# patersongroup

### **Consulting Engineers**

154 Colonnade Road South Ottawa, Ontario Canada, K2E 7J5 **Tel:** (613) 226-7381

Fax: (613) 226-6344

Geotechnical Engineering Environmental Engineering Hydrogeology Geological Engineering Materials Testing

www.patersongroup.ca

**Building Science** 

August 10, 2021 File: PE5371-LET.01

### **City of Ottawa**

100 Constellation Drive Ottawa, Ontario K2C 3L6

Attention: Mr. Shawn Lynch

Subject: Excess Soil Quality Assessment

1075 March Road - Proposed Fire Station

Ottawa, Ontario

Dear Sir,

Further to your request and authorization, Paterson Group (Paterson) conducted an environmental testing program of soil located at 1075 March Road. It is our understanding that as part of the proposed development of the subject site, excess soil will be generated, some of which will require off-site disposal. The intent of the program has been to assess the quality of the upper soils onsite to determine any special disposal and management requirements.

# **Background (Assessment of Past Uses)**

A review of aerial images from our 2018 Phase I ESA indicates that the subject was used for agricultural crops in 1934, the earliest image obtained. The land use has remained such. The majority of the adjacent lands have also been used for agricultural purposes, as well as residential and institutional. No APECs were identified on the subject property and therefore no contaminants of potential concern were identified.

## Field Findings/Observations

The field portion of the testing program was carried out on July 20, 2021. At that time, representative topsoil and native clay samples were recovered at approximately 1.6 m deep from five (5) test pit locations from representative locations across the site. A total of fifteen (15) soil samples were recovered from the test pits, and eight (8) representative samples (3 of topsoil and 5 of silt clay) were submitted for analysis. No apparent contamination or odours were noted in the collected samples. Screening of the samples did not identify any potential for volatile compounds.

Page 2

File: PE5371-LET.01

## **Analytical Test Results**

In order to assess the quality of the soil, eight (8) representative soil samples were submitted to Paracel Laboratories (Paracel) in Ottawa for analysis of benzene, ethylbenzene, toluene and xylenes (BTEX), petroleum hydrocarbons (PHCs, Fractions F1 to F4), metals, polycyclic aromatic hydrocarbons (PAHs) and pH.

The test results are presented below in Tables 1 through 4, with the MECP Table 1 Residential and Table 2.1 Residential Standards for soil. The above test parameter suites and MECP Standards were selected based on requirements of Ontario Regulation 406/19.

| Table 1 - Ana<br>BTEX and PH                       | -             |                     | 6                          |                       |                  |                                    |                                    |  |
|----------------------------------------------------|---------------|---------------------|----------------------------|-----------------------|------------------|------------------------------------|------------------------------------|--|
| Parameter                                          | MDL<br>(µg/g) |                     | Soil Samp<br>July 2        | les (µg/g)<br>0, 2021 |                  | MECP<br>Table 1                    | MECP Table 2.1                     |  |
|                                                    |               | TP1-G1<br>(Topsoil) | TP1-G2<br>(Clay)           | TP2-G1<br>(Topsoil)   | TP2-G3<br>(Clay) | Standards<br>Residential<br>(µg/g) | Standards<br>Residential<br>(µg/g) |  |
| Benzene                                            | 0.02          | nd                  | nd                         | nd                    | nd               | 0.02                               | 0.02                               |  |
| Ethylbenzene                                       | 0.05          | nd                  | nd                         | nd                    | nd               | 0.05                               | 0.05                               |  |
| Toluene                                            | 0.05          | nd                  | nd                         | nd                    | nd               | 0.2                                | 0.2                                |  |
| Xylenes                                            | 0.05          | nd                  | nd                         | nd                    | nd               | 0.05                               | 0.091                              |  |
| F <sub>1</sub> (C-C <sub>10</sub> )                | 7             | nd                  | nd                         | nd                    | nd               | 25                                 | 25                                 |  |
| F <sub>2</sub> (C <sub>10</sub> -C <sub>16</sub> ) | 4             | nd                  | nd                         | nd                    | nd               | 10                                 | 10                                 |  |
| F <sub>3</sub> (C <sub>16</sub> -C <sub>34</sub> ) | 8             | 60                  | nd                         | 16                    | nd               | 240                                | 240                                |  |
| F <sub>4</sub> (C <sub>34</sub> -C <sub>50</sub> ) | 6             | 18                  | nd                         | 7                     | nd               | 120                                | 2800                               |  |
| Notes:                                             | nd - not o    |                     | ve the MDI<br>s selected I | MECP Table            |                  | l<br>e 2.1 Standard                | s                                  |  |

Page 3

File: PE5371-LET.01

|               | -                                                                                                           | Test Resu                                                                                                                                                                                                                                                            | ults                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|---------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MDL<br>(µg/g) |                                                                                                             | -                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MECP<br>Table 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MECP Table 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|               | TP3-G1<br>(Topsoil)                                                                                         | TP3-G2<br>(Clay)                                                                                                                                                                                                                                                     | TP4-G3<br>(Clay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TP5-G2<br>(Clay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Residential<br>(µg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Standards<br>Residential<br>(µg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 0.02          | nd                                                                                                          | nd                                                                                                                                                                                                                                                                   | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 0.05          | nd                                                                                                          | nd                                                                                                                                                                                                                                                                   | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 0.05          | nd                                                                                                          | nd                                                                                                                                                                                                                                                                   | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 0.05          | nd                                                                                                          | nd                                                                                                                                                                                                                                                                   | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 7             | nd                                                                                                          | nd                                                                                                                                                                                                                                                                   | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 4             | nd                                                                                                          | nd                                                                                                                                                                                                                                                                   | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8             | 17                                                                                                          | nd                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 6             | 8                                                                                                           | nd                                                                                                                                                                                                                                                                   | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|               |                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|               |                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|               |                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|               |                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|               | C (F <sub>1</sub> -F <sub>4</sub> )  MDL (μg/g)  0.02  0.05  0.05  7  4  8  6  MDL - Mond - not α Bold - Va | C (F₁-F₄)         MDL (μg/g)       TP3-G1 (Topsoil)         0.02       nd         0.05       nd         0.05       nd         7       nd         4       nd         8       17         6       8    MDL - Method Detecting - not detected above Bold - Value exceeds | MDL (μg/g)         Soil Samp July 20           TP3-G1 (Topsoil)         TP3-G2 (Clay)           0.02         nd         nd           0.05         nd         nd | MDL (μg/g)         Soil Samples (μg/g) July 20, 2021           TP3-G1 (Topsoil)         TP3-G2 (Clay)         TP4-G3 (Clay)           0.02         nd         nd         nd           0.05         nd         nd         nd           0.05         nd         nd         nd           7         nd         nd         nd           7         nd         nd         nd           8         17         nd         15           6         8         nd         nd    MDL - Method Detection Limit nd - not detected above the MDL  Bold - Value exceeds selected MECP Table | MDL (μg/g)   Soil Samples (μg/g)   July 20, 2021     TP3-G1 (Topsoil)   TP3-G2 (Clay)   TP4-G3 (Clay)     0.02   nd   nd   nd   nd     0.05   nd   nd   nd   nd     0.06   nd   nd   nd   nd     0.07   nd   nd   nd   nd     0.08   17   nd   15   nd     0.09   18   17   nd   15     0.09   19   19   19     0.09   19   19   19     0.09   19   19   19     0.09   19   19   19     0.09   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19   19     0.00   19     0.00   19   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0.00   19     0 | MDL (μg/g)   Soil Samples (μg/g)   July 20, 2021   Standards   Residential (μg/g)     TP3-G1 (Topsoil)   TP3-G2 (Clay)   TP4-G3 (Clay)   TP5-G2 (Clay)     0.02   nd   nd   nd   nd   0.02     0.05   nd   nd   nd   nd   0.05     0.05   nd   nd   nd   nd   0.05     0.05   nd   nd   nd   nd   0.05     7   nd   nd   nd   nd   0.05     7   nd   nd   nd   nd   10     8   17   nd   15   nd   240     6   8   nd   nd   nd   nd   120     MDL - Method Detection Limit |  |

All BTEX and PHC results comply with the selected MECP Table 1 and Table 2.1 Standards.

Mr. Shawn Lynch Page 4 File: PE5371-LET.01

| Parameter     | MDL<br>(µg/g)                  |                     | Soil Samp<br>July 20    | • • •               |                  | MECP<br>Table 1                    | MECP Table 2.1                     |  |
|---------------|--------------------------------|---------------------|-------------------------|---------------------|------------------|------------------------------------|------------------------------------|--|
|               |                                | TP1-G1<br>(Topsoil) | TP1-G2<br>(Clay)        | TP2-G1<br>(Topsoil) | TP2-G3<br>(Clay) | Standards<br>Residential<br>(µg/g) | Standards<br>Residential<br>(µg/g) |  |
| Antimony      | 1.0                            | nd                  | nd                      | nd                  | nd               | 1.3                                | 7.5                                |  |
| Arsenic       | 1.0                            | 2.7                 | 2.7                     | 1.6                 | 2.2              | 18                                 | 18                                 |  |
| Barium        | 1.0                            | 202                 | 282                     | 101                 | 278              | 220                                | 390                                |  |
| Beryllium     | 0.5                            | 0.7                 | 0.8                     | nd                  | 0.7              | 2.5                                | 4                                  |  |
| Boron (total) | 5                              | nd                  | 6.0                     | nd                  | nd               | 36                                 | 120                                |  |
| Cadmium       | 0.5                            | nd                  | nd                      | nd                  | nd               | 1.2                                | 1.2                                |  |
| Chromium      | 5.0                            | 60.0                | 70.7                    | 33.2                | 60.5             | 70                                 | 160                                |  |
| Cobalt        | 1.0                            | 14.0                | 17.2                    | 7.9                 | 15.7             | 21                                 | 22                                 |  |
| Copper        | 5.0                            | 21.8                | 28.5                    | 10.6                | 28.5             | 92                                 | 140                                |  |
| Lead          | 1.0                            | 13.3                | 5.9                     | 7.9                 | 4.7              | 120                                | 120                                |  |
| Molybdenum    | 1.0                            | nd                  | nd                      | nd                  | nd               | 2                                  | 6.9                                |  |
| Nickel        | 5.0                            | 29.8                | 36.7                    | 16.1                | 33.5             | 82                                 | 100                                |  |
| Selenium      | 1.0                            | nd                  | nd                      | nd                  | nd               | 1.5                                | 2.4                                |  |
| Silver        | 0.3                            | nd                  | nd                      | nd                  | nd               | 0.5                                | 20                                 |  |
| Thallium      | 1.0                            | nd                  | nd                      | nd                  | nd               | 1                                  | 1                                  |  |
| Uranium       | 1.0                            | 1.1                 | nd                      | nd                  | nd               | 2.5                                | 23                                 |  |
| Vanadium      | 10.0                           | 74.5                | 81.8                    | 45.6                | 71.7             | 86                                 | 86                                 |  |
| Zinc          | 20.0                           | 108                 | 93.8                    | 57.1                | 83.4             | 290                                | 340                                |  |
| Notes:        | nd - not d<br><b>Bold</b> - Va | ethod Detection     | e the MDL<br>selected M | _                   |                  | 2.1 Standards                      |                                    |  |

Page 5

File: PE5371-LET.01

| Parameter     | MDL<br>(µg/g)                                       | ;                                            | Soil Sampl<br>July 20              |                  |                  | MECP Table 1 Standards | MECP Table 2.1                     |
|---------------|-----------------------------------------------------|----------------------------------------------|------------------------------------|------------------|------------------|------------------------|------------------------------------|
|               |                                                     | TP3-G1<br>(Topsoil)                          | TP3-G2<br>(Clay)                   | TP4-G3<br>(Clay) | TP5-G2<br>(Clay) | Residential<br>(µg/g)  | Standards<br>Residential<br>(µg/g) |
| Antimony      | 1.0                                                 | nd                                           | nd                                 | nd               | nd               | 1.3                    | 7.5                                |
| Arsenic       | 1.0                                                 | 2.0                                          | 2.6                                | 2.3              | 2.9              | 18                     | 18                                 |
| Barium        | 1.0                                                 | 124                                          | 281                                | 238              | 353              | 220                    | 390                                |
| Beryllium     | 0.5                                                 | nd                                           | 0.8                                | 0.7              | 0.9              | 2.5                    | 4                                  |
| Boron (total) | 5                                                   | nd                                           | 5.8                                | 5.1              | 6.0              | 36                     | 120                                |
| Cadmium       | 0.5                                                 | nd                                           | nd                                 | nd               | nd               | 1.2                    | 1.2                                |
| Chromium      | 5.0                                                 | 38.1                                         | 59.6                               | 55.2             | 82.8             | 70                     | 160                                |
| Cobalt        | 1.0                                                 | 9.0                                          | 15.7                               | 14.2             | 19.5             | 21                     | 22                                 |
| Copper        | 5.0                                                 | 13.4                                         | 29.2                               | 25.0             | 33.8             | 92                     | 140                                |
| Lead          | 1.0                                                 | 8.0                                          | 6.1                                | 4.9              | 6.8              | 120                    | 120                                |
| Molybdenum    | 1.0                                                 | nd                                           | nd                                 | nd               | nd               | 2                      | 6.9                                |
| Nickel        | 5.0                                                 | 18.6                                         | 32.4                               | 29.4             | 42.1             | 82                     | 100                                |
| Selenium      | 1.0                                                 | nd                                           | nd                                 | nd               | nd               | 1.5                    | 2.4                                |
| Silver        | 0.3                                                 | nd                                           | nd                                 | nd               | nd               | 0.5                    | 20                                 |
| Thallium      | 1.0                                                 | nd                                           | nd                                 | nd               | nd               | 1                      | 1                                  |
| Uranium       | 1.0                                                 | 1.1                                          | nd                                 | nd               | nd               | 2.5                    | 23                                 |
| Vanadium      | 10.0                                                | 49.6                                         | 74.2                               | 68.3             | <u>93.9</u>      | 86                     | 86 [160]                           |
| Zinc          | 20.0                                                | 69.3                                         | 87.5                               | 76.5             | 110              | 290                    | 340                                |
| Notes:        | nd - not<br>[160] - <sup>-</sup><br><b>Bold</b> - \ | Method Detect t detected about Table 4.1 Sta | ove the MD<br>ndard<br>Is selected | MECP Tabl        |                  | rd<br>ble 2.1 Standard |                                    |

All test results are in compliance with Table 1 Standards with the exception of Cobalt in sample TP1-G2, cobalt and vanadium in sample TP5-G2 and barium in all 5 native silty clay samples. The vanadium concentration in sample TP5-G2 also marginally exceeded the MECP Table 2.1 Standards. Based on the clayey nature of the soil and the consistency of the results, it is our opinion that this elevated vanadium concentration is

Page 6

File: PE5371-LET.01

naturally occurring. All remaining metals results comply with MECP Table 1 and Table 2.1 Standards.

| Parameter                                           | MDL<br>(µg/g)                   | s                    | oil Sampl<br>July 20 |                      | )                    | MECP<br>Table 1                    | MECP<br>Table 2.1                  |
|-----------------------------------------------------|---------------------------------|----------------------|----------------------|----------------------|----------------------|------------------------------------|------------------------------------|
|                                                     |                                 | TP1-<br>G1<br>(T.S.) | TP1-<br>G2<br>(Clay) | TP2-<br>G1<br>(T.S.) | TP2-<br>G3<br>(Clay) | Standards<br>Residential<br>(µg/g) | Standards<br>Residential<br>(µg/g) |
| Acenapthene                                         | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.072                              | 2.5                                |
| Acenaphthylene                                      | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.093                              | 0.093                              |
| Anthracene                                          | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.16                               | 0.16                               |
| Benzo[a]anthracene                                  | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.36                               | 0.5                                |
| Benzo[a]pyrene                                      | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.3                                | 0.31                               |
| Benzo[b]fluoranthene                                | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.47                               | 3.2                                |
| Benzo[g,h,i]perylene                                | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.68                               | 6.6                                |
| Benzo[k]fluoranthene                                | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.48                               | 3.1                                |
| Chrysene                                            | 0.02                            | nd                   | nd                   | nd                   | nd                   | 2.8                                | 7                                  |
| Dibenzo[a,h]anthracene                              | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.1                                | 0.57                               |
| Fluoranthene                                        | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.56                               | 0.69                               |
| Fluorene                                            | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.12                               | 6.8                                |
| Indeno[1,2,3-cd]pyrene                              | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.23                               | 0.38                               |
| 1-Methylnaphthalene                                 | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.59                               | 0.59                               |
| 2-Methylnaphthalene                                 | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.59                               | 0.59                               |
| Methylnaphthalene (1&2)                             | 0.04                            | nd                   | nd                   | nd                   | nd                   | 0.59                               | 0.59                               |
| Naphthalene                                         | 0.01                            | nd                   | nd                   | nd                   | nd                   | 0.09                               | 0.2                                |
| Phenanthrene                                        | 0.02                            | nd                   | nd                   | nd                   | nd                   | 0.69                               | 6.2                                |
| Pyrene                                              | 0.02                            | nd                   | nd                   | nd                   | nd                   | 1.0                                | 28                                 |
| Notes:  MDL - Me  nd - not de  T.S tops  Bold - Val | etected at<br>soil<br>lue excee | oove the N           | MDL<br>ed MECP 1     |                      |                      | 2.1 Standards                      |                                    |

Page 7

File: PE5371-LET.01

| Parameter                                         | MDL<br>(µg/g)                            | Se                      | oil Samp<br>July 20  |                      | )                    | MECP<br>Table 1                    | MECP<br>Table 2.1                  |  |
|---------------------------------------------------|------------------------------------------|-------------------------|----------------------|----------------------|----------------------|------------------------------------|------------------------------------|--|
|                                                   |                                          | TP3-<br>G1<br>(T.S.)    | TP3-<br>G2<br>(Clay) | TP4-<br>G3<br>(Clay) | TP5-<br>G2<br>(Clay) | Standards<br>Residential<br>(µg/g) | Standards<br>Residential<br>(µg/g) |  |
| Acenapthene                                       | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.072                              | 2.5                                |  |
| Acenaphthylene                                    | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.093                              | 0.093                              |  |
| Anthracene                                        | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.16                               | 0.16                               |  |
| Benzo[a]anthracene                                | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.36                               | 0.5                                |  |
| Benzo[a]pyrene                                    | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.3                                | 0.31                               |  |
| Benzo[b]fluoranthene                              | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.47                               | 3.2                                |  |
| Benzo[g,h,i]perylene                              | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.68                               | 6.6                                |  |
| Benzo[k]fluoranthene                              | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.48                               | 3.1                                |  |
| Chrysene                                          | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 2.8                                | 7                                  |  |
| Dibenzo[a,h]anthracene                            | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.1                                | 0.57                               |  |
| Fluoranthene                                      | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.56                               | 0.69                               |  |
| Fluorene                                          | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.12                               | 6.8                                |  |
| Indeno[1,2,3-cd]pyrene                            | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.23                               | 0.38                               |  |
| 1-Methylnaphthalene                               | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.59                               | 0.59                               |  |
| 2-Methylnaphthalene                               | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.59                               | 0.59                               |  |
| Methylnaphthalene (1&2)                           | 0.04                                     | nd                      | nd                   | nd                   | nd                   | 0.59                               | 0.59                               |  |
| Naphthalene                                       | 0.01                                     | nd                      | nd                   | nd                   | nd                   | 0.09                               | 0.2                                |  |
| Phenanthrene                                      | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 0.69                               | 6.2                                |  |
| Pyrene                                            | 0.02                                     | nd                      | nd                   | nd                   | nd                   | 1.0                                | 28                                 |  |
| Notes:  MDL - Met nd - not de T.S tops Bold - Val | hod Dete<br>tected ab<br>oil<br>ue excee | ction Limi<br>ove the M | t<br>IDL<br>d MECP   | Table 1 S            | i<br>Standard        | · 2.1 Standards                    |                                    |  |

All PAH results comply with the selected MECP Table 1 and Table 2.1 standards.

Page 8

File: PE5371-LET.01

| Table 4 - An<br>pH | alytical T            | est Results                                                   |                            |                        |                  |                                                                       |                                                                    |
|--------------------|-----------------------|---------------------------------------------------------------|----------------------------|------------------------|------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|
| Parameter          | MDL<br>(µg/g)         |                                                               | Soil Samp<br>July 20       | oles (µg/g)<br>0, 2021 |                  | MECP Table 1 Standards                                                | MECP Table 2.1                                                     |
|                    |                       | TP1-G1<br>(Topsoil)                                           | TP2-G3<br>(Clay)           | TP3-G1<br>(Topsoil)    | TP4-G3<br>(Clay) | Residential<br>(μg/g)                                                 | Standards<br>Residential<br>(µg/g)                                 |
| рН                 | 0.05                  | 6.16                                                          | 6.72                       | 5.30                   | 6.78             | 5.0 - 9.0<br>(surface<br>soils)<br>5.0 - 11.0<br>(subsurface<br>soil) | 5.0 - 9.0<br>(surface soils)<br>5.0 - 11.0<br>(subsurface<br>soil) |
| Notes:             | nd - n<br><b>Bold</b> | · Method Det<br>ot detected a<br>- Value exce<br>- Value exce | above the N<br>eds selecte | MDL<br>ed MECP Ta      |                  | ard<br>able 2.1 Standaı                                               | rds                                                                |

All pH results comply with MECP Table 1 and Table 2.1 Standards.

#### Conclusion

The soil profile encountered in the test pits consisted of topsoil over in-situ silty clay. No fill material was encountered and no indication of contamination was observed.

A total of fifteen (15) soil samples were collected from the test pits. Of the fifteen (15) samples, eight (8) representative samples (3 of topsoil and 5 of silty clay) were submitted to Paracel Laboratories for analyses of BTEX, PHC (Fractions F1 to F4), metals, polycyclic aromatic hydrocarbons (PAHs), and pH.

The MECP Table 1 Residential and Table 2.1 Residential Standards for soil were used to assess the quality of the subject soil. A comparison of the test data to the Table 1 Standards indicates that all of the test results are in compliance with these standards with the exception of cobalt in sample TP1-G2, cobalt and vanadium in sample TP5-G2 and barium in all 5 native silty clay samples. Based on our knowledge of the soils in this area, these 3 metals concentrations are considered to be indicative of naturally elevated metals that are known to exist in the Champlain Sea clay deposits in the Ottawa region. A comparison of the data to the O.Reg 406/09 Table 2.1 Standards indicates that all of the data complies with these excess soil standards, with the exception of the vanadium concentration in Sample TP5-G2, although this value does comply with the Table 4.1 Subsurface Standard.

Page 9

File: PE5371-LET.01

### Recommendations

All topsoil results comply with Table 1 standards. As a results, the topsoil can be disposed of off site without any special management requirements.

While the silty clay does not comply with Table 1 standards, the majority of it complies with the Table 2.1 standards and can be disposed of at a Table 2.1 classified reuse site for a beneficial use. The single vanadium result that exceeds Table 2.1 does comply with the Table 4.1 subsurface standards. This soil could also be taken to a Table 2.1 site provided that it can be placed below a depth of 1.5 m.

### Statement of Limitations

A soils investigation of this nature is a limited sampling program. Should any conditions at the site be encountered which differ from those at the test locations, we request that we be notified immediately in order to permit reassessment of our recommendations/conclusions.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than the City of Ottawa, or their agents, without review by this firm for the applicability of our recommendations to the altered use of the report, is prohibited.

Regards,

### Paterson Group Inc.



Mark D'Arcy, P.Eng., QPESA



#### **Attachments**

- Laboratory Certificates of Analysis
- Soil Profile and Test Data Sheets
- ☐ Drawing No. PE5371-1 Test Hole Location Plan

#### **Report Distribution**

- ☐ City of Ottawa
- Paterson Group



300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

# Certificate of Analysis

### **Paterson Group Consulting Engineers**

154 Colonnade Road South Nepean, ON K2E 7J5

Attn: Mark D'Arcy

Client PO: 32512 Project: PE5371 Custody: 133013

Report Date: 26-Jul-2021 Order Date: 20-Jul-2021

Order #: 2130238

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 2130238-01 | TP1-G1    |
| 2130238-02 | TP1-G2    |
| 2130238-03 | TP2-G1    |
| 2130238-04 | TP2-G3    |
| 2130238-05 | TP3-G1    |
| 2130238-06 | TP3-G2    |
| 2130238-07 | TP4-G3    |
| 2130238-08 | TP5-G2    |

Approved By:



Mark Foto, M.Sc. Lab Supervisor



Report Date: 26-Jul-2021 Order Date: 20-Jul-2021

Project Description: PE5371

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client: Paterson Group Consulting Engineers
Client PO: 32512

### **Analysis Summary Table**

| Analysis                        | Method Reference/Description                     | Extraction Date | Analysis Date |
|---------------------------------|--------------------------------------------------|-----------------|---------------|
| BTEX by P&T GC-MS               | EPA 8260 - P&T GC-MS                             | 21-Jul-21       | 21-Jul-21     |
| pH, soil                        | EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext. | 22-Jul-21       | 22-Jul-21     |
| PHC F1                          | CWS Tier 1 - P&T GC-FID                          | 21-Jul-21       | 21-Jul-21     |
| PHCs F2 to F4                   | CWS Tier 1 - GC-FID, extraction                  | 21-Jul-21       | 22-Jul-21     |
| REG 153: Metals by ICP/MS, soil | EPA 6020 - Digestion - ICP-MS                    | 22-Jul-21       | 22-Jul-21     |
| REG 153: PAHs by GC-MS          | EPA 8270 - GC-MS, extraction                     | 21-Jul-21       | 24-Jul-21     |
| Solids, %                       | Gravimetric, calculation                         | 22-Jul-21       | 22-Jul-21     |



Report Date: 26-Jul-2021

Order Date: 20-Jul-2021
Project Description: PE5371

Client: Paterson Group Consulting Engineers

Client PO: 32512

Certificate of Analysis

TP1-G2 Client ID: TP1-G1 TP2-G1 TP2-G3 Sample Date: 20-Jul-21 09:00 20-Jul-21 09:00 20-Jul-21 09:00 20-Jul-21 09:00 2130238-01 2130238-02 2130238-03 2130238-04 Sample ID: MDL/Units Soil Soil Soil Soil **Physical Characteristics** % Solids 0.1 % by Wt. 84.7 77.0 86.8 76.2 **General Inorganics** 0.05 pH Units 6.16 6.72 Metals 1.0 ug/g dry Antimony <1.0 <1.0 <1.0 <1.0 1.0 ug/g dry Arsenic 2.7 2.7 1.6 2.2 Barium 1.0 ug/g dry 202 282 101 278 0.5 ug/g dry Beryllium < 0.5 0.7 8.0 0.7 5.0 ug/g dry Boron <5.0 6.0 <5.0 <5.0 Cadmium 0.5 ug/g dry <0.5 <0.5 <0.5 <0.5 5.0 ug/g dry Chromium 60.0 70.7 33.2 60.5 1.0 ug/g dry Cobalt 17.2 7.9 14.0 15.7 5.0 ug/g dry Copper 21.8 28.5 10.6 28.5 1.0 ug/g dry 7.9 Lead 13.3 5.9 4.7 1.0 ug/g dry Molybdenum <1.0 <1.0 <1.0 <1.0 5.0 ug/g dry Nickel 29.8 36.7 16.1 33.5 Selenium 1.0 ug/g dry <1.0 <1.0 < 1.0 <1.0 Silver 0.3 ug/g dry < 0.3 < 0.3 < 0.3 < 0.3 1.0 ug/g dry Thallium <1.0 <1.0 <1.0 <1.0 1.0 ug/g dry Uranium <1.0 <1.0 <1.0 1.1 10.0 ug/g dry Vanadium 74.5 81.8 45.6 71.7 Zinc 20.0 ug/g dry 108 93.8 57.1 83.4 Volatiles Benzene 0.02 ug/g dry < 0.02 < 0.02 < 0.02 < 0.02 0.05 ug/g dry Ethylbenzene < 0.05 < 0.05 < 0.05 < 0.05 0.05 ug/g dry Toluene < 0.05 < 0.05 < 0.05 < 0.05 0.05 ug/g dry m,p-Xylenes < 0.05 < 0.05 < 0.05 < 0.05 0.05 ug/g dry o-Xylene < 0.05 < 0.05 < 0.05 < 0.05 0.05 ug/g dry Xylenes, total < 0.05 <0.05 < 0.05 < 0.05 Toluene-d8 64.6% 100% 85.6% 91.4% Surrogate Hydrocarbons F1 PHCs (C6-C10) 7 ug/g dry <7 <7 <7 <7 F2 PHCs (C10-C16) 4 ug/g dry <4 <4 <4 <4 F3 PHCs (C16-C34) 8 ug/g dry 60 <8 16 <8 6 ug/g dry F4 PHCs (C34-C50) 7 18 <6 <6



Certificate of Analysis

Order #: 2130238

anort Date: 26- Jul-20

Report Date: 26-Jul-2021 Order Date: 20-Jul-2021

 Client:
 Paterson Group Consulting Engineers
 Order Date: 20-Jul-2021

 Client PO:
 32512
 Project Description: PE5371

|                          | Client ID:    | TP1-G1          | TP1-G2          | TP2-G1          | TP2-G3          |
|--------------------------|---------------|-----------------|-----------------|-----------------|-----------------|
|                          | Sample Date:  | 20-Jul-21 09:00 | 20-Jul-21 09:00 | 20-Jul-21 09:00 | 20-Jul-21 09:00 |
|                          | Sample ID:    | 2130238-01      | 2130238-02      | 2130238-03      | 2130238-04      |
|                          | MDL/Units     | Soil            | Soil            | Soil            | Soil            |
| Semi-Volatiles           |               |                 |                 |                 |                 |
| Acenaphthene             | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Acenaphthylene           | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Anthracene               | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Benzo [a] anthracene     | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Benzo [a] pyrene         | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Benzo [b] fluoranthene   | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Benzo [g,h,i] perylene   | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Benzo [k] fluoranthene   | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Chrysene                 | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Dibenzo [a,h] anthracene | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Fluoranthene             | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Fluorene                 | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Indeno [1,2,3-cd] pyrene | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| 1-Methylnaphthalene      | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| 2-Methylnaphthalene      | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Methylnaphthalene (1&2)  | 0.04 ug/g dry | <0.04           | <0.04           | <0.04           | <0.04           |
| Naphthalene              | 0.01 ug/g dry | <0.01           | <0.01           | <0.01           | <0.01           |
| Phenanthrene             | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| Pyrene                   | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| 2-Fluorobiphenyl         | Surrogate     | 95.1%           | 78.4%           | 94.8%           | 98.0%           |
| Terphenyl-d14            | Surrogate     | 99.6%           | 95.7%           | 105%            | 103%            |



Report Date: 26-Jul-2021

Order Date: 20-Jul-2021 **Project Description: PE5371** 

Client: Paterson Group Consulting Engineers

Client PO: 32512

Certificate of Analysis

TP3-G2 Client ID: TP3-G1 TP4-G3 TP5-G2 Sample Date: 20-Jul-21 09:00 20-Jul-21 09:00 20-Jul-21 09:00 20-Jul-21 09:00 2130238-05 2130238-06 2130238-07 2130238-08 Sample ID: Soil Soil MDL/Units Soil Soil **Physical Characteristics** 0.1 % by Wt. % Solids 88.6 76.4 77.0 77.4 General Inorganics 0.05 pH Units рΗ 5.30 6.78 Metals 1.0 ug/g dry Antimony <1.0 <1.0 <1.0 <1.0 1.0 ug/g dry Arsenic 2.0 2.6 2.3 2.9 1.0 ug/g dry Barium 124 281 238 353 0.5 ug/g dry Beryllium < 0.5 8.0 0.7 0.9 5.0 ug/g dry Boron <5.0 5.8 5.1 6.0 0.5 ug/g dry <0.5 Cadmium < 0.5 <0.5 < 0.5 5.0 ug/g dry 59.6 Chromium 38.1 55.2 82.8 1.0 ug/g dry 15.7 Cobalt 9.0 14.2 19.5 5.0 ug/g dry Copper 13.4 29.2 25.0 33.8 Lead 1.0 ug/g dry 8.0 6.1 4.9 6.8 1.0 ug/g dry Molybdenum <1.0 <1.0 <1.0 <1.0 5.0 ug/g dry Nickel 18.6 32.4 29.4 42.1 1.0 ug/g dry Selenium <1.0 <1.0 <1.0 <1.0 0.3 ug/g dry Silver < 0.3 < 0.3 < 0.3 < 0.3 1.0 ug/g dry Thallium <1.0 <1.0 <1.0 <1.0 1.0 ug/g dry <1.0 Uranium 1.1 <1.0 <1.0 10.0 ug/g dry 74.2 Vanadium 49.6 68.3 93.9 20.0 ug/g dry Zinc 69.3 87.5 76.5 110 Volatiles Benzene 0.02 ug/g dry < 0.02 < 0.02 < 0.02 < 0.02 0.05 ug/g dry Ethylbenzene < 0.05 < 0.05 < 0.05 < 0.05 0.05 ug/g dry < 0.05 < 0.05 Toluene < 0.05 < 0.05 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 m,p-Xylenes 0.05 ug/g dry o-Xylene < 0.05 < 0.05 < 0.05 < 0.05 0.05 ug/g dry Xylenes, total < 0.05 < 0.05 < 0.05 < 0.05 Toluene-d8 Surrogate 86.1% 96.6% 95.6% 99.1% Hydrocarbons 7 ug/g dry F1 PHCs (C6-C10) <7 <7 <7 <7 4 ug/g dry F2 PHCs (C10-C16) <4 <4 <4 <4 8 ug/g dry 17 <8 15 F3 PHCs (C16-C34) <8 6 ug/g dry F4 PHCs (C34-C50) 8 <6 <6 <6



Certificate of Analysis

Order #: 2130238

Report Date: 26-Jul-2021

Order Date: 20-Jul-2021

Project Description: PE5371

Client: Paterson Group Consulting Engineers
Client PO: 32512

TP3-G2 Client ID: TP3-G1 TP4-G3 TP5-G2 Sample Date: 20-Jul-21 09:00 20-Jul-21 09:00 20-Jul-21 09:00 20-Jul-21 09:00 2130238-05 2130238-06 2130238-07 2130238-08 Sample ID: Soil Soil MDL/Units Soil Soil **Semi-Volatiles** 0.02 ug/g dry Acenaphthene < 0.02 < 0.02 < 0.02 < 0.02 0.02 ug/g dry < 0.02 < 0.02 Acenaphthylene < 0.02 < 0.02 0.02 ug/g dry < 0.02 < 0.02 Anthracene < 0.02 < 0.02 0.02 ug/g dry < 0.02 < 0.02 < 0.02 Benzo [a] anthracene < 0.02 0.02 ug/g dry < 0.02 Benzo [a] pyrene < 0.02 < 0.02 < 0.02 0.02 ug/g dry < 0.02 < 0.02 < 0.02 Benzo [b] fluoranthene < 0.02 0.02 ug/g dry < 0.02 < 0.02 < 0.02 < 0.02 Benzo [g,h,i] perylene 0.02 ug/g dry < 0.02 < 0.02 < 0.02 Benzo [k] fluoranthene < 0.02 0.02 ug/g dry < 0.02 < 0.02 < 0.02 < 0.02 Chrysene 0.02 ug/g dry < 0.02 < 0.02 <0.02 < 0.02 Dibenzo [a,h] anthracene 0.02 ug/g dry Fluoranthene < 0.02 < 0.02 < 0.02 < 0.02 Fluorene 0.02 ug/g dry < 0.02 < 0.02 < 0.02 < 0.02 0.02 ug/g dry < 0.02 < 0.02 < 0.02 < 0.02 Indeno [1,2,3-cd] pyrene 0.02 ug/g dry 1-Methylnaphthalene < 0.02 < 0.02 < 0.02 < 0.02 0.02 ug/g dry < 0.02 2-Methylnaphthalene < 0.02 < 0.02 < 0.02 0.04 ug/g dry <0.04 Methylnaphthalene (1&2) < 0.04 < 0.04 < 0.04 0.01 ug/g dry Naphthalene < 0.01 <0.01 <0.01 <0.01 Phenanthrene 0.02 ug/g dry < 0.02 < 0.02 < 0.02 < 0.02 0.02 ug/g dry Pyrene < 0.02 < 0.02 < 0.02 < 0.02 Surrogate 104% 71.9% 74.1% 92.8% 2-Fluorobiphenyl Surrogate 117% 80.7% 108% Terphenyl-d14 73.1%



Report Date: 26-Jul-2021

Order Date: 20-Jul-2021 **Project Description: PE5371** 

Client: Paterson Group Consulting Engineers

Client PO: 32512

Certificate of Analysis

Method Quality Control: Blank

| A L. d -                    |          | Reporting |              | Source |      | %REC   |     | RPD   |       |
|-----------------------------|----------|-----------|--------------|--------|------|--------|-----|-------|-------|
| Analyte                     | Result   | Limit     | Units        | Result | %REC | Limit  | RPD | Limit | Notes |
| Hydrocarbons                |          |           |              |        |      |        |     |       |       |
| F1 PHCs (C6-C10)            | ND       | 7         | ug/g         |        |      |        |     |       |       |
| F2 PHCs (C10-C16)           | ND       | 4         | ug/g         |        |      |        |     |       |       |
| F3 PHCs (C16-C34)           | ND       | 8         | ug/g         |        |      |        |     |       |       |
| F4 PHCs (C34-C50)           | ND       | 6         | ug/g         |        |      |        |     |       |       |
| Metals                      |          |           |              |        |      |        |     |       |       |
| Antimony                    | ND       | 1.0       | ug/g         |        |      |        |     |       |       |
| Arsenic                     | ND       | 1.0       | ug/g         |        |      |        |     |       |       |
| Barium                      | ND       | 1.0       | ug/g         |        |      |        |     |       |       |
| Beryllium                   | ND       | 0.5       | ug/g         |        |      |        |     |       |       |
| Boron                       | ND       | 5.0       | ug/g         |        |      |        |     |       |       |
| Cadmium                     | ND       | 0.5       | ug/g         |        |      |        |     |       |       |
| Chromium                    | ND       | 5.0       | ug/g         |        |      |        |     |       |       |
| Cobalt                      | ND       | 1.0       | ug/g         |        |      |        |     |       |       |
| Copper                      | ND       | 5.0       | ug/g         |        |      |        |     |       |       |
| Lead                        | ND       | 1.0       | ug/g         |        |      |        |     |       |       |
| Molybdenum                  | ND       | 1.0       | ug/g         |        |      |        |     |       |       |
| Nickel                      | ND       | 5.0       | ug/g         |        |      |        |     |       |       |
| Selenium                    | ND       | 1.0       | ug/g         |        |      |        |     |       |       |
| Silver                      | ND       | 0.3       | ug/g         |        |      |        |     |       |       |
| Thallium                    | ND       | 1.0       | ug/g         |        |      |        |     |       |       |
| Uranium                     | ND       | 1.0       | ug/g         |        |      |        |     |       |       |
| Vanadium                    | ND       | 10.0      | ug/g         |        |      |        |     |       |       |
| Zinc                        | ND       | 20.0      | ug/g<br>ug/g |        |      |        |     |       |       |
| Semi-Volatiles              | ND       | 20.0      | ug/g         |        |      |        |     |       |       |
| Acenaphthene                | ND       | 0.02      | ug/g         |        |      |        |     |       |       |
| Acenaphthylene              | ND       | 0.02      | ug/g         |        |      |        |     |       |       |
| Anthracene                  | ND       | 0.02      | ug/g<br>ug/g |        |      |        |     |       |       |
| Benzo [a] anthracene        | ND       | 0.02      | ug/g<br>ug/g |        |      |        |     |       |       |
| Benzo [a] pyrene            | ND       | 0.02      | ug/g<br>ug/g |        |      |        |     |       |       |
| Benzo [b] fluoranthene      | ND       | 0.02      |              |        |      |        |     |       |       |
| Benzo [g,h,i] perylene      | ND       | 0.02      | ug/g<br>ug/g |        |      |        |     |       |       |
| Benzo [k] fluoranthene      | ND<br>ND | 0.02      |              |        |      |        |     |       |       |
|                             | ND<br>ND | 0.02      | ug/g         |        |      |        |     |       |       |
| Chrysene                    |          |           | ug/g         |        |      |        |     |       |       |
| Dibenzo [a,h] anthracene    | ND       | 0.02      | ug/g         |        |      |        |     |       |       |
| Fluoranthene                | ND       | 0.02      | ug/g         |        |      |        |     |       |       |
| Fluorene                    | ND       | 0.02      | ug/g         |        |      |        |     |       |       |
| Indeno [1,2,3-cd] pyrene    | ND       | 0.02      | ug/g         |        |      |        |     |       |       |
| 1-Methylnaphthalene         | ND       | 0.02      | ug/g         |        |      |        |     |       |       |
| 2-Methylnaphthalene         | ND       | 0.02      | ug/g         |        |      |        |     |       |       |
| Methylnaphthalene (1&2)     | ND       | 0.04      | ug/g         |        |      |        |     |       |       |
| Naphthalene                 | ND       | 0.01      | ug/g         |        |      |        |     |       |       |
| Phenanthrene                | ND       | 0.02      | ug/g         |        |      |        |     |       |       |
| Pyrene                      | ND       | 0.02      | ug/g         |        |      |        |     |       |       |
| Surrogate: 2-Fluorobiphenyl | 1.37     |           | ug/g         |        | 103  | 50-140 |     |       |       |
| Surrogate: Terphenyl-d14    | 1.57     |           | ug/g         |        | 118  | 50-140 |     |       |       |
| Volatiles                   |          |           |              |        |      |        |     |       |       |
| Benzene                     | ND       | 0.02      | ug/g         |        |      |        |     |       |       |
| Ethylbenzene                | ND       | 0.05      | ug/g         |        |      |        |     |       |       |
| Toluene                     | ND       | 0.05      | ug/g         |        |      |        |     |       |       |
| m,p-Xylenes                 | ND       | 0.05      | ug/g         |        |      |        |     |       |       |
| o-Xylene                    | ND       | 0.05      | ug/g         |        |      |        |     |       |       |
| Xylenes, total              | ND       | 0.05      | ug/g         |        |      |        |     |       |       |
| Surrogate: Toluene-d8       | 2.90     |           | ug/g         |        | 90.6 | 50-140 |     |       |       |



Report Date: 26-Jul-2021 Order Date: 20-Jul-2021

Project Description: PE5371

Certificate of Analysis

Client PO: 32512

Client: Paterson Group Consulting Engineers

|                                      |            | Reporting    |                      | Source   |      | %REC             |          | RPD        |       |
|--------------------------------------|------------|--------------|----------------------|----------|------|------------------|----------|------------|-------|
| Analyte                              | Result     | Limit        | Units                | Result   | %REC | Limit            | RPD      | Limit      | Notes |
| General Inorganics                   |            |              |                      |          |      |                  |          |            |       |
| pH                                   | 6.53       | 0.05         | pH Units             | 6.46     |      |                  | 1.1      | 2.3        |       |
| lydrocarbons                         |            |              |                      |          |      |                  |          |            |       |
| F1 PHCs (C6-C10)                     | ND         | 7            | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| F2 PHCs (C10-C16)                    | ND         | 4            | ug/g dry             | ND       |      |                  | NC       | 30         |       |
| F3 PHCs (C16-C34)                    | ND         | 8            | ug/g dry             | 60       |      |                  | NC       | 30         |       |
| F4 PHCs (C34-C50)                    | ND         | 6            | ug/g dry             | 18       |      |                  | NC       | 30         |       |
| letals                               |            |              | 3337                 |          |      |                  |          |            |       |
| Antimony                             | 3.1        | 1.0          | ug/g dry             | ND       |      |                  | NC       | 30         |       |
| Arsenic                              | 2.6        | 1.0          | ug/g dry             | 2.7      |      |                  | 5.3      | 30         |       |
| Barium                               | 185        | 1.0          | ug/g dry             | 202      |      |                  | 8.8      | 30         |       |
| Beryllium                            | 0.6        | 0.5          | ug/g dry             | 0.7      |      |                  | 15.4     | 30         |       |
| Boron                                | 5.0        | 5.0          | ug/g dry             | ND       |      |                  | NC       | 30         |       |
| Cadmium                              | ND         | 0.5          | ug/g dry             | ND       |      |                  | NC       | 30         |       |
| Chromium                             | 54.5       | 5.0          | ug/g dry             | 60.0     |      |                  | 9.6      | 30         |       |
| Cobalt                               | 12.9       | 1.0          | ug/g dry             | 14.0     |      |                  | 8.3      | 30         |       |
| Copper                               | 19.9       | 5.0          | ug/g dry             | 21.8     |      |                  | 9.0      | 30         |       |
| Lead                                 | 12.0       | 1.0          | ug/g dry             | 13.3     |      |                  | 10.2     | 30         |       |
| Molybdenum                           | ND         | 1.0          | ug/g dry             | ND       |      |                  | NC       | 30         |       |
| Nickel                               | 27.1       | 5.0          | ug/g dry             | 29.8     |      |                  | 9.5      | 30         |       |
| Selenium                             | ND         | 1.0          | ug/g dry             | ND       |      |                  | NC       | 30         |       |
| Silver                               | ND         | 0.3          | ug/g dry             | ND       |      |                  | NC       | 30         |       |
| Thallium                             | ND         | 1.0          | ug/g dry             | ND       |      |                  | NC       | 30         |       |
| Uranium                              | 1.0        | 1.0          | ug/g dry             | 1.1      |      |                  | 4.1      | 30         |       |
| Vanadium                             | 68.0       | 10.0         | ug/g dry             | 74.5     |      |                  | 9.1      | 30         |       |
| Zinc                                 | 99.5       | 20.0         | ug/g dry             | 108      |      |                  | 8.4      | 30         |       |
| hysical Characteristics              |            |              |                      |          |      |                  |          |            |       |
| % Solids                             | 90.6       | 0.1          | % by Wt.             | 91.6     |      |                  | 1.1      | 25         |       |
| emi-Volatiles                        |            |              |                      |          |      |                  |          |            |       |
| Acenaphthene                         | ND         | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Acenaphthylene                       | ND         | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Anthracene                           | ND         | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Benzo [a] anthracene                 | ND         | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Benzo [a] pyrene                     | ND         | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Benzo [b] fluoranthene               | ND         | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Benzo [g,h,i] perylene               | ND         | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Benzo [k] fluoranthene               | ND         | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Chrysene                             | ND         | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Dibenzo [a,h] anthracene             | ND         | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Fluoranthene                         | ND         | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Fluorene                             | ND         | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Indeno [1,2,3-cd] pyrene             | ND<br>ND   | 0.02         | ug/g dry             | ND       |      |                  | NC<br>NC | 40         |       |
| 1-Methylnaphthalene                  | ND<br>ND   | 0.02         | ug/g dry             | ND       |      |                  | NC<br>NC | 40         |       |
| 2-Methylnaphthalene                  | ND<br>ND   | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Naphthalene                          | ND<br>ND   | 0.01         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Phenanthrene                         | ND<br>ND   | 0.02         | ug/g dry             | ND       |      |                  | NC       | 40         |       |
| Pyrene Surrogata: 2 Fluorobinhanyl   | ND<br>1.27 | 0.02         | ug/g dry             | ND       | 07.2 | E0 140           | NC       | 40         |       |
| Surrogate: 2-Fluorobiphenyl          | 1.37       |              | ug/g dry             |          | 87.3 | 50-140<br>50-140 |          |            |       |
| Surrogate: Terphenyl-d14<br>olatiles | 1.48       |              | ug/g dry             |          | 94.3 | 50-140           |          |            |       |
| olatiles<br>Benzene                  | ND         | 0.02         | uala da              | NID      |      |                  | NO       | <b>5</b> 0 |       |
| senzene<br>Ethylbenzene              | ND<br>ND   | 0.02<br>0.05 | ug/g dry             | ND<br>ND |      |                  | NC<br>NC | 50<br>50   |       |
| •                                    |            | 0.05         | ug/g dry             |          |      |                  | NC<br>NC |            |       |
| Toluene<br>m,p-Xylenes               | ND<br>ND   | 0.05         | ug/g dry             | ND<br>ND |      |                  | NC<br>NC | 50<br>50   |       |
| o-Xylene                             | ND<br>ND   | 0.05         | ug/g dry<br>ug/g dry | ND       |      |                  | NC<br>NC | 50<br>50   |       |
| JAYIOTIC                             | 3.97       | 0.00         | ug/g ui y            | שואו     | 105  | 50-140           | INC      | 50         |       |



Certificate of Analysis

Order #: 2130238

Report Date: 26-Jul-2021 Order Date: 20-Jul-2021

 Client:
 Paterson Group Consulting Engineers
 Order Date: 20-Jul-2021

 Client PO:
 32512
 Project Description: PE5371

**Method Quality Control: Spike** 

| Analyte                     | Result | Reporting<br>Limit | Units        | Source<br>Result | %REC         | %REC<br>Limit    | RPD | RPD<br>Limit | Notes |
|-----------------------------|--------|--------------------|--------------|------------------|--------------|------------------|-----|--------------|-------|
| Hydrocarbons                |        |                    |              |                  |              |                  |     |              |       |
| F1 PHCs (C6-C10)            | 179    | 7                  | ug/g         | ND               | 89.7         | 80-120           |     |              |       |
| F2 PHCs (C10-C16)           | 96     | 4                  | ug/g         | ND               | 102          | 60-140           |     |              |       |
| F3 PHCs (C16-C34)           | 249    | 8                  | ug/g         | 60               | 81.6         | 60-140           |     |              |       |
| F4 PHCs (C34-C50)           | 156    | 6                  | ug/g         | 18               | 94.3         | 60-140           |     |              |       |
| Metals                      |        |                    |              |                  |              |                  |     |              |       |
| Antimony                    | 51.1   | 1.0                | ug/g         | ND               | 102          | 70-130           |     |              |       |
| Arsenic                     | 50.7   | 1.0                | ug/g         | 1.1              | 99.2         | 70-130           |     |              |       |
| Barium                      | 117    | 1.0                | ug/g         | 80.7             | 73.5         | 70-130           |     |              |       |
| Beryllium                   | 48.0   | 0.5                | ug/g         | ND               | 95.4         | 70-130           |     |              |       |
| Boron                       | 46.3   | 5.0                | ug/g         | ND               | 88.9         | 70-130           |     |              |       |
| Cadmium                     | 46.0   | 0.5                | ug/g<br>ug/g | ND               | 91.8         | 70-130           |     |              |       |
| Chromium                    | 71.9   | 5.0                | ug/g<br>ug/g | 24.0             | 95.8         | 70-130           |     |              |       |
| Cobalt                      | 54.8   | 1.0                | ug/g<br>ug/g | 5.6              | 98.3         | 70-130           |     |              |       |
| Copper                      | 55.7   | 5.0                | ug/g<br>ug/g | 8.7              | 94.0         | 70-130           |     |              |       |
| Lead                        | 48.1   | 1.0                | ug/g<br>ug/g | 5.3              | 94.0<br>85.6 | 70-130           |     |              |       |
| Molybdenum                  | 49.5   | 1.0                | ug/g<br>ug/g | ND               | 98.5         | 70-130           |     |              |       |
| Nickel                      | 59.6   | 5.0                | ug/g         | 11.9             | 95.3         | 70-130           |     |              |       |
| Selenium                    | 46.0   | 1.0                | ug/g         | ND               | 91.8         | 70-130           |     |              |       |
| Silver                      | 42.4   | 0.3                | ug/g<br>ug/g | ND               | 84.7         | 70-130           |     |              |       |
| Thallium                    | 44.9   | 1.0                | ug/g         | ND               | 89.7         | 70-130           |     |              |       |
| Uranium                     | 46.4   | 1.0                | ug/g         | ND               | 92.0         | 70-130           |     |              |       |
| Vanadium                    | 77.3   | 10.0               | ug/g         | 29.8             | 95.1         | 70-130           |     |              |       |
| Zinc                        | 84.4   | 20.0               | ug/g         | 43.3             | 82.1         | 70-130           |     |              |       |
| Semi-Volatiles              | 01.1   | 20.0               | ug/g         | 10.0             | 02.1         | 70 100           |     |              |       |
| Acenaphthene                | 0.180  | 0.02               | ug/g         | ND               | 91.7         | 50-140           |     |              |       |
| Acenaphthylene              | 0.167  | 0.02               | ug/g<br>ug/g | ND               | 84.9         | 50-140           |     |              |       |
| Anthracene                  | 0.169  | 0.02               | ug/g<br>ug/g | ND               | 85.9         | 50-140           |     |              |       |
| Benzo [a] anthracene        | 0.149  | 0.02               | ug/g<br>ug/g | ND               | 75.6         | 50-140           |     |              |       |
| Benzo [a] pyrene            | 0.173  | 0.02               | ug/g<br>ug/g | ND               | 87.8         | 50-140           |     |              |       |
| Benzo [b] fluoranthene      | 0.216  | 0.02               | ug/g<br>ug/g | ND               | 110          | 50-140           |     |              |       |
| Benzo [g,h,i] perylene      | 0.168  | 0.02               | ug/g<br>ug/g | ND               | 85.2         | 50-140           |     |              |       |
| Benzo [k] fluoranthene      | 0.231  | 0.02               | ug/g<br>ug/g | ND               | 117          | 50-140           |     |              |       |
| Chrysene                    | 0.182  | 0.02               | ug/g<br>ug/g | ND               | 92.4         | 50-140           |     |              |       |
| Dibenzo [a,h] anthracene    | 0.163  | 0.02               | ug/g<br>ug/g | ND               | 82.7         | 50-140           |     |              |       |
| Fluoranthene                | 0.169  | 0.02               | ug/g<br>ug/g | ND               | 86.1         | 50-140           |     |              |       |
| Fluorene                    | 0.175  | 0.02               |              | ND               | 88.9         | 50-140           |     |              |       |
| Indeno [1,2,3-cd] pyrene    | 0.173  | 0.02               | ug/g<br>ug/g | ND               | 71.9         | 50-140           |     |              |       |
| 1-Methylnaphthalene         | 0.142  | 0.02               | ug/g<br>ug/g | ND               | 94.0         | 50-140           |     |              |       |
| 2-Methylnaphthalene         | 0.204  | 0.02               | ug/g<br>ug/g | ND               | 104          | 50-140           |     |              |       |
| Naphthalene                 | 0.184  | 0.02               | ug/g<br>ug/g | ND               | 93.2         | 50-140           |     |              |       |
| Phenanthrene                | 0.171  | 0.02               | ug/g<br>ug/g | ND               | 86.8         | 50-140           |     |              |       |
| Pyrene                      | 0.161  | 0.02               | ug/g<br>ug/g | ND               | 82.0         | 50-140           |     |              |       |
| Surrogate: 2-Fluorobiphenyl | 1.39   | 0.02               | ug/g<br>ug/g | יאט              | 88.2         | 50-140<br>50-140 |     |              |       |
| Surrogate: Terphenyl-d14    | 1.48   |                    | ug/g<br>ug/g |                  | 94.2         | 50-140<br>50-140 |     |              |       |
| /olatiles                   | ,      |                    | ~∃′∃         |                  | ·            | 55 7 70          |     |              |       |
| Benzene                     | 3.87   | 0.02               | ug/g         | ND               | 96.8         | 60-130           |     |              |       |
| Ethylbenzene                | 3.05   | 0.02               | ug/g<br>ug/g | ND               | 96.8<br>76.2 | 60-130           |     |              |       |
| Toluene                     | 3.40   | 0.05               | ug/g<br>ug/g | ND               | 84.9         | 60-130           |     |              |       |



Report Date: 26-Jul-2021 Order Date: 20-Jul-2021

Project Description: PE5371

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 32512

#### **Method Quality Control: Spike**

| Analyte               | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| m,p-Xylenes           | 5.67   | 0.05               | ug/g  | ND               | 70.9 | 60-130        |     |              |       |
| o-Xylene              | 3.37   | 0.05               | ug/g  | ND               | 84.4 | 60-130        |     |              |       |
| Surrogate: Toluene-d8 | 2.78   |                    | ug/g  |                  | 86.9 | 50-140        |     |              |       |



Client: Paterson Group Consulting Engineers

Order #: 2130238

Report Date: 26-Jul-2021 Order Date: 20-Jul-2021

Client PO: 32512 Project

Project Description: PE5371

#### **Qualifier Notes:**

None

Certificate of Analysis

#### **Sample Data Revisions**

None

#### **Work Order Revisions / Comments:**

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.



LABORATORIES LTD.

Paracel ID: 2130238



Paracel Order Number (Lab Use Only)

2130238

Chain Of Custody
(Lab Use Only)

Nº 133013

|                   | Re   |                   | □ 1 da<br>□ 2 da<br>re Req | Turr<br>ay<br>ay                                 | Page<br>narou       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ime                 | day<br>Regula       |
|-------------------|------|-------------------|----------------------------|--------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
|                   | Re   |                   | ] 2 da                     | Turr<br>ay<br>ay                                 | narou               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ime                 | , .                 |
|                   | Re   |                   | ] 2 da                     | ay<br>ay                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | □ 3                 | , .                 |
|                   | Re   |                   | ] 2 da                     | ау                                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | , .                 |
|                   | Re   |                   |                            |                                                  | :                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M/ F                | egula               |
|                   | Re   | Date              | e Req                      | uired.                                           | :                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     |
|                   | Re   | 1                 |                            | Date Required:                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     |
|                   |      | Required Analysis |                            |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     |
| Required Analysis |      |                   |                            |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     |
|                   |      | Π                 | T                          | T                                                | T                   | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T                   | T                   |
| by ICP            |      |                   |                            |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     |
|                   |      |                   |                            |                                                  | -                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | 1                   |
| als b             |      |                   | WS)                        |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     |
| Met               | P    | S S               | B E                        | PH                                               | :                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     |
| /                 |      |                   |                            | 1                                                | $\top$              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\top$              | $\vdash$            |
| Ť                 |      | _                 |                            | +                                                | +                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +                   | $\vdash$            |
|                   | -    | _                 | -                          | $\vdash$                                         | +                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +                   | -                   |
|                   | _    | _                 | -                          | <del>                                     </del> | +                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +                   | -                   |
| -                 |      | _                 | -                          | 1.                                               | $\perp$             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                   | _                   |
|                   |      |                   |                            | V                                                | _                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                   |                     |
|                   |      |                   |                            |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     |
|                   |      |                   |                            | ✓                                                |                     | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                     |
|                   |      |                   |                            |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     |
|                   | 1    |                   |                            |                                                  |                     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\dagger$           |                     |
|                   |      |                   |                            |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     |
|                   | - 10 | Metals by ICP     | <u>o</u>                   | Metals by ICP Hg CrVI                            | Hg CrvI CrvI S (HWS | Metals  Hg  CrVI  CrVI | Hg CrVI CrVI S (HWS | Hg CrVI CrVI S (HWS |

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

**Excess Soil Quality Assessment** 

**SOIL PROFILE AND TEST DATA** 

1075 March Road Ottawa, Ontario

**DATUM** FILE NO. PE5371 **REMARKS** HOLE NO. TP 1 **BORINGS BY** Excavator **DATE** July 20, 2021 **SAMPLE Photo Ionization Detector** STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION**  Volatile Organic Rdg. (ppm) (m) (m) N VALUE or RQD RECOVERY NUMBER Lower Explosive Limit % **GROUND SURFACE** 60 80 0 + 82.14G 1 **TOPSOIL** 0.55 G 2 1+81.14 **Brown SILTY CLAY** 3 1.89 End of Test Pit 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

## **SOIL PROFILE AND TEST DATA**

Excess Soil Quality Assessment 1075 March Road Ottawa, Ontario

**DATUM** FILE NO. PE5371 **REMARKS** HOLE NO. TP 2 **BORINGS BY** Excavator **DATE** July 20, 2021 **SAMPLE Photo Ionization Detector** STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION**  Volatile Organic Rdg. (ppm) (m) (m) N VALUE or RQD RECOVERY NUMBER Lower Explosive Limit % **GROUND SURFACE** 60 80 0+83.48G 1 **TOPSOIL** 2 G 1 + 82.48**Brown SILTY CLAY** 3 End of Test Pit 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

## **SOIL PROFILE AND TEST DATA**

Excess Soil Quality Assessment 1075 March Road Ottawa, Ontario

**DATUM** FILE NO. PE5371 **REMARKS** HOLE NO. TP3 **BORINGS BY** Excavator **DATE** July 20, 2021 **SAMPLE Photo Ionization Detector** STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION**  Volatile Organic Rdg. (ppm) (m) (m) N VALUE or RQD RECOVERY NUMBER Lower Explosive Limit % **GROUND SURFACE** 60 80  $0 \pm 84.20$ G 1 **TOPSOIL** 0.70 2 G 1 + 83.20**Brown SILTY CLAY** 3 2 + 82.20End of Test Pit 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

1075

**SOIL PROFILE AND TEST DATA** 

Excess Soil Quality Assessment 1075 March Road Ottawa, Ontario

| DATUM                   |         |                                           |      |     |            | itarra, Oi | 114110 |               | FILE NO.                               |                                 |       |  |  |  |  |
|-------------------------|---------|-------------------------------------------|------|-----|------------|------------|--------|---------------|----------------------------------------|---------------------------------|-------|--|--|--|--|
| REMARKS                 |         |                                           |      |     |            |            |        |               | PE5371                                 |                                 |       |  |  |  |  |
| BORINGS BY Excavator    |         |                                           |      |     |            |            |        |               |                                        | TP 4                            | 4     |  |  |  |  |
| SOIL DESCRIPTION        |         | SAMPLE                                    |      |     | AIL        | DEPTH      | ELEV.  |               | onization De                           | tector                          | Well  |  |  |  |  |
| GOIL BLOOM HOW          | TA PLOT | Ä                                         | XEX. | ŒRY | EUE<br>SOD | (m)        | (m)    |               |                                        |                                 | oring |  |  |  |  |
| GROUND SURFACE          | STRATA  | NUMBER NUMBER OF RECOVERY OF ROD OF 85.81 |      |     |            |            |        | r Explosive I | imit %<br>80                           | Monitoring Well<br>Construction |       |  |  |  |  |
| TOPSOIL 0.47            |         | _<br>_ G<br>_                             | 1    |     |            | 0-         | +82.81 | •             |                                        |                                 |       |  |  |  |  |
|                         |         | –<br>G<br>–                               | 2    |     |            |            |        |               |                                        |                                 |       |  |  |  |  |
| Brown SILTY CLAY        |         |                                           |      |     |            |            | -81.81 |               |                                        |                                 |       |  |  |  |  |
| 1.82<br>End of Test Pit |         | _<br>G<br>_<br>                           | 3    |     |            |            |        |               |                                        |                                 |       |  |  |  |  |
|                         |         |                                           |      |     |            |            |        | 100<br>RKI E  | 200 300<br>Eagle Rdg. (pas Resp. △ Met | pm)                             | 000   |  |  |  |  |

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

**SOIL PROFILE AND TEST DATA** 

Excess Soil Quality Assessment 1075 March Road Ottawa, Ontario

| DATUM                        |        |               |        |          |                   | •          |       |                          | FILE NO.                                 | PE5371  | 1                               |
|------------------------------|--------|---------------|--------|----------|-------------------|------------|-------|--------------------------|------------------------------------------|---------|---------------------------------|
| REMARKS BORINGS BY Excavator |        |               |        | r        | ΔTF .             | July 20, 2 | 2021  |                          | HOLE NO.                                 | TP 5    |                                 |
| SOIL DESCRIPTION             |        |               | SAN    | /IPLE    |                   | DEPTH (m)  | ELEV. |                          | onization D                              | etector | g Well<br>ction                 |
|                              | STRATA | TYPE          | NUMBER | RECOVERY | N VALUE<br>or RQD | (111)      | (111) |                          | er Explosive                             |         | Monitoring Well<br>Construction |
| GROUND SURFACE               | 0.     |               |        | 2        | Z                 | 0-         | 83.15 | 20                       | 40 60                                    | 80      | 2                               |
| TOPSOIL                      |        | _<br>_ G<br>_ | 1      |          |                   |            |       | •                        |                                          |         |                                 |
| 0.49                         |        |               |        |          |                   |            |       |                          |                                          |         |                                 |
| <u>0.10</u>                  |        | G             | 2      |          |                   |            |       | •                        |                                          |         |                                 |
|                              |        | _             |        |          |                   |            |       |                          |                                          |         |                                 |
| Brown <b>SILTY CLAY</b>      |        |               |        |          |                   | 1-         | 82.15 |                          |                                          |         |                                 |
|                              |        |               |        |          |                   |            |       |                          |                                          |         |                                 |
|                              |        |               |        |          |                   |            |       |                          |                                          |         |                                 |
| 1.70                         |        | G             | 3      |          |                   |            |       | •                        |                                          |         |                                 |
| End of Test Pit              |        |               |        |          |                   |            |       |                          |                                          |         |                                 |
|                              |        |               |        |          |                   |            |       |                          |                                          |         |                                 |
|                              |        |               |        |          |                   |            |       |                          |                                          |         |                                 |
|                              |        |               |        |          |                   |            |       |                          |                                          |         |                                 |
|                              |        |               |        |          |                   |            |       |                          |                                          |         |                                 |
|                              |        |               |        |          |                   |            |       |                          |                                          |         |                                 |
|                              |        |               |        |          |                   |            |       | 100<br>RKI I<br>▲ Full G | 200 300<br>Eagle Rdg. (<br>as Resp. △ Mo | (ppm)   | 00                              |

