Engineering Land/Site Development Municipal Infrastructure Environmental/ Water Resources Traffic/ Transportation Recreational #### **Planning** Land/Site Development Planning Application Management **Municipal Planning** Urban Design Expert Witness (LPAT) Wireless Industry #### Landscape Architecture Streetscapes & Public Amenities Open Space, Parks & Recreation Community & Residential Commercial & Institutional Environmental Restoration # U-Haul of Ottawa30 Frank Nighbor Place Development Servicing Study and Stormwater Management Report # PROPOSED U-HAUL DEVELOPMENT 30 FRANK NIGHBOR PLACE # DEVELOPMENT SERVICING STUDY AND STORMWATER MANAGEMENT REPORT Prepared by: #### **NOVATECH** Suite 200, 240 Michael Cowpland Drive Kanata, Ontario K2M 1P6 May 20, 2022 Ref: R-2022-014 Novatech File No. 121326 May 20, 2022 U-HAUL Canada 3636 Innes Road Ottawa, Ontario K1C 1T1 Attention: Mr. David Pollock Re: Development Servicing Study and Stormwater Management Report Proposed U-Haul Development 30 Frank Nighbor Place, Ottawa, ON Novatech File No.: 121326 Enclosed is a copy of the 'Development Servicing Study and Stormwater Management Report' for the proposed development of the 30 Frank Nighbor property in the City of Ottawa. This report addresses the approach to site servicing and stormwater management, and it is being submitted in support of a Site Plan Control application. Please contact the undersigned, should you have any questions or require additional information. Yours truly, #### **NOVATECH** François Thauvette, P. Eng. Senior Project Manager Francis That cc: Shika Rathnasooriya (City of Ottawa) Yazan Bilbeisi (IBI) Mark Sarasin (GWAL) # **TABLE OF CONTENTS** | 1.0 | INTRO | DDUCTION | 1 | |-----|---------|---|----| | 1.1 | 1 Loc | ation and Site Description | 1 | | 1.2 | 2 Pre | -Consultation Information | 1 | | 1.3 | 3 Pro | posed Development | 2 | | 1.4 | 4 Ref | erence Material | 2 | | 2.0 | SITE | SERVICING | 2 | | 2.1 | 1 Sar | nitary Sewage | 2 | | 2.2 | 2 Wa | ter for Domestic Use and Fire Protection | 3 | | | 2.2.1 | Water Demands and Watermain Analysis | 4 | | 2.3 | 3 Sto | rm Drainage and Stormwater Management | 7 | | 2 | 2.3.1 | Stormwater Management Criteria and Objectives | 7 | | 2 | 2.3.2 | Pre-Development Conditions and Allowable Release Rate | 7 | | 2 | 2.3.3 | Post-Development Conditions | 8 | | | 2.3.3. | 1 Area A-1 – Controlled Site Flow | 8 | | | 2.3.3.2 | 2 Area A-2 – Controlled Flow from Private Access Road | 9 | | | 2.3.3. | 3 Summary of Post-Development Flows | 9 | | | 2.3.3.4 | 4 Stormwater Quality Control for Area A-1 | 10 | | 3.0 | SITE | GRADING | 10 | | 3.′ | 1 Em | ergency Overland Flow Route | 11 | | 4.0 | | ECHNICAL INVESTIGATIONS | | | 5.0 | | ION AND SEDIMENT CONTROL | | | 6.0 | CONC | CLUSION | 12 | #### **LIST OF FIGURES** Figure 1 Aerial Plan #### **LIST OF APPENDICES** Appendix A: Correspondence Appendix B: Development Servicing Study Checklist Appendix C: Sanitary Sewage Calculations Appendix D: Water Demands, Boundary Conditions, Schematic of the Hydraulic Model, Hydraulic Modelling Results and FUS Calculations Appendix E: IDF Curves and SWM Modelling Files Appendix F: Inlet Control Device Information Appendix G: Water Quality Treatment Unit Information #### **LIST OF PLANS** General Plan of Services (121326-GP1, 121326-GP2) Grading and Erosion & Sediment Control Plan (121326-GR1, 121326-GR2) Civil Notes, Details and Tables Plan (121326-NDT) Stormwater Management Plan (121326-SWM) Novatech Page ii #### 1.0 INTRODUCTION Novatech has been retained by U-HAUL Canada to complete the site servicing, grading, and stormwater management design for the proposed development. This report is being submitted in support of a Site Plan Control application. #### 1.1 Location and Site Description The vacant site is located at 30 Frank Nighbor Place in the west end of the City of Ottawa. The site is located immediately south of Highway 417, west of the Camp Mart site and east of the Carp River. The Subject Site is identified on plans 4M-1012 and 4R-30745 and is located within the City of Ottawa. #### 1.2 Pre-Consultation Information A pre-consultation meeting was held with the City of Ottawa on January 14, 2022, at which time the client was advised of the general submission requirements. The Mississippi Valley Conservation Authority (MVCA) was also consulted regarding the proposed development. Based on a review of **O. Reg. 525/98: Approval Exemptions**, a Ministry of the Environment, Conservation and Parks (MECP) Environmental Compliance Approval (ECA) will be required for the proposed development. Refer to **Appendix A** for a summary of the correspondence related to the proposed development. #### 1.3 Proposed Development The intent is only to develop a portion of the larger (3.82 ha) site. The proposed U-HAUL development (2.16 ha) will consist of two (2) large buildings and two (2) smaller "mini storage" buildings along with associated surface parking and loading areas as well as the extension of the private access road off Frank Nighbor Place. An on-site stormwater management facility (i.e., a dry pond) and landscaped areas around the perimeter of the site are also included in the proposed development. The site will be serviced by the municipal sanitary sewer, storm sewer and watermain located within an existing easement south of the portion of the site to be developed. #### 1.4 Reference Material - ¹ The 'Terry Fox Business Park Stormwater Design Plan' (Ref. No. 91005-3), prepared by Novatech Engineering Consultants Ltd., on August 9, 1994. - ² The Proposed Camp Mart Development and Private Access Road 20 & 30 Frank Nighbor Place Development Servicing Study & Stormwater Management Report (Ref. R-2018-011) dated August 19, 2018. - ³ The Geotechnical Investigation Report (Ref. No. PG6153-1 Revision 1), prepared by Paterson Group on April 28, 2022. #### 2.0 SITE SERVICING The objective of the site servicing design is to provide proper sewage outlets, a suitable domestic water supply and to ensure that appropriate fire protection is provided for the proposed development. The servicing criteria, the expected sewage flows, and the water demands are to conform to the requirements of the City of Ottawa municipal design guidelines for sewer and water distribution systems. Refer to the subsequent sections of the report for further details. The City of Ottawa Servicing Study Guidelines for Development Applications requires that a Development Servicing Study Checklist is be included to confirm that each applicable item is deemed complete and ready for review by City of Ottawa Infrastructure Approvals. Enclosed in **Appendix B** of the report is a completed checklist. #### 2.1 Sanitary Sewage The subject site is currently undeveloped, other than a portion of the private access road off Frank Nighbor Place that was constructed in 2018/2019 as described in the previous DSS&SWM Report². Under post-development conditions, the proposed site will be serviced by a new 200mm dia. sanitary sewer connected to the municipal 450mm dia. sanitary sewer in the existing easement to the south. Design Criteria from the City of Ottawa Sewer Design Guidelines and section 8 of the Ontario Building Code (OBC) were used to calculate the theoretical sewage flows for the proposed development. The sanitary sewage calculations for the proposed development are based on the following criteria: - Industrial sanitary sewage flow (for Warehouses) - o 950 L/day per water closet (OBC Table 8.2.1.3.B) - 150 L/day per loading bay (OBC Table 8.2.1.3.B) - Commercial sanitary sewage flow (Office Space) - o 75 L/day per employee (Ottawa Sewer Design Guidelines Appendix 4-A) - Light Industrial/Commercial Office Space Peaking Factor = 1.5 - Infiltration Allowance: 0.33 L/s/ha **Table 1** identifies the theoretical sanitary flows for the proposed development based on the above design criteria. Provided in **Appendix C** are detailed calculations. **Table 1: Theoretical Post-Development Sanitary Flows** | Type of Use | Unit
Count | Average
Flow (L/s) | Peaking
Factor | Peak Flow
(L/s) * | | | | | |-----------------------------|---------------|-----------------------|-------------------|----------------------|--|--|--|--| | Building A | | | | | | | | | | No. Loading Docks/Washrooms | 4/2 | 0.03 | 1.5 | 0.04 | | | | | | Number of Employees (Max) | 6 | <0.01 | 1.5 | 0.01 | | | | | | Sub-Total A | - | 0.03 | - | 0.05 | | | | | | Building B - Mini Storage | - | - | - | - | | | | | | Building C - Mini Storage | - | - | - | - | | | | | | Building D | | | | | | | | | | No. Loading Docks/Washrooms | 2/0 | <0.01 | 1.5 | 0.01 | | | | | | Number of Employees | - | - | 1.5 | - | | | | | | Sub-Total D | - | <0.01 | - | 0.01 | | | | | | Infiltration (ha) | 2.18 | 0.72 | - | 0.72 | | | | | | TOTAL | - | 0.75 | - | 0.78 | | | | | *Represents rounded values As indicated in the table above, the calculated post-development average sewage flow is less than the allowable sewage flow calculated based on a rate of 28,000 L/gross ha/day, when excluding the infiltration allowance. A 200mm dia. sanitary sewer at a minimum slope of 1.0% has a full flow conveyance capacity of 34 L/s and will have enough capacity to convey the theoretical sanitary flows for the proposed development. #### 2.2 Water for Domestic Use and Fire Protection The subject site is located within the City of Ottawa 3W watermain pressure zone. The proposed development will be serviced by a new 200mm dia. private watermain fed off the existing 300mm dia. watermain in the easement to the south. The two larger buildings will be fully sprinklered and equipped with fire department (siamese) connections located within 45m of one of the new on-site fire hydrants. The smaller 'mini storage' buildings will be non-sprinklered and protected by the on-site hydrants. The proposed water service to Building A will be 150mm dia. in size, while
the service to Building D will be a 200mm dia. pipe due to the sprinkler flow requirements. The building services have been sized to provide both the required domestic water demand and fire flow. Shut-off valves will be provided on the proposed watermain at the property line as well as on the individual building services. The water meters will be within the respective mechanical rooms, while the remote meters will be located on the exterior face of the larger buildings. To determine if the existing 300mm dia. municipal watermain has adequate capacity to accommodate the proposed development a hydraulic analysis was completed based on boundary conditions provided by the City of Ottawa. #### 2.2.1 Water Demands and Watermain Analysis The theoretical water demands for the proposed development were based on the design criteria from the City of Ottawa Water Distribution Guidelines and section 8 of the Ontario Building Code (OBC). The Fire Underwriters Survey (FUS) method was used to calculate the fire flows based on general assumptions and information provided by the architect. The water demands are calculated based on the following criteria: - Industrial sanitary sewage flow (for Warehouses) - 950 L/day per water closet (OBC Table 8.2.1.3.B) - 150 L/day per loading bay (OBC Table 8.2.1.3.B) - Commercial water demands (Office Space) - 75 L/day per employee (Ottawa Sewer Design Guidelines Appendix 4-A) - Maximum Day Demand Peaking Factor = 1.5 x Avg. Day Demand (City Water Table 4.2) - Peak Hour Demand Peaking Factor = 1.8 x Max. Day Demand (City Water Table 4.2) **Table 2** identifies the theoretical domestic water demands and fire flow requirements for the development based on the above design criteria. **Table 2: Theoretical Water Demand for Proposed Development** | Type of Use | Unit
Count | Avg. Day
Demand
(L/s) | Max. Day
Demand
(L/s) | Peak
Hour
(L/s) | FUS Fire
Flow
(L/s) | |-----------------------------|---------------|-----------------------------|-----------------------------|-----------------------|---------------------------| | Building A | | | | | | | No. Loading Docks/Washrooms | 4/2 | 0.03 | 0.04 | 0.08 | | | Number of Employees (Max) | 6 | <0.01 | <0.01 | 0.01 | 250 | | Sub-Total A | - | 0.03 | 0.05 | 0.09 | | | Building B - Mini Storage | - | - | - | - | 67 | | Building C - Mini Storage | - | - | - | - | 67 | | Building D | | | | | | | No. Loading Docks/Washrooms | 2/0 | <0.01 | <0.01 | 0.01 | | | Number of Employees | - | - | - | - | 167 | | Sub-Total D | - | <0.01 | <0.01 | 0.01 | | | TOTAL | - | 0.04 | 0.06 | 0.10 | 250 (Max) | ^{*}Represents rounded values The fire flow requirements were calculated using the Fire Underwriters Survey (FUS). Based on information provided by the architect, the fire flow requirements for the buildings are expected to be in the order of 67-250 L/s, including both sprinkler system and hose allowances in accordance with the OBC and NFPA 13. The sprinkler system will be designed by the fire protection (sprinkler) contractor as this process involves detailed hydraulic calculations based on building layout, pipe runs, head losses, fire pump requirements, etc. Booster pumps should not be required, however, pressure reducing valves will be required as system pressures will exceed 80 psi. Refer to **Appendix D** for detailed calculations and correspondence from the City of Ottawa. As discussed with the City of Ottawa, a multi-hydrant approach to firefighting is anticipated to be required to achieve the maximum fire flow requirements on-site. A total of three (3) new private fire hydrants are being proposed on-site. Based on the City of Ottawa Technical Bulletin ISTB-2018-02, Class AA (blue bonnet) hydrants within 75m have a maximum capacity 95 L/s while hydrants between 75m and 150m have a maximum capacity 63 L/s (at a pressure of 20 PSI). The combined maximum flow from the private fire hydrants will exceed the Max Day + Fire Flow requirement of the proposed development. This multi-hydrant approach to firefighting is in accordance with the City of Ottawa Technical Bulletin ISTB-2018-02. **Table 2.1** summarizes the total theoretical combined fire flow available from the proposed private fire hydrants and compares it to the fire flow demands based on FUS calculations. **Table 2.1: Fire Protection Summary Table** | Building ID | Fire Flow
Demand (L/s) | Fire Hydrant(s)
within 75m
(~ 95 L/s each) | Fire Hydrant(s)
within 150m
(~ 63 L/s each) | Theoretical
Combined
Available Fire
Flow (L/s) | |-------------|---------------------------|--|---|---| | Building A | 250 | 3 | - | 285 | | Building B | 67 | 3 | - | 285 | | Building C | 67 | 3 | - | 285 | | Building D | 167 | 2 | 1 | 253 | Preliminary domestic water demands, and fire flow requirements were provided to the City of Ottawa. **Table 2.2** summarizes preliminary hydraulic analysis results based on municipal watermain boundary conditions provided by the City of Ottawa. Table 2.2: Hydraulic Boundary Conditions Provided by the City | Municipal Watermain Boundary Condition | Boundary
Condition | Normal Operating
Pressure Range (psi) | Anticipated WM
Pressure (psi)* | |--|-----------------------|--|-----------------------------------| | Minimum HGL
(Peak Hour Demand) | 156.6 m | 40 psi (min.) | ~ 87.6 psi | | Maximum HGL
(Max Day Demand) | 160.7 m | 50 - 70 psi | ~ 93.5 psi | | HGL
Max Day + Fire Flow)
(250 L/s) | 149.0 m | 20 psi (min.) | ~ 76.8 psi | *Based on an approximate ground elevation of 95.0m on-site. Design pressure = (HGL – ground elevation) x 1.42197 PSI/m. The following design criteria were taken from Section 4.2.2 – 'Watermain Pressure and Demand Objectives' of the City of Ottawa Design Guidelines for Water Distribution: - Normal operating pressures are to range between 345 kPa (50 psi) and 483 kPa (70 psi) under Max Day demands - Minimum system pressures are to be 276 kPa (40 psi) under Peak Hour demands - Minimum system pressures are to be 140 kPa (20 psi) under Max Day + Fire Flow demands The hydraulic model EPANET was used to analyzing the performance of the proposed watermain configuration for three (3) theoretical conditions: - Peak Hour Demand - Maximum HGL - Maximum Day + Fire Flow Demand (250 L/s) A schematic representation of the hydraulic network depicts the node and pipe numbers used in the model. The model is based on hydraulic boundary conditions provided by the City of Ottawa. **Tables 2.3, 2.4,** and **2.5** summarize the hydraulic model results. Refer to **Appendix D** for City of Ottawa boundary conditions, the hydraulic modeling schematic and modeling results. **Table 2.3: Peak Hour Demand** | Operating Condition | Minimum System Pressure | Maximum System Pressure | |-----------------------------|-----------------------------|-------------------------------------| | Peak Hour demands of 0.09 | Minimum system pressure of | Maximum system pressure 628.3 | | L/s at J5 (Bldg A) and 0.01 | 594.5 kPa (86.2 psi) is | kPa (91.1 psi) is available at Node | | L/s at J8 (Bldg D) | available at Node J3 (north | J13 (on-site watermain near | | | Hydrant) | connection to municipal main) | Table 2.4: Maximum HGL | Operating Condition | Minimum System Pressure | Maximum System Pressure | |--|--|---| | Max Day demands of 0.05
L/s at J5 (Bldg A) and 0.01
L/s at J8 (Bldg D) | Minimum system pressure of
634.7 kPa (92.0 psi) is
available at Node J3 (north
Hydrant) | Maximum system pressure 668.5 kPa (96.9 psi) is available at Node J13 (on-site watermain near connection to municipal main) | Table 2.5: Maximum Day + Fire Flow Demand | Operating Condition | Minimum System Pressure | Maximum System Pressure | |---|--|--| | Max Day Demands: | | | | 0.05 L/s at J5 (Bldg A) and 0.01 L/s at J8 (Bldg D) | | | | 0.01 L/3 at 30 (Bldg D) | Minimum system pressure | Maximum system pressure 447.4 | | Fire Flow Demand: | of 148.9 kPa (21.6 psi) is available at Node J3 (north | kPa (64.9 psi) is available at Node
J13 (on-site watermain near | | 67 L/s at J3, 95 L/s at J9 and | Hydrant) | connection to municipal main) | | 95 L/s at J10 (all Private Hydrants), which exceeds the | , | ' ' | | FUS Fire Flow required | | | The model indicates that the municipal watermain and private on-site watermain will provide adequate fire flow during 'Max Day + Fire Flow' conditions, however, pressure reducing valves will be required as system pressures will exceed 80 psi during both 'Peak Hour' and 'Max Day' conditions. #### 2.3 Storm Drainage and Stormwater Management The proposed U-HAUL site will be serviced by connecting the proposed on-site storm sewer system to the existing 1050mm dia. storm sewer in the easement to the south. The approach for the stormwater management design for the site is discussed in the subsequent sections of the report. On-site stormwater management will include both stormwater quantity and quality control measures (i.e., an Enhanced Level of Treatment equivalent to 80% Total Suspended Solids removal) prior to releasing flows towards the Carp River. This will be achieved by a treatment train of grass swales, an on-site stormwater management facility (dry pond) and the use of an oil/grit separator. Post-development storm flows will be controlled
to a maximum release rate of 50 L/s/ha as defined in the 'Terry Fox Business Park – Stormwater Design Plan' by means of a control pipe located within the on-site storm sewer system. The stormwater management design will meet the requirements of the City of Ottawa, the Mississippi Valley Conservation Authority (MVCA), the Ontario Ministry of Transportation (MTO) and the Ministry of the Environment, Conservation and Parks (MECP). #### 2.3.1 Stormwater Management Criteria and Objectives The stormwater management (SWM) criteria have been provided during pre-consultation meetings with the City of Ottawa and the MVCA. The SWM criteria and objectives are as follows: - Maintain existing drainage patterns. - Provide a dual drainage system (i.e., minor system and emergency overland flow route, for events exceeding the 100-year design storm). - Maximize the use of surface storage available on site. - Control the post-development flows from the site to the maximum allowable release rate of 50 L/s/ha for both the 5-year and 100-year design storms, as defined in the 'Terry Fox Business Park – Stormwater Design Plan'¹. This <u>only</u> applies to the portion of the site to be developed. - Ensure that no surface ponding will occur on the paved surfaces (i.e., private drive aisles or parking lots) during the 2-year storm event. - Provide on-site water quality control equivalent to a 'Enhanced' Level of Protection (i.e., minimum 80% TSS removal) as required by the MVCA prior to releasing flows from the site towards the Carp River. This <u>only</u> applies to the portion of the site to be developed, excluding the extended private access road. - Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion and Sediment Control. #### 2.3.2 Pre-Development Conditions and Allowable Release Rate The uncontrolled pre-development flows from the undeveloped 2.16 ha portion of the site (to be developed) were calculated using the Rational Method to be 125.0 L/s during the 5-year design event and 267.7 L/s during the 100-year design event. Refer to **Appendix E** for detailed calculations. The allowable release rate for the 2.16 ha portion of the site to be developed, as specified in the 'Terry Fox Business Park – Stormwater Design Plan'¹, was calculated to be 107.9 L/s (50 L/s/ha x 2.16 ha). The site to be developed is located within 'Drainage Basin 1' as defined on Figure 2. Refer to **Appendix E** for excerpts from the 'Terry Fox Business Park—Stormwater Design Plan'¹. #### 2.3.3 Post-Development Conditions Stormwater runoff from the proposed buildings roofs will be directed to the surface, via rainwater downspouts. Runoff from the site to be developed will be directed towards the proposed stormwater management (SWM) dry pond via the grass drainage swales and on-site storm sewer system. Flow from the SWM dry pond will outlet to the existing 1050mm dia. storm sewer, which discharges directly to the Carp River, approximately 105m to the west. Due to the elevation difference, it will not be possible to direct stormwater runoff from the private access road into the dry pond. To mitigate the stormwater related impacts due to the increase in imperviousness of the site, stormwater runoff will be attenuated using either a restrictor pipe or an inlet control device (ICD) installed within the proposed on-site storm sewer system. Flows will be attenuated for storms up to and including the 100-year design event. Due to the existing grades, runoff from the remainder of the undeveloped property will continue to sheet drain uncontrolled towards the Carp River. #### 2.3.3.1 Area A-1 to A-19 - Controlled Site Flow The post-development flow from the site to be developed (including building roofs, paved areas, SWM dry pond and landscaped areas) will be attenuated using a restrictor pipe installed as the outlet pipe from CBMH 101. Stormwater runoff from this sub-catchment area will be temporarily stored within the grassed areas (i.e., swales and dry pond), underground storm sewer system and on the paved parking lot prior to being discharged into the municipal storm sewer system. The site has been designed to ensure that no stormwater will pond on the private paved surfaces (i.e., drive aisles or parking lots) during the 2-year storm event. **Table 3.0** summarizes the post-development design flow from these sub-catchment areas as well as the size of the restrictor pipe, the anticipated ponding elevations, storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events. | Table | 2 0. | Dagian | Flow | a n a | Destrictor | Dina | Tabla | |-------|------|--------|-------------|-------|------------|------|--------| | rabie | 3.U. | Design | FIOW | anu | Restrictor | ribe | i abie | | Design | Sub-Catchment Areas A-1 to A-19 | | | | | | |----------|---------------------------------|----------------------|--------------------------|-------------------------------|------------------------------|--| | Event | Restrictor
Pipe (mm) | Design
Flow (L/s) | Ponding
Elevation (m) | Storage Vol.
Required (m³) | Max Storage
Provided (m³) | | | 2-Year | | 53.8 L/s | 93.57 m | 486.9 m³ | | | | 5-Year | 200mm dia.
control pipe | 61.0 L/s | 93.88 m | 788.0 m³ | 2,285 m³ | | | 100-Year | | 71.1 L/s | 94.64 m | 1813.0 m³ | | | *Note: required and provided volumes are dry pond volumes only. Refer to **Appendix E** for SWM calculations. As indicated in the table above, this sub-catchment area will provide sufficient storage for the 2-year, 5-year and 100-year design events. As indicated above, no stormwater will pond on the private paved surfaces (i.e., drive aisles or parking lots) during the 2-year storm event. Furthermore, the site grading design will ensure that surface ponding depths will not touch the building envelope or lowest building openings during the 100-year+20% stress test. #### 2.3.3.2 Area R-1 - Controlled Flow from Private Access Road The post-development flow from this sub-catchment area will be attenuated by installing an inlet control device (ICD) within the outlet pipe of CB 08. Stormwater runoff from this sub-catchment area will be temporarily stored on the paved roadway prior to being discharged into the municipal storm sewer. Based on preliminary calculations it is impractical to control flows from this small catchment area using a restrictor pipe, as the size of the pipe required to achieve minimal flows would be too small and would therefore be prone to clogging. As a result, an ICD was chosen to control the flow from this small sub-catchment area. **Table 3.1** summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for both the 5-year and the 100-year design events. | Design | Sub-Catchment Area R-1 | | | | | | |----------|------------------------|----------------------|--------------------------|-------------------------------|------------------------------|--| | Event | ICD Type | Design
Flow (L/s) | Ponding
Elevation (m) | Storage Vol.
Required (m³) | Max Storage
Provided (m³) | | | 2-Year | Tempest MHF | 17.7 L/s | 93.49 m | 0.1 m³ | | | | 5-Year | Vortex ICD | 24.9 L/s | 93.96 m | 0.3 m³ | 6.7 m ³ | | | 100-Year | 'Custom' | 31.1 L/s | 94.85 m | 6.2 m ³ | | | **Table 3.1: Design Flow and Inlet Control Device Table** Refer to **Appendix E** for SWM calculations and to **Appendix F** for ICD information. As indicated in the table above, this sub-catchment area will provide sufficient storage for the 2-year, 5-year and 100-year design events. #### 2.3.3.3 Summary of Post-Development Flows **Table 3.2** compares the post-development site flows from the proposed development to the uncontrolled pre-development flows and to the maximum allowable release rate specified by the City of Ottawa, for the 2-year, 5-year, and the 100-year design events. Table 3.2: Stormwater Flow Comparison Table | | | Drai | nage Areas A | 1 to A-19 and | I R-1 | | |--------|---------------------------------|------------------------------|---|---------------------------------|------------------------|-------------------------------------| | Design | Pre-Dev. C | onditions | Po | ost-Developm | ent Condit | ions | | Event | Existing
Site Flows
(L/s) | Max
Release
Rate (L/s) | A-1 to A-19
Controlled
Flow (L/s) | R-1
Controlled
Flow (L/s) | Total
Flow
(L/s) | Reduction in
Flow
(L/s or %)* | | 2-Yr | 92.1 | | 53.8 | 17.7 | 71.5 | 20.6 or 22% | | 5-Yr | 125.0 | 107.9 | 61.0 | 24.9 | 85.9 | 39.0 or 31% | | 100-Yr | 267.7 | | 71.1 | 31.1 | 102.2 | 165.4 or 62% | ^{*}Reduced flow compared to pre-development uncontrolled conditions. As indicated in the table above, the 2-year, 5-year and 100-year post-development flows will be less than the maximum allowable release rate for the site. Furthermore, this represents significant reductions in total site flow rates when compared to the respective pre-development conditions. Refer to **Appendix E** for detailed SWM calculations. #### 2.3.3.4 Stormwater Quality Control for Areas A-1 to A-19 The subject site is located within the jurisdiction of the Mississippi Valley Conservation Authority (MVCA) and is tributary to the Carp River. Based on preliminary feedback from the MVCA, surface parking lots and drive aisles will require an 'Enhanced' Level of Protection (i.e., 80% TSS removal). Landscaped areas and roof tops are considered clean for the purposes of water quality and aquatic habitat protection. To achieve this level of quality control protection, a new oil-grit separator unit (CDS Model PMSU 20_20_5) will be installed downstream of CBMH 101 on the storm sewer outlet pipe from the site. Stormwater runoff collected by the on-site storm sewer system (2.06 ha tributary area) will
be directed through the proposed treatment unit. The contributing area includes the proposed paved parking lot areas, controlled building roofs and controlled loading dock areas. As stated above, the proposed oil-grit separator has been sized to provide an 'Enhanced' Level of water quality treatment prior to discharging the stormwater into the municipal storm sewer. Echelon Environmental and Contech Stormwater Solutions Inc. have modeled and analyzed the tributary area to provide a CDS unit capable of meeting the TSS removal requirements. The model parameters for the TSS removal were based on historical rainfall data for Ottawa from the Ontario Climate Centre. It was determined that a CDS Model PMSU 20_20_5 will exceed the target removal rate, providing a net annual 81.1% TSS removal. The CDS unit has a treatment capacity of approximately 31 L/s, a sediment storage capacity of 1.67 m³; an oil storage capacity of 376 L and will treat a net annual volume of approximately 96.5% for the tributary area. The on-site catchbasins and storm manhole structures will be equipped with sumps to promote additional settling of sediment. The treatment train of grass swales, an on-site stormwater management facility (dry pond) and the use of an oil/grit separator will provide the necessary stormwater quality treatment. #### Maintenance and Monitoring of the Storm Sewer and Stormwater Management Systems It is recommended that the client implement a maintenance and monitoring program for both the on-site storm sewers and the stormwater management systems: The storm drainage system should be inspected routinely (at least annually); the restrictor pipe/ICD should be inspected to ensure they are free of debris; and the oil-grit separator should be inspected at regular intervals and maintained when necessary to ensure optimum performance. Refer to **Appendix G** for the CDS unit design parameters, sizing analysis, operation, design, performance, and maintenance summary parameters as well as the annual TSS removal efficiency data. #### 3.0 SITE GRADING The elevation of the existing site varies from approximately 94.50m up to approximately 96.50m. The existing site generally slopes from east to west towards the Carp River, which is located approximately 80m west of the furthest development limit for the subject site. The finished floor elevation (FFE) of the proposed buildings will be set at an elevation of 95.50m, which corresponds to the FFE of the Home Depot and Camp Mart buildings to the east. The buildings and general site elevations will work well with the grades along the property lines, the views from Hwy 417 to the north, and the private access road off Frank Nighbor Place to the south. The grade on the adjacent undeveloped portion of the property to the west will remain unchanged. Any excess fill material generated from the proposed site development is to be reviewed by the geotechnical engineer to determine suitability for use as general fill. Filling on the undeveloped portion of the property is only permitted outside the regulatory floodline as defined by the MVC. Limits of the works are to be established on-site by an OLS. Refer to the enclosed Grading and ESC Plans (121326-GR1 and 121326-GR2). #### 3.1 Emergency Overland Flow Route In the case of a major rainfall event exceeding the design storms provided for, the stormwater located within the subject site will overflow towards the downstream drainage ditch and/or private roadway and ultimately flow towards the Carp River. The finished floor elevation of Buildings A, B, C and D have been set at 95.50m, which represents a minimum of 0.3m above the major system overflow points. The emergency overland flow route is shown on the enclosed Grading and ESC Plans. #### 4.0 GEOTECHNICAL INVESTIGATIONS Paterson Group prepared a Geotechnical Investigation Report for the proposed development. Refer to the Geotechnical Report³ for subsurface conditions, grade raise restrictions, construction recommendations and geotechnical inspection requirements. #### 5.0 EROSION AND SEDIMENT CONTROL To mitigate erosion and to prevent sediment from entering the storm sewer system and downstream water course, temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures: - Filter bags will be placed under the grates of nearby catchbasins, manholes and will remain in place until vegetation has been established and construction is completed. - Silt fencing will be placed per OPSS 577 and OPSD 219.110 where appropriate, along the surrounding construction limits. - Mud mats will be installed at the site entrances. - Street sweeping and cleaning will be performed, as required, to suppress dust and to provide safe and clean roadways adjacent to the construction site. - On-site dewatering is to be directed to a sediment trap and/or gravel splash pad and discharged safely to an approved outlet as directed by the engineer. - Any stockpiled material will be properly managed to prevent those materials from entering the sewer system and/or the downstream watercourse. The temporary erosion and sediment control measures will be implemented prior to construction and will remain in place during all phases of construction. Regular inspection and maintenance of the erosion control measures will be undertaken. In addition, the following measures will provide permanent erosion and sediment control on the proposed site: - Shallow flat-bottom grass drainage swales as well as within the dry pond (SWM facility). - A CDS type Oil/Grit Separator will be installed to provide water quality control prior to releasing stormwater from the portion of the site to be developed. #### 6.0 CONCLUSION This report has been prepared in support of a Site Plan Control application for the proposed U-HAUL development at 30 Frank Nighbor Place. The conclusions are as follows: - The proposed development will be serviced by the municipal watermain, sanitary and storm sewers to the south located within an easement along the private access road off Frank Nighbor Place. - The large buildings will be sprinklered and supplied with fire department (siamese) connections. The siamese connections will be located within 45m of a nearby on-site fire hydrant. - The proposed design will include on-site stormwater management measures (both quantity and quality control measures) prior to releasing flows from the site. - Post-development flow from sub-catchment area A-1 to A-19 will be controlled by a restrictor pipe installed within the on-site storm sewer system, while flows from area R-1 will be attenuated in the access road by an inlet control device (ICD). - The total post-development flow to the municipal storm sewer (Carp River) will be approximately 71.5 L/s during the 2-year design event, 85.9 L/s during the 5-year event and 102.2 L/s during the 100-year event, all less than the maximum allowable release rate of 107.9 L/s. The post-development flows are also being significantly reduced when compared to current conditions. - Erosion and sediment controls are to be provided both during construction and on a permanent basis. In addition to the grass swales and SWM dry pond, an oil / grit separator unit (CDS Model PMSU 20_20_5) will provide an 'Enhanced' Level of water quality control for the controlled flows from the site discharging into the municipal storm sewer. - Regular inspection and maintenance of the storm sewer system, including the restrictor pipe/inlet control device and the water quality treatment unit is recommended to ensure that the storm drainage system is clean and operational. It is recommended that the proposed site servicing and stormwater management design be approved for implementation. **NOVATECH** Prepared by: Matt Hrehoriak, P, Eng. Project Manager Stormwater Management Prepared by: François Thauvette, P. Eng. Senior Project Manager # **APPENDIX A** Correspondence #### **Pre-Consultation Meeting Notes** Site Address: 30 Frank Nighbor Place Location: Virtual - Microsoft Teams Meeting Date: January 14, 2022 Attendees: Colette Gorni- Planner (File Lead), City of Ottawa Shika Rathnasooriya – Infrastructure Project Manager, City of Ottawa Sami Rehman – Environmental Planner, City of Ottawa Adrian Van Wyk - Planner (Urban Design), City of Ottawa Jeff Goettling - Planner (Parks), City of Ottawa Ashvinya Moorthy - Student Planner, City of Ottawa Erica Ögden - MVCA Greg Winters - Novatech Robert Tran - Novatech Francois Thauvette - Novatech Jake Spelic - U-Haul David Pollock - U-Haul Thomas Donnelly - U-Haul Tamrat Meherete - U-Haul **Regrets:** Mike Giampa - Transportation, City of Ottawa Mark Richardson - Forestry, City of Ottawa #### **Comments from the Applicant** - 1. The subject site is one of the last parcels in a plan of subdivision that began in 1997. - 2. Surrounding uses include Highway 417 to the north, the Carp River to the west, and light industrial uses to the east and south. - 3. The site is serviced by existing public services that run along Frank Nighbor Place. - 4. The site is technically located within a flood plain; however, the Owner has a fill permit filed with the MVCA which allows them to address related concerns. The fill permit was renewed last year and is valid for two years. - 5. The proposed development includes a 5-storey self-storage facility with an associated rental office, as well as a separate warehouse building to be used for U-Haul's operations. #### **Engineering** 1. The Servicing Study Guidelines for Development Applications are available at the following address: https://ottawa.ca/en/planning-development-and-
<u>construction/developing-property/development-application-review-process/development-application-submission/guide-preparing-studies-and-plans#servicing-study-quidelines-development-applications</u> - 2. Servicing and site works shall be in accordance with the following documents: - Ottawa Sewer Design Guidelines (October 2012) - Ottawa Design Guidelines Water Distribution (2010) - Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007) - City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012) - City of Ottawa Environmental Noise Control Guidelines (January 2016) - City of Ottawa Park and Pathway Development Manual (2012) - City of Ottawa Accessibility Design Standards (2012) - Ottawa Standard Tender Documents (latest version) - Ontario Provincial Standards for Roads & Public Works (2013) - 3. Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at lnformationCentre@ottawa.ca or by phone at (613) 580-2424 x.44455). - 4. Watermain Infrastructure: - a. There is an available 305mm diameter PVC watermain located within the proposed extension of Frank Nighbor Place. A water boundary condition request is needed for the proposed water connection to the City main. - b. As per Section 4.4.7.2 of the Ottawa Design Guidelines Water Distribution, a DMA (District Metering Area) chamber will be required for private developments serviced by a connection 150mm or larger. - c. Water Boundary condition requests must include the location of the service and the expected loads required by the proposed development. Please provide an email to <u>Shika Rathnasooriya</u> with the following information: | i. | Location of service | |------|--| | ii. | Type of development and the amount of fire flow required (as per FUS, 1999 – See technical bulletin ISTB 2021-03). | | iii. | Average daily demand: l/s. | | iv. | Maximum daily demand:l/s. | | ٧. | Maximum hourly daily demand: l/s. | - 5. Sanitary / Storm Infrastructure: - a. There is an available 450mm diameter concrete sanitary sewer located within a private access road west of Frank Nighbor Place. - b. There is an available 1050mm diameter concrete storm sewer within a private acess road west of Frank Nighbor Place. - c. A monitoring maintenance hole will be required for a private sanitary sewer outletting to a public sanitary sewer. The maintenance hole should be located in an accessible location on private property near the property line (ie. Not in a parking area). - d. All services (STM, SAN, WTR) should be grouped in a common trench to minimize the number of road cuts. - e. Sewer connections to be made above the springline of the sewermain as per: - i. Std Dwg S11.1 for flexible main sewers. - ii. Std Dwg S11 (For rigid main sewers). - iii. Std Dwg S11.2 (for rigid main sewers using bell end insert method). - iv. Connections to manholes permitted when the connection is to rigid main sewers where the lateral exceeds 50% the diameter of the sewermain. Connect obvert to obvert with the outlet pipe unless pipes are a similar size. - 6. The Stormwater Management Criteria, for the subject site, is to be based on the following: - a. The 5-yr and 100-yr post development peak flows for the development area are to be controlled to a release rate of 50 L/s/ha based on the 'Terry Fox Business Park- Stormwater Design Plan' dated 1994. Onsite storage is to be provided for storm events up to and including the 100-yr storm. - b. There should be no stormwater ponding in parking areas or drive aisles during the 2-year storm event. - c. Quality control to be provided as specified by the MVCA. - d. The design of the storm sewers in the area are based on a 5-yr storm. If discharging to a storm sewer, the SWM criteria is to be based on the following for the development area: - The 5-yr storm event using the IDF information derived from the Meteorological Services of Canada rainfall data, taken from the MacDonald Cartier Airport, collected 1966 to 1997. ii. The pre-development runoff coefficient <u>or</u> a maximum equivalent 'C' of 0.5, whichever is less. - iii. A calculated time of concentration (Cannot be less than 10 minutes). - iv. Flows to the storm sewer in excess of the 5-yr storm release rate, up to and including the 100-year storm event, must be detained on site. ## 7. MECP ECA Requirements: - An MECP Environmental Compliance Approval (Private Sewage Works) will be required for the proposed development. - 8. Phase 1 ESAs and Phase 2 ESAs must conform to clause 4.8.4 of the Official Plan that requires that development applications conform to Ontario Regulation 153/04. Should you have any questions or require additional information, please contact me directly at Thakshika.Rathnasooriya@ottawa.ca. #### MVCA - The Mississippi Valley Conservation Authority (MVCA) confirms that a portion of the subject property is regulated under Ontario Regulation 153/06, *Development, Interference with Wetlands and Alterations to Shorelines and Watercourses*. Under Ontario Regulation 153/06, written permission is required from the MVCA prior to the initiation of development (which includes construction, site grading and the placement or removal of fill) within an area regulated by the Conservation Authority. - 2. MVCA notes that permit W20-176 has been issued to the previous property owner to facility fill placement within the regulated area. This permit must be transferred into the new owner's name and expires on October 19, 2022. The construction of the proposed buildings within the regulated area will also require written permission from MVCA. A new permit is valid for a two year period. - 3. An enhanced level of water quality protection is required, 80% TSS Removal. - 4. The watercourse setbacks outlined in the Official Plan should be demonstrated on the plans submitted and ensure all buildings are located beyond the required watercourse setbacks. - 5. Please note that a small portion of the subject property is zoned O1 and is subject to the holding zone provisions related to the restoration of the Carp River. Please contact Erica Ogden, MVCA Planner, at eogden@mvc.on.ca for follow-up questions. #### **Parks** 1. How does the applicant propose to meet the Parkland Dedication (By-law No. 2009-95)? Land or cash-in-lieu (CIL) of parkland and associated appraisal fee will be required as a condition of approval as per the Parkland Dedication (By-law No. 2009-95) | City of Ottawa. If required, the value of noted lands to be appraised shall be through a Real Estate Valuation Advisor within the Planning Infrastructure & Economic Development Department. The exact amount will be identified as a condition of site plan approval. - 2. For Commercial purposes, the parkland requirement is calculated as 2% of the gross land area of the site being developed. - The conveyance of land for purposes or the payment of money in-lieu of accepting the conveyance is not required for development, redevelopment, subdivisions or consents, where it is known, or can be demonstrated that the required parkland conveyance or money in-lieu thereof has been previously satisfied. - 4. Parks Planning requests that the existing pedestrian link through the property be formalized. This link shall connect the existing Multi-Use Pathway (MUP) to the existing concrete sidewalk and asphalt roadway (currently located south of 20 Frank Nighbor Place). The proponent shall construct this link to City standards and provide a pedestrian and maintenance access easement over this area. It is anticipated that the MUP extension will terminate at the new site asphalt access roadway, include a P-Gate, TSWI's, and drop/ depressed curb(s) as required. Please contact Jeff Goettling, Parks Planner, at jeff.goettling@ottawa.ca for follow-up questions. # **Environmental Planning** - 1. An EIS is triggered due to the site being adjacent to Carp River and potential species at risk habitat. - 2. Please refer to the New City of Ottawa Official Plan for updated policies regarding setbacks from surface water features and natural heritage protection. - 3. Incorporate the findings and recommendations of the Carp River Subwatershed study for this area into the report. - 4. Consider ways to soften the landscape with locally appropriate native trees and vegetation along the Carp River. - 5. Consult with the MVCA to determine if any permits or approvals are required. Please contact Sami Rehman, Environmental Planner, at Sami.Rehman@ottawa.ca for follow-up questions. # **Urban Design** - 1. An Urban Design Brief will be required, which can be combined with a Planning Rationale. Please see the attached Terms of Reference. - 2. Pedestrian circulation should be considered. It may be desirable to extend the private sidewalk to Frank Nighbor Place. - 3. The paving over of the lot should be avoided where possible. Please keep hard surfaces to a minimum. - 4. Parking and loading areas should be located at the rear of the buildings to avoid conflicts with pedestrian movement. - 5. Please ensure that the site design includes appropriate landscaped buffering. - 6. Opportunities for tree planting should be explored. - Please carefully consider sustainability and incorporating blue-green infrastructure and on-site stormwater management techniques into the site design. Please contact Adrian van Wyk, Urban Design Planner, at <u>Adrian.vanWyk@ottawa.ca</u> for follow-up questions. ## **Transportation** - 1. No TIA will be required. - 2. Warehouse use does not trigger a road noise study. Please contact Mike Giampa, Transportation Project Manager, at
Mike.Giampa@ottawa.ca for follow-up questions. # **Forestry** - 1. A Tree Conservation Report (TCR) must be supplied for review along with the suite of other plans/reports required by the City: - a. An approved TCR is a requirement of Site Plan approval. - The TCR may be combined with the LP provided all information is supplied. - 2. Any removal of privately-owned trees 10cm or larger in diameter, or city-owned trees of any diameter requires a tree permit issued under the Tree Protection Bylaw (Bylaw 2020 - 340); the permit will be based on an approved TCR and made available at or near plan approval. - 3. The Planning Forester from Planning and Growth Management as well as foresters from Forestry Services will review the submitted TCR. - a. If tree removal is required, both municipal and privately-owned trees will be addressed in a single permit issued through the Planning Forester. - b. Compensation may be required for city owned trees if so, it will need to be paid prior to the release of the tree permit. - 4. The TCR must list all trees on site, as well as off-site trees if the CRZ extends into the developed area, by species, diameter and health condition. - 5. Please identify trees by ownership private onsite, private on adjoining site, city owned, co-owned (trees on a property line). - 6. The TCR must list all trees on adjacent sites if they have a critical root zone that extends onto the development site. - 7. If trees are to be removed, the TCR must clearly show where they are, and document the reason they cannot be retained. - 8. All retained trees must be shown and all retained trees within the area impacted by the development process must be protected as per City guidelines available at Tree Protection Specification or by searching Ottawa.ca. - a. The location of tree protection fencing must be shown on a plan - b. Show the critical root zone of the retained trees - c. If excavation will occur within the critical root zone, please show the limits of excavation - the City encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site. - 10. For more information on the process or help with tree retention options, contact Mark Richardson mark.richardson@ottawa.ca or on City of Ottawa Please contact Mark Richardson, Planning Forester, at Mark.Richardson@ottawa.ca for follow-up questions. ## <u>Planning</u> 1. There are two zones on the site – IL6[1414] H(30)-h (Light Industrial, Subzone 6, Exception 1414, height limit of 30m, holding zone) and O1[1932]-h (Parks and Open Space Zone, Exception 1932, with a holding zone). - 2. Please note that all storage on site must be concealed or enclosed as per Exception 1414. - 3. Please ensure that the proposed development meets the requirements of Section 69 of the Zoning By-law Setback from Watercourses. - 4. Parking is to be provided at the rates specific for Area C in Section 101 of the Zoning By-law: - Warehouse: 0.8 per 100 m² for the first 5000 m² of gross floor area, and 0.4 per 100 m² above 5000 m² of gross floor area. - Automobile Rental Establishment: Sales/showroom area, 2 per 100 m² of gross floor area; Service area, 2 per service bay; Other areas, 1 per 100 m² of gross floor area. - 5. Ensure that bicycle parking is provided at the rates identified in Table 111A of the Zoning By-law: - Warehouse: 1 per 2000 m² of gross floor area. - All other non-residential uses: 1 per 15000 m² of gross floor area. - 6. Ensure that vehicle loading spaces are provided at the rates specified in Table 113A of the Zoning By-law, and that all provided loading spaces meet the requirements identified in Table 113B. - 7. Please consider where and how waste will be handled on the site. If waste collection will be stored outside, ensure the requirements for waste enclosures are met under Section 110(3) of the Zoning By-law. - 8. Ensure a 3m landscaped buffer is provided abutting a street (Highway 417), required as per Table 203(i)(ii). - 9. Consider opportunities for tree planting and landscaping throughout the site. - 10. The proposed development requires a 'Site Plan Control Complex' application. Fees, forms and timelines can be found on the City's website here. - 11. A Lifting Holding By-law application will be required before development can proceed. Fees, forms and timelines can be found on the City's website here. Refer to Exceptions 1414 and 1932 for the requirements associated with the holding symbols. Both holding symbols can be lifted through the same application. Please contact Colette Gorni, Planner, at colette.gorni@ottawa.ca for follow-up questions. #### City Surveyor - The determination of property boundaries, minimum setbacks and other regulatory constraints are a critical component of development. An Ontario Land Surveyor (O.L.S.) needs to be consulted at the outset of a project to ensure properties are properly defined and can be used as the geospatial framework for the development. - 2. Topographic details may also be required for a project and should be either carried out by the O.L.S. that has provided the Legal Survey or done in consultation with the O.L.S. to ensure that the project is integrated to the appropriate control network. Questions regarding the above requirements can be directed to the City's Surveyor, Bill Harper, at Bill.Harper@ottawa.ca. #### **Next Steps** Please refer to the links to <u>Guide to preparing studies and plans</u> and <u>fees</u> for further information. Additional information is available related to <u>building permits</u>, <u>development charges</u>, and the <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting informationcentre@ottawa.ca. These pre-consultation comments are valid for one year. If you submit a development application(s) after this time, you may be required to meet for another pre-consultation meeting and/or the submission requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined. Please do not hesitate to contact Colette Gorni, at colette.gorni@ottawa.ca if you have any questions. #### APPLICANT'S STUDY AND PLAN IDENTIFICATION LIST Legend: **S** indicates that the study or plan is required with application submission. A indicates that the study or plan may be required to satisfy a condition of approval/draft approval. For information and guidance on preparing required studies and plans refer <u>here</u>: | S/A | Number of copies | ENGINEERING | | S/A | Number of copies | |-----|------------------|--|---|-----|------------------| | s | 15 | Site Servicing Plan Site Servicing Study | | s | 3 | | s | 15 | 3. Grade Control and Drainage Plan | 4. Geotechnical Study / Slope Stability Study | s | 3 | | | 2 | 5. Composite Utility Plan | 6. Groundwater Impact Study | | 3 | | | 3 | 7. Servicing Options Report 8. Wellhead Protection Study | | | 3 | | | 9 | Transportation Impact Assessment (TIA) | | s | 3 | | s | 3 | 11.Storm water Management Report / Brief | 12.Hydro geological and Terrain Analysis | | 3 | | | 3 | 13.Hydraulic Water main Analysis | 14.Noise / Vibration Study | | 3 | | | PDF only | 15.Roadway Modification Functional Design | 16.Confederation Line Proximity Study | | 3 | | S/A | Number of copies | PLANNING / DESIGN / SURVEY | | S/A | Number of copies | |-----|-------------------------------------|--|---|-----|------------------| | | 15 | 17.Draft Plan of Subdivision | 18.Plan Showing Layout of Parking Garage | | 2 | | | 5 | 19.Draft Plan of Condominium | 20.Planning Rationale | s | 3 | | s | 15 | 21.Site Plan | Plan 22.Minimum Distance Separation (MDS) | | 3 | | | 15 | 15 23.Concept Plan Showing Proposed Land Uses and Landscaping 24.Agrology and Soil Capability Study | | | 3 | | | 3 | 25.Concept Plan Showing Ultimate Use of Land 26.Cultural Heritage Impact Statement | | | 3 | | s | 15 | 27.Landscape Plan 28.Archaeological Resource Assessment Requirements: S (site plan) A (subdivision, condo) | | s | 3 | | S | 2 29.Survey Plan 30.Shadow Analysis | | | 3 | | | s | 3 | 31.Architectural Building Elevation Drawings (dimensioned) 32.Design Brief (may be provided as part of the Planning Rationale) | | s | Available online | | | 3 | 33.Wind Analysis | | | | | S/A | Number of copies | ENVIRONMENTAL | | | Number of copies | |-----|------------------|--|---|--|------------------| | s | 3 | 34.Phase 1 Environmental Site Assessment 35.Impact Assessment of Adjacent Waste Disposal/Former Landfill Site | | | 3 | | s | 3 | 36.Phase 2 Environmental Site Assessment (depends on the outcome of Phase 1) 37.Assessment of Landform Features | | | 3 | | | 3 | 38.Record of Site Condition 39.Mineral Resource Impact Assessment | | | 3 | | s | 3 | 40.Tree Conservation Report | 41.Environmental Impact Statement / Impact Assessment of Endangered Species | | 3 | | | 3 | 42.Mine Hazard Study / Abandoned Pit or Quarry Study 43.Integrated Environmental Review (Draft, as part of Planning Rationale) | | | 3 | | S/A | Number
of copies | ADDITIONAL REQUIREMENTS | | S/A | Number
of copies | |-----|---------------------|--
-----------------------|-----|---------------------| | s | 1 | Applicant's Public Consultation Strategy (may be provided as part of the Planning Rationale) | 45.Site Lighting Plan | | 3 | | Α | 1 | 46. Site Lighting Certification Letter | 47. | | | | Meeting Date: | January 14, 2022 | Application Type: Site Plan Control | | |-----------------|------------------------------|---|--------------| | File Lead (Assi | gned Planner): Colette Gorni | Infrastructure Approvals Project Manager: Shika R | athnasooriya | Site Address (Municipal Address): 30 Frank Nighbor PI *Preliminary Assessment: 1 2 3 4 5 *One (1) indicates that considerable major revisions are required before a planning application is submitted, while five (5) suggests that proposal appears to meet the City's key land use policies and guidelines. This assessment is purely advisory and does not consider technical aspects of the proposal or in any way guarantee application approval. It is important to note that the need for additional studies and plans may result during application review. If following the submission of your application, it is determined that material that is not identified in this checklist is required to achieve complete application status, in accordance with the Planning Act and Official Plan requirements, the Planning, Real Estate and Economic Development Department will notify you of outstanding material required within the required 30 day period. Mandatory pre-application consultation will not shorten the City's standard processing timelines, or guarantee that an application will be approved. It is intended to help educate and inform the applicant about submission requirements as well as municipal processes, policies, and key issues in advance of submitting a formal development application. This list is valid for one year following the meeting date. If the application is not submitted within this timeframe the applicant must again preconsult with the Planning, Real Estate and Economic Development Department. # **APPENDIX B** **Development Servicing Study Checklist** # Servicing study guidelines for development applications # 4. Development Servicing Study Checklist The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff. The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary. #### 4.1 General Content Executive Summary (for larger reports only). Proposed phasing of the development, if applicable. | Ш | Date and revision number of the report. | |---|---| | | Location map and plan showing municipal address, boundary, and layout of proposed development. | | | Plan showing the site and location of all existing services. | | | Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere. | | | Summary of Pre-consultation Meetings with City and other approval agencies. | | | Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria. | | | Statement of objectives and servicing criteria. | | | Identification of existing and proposed infrastructure available in the immediate area. | | | Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available). | | | Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths. | | | Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts. | Visit us: Ottawa.ca/planning Visitez-nous: Ottawa.ca/urbanisme | Reference to geotechnical studies and recommendations concerning servicing. | |--| | All preliminary and formal site plan submissions should have the following information: • Metric scale | | North arrow (including construction North) | | ∘ Key plan | | Name and contact information of applicant and property owner | | ∘ Property limits including bearings and dimensions | | Existing and proposed structures and parking areas | | ∘ Easements, road widening and rights-of-way | | | | Adjacent street names | | 4.2 Development Servicing Report: Water | | Confirm consistency with Master Servicing Study, if available | | Availability of public infrastructure to service proposed development | | Identification of system constraints | | Identify boundary conditions | | Confirmation of adequate domestic supply and pressure | | Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development. | | Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves. | | Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design | | Address reliability requirements such as appropriate location of shut-off valves | | Check on the necessity of a pressure zone boundary modification. | | Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range | | Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions. | |--| | Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation. | | Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines. | | Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference. | | 4.3 Development Servicing Report: Wastewater | | Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). | | Confirm consistency with Master Servicing Study and/or justifications for deviations. | | Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. | | Description of existing sanitary sewer available for discharge of wastewater from proposed development. | | Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) | | Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. | | Description of proposed sewer network including sewers, pumping stations, and forcemains. | | Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the
development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality). | | Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development. | | Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity. | | Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. | | Special considerations such as contamination, corrosive environment etc. | | | # 4.4 Development Servicing Report: Stormwater Checklist | drain, right-of-way, watercourse, or private property) | |--| | Analysis of available capacity in existing public infrastructure. | | A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern. | | Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects. | | Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements. | | Description of the stormwater management concept with facility locations and descriptions with references and supporting information. | | Set-back from private sewage disposal systems. | | Watercourse and hazard lands setbacks. | | Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed. | | Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists. | | Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period). | | Identification of watercourses within the proposed development and how watercourses will be protected or, if necessary, altered by the proposed development with applicable approvals. | | Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions. | | Any proposed diversion of drainage catchment areas from one outlet to another. | | Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities. | | If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100 year return period storm event. | | Identification of potential impacts to receiving watercourses | | Identification of municipal drains and related approval requirements. | | Descriptions of how the conveyance and storage capacity will be achieved for the development. | | 100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading. | | Inclusion of hydraulic analysis including hydraulic grade line elevations. | |--| | Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors. | | Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions. | | Identification of fill constraints related to floodplain and geotechnical investigation. | | 4.5 Approval and Permit Requirements: Checklist | | The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following: | | Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act. | | Application for Certificate of Approval (CofA) under the Ontario Water Resources Act. | | Changes to Municipal Drains. | | Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.) | | 4.6 Conclusion Checklist | | Clearly stated conclusions and recommendations | | Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency. | | All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario | # **APPENDIX C** **Sanitary Sewage Calculations** Project No. 121326 Project Name: 30 Frank Nighbor Project Location: Ottawa Date: May 2022 #### 30 Frank Nighbor Place (121326) Proposed Peak Sanitary Flows #### Daily Demands from OBC Table 8.2.1.3 | Type of Use | Daily | Demand Volume | |-------------|-------|-------------------| | Warehouse | 150 | L/day/loading bay | | | 950 | L/day/washroom | Ottawa Sewer Design Guidelines - Industrial & Commercial Sanitary Demands and Peaking Factors | Ottawa Sewer Design Galacinic | maastriar & commercial samtar y Ben | | | |-------------------------------|-------------------------------------|--|--| | Employee (Office Space) | 75 L/day/Employee | | | | | | | | | Conditions | Peaking Factor | | | | Office Space/Commercial | 1.5 | | | | Light Industrial (warehouse) | 1.5 | | | #### **Proposed Development Conditions** | | Bldg A | Bldg B | Bldg C | Bldg D | Total Site | |---------------------------------|--------|--------|--------|--------|------------| | No. Loading Bays | 4 | 0 | 0 | 2 | 6 | | No. Washrooms | 2 | 0 | 0 | 0 | 2 | | Peak Industrial Flows (L/s) | 0.04 | 0.00 | 0.00 | 0.01 | 0.05 | | Number of Employees | 6 | 0 | 0 | 0 | 6 | | Peak Flows (L/s) | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | | Site Area (ha) | 2.18 | 0.000 | 0.000 | 0.000 | 2.18 | | Extraneuos Flows (0.33 L/s/ha) | 0.72 | 0.00 | 0.00 | 0.00 | 0.72 | | Total Peak Sanitary Flows (L/s) | 0.77 | 0.00 | 0.00 | 0.01 | 0.77 | #### **APPENDIX D** Water Demands, Boundary Conditions, Schematic of the Hydraulic Model, Hydraulic Modeling Results and FUS Calculations Project No. 121326 Project Name: 30 Frank Nighbor Place (U-Haul) Project Location: Ottawa Date: April 2022 #### **Domestic Water Demands** #### Daily Demands from OBC Table 8.2.1.3 | Establishment | Daily Demand Volume | | | | |---------------|-----------------------|----------------|--|--| | Industrial : | 150 L/day/Loading bay | | | | | | 950 | L/day/washroom | | | #### <u>Industrial Water Demands and Peaking Factors - Ottawa Water Distrubution Guidelines</u> | Employee (Office Space) | 75 | L/day/Employee | |-------------------------|----|----------------| | Conditions | Peaking Factor | | | | | |-------------|----------------|------------|--|--|--| | Maximum Day | 1.5 | x Avg. Day | | | | | Peak Hour | 1.8 | x Max Day | | | | #### **Proposed Development Conditions** | | Bldg A | Bldgs B & C | Bldg D | Totals | |-----------------------------|--------|-------------|--------|--------| | No. Loading Bays | 4 | 0 | 2 | 6 | | No. Washrooms | 2 | 0 | 0 | 2 | | Number of Employees | 6 | 0 | 0 | 6 | | Total Daily Volume (Liters) | 2,950 | 0 | 300 | 3250 | | Avg Day Demand (L/s) | 0.03 | 0.00 | 0.00 | 0.04 | | Max Day Demand (L/s) | 0.05 | 0.00 | 0.01 | 0.06 | | Peak Hour Demand (L/s) | 0.09 | 0.00 | 0.01 | 0.10 | #### Steve Matthews From: Rathnasooriya, Shika <Thakshika.Rathnasooriya@ottawa.ca> **Sent:** Tuesday, May 17, 2022 9:49 AM To: Francois Thauvette Cc: Steve Matthews Subject: RE: 30 Frank Nighbor Place (Kanata)- Watermain Boundary Conditions Request **Attachments:** 30 Frank Nighbor Place_16May2022.docx Hi Francois, Please find the boundary conditions attached. Thanks, Shika From: Francois Thauvette <f.thauvette@novatech-eng.com> Sent: May 16, 2022 11:05 AM To: Rathnasooriya, Shika < Thakshika. Rathnasooriya@ottawa.ca> Cc: Steve Matthews <S.Matthews@novatech-eng.com> Subject: RE: 30 Frank Nighbor Place (Kanata)- Watermain Boundary Conditions Request CAUTION: This email
originated from an External Sender. Please do not click links or open attachments unless you recognize the source. ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur. Hi Shika. We are sending this e-mail as a follow-up on the watermain boundary conditions request sent out 3 weeks ago. Have you received any feedback from the City's water modelling group? Our client is very eager to submit for SPC this week and we require the boundary conditions to finalize our servicing design and report. Please follow-up at your end and advise when we can expect to receive the requested information. Regards, **François Thauvette**, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering **NOVATECH** Engineers, Planners & Landscape Architects Please note that I am working from home. Email or MS Teams are the best ways to contact me. 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. From: Rathnasooriya, Shika <Thakshika.Rathnasooriya@ottawa.ca> Sent: Tuesday, April 26, 2022 2:50 PM **To:** Francois Thauvette < f.thauvette@novatech-eng.com> Subject: RE: 30 Frank Nighbor Place (Kanata)- Watermain Boundary Conditions Request Hi Francois, Your boundary conditions request is now being processed. Please note that currently the turnaround time can take up to 3 weeks. Thank you, Shika From: Francois Thauvette <f.thauvette@novatech-eng.com> Sent: April 22, 2022 4:17 PM To: Rathnasooriya, Shika <Thakshika.Rathnasooriya@ottawa.ca> Cc: Steve Matthews < S.Matthews@novatech-eng.com > Subject: FW: 30 Frank Nighbor Place (Kanata)- Watermain Boundary Conditions Request CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source. ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur. Hi Thakshika, We are sending this e-mail to request watermain boundary conditions for the proposed development of the 30 Frank Nighbor Place property in Kanata. Please see e-mail below and attachments for details. Regards, **François Thauvette**, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering **NOVATECH** Engineers, Planners & Landscape Architects Please note that I am working from home. Email or MS Teams are the best ways to contact me. 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. From: Steve Matthews <S.Matthews@novatech-eng.com> **Sent:** Friday, April 22, 2022 3:57 PM **To:** Francois Thauvette < f.thauvette@novatech-eng.com> Subject: 30 Frank Nighbor Place (Kanata)- Watermain Boundary Conditions Request Hi François, Please forward this information to the City of Ottawa as our request for municipal watermain boundary conditions in relation to the proposed commercial development at 30 Frank Nighbor (in the Kanata area). The site development will include a 5-storey commercial storage building (Bldg 'A'), a high 1-storey rack storage building (Bldg 'D') with an external loading dock and two (2) small portable storage buildings (Bldgs 'B' and 'C') off the extension of Frank Nighbor Place. Refer to the attached Site Plan for details. Please request watermain boundary conditions from the City of Ottawa for the existing 300mm dia. PVC municipal watermain in the easement through the subject site. The architect has confirmed the construction method and that Buildings 'A' and 'D' will be sprinklered. The anticipated water demands for the proposed development (incl. Buildings A, B, C and D) are as follows: - Average Day Demand = 0.04 L/s - Maximum Day Demand = 0.06 L/s - Peak Hour Demand = 0.10 L/s - Maximum Fire Flow Demand = 250 L/s (Building A) See the attached PDFs of the architectural Site Plan and the preliminary calculation sheets for details. A multi-hydrant approach to firefighting is anticipated to be required. There will be three (3) new private on-site fire hydrants within 75m of Buildings 'A', 'B' and 'C'. Two of those new hydrants will be within 75m of Building 'D' and one will be within 150m of Building 'D'. Please review and let me know if you require any additional information. Regards, Steve **Stephen Matthews**, B.A.(Env), Senior Design Technologist **NOVATECH** Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 223 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you. Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration. This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you. Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration. ## **Boundary Conditions** 30 Frank Nighbor Place ## **Provided Information** | Scenario | Demand | | | | | |----------------------|--------|--------|--|--|--| | Scenario | L/min | L/s | | | | | Average Daily Demand | 2 | 0.04 | | | | | Maximum Daily Demand | 4 | 0.06 | | | | | Peak Hour | 6 | 0.10 | | | | | Fire Flow Demand #1 | 15,000 | 250.00 | | | | ## **Location** ### **Results** ### Connection 1 – Frank Nighbor Place | Demand Scenario | Head (m) | Pressure ¹ (psi) | |---------------------|----------|-----------------------------| | Maximum HGL | 160.7 | 93.5 | | Peak Hour | 156.6 | 87.6 | | Max Day plus Fire 1 | 149.0 | 76.8 | Ground Elevation = 95.0 m #### Notes - 1. As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference: - a. If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment. - b. Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained. #### **Disclaimer** The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account. ## 30 Frank Nighbor (U-Haul) - Watermain Analysis Peak Hour Demand Network Table - Nodes | Node ID | Elevation | Demand | Head | Pressure | Pressure | Pressure | |------------------|-----------|--------|-------|----------|----------|----------| | | m | L/s | m | m | kPa | psi | | Junc J1 | 92.75 | 0 | 156.6 | 63.85 | 626.37 | 90.85 | | Junc J2 | 92.7 | 0 | 156.6 | 63.9 | 626.86 | 90.92 | | Junc J3 | 96 | 0 | 156.6 | 60.6 | 594.49 | 86.22 | | Junc J4 | 92.92 | 0 | 156.6 | 63.68 | 624.70 | 90.61 | | Junc J5 (Bldg A) | 95.5 | 0.09 | 156.6 | 61.1 | 599.39 | 86.93 | | Junc J7 | 93.02 | 0 | 156.6 | 63.58 | 623.72 | 90.46 | | Junc J8 (Bldg D) | 95.5 | 0.01 | 156.6 | 61.1 | 599.39 | 86.93 | | Junc J13 | 92.55 | 0 | 156.6 | 64.05 | 628.33 | 91.13 | | Junc J14 | 92.92 | 0 | 156.6 | 63.68 | 624.70 | 90.61 | | Junc J16 | 92.73 | 0 | 156.6 | 63.87 | 626.56 | 90.88 | | Junc J6 | 92.67 | 0 | 156.6 | 63.93 | 627.15 | 90.96 | | Junc J9 | 95.9 | 0 | 156.6 | 60.7 | 595.47 | 86.37 | | Junc J10 | 95.9 | 0 | 156.6 | 60.7 | 595.47 | 86.37 | | Junc J11 | 92.87 | 0 | 156.6 | 63.73 | 625.19 | 90.68 | | Resvr R1 | 156.6 | -0.1 | 156.6 | 0 | 0.00 | 0.00 | Peak Hour Demand Network Table - Links | Link ID | Length
m | Diameter
mm | Roughness | Flow
L/s | Velocity
m/s | Unit Headloss
m/km | |----------|-------------|----------------|-----------|-------------|-----------------|-----------------------| | Pipe P2 | 6.2 | 200 | 110 | 0.09 | 0 | 0 | | Pipe P5 | 5.9 | 150 | 100 | 0.09 | 0.01 | 0 | | Pipe P8 | 7 | 200 | 110 | 0.01 | 0 | 0 | | Pipe P1 | 29.9 | 200 | 110 | 0.1 | 0 | 0 | | Pipe P9 | 52.6 | 200 | 110 | 0.09 | 0 | 0 | | Pipe P14 | 33.7 | 200 | 110 | 0.01 | 0 | 0 | | Pipe P18 | 27.3 | 200 | 110 | 0 | 0 | 0 | | Pipe P3 | 3.4 | 200 | 110 | -0.01 | 0 | 0 | | Pipe P4 | 9.5 | 150 | 100 | 0 | 0 | 0 | | Pipe P6 | 35.1 | 150 | 100 | -0.09 | 0.01 | 0 | | Pipe P7 | 8.7 | 150 | 100 | 0
 0 | 0 | | Pipe P10 | 13.7 | 200 | 110 | 0 | 0 | 0 | | Pipe P11 | 43.6 | 200 | 110 | 0 | 0 | 0 | | Pipe P12 | 7 | 150 | 100 | 0 | 0 | 0 | ## 30 Frank Nighbor (U-Haul) - Watermain Analysis Max HGL check Network Table - Nodes | Node ID | Elevation
m | Demand
L/s | Head
m | Pressure
m | Pressure
kPa | Pressure
psi | |------------------|----------------|---------------|-----------|---------------|-----------------|-----------------| | Junc J1 | 92.75 | 0 | 160.7 | 67.95 | 666.59 | 96.68 | | Junc J2 | 92.7 | 0 | 160.7 | 68 | 667.08 | 96.75 | | Junc J3 | 96 | 0 | 160.7 | 64.7 | 634.71 | 92.06 | | Junc J4 | 92.92 | 0 | 160.7 | 67.78 | 664.92 | 96.44 | | Junc J5 (Bldg A) | 95.5 | 0.05 | 160.7 | 65.2 | 639.61 | 92.77 | | Junc J7 | 93.02 | 0 | 160.7 | 67.68 | 663.94 | 96.30 | | Junc J8 (Bldg D) | 95.5 | 0.01 | 160.7 | 65.2 | 639.61 | 92.77 | | Junc J13 | 92.55 | 0 | 160.7 | 68.15 | 668.55 | 96.97 | | Junc J14 | 92.92 | 0 | 160.7 | 67.78 | 664.92 | 96.44 | | Junc J16 | 92.73 | 0 | 160.7 | 67.97 | 666.79 | 96.71 | | Junc J6 | 92.67 | 0 | 160.7 | 68.03 | 667.37 | 96.79 | | Junc J9 | 95.9 | 0 | 160.7 | 64.8 | 635.69 | 92.20 | | Junc J10 | 95.9 | 0 | 160.7 | 64.8 | 635.69 | 92.20 | | Junc J11 | 92.87 | 0 | 160.7 | 67.83 | 665.41 | 96.51 | | Resvr R1 | 160.7 | -0.06 | 160.7 | 0 | 0.00 | 0.00 | Max HGL check Network Table - Links | Link ID | Length
m | Diameter
mm | Roughness | Flow
L/s | Velocity
m/s | Unit Headloss
m/km | |----------|-------------|----------------|-----------|-------------|-----------------|-----------------------| | Pipe P2 | 6.2 | 200 | 110 | 0.05 | 0 | 0 | | Pipe P5 | 5.9 | 150 | 100 | 0.05 | 0 | 0 | | Pipe P8 | 7 | 200 | 110 | 0.01 | 0 | 0 | | Pipe P1 | 29.9 | 200 | 110 | 0.06 | 0 | 0 | | Pipe P9 | 52.6 | 200 | 110 | 0.05 | 0 | 0 | | Pipe P14 | 33.7 | 200 | 110 | 0.01 | 0 | 0 | | Pipe P18 | 27.3 | 200 | 110 | 0 | 0 | 0 | | Pipe P3 | 3.4 | 200 | 110 | -0.01 | 0 | 0 | | Pipe P4 | 9.5 | 150 | 100 | 0 | 0 | 0 | | Pipe P6 | 35.1 | 150 | 100 | -0.05 | 0 | 0 | | Pipe P7 | 8.7 | 150 | 100 | 0 | 0 | 0 | | Pipe P10 | 13.7 | 200 | 110 | 0 | 0 | 0 | | Pipe P11 | 43.6 | 200 | 110 | 0 | 0 | 0 | | Pipe P12 | 7 | 150 | 100 | 0 | 0 | 0 | ## 30 Frank Nighbor (U-Haul) - Watermain Analysis Max Day + Fire Flow Demand (Bldgs A, B, C or D) Network Table - Nodes | Node ID | Elevation | Demand | Head | Pressure | Pressure | Pressure | |------------------|-----------|---------|--------|----------|----------|----------| | | m | L/s | m | m | kPa | psi | | Junc J1 | 92.75 | 0 | 119.09 | 26.34 | 258.40 | 37.48 | | Junc J2 | 92.7 | 0 | 118.13 | 25.43 | 249.47 | 36.18 | | Junc J3 (Hyd) | 96 | 67 | 111.18 | 15.18 | 148.92 | 21.60 | | Junc J4 | 92.92 | 0 | 118.13 | 25.21 | 247.31 | 35.87 | | Junc J5 (Bldg A) | 95.5 | 0.05 | 118.13 | 22.63 | 222.00 | 32.20 | | Junc J7 | 93.02 | 0 | 138.16 | 45.14 | 442.82 | 64.23 | | Junc J8 (Bldg D) | 95.5 | 0.01 | 138.16 | 42.66 | 418.49 | 60.70 | | Junc J13 | 92.55 | 0 | 138.16 | 45.61 | 447.43 | 64.89 | | Junc J14 | 92.92 | 0 | 138.16 | 45.24 | 443.80 | 64.37 | | Junc J16 | 92.73 | 0 | 113.92 | 21.19 | 207.87 | 30.15 | | Junc J6 | 92.67 | 0 | 113.51 | 20.84 | 204.44 | 29.65 | | Junc J9 (Hyd) | 95.9 | 95 | 116.45 | 20.55 | 201.60 | 29.24 | | Junc J10 (Hyd) | 95.9 | 95 | 111.5 | 15.6 | 153.04 | 22.20 | | Junc J11 | 92.87 | 0 | 112.2 | 19.33 | 189.63 | 27.50 | | Resvr R1 | 149 | -257.06 | 149 | 0 | 0.00 | 0.00 | Max Day + Fire Flow Demand Network Table - Links | Link ID | Length
m | Diameter
mm | Roughness | Flow
L/s | Velocity
m/s | Unit Headloss m/km | |----------|-------------|----------------|-----------|-------------|-----------------|--------------------| | Pipe P2 | 6.2 | 200 | 110 | 162.05 | 5.16 | 154.29 | | Pipe P5 | 5.9 | 150 | 100 | 0.05 | 0 | 0 | | Pipe P8 | 7 | 200 | 110 | 0.01 | 0 | 0 | | Pipe P1 | 29.9 | 200 | 110 | 257.06 | 8.18 | 362.61 | | Pipe P9 | 52.6 | 200 | 110 | 257.05 | 8.18 | 362.58 | | Pipe P14 | 33.7 | 200 | 110 | 0.01 | 0 | 0 | | Pipe P18 | 27.3 | 200 | 110 | 162 | 5.16 | 154.2 | | Pipe P3 | 3.4 | 200 | 110 | -0.01 | 0 | 0 | | Pipe P4 | 9.5 | 150 | 100 | -95 | 5.38 | 277.99 | | Pipe P6 | 35.1 | 150 | 100 | -0.05 | 0 | 0 | | Pipe P7 | 8.7 | 150 | 100 | -95 | 5.38 | 277.99 | | Pipe P10 | 13.7 | 200 | 110 | 67 | 2.13 | 30.06 | | Pipe P11 | 43.6 | 200 | 110 | 67 | 2.13 | 30.06 | | Pipe P12 | 7 | 150 | 100 | 67 | 3.79 | 145.61 | #### **Steve Matthews** From: Yazan Bilbeisi <Yazan.Bilbeisi@ibigroup.com> **Sent:** Friday, April 22, 2022 12:05 PM **To:** Francois Thauvette **Cc:** Steve Matthews; David Pollock; Alvis Chu Subject: RE: 30 Frank Nighbor Place - Confirmation of Building Construction for FUS Calculations Attachments: Yazan Bilbeisi.vcf; 2022-04-21_IBI-Arch_Uhaul-Kanata_A-4001-4002v2.pdf Hi Francois, Please see replies below and file attached. Kind regards, Yazan Bilbeisi RIBA, PMP, PGDip (Oxon), MArch (UCL), MSc (Cardiff), BSc, MRAIC Working remotely #### **IBI GROUP** Suite 400, 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613-241-3300 fax 613-241-1130 NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message. NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel. From: Francois Thauvette <f.thauvette@novatech-eng.com> Sent: Thursday, April 21, 2022 10:22 AM To: Yazan Bilbeisi < Yazan. Bilbeisi@ibigroup.com> Cc: Steve Matthews <S.Matthews@novatech-eng.com> Subject: FW: 30 Frank Nighbor Place - Confirmation of Building Construction for FUS Calculations Hi Yazan We are completing the fire flow calculations for the proposed U-Haul development using the Fire Underwriters Survey (FUS) method per City standards and require input from your office. Please review the e-mail below and provide clarification/input, so that we may be able to finalize the calculations and request the municipal watermain boundary conditions to finalize the servicing design. Regards, François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering #### **NOVATECH** Engineers, Planners & Landscape Architects Please note that I am working from home. Email or MS Teams are the best ways to contact me. 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. From: Steve Matthews < <u>S.Matthews@novatech-eng.com</u>> Sent: Thursday, April 21, 2022 10:13 AM To: Francois Thauvette <f.thauvette@novatech-eng.com> Subject: 30 Frank Nighbor Place - Confirmation of Building Construction for FUS Calculations Hi François, The City of Ottawa now requires that we verify building construction via e-mail correspondence with the architect (and include the verification e-mail as supporting documentation in our DSS & SWM Report). Please confirm the following building design elements with the Architect in regards to the **type of construction**, **occupancy type** and **sprinkler protection** for our use in calculating the FUS fire flow requirements: - Please confirm the **Building Construction Type** for both Buildings A and D (i.e., **Combustible** (wood frame); **Non-Combustible** (concrete with metal stud infill) [Yazan Bilbeisi] Non-combustible; or **Fire Resistive** construction). - o If fire resistive, what will it be rated to? (i.e.: 2 hours or 3 hours) and will the openings between floors (Building A) have a 1-hour fire rating, or greater; or will the openings be fully protected? - Please confirm that the **Occupancy Hazard** will be considered **Combustible**[**Yazan Bilbeisi**] **confirmed** (given the contents of the storage units are unknown but assumed to be residential type items). - Please confirm that both Buildings A and D be designed with a Sprinkler System for the entire interior space.[Yazan Bilbeisi] confirmed - Please confirm the height of each storey for both Buildings A and D.[Yazan Bilbeisi] Please see attached. Refer to the attached FUS Guidelines for clarification on the Building Construction Type Definitions [pages 21, 22 and 23] and for the Occupancy Hazard definitions [pages 25, 26 and 27 for this section specifically]. The OBC fire flow calculations indicate that volume of water required exceeds the 270,000 L limit which triggers the City of Ottawa requirement to provide FUS fire flow calculations for this urban site. If there are any questions or concerns please do not hesitate to call. Regards, Steve Stephen Matthews, B.A.(Env), Senior Design Technologist **NOVATECH** Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 223 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. As per 1999 Fire Underwriter's Survey Guidelines Novatech Project #: 121326 Project Name: 30 Frank Nighbor Place Date: 4/22/2022 Input By: S.Matthews Reviewed By: F.Thauvette **Building Description:** 5-Storey Building A Non-combustible construction Legend Inp Input by User No Information or Input Required | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | |------|-----------------------------------|--|---------------|-------------------|----------------|-------------------------------| | | | Base Fire Flor | W | | ı | (=:::::) | | | iplier | | | | | | | | Coefficient | Wood frame | | 1.5 | | | | 1 | related to type of construction | Ordinary construction Non-combustible construction Modified Fire resistive construction (2 hrs) Fire resistive construction (> 3 hrs) | Yes | 0.8
0.6
0.6 | 0.8 | | | | Floor Area | The
residue constituent (* o me) | | 0.0 | | | | 2 | A | Building Footprint (m²) Number of Floors/Storeys | 3383
5 | | | | | | | Area of structure considered (m²) | | | 16,915 | | | | F | Base fire flow without reductions | | | | 23,000 | | | • | $F = 220 C (A)^{0.5}$ | | | | 20,000 | | | | Reductions or Surc | harges | | | | | | Occupancy haza | | Reduction | Surcharge | | | | 3 | (1) | Non-combustible
Limited combustible | | -25%
-15% | | | | | | Combustible Free burning | Yes | 0%
15% | | 23,000 | | | Rapid burning Sprinkler Reduction | | | 25%
Redu | ction | | | | Оргинает поино | Adequately Designed System (NFPA 13) | Yes | -30% | -30% | | | 4 | | Standard Water Supply | Yes | -10% | -10% | | | | (2) | Fully Supervised System | No | -10% | - | -9,200 | | | | , , | Cun | ulative Total | -40% | | | | Exposure Surcha | arge (cumulative %) | | | Surcharge | | | | | North Side | > 45.1m | | 0% | | | 5 | | East Side | 30.1- 45 m | | 5% | | | · | (3) | South Side | > 45.1m | | 0% | 1,150 | | | | West Side | > 45.1m | | 0% | | | | | | Cun | nulative Total | 5% | | | | | Results | | | | | | | (4) + (2) + (2) | Total Required Fire Flow, rounded to nea | rest 1000L/mi | n | L/min | 15,000 | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or
or | L/s
USGPM | 250 3,963 | | _ | | Required Duration of Fire Flow (hours) | | , | Hours | 3 | | 7 | Storage Volume | Required Volume of Fire Flow (m ³) | | | m ³ | 2700 | As per 1999 Fire Underwriter's Survey Guidelines Novatech Project #: 121326 Project Name: 30 Frank Nighbor Place Date: 4/22/2022 Input By: S.Matthews Reviewed By: F.Thauvette Building Description: 1-Storey Building B Non-combustible construction Legend Input by User No Information or Input Required | Step | | | Input | | Value Used | Total Fir
Flow | |------|--|--|---|----------------------------------|------------------------------|-------------------| | | | Base Fire Flo | <u> </u> | | | (L/min) | | | I | | <u> </u> | | 1 | | | | Construction Ma | | | | iplier | | | 1 | Coefficient related to type of construction | Wood frame Ordinary construction Non-combustible construction Modified Fire resistive construction (2 hrs) Fire resistive construction (> 3 hrs) | Yes | 1.5
1
0.8
0.6 | 0.8 | | | | Floor Area | | | 5.5 | | | | 2 | A
F | Building Footprint (m²) Number of Floors/Storeys Area of structure considered (m²) Base fire flow without reductions | 218 | | 218 | 3,000 | | | | $F = 220 \text{ C } (A)^{0.5}$ | | | | | | | | Reductions or Surc | harges | ı | - | | | | Occupancy hazard reduction or surcharge Reduction/ | | | | | | | 3 | (1) | Non-combustible Limited combustible Combustible Free burning | Yes | -25%
-15%
0%
15%
25% | 0% | 3,000 | | | Sprinkler Reduct | Rapid burning | | Redu | ction | | | 4 | (2) | Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System | Cum | -30%
-10%
-10%
-10% | 0% | 0 | | | Exposure Surch | arge (cumulative %) | | | Surcharge | | | 5 | (3) | North Side East Side South Side West Side | > 45.1m
3.1 - 10 m
> 45.1m
30.1- 45 m
Cum | nulative Total | 0%
20%
0%
5%
25% | 750 | | | | Results | | | | | | | | Total Required Fire Flow, rounded to nea | rest 1000L/mi | n | L/min | 4,000 | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or
or | L/s
USGPM | 67 1,057 | | 7 | Storage Volume | Required Duration of Fire Flow (hours) Required Volume of Fire Flow (m³) | | | Hours
m ³ | 1.5
360 | As per 1999 Fire Underwriter's Survey Guidelines Novatech Project #: 121326 Project Name: 30 Frank Nighbor Place Date: 4/22/2022 Input By: S.Matthews Reviewed By: F.Thauvette **Building Description:** 1-Storey Building C Non-combustible construction Legend Inpu Input by User No Information or Input Required | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | | |------|---|---|---------------|----------------|------------|-------------------------------|--| | | | Base Fire Flo | W | | | | | | | Construction Ma | terial | | Mult | iplier | | | | | Coefficient | Wood frame | | 1.5 | | | | | 1 | related to type | Ordinary construction | | 1 | | | | | | of construction | Non-combustible construction | Yes | 0.8 | 0.8 | | | | | | Modified Fire resistive construction (2 hrs) | | 0.6 | | | | | | Floor Area | Fire resistive construction (> 3 hrs) | | 0.6 | | | | | | Floor Area | In the F 1 1 1 2 | 040 | | | | | | | | Building Footprint (m ²) Number of Floors/Storeys | 218 | | | | | | 2 | A | | 1 | | 040 | | | | _ | | Area of structure considered (m ²) | | | 218 | | | | | F | Base fire flow without reductions | | | | 3,000 | | | | _ | $F = 220 C (A)^{0.5}$ | | | | , | | | | | Reductions or Surc | harges | | | | | | | Occupancy hazard reduction or surcharge | | | Reduction | Surcharge | | | | 3 | | Non-combustible | | -25% | | | | | | | Limited combustible | | -15% | | | | | | (1) | Combustible | Yes | 0% | 0% | 3,000 | | | | | Free burning | | 15% | | | | | | | Rapid burning | | 25% | | | | | | Sprinkler Reduction | | | | ction | | | | | | Adequately Designed System (NFPA 13) | | -30% | | | | | 4 | (2) | Standard Water Supply | | -10% | | 0 | | | | (2) | Fully Supervised System | | -10% | | U | | | | | | Cun | nulative Total | 0% | | | | | Exposure Surcha | arge (cumulative %) | | | Surcharge | | | | | | North Side | > 45.1m | | 0% | | | | 5 | | East Side | 10.1 - 20 m | | 15% | | | | 3 | (3) | South Side | > 45.1m | | 0% | 1,050 | | | | | West Side | 3.1 - 10 m | | 20% | | | | | | | Cun | nulative Total | 35% | | | | | | Results | | | | | | | _ | (4) . (5) . (6) | Total Required Fire Flow, rounded to nea | rest 1000L/mi | n | L/min | 4,000 | | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or | L/s | 67 | | | | | (2,000 L/IIIII) | | or | USGPM | 1,057 | | | | | Required Duration of Fire Flow (hours) | | | Hours | 1.5 | | | 7 | Storage Volume | Required Volume of Fire Flow (m ³) | | | | | | As per 1999 Fire Underwriter's Survey Guidelines Engineers, Planners & Landscape Architects Novatech Project #: 121326 Project Name: 30 Frank Nighbor Place Date: 4/22/2022 Input By: S.Matthews Reviewed By: F.Thauvette Legend Input by User No Information or Input Required Building Description: High 1-Storey Building D (1=3 Rack Storage per FUS guidelines) Non-combustible construction | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | |------|---------------------|---|---------------|----------------|----------------|-------------------------------| | | | Base Fire Flor | W | | | | | | Construction Ma | terial | | Mult | iplier | | | | Coefficient | Wood frame | | 1.5 | | | | 1 | related to type | Ordinary construction | | 1 | | | | - | of construction | Non-combustible construction | Yes | 0.8 | 0.8 | | | | C | Modified Fire resistive construction (2 hrs) | | 0.6 | | | | | · · | Fire resistive construction (> 3 hrs) | | 0.6 | | | | | Floor Area | | | | | | | • | | Building Footprint (m ²) | 1554 | | | | | | A | Number of Floors/Storeys | 3 | | | | | 2 | | Area of structure considered (m ²) | | | 4,662 | | | | F | Base fire flow without reductions | | | | 12,000 | | | • | $F = 220 C (A)^{0.5}$ | | | | 12,000 | | | | Reductions or Surc | harges | | | | | | Occupancy haza | rd reduction or surcharge | | Reduction | /Surcharge | | | | | Non-combustible | | -25% | | | | 3 | | Limited combustible | | -15% | | | | • | (1) | Combustible | Yes | 0% | 0% | 12,000 | | | | Free burning | | 15% | | | | | | Rapid burning | | 25% | | | | | Sprinkler Reduction | | | Redu | ıction | | | | | Adequately Designed System (NFPA 13) | Yes | -30% | -30% | | | 4 | (2) | Standard Water Supply | Yes | -10% | -10% | 4 000 | | | (2) | Fully Supervised System | No | -10% | | -4,800 | | | | | Cun | nulative Total | -40% | | | | Exposure Surcha | arge (cumulative %) | | | Surcharge | | | | | North Side | > 45.1m | | 0% | | | 5 | | East Side | 10.1 - 20 m | | 15% | | | 3 | (3) | South Side | > 45.1m | | 0% | 2,400 | | | | West Side | 30.1- 45 m | | 5% | | | | | | Cun | nulative Total | 20% | | | | | Results | | | | | | _ | | Total Required Fire Flow, rounded to nea | rest 1000L/mi | n | L/min | 10,000 | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or | L/s | 167 | | | | (2,000 E/IIIII - 1 IIO 1 IOW - 40,000 E/IIIIII) | | or | USGPM | 2,642 | | | 01 | Required Duration of Fire Flow (hours) | | | Hours | 2 | | 7 | Storage Volume | Required Volume of Fire Flow (m ³) | | | m ³ | 1200 | ## **APPENDIX E** **IDF Curves and SWM Modelling Files** Ottawa Sewer Design Guidelines #### APPENDIX 5-A #### OTTAWA INTENSITY DURATION FREQUENCY (IDF) CURVE City of Ottawa Appendix 5-A.1 October 2012 # Drainage ID Schematic # Structure ID Schematic ## Chicago 4 Hour 2 Year Event PCSWMM Results EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) *********** Element Count Number of rain gages 1 Number of subcatchments 21 Number of nodes 30 Number of links 41 Number of pollutants 0 Number of land uses 0 Name Data Source Type Interval Raingage1 C4-2 INTENSITY 10 min. | Name | Area | Width | %Imperv | %Slope Rain Gage | Outlet | | |------|------|-------|---------|------------------|---------|--| | A-0 | 0.00 | 5.00 | 5.00 | 2.0000 Raingagel | CARP2 | | | A-1 | 0.03 | 22.96 | 100.00 | 3.0000 Raingagel | CBMH101 | | | A-10 | 0.03 | 15.29 | 100.00 | 2.5000 Raingagel | CBMH106 | | | A-11 | 0.10 | 55.88 | 100.00 | 2.0000 Raingagel | CBMH107 | | | A-12 | 0.04 | 26.67 | 100.00 | 2.0000 Raingagel | CBMH108 | | | A-13 | 0.05 | 33.75 | 100.00 |
2.0000 Raingagel | CBMH109 | | | A-14 | 0.10 | 34.67 | 72.00 | 1.0000 Raingagel | CB05 | | | A-15 | 0.02 | 5.75 | 5.00 | 1.0000 Raingagel | LD301 | | | A-16 | 0.17 | 80.95 | 100.00 | 1.5000 Raingagel | CBMH110 | | | A-17 | 0.12 | 56.28 | 100.00 | 1.5000 Raingagel | CB06 | | | A-18 | 0.17 | 79.07 | 100.00 | 1.5000 Raingage1 | CBMH111 | | | A-19 | 0.11 | 49.77 | 100.00 | 1.5000 Rai | ıngagel | CB07 | |------|------|-------|--------|------------|---------|---------| | A-2 | 0.66 | 41.44 | 64.00 | 1.5000 Rai | ingage1 | POND | | A-3 | 0.03 | 21.54 | 100.00 | 3.5000 Rai | ingage1 | CBMH102 | | A-4 | 0.03 | 21.29 | 100.00 | 2.0000 Rai | ingage1 | CB01 | | A-5 | 0.08 | 48.23 | 100.00 | 2.0000 Rai | ingage1 | CB02 | | A-6 | 0.09 | 40.00 | 100.00 | 2.0000 Rai | ingage1 | CBMH104 | | A-7 | 0.09 | 43.90 | 99.00 | 1.5000 Rai | ingage1 | CBMH105 | | A-8 | 0.02 | 8.50 | 100.00 | 5.0000 Rai | ingage1 | CB03 | | A-9 | 0.12 | 39.33 | 64.00 | 1.0000 Rai | ingage1 | CB04 | | R-1 | 0.09 | 23.00 | 85.00 | 2.0000 Rai | ingage1 | CB08 | | | | | | | | | Node Summary | **** | | | | | | |---------|----------|-----------------|-------|------|--| | Name | Type | Invert
Elev. | Depth | Area | | | OGS | JUNCTION | | | | | | CARP1 | OUTFALL | 0.00 | 0.00 | 0.0 | | | CARP2 | OUTFALL | 0.00 | 0.00 | 0.0 | | | OVLF1 | OUTFALL | 95.19 | 1.00 | 0.0 | | | OVLF2 | OUTFALL | 0.00 | 95.99 | 0.0 | | | OVLF3 | OUTFALL | 0.00 | 96.04 | 0.0 | | | OVLF4 | OUTFALL | 0.00 | 95.84 | 0.0 | | | XSTM1 | OUTFALL | 92.07 | 1.04 | 0.0 | | | XSTM2 | OUTFALL | 92.15 | 0.00 | 0.0 | | | CB01 | STORAGE | 93.02 | 2.98 | 0.0 | | | CB02 | STORAGE | 93.08 | 2.92 | 0.0 | | | CB03 | STORAGE | 93.31 | 1.94 | 0.0 | | | CB04 | STORAGE | 93.29 | 2.61 | 0.0 | | | CB05 | STORAGE | 93.32 | 2.68 | 0.0 | | | CB06 | STORAGE | 93.39 | 2.76 | 0.0 | | | CB07 | STORAGE | 93.50 | 2.65 | 0.0 | | | CB08 | STORAGE | 93.15 | 2.55 | 0.0 | | | CBMH101 | STORAGE | 92.76 | 3.04 | 0.0 | | | CBMH102 | STORAGE | 92.92 | 2.98 | 0.0 | | | CBMH104 | STORAGE | 93.09 | 2.71 | 0.0 | | | CBMH105 | STORAGE | 93.22 | 2.88 | 0.0 | | | CBMH106 | STORAGE | 93.07 | 3.08 | 0.0 | | | CBMH107 | STORAGE | 93.13 | 2.87 | 0.0 | | | | | | | | | | CBMH108 | STORAGE | 93.21 | 2.89 | 0.0 | |---------|---------|-------|------|-----| | CBMH109 | STORAGE | 93.28 | 2.87 | 0.0 | | CBMH110 | STORAGE | 93.25 | 2.75 | 0.0 | | CBMH111 | STORAGE | 93.36 | 2.64 | 0.0 | | LD301 | STORAGE | 93.80 | 2.20 | 0.0 | | POND | STORAGE | 92.90 | 3.00 | 0.0 | | STMH103 | STORAGE | 92.98 | 3.22 | 0.0 | Link Summary | Name | From Node | To Node | Type | Length | %Slope | Roughness | |-----------|-----------|---------|---------|--------|--------|-----------| | 01-102 | CB01 | CBMH102 | CONDUIT | 16.9 | 0.2360 | 0.0130 | | 02-103 | CB02 | STMH103 | CONDUIT | 17.0 | 0.2357 | 0.0130 | | 03-105 | CB03 | CBMH105 | CONDUIT | 10.5 | 0.2855 | 0.0130 | | 04-105 | CB04 | CBMH105 | CONDUIT | 24.7 | 0.2431 | 0.0130 | | 05-109 | CB05 | CBMH109 | CONDUIT | 11.8 | 0.2533 | 0.0130 | | 06-110 | CB06 | CBMH110 | CONDUIT | 33.5 | 0.2391 | 0.0130 | | 07-111 | CB07 | CBMH111 | CONDUIT | 33.5 | 0.2391 | 0.0130 | | 101-OGS | CBMH101 | OGS | CONDUIT | 5.6 | 0.1786 | 0.0130 | | 102-POND | CBMH102 | POND | CONDUIT | 8.9 | 0.2243 | 0.0130 | | 103-102 | STMH103 | CBMH102 | CONDUIT | 19.5 | 0.2569 | 0.0130 | | 104-103 | CBMH104 | STMH103 | CONDUIT | 18.4 | 0.2711 | 0.0130 | | 105-104 | CBMH105 | CBMH104 | CONDUIT | 29.9 | 0.2344 | 0.0130 | | 106-POND | CBMH106 | POND | CONDUIT | 9.3 | 0.2144 | 0.0130 | | 107-106 | CBMH107 | CBMH106 | CONDUIT | 21.2 | 0.2360 | 0.0130 | | 108-107 | CBMH108 | CBMH107 | CONDUIT | 21.4 | 0.2340 | 0.0130 | | 109-108 | CBMH109 | CBMH108 | CONDUIT | 23.4 | 0.2560 | 0.0130 | | 110-10 | CBMH110 | CBMH107 | CONDUIT | 34.3 | 0.2623 | 0.0130 | | 111-110 | CBMH111 | CBMH110 | CONDUIT | 41.6 | 0.2404 | 0.0130 | | 301-05 | LD301 | CB05 | CONDUIT | 41.7 | 1.0080 | 0.0130 | | OGS-XSTM1 | OGS | XSTM1 | CONDUIT | 6.0 | 0.1667 | 0.0130 | | OLFA1 | CBMH101 | OVLF3 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA10 | CBMH106 | CB01 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA11 | CBMH107 | CB02 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA12 | CBMH108 | CBMH107 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA13 | CBMH109 | CB05 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA14 | CB05 | CB04 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFA15 | LD301 | CB05 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFA16 | CBMH110 | CBMH107 | CONDUIT | 1.0 | 1.0001 | 0.0150 | |----------|---------|---------|---------|------|--------|--------| | OLFA17 | CB06 | CBMH110 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA18 | CBMH111 | CBMH110 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA19 | CB07 | CBMH111 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA3 | CBMH102 | CBMH101 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA4 | CB01 | CBMH102 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA5 | CB02 | CBMH104 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA6 | CBMH104 | OVLF2 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA7 | CBMH105 | CBMH104 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA9 | CB04 | OVLF1 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFR1 | CB08 | OVLF4 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | POND-101 | POND | CBMH101 | CONDUIT | 11.7 | 0.9442 | 0.0130 | | 08-XTMS2 | CB08 | XSTM2 | ORIFICE | | | | | OVERFLOW | POND | CARP1 | WEIR | | | | | | | | | | | | | ******* | ***** | | | | | | | |----------|----------|-------|------|------|-------|---------|-------| | | | Full | Full | Hyd. | Max. | No. of | Full | | Conduit | Shape | Depth | Area | Rad. | Width | Barrels | Flow | | 01-102 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.18 | | 02-103 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.13 | | 03-105 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 93.69 | | 04-105 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 86.45 | | 05-109 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.25 | | 06-110 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.73 | | 07-111 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.73 | | 101-OGS | CIRCULAR | 0.20 | 0.03 | 0.05 | 0.20 | 1 | 14.42 | | 102-POND | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 83.04 | | 103-102 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.87 | | 104-103 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 91.29 | | 105-104 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 84.89 | | 106-POND | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 81.18 | | 107-106 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.18 | | 108-107 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 84.82 | | 109-108 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.72 | | 110-10 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 89.80 | | 111-110 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.98 | | 301-05 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 59.71 | | | | | | | | | | | OGS-XSTM1 | CIRCULAR | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 116.40 | |-----------|-----------|------|------|------|------|---|----------| | OLFA1 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA10 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA11 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA12 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA13 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA14 | RECT OPEN | 1.00 | 1.00 | 0.33 | 1.00 | 1 | 1373.69 | | OLFA15 | RECT OPEN | 1.00 | 1.00 | 0.33 | 1.00 | 1 | 1373.69 | | OLFA16 | RECT OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA17 | RECT OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA18 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA19 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA3 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA4 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA5 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA6 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA7 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA9 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 6098.05 | | OLFR1 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | POND-101 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 170.38 | NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options | ******** | ** 3 | | |----------------------------|-----------|----------| | | Volume | Depth | | Runoff Quantity Continuity | hectare-m | mm | | ******* | | | | Initial LID Storage | 0.002 | 1.058 | | Total Precipitation | 0.073 | 33.885 | | Evaporation Loss | 0.000 | 0.000 | | Infiltration Loss | 0.011 | 5.024 | | Surface Runoff | 0.063 | 29.029 | | Final Storage | 0.002 | 1.058 | | Continuity Error (%) | -0.480 | | | | | | | ****** | Volume | Volume | | | | | | Flow Routing Continuity | hectare-m | 10^6 ltr | | ******* | | | | Dry Weather Inflow | 0.000 | 0.000 | | Wet Weather Inflow | 0.063 | 0.627 | | Groundwater Inflow | 0.000 | 0.000 | | RDII Inflow | 0.000 | 0.000 | | External Inflow | 0.000 | 0.002 | | External Outflow | 0.063 | 0.629 | | Flooding Loss | 0.000 | 0.000 | | Evaporation Loss | 0.000 | 0.000 | | Exfiltration Loss | 0.000 | 0.000 | | Initial Stored Volume | 0.022 | 0.218 | | | | | Final Stored Volume 0.022 0.218 Continuity Error (%) -0.019 Link 08-XTMS2 (115) Minimum Time Step : 0.50 sec Average Time Step : 4.51 sec Maximum Time Step : 5.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 2.00 Percent Not Converging : 0.00 Time Step Frequencies : 5.000 - 3.155 sec : 88.74 % 3.155 - 1.991 sec : 6.87 % 1.991 - 1.256 sec : 2.64 % 1.256 - 0.792 sec : 1.19 % 0.792 - 0.500 sec : 0.56 % ----- | Peak Runoff | Total | Total | Total | Total | Imperv | Perv | Total | Total | |------------------------------------|--------|-------|-------|-------|--------|--------|--------|--------| | | Precip | Runon | Evap | Infil | Runoff | Runoff | Runoff | Runoff | | Runoff Coeff Subcatchment LPS | mm | | | | | | | | | | | | | | | | | | |
A-0
0.23 0.215 | 33.88 | 0.00 | 0.00 | 27.08 | 1.69 | 5.60 | 7.29 | 0.00 | | A-1
6.61 1.002 | 33.88 | 0.00 | 0.00 | 0.00 | 33.96 | 0.00 | 33.96 | 0.01 | | A-10 | 33.88 | 0.00 | 0.00 | 0.00 | 34.00 | 0.00 | 34.00 | 0.01 | | 5.55 1.003
A-11
20.27 1.004 | 33.88 | 0.00 | 0.00 | 0.00 | 34.01 | 0.00 | 34.01 | 0.03 | | A-12 | 33.89 | 0.00 | 0.00 | 0.00 | 34.01 | 0.00 | 34.01 | 0.01 | | 9.39 1.004
A-13
11.52 1.004 | 33.88 | 0.00 | 0.00 | 0.00 | 34.00 | 0.00 | 34.00 | 0.02 | | A-14 | 33.88 | 0.00 | 0.00 | 8.24 | 24.54 | 1.32 | 25.86 | 0.03 | | 17.51 0.763
A-15
0.55 0.122 | 33.89 | 0.00 | 0.00 | 29.82 | 1.70 | 2.43 | 4.12 | 0.00 | | A-16
36.26 1.005 | 33.88 | 0.00 | 0.00 | 0.00 | 34.06 | 0.00 | 34.06 | 0.06 | | A-17 | 33.89 | 0.00 | 0.00 | 0.00 | 34.06 | 0.00 | 34.06 | 0.04 | | 25.81 1.005
A-18
36.26 1.005 | 33.88 | 0.00 | 0.00 | 0.00 | 34.06 | 0.00 | 34.06 | 0.06 | | A-19 | 33.88 | 0.00 | 0.00 | 0.00 | 34.06 | 0.00 | 34.06 | 0.04 | | 22.82 1.005
A-2
88.74 0.669 | 33.88 | 0.00 | 0.00 | 11.40 | 21.84 | 0.81 | 22.66 | 0.15 | | A-3 | 33.88 | 0.00 | 0.00 | 0.00 | 33.95 | 0.00 | 33.95 | 0.01 | | 5.97 1.002
A-4 | 33.88 | 0.00 | 0.00 | 0.00 | 34.00 | 0.00 | 34.00 | 0.01 | | 7.04 1.003
A-5
17.49 1.004 | 33.88 | 0.00 | 0.00 | 0.00 | 34.01 | 0.00 | 34.01 | 0.03 | | A-6
18.77 1.005 | 33.89 | 0.00 | 0.00 | 0.00 | 34.05 | 0.00 | 34.05 | 0.03 | | A-7
19 15 0 997 | 33.89 | 0.00 | 0.00 | 0.28 | 33.72 | 0.06 | 33.78 | 0.03 | | A-8
3.63 | 1 003 | 33.89 | 0.00 | 0.00 | 0.00 | 33.98 | 0.00 | 33.98 | 0.01 | |--------------|-------|-------|------|------|-------|-------|------|-------|------| | A-9 | | 33.89 | 0.00 | 0.00 | 10.69 | 21.81 | 1.57 | 23.38 | 0.03 | | 17.95
R-1 | | 33.89 | 0.00 | 0.00 | 4.32 | 28.99 | 0.82 | 29.81 | 0.03 | | 17.84 | 0.880 | | | | | | | | | | | | Average | Maximum | Maximum | Time | of Max | Reported | |---------|----------|---------|---------|---------|------|---------|-----------| | | | Depth | Depth | HGL | Occu | irrence | Max Depth | | Node | Type | Meters | Meters | Meters | days | hr:min | Meters | | OGS | JUNCTION | 0.55 | 0.56 | 93.23 | 0 | 01:53 | 0.56 | | CARP1 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | CARP2 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF1 | OUTFALL | 0.00 | 0.00 | 95.19 | 0 | 00:00 | 0.00 | | OVLF2 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF3 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF4 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | XSTM1 | OUTFALL | 1.15 | 1.15 | 93.22 | | 00:00 | 1.15 | | XSTM2 | OUTFALL | 1.07 | 1.07 | 93.22 | 0 | 00:00 | 1.07 | | CB01 | STORAGE | 0.24 | 0.55 | 93.57 | 0 | 01:53 | 0.55 | | CB02 | STORAGE | 0.18 | 0.49 | 93.57 | 0 | 01:53 | 0.49 | | CB03 | STORAGE | 0.02 | 0.27 | 93.58 | 0 | 01:50 | 0.27 | | CB04 | STORAGE | 0.03 | 0.29 | 93.58 | 0 | 01:50 | 0.29 | | CB05 | STORAGE | 0.03 | 0.48 | 93.80 | 0 | 01:31 | 0.48 | | CB06 | STORAGE | 0.02 | 0.55 | 93.94 | 0 | 01:31 | 0.55 | | CB07 | STORAGE | 0.01 | 0.47 | 93.97 | | 01:31 | 0.47 | | CB08 | STORAGE | 0.07 | 0.34 | 93.49 | 0 | 01:30 | 0.34 | | CBMH101 | STORAGE | 0.50 | 0.79 | 93.55 | 0 | 01:53 | 0.79 | | CBMH102 | STORAGE | 0.34 | 0.65 | 93.57 | 0 | 01:53 | 0.65 | | CBMH104 | STORAGE | 0.17 | 0.48 | 93.57 | 0 | 01:51 | 0.48 | | CBMH105 | STORAGE | 0.04 | 0.36 | 93.58 | | 01:50 | 0.36 | | CBMH106 | STORAGE | 0.19 | 0.56 | 93.63 | 0 | 01:32 | 0.56 | | CBMH107 | STORAGE | 0.14 | 0.66 | 93.79 | 0 | 01:31 | 0.65 | | CBMH108 | STORAGE | 0.06 | 0.58 | 93.79 | 0 | 01:31 | 0.58 | | CBMH109 | STORAGE | 0.03 | 0.52 | 93.80 | 0 | 01:31 | 0.52 | |---------|---------|------|------|-------|---|-------|------| | CBMH110 | STORAGE | 0.04 | 0.68 | 93.93 | 0 | 01:31 | 0.68 | | CBMH111 | STORAGE | 0.03 | 0.61 | 93.97 | 0 | 01:31 | 0.61 | | LD301 | STORAGE | 0.00 | 0.02 | 93.82 | 0 | 01:31 | 0.02 | | POND | STORAGE | 0.36 | 0.67 | 93.57 | 0 | 01:53 | 0.67 | | STMH103 | STORAGE | 0.28 | 0.59 | 93.57 | 0 | 01:53 | 0.59 | | | | Maximum | Maximum | | | Lateral | Total | Flow | |---------|---------|---------|---------|------|--------|----------|----------|-----------| | | | Lateral | Total | Time | of Max | Inflow | Inflow | Balance | | | | Inflow | Inflow | Occu | rrence | Volume | Volume | Error | | Node | | | | - | | 10^6 ltr | | | | OGS | | | | | | 0 | | | | CARP1 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | CARP2 | OUTFALL | 0.23 | 0.23 | 0 | 01:30 | 0.000147 | 0.000147 | 0.000 | | OVLF1 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | OVLF2 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | OVLF3 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | OVLF4 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | XSTM1 | OUTFALL | 0.00 | 53.76 | 0 | 01:53 | 0 | 0.602 | 0.000 | | XSTM2 | OUTFALL | 0.00 | 17.67 | 0 | 01:30 | 0 | 0.0293 | 0.000 | | CB01 | STORAGE | 7.04 | 7.04 | 0 | 01:30 | 0.0112 | 0.0119 | 0.002 | | CB02 | STORAGE | 17.49 | 17.49 | 0 | 01:30 | 0.0279 | 0.0285 | -0.010 | | CB03 | STORAGE | 3.63 | 3.63 | 0 | 01:30 | 0.00578 | 0.00578 | 0.140 | | CB04 | STORAGE | 17.95 | 17.95 | 0 | 01:30 | 0.0276 | 0.0276 | -0.106 | | CB05 | STORAGE | 17.51 | 17.97 | 0 | 01:30 | 0.0269 | 0.0279 | -0.017 | | CB06 | STORAGE | 25.81 | 25.81 | 0 | 01:30 | 0.0413 | 0.0413 | 0.211 | | CB07 | STORAGE | 22.82 | 22.82 | 0 | 01:30 | 0.0365 | 0.0365 | 0.464 | | CB08 | STORAGE | 17.84 | 17.84 | 0 | 01:30 | 0.0275 | 0.0285 | 0.828 | | CBMH101 | STORAGE | 6.61 | 53.76 | 0 | 01:53 | 0.0105 | 0.603 | 0.001 | | CBMH102 | STORAGE | 5.97 | 77.86 | 0 | 01:30 | 0.00952 | 0.149 | 0.002 | | CBMH104 | STORAGE | 18.77 | 52.47 | 0 | 01:30 | 0.03 | 0.0952 | 0.019 | | CBMH105 | STORAGE | 19.15 | 37.99 | 0 | 01:30 | 0.0304 | 0.0639 | 0.002 | | CBMH106 | STORAGE | 5.55 | 156.73 | 0 | 01:30 | 0.00885 | 0.298 | -0.019 | | CBMH107 | STORAGE | 20.27 | 154.49 | 0 | 01:30 | 0.0324 | 0.289 | 0.000 | | CBMH108 | STORAGE | 9.39 | 32.96 | 0 | 01:29 | 0.015 | 0.0617 | -0.040 | |---------|---------|-------|--------|---|-------|---------|---------|--------| | CBMH109 | STORAGE | 11.52 | 26.33 | 0 | 01:30 | 0.0184 | 0.0463 | -0.037 | | CBMH110 | STORAGE | 36.26 | 111.32 | 0 | 01:30 | 0.058 | 0.194 | -0.040 | | CBMH111 | STORAGE | 36.26 | 56.87 | 0 | 01:29 | 0.058 | 0.0943 | -0.260 | | LD301 | STORAGE | 0.55 | 0.55 | 0 | 01:30 | 0.00095 | 0.00095 | -0.764 | | POND | STORAGE | 88.74 | 318.36 | 0 | 01:30 | 0.15 | 0.801 | -0.012 | | STMH103 | STORAGE | 0.00 | 67.39 | 0 | 01:30 | 0 | 0.126 | -0.000 | Node Surcharge Summary Surcharging occurs when water rises above the top of the highest conduit. | Node | Type | Hours
Surcharged | Max. Height Above Crown Meters | Min. Depth
Below Rim
Meters | |------|----------|---------------------|--------------------------------|-----------------------------------| | ogs | JUNCTION | 24.00 | 0.110 | 1.700 | ****** Node Flooding Summary No nodes were flooded. ****** Storage Volume Summary | Storage Unit | Average
Volume
1000 m3 | Avg
Pcnt
Full | Pont | Exfil
Pcnt
Loss | Maximum
Volume
1000 m3 | Max
Pont
Full | Time of Max
Occurrence
days hr:min | Maximum
Outflow
LPS | |----------------------|------------------------------|---------------------|------|-----------------------|------------------------------|---------------------|--|---------------------------| | CB01
CB02
CB03 | 0.000
0.000
0.000 | 0 | 0 | 0 | 0.000
0.000
0.000 | 1
1
0 | 0 01:53
0 01:53
0 01:50 | 6.49
16.89
3.03 | | CB04 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:50 | 16.17 | |---------|-------|----|---|---|-------|----|---|-------|--------| | CB05 | 0.000 | 0 | 0 | 0 | 0.000 | 4 | 0 | 01:31 | 14.91 | | CB06 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:31 | 23.66 | | CB07 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:31 | 20.63 | | CB08 | 0.000 | 0 | 0 | 0 | 0.000 | 2 | 0 | 01:30 | 17.67 | | CBMH101 | 0.001 | 4 | 0 | 0 | 0.001 | 6 | 0 | 01:53 | 53.76 | | CBMH102 | 0.000 | 1 | 0 | 0 | 0.001 | 2 | 0 | 01:53 | 76.31 | | CBMH104 | 0.000 | 1 | 0 | 0 | 0.001 | 3 | 0 | 01:51 | 50.70 | | CBMH105 | 0.000 | 1 | 0 | 0 | 0.000 | 6 | 0 | 01:50 | 34.49 | | CBMH106 | 0.000 | 3 | 0 | 0 | 0.001 | 10 | 0 | 01:32 | 155.59 | | CBMH107 | 0.000 | 1 | 0 | 0 | 0.001 | 2 | 0 | 01:31 | 151.76 | | CBMH108 | 0.000 | 1 | 0 | 0 | 0.001 | 10 | 0 | 01:31 | 31.60 | | CBMH109 | 0.000 | 0 | 0 | 0 | 0.001 | 7 | 0 | 01:31 | 24.04 | | CBMH110 | 0.000 | 0 | 0 | 0 | 0.001 | 2 | 0 | 01:31 | 105.00 | | CBMH111 | 0.000 | 0 | 0 | 0 | 0.001 | 2 | 0 | 01:31 | 51.76 | | LD301 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:31 | 0.51 | | POND | 0.237 | 10 | 0 | 0 | 0.487 | 21 | 0 | 01:53 | 53.00 | | STMH103 | 0.000 | 9 | 0 | 0 | 0.001 | 18 | 0 | 01:53 | 65.63 | ******* Outfall Loading Summary | | Flow | Avg | Max | Total | |--------------|-------|-------|-------|----------| | | Freq | Flow | Flow | Volume | | Outfall Node | Pcnt | LPS | LPS | 10^6 ltr | | | | | | | | CARP1 | 0.00 | 0.00 | 0.00 | 0.000 | | CARP2 | 1.95 | 0.12 | 0.23 | 0.000 | | OVLF1 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF2 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF3 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF4 | 0.00 | 0.00 | 0.00 | 0.000 | | XSTM1 | 60.93 | 14.27 | 53.76 | 0.602 | | XSTM2 | 99.84 | 0.52 | 17.67 | 0.029 | | System | 20.34 | 14.90 | 60.29 | 0.631 | # | | | Maximum | Time | of Max | Maximum | Max/ | Max/ | |-----------|---------|---------|------|--------|---------|------|-------| | | | | | | Veloc | Full | | | Link | Type | | days | hr:min | m/sec | Flow | Depth | | 01-102 | CONDUIT | 6.49 | 0 | 01:27 | 0.06 | 0.08 | 1.00 | | 02-103 | CONDUIT | 16.89 | 0 | 01:27 | 0.16 | 0.20 | 1.00 | | 03-105 | CONDUIT | 3.03 | 0 | 01:31 | 0.29 | 0.03 | 0.75 | | 04-105 | CONDUIT | 16.17 | 0 | 01:30 | 0.36 | 0.19 | 0.84 | | 05-109 | CONDUIT | 14.91 | 0 | 01:30 | 0.43 | 0.17 | 1.00 | | 06-110 | CONDUIT | 23.66 | 0 | 01:29 | 0.42 | 0.28 | 1.00 | | 07-111 | CONDUIT | 20.63 | 0 | 01:29 | 0.54 | 0.24 | 1.00 | |
101-OGS | CONDUIT | 53.76 | 0 | 01:53 | 1.66 | 3.73 | 1.00 | | 102-POND | CONDUIT | 76.31 | 0 | 01:30 | 0.69 | 0.92 | 1.00 | | 103-102 | CONDUIT | 65.63 | 0 | 01:30 | 0.59 | 0.74 | 1.00 | | 104-103 | CONDUIT | 50.70 | 0 | 01:30 | 0.46 | 0.56 | 1.00 | | 105-104 | CONDUIT | 34.49 | 0 | 01:30 | 0.42 | 0.41 | 0.97 | | 106-POND | CONDUIT | 155.59 | 0 | 01:30 | 1.41 | 1.92 | 1.00 | | 107-106 | CONDUIT | 151.76 | 0 | 01:30 | 1.37 | 1.78 | 1.00 | | 108-107 | CONDUIT | 31.60 | 0 | 01:31 | 0.29 | 0.37 | 1.00 | | 109-108 | CONDUIT | 24.04 | 0 | 01:31 | 0.36 | 0.27 | 1.00 | | 110-10 | CONDUIT | 105.00 | 0 | 01:30 | 0.95 | 1.17 | 1.00 | | 111-110 | CONDUIT | 51.76 | 0 | 01:30 | 0.57 | 0.60 | 1.00 | | 301-05 | CONDUIT | 0.51 | 0 | 01:31 | 0.25 | 0.01 | 0.53 | | OGS-XSTM1 | CONDUIT | 53.76 | 0 | 01:53 | 0.34 | 0.46 | 1.00 | | OLFA1 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA10 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA11 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA12 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA13 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA14 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA15 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA16 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA17 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA18 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA19 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA3 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA4 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | |----------|---------|-------|---|-------|------|------|------| | OLFA5 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA6 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA7 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA9 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFR1 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | POND-101 | CONDUIT | 53.00 | 0 | 01:55 | 0.48 | 0.31 | 1.00 | | 08-XTMS2 | ORIFICE | 17.67 | 0 | 01:30 | | | 1.00 | | OVERFLOW | WEIR | 0.00 | 0 | 00:00 | | | 0.00 | | | Adjusted | | | Fract | ion of | Time | in Flo | w Clas | s | | |-----------|----------|------|------|-------|--------|------|--------|--------|------|-------| | | /Actual | | Up | Down | Sub | Sup | Up | Down | Norm | Inlet | | Conduit | Length | Dry | Dry | Dry | Crit | Crit | | | Ltd | Ctrl | | 01-102 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 02-103 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 03-105 | 1.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.82 | 0.01 | 0.00 | | 04-105 | 1.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.71 | 0.08 | 0.00 | | 05-109 | 1.00 | 0.00 | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 | 0.77 | 0.02 | 0.00 | | 06-110 | 1.00 | 0.00 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.83 | 0.04 | 0.00 | | 07-111 | 1.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.91 | 0.03 | 0.00 | | 101-OGS | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 102-POND | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 103-102 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 104-103 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 105-104 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.77 | 0.00 | | 106-POND | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 107-106 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 108-107 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | | 109-108 | 1.00 | 0.00 | 0.00 | 0.00 | 0.61 | 0.00 | 0.00 | 0.39 | 0.48 | 0.00 | | 110-10 | 1.00 | 0.00 | 0.01 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.84 | 0.00 | | 111-110 | 1.00 | 0.00 | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 | 0.74 | 0.09 | 0.00 | | 301-05 | 1.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.87 | 0.10 | 0.00 | | OGS-XSTM1 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA1 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA10 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |----------|------|------|------|------|------|------|------|------|------|------| | OLFA11 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA12 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA13 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA14 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA15 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA16 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA17 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA18 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA19 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA3 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA4 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA5 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA6 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA7 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA9 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFR1 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | POND-101 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | Conduit Surcharge Summary | Conduit | | | | Hours
Above Full
Normal Flow | Capacity | |----------|-------|-------|-------|------------------------------------|----------| | 01-102 | 2.22 | 2.22 | 2.63 | 0.01 | 0.01 | | 02-103 | 1.67 | 1.67 | 2.05 | 0.01 | 0.01 | | 05-109 | 0.11 | 0.11 | 0.13 | 0.01 | 0.01 | | 06-110 | 0.12 | 0.12 | 0.16 | 0.01 | 0.01 | | 07-111 | 0.08 | 0.08 | 0.12 | 0.01 | 0.01 | | 101-OGS | 24.00 | 24.00 | 24.00 | 4.08 | 4.65 | | 102-POND | 3.26 | 3.26 | 3.51 | 0.01 | 0.16 | | 103-102 | 2.64 | 2.64 | 3.15 | 0.01 | 0.01 | | 104-103 | 1.60 | 1.60 | 2.05 | 0.01 | 0.01 | | 105-104 | 0.01 | 0.01 | 1.02 | 0.01 | 0.01 | | 106-POND | 1.73 | 1.81 | 1.90 | 0.23 | 0.21 | | 107-106 | 1.30 | 1.31 | 1.72 | 0.21 | 0.19 | | 108-107 | 0.31 | 0.31 | 1.03 | 0.01 | 0.01 | |-----------|-------|-------|-------|------|------| | 109-108 | 0.14 | 0.14 | 0.27 | 0.01 | 0.01 | | 110-10 | 0.23 | 0.23 | 1.03 | 0.10 | 0.13 | | 111-110 | 0.14 | 0.14 | 0.21 | 0.01 | 0.01 | | 301-05 | 0.01 | 0.01 | 0.16 | 0.01 | 0.01 | | OGS-XSTM1 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | POND-101 | 3.51 | 3.51 | 24.00 | 0.01 | 0.01 | Analysis begun on: Mon May 16 10:14:02 2022 Analysis ended on: Mon May 16 10:14:03 2022 Total elapsed time: 00:00:01 ## Chicago 4 Hour 5 Year Event PCSWMM Results EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) ************** Element Count Number of rain gages 1 Number of subcatchments 21 Number of nodes 30 Number of links 41 Number of pollutants 0 Number of land uses 0 | | | | Data | necoraring | |-----------|------|--------|-----------|------------| | Name | Data | Source | Type | Interval | | | | | | | | Raingage1 | C4-5 | | INTENSITY | 10 min. | | Name | Area | Width | %Imperv | %Slope Rain Gage | Outlet | | |------|------|-------|---------|------------------|---------|--| | A-0 | 0.00 | 5.00 | 5.00 | 2.0000 Raingagel | CARP2 | | | A-1 | 0.03 | 22.96 | 100.00 | 3.0000 Raingagel | CBMH101 | | | A-10 | 0.03 | 15.29 | 100.00 | 2.5000 Raingagel | CBMH106 | | | A-11 | 0.10 | 55.88 | 100.00 | 2.0000 Raingagel | CBMH107 | | | A-12 | 0.04 | 26.67 | 100.00 | 2.0000 Raingagel | CBMH108 | | | A-13 | 0.05 | 33.75 | 100.00 | 2.0000 Raingagel | CBMH109 | | | A-14 | 0.10 | 34.67 | 72.00 | 1.0000 Raingagel | CB05 | | | A-15 | 0.02 | 5.75 | 5.00 | 1.0000 Raingagel | LD301 | | | A-16 | 0.17 | 80.95 | 100.00 | 1.5000 Raingagel | CBMH110 | | | A-17 | 0.12 | 56.28 | 100.00 | 1.5000 Raingagel | CB06 | | | A-18 | 0.17 | 79.07 | 100.00 | 1.5000 Raingagel | CBMH111 | | | A-19 | 0.11 | 49.77 | 100.00 | 1.5000 | Raingagel | CB07 | |------|------|-------|--------|--------|-----------|---------| | A-2 | 0.66 | 41.44 | 64.00 | 1.5000 | Raingagel | POND | | A-3 | 0.03 | 21.54 | 100.00 | 3.5000 | Raingage1 | CBMH102 | | A-4 | 0.03 | 21.29 | 100.00 | 2.0000 | Raingage1 | CB01 | | A-5 | 0.08 | 48.23 | 100.00 | 2.0000 | Raingage1 | CB02 | | A-6 | 0.09 | 40.00 | 100.00 | 2.0000 | Raingage1 | CBMH104 | | A-7 | 0.09 | 43.90 | 99.00 | 1.5000 | Raingagel | CBMH105 | | A-8 | 0.02 | 8.50 | 100.00 | 5.0000 | Raingagel | CB03 | | A-9 | 0.12 | 39.33 | 64.00 | 1.0000 | Raingagel | CB04 | | R-1 | 0.09 | 23.00 | 85.00 | 2.0000 | Raingagel | CB08 | Node Summary | | | Invert | Max. | Ponded | External | |---------|----------|--------|-------|--------|----------| | Name | Type | | | Area | | | OGS | JUNCTION | 92.67 | | | | | CARP1 | OUTFALL | 0.00 | 0.00 | 0.0 | | | CARP2 | OUTFALL | 0.00 | 0.00 | 0.0 | | | OVLF1 | OUTFALL | 95.19 | 1.00 | 0.0 | | | OVLF2 | OUTFALL | 0.00 | 95.99 | 0.0 | | | OVLF3 | OUTFALL | 0.00 | 96.04 | 0.0 | | | OVLF4 | OUTFALL | 0.00 | 95.84 | 0.0 | | | XSTM1 | OUTFALL | 92.07 | 1.04 | 0.0 | | | XSTM2 | OUTFALL | 92.15 | 0.00 | 0.0 | | | CB01 | STORAGE | 93.02 | 2.98 | 0.0 | | | CB02 | STORAGE | 93.08 | 2.92 | 0.0 | | | CB03 | STORAGE | 93.31 | 1.94 | 0.0 | | | CB04 | STORAGE | 93.29 | 2.61 | 0.0 | | | CB05 | STORAGE | 93.32 | 2.68 | 0.0 | | | CB06 | STORAGE | 93.39 | 2.76 | 0.0 | | | CB07 | STORAGE | 93.50 | 2.65 | 0.0 | | | CB08 | STORAGE | 93.15 | 2.55 | 0.0 | | | CBMH101 | STORAGE | 92.76 | 3.04 | 0.0 | | | CBMH102 | STORAGE | 92.92 | 2.98 | 0.0 | | | CBMH104 | STORAGE | 93.09 | 2.71 | 0.0 | | | CBMH105 | STORAGE | 93.22 | 2.88 | 0.0 | | | CBMH106 | STORAGE | 93.07 | 3.08 | 0.0 | | | CBMH107 | STORAGE
| 93.13 | 2.87 | 0.0 | | | CBMH108 | STORAGE | 93.21 | 2.89 | 0.0 | |---------|---------|-------|------|-----| | CBMH109 | STORAGE | 93.28 | 2.87 | 0.0 | | CBMH110 | STORAGE | 93.25 | 2.75 | 0.0 | | CBMH111 | STORAGE | 93.36 | 2.64 | 0.0 | | LD301 | STORAGE | 93.80 | 2.20 | 0.0 | | POND | STORAGE | 92.90 | 3.00 | 0.0 | | STMH103 | STORAGE | 92.98 | 3.22 | 0.0 | Link Summary | Name | From Node | To Node | Type | Length | %Slope | Roughness | |-----------|-----------|---------|---------|--------|--------|-----------| | 01-102 | CB01 | CBMH102 | CONDUIT | 16.9 | 0.2360 | 0.0130 | | 02-103 | CB02 | STMH103 | CONDUIT | 17.0 | 0.2357 | 0.0130 | | 03-105 | CB03 | CBMH105 | CONDUIT | 10.5 | 0.2855 | 0.0130 | | 04-105 | CB04 | CBMH105 | CONDUIT | 24.7 | 0.2431 | 0.0130 | | 05-109 | CB05 | CBMH109 | CONDUIT | 11.8 | 0.2533 | 0.0130 | | 06-110 | CB06 | CBMH110 | CONDUIT | 33.5 | 0.2391 | 0.0130 | | 07-111 | CB07 | CBMH111 | CONDUIT | 33.5 | 0.2391 | 0.0130 | | 101-OGS | CBMH101 | OGS | CONDUIT | 5.6 | 0.1786 | 0.0130 | | 102-POND | CBMH102 | POND | CONDUIT | 8.9 | 0.2243 | 0.0130 | | 103-102 | STMH103 | CBMH102 | CONDUIT | 19.5 | 0.2569 | 0.0130 | | 104-103 | CBMH104 | STMH103 | CONDUIT | 18.4 | 0.2711 | 0.0130 | | 105-104 | CBMH105 | CBMH104 | CONDUIT | 29.9 | 0.2344 | 0.0130 | | 106-POND | CBMH106 | POND | CONDUIT | 9.3 | 0.2144 | 0.0130 | | 107-106 | CBMH107 | CBMH106 | CONDUIT | 21.2 | 0.2360 | 0.0130 | | 108-107 | CBMH108 | CBMH107 | CONDUIT | 21.4 | 0.2340 | 0.0130 | | 109-108 | CBMH109 | CBMH108 | CONDUIT | 23.4 | 0.2560 | 0.0130 | | 110-10 | CBMH110 | CBMH107 | CONDUIT | 34.3 | 0.2623 | 0.0130 | | 111-110 | CBMH111 | CBMH110 | CONDUIT | 41.6 | 0.2404 | 0.0130 | | 301-05 | LD301 | CB05 | CONDUIT | 41.7 | 1.0080 | 0.0130 | | OGS-XSTM1 | OGS | XSTM1 | CONDUIT | 6.0 | 0.1667 | 0.0130 | | OLFA1 | CBMH101 | OVLF3 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA10 | CBMH106 | CB01 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA11 | CBMH107 | CB02 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA12 | CBMH108 | CBMH107 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA13 | CBMH109 | CB05 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA14 | CB05 | CB04 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFA15 | LD301 | CB05 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFA16 | CBMH110 | CBMH107 | CONDUIT | 1.0 | 1.0001 | 0.0150 | |----------|---------|---------|---------|------|--------|--------| | OLFA17 | CB06 | CBMH110 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA18 | CBMH111 | CBMH110 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA19 | CB07 | CBMH111 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA3 | CBMH102 | CBMH101 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA4 | CB01 | CBMH102 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA5 | CB02 | CBMH104 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA6 | CBMH104 | OVLF2 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA7 | CBMH105 | CBMH104 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA9 | CB04 | OVLF1 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFR1 | CB08 | OVLF4 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | POND-101 | POND | CBMH101 | CONDUIT | 11.7 | 0.9442 | 0.0130 | | 08-XTMS2 | CB08 | XSTM2 | ORIFICE | | | | | OVERFLOW | POND | CARP1 | WEIR | | | | | | | | | | | | | ******* | ***** | | | | | | | |----------|----------|-------|------|------|-------|---------|-------| | | | Full | Full | Hyd. | Max. | No. of | Full | | Conduit | Shape | Depth | Area | Rad. | Width | Barrels | Flow | | 01-102 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.18 | | 02-103 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.13 | | 03-105 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 93.69 | | 04-105 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 86.45 | | 05-109 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.25 | | 06-110 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.73 | | 07-111 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.73 | | 101-OGS | CIRCULAR | 0.20 | 0.03 | 0.05 | 0.20 | 1 | 14.42 | | 102-POND | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 83.04 | | 103-102 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.87 | | 104-103 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 91.29 | | 105-104 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 84.89 | | 106-POND | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 81.18 | | 107-106 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.18 | | 108-107 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 84.82 | | 109-108 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.72 | | 110-10 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 89.80 | | 111-110 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.98 | | 301-05 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 59.71 | | | | | | | | | | | OGS-XSTM1 | CIRCULAR | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 116.40 | |-----------|-----------|------|------|------|------|---|----------| | OLFA1 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA10 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA11 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA12 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA13 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA14 | RECT OPEN | 1.00 | 1.00 | 0.33 | 1.00 | 1 | 1373.69 | | OLFA15 | RECT OPEN | 1.00 | 1.00 | 0.33 | 1.00 | 1 | 1373.69 | | OLFA16 | RECT OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA17 | RECT OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA18 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA19 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA3 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA4 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA5 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA6 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA7 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA9 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 6098.05 | | OLFR1 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | POND-101 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 170.38 | NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units LPS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO | ******** | Volume | Depth | |----------------------------|-----------|----------| | Runoff Quantity Continuity | hectare-m | mm | | ******** | | | | Initial LID Storage | 0.002 | 1.058 | | Total Precipitation | 0.097 | 45.162 | | Evaporation Loss | 0.000 | 0.000 | | Infiltration Loss | 0.013 | 5.847 | | Surface Runoff | 0.085 | 39.542 | | Final Storage | 0.002 | 1.058 | | Continuity Error (%) | -0.493 | | | | | | | | | | | ******* | Volume | Volume | | Flow Routing Continuity | hectare-m | 10^6 ltr | | ******* | | | | Dry Weather Inflow | 0.000 | 0.000 | | Wet Weather Inflow | 0.085 | 0.854 | | Groundwater Inflow | 0.000 | 0.000 | | RDII Inflow | 0.000 | 0.000 | | External Inflow | 0.000 | 0.002 | | External Outflow | 0.086 | 0.856 | | Flooding Loss | 0.000 | 0.000 | | Evaporation Loss | 0.000 | 0.000 | | Exfiltration Loss | 0.000 | 0.000 | | Initial Stored Volume | 0.040 | 0.397 | | | | | 0.040 Final Stored Volume 0.397 Continuity Error (%) ******* Time-Step Critical Elements Link 106-POND (5.50%) ******* Highest Flow Instability Indexes Link 08-XTMS2 (121) Link 02-103 (2) Link 01-102 (1) Link 03-105 (1) Routing Time Step Summary Minimum Time Step 0.52 sec 5.000 - 3.155 sec : 94.29 % 3.155 - 1.991 sec : 0.38 % 1.991 - 1.256 sec : 3.66 % 1.256 - 0.792 sec : 1.66 % 0.792 - 0.500 sec : 0.01 % Subcatchment Runoff Summary ______ | Peak Runoff | Total | Total | Total | Total | Imperv | Perv | Total | Total | |-----------------------------------|--------|-------|-------|-------|--------|--------|--------|----------| | | Precip | Runon | Evap | Infil | Runoff | Runoff | Runoff | Runoff | | LPS | mm | | | | | | | 10^6 ltr | | | | | | | | | | | | A-0
0.44 0.341 | 45.16 | 0.00 | 0.00 | 30.88 | 2.26 | 13.13 | 15.39 | 0.00 | | A-1
8.97 1.002 | 45.16 | 0.00 | 0.00 | 0.00 | 45.24 | 0.00 | 45.24 | 0.01 | | A-10
7.52 1.003 | 45.16 | 0.00 | 0.00 | 0.00 | 45.28 | 0.00 | 45.28 | 0.01 | | A-11
27.49 1.003 | 45.16 | 0.00 | 0.00 | 0.00 | 45.30 | 0.00 | 45.30 | 0.04 | | A-12
12.73 1.003 | 45.16 | 0.00 | 0.00 | 0.00 | 45.30 | 0.00 | 45.30 | 0.02 | | A-13
15.63 1.003 | 45.16 | 0.00 | 0.00 | 0.00 | 45.29 | 0.00 | 45.29 | 0.02 | | A-14
25.70 0.800 | 45.16 | 0.00 | 0.00 | 9.38 | 32.69 | 3.42 | 36.11 | 0.04 | | A-15
1.31 0.234 | 45.16 | 0.00 | 0.00 | 34.72 | 2.26 | 8.33 | 10.59 | 0.00 | | A-16
49.20 1.005 | 45.16 | 0.00 | 0.00 | 0.00 | 45.36 | 0.00 | 45.36 | 0.08 | | A-17
35.02 1.005 | 45.16 | 0.00 | 0.00 | 0.00 | 45.37 | 0.00 | 45.37 | 0.05 | | A-18
49.20 1.005 | 45.16 | 0.00 | 0.00 | 0.00 | 45.37 | 0.00 | 45.37 | 0.08 | | A-19
30.96 1.005 | 45.16 | 0.00 | 0.00 | 0.00 | 45.37 | 0.00 | 45.37 | 0.05 | | A-2
127.54 0.710 | 45.16 | 0.00 | 0.00 | 13.37 | 29.13 | 2.93 | 32.06 | 0.21 | | A-3
8.10 1.002 | 45.16 | 0.00 | 0.00 | 0.00 | 45.23 | 0.00 | 45.23 | 0.01 | | A-4
9.55 1.003 | 45.16 | 0.00 | 0.00 | 0.00 | 45.29 | 0.00 | 45.29 | 0.01 | | A-5
23.73 1.003 | 45.16 | 0.00 | 0.00 | 0.00 | 45.30 | 0.00 | 45.30 | 0.04 | | A-6 | 45.16 | 0.00 | 0.00 | 0.00 | 45.35 | 0.00 | 45.35 | 0.04 | | 25.47 1.004
A-7
26 nn n 998 | 45.16 | 0.00 | 0.00 | 0.32 | 44.90 | 0.17 | 45.08 | 0.04 | | A-8
4.92 | 1 002 | 45.16 | 0.00 | 0.00 | 0.00 | 45.26 | 0.00 | 45.26 | 0.01 | |--------------|-------|-------|------|------|-------|-------|------|-------|------| | A-9 | | 45.16 | 0.00 | 0.00 | 12.18 | 29.05 | 4.23 | 33.28 | 0.04 | | 26.90
R-1 | 0.737 | 45.16 | 0.00 | 0.00 | 4.92 | 38.61 | 1.98 | 40.60 | 0.04 | | 25.26 | 0.899 | | | | | | | | | | Node | Туре | Depth | Maximum
Depth
Meters | HGL | 0ccu | irrence | Reported
Max Depth
Meters | |---------|----------|-------|----------------------------|-------|------
---------|---------------------------------| | OGS | JUNCTION | 0.76 | 0.77 | 93.44 | 0 | 01:59 | 0.77 | | CARP1 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | CARP2 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF1 | OUTFALL | 0.00 | 0.00 | 95.19 | 0 | 00:00 | 0.00 | | OVLF2 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF3 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF4 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | XSTM1 | OUTFALL | 1.36 | 1.36 | 93.43 | 0 | 00:00 | 1.36 | | XSTM2 | OUTFALL | 1.28 | 1.28 | 93.43 | 0 | 00:00 | 1.28 | | CB01 | STORAGE | 0.46 | 0.86 | 93.88 | 0 | 01:59 | 0.86 | | CB02 | STORAGE | 0.40 | 0.81 | 93.89 | 0 | 01:56 | 0.81 | | CB03 | STORAGE | 0.17 | 0.65 | 93.96 | 0 | 01:30 | 0.65 | | CB04 | STORAGE | 0.19 | 0.67 | 93.96 | 0 | 01:30 | 0.67 | | CB05 | STORAGE | 0.17 | 1.02 | 94.34 | 0 | 01:31 | 1.02 | | CB06 | STORAGE | 0.10 | 1.19 | 94.58 | 0 | 01:31 | 1.19 | | CB07 | STORAGE | 0.05 | 1.14 | 94.64 | 0 | 01:31 | 1.14 | | CB08 | STORAGE | 0.28 | 0.81 | 93.96 | 0 | 01:30 | 0.81 | | CBMH101 | STORAGE | 0.72 | 1.10 | 93.86 | 0 | 01:59 | 1.10 | | CBMH102 | STORAGE | 0.56 | 0.96 | 93.88 | 0 | 01:59 | 0.96 | | CBMH104 | STORAGE | 0.39 | 0.83 | 93.92 | 0 | 01:30 | 0.83 | | CBMH105 | STORAGE | 0.26 | 0.74 | 93.96 | 0 | 01:30 | 0.74 | | CBMH106 | STORAGE | 0.41 | 0.97 | 94.04 | 0 | 01:32 | 0.97 | | CBMH107 | STORAGE | 0.36 | 1.18 | 94.31 | 0 | 01:31 | 1.18 | | CBMH108 | STORAGE | 0.28 | 1.12 | 94.33 | 0 | 01:31 | 1.12 | | CBMH109 | STORAGE | 0.21 | 1.06 | 94.34 | 0 | 01:31 | 1.06 | |---------|---------|------|------|-------|---|-------|------| | CBMH110 | STORAGE | 0.24 | 1.32 | 94.57 | 0 | 01:31 | 1.32 | | CBMH111 | STORAGE | 0.13 | 1.27 | 94.63 | 0 | 01:31 | 1.27 | | LD301 | STORAGE | 0.01 | 0.54 | 94.34 | 0 | 01:31 | 0.54 | | POND | STORAGE | 0.58 | 0.98 | 93.88 | 0 | 01:59 | 0.98 | | STMH103 | STORAGE | 0.50 | 0.91 | 93.89 | 0 | 01:56 | 0.91 | | | | Maximum | Maximum | | | Lateral | Total | Flow | |---------|---------|---------|---------|------|--------|----------|----------|-----------| | | | Lateral | Total | Time | of Max | Inflow | Inflow | Balance | | | | Inflow | Inflow | Occu | rrence | Volume | Volume | Error | | Node | | | | | | | 10^6 ltr | | | OGS | | | | | | | 0.819 | | | CARP1 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | CARP2 | OUTFALL | 0.44 | 0.44 | 0 | 01:30 | 0.000308 | 0.000308 | 0.000 | | OVLF1 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | OVLF2 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | OVLF3 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | OVLF4 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | XSTM1 | OUTFALL | 0.00 | 60.96 | 0 | 02:00 | 0 | 0.819 | 0.000 | | XSTM2 | OUTFALL | 0.00 | 24.90 | 0 | 01:30 | 0 | 0.0391 | 0.000 | | CB01 | STORAGE | 9.55 | 9.55 | 0 | 01:30 | 0.015 | 0.0156 | -0.003 | | CB02 | STORAGE | 23.73 | 23.73 | 0 | 01:30 | 0.0372 | 0.0377 | -0.003 | | CB03 | STORAGE | 4.92 | 4.92 | 0 | 01:30 | 0.0077 | 0.00818 | -0.013 | | CB04 | STORAGE | 26.90 | 26.90 | 0 | 01:30 | 0.0393 | 0.0402 | -0.007 | | CB05 | STORAGE | 25.70 | 25.70 | 0 | 01:30 | 0.0376 | 0.0424 | 0.040 | | CB06 | STORAGE | 35.02 | 35.02 | 0 | 01:30 | 0.0549 | 0.0553 | -0.018 | | CB07 | STORAGE | 30.96 | 30.96 | 0 | 01:30 | 0.0486 | 0.0486 | -0.069 | | CB08 | STORAGE | 25.26 | 25.26 | 0 | 01:30 | 0.0374 | 0.0385 | 0.999 | | CBMH101 | STORAGE | 8.97 | 60.96 | 0 | 01:59 | 0.014 | 0.819 | 0.000 | | CBMH102 | STORAGE | 8.10 | 113.57 | 0 | 01:30 | 0.0127 | 0.201 | 0.002 | | CBMH104 | STORAGE | 25.47 | 78.45 | 0 | 01:30 | 0.0399 | 0.134 | -0.000 | | CBMH105 | STORAGE | 26.00 | 56.11 | 0 | 01:30 | 0.0406 | 0.092 | 0.003 | | CBMH106 | STORAGE | 7.52 | 208.22 | 0 | 01:31 | 0.0118 | 0.402 | 0.001 | | CBMH107 | STORAGE | 27.49 | 205.56 | 0 | 01:30 | 0.0431 | 0.391 | -0.002 | | CBMH108 | STORAGE | 12.73 | 44.52 | 0 | 01:30 | 0.0199 | 0.0875 | 0.001 | |---------|---------|--------|--------|---|-------|---------|---------|--------| | CBMH109 | STORAGE | 15.63 | 35.71 | 0 | 01:30 | 0.0245 | 0.0664 | -0.002 | | CBMH110 | STORAGE | 49.20 | 148.71 | 0 | 01:30 | 0.0772 | 0.261 | 0.002 | | CBMH111 | STORAGE | 49.20 | 76.49 | 0 | 01:30 | 0.0772 | 0.127 | -0.004 | | LD301 | STORAGE | 1.31 | 13.88 | 0 | 01:26 | 0.00244 | 0.00418 | 0.102 | | POND | STORAGE | 127.54 | 442.48 | 0 | 01:30 | 0.213 | 1.18 | -0.001 | | STMH103 | STORAGE | 0.00 | 99.08 | 0 | 01:30 | 0 | 0.173 | 0.000 | Node Surcharge Summary Surcharging occurs when water rises above the top of the highest conduit. | | | | Max. Height | Min. Depth | |------|----------|------------|-------------|------------| | | | Hours | Above Crown | Below Rim | | Node | Type | Surcharged | Meters | Meters | | | | | | | | OGS | JUNCTION | 24.00 | 0.323 | 1.487 | ******* Node Flooding Summary No nodes were flooded. ****** Storage Volume Summary | Storage Unit | Average
Volume
1000 m3 | Avg
Pcnt
Full | Evap
Pcnt
Loss | | Maximum
Volume
1000 m3 | Max
Pcnt
Full | Time of Max
Occurrence
days hr:min | Maximum
Outflow
LPS | |--------------|------------------------------|---------------------|----------------------|---|------------------------------|---------------------|--|---------------------------| | CB01
CB02 | 0.000 | 1 | 0 | 0 | 0.000 | 1 | 0 01:59
0 01:56 | 8.82
22.97 | | CB03 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 01:30 | 4.49 | | CB04 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:30 | 25.87 | |---------|-------|----|---|---|-------|----|---|-------|--------| | CB05 | 0.000 | 1 | 0 | 0 | 0.000 | 9 | 0 | 01:31 | 22.29 | | CB06 | 0.000 | 0 | 0 | 0 | 0.000 | 3 | 0 | 01:31 | 31.60 | | CB07 | 0.000 | 0 | 0 | 0 | 0.000 | 3 | 0 | 01:31 | 27.33 | | CB08 | 0.000 | 2 | 0 | 0 | 0.000 | 4 | 0 | 01:30 | 24.90 | | CBMH101 | 0.001 | 6 | 0 | 0 | 0.001 | 9 | 0 | 01:59 | 60.96 | | CBMH102 | 0.001 | 2 | 0 | 0 | 0.001 | 3 | 0 | 01:59 | 111.64 | | CBMH104 | 0.000 | 2 | 0 | 0 | 0.001 | 5 | 0 | 01:30 | 76.23 | | CBMH105 | 0.000 | 4 | 0 | 0 | 0.001 | 12 | 0 | 01:30 | 53.26 | | CBMH106 | 0.000 | 7 | 0 | 0 | 0.001 | 18 | 0 | 01:32 | 206.82 | | CBMH107 | 0.000 | 1 | 0 | 0 | 0.001 | 4 | 0 | 01:31 | 201.74 | | CBMH108 | 0.000 | 5 | 0 | 0 | 0.001 | 20 | 0 | 01:31 | 44.15 | | CBMH109 | 0.000 | 3 | 0 | 0 | 0.001 | 14 | 0 | 01:31 | 33.73 | | CBMH110 | 0.000 | 1 | 0 | 0 | 0.002 | 5 | 0 | 01:31 | 138.96 | | CBMH111 | 0.000 | 0 | 0 | 0 | 0.001 | 5 | 0 | 01:31 | 68.51 | | LD301 | 0.000 | 0 | 0 | 0 | 0.001 | 25 | 0 | 01:31 | 5.61 | | POND | 0.411 | 18 | 0 | 0 | 0.788 | 34 | 0 | 01:59 | 60.09 | | STMH103 | 0.001 | 16 | 0 | 0 | 0.001 | 28 | 0 | 01:56 | 96.87 | ****** Outfall Loading Summary | | Flow | Avg | Max | Total | |--------------|-------|-------|-------|----------| | | Freq | Flow | Flow | Volume | | Outfall Node | Pcnt | LPS | LPS | 10^6 ltr | | CARP1 | 0.00 | 0.00 | 0.00 | 0.000 | | CARP2 | 2.05 | 0.16 | 0.44 | 0.000 | | OVLF1 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF2 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF3 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF4 | 0.00 | 0.00 | 0.00 | 0.000 | | XSTM1 | 70.61 | 13.34 | 60.96 | 0.819 | | XSTM2 | 99.57 | 0.48 | 24.90 | 0.039 | | System | 21.53 | 13.97 | 72.78 | 0.858 | # | Link | Type | Flow | Occu | of Max
rrence
hr:min | | Max/
Full
Flow | Full | |-----------|---------|--------|------|----------------------------|------|----------------------|------| | 01-102 | CONDUIT | 8.82 | 0 | 01:29 | 0.08 | 0.10 | 1.00 | | 02-103 | CONDUIT | 22.97 | 0 | 01:30 | 0.21 | 0.27 | 1.00 | | 03-105 | CONDUIT | 4.49 | 0 | 01:30 | 0.04 | 0.05 | 1.00 | | 04-105 | CONDUIT | 25.87 | 0 | 01:30 | 0.23 | 0.30 | 1.00 | | 05-109 | CONDUIT | 21.81 | 0 | 01:32 | 0.20 | 0.25 | 1.00 | | 06-110 | CONDUIT | 31.60 | 0 | 01:30 | 0.29 | 0.37 | 1.00 | | 07-111 | CONDUIT | 27.33 | 0 | 01:30 | 0.33 | 0.32 | 1.00 | | 101-OGS | CONDUIT | 60.96 | 0 | 01:59 | 1.88 | 4.23 | 1.00 | | 102-POND | CONDUIT | 111.64 | 0 | 01:30 | 1.01 | 1.34 | 1.00 | | 103-102 | CONDUIT | 96.87 | 0 | 01:30 | 0.88 | 1.09 | 1.00 | | 104-103 | CONDUIT | 76.23 | 0 | 01:30 | 0.69 | 0.84 | 1.00 | | 105-104 | CONDUIT | 53.26 | 0 | 01:30 | 0.48 | 0.63 | 1.00 | | 106-POND | CONDUIT | 206.82 | 0 | 01:31 | 1.87 | 2.55 | 1.00 | | 107-106 | CONDUIT | 201.74 | 0 | 01:31 | 1.83 | 2.37 | 1.00 | | 108-107 | CONDUIT | 44.15 | 0 | 01:32 | 0.40 | 0.52 | 1.00 | | 109-108 | CONDUIT | 33.73 | 0 | 01:32 | 0.31 | 0.38 | 1.00 | | 110-10 | CONDUIT | 138.96 | 0 | 01:30 | 1.26 | 1.55 | 1.00 | | 111-110 | CONDUIT | 68.51 | 0 | 01:30 | 0.62 | 0.80 | 1.00 | | 301-05 | CONDUIT | 13.22 | 0 | 01:26 | 0.33 | 0.22 | 1.00 | | OGS-XSTM1 | CONDUIT | 60.96 | 0 | 02:00 | 0.38 | 0.52 | 1.00 | | OLFA1 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA10 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA11 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA12 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA13 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA14 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA15 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA16 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA17 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA18 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA19 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA3 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA4 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | |----------|---------|-------|---|-------|------|------|------| | OLFA5 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA6 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA7 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA9 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFR1 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | POND-101 | CONDUIT | 60.09 | 0 | 02:04 | 0.54 | 0.35 | 1.00 | | 08-XTMS2 | ORIFICE | 24.90 | 0 | 01:30 | | | 1.00 | | OVERFLOW | WEIR | 0.00 | 0 |
00:00 | | | 0.00 | | | Adjusted
/Actual | |
qu | Fract
Down | ion of | Time
Sup | in Flo | w Clas | s
Norm | Inlet | |-----------|---------------------|------|--------|---------------|--------|-------------|--------|--------|-----------|-------| | Conduit | Length | Dry | Dry | Dry | Crit | Crit | Crit | Crit | Ltd | Ctrl | | 01-102 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 02-103 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 03-105 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 04-105 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 05-109 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 06-110 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 07-111 | 1.00 | 0.00 | 0.19 | 0.00 | 0.77 | 0.00 | 0.00 | 0.04 | 0.80 | 0.00 | | 101-OGS | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 102-POND | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 103-102 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 104-103 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 105-104 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 106-POND | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 107-106 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 108-107 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 109-108 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 110-10 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 111-110 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 301-05 | 1.00 | 0.00 | 0.71 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | 0.93 | 0.00 | | OGS-XSTM1 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA1 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA10 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |----------|------|------|------|------|------|------|------|------|------|------| | OLFA11 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA12 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA13 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA14 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA15 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA16 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA17 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA18 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA19 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA3 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA4 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA5 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA6 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA7 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA9 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFR1 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | POND-101 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | Conduit Surcharge Summary | Conduit | | Hours Full
Upstream | | Hours
Above Full
Normal Flow | Hours
Capacity
Limited | |----------|-------|------------------------|-------|------------------------------------|------------------------------| | 01-102 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 02-103 | 5.12 | 5.12 | 24.00 | 0.01 | 0.01 | | 03-105 | 2.52 | 2.52 | 2.79 | 0.01 | 0.01 | | 04-105 | 2.70 | 2.70 | 3.18 | 0.01 | 0.01 | | 05-109 | 2.45 | 2.45 | 2.72 | 0.01 | 0.01 | | 06-110 | 1.88 | 1.88 | 2.55 | 0.01 | 0.01 | | 07-111 | 0.91 | 0.91 | 1.63 | 0.01 | 0.01 | | 101-OGS | 24.00 | 24.00 | 24.00 | 5.10 | 5.74 | | 102-POND | 24.00 | 24.00 | 24.00 | 0.15 | 0.21 | | 103-102 | 24.00 | 24.00 | 24.00 | 0.10 | 0.10 | | 104-103 | 4.84 | 4.84 | 24.00 | 0.01 | 0.11 | | 105-104 | 3.26 | 3.26 | 3.90 | 0.01 | 0.01 | | 106-POND | 5.54 | 5.54 | 24.00 | 0.31 | 0.41 | |-----------|-------|-------|-------|------|------| | 107-106 | 4.20 | 4.20 | 5.13 | 0.29 | 0.29 | | 108-107 | 3.35 | 3.35 | 3.83 | 0.01 | 0.01 | | 109-108 | 2.80 | 2.80 | 3.27 | 0.01 | 0.01 | | 110-10 | 3.05 | 3.05 | 3.83 | 0.19 | 0.21 | | 111-110 | 2.13 | 2.13 | 2.97 | 0.01 | 0.01 | | 301-05 | 0.17 | 0.17 | 3.00 | 0.01 | 0.01 | | OGS-XSTM1 | 24.00 | 24.00 | 24.00 | 0.01 | 1.48 | | POND-101 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | | | | | | | Analysis begun on: Mon May 16 10:16:37 2022 Analysis ended on: Mon May 16 10:16:38 2022 Total elapsed time: 00:00:01 ### Chicago 4 Hour 25mm Event PCSWMM Results EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) *********** Element Count Number of rain gages 1 Number of subcatchments 21 Number of nodes 30 Number of links 41 Number of pollutants 0 Number of land uses 0 Name Data Source Type Interval Raingage1 C4-25mm INTENSITY 10 min. | Name | Area | Width | %Imperv | %Slope Rain Gage | Outlet | | |------|------|-------|---------|------------------|---------|--| | A-0 | 0.00 | 5.00 | 5.00 | 2.0000 Raingagel | CARP2 | | | A-1 | 0.03 | 22.96 | 100.00 | 3.0000 Raingage1 | CBMH101 | | | A-10 | 0.03 | 15.29 | 100.00 | 2.5000 Raingage1 | CBMH106 | | | A-11 | 0.10 | 55.88 | 100.00 | 2.0000 Raingage1 | CBMH107 | | | A-12 | 0.04 | 26.67 | 100.00 | 2.0000 Raingage1 | CBMH108 | | | A-13 | 0.05 | 33.75 | 100.00 | 2.0000 Raingage1 | CBMH109 | | | A-14 | 0.10 | 34.67 | 72.00 | 1.0000 Raingage1 | CB05 | | | A-15 | 0.02 | 5.75 | 5.00 | 1.0000 Raingage1 | LD301 | | | A-16 | 0.17 | 80.95 | 100.00 | 1.5000 Raingage1 | CBMH110 | | | A-17 | 0.12 | 56.28 | 100.00 | 1.5000 Raingage1 | CB06 | | | A-18 | 0.17 | 79.07 | 100.00 | 1.5000 Raingage1 | CBMH111 | | | A-19 | 0.11 | 49.77 | 100.00 | 1.5000 | Raingage1 | CB07 | |------|------|-------|--------|--------|-----------|---------| | A-2 | 0.66 | 41.44 | 64.00 | 1.5000 | Raingage1 | POND | | A-3 | 0.03 | 21.54 | 100.00 | 3.5000 | Raingage1 | CBMH102 | | A-4 | 0.03 | 21.29 | 100.00 | 2.0000 | Raingage1 | CB01 | | A-5 | 0.08 | 48.23 | 100.00 | 2.0000 | Raingage1 | CB02 | | A-6 | 0.09 | 40.00 | 100.00 | 2.0000 | Raingage1 | CBMH104 | | A-7 | 0.09 | 43.90 | 99.00 | 1.5000 | Raingage1 | CBMH105 | | A-8 | 0.02 | 8.50 | 100.00 | 5.0000 | Raingage1 | CB03 | | A-9 | 0.12 | 39.33 | 64.00 | 1.0000 | Raingage1 | CB04 | | R-1 | 0.09 | 23.00 | 85.00 | 2.0000 | Raingage1 | CB08 | | | | | | | | | Node Summary | Name | Туре | Elev. | Depth | Area | | |---------|---------|-------|-------|------|--| | OGS | | 92.67 | | | | | CARP1 | OUTFALL | 0.00 | 0.00 | 0.0 | | | CARP2 | OUTFALL | 0.00 | 0.00 | 0.0 | | | OVLF1 | OUTFALL | 95.19 | 1.00 | 0.0 | | | OVLF2 | OUTFALL | 0.00 | 95.99 | 0.0 | | | OVLF3 | OUTFALL | 0.00 | 96.04 | 0.0 | | | OVLF4 | OUTFALL | 0.00 | 95.84 | 0.0 | | | XSTM1 | OUTFALL | 92.07 | 1.04 | 0.0 | | | XSTM2 | OUTFALL | 92.15 | 0.00 | 0.0 | | | CB01 | STORAGE | 93.02 | 2.98 | 0.0 | | | CB02 | STORAGE | 93.08 | 2.92 | 0.0 | | | CB03 | STORAGE | 93.31 | 1.94 | 0.0 | | | CB04 | STORAGE | 93.29 | 2.61 | 0.0 | | | CB05 | STORAGE | 93.32 | 2.68 | 0.0 | | | CB06 | STORAGE | 93.39 | 2.76 | 0.0 | | | CB07 | STORAGE | 93.50 | 2.65 | 0.0 | | | CB08 | STORAGE | 93.15 | 2.55 | 0.0 | | | CBMH101 | STORAGE | 92.76 | 3.04 | 0.0 | | | CBMH102 | STORAGE | 92.92 | 2.98 | 0.0 | | | CBMH104 | STORAGE | 93.09 | 2.71 | 0.0 | | | CBMH105 | STORAGE | 93.22 | 2.88 | 0.0 | | | CBMH106 | STORAGE | 93.07 | 3.08 | 0.0 | | | CBMH107 | STORAGE | 93.13 | 2.87 | 0.0 | | | CBMH108 | STORAGE | 93.21 | 2.89 | 0.0 | |---------|---------|-------|------|-----| | CBMH109 | STORAGE | 93.28 | 2.87 | 0.0 | | CBMH110 | STORAGE | 93.25 | 2.75 | 0.0 | | CBMH111 | STORAGE | 93.36 | 2.64 | 0.0 | | LD301 | STORAGE | 93.80 | 2.20 | 0.0 | | POND | STORAGE | 92.90 | 3.00 | 0.0 | | STMH103 | STORAGE | 92.98 | 3.22 | 0.0 | Link Summary | Name | From Node | To Node | Type | Length | %Slope | Roughness | |-----------|-----------|---------|---------|--------|--------|-----------| | 01-102 | CB01 | CBMH102 | CONDUIT | 16.9 | 0.2360 | 0.0130 | | 02-103 | CB02 | STMH103 | CONDUIT | 17.0 | 0.2357 | 0.0130 | | 03-105 | CB03 | CBMH105 | CONDUIT | 10.5 | 0.2855 | 0.0130 | | 04-105 | CB04 | CBMH105 | CONDUIT | 24.7 | 0.2431 | 0.0130 | | 05-109 | CB05 | CBMH109 | CONDUIT | 11.8 | 0.2533 | 0.0130 | | 06-110 | CB06 | CBMH110 | CONDUIT | 33.5 | 0.2391 | 0.0130 | | 07-111 | CB07 | CBMH111 | CONDUIT | 33.5 | 0.2391 | 0.0130 | | 101-OGS | CBMH101 | OGS | CONDUIT | 5.6 | 0.1786 | 0.0130 | | 102-POND | CBMH102 | POND | CONDUIT | 8.9 | 0.2243 | 0.0130 | | 103-102 | STMH103 | CBMH102 | CONDUIT | 19.5 | 0.2569 | 0.0130 | | 104-103 | CBMH104 | STMH103 | CONDUIT | 18.4 | 0.2711 | 0.0130 | | 105-104 | CBMH105 | CBMH104 | CONDUIT | 29.9 | 0.2344 | 0.0130 | | 106-POND | CBMH106 | POND | CONDUIT | 9.3 | 0.2144 | 0.0130 | | 107-106 | CBMH107 | CBMH106 | CONDUIT | 21.2 | 0.2360 | 0.0130 | | 108-107 | CBMH108 | CBMH107 | CONDUIT | 21.4 | 0.2340 | 0.0130 | | 109-108 | CBMH109 | CBMH108 | CONDUIT | 23.4 | 0.2560 | 0.0130 | | 110-10 | CBMH110 | CBMH107 | CONDUIT | 34.3 | 0.2623 | 0.0130 | | 111-110 | CBMH111 | CBMH110 | CONDUIT | 41.6 | 0.2404 | 0.0130 | | 301-05 | LD301 | CB05 | CONDUIT | 41.7 | 1.0080 | 0.0130 | | OGS-XSTM1 | OGS | XSTM1 | CONDUIT | 6.0 | 0.1667 | 0.0130 | | OLFA1 | CBMH101 | OVLF3 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA10 | CBMH106 | CB01 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA11 | CBMH107 | CB02 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA12 | CBMH108 | CBMH107 | CONDUIT | 1.0 | 1.0001 |
0.0150 | | OLFA13 | CBMH109 | CB05 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA14 | CB05 | CB04 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFA15 | LD301 | CB05 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFA16 | CBMH110 | CBMH107 | CONDUIT | 1.0 | 1.0001 | 0.0150 | |----------|---------|---------|---------|------|--------|--------| | OLFA17 | CB06 | CBMH110 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA18 | CBMH111 | CBMH110 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA19 | CB07 | CBMH111 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA3 | CBMH102 | CBMH101 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA4 | CB01 | CBMH102 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA5 | CB02 | CBMH104 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA6 | CBMH104 | OVLF2 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA7 | CBMH105 | CBMH104 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA9 | CB04 | OVLF1 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFR1 | CB08 | OVLF4 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | POND-101 | POND | CBMH101 | CONDUIT | 11.7 | 0.9442 | 0.0130 | | 08-XTMS2 | CB08 | XSTM2 | ORIFICE | | | | | OVERFLOW | POND | CARP1 | WEIR | | | | | | | | | | | | | ******* | ***** | | | | | | | |----------|----------|-------|------|------|-------|---------|-------| | | | Full | Full | Hyd. | Max. | No. of | Full | | Conduit | Shape | Depth | Area | Rad. | Width | Barrels | Flow | | 01-102 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.18 | | 02-103 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.13 | | 03-105 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 93.69 | | 04-105 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 86.45 | | 05-109 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.25 | | 06-110 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.73 | | 07-111 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.73 | | 101-OGS | CIRCULAR | 0.20 | 0.03 | 0.05 | 0.20 | 1 | 14.42 | | 102-POND | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 83.04 | | 103-102 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.87 | | 104-103 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 91.29 | | 105-104 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 84.89 | | 106-POND | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 81.18 | | 107-106 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.18 | | 108-107 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 84.82 | | 109-108 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.72 | | 110-10 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 89.80 | | 111-110 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.98 | | 301-05 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 59.71 | | | | | | | | | | | OGS-XSTM1 | CIRCULAR | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 116.40 | |-----------|-----------|------|------|------|------|---|----------| | OLFA1 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA10 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA11 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA12 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA13 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA14 | RECT_OPEN | 1.00 | 1.00 | 0.33 | 1.00 | 1 | 1373.69 | | OLFA15 | RECT_OPEN | 1.00 | 1.00 | 0.33 | 1.00 | 1 | 1373.69 | | OLFA16 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA17 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA18 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA19 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA3 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA4 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA5 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA6 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA7 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA9 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 6098.05 | | OLFR1 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | POND-101 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 170.38 | ${\tt NOTE:}$ The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units LPS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method HORTON Flow Routing Method DYNWAVE Flow Routing Method DYNWAVE Surcharge Method EXTRAN Starting Date ... 05/11/2022 00:00:00 Ending Date ... 05/12/2022 00:00:00 Antecedent Dry Days 0.0 Report Time Step ... 00:01:00 Wet Time Step ... 00:05:00 Dry Time Step ... 00:05:00 Maximum Trials 8 Number of Threads 4 Head Tolerance 0.001500 m | ******** | Volume | Depth | |----------------------------|-----------|----------| | Runoff Quantity Continuity | hectare-m | mm | | ******** | | | | Initial LID Storage | 0.002 | 1.058 | | Total Precipitation | 0.054 | 25.003 | | Evaporation Loss | 0.000 | 0.000 | | Infiltration Loss | 0.009 | 4.021 | | Surface Runoff | 0.046 | 21.110 | | Final Storage | 0.002 | 1.058 | | Continuity Error (%) | -0.489 | | | | | | | | | | | ******* | Volume | Volume | | Flow Routing Continuity | hectare-m | 10^6 ltr | | ******** | | | | Dry Weather Inflow | 0.000 | 0.000 | | Wet Weather Inflow | 0.046 | 0.455 | | Groundwater Inflow | 0.000 | 0.000 | | RDII Inflow | 0.000 | 0.000 | | External Inflow | 0.000 | 0.000 | | External Outflow | 0.046 | 0.455 | | Flooding Loss | 0.000 | 0.000 | | Evaporation Loss | 0.000 | 0.000 | | Exfiltration Loss | 0.000 | 0.000 | | Initial Stored Volume | 0.000 | 0.003 | | | | | Final Stored Volume 0.000 0.003 Continuity Error (%) 0.019 All links are stable. Minimum Time Step 0.50 sec Average Time Step 3.67 sec Maximum Time Step 5.00 sec Percent in Steady State : Average Iterations per Step : 0.00 Percent Not Converging 0.00 Time Step Frequencies 5.000 - 3.155 sec 3.155 - 1.991 sec 66.92 % 5.05 % 1.991 - 1.256 sec 20.27 % 1.256 - 0.792 sec 0.792 - 0.500 sec 7.73 % ----- Total Infil Imperv Runoff Total Runoff Total Runoff Perv Runoff Total Evap Total Runon Total Precip 25.00 25.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 25.14 24.90 25.09 0.00 0.03 0.00 25.14 24.92 25.09 0.02 0.02 0.00 Peak Runoff Runoff Coeff A-6 13.85 14.09 A-8 2 68 1.006 0.997 1 003 mm mm mm 10^6 ltr Subcatchment mm mm mm mm T.PS ______ -----A-025.00 0.00 0.00 23.27 1.25 0.72 1.97 0.00 0.04 0.079 A-1 25.00 0.00 0.00 0.00 25.08 0.00 25.08 0.01 4.88 1.003 A-10 25.00 0.00 0.00 0.00 25.11 0.00 25.11 0.01 4.09 1.004 A-11 25.00 0.00 0.00 0.00 25.12 0.00 25.12 0.02 A-11 14.95 1.005 A-12 25.00 0.00 0.00 0.00 25.11 0.00 25.11 0.01 6.93 1.004 A-13 25.00 0.00 0.00 0.00 25.11 0.00 25.11 0.01 8.50 1.004 A-14 0.00 18.12 18.22 0.02 25.00 0.00 6.92 0.10 11.91 0.729 1.25 25.00 0.00 0.00 23.68 0.09 1.34 0.00 A-15 0.20 0.054 A-16 25 00 0 00 0 00 25 15 0 00 25 15 0 04 0 00 25.00 0.00 0.00 0.00 25.15 0.00 25.15 0.03 19.03 1.006 A-18 26.74 1.006 25.00 0.00 0.00 0.00 25.15 0.00 25.15 0.04 0.00 0.00 25.15 0.00 25.15 0.03 A-19 25.00 0.00 1.006 16.83 25.00 0.00 0.00 8.98 16.11 0.03 16.14 0.11 A-2 62 10 0 645 0.00 25.07 0.01 25.00 0.00 0.00 0.00 25.07 A - 34.41 1.003 25.11 A-4 5.19 25.00 0.00 0.00 0.00 0.00 25.11 0.01 1.004 0.00 0.00 0.00 25.12 0.00 25.12 0.02 A-5 25.00 12.91 1.005 | A-9
12.03 | 0 648 | 25.00 | 0.00 | 0.00 | 8.92 | 16.10 | 0.10 | 16.21 | 0.02 | |--------------|-------|-------|------|------|------|-------|------|-------|------| | | 0.040 | 25.00 | 0.00 | 0.00 | 3.69 | 21.40 | 0.08 | 21.49 | 0.02 | | 12.40 | 0.859 | | | | | | | | | | Node | Туре | Depth
Meters | Depth
Meters | HGL
Meters | Occu
days | rrence
hr:min | Reported
Max Depth
Meters | |---------|----------|-----------------|-----------------|---------------|--------------|------------------|---------------------------------| | ogs | JUNCTION | | | 92.91 | | | 0.24 | | CARP1 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | CARP2 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF1 | OUTFALL | 0.00 | 0.00 | 95.19 | 0 | 00:00 | 0.00 | | OVLF2 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF3 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF4 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | XSTM1 | OUTFALL | 0.78 | 0.78 | 92.85 | 0 | 00:00 | 0.78 | | XSTM2 | OUTFALL | 0.70 | 0.70 | 92.85 | 0 | 00:00 | 0.70 | | CB01 | STORAGE | 0.03 | 0.21 | 93.23 | 0 | 01:49 | 0.21 | | CB02 | STORAGE | 0.02 | 0.15 | 93.23 | 0 | 01:47 | 0.15 | | CB03 | STORAGE | 0.01 | 0.08 | 93.39 | 0 | 01:30 | 0.08 | | CB04 | STORAGE | 0.01 | 0.11 | 93.40 | 0 | 01:30 | 0.11 | | CB05 | STORAGE | 0.01 | 0.24 | 93.56 | 0 | 01:31 | 0.24 | | CB06 | STORAGE | 0.02 | 0.25 | 93.64 | 0 | 01:30 | 0.25 | | CB07 | STORAGE | 0.01 | 0.16 | 93.66 | 0 | 01:31 | 0.16 | | CB08 | STORAGE | 0.01 | 0.19 | 93.34 | 0 | 01:30 | 0.19 | | CBMH101 | STORAGE | 0.17 | 0.46 | 93.22 | 0 | 01:49 | 0.46 | | CBMH102 | STORAGE | 0.07 | 0.31 | 93.23 | 0 | 01:49 | 0.31 | | CBMH104 | STORAGE | 0.03 | 0.21 | 93.30 | 0 | 01:30 | 0.21 | | CBMH105 | STORAGE | 0.02 | 0.17 | 93.39 | 0 | 01:30 | 0.17 | | CBMH106 | STORAGE | 0.04 | 0.40 | 93.47 | 0 | 01:30 | 0.40 | | CBMH107 | STORAGE | 0.04 | 0.43 | 93.56 | 0 | 01:30 | 0.43 | | CBMH108 | STORAGE | 0.02 | 0.35 | 93.56 | 0 | 01:30 | 0.35 | | CBMH109 | STORAGE | 0.02 | 0.28 | 93.56 | 0 | 01:30 | 0.28 | | CBMH110 | STORAGE | 0.03 | 0.39 | 93.64 | 0 | 01:31 | 0.39 | | CBMH111
LD301 | STORAGE
STORAGE | 0.02 | 0.29 | 93.65
93.81 | | 01:31
01:30 | 0.29 | |------------------|--------------------|------|------|----------------|---|----------------|------| | POND | STORAGE | 0.08 | 0.33 | 93.23 | 0 | 01:49 | 0.33 | | STMH103 | STORAGE | 0.05 | 0.25 | 93.23 | 0 | 01:50 | 0.25 | | | | | Maximum | | | Lateral | | Flow | |---------|----------|---------|---------|------|--------|----------|----------|-----------| | | | Lateral | Total | | of Max | Inflow | Inflow | Balance | | | _ | Inflow | Inflow | | rrence | | Volume | Error | | Node | Type | LPS | LPS | days |
hr:min | 10^6 ltr | 10^6 ltr | Percent | | OGS | JUNCTION | 0.00 | 49.54 | 0 | 01:49 | 0 | 0.435 | 0.000 | | CARP1 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltm | | CARP2 | OUTFALL | 0.04 | 0.04 | 0 | 01:30 | 3.94e-05 | 3.94e-05 | 0.000 | | OVLF1 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltm | | OVLF2 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltm | | OVLF3 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltm | | OVLF4 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltm | | XSTM1 | OUTFALL | 0.00 | 49.54 | 0 | 01:49 | 0 | 0.435 | 0.000 | | XSTM2 | OUTFALL | 0.00 | 12.34 | 0 | 01:30 | 0 | 0.0198 | 0.000 | | CB01 | STORAGE | 5.19 | 5.19 | 0 | 01:30 | 0.00828 | 0.00828 | 0.048 | | CB02 | STORAGE | 12.91 | 12.91 | 0 | 01:30 | 0.0206 | 0.0206 | 0.318 | | CB03 | STORAGE | 2.68 | 2.68 | 0 | 01:30 | 0.00426 | 0.00426 | -0.007 | | CB04 | STORAGE | 12.03 | 12.03 | 0 | 01:30 | 0.0191 | 0.0191 | -0.004 | | CB05 | STORAGE | 11.91 | 12.10 | 0 | 01:30 | 0.0189 | 0.0192 | -0.004 | | CB06 | STORAGE | 19.03 | 19.03 | 0 | 01:30 | 0.0304 | 0.0304 | -0.021 | | CB07 | STORAGE | 16.83 | 16.83 | 0 | 01:30 | 0.0269 | 0.0269 | 0.107 | | CB08 | STORAGE | 12.40 | 12.40 | 0 | 01:30 | 0.0198 | 0.0198 | -0.007 | | CBMH101 | STORAGE | 4.88 | 49.54 | 0 | 01:48 | 0.00777 | 0.436 | -0.000 | | CBMH102 | STORAGE | 4.41 | 63.36 | 0 | 01:30 | 0.00701 | 0.104 | -0.045 | | CBMH104 | STORAGE | 13.85 | 42.40 | 0 | 01:30 | 0.0221 | 0.0677 | 0.459 | | CBMH105 | STORAGE | 14.09 | 28.72 | 0 | 01:30 | 0.0224 | 0.0458 | 0.529 | | CBMH106 | STORAGE | 4.09 | 118.06 | 0 | 01:30 | 0.00652 | 0.217 | 0.094 | | CBMH107 | STORAGE | 14.95 | 114.77 | 0 | 01:30 | 0.0238 | | -0.042 | | CBMH108 | STORAGE | 6.93 | 25.17 | 0 | 01:30 | 0.011 | 0.0439 | -0.038 | | CBMH109 | STORAGE | 8.50 | 19.38 | 0 | 01:30 | 0.0136 | 0.0328 | -0.012 | | CBMH110 | STORAGE | 26.74 | 81.29 | 0 | 01:27 | 0.0427 | 0.143 | 0.021 | |---------|---------|-------|--------|---|-------|----------|----------|--------| | CBMH111 | STORAGE | 26.74 | 42.88 | 0 | 01:26 | 0.0427 | 0.0696 | -0.129 | | LD301 | STORAGE | 0.20 | 0.20 | 0 | 01:30 | 0.000308 | 0.000309 | -0.922 | | POND | STORAGE | 62.10 | 240.51 | 0 | 01:30 | 0.107 | 0.43 | -0.032 | | STMH103 | STORAGE | 0.00 | 54.88 | 0 | 01:30 | 0 | 0.0879 | -0.431 | No nodes were surcharged. No nodes were flooded. | Storage Unit | Average
Volume
1000 m3 | Avg
Pcnt
Full | Evap
Pcnt
Loss | Exfil
Pcnt
Loss | Maximum
Volume
1000 m3 | Max
Pcnt
Full | 0ccu | of Max
urrence
hr:min | Maximum
Outflow
LPS | |--------------|------------------------------|---------------------|----------------------|-----------------------|------------------------------|---------------------|------|-----------------------------|---------------------------| | CB01 | 0.000 | 0 | 0 | 0 | 0.000 | 0 | 0 | 01:49 | 4.79 | | CB02 | 0.000 | 0 | 0 | 0 | 0.000 | 0 | 0 | 01:47 | 12.68 | | CB03 | 0.000 | 0 | 0 | 0 | 0.000 | 0 | 0 | 01:30 | 2.65 | | CB04 | 0.000 | 0 | 0 | 0 | 0.000 | 0 | 0 | 01:30 | 11.98 | | CB05 | 0.000 | 0 | 0 | 0 | 0.000 | 2 | 0 | 01:31 | 11.04 | | CB06 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:30 | 16.92 | | CB07 | 0.000 | 0 | 0 | 0 | 0.000 | 0 | 0 | 01:31 | 16.78 | | CB08 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:30 | 12.34 | | CBMH101 | 0.000 | 1 | 0 | 0 | 0.001 | 4 | 0 | 01:49 | 49.54 | | CBMH102 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:49 | 62.36 | | CBMH104 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:30 | 42.21 | | CBMH105 | 0.000 | 0 | 0 | 0 | 0.000 | 3 | 0 | 01:30 | 28.57 | |---------|-------|---|---|---|-------|---|---|-------|--------| | CBMH106 | 0.000 | 1 | 0 | 0 | 0.000 | 7 | 0 | 01:30 | 118.03 | | CBMH107 | 0.000 | 0 | 0 | 0 | 0.000 | 2 | 0 | 01:30 | 114.44 | | CBMH108 | 0.000 | 0 | 0 | 0 | 0.000 | 6 | 0 | 01:30 | 24.33 | | CBMH109 | 0.000 | 0 | 0 | 0 | 0.000 | 4 | 0 | 01:30 | 18.53 | | CBMH110 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:31 | 77.41 | | CBMH111 | 0.000 | 0 | 0 | 0 | 0.000 | 1 | 0 | 01:31 | 38.63 | | LD301 | 0.000 | 0 | 0 | 0 | 0.000 | 0 | 0 | 01:30 | 0.19 | | POND | 0.047 | 2 | 0 | 0 | 0.215 | 9 | 0 | 01:49 | 48.79 | | STMH103 | 0.000 | 2 | 0 | 0 | 0.000 | 8 | 0 | 01:50 | 54.22 | Outfall Loading Summary | Outfall Node | Flow | Avg | Max | Total | |--------------|--------|-------|-------|----------| | | Freq | Flow | Flow | Volume | | | Pcnt | LPS | LPS | 10^6 ltr | | CARP1 | 0.00 | 0.00 | 0.00 | 0.000 | | CARP2 | 0.98 | 0.04 | 0.04 | 0.000 | | OVLF1 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF2 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF3 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF4 | 0.00 | 0.00 | 0.00 | 0.000 | | XSTM1 | 100.00 | 12.10 | 49.54 | 0.435 | | XSTM2 | 36.64 | 1.47 | 12.34 | 0.020 | | System | 17.20 | 13.60 | 52.37 | 0.455 | | | | Maximum | Time of Max | Maximum | Max/ | Max/ | |------|------|---------|-------------|---------|------|-------| | | | Flow | Occurrence | Veloc | Full | Full | | Link | Type | LPS | days hr:min | m/sec | Flow | Depth | | 01-102 | CONDUIT | 4.79 | 0 | 01:30 | 0.25 | 0.06 | 0.62 | |-----------|---------|--------|---|-------|------|------|------| | 02-103 | CONDUIT | 12.68 | 0 | 01:30 | 0.46 | 0.15 | 0.46 | | 03-105 | CONDUIT | 2.65 | 0 | 01:30 | 0.27 | 0.03 | 0.25 | | 04-105 | CONDUIT | 11.98 | 0 | 01:30 | 0.36 | 0.14 | 0.36 | | 05-109 | CONDUIT | 11.04 | 0 | 01:30 | 0.44 | 0.13 | 0.68 | | 06-110 | CONDUIT | 16.92 | 0 | 01:30 | 0.43 | 0.20 | 0.77 | | 07-111 | CONDUIT | 16.78 | 0 | 01:25 | 0.53 | 0.20 | 0.53 | | 101-OGS | CONDUIT | 49.54 | 0 | 01:49 | 1.56 | 3.43 | 0.95 | | 102-POND | CONDUIT | 62.36 | 0 | 01:30 | 1.06 | 0.75 | 0.86 | | 103-102 | CONDUIT | 54.22 | 0 | 01:30 | 0.79 | 0.61 | 0.74 | | 104-103 | CONDUIT | 42.21 | 0 | 01:30 | 0.79 | 0.46 | 0.51 | | 105-104 | CONDUIT | 28.57 | 0 | 01:30 | 0.63 | 0.34 | 0.43 | | 106-POND | CONDUIT | 118.03 | 0 | 01:31 | 1.20 | 1.45 | 0.84 | | 107-106 | CONDUIT | 114.44 | 0 | 01:30 | 1.04 | 1.34 | 1.00 | | 108-107 | CONDUIT | 24.33 | 0 | 01:30 | 0.29 | 0.29 | 0.97 | | 109-108 | CONDUIT | 18.53 | 0 | 01:30 | 0.44 | 0.21 | 0.83 | | 110-10 | CONDUIT | 77.41 | 0 | 01:31 | 0.78 | 0.86 | 1.00 | | 111-110 | CONDUIT | 38.63 | 0 | 01:26 | 0.56 | 0.45 | 0.89 | | 301-05 | CONDUIT | 0.19 | 0 | 01:30 | 0.26 | 0.00 | 0.38 | | OGS-XSTM1 | CONDUIT | 49.54 | 0 | 01:49 | 0.67 | 0.43 | 0.47 | | OLFA1 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA10 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA11 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA12 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA13 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA14 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA15 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA16 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA17 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA18 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA19 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA3 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA4 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA5 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA6 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA7 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA9 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFR1 | CONDUIT | 0.00 | 0 | | 0.00 | 0.00 | 0.00 | | | CONDUIT | 48.79 | 0 | 01:52 | 0.60 | 0.29 | 0.94 | | POND-101 | CONDUIT | | | | | | | OVERFLOW WEIR 0.00 0 00:00 0.00 | | Adjusted | | | | ion of | | | | s | | |-----------|----------|------|------|------|--------|------|------|------|------|------| | | /Actual | | Up | Down | Sub | Sup | Up | Down | Norm | | | Conduit | Length | Dry | Dry | Dry | Crit | Crit | Crit | Crit | Ltd | Ctrl | | 01-102 | 1.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.71 | 0.02 | 0.00 | | 02-103 | 1.00 | 0.00 | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 | 0.77 | 0.01 | 0.00 | | 03-105 | 1.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.95 | 0.01 | 0.00 | | 04-105 | 1.00 | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.62 | 0.16 | 0.00 | | 05-109 | 1.00 | 0.00 | 0.00 | 0.00 | 0.35 | 0.00 | 0.00 | 0.65 | 0.02 | 0.00 | | 06-110 | 1.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.93 | 0.01 | 0.00 | | 07-111 | 1.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | | 101-OGS | 1.00 | 0.00 | 0.00 | 0.00 | 0.70 | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | | 102-POND | 1.00 | 0.00 | 0.05 | 0.00 | 0.93 | 0.02 | 0.00 | 0.00 | 0.74 | 0.00 | | 103-102 | 1.00 | 0.00 | 0.00 | 0.00 | 0.41 | 0.00 | 0.00 | 0.59 | 0.08 | 0.00 | | 104-103 | 1.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.00 | 0.00 | 0.79 | 0.01 | 0.00 | | 105-104 | 1.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.88 | 0.02 | 0.00 | | 106-POND | 1.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.85 | 0.00 | 0.00 | | 107-106 | 1.00 | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.62 | 0.02 | 0.00 | | 108-107 | 1.00 | 0.00 | 0.00 | 0.00 | 0.34 | 0.00 | 0.00 | 0.66 | 0.09 | 0.00 | | 109-108 | 1.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 0.72 | 0.02 | 0.00 | | 110-10 | 1.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.88 | 0.00 | 0.00 | | 111-110 | 1.00 | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.62 | 0.16 | 0.00 | | 301-05 | 1.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.97 | 0.01 | 0.00 | | OGS-XSTM1 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA1 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA10 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA11 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA12 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA13 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA14 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA15 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA16 | 1.00 | 1.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA17 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | OLFA18 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |----------|------|------|------|------|------|------|------|------|------|------| | OLFA19 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA3 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA4 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA5 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA6 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA7 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA9 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFR1 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | POND-101 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.89 | 0.00 | ******* Conduit Surcharge Summary | Conduit | Both Ends | Hours Full
Upstream | Dnstream | Hours
Above Full
Normal Flow | Hours
Capacity
Limited | |----------|-----------|------------------------|----------|------------------------------------|------------------------------| | 101-OGS | 0.01 | 2.61 | 0.01 | 2.90 | 0.01 | | 106-POND | 0.01 | 0.10 | 0.01 | 0.20 | 0.01 | | 107-106 | 0.06 | 0.11 | 0.06 | 0.18 | 0.06 | | 108-107 | 0.01 | 0.01 | 0.07 | 0.01 | 0.01 | | 110-10 | 0.04 | 0.04 | 0.07 | 0.01 | 0.01 | | 111-110 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | | POND-101 | 0.01 | 0.01 | 0.83 | 0.01 | 0.01 | Analysis begun on: Mon May 16 10:17:45 2022 Analysis ended on: Mon May 16 10:17:47 2022 Total elapsed time: 00:00:02 ### Chicago 4 Hour 100 Year Event PCSWMM Results EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) ************** Element Count Number of rain gages 1 Number of subcatchments 21 Number of nodes 30 Number of links 41 Number of pollutants 0 Number of land uses 0 | Name | Data Source | Data
Type | Recording
Interval | |-----------|-------------|--------------|-----------------------| | | | | | | Raingage1 | C4-100 | INTENSITY | 10 min. | | Name | Area | Width | %Imperv | %Slope Rain Gage | Outlet | | |------|------|-------|---------|------------------|---------|--| | A-0 | 0.00 | 5.00 | 5.00 | 2.0000 Raingagel | CARP2 | | | A-1 | 0.03 | 22.96 | 100.00 | 3.0000 Raingage1 | CBMH101 | | | A-10 | 0.03 | 15.29 | 100.00 | 2.5000 Raingage1 | CBMH106 | | | A-11 | 0.10 | 55.88 | 100.00 | 2.0000 Raingage1 | CBMH107 | | | A-12 | 0.04 | 26.67 | 100.00 | 2.0000 Raingage1 | CBMH108 | | | A-13 | 0.05 | 33.75 | 100.00 | 2.0000 Raingage1 | CBMH109 | | | A-14 | 0.10 | 34.67 | 72.00 | 1.0000 Raingage1 | CB05 | | | A-15 | 0.02 | 5.75 | 5.00 | 1.0000 Raingage1 | LD301 | | | A-16 | 0.17 | 80.95 | 100.00 | 1.5000 Raingage1 | CBMH110 | | | A-17 | 0.12 | 56.28 | 100.00 | 1.5000 Raingage1 | CB06 | | | A-18 | 0.17 | 79.07 | 100.00 | 1.5000 Raingage1 | CBMH111 | | | A-19 | 0.11 | 49.77 | 100.00 | 1.5000 | Raingagel | CB07 | |------|------|-------|--------|--------|-----------|---------| | A-2 | 0.66 | 41.44 | 64.00 | 1.5000 | Raingagel | POND | | A-3 | 0.03 | 21.54 | 100.00 | 3.5000 | Raingagel | CBMH102 | | A-4 | 0.03 | 21.29 | 100.00 | 2.0000 | Raingagel | CB01 | | A-5 | 0.08 | 48.23 | 100.00 | 2.0000 | Raingagel | CB02 | | A-6 | 0.09 | 40.00 | 100.00 | 2.0000 | Raingagel | CBMH104 | | A-7 | 0.09 | 43.90 | 99.00 | 1.5000 | Raingagel | CBMH105 | | A-8 | 0.02 | 8.50 | 100.00 | 5.0000 | Raingagel | CB03 | | A-9 | 0.12 | 39.33 | 64.00 | 1.0000 | Raingagel | CB04 | | R-1 | 0.09 | 23 00 | 85 00 | 2 0000 | Paingage1 | CB08 | Node Summary | Name | | Invert
Elev. | Depth | Area | | |---------|----------|-----------------|-------|------|--| | OGS | JUNCTION | | | | | | CARP1 | OUTFALL | 0.00 | 0.00 | 0.0 | | | CARP2 | OUTFALL | 0.00 | 0.00 | 0.0 | | | OVLF1 | OUTFALL | 95.19 | 1.00 | 0.0 | | | OVLF2 | OUTFALL | 0.00 | 95.99 | 0.0 | | | OVLF3 | OUTFALL | 0.00 | 96.04 | 0.0 | | | OVLF4 | OUTFALL | 0.00 | 95.84 | 0.0 | | | XSTM1 | OUTFALL | 92.07 | 1.04 | 0.0 | | | XSTM2 | OUTFALL | 92.15 | 0.00 | 0.0 | | | CB01 | STORAGE | 93.02 | 2.98 | 0.0 | | | CB02 | STORAGE | 93.08 | 2.92 | 0.0 | | | CB03 | STORAGE | 93.31 | 1.94 | 0.0 | | | CB04 | STORAGE | 93.29 | 2.61 | 0.0 | | | CB05 | STORAGE | 93.32 | 2.68 | 0.0 | | | CB06 | STORAGE | 93.39 | 2.76 | 0.0 | | | CB07 | STORAGE | 93.50 | 2.65 | 0.0 | | | CB08 | STORAGE | 93.15 | 2.55 | 0.0 | | | CBMH101 | STORAGE | 92.76 | 3.04 | 0.0 | | | CBMH102 | STORAGE | 92.92 | 2.98 | 0.0 | | | CBMH104 | STORAGE | 93.09 | 2.71 | 0.0 | | | CBMH105 | STORAGE | 93.22 | 2.88 | 0.0 | | | CBMH106 | STORAGE | 93.07 | 3.08 | 0.0 | | | CBMH107 | STORAGE | 93.13 | 2.87 | 0.0 | | | CBMH108 | STORAGE | 93.21 | 2.89 | 0.0 | |---------|---------|-------|------|-----| | CBMH109 | STORAGE | 93.28 | 2.87 | 0.0 | | CBMH110 | STORAGE | 93.25 | 2.75 | 0.0 | | CBMH111 | STORAGE | 93.36 | 2.64 | 0.0 | | LD301 | STORAGE | 93.80 | 2.20 | 0.0 | | POND | STORAGE | 92.90 | 3.00 | 0.0 | | STMH103 | STORAGE | 92.98 | 3.22 | 0.0 | Link Summary | Name | From Node | To Node | Type | Length | %Slope | Roughness | |-----------|-----------|---------|---------|--------|--------|-----------| | 01-102 | CB01 | CBMH102 | CONDUIT | 16.9 | 0.2360 | 0.0130 | | 02-103 | CB02 | STMH103 | CONDUIT | 17.0 | 0.2357 | 0.0130 | | 03-105 | CB03 | CBMH105 | CONDUIT | 10.5 | 0.2855 | 0.0130 | | 04-105 | CB04 | CBMH105 | CONDUIT | 24.7 | 0.2431 | 0.0130 | | 05-109 | CB05 | CBMH109 | CONDUIT | 11.8 | 0.2533 | 0.0130 | | 06-110 | CB06 | CBMH110 | CONDUIT | 33.5 | 0.2391 | 0.0130 | | 07-111 | CB07 | CBMH111 | CONDUIT | 33.5 | 0.2391 | 0.0130 | | 101-OGS | CBMH101 | OGS | CONDUIT | 5.6 | 0.1786 | 0.0130 | | 102-POND | CBMH102 | POND | CONDUIT | 8.9 | 0.2243 | 0.0130 | | 103-102 | STMH103 | CBMH102 | CONDUIT | 19.5 | 0.2569 | 0.0130 | | 104-103 | CBMH104 | STMH103 | CONDUIT | 18.4 | 0.2711 | 0.0130 | | 105-104 | CBMH105 | CBMH104 | CONDUIT | 29.9 | 0.2344 | 0.0130 | | 106-POND | CBMH106 | POND | CONDUIT | 9.3 | 0.2144 | 0.0130 | | 107-106 | CBMH107 | CBMH106 | CONDUIT | 21.2 | 0.2360 | 0.0130 | | 108-107 | CBMH108 | CBMH107 | CONDUIT | 21.4 | 0.2340 | 0.0130 | | 109-108 | CBMH109 | CBMH108 | CONDUIT | 23.4 | 0.2560 | 0.0130 | | 110-10 | CBMH110 | CBMH107 | CONDUIT | 34.3 | 0.2623 | 0.0130 | | 111-110 | CBMH111 | CBMH110 | CONDUIT | 41.6 | 0.2404 | 0.0130 | | 301-05 | LD301 | CB05 | CONDUIT | 41.7 | 1.0080 | 0.0130 | | OGS-XSTM1 | OGS | XSTM1 | CONDUIT | 6.0 | 0.1667 | 0.0130 | | OLFA1 | CBMH101 | OVLF3 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA10 | CBMH106 | CB01 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA11 | CBMH107 | CB02 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA12 | CBMH108 | CBMH107 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA13 | CBMH109 | CB05 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA14 | CB05 | CB04 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFA15 | LD301 | CB05 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFA16 | CBMH110 | CBMH107 | CONDUIT | 1.0 | 1.0001 | 0.0150 | |----------|---------|---------|---------|------|--------|--------| | OLFA17 | CB06 | CBMH110 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA18 | CBMH111 | CBMH110 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA19 | CB07 | CBMH111 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA3 | CBMH102 | CBMH101 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA4 | CB01 | CBMH102 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA5 | CB02 | CBMH104 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA6 | CBMH104 | OVLF2 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA7 | CBMH105 | CBMH104 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA9 | CB04 | OVLF1 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFR1 | CB08 | OVLF4 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | POND-101 | POND | CBMH101 | CONDUIT | 11.7 | 0.9442 | 0.0130 | | 08-XTMS2 | CB08 | XSTM2 | ORIFICE | | | | | OVERFLOW | POND | CARP1 | WEIR | | | | | | | | | | | | | ******* | ***** | | | | | | | |----------|----------|-------|------|------|-------|---------|-------| | | | Full | Full | Hyd. | Max. | No. of | Full | | Conduit | Shape | Depth | Area | Rad. | Width | Barrels | Flow | | 01-102 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.18 | | 02-103 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.13 | | 03-105 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 93.69 | | 04-105 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 86.45 | | 05-109 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.25 | | 06-110 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.73 | | 07-111 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.73 | | 101-OGS | CIRCULAR | 0.20 | 0.03 | 0.05 | 0.20 | 1 | 14.42 | | 102-POND | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 83.04 | | 103-102 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.87 | | 104-103 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 91.29 | | 105-104 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 84.89 | | 106-POND | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 81.18 | | 107-106 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.18 | | 108-107 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 84.82 | | 109-108 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.72 | | 110-10 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 89.80 | | 111-110 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.98 | | 301-05 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 59.71 | | | | | | | | | | | OGS-XSTM1 | CIRCULAR | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 116.40 | |-----------|-----------|------|------|------|------|---|----------| | OLFA1 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA10 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA11 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA12 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA13 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA14 | RECT_OPEN | 1.00 | 1.00 | 0.33 | 1.00 | 1 | 1373.69 | | OLFA15 | RECT_OPEN | 1.00 | 1.00 | 0.33 | 1.00 | 1 | 1373.69 | | OLFA16 | RECT_OPEN |
1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA17 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA18 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA19 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA3 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA4 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA5 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA6 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA7 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA9 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 6098.05 | | OLFR1 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | POND-101 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 170.38 | ${\tt NOTE:}$ The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units LPS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method HORTON Flow Routing Method DYNWAVE Flow Routing Method DYNWAVE Surcharge Method EXTRAN Starting Date ... 05/11/2022 00:00:00 Ending Date ... 05/12/2022 00:00:00 Antecedent Dry Days 0.0 Report Time Step ... 00:01:00 Wet Time Step ... 00:05:00 Dry Time Step ... 00:05:00 Maximum Trials 8 Number of Threads 4 Head Tolerance 0.001500 m | ******* | Volume | Depth | |----------------------------|-----------|----------| | Runoff Quantity Continuity | hectare-m | mm | | ******* | | | | Initial LID Storage | 0.002 | 1.058 | | Total Precipitation | 0.164 | 76.002 | | Evaporation Loss | 0.000 | 0.000 | | Infiltration Loss | 0.015 | 7.164 | | Surface Runoff | 0.149 | 69.201 | | Final Storage | 0.002 | 1.058 | | Continuity Error (%) | -0.472 | | | | | | | | | | | ******* | Volume | Volume | | Flow Routing Continuity | hectare-m | 10^6 ltr | | ******* | | | | Dry Weather Inflow | 0.000 | 0.000 | | Wet Weather Inflow | 0.149 | 1.491 | | Groundwater Inflow | 0.000 | 0.000 | | RDII Inflow | 0.000 | 0.000 | | External Inflow | 0.000 | 0.002 | | External Outflow | 0.149 | 1.492 | | Flooding Loss | 0.000 | 0.000 | | Evaporation Loss | 0.000 | 0.000 | | Exfiltration Loss | 0.000 | 0.000 | | Initial Stored Volume | 0.100 | 1.000 | | | | | Final Stored Volume 0.100 1.000 Continuity Error (%) 0.022 Link OLFA18 (2.47%) Link OLFA16 (1.73%) Link 08-XTMS2 (119) Link 03-105 (7) Link 02-103 (3) Link 01-102 (2) Minimum Time Step : 0.64 sec Average Time Step : 4.82 sec Maximum Time Step : 5.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 2.00 Percent Not Converging : 0.01 Time Step Frequencies : 5.000 - 3.155 sec : 95.50 % 3.155 - 1.991 sec : 0.10 % 1.991 - 1.256 sec : 0.79 % 1.256 - 0.792 sec : 1.62 % 0.792 - 0.500 sec : 1.99 % | Peak Runoff | Total | Total | Total | Total | Imperv | Perv | Total | Total | |---------------------|--------|-------|-------|-------|--------|--------|--------|----------| | reak Kunoii | Precip | Runon | Evap | Infil | Runoff | Runoff | Runoff | Runoff | | Runoff Coeff | | | - 1 | | | | | | | Subcatchment
LPS | mm 10^6 ltr | | шго | A-0
0.90 0.519 | 76.00 | 0.00 | 0.00 | 38.41 | 3.80 | 35.67 | 39.47 | 0.00 | | A-1 | 76.00 | 0.00 | 0.00 | 0.00 | 76.09 | 0.00 | 76.09 | 0.02 | | 15.38 1.001 | | | | | | | | | | A-10
12.90 1.002 | 76.00 | 0.00 | 0.00 | 0.00 | 76.13 | 0.00 | 76.13 | 0.02 | | A-11 | 76.00 | 0.00 | 0.00 | 0.00 | 76.15 | 0.00 | 76.15 | 0.07 | | 47.12 1.002 | | | | | | | | | | A-12
21.82 1.002 | 76.00 | 0.00 | 0.00 | 0.00 | 76.15 | 0.00 | 76.15 | 0.03 | | A-13 | 76.00 | 0.00 | 0.00 | 0.00 | 76.14 | 0.00 | 76.14 | 0.04 | | 26.78 1.002 | | | | | | | | | | A-14
48.47 0.856 | 76.00 | 0.00 | 0.00 | 11.54 | 54.94 | 10.11 | 65.06 | 0.07 | | A-15 | 76.00 | 0.00 | 0.00 | 42.37 | 3.80 | 30.27 | 34.07 | 0.01 | | 4.52 0.448 | | | | | | | | | | A-16
84.32 1.003 | 76.00 | 0.00 | 0.00 | 0.00 | 76.24 | 0.00 | 76.24 | 0.13 | | A-17 | 76.00 | 0.00 | 0.00 | 0.00 | 76.25 | 0.00 | 76.25 | 0.09 | | 60.02 1.003 | | | | | | | | | | A-18
84.32 1.003 | 76.00 | 0.00 | 0.00 | 0.00 | 76.25 | 0.00 | 76.25 | 0.13 | | A-19 | 76.00 | 0.00 | 0.00 | 0.00 | 76.25 | 0.00 | 76.25 | 0.08 | | 53.07 1.003 | 76.00 | 0.00 | | 16.06 | 40.04 | | 60 17 | 0.40 | | A-2
244.39 0.792 | 76.00 | 0.00 | 0.00 | 16.36 | 49.04 | 11.14 | 60.17 | 0.40 | | A-3 | 76.00 | 0.00 | 0.00 | 0.00 | 76.08 | 0.00 | 76.08 | 0.02 | | 13.89 1.001 | 76.00 | | | | 76.14 | 0.00 | 76.14 | 0.00 | | A-4
16.37 1.002 | 76.00 | 0.00 | 0.00 | 0.00 | /6.14 | 0.00 | 76.14 | 0.03 | | A-5 | 76.00 | 0.00 | 0.00 | 0.00 | 76.15 | 0.00 | 76.15 | 0.06 | | 40.67 1.002 | 76.00 | 0.00 | 0.00 | 0.00 | 76.01 | 0.00 | 76.01 | 0.07 | | A-6
43 65 1 003 | 76.00 | 0.00 | 0.00 | 0.00 | /6.21 | 0.00 | 76.21 | 0.07 | | | | | | | | | | | | A-7 | | 76.00 | 0.00 | 0.00 | 0.40 | 75.47 | 0.37 | 75.84 | 0.07 | |-------|-------|-------|------|------|-------|-------|-------|-------|------| | 44.60 | 0.998 | | | | | | | | | | A-8 | | 76.00 | 0.00 | 0.00 | 0.00 | 76.11 | 0.00 | 76.11 | 0.01 | | 8.43 | 1.001 | | | | | | | | | | A-9 | | 76.00 | 0.00 | 0.00 | 14.95 | 48.82 | 12.82 | 61.64 | 0.07 | | 52.75 | 0.811 | | | | | | | | | | R-1 | | 76.00 | 0.00 | 0.00 | 6.10 | 64.90 | 5.57 | 70.47 | 0.06 | | 44.83 | 0.927 | | | | | | | | | | | | Average | Maximum | Maximum | Time | of Max | Reported | |---------|----------|---------|---------|---------|------|--------|-----------| | | | - | - | | | | Max Depth | | Node | | | Meters | | - | | Meters | | OGS | JUNCTION | | 1.37 | | | 02:12 | 1.37 | | CARP1 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | CARP2 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF1 | OUTFALL | 0.00 | 0.00 | 95.19 | 0 | 00:00 | 0.00 | | OVLF2 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF3 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF4 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | XSTM1 | OUTFALL | 1.95 | 1.95 | 94.02 | 0 | 00:00 | 1.95 | | XSTM2 | OUTFALL | 1.87 | 1.87 | 94.02 | 0 | 00:00 | 1.87 | | CB01 | STORAGE | 1.12 | 1.62 | 94.64 | 0 | 02:11 | 1.62 | | CB02 | STORAGE | 1.07 | 1.56 | 94.64 | 0 | 02:11 | 1.56 | | CB03 | STORAGE | 0.84 | 1.47 | 94.78 | 0 | 01:32 | 1.47 | | CB04 | STORAGE | 0.86 | 1.50 | 94.79 | 0 | 01:32 | 1.50 | | CB05 | STORAGE | 0.86 | 1.85 | 95.17 | 0 | 01:31 | 1.85 | | CB06 | STORAGE | 0.79 | 1.84 | 95.23 | 0 | 01:32 | 1.84 | | CB07 | STORAGE | 0.69 | 1.75 | 95.25 | 0 | 01:32 | 1.75 | | CB08 | STORAGE | 0.91 | 1.70 | 94.85 | 0 | 01:32 | 1.70 | | CBMH101 | STORAGE | 1.37 | 1.84 | 94.60 | 0 | 02:12 | 1.84 | | CBMH102 | STORAGE | 1.22 | 1.72 | 94.64 | 0 | 02:11 | 1.72 | | CBMH104 | STORAGE | 1.06 | 1.63 | 94.72 | 0 | 01:31 | 1.63 | | CBMH105 | STORAGE | 0.93 | 1.56 | 94.78 | 0 | 01:32 | 1.56 | | CBMH106 | STORAGE | 1.09 | 1.72 | 94.79 | 0 | 01:35 | 1.72 | | CBMH107 | STORAGE | 1.04 | 2.00 | 95.13 | 0 | 01:33 | 2.00 | |---------|---------|------|------|-------|---|-------|------| | CBMH108 | STORAGE | 0.97 | 1.94 | 95.15 | 0 | 01:33 | 1.94 | | CBMH109 | STORAGE | 0.90 | 1.88 | 95.16 | 0 | 01:33 | 1.88 | | CBMH110 | STORAGE | 0.93 | 1.98 | 95.23 | 0 | 01:32 | 1.98 | | CBMH111 | STORAGE | 0.82 | 1.87 | 95.23 | 0 | 01:30 | 1.87 | | LD301 | STORAGE | 0.38 | 1.37 | 95.17 | 0 | 01:30 | 1.37 | | POND | STORAGE | 1.24 | 1.74 | 94.64 | 0 | 02:13 | 1.74 | | STMH103 | STORAGE | 1.17 | 1.66 | 94.64 | 0 | 02:11 | 1.66 | | Node | | Lateral
Inflow
LPS | Inflow
LPS | Occus
days h | of Max
rrence
hr:min | Inflow
Volume
10^6 ltr | Total
Inflow
Volume
10^6 ltr | Balance
Error
Percent | |---------|----------|--------------------------|---------------|-----------------|----------------------------|------------------------------|---------------------------------------|-----------------------------| | ogs | JUNCTION | | | 0 | | | 1.43 | | | CARP1 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | CARP2 | OUTFALL | 0.90 | 0.90 | 0 | 01:30 | 0.000787 | 0.000787 | 0.000 | | OVLF1 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | OVLF2 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | OVLF3 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | OVLF4 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | XSTM1 | OUTFALL | 0.00 | 71.09 | 0 | 02:13 | 0 | 1.43 | 0.000 | | XSTM2 | OUTFALL | 0.00 | 31.10 | 0 | 01:32 | 0 | 0.0665 | 0.000 | | CB01 | STORAGE | 16.37 | 16.37 | 0 | 01:30 | 0.0251 | 0.0257 | -0.001 | | CB02 | STORAGE | 40.67 | 40.67 | 0 | 01:30 | 0.0623 | 0.063 | -0.007 | | CB03 | STORAGE | 8.43 | 53.04 | 0 | 01:25 | 0.0129 | 0.0359 | 0.022 | | CB04 | STORAGE | 52.75 | 52.75 | 0 | 01:30 | 0.0726 | 0.0734 | -0.001 | | CB05 | STORAGE | 48.47 | 52.04 | 0 | 01:30 | 0.0675 | 0.08 | -0.006 | | CB06 | STORAGE | 60.02 | 85.66 | 0 | 01:31 | 0.0921 | 0.0932 | 0.018 | | CB07 | STORAGE | 53.07 | 53.07 | 0 | 01:30 | 0.0814 | 0.082 | 0.002 | | CB08 | STORAGE | 44.83 | 44.83 | 0 | 01:30 | 0.0647 | 0.0661 | 0.429 | | CBMH101 | STORAGE | 15.38 | 71.10 | 0 | 02:12 | 0.0235 | 1.43 | 0.001 | | CBMH102 | STORAGE | 13.89 | 157.38 | 0 | 01:30 | 0.0213 | 0.339 | -0.004 | | CBMH104 | STORAGE | 43.65 | 93.72 | 0 | 01:30 | 0.0669 | 0.227 | -0.001 | | CBMH105 | STORAGE | 44.60 | 95.97 | 0 | 01:30 | 0.0681 | 0.18 | 0.002 | | CBMH106 | STORAGE | 12.90 | 236.03 | 0 | 01:27 | 0.0198 | 0.681 | -0.002 | |---------|---------|--------|--------|---|-------|---------|--------|--------| | CBMH107 | STORAGE | 47.12 | 297.47 | 0 | 01:31 | 0.0722 | 0.662 | -0.001 | | CBMH108 | STORAGE | 21.82 | 90.69 | 0 | 01:30 | 0.0334 | 0.154 | -0.002 | | CBMH109 | STORAGE | 26.78 | 70.30 | 0 | 01:30 | 0.041 | 0.12 | -0.000 | | CBMH110 | STORAGE | 84.32 | 264.37 | 0 | 01:30 | 0.129 | 0.437 | -0.000 | | CBMH111 | STORAGE | 84.32 | 136.08 | 0 | 01:25 | 0.129 | 0.213 | 0.119 | | LD301 |
STORAGE | 4.52 | 11.22 | 0 | 01:24 | 0.00783 | 0.0113 | -0.019 | | POND | STORAGE | 244.39 | 631.22 | 0 | 01:30 | 0.398 | 2.35 | 0.002 | | STMH103 | STORAGE | 0.00 | 130.77 | 0 | 01:30 | 0 | 0.291 | 0.001 | | | | | | | | | | | Surcharging occurs when water rises above the top of the highest conduit. Hours Above Crown Below Rim Node Type Surcharged Meters Meters OGS JUNCTION 24.00 0.917 0.893 No nodes were flooded. | CB02 | 0.000 | 1 | 0 | 0 | 0.001 | 2 | 0 | 02:11 | 39.80 | |---------|-------|----|---|---|-------|-----|---|-------|--------| | CB03 | 0.003 | 8 | 0 | 0 | 0.025 | 80 | 0 | 01:32 | 35.32 | | CB04 | 0.000 | 2 | 0 | 0 | 0.000 | 3 | 0 | 01:32 | 51.47 | | CB05 | 0.000 | 9 | 0 | 0 | 0.003 | 67 | 0 | 01:31 | 46.34 | | CB06 | 0.000 | 2 | 0 | 0 | 0.004 | 22 | 0 | 01:32 | 58.22 | | CB07 | 0.000 | 3 | 0 | 0 | 0.004 | 35 | 0 | 01:32 | 52.05 | | CB08 | 0.001 | 7 | 0 | 0 | 0.006 | 92 | 0 | 01:32 | 31.10 | | CBMH101 | 0.002 | 11 | 0 | 0 | 0.002 | 14 | 0 | 02:12 | 71.09 | | CBMH102 | 0.001 | 4 | 0 | 0 | 0.002 | 6 | 0 | 02:11 | 155.43 | | CBMH104 | 0.001 | 6 | 0 | 0 | 0.002 | 10 | 0 | 01:31 | 92.58 | | CBMH105 | 0.001 | 15 | 0 | 0 | 0.002 | 25 | 0 | 01:32 | 92.33 | | CBMH106 | 0.001 | 20 | 0 | 0 | 0.002 | 31 | 0 | 01:35 | 234.54 | | CBMH107 | 0.001 | 4 | 0 | 0 | 0.011 | 35 | 0 | 01:33 | 223.14 | | CBMH108 | 0.001 | 17 | 0 | 0 | 0.003 | 45 | 0 | 01:33 | 87.57 | | CBMH109 | 0.001 | 12 | 0 | 0 | 0.002 | 26 | 0 | 01:33 | 69.06 | | CBMH110 | 0.003 | 7 | 0 | 0 | 0.034 | 100 | 0 | 01:31 | 210.00 | | CBMH111 | 0.003 | 8 | 0 | 0 | 0.033 | 100 | 0 | 01:30 | 128.41 | | LD301 | 0.000 | 17 | 0 | 0 | 0.001 | 62 | 0 | 01:30 | 7.08 | | POND | 1.098 | 48 | 0 | 0 | 1.813 | 79 | 0 | 02:13 | 70.12 | | STMH103 | 0.001 | 36 | 0 | 0 | 0.002 | 52 | 0 | 02:11 | 128.40 | | | | | | | | | | | | | | Flow | Avg | Max | Total | |--------------|-------|-------|-------|----------| | | Freq | Flow | Flow | Volume | | Outfall Node | Pcnt | LPS | LPS | 10^6 ltr | | | | | | | | CARP1 | 0.00 | 0.00 | 0.00 | 0.000 | | CARP2 | 6.50 | 0.39 | 0.90 | 0.001 | | OVLF1 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF2 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF3 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF4 | 0.00 | 0.00 | 0.00 | 0.000 | | XSTM1 | 74.02 | 24.32 | 71.09 | 1.427 | | XSTM2 | 99.97 | 1.81 | 31.10 | 0.066 | | System | 22.56 | 26.53 | 92.17 | 1.494 | | | _ | | 0ccu | | Veloc | | Max/
Full | |-----------|---------|--------|------|--------|-------|------|--------------| | Link | Type | LPS | days | hr:min | m/sec | Flow | Depth | | 01-102 | CONDUIT | 15.58 | 0 | 01:30 | 0.14 | 0.18 | 1.00 | | 02-103 | CONDUIT | 39.80 | 0 | 01:30 | 0.36 | 0.47 | 1.00 | | 03-105 | CONDUIT | 44.61 | 0 | 01:25 | 0.40 | 0.48 | 1.00 | | 04-105 | CONDUIT | 51.47 | 0 | 01:30 | 0.47 | 0.60 | 1.00 | | 05-109 | CONDUIT | 46.34 | 0 | 01:31 | 0.42 | 0.53 | 1.00 | | 06-110 | CONDUIT | 58.22 | 0 | 01:25 | 0.53 | 0.68 | 1.00 | | 07-111 | CONDUIT | 52.05 | 0 | 01:25 | 0.47 | 0.61 | 1.00 | | 101-OGS | CONDUIT | 71.09 | 0 | 02:13 | 2.20 | 4.93 | 1.00 | | 102-POND | CONDUIT | 155.43 | 0 | 01:30 | 1.41 | 1.87 | 1.00 | | 103-102 | CONDUIT | 128.40 | 0 | 01:30 | 1.16 | 1.44 | 1.00 | | 104-103 | CONDUIT | 92.58 | 0 | 01:32 | 0.84 | 1.01 | 1.00 | | 105-104 | CONDUIT | 71.23 | 0 | 01:35 | 0.64 | 0.84 | 1.00 | | 106-POND | CONDUIT | 234.54 | 0 | 01:27 | 2.12 | 2.89 | 1.00 | | 107-106 | CONDUIT | 223.14 | 0 | 01:27 | 2.02 | 2.62 | 1.00 | | 108-107 | CONDUIT | 87.57 | 0 | 01:30 | 0.79 | 1.03 | 1.00 | | 109-108 | CONDUIT | 69.06 | 0 | 01:30 | 0.63 | 0.78 | 1.00 | | 110-10 | CONDUIT | 138.11 | 0 | 01:24 | 1.25 | 1.54 | | | 111-110 | CONDUIT | 79.63 | 0 | 01:54 | 0.72 | 0.93 | | | 301-05 | CONDUIT | 9.26 | 0 | 01:24 | 0.19 | 0.16 | 1.00 | | OGS-XSTM1 | CONDUIT | 71.09 | 0 | 02:13 | 0.45 | 0.61 | 1.00 | | OLFA1 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA10 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA11 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA12 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA13 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA14 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA15 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA16 | CONDUIT | 94.83 | 0 | 01:32 | 0.64 | 0.00 | 0.03 | | OLFA17 | CONDUIT | 36.47 | 0 | 01:31 | 0.32 | 0.00 | 0.03 | | OLFA18 | CONDUIT | 86.96 | 0 | 01:30 | 0.62 | 0.00 | 0.03 | | OLFA19 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | |----------|---------|-------|---|-------|------|------|------| | OLFA3 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA4 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA5 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA6 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA7 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA9 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFR1 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | POND-101 | CONDUIT | 70.12 | 0 | 02:15 | 0.63 | 0.41 | 1.00 | | 08-XTMS2 | ORIFICE | 31.10 | 0 | 01:32 | | | 1.00 | | OVERFLOW | WEIR | 0.00 | 0 | 00:00 | | | 0.00 | | | | | | | | | | | | Adjusted | | | Fract | ion of | Time | in Flo | w Clas | s | | |----------|----------|------|------|-------|--------|------|--------|--------|------|-------| | | /Actual | | Up | Down | Sub | Sup | Up | Down | Norm | Inlet | | Conduit | Length | Dry | Dry | Dry | Crit | Crit | Crit | Crit | Ltd | Ctrl | | 01-102 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 02-103 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 03-105 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 04-105 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 05-109 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 06-110 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 07-111 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 101-OGS | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 102-POND | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 103-102 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 104-103 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 105-104 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 106-POND | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 107-106 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 108-107 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 109-108 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 110-10 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 111-110 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 301-05 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OGS-XSTM1 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |-----------|------|------|------|------|------|------|------|------|------|------| | | | | | | | | | | | | | OLFA1 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA10 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA11 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA12 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA13 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA14 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA15 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA16 | 1.00 | 0.97 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | | OLFA17 | 1.00 | 0.96 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.93 | 0.00 | | OLFA18 | 1.00 | 0.96 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | | OLFA19 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA3 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA4 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA5 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA6 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA7 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA9 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFR1 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | POND-101 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Hours | Hours | |----------|-----------|------------|----------|-------------|----------| | | | Hours Full | | Above Full | Capacity | | Conduit | Both Ends | Upstream | Dnstream | Normal Flow | Limited | | | | | | | | | 01-102 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 02-103 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 03-105 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 04-105 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 05-109 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 06-110 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 07-111 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 101-OGS | 24.00 | 24.00 | 24.00 | 7.99 | 8.68 | | 102-POND | 24.00 | 24.00 | 24.00 | 0.30 | 0.39 | | 103-102 | 24.00 | 24.00 | 24.00 | 0.23 | 0.23 | | 104-103 | 24.00 | 24.00 | 24.00 | 0.05 | 0.26 | |-----------|-------|-------|-------|------|------| | 105-104 | 24.00 | 24.00 | 24.00 | 0.01 | 0.05 | | 106-POND | 24.00 | 24.00 | 24.00 | 0.69 | 0.78 | | 107-106 | 24.00 | 24.00 | 24.00 | 0.65 | 0.65 | | 108-107 | 24.00 | 24.00 | 24.00 | 0.06 | 0.08 | | 109-108 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 110-10 | 24.00 | 24.00 | 24.00 | 0.49 | 0.57 | | 111-110 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 301-05 | 7.87 | 7.87 | 24.00 | 0.01 | 0.01 | | OGS-XSTM1 | 24.00 | 24.00 | 24.00 | 0.01 | 3.58 | | POND-101 | 24.00 | 24.00 | 24.00
| 0.01 | 0.01 | Analysis begun on: Mon May 16 10:06:55 2022 Analysis ended on: Mon May 16 10:06:56 2022 Total elapsed time: 00:00:01 ### Chicago 4 Hour 100 Year + 20% Event PCSWMM Results EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) ************ Element Count Number of rain gages 1 Number of subcatchments 21 Number of nodes 30 Number of links 41 Number of pollutants 0 Number of land uses 0 | | | Daca | nccoraring | |-----------|-------------|-----------|------------| | Name | Data Source | Type | Interval | | | | | | | Raingage1 | C4-100+20% | INTENSITY | 10 min. | | Name | Area | Width | %Imperv | %Slope Rain Gage | Outlet | | |------|------|-------|---------|------------------|---------|--| | A-0 | 0.00 | 5.00 | 5.00 | 2.0000 Raingagel | CARP2 | | | A-1 | 0.03 | 22.96 | 100.00 | 3.0000 Raingage1 | CBMH101 | | | A-10 | 0.03 | 15.29 | 100.00 | 2.5000 Raingage1 | CBMH106 | | | A-11 | 0.10 | 55.88 | 100.00 | 2.0000 Raingage1 | CBMH107 | | | A-12 | 0.04 | 26.67 | 100.00 | 2.0000 Raingage1 | CBMH108 | | | A-13 | 0.05 | 33.75 | 100.00 | 2.0000 Raingage1 | CBMH109 | | | A-14 | 0.10 | 34.67 | 72.00 | 1.0000 Raingage1 | CB05 | | | A-15 | 0.02 | 5.75 | 5.00 | 1.0000 Raingage1 | LD301 | | | A-16 | 0.17 | 80.95 | 100.00 | 1.5000 Raingage1 | CBMH110 | | | A-17 | 0.12 | 56.28 | 100.00 | 1.5000 Raingage1 | CB06 | | | A-18 | 0.17 | 79.07 | 100.00 | 1.5000 Raingage1 | CBMH111 | | | A-19 | 0.11 | 49.77 | 100.00 | 1.5000 | Raingagel | CB07 | |------|------|-------|--------|--------|-----------|---------| | A-2 | 0.66 | 41.44 | 64.00 | 1.5000 | Raingagel | POND | | A-3 | 0.03 | 21.54 | 100.00 | 3.5000 | Raingagel | CBMH102 | | A-4 | 0.03 | 21.29 | 100.00 | 2.0000 | Raingagel | CB01 | | A-5 | 0.08 | 48.23 | 100.00 | 2.0000 | Raingagel | CB02 | | A-6 | 0.09 | 40.00 | 100.00 | 2.0000 | Raingagel | CBMH104 | | A-7 | 0.09 | 43.90 | 99.00 | 1.5000 | Raingagel | CBMH105 | | A-8 | 0.02 | 8.50 | 100.00 | 5.0000 | Raingagel | CB03 | | A-9 | 0.12 | 39.33 | 64.00 | 1.0000 | Raingagel | CB04 | | R-1 | 0.09 | 23 00 | 85 00 | 2 0000 | Paingage1 | CB08 | Node Summary | Name | Туре | Elev. | Depth | Area | | |---------|---------|-------|-------|------|--| | OGS | | 92.67 | | | | | CARP1 | OUTFALL | 0.00 | 0.00 | 0.0 | | | CARP2 | OUTFALL | 0.00 | 0.00 | 0.0 | | | OVLF1 | OUTFALL | 95.19 | 1.00 | 0.0 | | | OVLF2 | OUTFALL | 0.00 | 95.99 | 0.0 | | | OVLF3 | OUTFALL | 0.00 | 96.04 | 0.0 | | | OVLF4 | OUTFALL | 0.00 | 95.84 | 0.0 | | | XSTM1 | OUTFALL | 92.07 | 1.04 | 0.0 | | | XSTM2 | OUTFALL | 92.15 | 0.00 | 0.0 | | | CB01 | STORAGE | 93.02 | 2.98 | 0.0 | | | CB02 | STORAGE | 93.08 | 2.92 | 0.0 | | | CB03 | STORAGE | 93.31 | 1.94 | 0.0 | | | CB04 | STORAGE | 93.29 | 2.61 | 0.0 | | | CB05 | STORAGE | 93.32 | 2.68 | 0.0 | | | CB06 | STORAGE | 93.39 | 2.76 | 0.0 | | | CB07 | STORAGE | 93.50 | 2.65 | 0.0 | | | CB08 | STORAGE | 93.15 | 2.55 | 0.0 | | | CBMH101 | STORAGE | 92.76 | 3.04 | 0.0 | | | CBMH102 | STORAGE | 92.92 | 2.98 | 0.0 | | | CBMH104 | STORAGE | 93.09 | 2.71 | 0.0 | | | CBMH105 | STORAGE | 93.22 | 2.88 | 0.0 | | | CBMH106 | STORAGE | 93.07 | 3.08 | 0.0 | | | CBMH107 | STORAGE | 93.13 | 2.87 | 0.0 | | | CBMH108 | STORAGE | 93.21 | 2.89 | 0.0 | |---------|---------|-------|------|-----| | CBMH109 | STORAGE | 93.28 | 2.87 | 0.0 | | CBMH110 | STORAGE | 93.25 | 2.75 | 0.0 | | CBMH111 | STORAGE | 93.36 | 2.64 | 0.0 | | LD301 | STORAGE | 93.80 | 2.20 | 0.0 | | POND | STORAGE | 92.90 | 3.00 | 0.0 | | STMH103 | STORAGE | 92.98 | 3.22 | 0.0 | Link Summary | Name | From Node | To Node | Type | Length | %Slope | Roughness | |-----------|-----------|---------|---------|--------|--------|-----------| | 01-102 | CB01 | CBMH102 | CONDUIT | 16.9 | 0.2360 | 0.0130 | | 02-103 | CB02 | STMH103 | CONDUIT | 17.0 | 0.2357 | 0.0130 | | 03-105 | CB03 | CBMH105 | CONDUIT | 10.5 | 0.2855 | 0.0130 | | 04-105 | CB04 | CBMH105 | CONDUIT | 24.7 | 0.2431 | 0.0130 | | 05-109 | CB05 | CBMH109 | CONDUIT | 11.8 | 0.2533 | 0.0130 | | 06-110 | CB06 | CBMH110 | CONDUIT | 33.5 | 0.2391 | 0.0130 | | 07-111 | CB07 | CBMH111 | CONDUIT | 33.5 | 0.2391 | 0.0130 | | 101-OGS | CBMH101 | OGS | CONDUIT | 5.6 | 0.1786 | 0.0130 | | 102-POND | CBMH102 | POND | CONDUIT | 8.9 | 0.2243 | 0.0130 | | 103-102 | STMH103 | CBMH102 | CONDUIT | 19.5 | 0.2569 | 0.0130 | | 104-103 | CBMH104 | STMH103 | CONDUIT | 18.4 | 0.2711 | 0.0130 | | 105-104 | CBMH105 | CBMH104 | CONDUIT | 29.9 | 0.2344 | 0.0130 | | 106-POND | CBMH106 | POND | CONDUIT | 9.3 | 0.2144 | 0.0130 | | 107-106 | CBMH107 | CBMH106 | CONDUIT | 21.2 | 0.2360 | 0.0130 | | 108-107 | CBMH108 | CBMH107 | CONDUIT | 21.4 | 0.2340 | 0.0130 | | 109-108 | CBMH109 | CBMH108 | CONDUIT | 23.4 | 0.2560 | 0.0130 | | 110-10 | CBMH110 | CBMH107 | CONDUIT | 34.3 | 0.2623 | 0.0130 | | 111-110 | CBMH111 | CBMH110 | CONDUIT | 41.6 | 0.2404 | 0.0130 | | 301-05 | LD301 | CB05 | CONDUIT | 41.7 | 1.0080 | 0.0130 | | OGS-XSTM1 | OGS | XSTM1 | CONDUIT | 6.0 | 0.1667 | 0.0130 | | OLFA1 | CBMH101 | OVLF3 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA10 | CBMH106 | CB01 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA11 | CBMH107 | CB02 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA12 | CBMH108 | CBMH107 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA13 | CBMH109 | CB05 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA14 | CB05 | CB04 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFA15 | LD301 | CB05 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFA16 | CBMH110 | CBMH107 | CONDUIT | 1.0 | 1.0001 | 0.0150 | |----------|---------|---------|---------|------|--------|--------| | OLFA17 | CB06 | CBMH110 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA18 | CBMH111 | CBMH110 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA19 | CB07 | CBMH111 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA3 | CBMH102 | CBMH101 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA4 | CB01 | CBMH102 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA5 | CB02 | CBMH104 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA6 | CBMH104 | OVLF2 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA7 | CBMH105 | CBMH104 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | OLFA9 | CB04 | OVLF1 | CONDUIT | 1.0 | 1.0001 | 0.0350 | | OLFR1 | CB08 | OVLF4 | CONDUIT | 1.0 | 1.0001 | 0.0150 | | POND-101 | POND | CBMH101 | CONDUIT | 11.7 | 0.9442 | 0.0130 | | 08-XTMS2 | CB08 | XSTM2 | ORIFICE | | | | | OVERFLOW | POND | CARP1 | WEIR | | | | | | | | | | | | | ******* | ***** | | | | | | | |----------|----------|-------|------|------|-------|---------|-------| | | | Full | Full | Hyd. | Max. | No. of | Full | | Conduit | Shape | Depth | Area | Rad. | Width | Barrels | Flow | | 01-102 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.18 | | 02-103 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.13 | | 03-105 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 93.69 | | 04-105 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 86.45 | | 05-109 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.25 | | 06-110 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.73 | | 07-111 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.73 | | 101-OGS | CIRCULAR | 0.20 | 0.03 | 0.05 | 0.20 | 1 | 14.42 | | 102-POND | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 83.04 | | 103-102 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.87 | | 104-103 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 91.29 | | 105-104 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 84.89 | | 106-POND | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 81.18 | | 107-106 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.18 | | 108-107 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 84.82 | | 109-108 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 88.72 | | 110-10 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 89.80 | | 111-110 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.98 | | 301-05 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 59.71 | | | | | | | | | | | OGS-XSTM1 | CIRCULAR | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 116.40 | |-----------|-----------|------|------|------|------|---|----------| | OLFA1 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA10 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA11 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA12 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA13 | RECT OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA14 | RECT OPEN | 1.00 | 1.00 | 0.33 | 1.00 | 1 | 1373.69 | | OLFA15 | RECT OPEN | 1.00 | 1.00 | 0.33 | 1.00 | 1 | 1373.69 | | OLFA16 | RECT OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA17 | RECT OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA18 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA19 | RECT_OPEN | 1.00 | 5.00 | 0.71 | 5.00 | 1 | 26637.72 | | OLFA3 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA4 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA5 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA6 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA7 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | OLFA9 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 6098.05 | | OLFR1 | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 | 14228.79 | | POND-101 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 170.38 | ${\tt NOTE:}$ The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***** Analysis Options Flow Units LPS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method HORTON Maximum Trials 8 Number of Threads 4 Head Tolerance 0.001500 m | ******* | Volume | Depth | |----------------------------|-----------|----------| | Runoff Quantity Continuity | hectare-m | mm | | ******* | | | | Initial LID Storage | 0.002 | 1.058 | | Total Precipitation | 0.197 | 91.202 | | Evaporation Loss | 0.000 | 0.000 | | Infiltration Loss | 0.017 | 7.702 | | Surface Runoff | 0.181 | 83.903 | | Final Storage | 0.002 | 1.058 | | Continuity Error (%) | -0.437 | | | ****** | Volume
| Volume | | Flow Routing Continuity | hectare-m | 10^6 ltr | | ********* | | | | Dry Weather Inflow | 0.000 | 0.000 | | Wet Weather Inflow | 0.181 | 1.807 | | Groundwater Inflow | 0.000 | 0.000 | | RDII Inflow | 0.000 | 0.000 | | External Inflow | 0.000 | 0.002 | | External Outflow | 0.181 | 1.808 | | Flooding Loss | 0.000 | 0.000 | | Evaporation Loss | 0.000 | 0.000 | | Exfiltration Loss | 0.000 | 0.000 | | Initial Stored Volume | 0.100 | 1.000 | | | | | Final Stored Volume 0.100 1.000 Continuity Error (%) 0.025 ****** Time-Step Critical Elements Link OLFA16 (6.91%) Link OLFA18 (1.59%) ********** Highest Flow Instability Indexes Link 08-XTMS2 (114) Link 03-105 (8) Link 02-103 (3) Link 01-102 (1) ****** Routing Time Step Summary Minimum Time Step Average Time Step Maximum Time Step 0.50 sec 4.62 sec 5.00 sec Percent in Steady State : Average Iterations per Step : -0.00 2.00 Percent Not Converging : 0.01 Fercent Not Converging Time Step Frequencies 5.000 - 3.155 sec 3.155 - 1.991 sec 1.991 - 1.256 sec 1.256 - 0.792 sec 0.792 - 0.500 sec 91.00 % 0.21 % 0.56 % 1.81 % 6.42 % ******** Subcatchment Runoff Summary | Peak Runoff | Total | Total | Total | Total | Imperv | Perv | Total | Total | |-------------------------------------|--------|-------|-------|-------|--------|--------|--------|--------| | reak Rulloll | Precip | Runon | Evap | Infil | Runoff | Runoff | Runoff | Runoff | | Runoff Coeff
Subcatchment
LPS | mm | | | | mm | | | | | | | | | | | | | | | A-0
1.11 0.557 | 91.20 | 0.00 | 0.00 | 41.78 | 4.56 | 46.27 | 50.83 | 0.00 | | A-1
18.45 1.001 | 91.20 | 0.00 | 0.00 | 0.00 | 91.30 | 0.00 | 91.30 | 0.03 | | A-10
15.48 1.001 | 91.20 | 0.00 | 0.00 | 0.00 | 91.34 | 0.00 | 91.34 | 0.02 | | A-11 | 91.20 | 0.00 | 0.00 | 0.00 | 91.36 | 0.00 | 91.36 | 0.09 | | 56.54 1.002
A-12 | 91.20 | 0.00 | 0.00 | 0.00 | 91.35 | 0.00 | 91.35 | 0.04 | | 26.19 1.002
A-13 | 91.20 | 0.00 | 0.00 | 0.00 | 91.35 | 0.00 | 91.35 | 0.05 | | 32.14 1.002
A-14 | 91.20 | 0.00 | 0.00 | 12.51 | 65.90 | 13.41 | 79.31 | 0.08 | | 59.17 0.870
A-15 | 91.20 | 0.00 | 0.00 | 45.48 | 4.56 | 41.68 | 46.25 | 0.01 | | 6.34 0.507
A-16 | 91.20 | 0.00 | 0.00 | 0.00 | 91.45 | 0.00 | 91.45 | 0.16 | | 101.18 1.003
A-17 | 91.20 | 0.00 | 0.00 | 0.00 | 91.46 | 0.00 | 91.46 | 0.11 | | 72.02 1.003
A-18 | 91.20 | 0.00 | 0.00 | 0.00 | 91.46 | 0.00 | 91.46 | 0.16 | | 101.18 1.003
A-19 | 91.20 | 0.00 | 0.00 | 0.00 | 91.46 | 0.00 | 91.46 | 0.10 | | 63.69 1.003
A-2 | 91.20 | 0.00 | 0.00 | 17.54 | 58.84 | 15.46 | 74.30 | 0.49 | | 303.39 0.815
A-3 | 91.20 | 0.00 | 0.00 | 0.00 | 91.29 | 0.00 | 91.29 | 0.03 | | 16.66 1.001
A-4 | 91.20 | 0.00 | 0.00 | 0.00 | 91.34 | 0.00 | 91.34 | 0.03 | | 19.64 1.002
A-5 | 91.20 | 0.00 | 0.00 | 0.00 | 91.36 | 0.00 | 91.36 | 0.07 | | 48.81 1.002
A-6 | 91.20 | 0.00 | 0.00 | 0.00 | 91.42 | 0.00 | 91.42 | 0.08 | | 52 38 1 002 | | | | | | | | | | A-7 | | 91.20 | 0.00 | 0.00 | 0.44 | 90.52 | 0.49 | 91.01 | 0.08 | |--------------|-------|-------|------|------|-------|-------|-------|-------|------| | A-8 | | 91.20 | 0.00 | 0.00 | 0.00 | 91.31 | 0.00 | 91.31 | 0.02 | | 10.12
A-9 | 1.001 | 91.20 | 0.00 | 0.00 | 16.19 | 58.55 | 17.09 | 75.64 | 0.09 | | 65.01
R-1 | 0.829 | 91.20 | 0.00 | 0.00 | 6.63 | 77.83 | 7.29 | 85.12 | 0.08 | | 54.05 | 0.933 | | | | | | | | | | Node | | Depth
Meters | Depth
Meters | HGL
Meters | Occu
days | rrence
hr:min | Reported
Max Depth
Meters | |---------|----------|-----------------|-----------------|---------------|--------------|------------------|---------------------------------| | OGS | JUNCTION | | | 94.04 | | 02:00 | 1.37 | | CARP1 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | CARP2 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF1 | OUTFALL | 0.00 | 0.00 | 95.19 | 0 | 00:00 | 0.00 | | OVLF2 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF3 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | OVLF4 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | XSTM1 | OUTFALL | 1.95 | 1.95 | 94.02 | 0 | 00:00 | 1.95 | | XSTM2 | OUTFALL | 1.87 | 1.87 | 94.02 | 0 | 00:00 | 1.87 | | CB01 | STORAGE | 1.16 | 1.71 | 94.73 | 0 | 01:32 | 1.70 | | CB02 | STORAGE | 1.11 | 1.96 | 95.04 | 0 | 01:32 | 1.96 | | CB03 | STORAGE | 0.90 | 1.79 | 95.10 | 0 | 01:30 | 1.77 | | CB04 | STORAGE | 0.92 | 1.79 | 95.08 | 0 | 01:33 | 1.79 | | CB05 | STORAGE | 0.92 | 1.93 | 95.25 | 0 | 01:33 | 1.93 | | CB06 | STORAGE | 0.85 | 1.86 | 95.25 | 0 | 01:32 | 1.86 | | CB07 | STORAGE | 0.74 | 1.78 | 95.28 | 0 | 01:32 | 1.78 | | CB08 | STORAGE | 0.94 | 1.72 | 94.87 | 0 | 01:28 | 1.72 | | CBMH101 | STORAGE | 1.40 | 1.90 | 94.66 | 0 | 02:00 | 1.90 | | CBMH102 | STORAGE | 1.26 | 1.80 | 94.72 | 0 | 01:33 | 1.80 | | CBMH104 | STORAGE | 1.11 | 1.87 | 94.96 | 0 | 01:34 | 1.87 | | CBMH105 | STORAGE | 0.99 | 1.85 | 95.07 | 0 | 01:33 | 1.84 | | CBMH106 | STORAGE | 1.13 | 1.83 | 94.90 | 0 | 01:42 | 1.83 | | CBMH107 | STORAGE | 1.10 | 2.12 | 95.25 | 0 | 01:31 | 2.11 | |---------|---------|------|------|-------|---|-------|------| | CBMH108 | STORAGE | 1.03 | 2.05 | 95.26 | 0 | 01:31 | 2.03 | | CBMH109 | STORAGE | 0.96 | 1.97 | 95.25 | 0 | 01:33 | 1.97 | | CBMH110 | STORAGE | 0.99 | 2.00 | 95.25 | 0 | 01:32 | 2.00 | | CBMH111 | STORAGE | 0.88 | 1.89 | 95.25 | 0 | 01:32 | 1.89 | | LD301 | STORAGE | 0.44 | 1.45 | 95.25 | 0 | 01:33 | 1.45 | | POND | STORAGE | 1.27 | 1.80 | 94.70 | 0 | 02:00 | 1.80 | | STMH103 | STORAGE | 1.21 | 1.92 | 94.90 | 0 | 01:33 | 1.92 | | Node | Туре | Lateral
Inflow
LPS | Maximum
Total
Inflow
LPS | Time of Max
Occurrence | | Inflow
Volume
10^6 ltr | Volume
10^6 ltr | Balance
Error
Percent | | |---------|----------|--------------------------|-----------------------------------|---------------------------|-------|------------------------------|--------------------|-----------------------------|-----| | OGS | JUNCTION | 0.00 | 74.46 | | 02:00 | | 1.54 | | | | CARP1 | OUTFALL | 0.00 | 127.67 | 0 | 02:00 | 0 | 0.192 | 0.000 | | | CARP2 | OUTFALL | 1.11 | 1.11 | 0 | 01:30 | 0.00101 | 0.00101 | 0.000 | | | OVLF1 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 | ltr | | OVLF2 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 | ltr | | OVLF3 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 | ltr | | OVLF4 | OUTFALL | 0.00 | 25.68 | 0 | 01:28 | 0 | 0.00426 | 0.000 | | | XSTM1 | OUTFALL | 0.00 | 74.46 | 0 | 02:00 | 0 | 1.54 | 0.000 | | | XSTM2 | OUTFALL | 0.00 | 31.57 | 0 | 01:28 | 0 | 0.0757 | 0.000 | | | CB01 | STORAGE | 19.64 | 19.64 | 0 | 01:30 | 0.0301 | 0.0307 | -0.002 | | | CB02 | STORAGE | 48.81 | 156.08 | 0 | 01:31 | 0.0747 | 0.0874 | 0.020 | | | CB03 | STORAGE | 10.12 | 76.26 | 0 | 01:25 | 0.0155 | 0.0437 | 0.129 | | | CB04 | STORAGE | 65.01 | 67.76 | 0 | 01:30 | 0.089 | 0.0952 | 0.000 | | | CB05 | STORAGE | 59.17 | 64.82 | 0 | 01:30 | 0.0823 | 0.0984 | 0.022 | | | CB06 | STORAGE | 72.02 | 140.96 | 0 | 01:28 | 0.11 | 0.112 | 0.031 | | | CB07 | STORAGE | 63.69 | 63.69 | 0 | 01:30 | 0.0976 | 0.0983 | 0.008 | | | CB08 | STORAGE | 54.05 | 54.05 | 0 | 01:30 | 0.0781 | 0.0795 | 0.339 | | | CBMH101 | STORAGE | 18.45 | 74.46 | 0 | 01:59 | 0.0282 | 1.54 | 0.001 | | | CBMH102 | STORAGE | 16.66 | 198.58 | 0 | 01:32 | 0.0255 | 0.424 | -0.004 | | | CBMH104 | STORAGE | 52.38 | 138.78 | 0 | 01:30 | 0.0803 | 0.278 | -0.002 | | | CBMH105 | STORAGE | 53.53 | 154.86 | 0 | 01:30 | 0.0817 | 0.223 | -0.001 | | | CBMH106 | STORAGE | 15.48 | 248.50 | 0 | 01:31 | 0.0237 | 0.798 | -0.001 | |---------|---------|--------|--------|---|-------|--------|--------|--------| | CBMH107 | STORAGE | 56.54 | 412.68 | 0 | 01:29 | 0.0866 | 0.789 | 0.002 | | CBMH108 | STORAGE | 26.19 | 103.90 | 0 | 01:31 | 0.0401 | 0.182 | -0.001 | | CBMH109 | STORAGE | 32.14 | 94.39 | 0 | 01:29 | 0.0492 | 0.141 | -0.008 | | CBMH110 | STORAGE | 101.18 | 330.49 | 0 | 01:28 | 0.155 | 0.524 | -0.002 | | CBMH111 | STORAGE | 101.18 | 155.60 | 0 | 01:25 | 0.155 | 0.255 | 0.119 | | LD301 | STORAGE | 6.34 | 12.32 | 0 | 01:24 | 0.0106 | 0.0145 | -0.017 | | POND | STORAGE | 303.39 | 717.40 | 0 | 01:30 | 0.492 | 2.65 | 0.002 | | STMH103 | STORAGE | 0.00 | 209.95 | 0 | 01:31 | 0 | 0.367 | -0.000 | | | | | | | | | | | Surcharging occurs when water rises above the top of the highest conduit. Hours Above Crown Below Rim Node Type Surcharged Meters Meters OGS JUNCTION 24.00 0.919 0.891 No nodes were flooded. | | Average | _ | Evap | | Maximum | Max | Time of Max | Maximum | |--------------|-------------------|---|--------------|---|-------------------|--------------|---------------------------|----------------| | Storage Unit | Volume
1000 m3 | | Pcnt
Loss | | Volume
1000 m3 | Pcnt
Full | Occurrence
days hr:min | Outflow
LPS | | CB01 | 0.000 | 2 | 0 | 0 | 0.001 | 3 | 0 01:32 | 18.85 | | CB02 | 0.000 | 1 | 0 | 0 | 0.001 | 4 | 0 | 01:32 | 118.07 | |---------|-------|----|---|---|-------|-----|---|-------|--------| | CB03 | 0.004 | 14 | 0 | 0 | 0.031 | 100 | 0 | 01:30 | 46.68 | | CB04 | 0.000 | 3 | 0 | 0 | 0.004 | 27 | 0 | 01:33 | 65.62 | | CB05 | 0.001 | 15 | 0 | 0 | 0.004 | 100 | 0 | 01:28 | 63.46 | | CB06 | 0.001 | 4 | 0 | 0 | 0.006 | 35 | 0 | 01:32 | 69.07 | | CB07 | 0.001 | 5 | 0 | 0 | 0.008 | 67 | 0 | 01:32 | 55.03 | | CB08 | 0.001 | 10 | 0 | 0 | 0.007 | 100 | 0 | 01:28 | 57.22 | | CBMH101 | 0.002 | 11 | 0 | 0 | 0.002 | 15 | 0 | 02:00 | 74.46 | | CBMH102 | 0.001 | 4 | 0 | 0 | 0.002 | 6 | 0 | 01:33 | 194.88 | | CBMH104 | 0.002 | 8 | 0 | 0 | 0.012 | 62 | 0 | 01:34 | 122.44 | | CBMH105 | 0.001 | 16 | 0 | 0 | 0.002 | 29 | 0 | 01:33 | 116.58 | | CBMH106 | 0.001 | 21 | 0 | 0 | 0.002 | 33 | 0 | 01:42 | 244.52 | | CBMH107 | 0.003 | 10 | 0 | 0 | 0.031 | 100 | 0 | 01:31 | 357.95 | | CBMH108 | 0.001 | 22 | 0 | 0 | 0.007 | 100 | 0 | 01:31 | 102.55 | | CBMH109 | 0.001 | 16 | 0 | 0 | 0.008 | 96 | 0 | 01:33 | 73.48 | | CBMH110 | 0.004 | 12 | 0 | 0 | 0.034 | 100 | 0 | 01:28 | 297.25 | | CBMH111 | 0.004 | 12 | 0 | 0 | 0.033 | 100 | 0 | 01:28 | 161.13 | | LD301 |
0.000 | 20 | 0 | 0 | 0.001 | 66 | 0 | 01:33 | 6.33 | | POND | 1.139 | 50 | 0 | 0 | 1.914 | 83 | 0 | 02:00 | 200.28 | | STMH103 | 0.001 | 38 | 0 | 0 | 0.002 | 60 | 0 | 01:33 | 180.48 | | Outfall Node | Flow
Freq
Pcnt | Avg
Flow
LPS | Max
Flow
LPS | Total
Volume
10^6 ltr | |--------------|----------------------|--------------------|--------------------|-----------------------------| | CARP1 | 3.85 | 53.92 | 127.67 | 0.192 | | CARP2 | 10.87 | 0.50 | 1.11 | 0.001 | | OVLF1 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF2 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF3 | 0.00 | 0.00 | 0.00 | 0.000 | | OVLF4 | 3.13 | 13.74 | 25.68 | 0.004 | | XSTM1 | 79.45 | 26.67 | 74.46 | 1.537 | | XSTM2 | 99.98 | 2.96 | 31.57 | 0.076 | | System | 24.66 | 97.79 | 207.37 | 1.810 | | | | Maximum | | | | | | |-----------|---------|---------|------|--------|-------|------|-------| | | | | | | Veloc | | | | Link | Type | LPS | days | hr:min | m/sec | Flow | Depth | | 01 100 | | | | 01 00 | | | 1 00 | | 01-102 | CONDUIT | 18.85 | | 01:29 | | | | | 02-103 | CONDUIT | | | 01:32 | 1.07 | 1.39 | | | 03-105 | CONDUIT | 66.14 | 0 | 01:25 | 0.60 | 0.71 | | | 04-105 | CONDUIT | | 0 | 01:30 | 0.59 | 0.76 | | | 05-109 | CONDUIT | | 0 | 01:29 | 0.52 | 0.65 | 1.00 | | 06-110 | CONDUIT | 62.89 | 0 | 01:24 | 0.57 | 0.73 | 1.00 | | 07-111 | CONDUIT | 55.03 | 0 | 01:24 | 0.50 | 0.64 | 1.00 | | 101-OGS | | 74.46 | | 02:00 | 2.30 | 5.16 | 1.00 | | 102-POND | CONDUIT | | | 01:32 | | | | | 103-102 | CONDUIT | 180.48 | | 01:32 | 1.63 | 2.03 | | | 104-103 | CONDUIT | 122.44 | 0 | 01:35 | 1.11 | 1.34 | | | 105-104 | CONDUIT | 96.50 | 0 | 01:31 | 0.87 | 1.14 | 1.00 | | 106-POND | CONDUIT | 244.52 | 0 | 01:31 | 2.21 | 3.01 | 1.00 | | 107-106 | CONDUIT | 236.87 | 0 | 01:31 | 2.14 | 2.78 | 1.00 | | 108-107 | CONDUIT | 92.51 | 0 | 01:28 | 0.84 | 1.09 | 1.00 | | 109-108 | CONDUIT | 73.48 | 0 | 01:29 | 0.67 | 0.83 | 1.00 | | 110-10 | CONDUIT | 136.55 | 0 | 01:23 | 1.24 | 1.52 | 1.00 | | 111-110 | CONDUIT | 67.02 | 0 | 02:02 | 0.61 | 0.78 | 1.00 | | 301-05 | CONDUIT | 9.85 | 0 | 01:24 | 0.20 | 0.17 | 1.00 | | OGS-XSTM1 | CONDUIT | 74.46 | 0 | 02:00 | 0.47 | 0.64 | 1.00 | | OLFA1 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA10 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA11 | CONDUIT | 119.38 | 0 | 01:31 | 0.87 | 0.01 | 0.05 | | OLFA12 | CONDUIT | 60.57 | 0 | 01:31 | 0.51 | 0.00 | 0.06 | | OLFA13 | CONDUIT | 16.49 | 0 | 01:31 | 0.22 | 0.00 | 0.05 | | OLFA14 | CONDUIT | 20.65 | 0 | 01:33 | 0.50 | 0.02 | 0.04 | | OLFA15 | CONDUIT | 3.71 | 0 | 01:34 | 0.10 | 0.00 | 0.05 | | OLFA16 | CONDUIT | 213.97 | 0 | 01:30 | 0.88 | 0.01 | 0.05 | | OLFA17 | CONDUIT | 68.98 | 0 | 01:28 | 0.40 | 0.00 | 0.06 | | OLFA18 | CONDUIT | 123.80 | 0 | 01:28 | 0.72 | 0.00 | 0.05 | | | | | | | | | | | OLFA19 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | |----------|---------|--------|---|-------|------|------|------| | OLFA3 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA4 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA5 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA6 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA7 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFA9 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.00 | | OLFR1 | CONDUIT | 25.68 | 0 | 01:28 | 0.47 | 0.00 | 0.02 | | POND-101 | CONDUIT | 72.84 | 0 | 02:04 | 0.66 | 0.43 | 1.00 | | 08-XTMS2 | ORIFICE | 31.57 | 0 | 01:28 | | | 1.00 | | OVERFLOW | WEIR | 127.67 | 0 | 02:00 | | | 0.30 | | | | | | | | | | | | Adjusted | | | Fract | ion of | Time | in Flo | w Clas | s | | |----------|----------|------|------|-------|--------|------|--------|--------|------|-------| | | /Actual | | Up | Down | Sub | Sup | Up | Down | Norm | Inlet | | Conduit | Length | Dry | Dry | Dry | Crit | Crit | Crit | Crit | Ltd | Ctrl | | 01-102 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 02-103 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 03-105 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 04-105 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 05-109 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 06-110 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 07-111 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 101-OGS | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 102-POND | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 103-102 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 104-103 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 105-104 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 106-POND | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 107-106 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 108-107 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 109-108 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 110-10 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 111-110 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 301-05 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OGS-XSTM1 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |-----------|------|------|------|------|------|------|------|------|------|------| | OLFA1 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA10 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA11 | 1.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | | OLFA12 | 1.00 | 0.95 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | | OLFA13 | 1.00 | 0.92 | 0.01 | 0.00 | 0.06 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | | OLFA14 | 1.00 | 0.93 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | | OLFA15 | 1.00 | 0.92 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.93 | 0.00 | | OLFA16 | 1.00 | 0.92 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.07 | 0.00 | 0.00 | | OLFA17 | 1.00 | 0.91 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.01 | 0.93 | 0.00 | | OLFA18 | 1.00 | 0.91 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA19 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA3 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA4 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA5 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA6 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA7 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFA9 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OLFR1 | 1.00 | 0.97 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | | POND-101 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | Conduit | Both Ends | Hours Full
Upstream |
Dnstream | Hours
Above Full
Normal Flow | Hours
Capacity
Limited | |----------|-----------|------------------------|--------------|------------------------------------|------------------------------| | 01-102 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 02-103 | 24.00 | 24.00 | 24.00 | 0.03 | 0.04 | | 03-105 | 24.00 | 24.00 | 24.00 | 0.01 | 0.02 | | 04-105 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 05-109 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 06-110 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 07-111 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 101-OGS | 24.00 | 24.00 | 24.00 | 8.40 | 9.07 | | 102-POND | 24.00 | 24.00 | 24.00 | 0.36 | 0.47 | | 103-102 | 24.00 | 24.00 | 24.00 | 0.30 | 0.30 | | 104-103 | 24.00 | 24.00 | 24.00 | 0.17 | 0.31 | |-----------|-------|-------|-------|------|------| | 105-104 | 24.00 | 24.00 | 24.00 | 0.04 | 0.10 | | 106-POND | 24.00 | 24.00 | 24.00 | 0.85 | 0.93 | | 107-106 | 24.00 | 24.00 | 24.00 | 0.83 | 0.83 | | 108-107 | 24.00 | 24.00 | 24.00 | 0.06 | 0.07 | | 109-108 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 110-10 | 24.00 | 24.00 | 24.00 | 0.38 | 0.45 | | 111-110 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | 301-05 | 8.31 | 8.31 | 24.00 | 0.01 | 0.01 | | OGS-XSTM1 | 24.00 | 24.00 | 24.00 | 0.01 | 3.94 | | POND-101 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | Analysis begun on: Mon May 16 10:09:01 2022 Analysis ended on: Mon May 16 10:09:03 2022 Total elapsed time: 00:00:02 ### **APPENDIX F** **Inlet Control Device Information** # IPEX Tempest™ Inlet Control Devices **Municipal Technical Manual Series** Vol. I, 2nd Edition © 2012 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 2441 Royal Windsor Drive, Mississauga, Ontario, Canada, L5J 4C7. The information contained here within is based on current information and product design at the time of publication and is subject to change without notification. IPEX does not guarantee or warranty the accuracy, suitability for particular applications, or results to be obtained therefrom. ### PRODUCT TECHNICAL SPECIFICATION ### General Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control. All ICD's will be IPEX Tempest or approved equal. All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools. High Flow (HF) Sump devices will consist of a removable threaded cap which can be
accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand ICD's shall have no moving parts. #### **Materials** ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements. The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70. The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate. All hardware will be made from 304 stainless steel. ### **Dimensioning** The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump. ### Installation Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer. ### PRODUCT INFORMATION: TEMPEST HF & MHF ICD ### **Product Description** Our HF, HF Sump and MHF ICD's are designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter or larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device to accommodate virtually any storm sewer size. Available in 5 preset flow curves, these ICDs have the ability to provide constant flow rates: 9lps (143 gpm) and greater #### **Product Function** TEMPEST HF (High Flow): designed to manage moderate to higher flows 15 L/s (240 gpm) or greater and prevent the propagation of odour and floatables. With this device, the cross-sectional area of the device is larger than the orifice diameter and has been designed to limit head losses. The HF ICD can also be ordered without flow control when only odour and floatable control is required. **TEMPEST HF (High Flow) Sump:** The height of a sewer outlet pipe in a catch basin is not always conveniently located. At times it may be located very close to the catch basin floor, not providing enough sump for one of the other TEMPEST ICDs with universal back plate to be installed. In these applications, the HF Sump is offered. The #### TEMPEST MHF (Medium to High Flow): The MHF plate or plug is designed to control flow rates 9 L/s (143 gpm) or greater. It is not designed to prevent the propagation of odour and floatables. ### **Product Construction** The HF, HF Sump and MHF ICDs are built to be light weight at a maximum weight of 6.8 Kg (14.6 lbs). ### **Product Applications** The HF and MHF ICD's are available to accommodate both square and round applications: The HF Sump is available to accommodate low to no sump applications in both square and round catch basins: Chart 3: HF & MHF Preset Flow Curves ### PRODUCT INSTALLATION # Instructions to assemble a TEMPEST HF or MHF ICD into a Square Catch Basin: - 1. Materials and tooling verification: - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker. - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers, (4) nuts, universal mounting plate, ICD device - 2. Use the mounting wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal. - 3. Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes. - 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors. - 5. Install the universal wall mounting plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall. - 6. From the ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the universal wall mounting plate and has created a seal. ### **WARNING** - Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall. - Call your IPEX representative for more information or if you have any questions about our products. # Instructions to assemble a TEMPEST HF or MHF ICD into a Round Catch Basin: #### STEPS: - 1. Materials and tooling verification. - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level and marker. - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers and (4) nuts, spigot CB wall plate, universal mounting plate hub adapter, ICD device. - Use the round catch basin spigot adaptor to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal. - 3. Use an impact drill with a 3/8" concrete bit to make the four holes at a depth between 1-1/2" to 2-1/2". Clean the concrete dust from the holes. - 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors. - 5. Install the spigot CB wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the spigot CB wall plate and the catch basin wall. - 6. Put solvent cement on the hub of the universal mounting plate, hub adapter and the spigot of the CB wall plate, then slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the hub adapter should touch the catch basin wall. - 7. From ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal. ### WARNING - Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall. - The solvent cement which is used in this installation is to be approved for PVC. - The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com. - Call your IPEX representative for more information or if you have any questions about our products. # Instructions to assemble a TEMPEST HF Sump into a Square or Round Catch Basin: #### STEPS: - 1. Materials and tooling verification: - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, mastic tape and metal strapping - Material: (2) concrete anchor 3/8 x 3-1/2, (2) washers, (2) nuts, HF Sump pieces (2). - 2. Apply solvent cement to the spigot end of the top half of the sump. Apply solvent cement to the hub of the bottom half of the sump. Insert the spigot of the top half of the sump into the hub of the bottom half of the sump. - 3. Install the 8" spigot of the device into the outlet pipe. Use the mastic tape to seal the device spigot into the outlet pipe. You should use a level to be sure that the fitting is standing at the vertical. - 4. Use an impact drill with a 3/8" concrete bit to make a series of 2 holes along each side of the body throat. The depth of the hole should be between 1-1/2" to 2-1/2". Clean the concrete dust from the 2 holes. - 5. Install the anchors (2) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you hit the anchors. Remove the nuts from the ends of the anchors. - 6. Cut the metal strapping to length and connect each end of the strapping to the anchors. Screw the nuts in place with a maximum torque of 40 N.m (30 lbf-ft). The device should be completely flush with the catch basin wall. ### **WARNING** - Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall. - The solvent cement which is used in this installation is to be approved for PVC. - The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com. - Call your IPEX representative for more information or if you have any questions about our products. ### PRODUCT TECHNICAL SPECIFICATION #### General Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal. All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook shall be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above shall not require any unbolting or special manipulation or any special tools. High Flow (HF) Sump devices shall consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand. ICD's shall have no moving parts. ### **Materials** ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be
durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements. The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70. The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate. All hardware will be made from 304 stainless steel. ### **Dimensioning** The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump. ### Installation Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer. ### **APPENDIX G** **Water Quality Treatment Unit Information** ### **Steve Matthews** **From:** Patrick <patrick@echelonenvironmental.ca> **Sent:** Tuesday, May 17, 2022 9:34 AM To: Steve Matthews Cc: Francois Thauvette **Subject:** RE: CDS Sizing Request - 30 Frank Nighbor Place (City of Ottawa) Attachments: CDS TSSR IDF - 30 Frank Nighbour Place - PMSU 2020_5 16-May-22.pdf; CDS Concentric Inline Hydraulics - 30 Frank Nighbour Place - PMSU 2020_5 .pdf ### Good afternoon Steve, I hope everything is going well! Please find attached our CDS IDF TSS calculations as well as our hydraulic analysis. For this site I recommend a CDS PMSU 2020_5 which has a treatment flow rate of 31 L/s and an approximate budget price of \$27,500. Based on the provide tailwater scenario our standard weir height is sufficient to account for the 25mm tailwater. We will provide our CDS with the required cylinder extension to ensure all neutrally buoyant and floatable material remains captured during the peak storm. If you have any questions please give me a call! Best regards, Patrick Graham Project Manager ***Please note our new addresses*** Echelon Environmental Inc. 55 Albert Street Suite 200 Markham, ON L3P 2T4 Phone: 1-905-948-0000 Cell: 416-460-5819 Fax: 1-905-948-0577 email patrick@echelonenvironmental.ca ### **Mailing Address:** Echelon Environmental Inc. 5694 Hwy #7 East Suite 354 Markham, ON L3P 0E3 From: Steve Matthews <S.Matthews@novatech-eng.com> Sent: Friday, May 13, 2022 4:04 PM To: Patrick <patrick@echelonenvironmental.ca> Cc: Francois Thauvette < f.thauvette@novatech-eng.com> Subject: CDS Sizing Request - 30 Frank Nighbor Place (City of Ottawa) Hi Patrick, We are currently working on a project in Ottawa that requires a stormwater quality control unit for a self storage development in Kanata that is adjacent to the Carp River. The project details for this stormwater quality control unit are as follows: Tributary area = 2.06 ha Imperviousness = 84% Time of concentration = 10min IDF Curve = City of Ottawa (104.2mm/hr Intensity for 5yr) (178.6mm/hr Intensity for 100yr) We have a requirement to provide a level of quality control treatment to meet the MOE 'Enhanced' Level of Protection guidelines (i.e. 80% TSS removal and 90% of annual runoff treated). The proposed unit will be installed with a proposed 200mm dia. PVC control pipe for the inlet and with 177 degrees of separation through the structure to a 450mm dia. PVC outlet pipe and approximately 1.8m - 2m cover on the pipes. A standard particle distribution (Fines) is the minimum that is required for the design. Anticipated peak flow should be in the order of 105 L/s based on the City's requirement to control the site to pre-development runoff levels. As a result, there will be significant upstream attenuation within the paved parking areas and the proposed dry pond for stormwater storage. See attached preliminary servicing plan for a sketch of the site and proposed water quality treatment unit location (highlighted in yellow). There is also an existing tailwater condition with the invert of the municipal outlet sewer being lower than the normal water level in the Carp River at the outlet headwall immediately to the west of our outlet connection point. I have attached the EE Information Request Form for the CDS sizing with the pertinent site information and tailwater conditions completed for your use. Can you please size a CDS unit for us and provide the design details as well as an approximate cost estimate. We will also need the following information on the unit for our SWM Report: - % of net annual TSS removal - % of net annual treatment volume for the tributary area - The treatment capacity in L/s - The sediment storage capacity in m³ - The oil storage capacity in L - The total unit storage capacity in L Thank you for your time and consideration in this matter. If there is any further information you require, please do not hesitate to send me an email as we are currently working from home. Regards, Stephen Matthews, B.A.(Env), Senior Design Technologist **NOVATECH** Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 223 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. Tel: (905) 948-0000 Fax: (905) 948-0577 E-mail: info@echelonenvironmental.ca ### **GENERAL PROJECT DATA** PROJECT NAME: _30 Frank Nighbor Place CITY: Ottawa **ENGINEER:** Novatech DATE May 13, 2022 **BASIN DATA** 2.06 AIMP 1.73 ha or 84%imp 0.79 MIN. **PEAK FLOW PEAK SITE** AT CDS UNIT **DISCHARGE 71.1** L/S 102.2 _{L/S} RETURN 1:100 _{vr.} 1:100 FREQUENCY ' | FOR ORIFICE CONTROLLED SITES | | | | | | | |--|---------------|------------------|--|--|--|--| | ORIFICE
HEAD ON ORI | JIZL | 3mm mm
79m mm | | | | | | MULTIPLE CONTRO | L POINTS: YES | NO V | | | | | | STORAGE-DISCHARGE PARAMETERS | | | | | | | | DESIGN STORM | Q (L/s) | STORAGE (M³) | | | | | | 25 mm | <u>49.5</u> | <u>215</u> | | | | | | 2 YEAR | 53.8 | 487 | | | | | | 5 YEAR | 61.0 | 788 | | | | | | 10 YEAR | | | | | | | | 25 YEAR | | | | | | | | 50 YEAR | | | | | | | | 100 YEAR | 71.1 | 1813 | | | | | | STORAGE TYPE: | | | | | | | | Storage is BEFORE or AFTER CDS unit (circle) | | | | | | | | _ | | _ | | | | | ### **CDS Average Annual Efficiency For TSS Removal & Total Annual Volume Treated** | Project: | 30 Frank Nighbour Place | | | |------------------|-------------------------|-----------|------------| | Location: | Ottawa, ON | | | | Date: | 5/16/2022 | | | | Ву: | PG | Site ID: | OGS 1 | | PSD: | FINE | Area: | 2.060 ha | | CDS Model: | PMSU2020_5 | C-Value | 0.79 | | CDS Design Flow: | 31 l/s | IDF Data: | Ottawa, ON | | Return | Period | Peak
Flow | TSS
Percentage
Captured | Treated
Flow
Volume | Total
Flow
Volume | Annual
Exceedance
Probability | System
Flow | CDS
Flow | By-Pass
Flow | Volume
Percentage
Treated | |------------|---------------------|--------------|-------------------------------|---------------------------|-------------------------|-------------------------------------|----------------|-------------|-----------------|---------------------------------| | month / yr | Yr | l/s | % | litres | litres | % | l/s | I/s | I/s | % | | 1-M | 0.08 | 4.62 | 96.06 | 11180 | 11180 | 100.00 | 4.62 | 4.62 | 0.00 | 100.00 | | 2-M | 0.17 | 9.90 | 92.86 | 24416 | 24416 | 99.75 | 9.90 | 9.90 | 0.00 | 100.00 | | 3-M | 0.25 | 14.25 | 90.21 | 35536 | 35536 | 98.17 | 14.25 | 14.25 | 0.00 | 100.00 | | 4-M | 0.33 | 18.20 | 87.81 | 45733 | 45733 | 95.04 | 18.20 | 18.20 | 0.00 | 100.00 | | 5-M | 0.42 | 21.25 | 85.95 | 53703 | 53703 | 90.91 | 21.25 | 21.25 | 0.00 | 100.00 | | 6-M | 0.50 | 24.29 | 84.10 | 61672 | 61672 | 86.47 | 24.29 | 24.29 | 0.00 | 100.00 | | 7-M | 0.58 | 26.57 | 82.71 | 67731 | 67731 | 82.01 | 26.57 | 26.57 | 0.00 | 100.00 | | 8-M | 0.67 | 28.84 | 81.32 | 73789 | 73789 | 77.67 | 28.84 | 28.84 | 0.00 | 100.00 | | 9-M | 0.75 | 31.12 | 79.93 | 79847 | 79847 | 73.64 | 31.12 | 31.12 | 0.00 | 100.00 | | 10-M | 0.83 | 37.02 | 74.79 | 89425 | 96088 | 69.90 | 37.02 | 31.15 | 5.87 | 94.82 | | 11-M | 0.92 | 42.92 | 69.66 | 99003 | 112328 | 66.40 | 42.92 | 31.15 | 11.77 | 89.64 | | 1-Yr | 1 | 48.82 | 64.53 | 108581 | 128569 | 63.21 | 48.82 | 31.15 | 17.67 | 84.45 | | 2-Yr | 2 | 51.10 | 62.83 | 111397 | 135063 | 39.35 | 51.10 | 31.15 | 19.95 | 82.48 | | 5-Yr | 5 | 57.56 | 58.44 | 118746 | 153633 | 18.13 | 57.56 | 31.15 | 26.41 | 77.29 | | 10-Yr | 10 | 61.07 | 56.27 | 122421 | 163912 | 9.52 | 61.07 | 31.15 | 29.93 | 74.69 | | 25-Yr | 25 | 63.81 | 54.68 | 125164 | 171993 | 3.92 | 63.81 | 31.15 | 32.66 | 72.77 | | 50-Yr | 50 | 65.48 | 53.75 | 126776 | 176958 | 1.98 | 65.48 | 31.15 | 34.34 | 71.64 | | 100-Yr | 100 | 67.51 | 52.65 | 128663 | 183032 | 1.00 | 67.51 | 31.15 | 36.37 | 70.30 | | verage | Annual ⁻ | TSS Rer | moval Efficie | ncy [%]: | 81.1 | Ave. Ann. | T. Volur | ne [%]: | | 96.54% | ^{1 -} CDS Efficiency based on testing conducted at the University of Central Florida2 - CDS design flowrate and scaling based on standard manufacturer model & product specifications # PLAN VIEW # MODEL CDS20_20m, 31 L/s TREATMENT CAPACITY STORM WATER TREATMENT UNIT PROJECT NAME | JOB# | XX-##-### | SCALE
1" = 2' | |---------|-----------|------------------| | DATE | ##/##/## | SHEET | | DRAWN | INITIALS | 1 | | APPROV. | | | Echelon Environmental 505 Hood Road, Unit 26, Markham, Ontario L3R 5V6 Tel: (905) 948-0000 Fax: (905) 948-0577 # **ELEVATION VIEW** # MODEL CDS20_20m, 31 L/s TREATMENT CAPACITY STORM WATER TREATMENT UNIT PROJECT NAME | JOB# | XX-##-### | SCALE
1" = 2.5' | |---------|-----------|--------------------| | DATE | ##/##/## | SHEET | | DRAWN | INITIALS | 9 | | APPROV. | | ~ | Echelon Environmental 505 Hood Road, Unit 26, Markham, Ontario L3R 5V6 Tel: (905) 948-0000 Fax: (905) 948-0577 # INLINE HYDRAULIC CALCULATIONS 30 Frank Nighbour Place Ottawa,ON OGS #### **DESIGN PARAMETERS** CDS Model No. = CDS2020-5 Design Treatment Flow = 1.1 cfs Peak Design Flow = 2.35 cfs Peak Design Return Interval = 100 year Rim Elevation @ US Structure
311.02 ft #### **DETAILED CALCULATIONS** #### **TREATMENT FLOW** #### Tailwater Condition at Outfall, EL₀ $EL_0 = 304.23$ ft (invert plus depth of flow at D/S outlet) #### Exit Loss from DownStream Pipe, h₁ $$\begin{array}{c} h_1 = \ k * \left[\ V^2 \ / \ (2 * g) \ \right] \\ & \text{where,} \\ & k = \underbrace{ \ \ \, 1.00 \ }_{Q \ / \ A_F} \\ & = \underbrace{ \ \ \, 2.31 \ }_{fps} \end{array}$$ $$\begin{array}{c} h_1 = \underbrace{ \ \ \, 0.08 \ }_{E \sqcup L_1} = \underbrace{ \ \ \, L_0 + n_1 \ }_{E \sqcup L_0 + n_1} \\ & = \ \ \, 304.31 \ \ \, \text{ft} \end{array}$$ #### Head Loss Through Downstream Pipe, h₂ #### Friction Losses, h₂ $$h_2 = S_{EGL} * L$$ where, $$L = \underline{19.685} \text{ ft}$$ $$S_{EGL} = [(Q * n) / (1.49 * A_F * R^{2/3})]^2$$ where, #### Pipe Characteristics Dia. = $$\frac{18}{S_{PIPE}}$$ in $\frac{0.0020}{n}$ ft/ft $\frac{18}{0.012}$ #### Flow Characteristics $$\begin{array}{c} d_F = & 0.47 & \text{ft} \\ A_F = & 0.48 & \text{sf} \\ P_W = & 1.79 & \text{ft} \\ R = & 0.27 & \text{ft} \end{array}$$ $$S_{EGL} = 0.00201$$ ft / ft $h_2 = 0.0395$ ft $EGL_2' = EGL_1 + h_2$ = 304.35 ft #### **Check Entrance Condition for Critical Depth Control** $$EL_{CDS \, Inv.} = 304.04 \, ft$$ $$d_c = 0.40 \, ft$$ $$EGL_C = EL_{CDS \, Inv.} + d_c + V_{dc}^2 / (2*g)$$ $$= 304.57 \, ft$$ #### Identify Controling EGL Friction based EGL controls. $EGL_2 = 304.35$ ft #### Re-entry Loss into DownStream Pipe, h₃ $$h_3 = k * [V^2 / (2*g)]$$ where, $$k = \underbrace{0.20}_{V = Q / A}$$ $$= \underbrace{2.31}_{fps} \text{ (area based on flow depth)}$$ $$h_3 = \underbrace{0.02}_{ft} \text{ ft}$$ $$EGL_3' = EGL_2 + h_3$$ $$= 304.37 \text{ ft}$$ #### Oil Baffle Loss, h4 $$\begin{array}{c} h_4 = \ k * \left[\ V^2 \ / \ (2^*g) \ \right] \\ & \text{where,} \\ k = \underline{\qquad 1.00} \\ A_{\text{Baffle}} = \underline{\qquad 3.12} \quad \text{sf} \\ V = \overline{\ Q \ / \ Abaffle} \\ = \underline{\qquad 0.35} \quad \text{fps} \\ h_4 = \underline{\qquad 0.0019} \quad \text{ft} \\ EGL_4 = \underline{\qquad EGL_3 + n_4} \\ = 304.37 \quad \text{ft} \end{array}$$ #### **Check Standard Weir Elevation** $$\begin{aligned} \text{HL}_{\text{CDS}} &= \underbrace{ \quad 0.42 \quad \text{ft} } \\ \text{EL}_{\text{W}}' &= \text{EGL}_4 + \text{HL}_{\text{CDS}} \\ &= \underbrace{ \quad 304.79 \quad \text{ft} } \\ \text{H}_{\text{W}}' &= \text{EL}_{\text{W}}' - \text{EL}_{\text{CDS INV}}. \\ &= \underbrace{ \quad 0.76 \quad \text{ft, or } \quad 9.09 \quad \text{in} } \\ \text{Std. Weir Height} &= \underbrace{ \quad 14.0 \quad \text{in} } \\ \text{Status } \underbrace{ \quad \text{OK} } \\ \text{Use H}_{\text{W}} &= \underbrace{ \quad 14 \quad \text{in, or } \quad 1.17 \quad \text{ft} } \\ \text{EL}_{\text{W}} &= \underbrace{ \quad \text{EL}_{\text{CDS INV}} + \text{H}_{\text{W}} } \\ &= \underbrace{ \quad 305.21 \quad \text{ft} } \end{aligned}$$ #### Tailwater Condition at Outfall, EL₀ $$EL_0 = 308.46$$ ft (invert plus depth of flow at D/S outlet) #### Exit Loss from DownStream Pipe, h₁ $$\begin{array}{c} h_1 = \ k * \left[\ V^2 \ / \ (2*g) \ \right] \\ & \text{where,} \\ & k = \underline{\quad 1.00} \\ & V = \overline{Q \ / \ A_F} \\ & = \underline{\quad 1.33 \quad } \ fps \\ h_1 = \underline{\quad 0.03 \quad } \ ft \\ EGL_1 = EL_0 + h_1 \end{array}$$ #### Head Loss Through Downstream Pipe, h₂ #### Friction Losses, h₂ = 308.49 ft $$h_2 = S_{EGL} * L$$ where, $$L = 19.685 \text{ ft}$$ $$S_{EGL} = [(Q * n) / (1.49 * A_F * R^{2/3})]^2$$ where, #### Pipe Characteristics Dia. = 18 in $$S_{PIPE}$$ = 0.0020 ft/ft n = 0.012 #### Flow Characteristics $$d_n = 1.50 ft$$ $A_F = 1.77 sf$ $P_W = 4.71 ft$ $R = 0.37 ft$ $$S_{EGL} = 0.0004$$ ft / ft $h_2 = 0.01$ ft $EGL_2' = EGL_1 + h_2$ $= 308.50$ ft #### Check Entrance Condition for Critical Depth Control $$EL_{CDS \, Inv.} = \underbrace{304.04}_{d_c = \underbrace{0.58}_{DS \, Inv.} + d_c + V_{dc}^2 / (2^*g)$$ $$= \underbrace{304.04}_{d_c = \underbrace{0.58}_{DS \, Inv.} + d_c + V_{dc}^2 / (2^*g)$$ $$= \underbrace{304.83}_{d_c = \underbrace{304.04}_{d_c = \underbrace{0.58}_{DS \, Inv.} + d_c + V_{dc}^2 / (2^*g)}_{d_c = \underbrace{304.83}_{d_c = \underbrace{0.58}_{DS \, Inv.} + d_c + V_{dc}^2 / (2^*g)}_{d_c = \underbrace{304.83}_{d_c = \underbrace{0.58}_{DS \, Inv.} + d_c + V_{dc}^2 / (2^*g)}_{d_c = \underbrace{0.58}_{d_c = \underbrace{0.58}_{DS \, Inv.} + d_c + V_{dc}^2 / (2^*g)}_{d_c = \underbrace{0.58}_{d_c = \underbrace{0.58}_{DS \, Inv.} + d_c + V_{dc}^2 / (2^*g)}_{d_c = \underbrace{0.58}_{d_c = \underbrace{0.58}_{DS \, Inv.} + d_c + V_{dc}^2 / (2^*g)}_{d_c = \underbrace{0.58}_{d_c = \underbrace{0.58}_{DS \, Inv.} + d_c + V_{dc}^2 / (2^*g)}_{d_c = \underbrace{0.58}_{d_c = \underbrace{0.58}_{DS \, Inv.} + d_c + V_{dc}^2 / (2^*g)}_{d_c = \underbrace{0.58}_{DS \, Inv.} + \underbrace{0.58}_{d_c = \underbrace{0.58}_{DS \, Inv.} + d_c + V_{dc}^2 / (2^*g)}_{d_c = \underbrace{0.58}_{DS \, Inv.} + \underbrace{0.58}_$$ #### Identify Controling EGL Friction based EGL controls. $$EGL_2 = 308.50$$ ft #### Re-entry Loss into DownStream Pipe, h₃ $$h_{3} = k * [V^{2} / (2*g)]$$ where, $$k = 0.20$$ $$V = Q / A_{F}$$ $$= 1.33 fps (area based on flow depth)$$ $$h_{3} = 0.01 ft$$ $$EGL_{3} = EGL_{2} + h_{3}$$ $$= 308.51 ft$$ #### Oil Baffle Loss, h4 $$h_4 = k * [V^2 / (2*g)]$$ where, $$\begin{array}{c} \text{k} = \underline{\quad 0.00 \quad} \\ \text{A}_{\text{Baffle}} = \underline{\quad 3.12 \quad} \\ \text{V} = \underline{\quad Q \mid A_{\text{Baffle}}} \\ = \underline{\quad 0.75 \quad} \\ \text{fps} \end{array}$$ $$h_4 = \underbrace{0.00}_{\text{EGL}_4} \text{ ft}$$ $$EGL_4 = EGL_3 + h_4$$ $$= \underbrace{308.51}_{\text{HGL}_4} \text{ ft}$$ $$= EGL_4 - [V_P^2 / (2^*g)]$$ $$= 308.48 \text{ ft}$$ #### Head over Diversion Weir, h₅ #### **Elevation of Weir** #### **Headloss for Free Discharge Condition** $$h_{5a} = [Q / (C * L)]^{2/3}$$ where, $$C = \underbrace{3.1}_{L = \underbrace{2.96}_{ft}} ft$$ $$h_{5a} = \underbrace{0.40}_{ft} ft$$ $$EGL_{5a} = EL_{Weir} + h_{5a}$$ $$= \underbrace{305.61}_{ft} ft$$ #### **Headloss for Submerged Condition** $$d_{Sub} = 3.27$$ ft (depth of submergence) $h_{5b} = 0.00$ ft (separate submerged weir calc.) $EGL_{5b} = EGL_4 + h_{5b}$ = 308.51 ft #### Identify EGL U/S of Weir The discharge condition is $$\frac{\text{Submerged}}{\text{308.51}} \text{, therefore}$$ $$h_6 = k * [V^2 / (2*g)]$$ where, $$k = \underbrace{\begin{array}{c} 0.30 \\ V = Q/A_F \end{array}}_{\text{F}}$$ $$= \underbrace{\begin{array}{c} 6.73 \end{array}}_{\text{fps}}$$ fps $$n_6 = 0.21 \quad \pi$$ $$EGL_6 = EGL_5 + h_6$$ = 308.72 ft #### Head Loss Through Upstream Pipe, h₇ #### Friction Losses, h₇ $$h_7 = S_{EGL} * L$$ where, $$L = \frac{18.3727 \text{ ft}}{S_{EGL}} = \frac{18.3727 \text{ ft}}{[(Q * n) / (1.49 * A_F * R^{2/3})]^2}$$ where, #### Pipe Characteristics Dia. = $$\frac{8}{S_{PIPE}}$$ in $\frac{1}{S_{PIPE}} = \frac{0.0025}{0.012}$ ft/ft #### Flow Characteristics $$d_n = \underbrace{0.67}_{A_F} \text{ft}$$ $$A_F = \underbrace{0.35}_{Sf} \text{sf}$$ $$R = 0.17$$ ft $$S_{EGL} = 0.0321$$ ft / ft $$h_7 = 0.59$$ ft $$EGL_7' = EGL_6 + h_7$$ = 309.31 ft #### Check Entrance Condition for Critical Depth Control $$EL_{U/S \text{ Inv.}} = 304.08 \text{ ft}$$ $$d_c = 0.67 \text{ ft}$$ $$EGL_C = EL_{CDS \text{ Inv.}} + d_c + V_{dc}^2 / (2*g)$$ $$= 305.50 \text{ ft}$$ #### **Identify Controling EGL** Friction based EGL controls. $$EGL_7 = 309.31$$ ft $HGL_7 = EGL_7 - [V^2 / (2*g)]$ = 308.60 ft Freeboard = _____ft (at first upstream structure) - 1. COORDINATE AND SCHEDULE ALL WORK WITH OTHER TRADES AND CONTRACTORS. - 2. DETERMINE THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO COMMENCING CONSTRUCTION. PROTECT AND ASSUME RESPONSIBILITY FOR ALL EXISTING UTILITIES WHETHER OR NOT SHOWN ON THIS DRAWING. - 3. OBTAIN ALL NECESSARY PERMITS AND APPROVALS FROM THE CITY OF OTTAWA BEFORE COMMENCING CONSTRUCTION. - 4. BEFORE COMMENCING CONSTRUCTION OBTAIN AND PROVIDE PROOF OF COMPREHENSIVE, ALL RISK AND OPERATIONAL LIABILITY INSURANCE FOR \$5,000,000.00. INSURANCE POLICY TO NAME OWNERS, ENGINEERS AND ARCHITECTS AS CO-INSURED. - 5. COMPLETE ALL WORKS IN ACCORDANCE WITH THE MOST CURRENT CITY OF OTTAWA STANDARDS AND SPECIFICATIONS USING THE CURRENT GUIDELINES, BYLAWS AND STANDARDS INCLUDING MATERIALS OF CONSTRUCTION, DISINFECTION AND ALL RELEVANT REFERENCES TO OPSS, OPSD & AWWA GUIDELINES - ALL CURRENT VERSIONS AND 'AS AMENDED'. - 6. RESTORE ALL DISTURBED AREAS ON-SITE AND OFF-SITE, INCLUDING TRENCHES AND SURFACES ON PUBLIC ROAD ALLOWANCES TO EXISTING CONDITIONS OR BETTER TO THE SATISFACTION OF THE CITY OF OTTAWA AND ENGINEER - 7. REMOVE FROM SITE ALL EXCESS EXCAVATED MATERIAL, ORGANIC MATERIAL AND DEBRIS UNLESS OTHERWISE INSTRUCTED BY ENGINEER. EXCAVATE AND REMOVE FROM SITE ANY - CONTAMINATED MATERIAL. ALL CONTAMINATED MATERIAL SHALL BE DISPOSED OF AT A LICENSED LANDFILL FACILITY. - 8. ALL ELEVATIONS ARE GEODETIC. - 9. REFER TO GEOTECHNICAL REPORT (NO. PG6153-1 REVISION 1, DATED APRIL 28, 2022), PREPARED BY PATERSON GROUP INC., FOR SUBSURFACE CONDITIONS, CONSTRUCTION RECOMMENDATIONS, AND GEOTECHNICAL INSPECTION REQUIREMENTS. THE GEOTECHNICAL CONSULTANT IS TO REVIEW ON-SITE CONDITIONS AFTER EXCAVATION PRIOR TO PLACEMENT OF THE GRANULAR MATERIAL - 10. REFER TO ARCHITECT'S AND LANDSCAPE ARCHITECT'S DRAWINGS FOR BUILDING AND HARD SURFACE AREAS AND DIMENSIONS. - 11. REFER TO THE DEVELOPMENT SERVICING STUDY & STORMWATER MANAGEMENT REPORT (R-2022-014) PREPARED BY NOVATECH. - 12. SAW CUT AND KEY GRIND ASPHALT AT ALL ROAD CUTS AND ASPHALT TIE IN POINTS AS PER CITY OF OTTAWA STANDARDS (R10). - 13. PROVIDE LINE / PARKING PAINTING AS REQUIRED PER THE ARCHITECTURAL SITE PLAN. #### **GRADING NOTES:** OR GEOTECHNICAL
ENGINEER - 1. ALL TOPSOIL, ORGANIC OR DELETERIOUS MATERIAL MUST BE ENTIRELY REMOVED FROM BENEATH THE PROPOSED BUILDING PAVED AREAS AS DIRECTED BY THE SITE ENGINEER - 2. EXPOSED SUBGRADES IN PROPOSED PAVED AREAS SHOULD BE PROOF ROLLED WITH A LARGE STEEL DRUM ROLLER AND INSPECTED BY THE GEOTECHNICAL ENGINEER PRIOR TO THE PLACEMENT OF GRANULARS - 3. ANY SOFT AREAS EVIDENT FROM THE PROOF ROLLING SHOULD BE SUB-EXCAVATED AND REPLACED WITH SUITABLE MATERIAL THAT IS FROST COMPATIBLE WITH THE EXISTING SOILS AS RECOMMENDED BY THE GEOTECHNICAL ENGINEER. - 4. THE GRANULAR BASE SHOULD BE COMPACTED TO AT LEAST 98% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY VALUE. ANY ADDITIONAL GRANULAR FILL USED BELOW THE - PROPOSED PAVEMENT SHOULD BE COMPACTED TO AT LEAST 95% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY VALUE. 5. MINIMUM OF 2% GRADE FOR ALL GRASS AREAS UNLESS OTHERWISE NOTED. - 6. MAXIMUM TERRACING GRADE TO BE 3:1 UNLESS OTHERWISE NOTED. - 7. ALL GRADES BY CURBS ARE EDGE OF PAVEMENT GRADES UNLESS OTHERWISE INDICATED. - 8. CONCRETE BARRIER CURBS ARE TO BE CONSTRUCTED PER CITY OF OTTAWA STANDARDS (SC1.1) AT A HEIGHT OF 150mm AND ALL DEPRESSIONS ARE TO BE CONSTRUCTED FLUSH (AT 0mm HEIGHT). - 9. CONCRETE MOUNTABLE CURBS ARE TO BE CONSTRUCTED PER CITY OF OTTAWA STANDARD (SC1.3) AT A HEIGHT OF 50mm AND ALL DEPRESSIONS ARE TO BE CONSTRUCTED FLUSH (AT 0mm HEIGHT). - 10. REFER TO LANDSCAPE PLAN FOR PLANTING AND OTHER LANDSCAPE FEATURE DETAILS. - 11. CONTRACTOR TO PROVIDE THE CONSULTANT WITH A GRADING PLAN INDICATING AS-BUILT ELEVATIONS OF ALL DESIGN GRADES SHOWN ON THIS PLAN. ### EROSION AND SEDIMENT CONTROL NOTES THE CONTRACTOR SHALL IMPLEMENT BEST MANAGEMENT PRACTICES, TO PROVIDE FOR PROTECTION OF THE AREA DRAINAGE SYSTEM AND THE RECEIVING WATERCOURSE, DURING CONSTRUCTION ACTIVITIES. THE CONTRACTOR ACKNOWLEDGES THAT FAILURE TO IMPLEMENT APPROPRIATE EROSION AND SEDIMENT CONTROL MEASURES MAY BE SUBJECT TO PENALTIES IMPOSED BY ANY APPLICABLE REGULATORY AGENCY. - 1. ALL EROSION AND SEDIMENT CONTROLS ARE TO BE INSTALLED TO THE SATISFACTION OF THE ENGINEER AND THE CITY OF OTTAWA. THEY ARE TO BE APPROPRIATE TO THE SITE CONDITIONS, PRIOR TO UNDERTAKING ANY SITE ALTERATIONS (FILLING, GRADING, REMOVAL OF VEGETATION, ETC.) AND DURING ALL PHASES OF SITE PREPARATION AND CONSTRUCTION, THESE PRACTICES ARE TO BE IMPLEMENTED. IN ACCORDANCE WITH THE CURRENT BEST MANAGEMENT PRACTICES FOR EROSION, AND SEDIMENT CONTROL AND SHOULD INCLUDE AS A MINIMUM THOSE MEASURES INDICATED ON THE PLAN. - 2. EROSION AND SEDIMENT CONTROL MEASURES WILL BE IMPLEMENTED DURING CONSTRUCTION IN ACCORDANCE WITH THE "GUIDELINES ON EROSION AND SEDIMENT CONTROL FOR URBAN CONSTRUCTION SITES" (GOVERNMENT OF ONTARIO, MAY 1987). THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR MEETING ALL REGULATORY AGENCY - 3. TO PREVENT SURFACE EROSION FROM ENTERING ANY STORM SEWER SYSTEM DURING CONSTRUCTION, FILTER CLOTH WILL BE PLACED UNDER GRATES OF NEARBY CATCHBASINS AND STRUCTURES. A LIGHT DUTY SILT FENCE BARRIER WILL ALSO BE INSTALLED AROUND THE CONSTRUCTION AREA (WHERE APPLICABLE). THESE CONTROL MEASURES WILL REMAIN IN PLACE UNTIL CONSTRUCTION IS COMPLETE. - 4. TO LIMIT EROSION: MINIMIZE THE AMOUNT OF EXPOSED SOILS AT ANY GIVEN TIME, RE-VEGETATE EXPOSED AREAS AND SLOPES AS SOON AS POSSIBLE AND PROTECT EXPOSED SLOPES WITH NATURAL OR SYNTHETIC MULCHES. - 5. FOR MATERIAL STOCKPILING: MINIMIZE THE AMOUNT OF EXPOSED MATERIALS AT ANY GIVEN TIME; APPLY TEMPORARY SEEDING, TARPS, COMPACTION AND/OR SURFACE - ROUGHENING AS REQUIRED TO STABILIZE STOCKPILED MATERIALS THAT WILL NOT BE USED WITHIN 14 DAYS. - 7. THE CONTRACTOR SHALL IMMEDIATELY REPORT TO THE ENGINEER ANY ACCIDENTAL DISCHARGES OF SEDIMENT MATERIAL INTO ANY STORM SEWER SYSTEM. APPROPRIATE 6. THE SEDIMENT CONTROL MEASURES SHALL ONLY BE REMOVED WHEN, IN THE OPINION OF THE ENGINEER, THE MEASURES ARE NO LONGER REQUIRED. NO CONTROL MEASURES - RESPONSE MEASURES, INCLUDING ANY REPAIRS TO EXISTING CONTROL MEASURES OR THE IMPLEMENTATION OF ADDITIONAL CONTROL MEASURES, SHALL BE CARRIED OUT BY - 8. THE CONTRACTOR ACKNOWLEDGES THAT FAILURE TO IMPLEMENT EROSION AND SEDIMENT CONTROL MEASURES MAY BE SUBJECT TO PENALTIES IMPOSED BY ANY APPLICABLE REGULATORY AGENCY. - 9. ROADWAYS ARE TO BE SWEPT AS REQUIRED OR AS DIRECTED BY THE ENGINEER AND/OR THE MUNICIPALITY. MAY BE PERMANENTLY REMOVED WITHOUT PRIOR AUTHORIZATION FROM THE ENGINEER. 10. THE CONTRACTOR SHALL ENSURE PROPER DUST CONTROL IS PROVIDED WITH THE APPLICATION OF WATER (AND IF REQUIRED, CALCIUM CHLORIDE) DURING DRY PERIODS. MONITOR DUST LEVELS DURING SITE PREPARATION/EXCAVATION, AND CONSTRUCTION ACTIVITIES, AND WHEN DUST LEVELS BECOME VISUALLY APPARENT SPRAY WATER TO MINIMIZE THE RELEASE OF DUST FROM GRAVEL, PAVED AREAS AND EXPOSED SOILS. USE CHEMICAL DUST SUPPRESSANTS ONLY WHERE NECESSARY ON PROBLEM AREAS. | PAV/EMENIT | STRUCTURES | |-------------|------------| | PAVEIVIEINI | SINUCIUNES | HEAVY DUTY (NEW PAVEMENT) 40mm HL3 or SUPERPAVE 12.5 50mm HL8 or SUPERPAVE 19.0 150mm GRANULAR "A" 450mm GRANULAR "B" TYPE II ASPHALT GRADE PG 58-34 * INSTALLED PER GEOTECHNICAL REPORT , LIGHT DUTY (NEW PAVEMENT) | Erosion | and Sedime | nt Contro | l Responsib | <u>ilities:</u> | | | | | | |-----------------------|---|--|--|--------------------------------|--|----------------------------|--------------------------|---------------------------|--| | | | | | | During Construction | | After Construction Prior | rto Final Acceptance | After Final Acceptance | | | ESC Measure | Symbol | Specification | Installation
Responsibility | Inspection/Maintenance
Responsibility | Inspection
Frequency | Approval to Remove | Removal
Responsibility | Inspection/Maintenance
Responsibility | | Temporary
Measures | Silt Fence | | OPSD 219.110 | Developer's
Contractor | Developer's Contractor | Weekly
(as a minimum) | Consultant | Developer's Contractor | N/A | | | Filter Fabric | Location as
Indicated in
ESC Note #3 | Erosion and
Sediment Control
Notes | Developer's
Contractor | Developer's Contractor | Weekly
(as a minimum) | Consultant | Developer's Contractor | N/A | | | Mud Mat | мм | Drawing Details | Developer's
Contractor | Developer's Contractor | Weekly
(as a minimum) | Developer's Contractor | Developer's Contractor | N/A | | | Dust Control | Location as
Required
Around Site | Erosion and
Sediment Control
Notes | Developer's
Contractor | Developer's Contractor | Weekly
(as a minimum) | Consultant | Developer's Contractor | N/A | | | Stabilized Material
Stockpiling | Location as
Required by
Contractor | Erosion and
Sediment Control
Notes | Developer's
Contractor | Developer's Contractor | \/√eekly
(as a minimum) | Developer's Contractor | Developer's Contractor | N/A | | | Sediment Basin
(for flows being
pumped out of
excavations) | Location as
Required by
Contractor | | Developer's
Contractor | Developer's Contractor | After Every
Rainstorm | Developer's Contractor | Developer's Contractor | N/A | # BENCHMARK INFO CUT CROSS LOCATED ON THE TOP OF THE EXISTING CONCRETE HEADWALL NEAR THE WEST LIMIT OF THE MUNICIPAL STORM SEWER OUTLFALL TO THE CARP RIVER. GEODETIC ELEVATION = 93.77m. ALL ELEVATIONS ARE REFERRED TO THE CGVD28:78 GEODETIC DATUM, DERIVED FROM VERTICAL CONTROL MONUMENT NO. 00119883075 HAVING A PUBLISHED ELEVATION OF 90.612 METRES. BEARINGS ARE GRID, DERIVED FROM THE OLS FIELD OBSERVATIONS USING REAL TIME NETWORK (RTN) OSERVATIONS AND ARE REFERRED TO THE CENTRAL MERIDIAN OF MTM ZONE 9, NAD-83 (CSRS)(2010.0). THE EXISTING GRADES SHOWN ON THE PLANS ARE TAKEN DIRECTLY FROM TOPOGRAPHICAL SURVEY PLAN (Ref. # 21-10-026-00), PREPARED BY J.D. BARNES LIMITED SURROUNDING BACKGROUND TOPO INFORMATION BEYOND THE LIMITS OF THE SITE SURVEY ARE SHOWN FROM CITY OF OTTAWA 1:2000 MAPPING FOR CONTEXT ONLY #### **SEWER NOTES:** SANITARY SEWER CATCHBASIN LEAD 1. SUPPLY AND CONSTRUCT ALL SEWERS AND APPURTENANCES IN ACCORDANCE WITH THE MOST CURRENT CITY OF OTTAWA STANDARDS AND SPECIFICATIONS - ALL CURRENT VERSIONS AND 'AS AMENDED'. SPECIFICATIONS: ITEM CATCHBASIN (600x600mm) STORM / SANITARY MANHOLE (1200mmØ) 701.010 OPSD 400.020 OPSD CB. FRAME & COVER SANITARY MH FRAME & COVER 401.010 - TYPE "A" OPSD STORM / CBMH MANHOLE FRAME AND COVER OPSD 401.010 - TYPE "B" WATERTIGHT MH FRAME AND COVER OPSD 401 030 LANDSCAPE DRAIN (ELBOW, COVER & PIPE) S29 / S31 CITY OF OTTAWA SEWER TRENCH CITY OF OTTAWA STORM SEWER PVC DR 35 - 3. ALL STORM AND SANITARY SERVICE LATERALS SHALL BE EQUIPPED WITH BACKFLOW PREVENTION DEVICES AS PER THE CITY OF OTTAWA STANDARD DETAILS S14 AND S14.1 OR - 4. INSULATE ALL PIPES (SAN/STM) THAT HAVE LESS THAN 1.8m COVER WITH HI-40 INSULATION PER INSULATION DETAIL FOR SHALLOW SEWERS. PROVIDE 150mm CLEARANCE BETWEEN PIPE AND INSULATION. - 5. SERVICES ARE TO BE CONSTRUCTED TO 1.0m FROM FACE OF BUILDING AT A MINIMUM SLOPE OF 1.0%. PVC DR 35 PVC DR 35 - 6. PIPE BEDDING, COVER AND BACKFILL ARE TO BE COMPACTED TO AT LEAST 95% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY. THE USE OF CLEAR CRUSHED STONE AS A BEDDING LAYER SHALL NOT BE PERMITTED. - 7. FLEXIBLE CONNECTIONS ARE REQUIRED FOR CONNECTING PIPES TO MANHOLES (FOR EXAMPLE KOR-N-SEAL, PSX: POSITIVE SEAL AND DURASEAL). THE CONCRETE CRADLE FOR THE PIPE CAN BE ELIMINATED. - 8. THE OWNER SHALL REQUIRE THAT THE SITE SERVICING CONTRACTOR PERFORM FIELD TESTS FOR QUALITY CONTROL OF ALL SANITARY SEWERS. LEAKAGE TESTING SHALL BE COMPLETED IN ACCORDANCE WITH OPSS 410.07.16, 410.07.16.04 AND 407.07.24. DYE TESTING IS TO BE COMPLETED ON ALL SANITARY SERVICES TO CONFIRM PROPER CONNECTION TO THE SANITARY SEWER MAIN. THE FIELD TESTS SHALL BE PERFORMED IN THE PRESENCE OF A CERTIFIED PROFESSIONAL ENGINEER WHO SHALL SUBMIT A CERTIFIED COPY OF - 9. ALL STORM MANHOLES
AND CATCHBASIN MANHOLES ARE TO HAVE 300mm SUMPS UNLESS OTHERWISE INDICATED. ALL CATCHBASINS ARE TO HAVE 600mm SUMPS. 10. ALL CATCHBASINS, MANHOLES AND/OR CATCHBASIN MANHOLES THAT ARE TO HAVE ICD'S INSTALLED WITHIN THEM ARE TO HAVE 600mm SUMPS. - 11. ALL WEEPING TILE SYSTEMS ARE TO BE PUMPED TO THE SURFACE AS INDICATED ON THE GENERAL PLAN OF SERVICES DRAWING. REFER TO MECHANICAL PLANS FOR DETAILS. 12. CONTRACTOR TO TELEVISE (CCTV) ALL PROPOSED SEWERS, 200mmØ OR GREATER PRIOR TO BASE COURSE ASPHALT. UPON COMPLETION OF CONTRACT, THE CONTRACTOR IS - RESPONSIBLE TO FLUSH AND CLEAN ALL SEWERS & APPURTENANCES. 13. CONTRACTOR TO PROVIDE THE CONSULTANT WITH A GENERAL PLAN OF SERVICES INDICATING ALL SERVICING AS-BUILT INFORMATION SHOWN ON THIS PLAN. AS-BUILT INFORMATION MUST INCLUDE: PIPE MATERIAL, SIZES, LENGTHS, SLOPES, INVERT AND T/G ELEVATIONS, STRUCTURE LOCATIONS, VALVE AND HYDRANT LOCATIONS, T/WM | | CRITICAL SEWER PIPE CROSSING TABLE | | | | | | | | | |------------------------------------|------------------------------------|-----------------------|-----------|-------------------|--|--|--|--|--| | CROSSING | LOWER PIPE | HIGHER PIPE | CLEARANCE | SURFACE ELEVATION | | | | | | | A | 300mmØ T/WM=91.24 | 200mmØ STM INV=93.14 | ± 1.9m | 94.72 m | | | | | | | B | 450mmØ SAN OBV=91.65 | 200mmØ STM INV=93.11 | ± 1.5m | 94.87 m | | | | | | | © | 200mmØ SAN OBV=91.51 | 1050mmØ U/S STM=92.01 | ± 0.5m | 94.96 m | | | | | | | 0 | 200mmØ SAN OBV=92.00 | 375mmØ STM INV=93.08 | ± 1.1m | 94.82 m | | | | | | | (E) | 200mmØ SAN OBV=92.61 | 375mmØ STM INV=93.29 | ± 0.7m | 95.12 m | | | | | | | Ē | 200mmØ SAN OBV=92.09 | 375mmØ STM INV=92.97 | ± 0.9m | 95.18 m | | | | | | | G | 200mmØ SAN OBV=92.52 | 150mmØ U/S WM=92.77 | ± 0.25m | 95.20 m | | | | | | | $oxed{m{m{m{m{m{m{m{m{m{B}}}}}}}}$ | 200mmØ SAN OBV=92.61 | 375mmØ STM INV=93.12 | ± 0.5m | 95.06 m | | | | | | | 0 | 150mmØ T/WM=92.41 | 375mmØ STM INV=93.23 | ± 0.8m | 95.12 m | | | | | | | 0 | 150mmØ T/WM=92.41 | 200mmØ SAN INV=92.71 | ± 0.3m | 95.17 m | | | | | | * SEE 121326-GP1 AND 121326-GP2 PLANS FOR SEWER CROSSING LOCATIONS ON-SITE # **WATERMAIN NOTES:** ELEVATIONS AND ANY ALIGNMENT CHANGES, ETC 1. SUPPLY AND CONSTRUCT ALL WATERMAINS AND APPURTENANCES IN ACCORDANCE WITH THE CITY OF OTTAWA STANDARDS AND SPECIFICATIONS - ALL CURRENT VERSIONS AND 'AS AMENDED'. EXCAVATION, INSTALLATION, BACKFILL AND RESTORATION OF ALL WATERMAINS BY THE CONTRACTOR. CONNECTIONS AND SHUT-OFFS AT THE MAIN AND CHLORINATION OF THE WATER SYSTEM SHALL BE PERFORMED BY THE CONTRACTOR IN THE PRESENCE CITY OF OTTAWA FORCES. SPECIFICATIONS: EVENT UNCONTROLLED 1:2 YR 1:5 YR FLOW (L/s) 125.0 | <u>ITEM</u> | SPEC. No. | REFERENCE | |--|-----------|----------------| | WATERMAIN TRENCHING | W17 | CITY OF OTTAWA | | HYDRANT INSTALLATION | W19 | CITY OF OTTAWA | | THERMAL INSULATION IN SHALLOW TRENCHES | W22 | CITY OF OTTAWA | | THERMAL INSULATION AT OPEN STRUCTURES | W23 | CITY OF OTTAWA | | VALVE BOX ASSEMBLY | W24 | CITY OF OTTAWA | | WATERMAIN CROSSING BELOW SEWER | W25 | CITY OF OTTAWA | | WATERMAIN CROSSING OVER SEWER | W25.2 | CITY OF OTTAWA | | WATERMAIN | PVC DR 18 | | - 3. WATERMAIN SHALL BE MINIMUM 2.4m DEPTH BELOW GRADE, UNLESS OTHERWISE INDICATED. - 4. PROVIDE MINIMUM 0.5m CLEARANCE BETWEEN OUTSIDE OF PIPES AT ALL CROSSINGS, UNLESS OTHERWISE INDICATED. DIRECT | A-1 to A-19 POST-DEVEL FLOW (L/s) 53.8 61.0 5. WATER SERVICE IS TO BE CONSTRUCTED TO WITHIN 1.0m OF FOUNDATION WALL AND CAPPED. RUNOFF (L/s) | AGEMENT TABLE | | | | | | |----------------------|------------------------|-------------------------------------|--|--|--| | OPMENT C | ONDITIONS | | | | | | R-1
FLOW
(L/s) | TOTAL
FLOW
(L/s) | REDUCTION
IN FLOW
(L/s or %)* | | | | | 17.7 | 71.5 | 20.6 or 22% | | | | | 24.9 | 85.9 | 39.0 or 31% | | | | | 31.1 | 102.2 | 165.4 or 62% | | | | * REDUCED FLOW COMPARED TO PRE-DEVELOPMENT UNCONTROLLED CONDITIONS U-HAUL SITE FLOWS & STORMWATER MAN ALLOWABLE RELEASE RATE (L/s) 107.9 | AREA A-1 to A-19: RESTRICTOR PIPE DATA - CBMH 101 | | | | | | | | | |---|---|---------------------------------|----------------------|--------------------|------------------------|----------------|--|--| | DESIGN
EVENT | DIAMETER OF
RESTRICTOR PIPE (mm) | DIAMETER OF
OUTLET PIPE (mm) | DESIGN FLOW
(L/s) | DESIGN
HEAD (m) | WATER
ELEVATION (m) | VOLUMI
(m³) | | | | 1:2 YR | 200 mm Ø DINGTIGUT | | 53.8 | 0.76 | 93.63 | 486.9 | | | | 1:5 YR | 200mmØ RINGTIGHT
(NOMINAL PIPE SIZE) | 200 | 61.0 | 1.02 | 93.89 | 788.0 | | | | 1:100 YR | (NOMINALI II E OIZE) | | 71.1 | 1.78 | 94.65 | 1813.0 | | | | * PESTRIC | TOP DIDE TO BE IDEY 'DIN | IG TIGHT' DVC DD35 | DIDE ONLY SIZE | = - 8" NOMINAI | DIAMETER | | | | * RESTRICTOR PIPE TO BE <u>IPEX 'RING TIGHT' PVC DR35</u> PIPE ONLY - SIZE = 8" NOMINAL DIAMETER FOR RESTRICTOR PIPE AS THE OUTLET PIPE FROM CBMH 101. | | AREA R-1: ICD TABLE - CB 08 | | | | | | | | | |-----------------|--------------------------------|---------------------------------|----------------------|--------------------|--------------------|----------------|--|--|--| | DESIGN
EVENT | TYPE OF ICD | DIAMETER OF
OUTLET PIPE (mm) | DESIGN FLOW
(L/s) | DESIGN
HEAD (m) | WATER DEPTH
(m) | VOLUME
(m³) | | | | | 1:2 YR | TEMPEST MHF
VORTEX 'CUSTOM' | 200 | 17.7 | 0.24 | 93.49 | 0.1 | | | | | 1:5 YR | | | 24.9 | 0.71 | 93.96 | 0.3 | | | | | 1:100 YR | | | 31.1 | 1.60 | 94.85 | 6.2 | | | | EXACT ELEVATION TO BE FIELD DETERMINED. ** PROVIDE THERMAL INSULATION AS PER CITY OF OTTAWA DETAIL W22 IN SHALLOW TRENCHES AND/OR CITY OF OTTAWA DETAIL W23 ADJACENT TO OPEN STRUCTURES. INSULATION NOTES: THE THICKNESS OF SEWER INSULATION SHALL m REDUCTION IN THE REQUIRED DEPTH BE THE EQUIVALENT OF 25mm FOR EVERY OF COVER LESS THAN 1800mm (SEE TABLE) ti = THICKNESS OF INSULATION (mm) h = DEPTH OF COVER INSULATION THICKNESS D = O.D.OF.PIPE.(mm) 1800-1500 1500-1200 (min.) BACKFILL AS SPECIFIED BEDDING AS SPECIFIED ti INSULATION BEDDING AS SPECIFIED INSULATION DETAIL FOR SHALLOW SEWERS NOT TO SCALE ★ 300mm x 300mm x 200mm CONNECTION TO EXISTING 300mmØ WATERMAIN BY CITY FORCES. THIS PLAN IS TO BE READ IN CONJUNCTION WITH THE GRADING AND SERVICING DESIGN DRAWINGS CRUSHED STONE THE POSITION OF ALL POLE LINES, CONDUITS, WATERMAINS, SEWERS AND OTHER UNDERGROUND AND OVERGROUND UTILITIES AND STRUCTURES IS NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH JTILITIES AND STRUCTURES IS NOT GUARANTEED BEFORE STARTING WORK, DETERMINE THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES AND ASSUME ALL LIABILITY FOR AMAGE TO THEM. SCALE SM / FS **OWNER INFORMATION** AS INDICATED U-HAUL CANADA 3636 INNES ROAD OTTAWA, ONTARIO, K1C 1T1 DAVID POLLOCK PHONE: 1-602-263-6555 david pollock@uhaul.com SM / FS ISSUED FOR SITE PLAN APPROVAL MAY 20/22 DATE **CITY OF OTTAWA** DRAWING NAME www.novatech-eng.cor 30 FRANK NIGHBOR PLACE: U-HAUL SITE 12132 CIVIL NOTES, DETAILS REV# AND TABLES PLAN 121326-ND MINIMUM