 0.0 0.0 0.0 0.0 47.6 0.5 2.3 0.0 0.0 0.0 0.0 0.0 0.0 38.1
31 425035. (3) 5015011.61 6.60 UN A 65.1 0.0 100. (0.0 148,0 0.0 0.0 464 0.3 -2.3 0.0 0.0 117.0 0.0 0.0 154.2 91 0.0 91 0.0 990 75 6.013011.61 8.80 0.5 4 8.9 1 0.0 1.880 0.0 0.0 464 0.3 -2.3 0.0 0.0 110.0 0.0 0.0154.2	218 429659.38 5013015.00 5.52 0 N A 83.8 0.0 -188.0 0.0 0.0 47.6 0.5 -2.3 0.0 0.0 0.0 0.0 149.9
	218 429659.38 5013015.00 5.52 0 E A 8.38 0.0 -188.0 0.0 0.0 47.6 0.5 -2.3 0.0 0.0 0.0 0.0 149.9
Point Source, ISO 9613, Name: "Condenser Fan ", ID: "RTU_5c"	220 429659.38 5013015.00 5.52 1D A 83.8 0.0 0.0 0.0 53.6 0.8 -2.3 0.0 0.0 0.0 0.0 10.1 21.7
Nr. X Y Z Refl. DEN Freq. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr	220 4290593.36 5013015.00 5.52 N A 63.8 0.0 -106.0 0.0 0.0 53.6 0.8 -2.3 0.0 0.0 0.0 0.0 11 +100.3 20 +20650.38 5013015.00 5.52 E A 83.8 0.0 -188.0 0.0 0.0 56 8.8 -2.3 0.0 0.0 0.0 0.0 10.11+06.3
(m) (m) (m) (H2) (H2) (H2) (H2) (H2) (H2) (H2) (H2	
140 429688.03 5013024.52 9.52 0 D A 90.8 0.0 0.0 0.0 0.0 0.0 48.1 0.5 -2.4 0.0 0.0 4.9 0.0 0.0 39.7	Point Source, ISO 9613, Name: "Condenser Fan ", ID: "RTU_1c"
140 429688 03 5013024 52 52 0 F A 90.8 00 188 0 0.0 48.1 0.1 24.1 0.0 4.9 0.0 0.0 4.9 0.0 0.0 146.3	Nr. X Y Z Refl. DEN Freq. Lw 1/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr
Point Source, ISO 9613, Name: "Condenser Fan", ID: "RTU_8c"	Z24 429647.48 501305.58 5.12 UD A 87.8 0.0 0.0 151.9 U.7 -2.3 0.0 0.0 6.8 0.0 0.0 307.
Nr. X Y Z Refl. DEN Freq. Lw 1/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr	224 42964748 5013056 58 5.12 OF A 87.8 0.0 -188.0 0.0 0.0 51.5 0.7 -2.3 0.0 0.0 6.8 0.0 0.05157.3
(m) (m) (m) (Hz) dB(A) dB dB (dB) (dB) (dB) (dB) (dB) (dB) (d	226 429647.48 5013056.58 5.12 1D A 87.8 0.0 0.0 0.0 0.0 52.1 0.7 -2.3 0.0 0.0 14.4 0.0 9.4 13.6
155 42973112 501302455 952 0 N A 90.8 0.0 100 0.0 49.6 0.5 -2.4 0.0 0.0 32 0.0 0.0 198.5	226 429647.48 5013056.58 5.12 1 N A 87.8 0.0 -188.0 0.0 0.0 52.1 0.7 -2.3 0.0 0.0 14.4 0.0 9.4 174.4
155 42973112 501302455 9.52 0 E A 90.8 0.0 -188.0 0.0 0.0 49.5 0.5 -24 0.0 0.0 32 0.0 0.0 148.2	226 429647.48 5013056.58 5.12 1 E A 87.8 0.0 -188.0 0.0 52.1 0.7 -2.3 0.0 0.0 9.4 174.4
	229 429647.48 5013056.58 5.12 1 D A 87.8 0.0 0.0 0.0 0.0 52.0 0.7 -2.3 0.0 0.0 8.6 0.0 38.2 -9.4
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e"	229 429647.48 5013056.58 5.12 1 D A 87.8 0.0 1.00 0.0 0.52.0 0.7 2.3 0.0 0.0 8.6 0.0 38.2 -9.4 229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 -188.0 0.0 0.52.0 0.7 -2.3 0.0 0.0 8.6 0.0 38.2 197.4 220 429647.48 5013056.58 5.12 1 N A 87.8 0.0 188.0 0.0 0.52.0 0.7 -2.3 0.0 0.86 0.038.2 197.4 220 429647.48 5013056.58 5.12 1 N A 87.8 0.0 198.0 0.0 0.7 2.3 0.0 0.0 8.6 0.038.2 197.4 220 429647.48 5013056.58 5.12 1 A 87.8 0.0 0.0 0.20 0.0 0.0 8.6
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 Di Jaki Natm Agr Afol Ahous Abar Cmet RL Lr	229 429647.48 5013056.58 5.12 1 D A 87.8 0.0 0.0 0.0 52.0 0.7 -2.3 0.0 0.0 38.2 -9.4 229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 -188.0 0.0 0.0 52.0 0.7 -2.3 0.0 0.8 6 0.0 38.2 197.4 229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 -188.0 0.0 52.0 0.7 -2.3 0.0 0.8 6 0.0 38.2 197.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 -188.0 0.0 52.0 0.7 -2.3 0.0 0.8 6 0.0 38.2 197.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 0.0 52.0 0.7 -2.3 0.0 0.0 38.2 197.4 429
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw V/a Optime K0 Di Adm Agr Afol Ahous Abar Cmet RL Lr (m) (m) (Hz) dB(A) dB (dB)	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 0.0 0.0 0.0 0.0 1.7 -2.3 0.0 0.0 8.6 0.038.2 1.9.4 229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.80 0.0 0.52.0 0.7 -2.3 0.0 0.0 8.6 0.0 38.2 1.9.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 -188.0 0.0 0.0 52.0 0.7 -2.3 0.0 0.0 8.6 0.0 38.2 1.9.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 -188.0 0.0 0.52.0 0.7 -2.3 0.0 0.0 8.6 0.0 38.2 197.4 Point Source, ISO 9613, Name: "Exalvat Fan ", ID: "RTU_2e"
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 Di Adir Agr Afol Ahous Abar Cmet RL Lr (m) (m) (Hz) dB(A) dB dB (dB) <	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN <freq.< th=""> Lw Va Optime K0 Di Adv Aar Agr Afol Ahous Abar Cmet RL Lr (m) (m) (m) (Hz) dB(A) dB (dB) (dB</freq.<>	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime KO D1 Advi Aam Agr Afol Abar Cmet RL Lr (m) (m) (m) (H2) dB(A) dB (dB) (dB) <t< th=""><th>229 429647.48 5013056.58 5.12 1 N A 87.8 0.0</th></t<>	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 Di RAIV Aam Agr Afol Abar Cmet RL L (m) (m) (m) (Hz) dB(A) AB dB (dB) (229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw I/a Optime K0 Di Adv Aarn Agr Afol Ahous Abar Cmet RL Lr (m) (m) (m) (Hz) dB(A) dB (dB)	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw V/a Optime K0 Di Adir Agr Afol Ahous Abar Cmet RL Lr (m) (m) (m) (Hz) dB(A) dB (dB)	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw //a Optime K0 DI Adiv Aatm Agr Afor Abar Cmet RL L (m) (m) (m) (H2) dB(A) dB dB (dB)	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 DI Adv Aam Agr Afor Abar Cmet RL L (m) (m) (m) (H2) dB(A) dB (dB)	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw V/a Optime K0 Di Adv Aam Agr Adv Abar Cmet RL Lr (m) (m) (m) (Hz) dB(A) AB (dB) (dB) <td< th=""><th>229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.0 0.0</th></td<>	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.0 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw V/a Optime K0 Di Adir Agr Afol Ahous Abar Cmet RL Lr (m) (m) (m) (H2) dB(A) dB (dB)	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.01
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 Di Adiv Aatm Agr Afoi Abar Cmet RL Lr (m) (m) (m) (H2) dB(A) dB (dB)	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 Di Adv Aam Agr Afol Abar Cmet RL Lr (m) (m) (m) (m) (H2) dB(A) dB dB (dB) (d	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime KO Di Adiv Aam Agr Afol Abar Cmret RL Lr (m) (m) (m) (m) (H2) dB(A) AB (dB) (dB) <t< th=""><th>229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0</th></t<>	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN [Freq. Lw V/a Optime K0 Di Adv Aarn Agr Afol Ahous Abar Cmet RL Lr (m) (m) (m) (H2) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) <td< th=""><td>229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0</td></td<>	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 Di Adiv Name Refl. DEN Freq. Lw Va Optime K0 Di Adiv Name Refl. DEN Freq. Lw Va Optime K0 Di Adiv Name Concentration 170 429733.01 5013023.71 8.80 0 N A 89.1 0.0 0.0 0.0 49.6 0.4 2.3 0.0 0.0 0.0 10.7 0.0 0.0 0.0 49.6 0.4 2.3 0.0 0.0 10.7 0.0 0.0 10.7 0.0 0.0 10.7 0.0 0.0 10.7 0.0 0.0 10.7 0.0 0.0 10.7 0.0 0.0 10.7 0.0 0.0 10.7 10.7 0.0 0.0 10.7 10.0 0.0 10.	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 Di Adv Aam Agr Afol Abar Cmrel RL Lr (m) (m) (m) (m) (H2) dB(A) dB dB (dB) (dB) (dB) (dB) (dB) (dB) dB dB (dB) (dB)<	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0
Point Source, ISO 9613, Name: "Exhaust Fan", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 D1 Adv Aam Agr Afol Abar Cmrl RL Lr (m) (m) (m) (m) (H2) dB(A) dB dB (dB) (dB	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0
Point Source, ISO 9613, Name: "Exhaust Fan", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 Di Adv Aam Agr Afol Abar Cm L L (m) (m) (m) (m) (H2) dB(A) dB (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 0.0 0.0 52.0 0.7 2.3 0.0 0.8 6 0.0 38.2 1.9.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 -188.0 0.0 0.52.0 0.7 -2.3 0.0 0.0 8.6 0.0 38.2 1.9.4 Cont Source, ISO 9613, Name: "Exahust Fan ", ID: "RTU_2e" Nr. X Y Z Reft. DEN Freq. Lw V/a Optime K0 Di Adiv Aatm Apr Afol Ahous Abar Cmet RL Lr (m) (m) (m) (H2) dB(A) dB (dB) (dB) </td
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 Di Advi Aam Agr. Afoi Aham Afoi Aham Agr. Afoi Aham Afoi Aham <td>129 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0 1.00 0.0 52.0 0.7 2.3 0.0 0.0 8.6 0.0 38.2 1.9.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 -188.0 0.0 0.52.0 0.7 -2.3 0.0 0.0 8.6 0.0 38.2 1.97.4 Cont Source, ISO 9613, Name: "Exahust Fan ", ID: "RTU_2e" Nr. X Y Z Reft. DEN Freq. Lw Va Optime K0 Di Adiv Aatm Agr Afol Abous Abar Cmet RL Lr (m) (m) (m) (H2) dB(A) dB dB (dB) (dB)<!--</td--></td>	129 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0 1.00 0.0 52.0 0.7 2.3 0.0 0.0 8.6 0.0 38.2 1.9.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 -188.0 0.0 0.52.0 0.7 -2.3 0.0 0.0 8.6 0.0 38.2 1.97.4 Cont Source, ISO 9613, Name: "Exahust Fan ", ID: "RTU_2e" Nr. X Y Z Reft. DEN Freq. Lw Va Optime K0 Di Adiv Aatm Agr Afol Abous Abar Cmet RL Lr (m) (m) (m) (H2) dB(A) dB dB (dB) (dB) </td
Point Source, ISO 9613, Name: "Exhaust Fan ", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 Di Advi Aam Agr Afol Ahar Come RL L (m)	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0 52.0 0.7 7.2.3 0.0 0.0 8.6 0.0 38.2 -9.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 -188.0 0.0 0.52.0 0.7 -2.3 0.0 0.0 8.6 0.0 38.2 1.97.4 Point Source, ISO 9613, Name: "Exahust Fan", ID: "RTU_2e" Nr. X Y Z Refl. DEN Freq. Lw Via Optime K0 Di Adiv Aatm Agr Abar Crmet RL L L L Int (M) (M) 0.0 2.2 0.0 0.0 1.4 0.0 0.0 2.2 0.0 0.0 1.4 0.0 0.0 2.2 0.0 0.0 1.4 0.0 0.0 2.2 0.0 0.0 1.4 0.0 0.0 1.4 0.0 0.0 1.6 0.5 2.2 0.0 0.0 1.4 0.0 0.0
Point Source, ISO 9613, Name: "Exhaust Fan", ID: "RTU_8e" Nr. X Y Z Refl. DEN [Freq. Lw Via Optime K0 Di Adv Aam Agr Afol Aham Agr Afol Ahaus Abar Cont RL Lr (m) (m) (m) (m) (m) (m) 0.0	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0 52.0 0.7 7.2.3 0.0 0.0 8.6 0.038.2 -9.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 -188.0 0.0 0.52.0 0.7 -2.3 0.0 0.0 8.6 0.038.2 197.4 Point Source, ISO 9613, Name: "Exahust Fan", ID: "RTU_2e" Nr. X Y Z Refl. DEN Freq. Lw Via Optime K0 Di Adiv Aam Agr.4 fold Ahous Abar Cmet RL Lr (m) (m) (m) (H2) dB(A) dB dB dB (dB) <
Point Source, ISO 9613, Name: "Exhaust Fan", ID: "RTU_8e" Nr. X Y Z Refl. DEN [Freq. Lw Via Optime K0 Di Adv Aam Agr Afol Abar Crm RL Lr (m) (m) (m) (H2) dB(A) dB (dB)	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 1.00 0.0 0.0 0.0 0.0 7.2.3 0.0 0.0 8.6 0.0 38.2 -9.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 -188.0 0.0 0.52.0 0.7 -2.3 0.0 0.0 8.6 0.0 38.2 197.4 Point Source, ISO 9613, Name: "Exahust Fan", ID: "RTU_2e" Nr. X Y Z Refl. DEN Freq. Lw Va Optime K0 Di Adiv Aam Agr. Afol Ahous Abar Cmet RL Lr (m) (m) (m) (H2) dB(A) dB dB (dB) (dB) (dB) (dB) (dB) (dB) dB dD dD
Point Source, ISO 9613, Name: "Exhaust Fan", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw Via Optime K0 D1 Adiv Aam Agr. Afoi Abar Crmst RL Lr (m) (m) (m) (m) (H2) dB(A) dB dB) (dB) (dB) <t< th=""><td>229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 0.0 0.0 52.0 0.7 2.3 0.0 0.86 0.038.2 197.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 188.0 0.0 0.52.0 0.7 2.3 0.0 0.86 0.038.2 197.4 Point Source, ISO 9613, Name: "Exatust Fan", ID: "RTU_2e" Nr. X Y Z Reft. DEN Freq. Lw Va Optime K0 Di Adv Adv</td></t<>	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 0.0 0.0 52.0 0.7 2.3 0.0 0.86 0.038.2 197.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 188.0 0.0 0.52.0 0.7 2.3 0.0 0.86 0.038.2 197.4 Point Source, ISO 9613, Name: "Exatust Fan", ID: "RTU_2e" Nr. X Y Z Reft. DEN Freq. Lw Va Optime K0 Di Adv
Point Source, ISO 9613, Name: "Exhaust Fan", ID: "RTU_8e" Nr. X Y Z Refl. DEN Freq. Lw V/a Optime KO DI <adiv< th=""> Adiv Atm Agr Afol Ahous Abar Creet RL Lr (m) (m) (m) (m) (m) (m) (dB) (dB)</adiv<>	229 429647.48 5013056.58 5.12 1 N A 87.8 0.0 0.0 0.0 52.0 0.7 2.3 0.0 0.0 8.6 0.038.2 197.4 229 429647.48 5013056.58 5.12 1 E A 87.8 0.0 188.0 0.0 0.52.0 0.7 2.3 0.0 0.8 6 0.38.2+197.4 Point Source, ISO 9613, Name: "Exahust Fan", ID: "RTU_2e" Nr. X Y Z Reft. DENI Freq. Lw Va Optime K0 D Add Katm

Point Source, ISO 9613, Name: "Exahust Fan ", ID: "RTU_3e"

Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A						
240	429658.58	5013013.62	4.80	0	D	A	82.0	0.0	0.0	0.0	0.0	47.4	0.4	-2.3	0.0	0.0	0.0	0.0	0.0	36.5
240	429658.58	5013013.62	4.80	0	Ν	A	82.0	0.0	-188.0	0.0	0.0	47.4	0.4	-2.3	0.0	0.0	0.0	0.0	0.0	-151.5
240	429658.58	5013013.62	4.80	0	E	A	82.0	0.0	-188.0	0.0	0.0	47.4	0.4	-2.3	0.0	0.0	0.0	0.0	0.0	151.5
242	429658.58	5013013.62	4.80	1	D	A	82.0	0.0	0.0	0.0	0.0	53.6	0.6	-2.3	0.0	0.0	14.0	0.0	19.3	-3.3
242	429658.58	5013013.62	4.80	1	N	A	82.0	0.0	-188.0	0.0	0.0	53.6	0.6	-2.3	0.0	0.0	14.0	0.0	19.3	-191.3
242	429658.58	5013013.62	4.80	1	E	A	82.0	0.0	-188.0	0.0	0.0	53.6	0.6	-2.3	0.0	0.0	14.0	0.0	19.3	-191.3

	Point Source, ISO 9613, Name: "Exahust Fan ", ID: "RTU_4e"																			
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A						
244	429657.89	5013010.27	4.70	0	D	A	78.5	0.0	0.0	0.0	0.0	47.1	0.3	-2.3	0.0	0.0	8.8	0.0	0.0	24.0
244	429657.89	5013010.27	4.70	0	Ν	A	78.5	0.0	-188.0	0.0	0.0	47.1	0.3	-2.3	0.0	0.0	8.8	0.0	0.0	-163.4
244	429657.89	5013010.27	4.70	0	E	A	78.5	0.0	-188.0	0.0	0.0	47.1	0.3	-2.3	0.0	0.0	8.8	0.0	0.0	-163.4
246	429657.89	5013010.27	4.70	1	D	A	78.5	0.0	0.0	0.0	0.0	53.8	0.6	-2.2	0.0	0.0	4.9	0.0	10.4	11.0
246	429657.89	5013010.27	4.70	1	Ν	A	78.5	0.0	-188.0	0.0	0.0	53.8	0.6	-2.2	0.0	0.0	4.9	0.0	10.4	-177.0
246	429657.89	5013010.27	4.70	1	E	A	78.5	0.0	-188.0	0.0	0.0	53.8	0.6	-2.2	0.0	0.0	4.9	0.0	10.4	-177.0