JLR No.: 31489-004 April 28, 2022

Revision: 0

Site Servicing Brief

OC Transpo E-bus Parking Garage 1500 St. Laurent Boulevard, Ottawa, ON

Table of Contents

1.0	Introduction	1
	1.1 Required Approvals	
	1.1.1 City of Ottawa - Site Plan Approval (SPA)	
	1.1.2 Rideau Valley Conservation Authority (RVCA)	
	1.1.3 Ministry of the Environment, Conservation and Parks (MECP)	2
2.0	Water Servicing	
	2.1 Background and Water Servicing Design Criteria	4
	2.2 Water Demands	5
	2.3 Watermain Sizing and Roughness	
	2.4 Fire Flow Requirements	
	2.5 Proposed Water Servicing	6
	2.5.1 Water Servicing	
	2.5.2 Hydraulic Water Model	
	2.5.3 Boundary Conditions	
	2.6 Simulation Results	
	2.6.1 Peak Hour	
	2.6.2 Maximum Day plus Fire Flow	
	2.6.3 Maximum HGL	
	2.7 Water Summary and Recommendations	
3.0	Wastewater Servicing	
	3.1 Existing Wastewater Servicing	
4.0	3.2 Proposed Wastewater Servicing	
4.0	Storm and Stormwater Management Servicing	10
	J J	10 11
	4.2.1 Existing MECP ECA	
	4.2.3 Proposed Roof Top Control	
5.0	Conclusions and Recommendations	
5.0	Conclusions and Neconinteridations	13
List	of Figures	
Figur	e 1 – Site Location Map	2
l iet	of Tables	
LiSt	OI I ADIGO	
Table	2.1: Total Water Demand	5
	2.2: Watermain Roughness Coefficients	
Table	2.3: PVC Watermain Internal Diameters	5
Table	2.5: Summary of Boundary Conditions Provided by City	7
Table	4.1: Required Onsite Storage Volumes	12
Table	4.2: Required Onsite Storage Volumes	12

List of Appendices

Appendix A	Copy of email correspondences
Appendix B	ECA issued by the Ministry of the Environment (MECP)
Appendix C	Schedule A Agreement
Appendix D	Water HNA Analysis
Appendix E	Sanitary and Storm Sewer Design Sheets
Appendix F	Stormwater Management Calculations
Appendix G	StormTech Underground Storage Chamber Design (West & East)
Appendix H	Manufacture's Roof Control Specifications
Appendix I	Site Development Plans
Appendix J	Servicing Study Checklist

1.0 Introduction

The City of Ottawa (City) owns and operates three (3) adjacent properties in the northwestern quadrant of the St. Laurent Boulevard and Belfast Road intersection; the entire site functions as a single facility with an address of 1500 St-Laurent Boulevard. The site has an area of ±13.59 ha and consists of parking lots, maintenance and administrative buildings that service the City's OC Transpo operations. Part of the site's parking lot (0.78 ha) will be redeveloped with a proposed building (garage) to house the new line of electrical buses (E-bus). This report supports the preliminary design for the garage and the associated project works.

OC Transpo has retained the services of J.L. Richards & Associates Limited (JLR) to prepare a Site Plan Application (SPA) for the development of the E-bus garage located on 1500 St. Laurent Boulevard, Ottawa, Ontario. JLR is responsible for taking the proposed project's development to the initial phase of the Site Plan Application (SPA) process, and subsequent City comments are to be addressed by others. OC Transpo proposes to award the design and construction of this facility to a selected Design-Build Team. The successful proponent of this process will be responsible for finalizing details of the site servicing with the building design

The proposed project replaces part of the north asphalt parking lot with a garage (0.78 ha) to service the E-buses. Figure 1 – Site Location Map depicts the entire lot and provides an aerial view of the proposed parking garage site. This redevelopment will require an amendment to the existing Environmental Compliance Approval (ECA) issued by the Ministry of the Environment (MECP). In 2006 the asphalt parking lot received an MECP ECA amendment. The ECA was amended in 2017 to redevelop a bus access lane, located south of the proposed development area. See Appendices B for approved ECAs.

This report outlines the preliminary design objectives, the design criteria, site servicing constraints and strategies to develop the proposed building with water (domestic and fire protection), wastewater and storm laterals, and a stormwater management system.

Figure 1 – Site Location Map

1.1 Required Approvals

The following section identifies approvals required for this project.

1.1.1 City of Ottawa - Site Plan Approval (SPA)

This Servicing Report is submitted to support a Site Plan Application (SPA) to the City. The design-build team selected by the City will advance the project and will be required to examine documents submitted with this SPA and will need to provide responses per the City's comments of the initial submission package. It will be the responsibility of the design-build team to address the City's SPA review comments (as applicable) and adjust their associated design and documents accordingly.

1.1.2 Rideau Valley Conservation Authority (RVCA)

A pre-consultation was had with the Rideau Valley Conservation Authority (RVCA). The RVCA indicated that replacing surface stormwater storage with rooftop storage would enhance the runoff water quality. No additional measures were deemed required so long as the storage volume originally provided is not reduced. Refer to Appendix A for correspondence from the RVCA.

1.1.3 Ministry of the Environment, Conservation and Parks (MECP)

On April 6, 2022, a pre-consultation was conducted with Mr. Charlie Primeau of the Ministry of the Environment, Conservation and Parks (MECP). A copy of the pre-consultation meeting notes is included in Appendix A. Mr. Primeau confirmed that the proponent would be required to apply for an amendment to the existing Environmental Compliance Approval (ECA) (No. 8368-AGMS3S) for the site. Appendix B presents a copy

J.L. Richards & Associates Limited

JLR No.: 31489-004

-2
April 28, 2022

Revision: 0

of this ECA. During the pre-consultation meeting, the MECP stated that the City is authorized to delegate ECA approvals as granted under the Transfer of Review agreement.

JLR has since consulted with the City's Mr. Charles Warnock to establish the conditions that permit the City to approve the ECA application under the Transfer of Review program. The City is authorized to approve Sewage Works as detailed in Schedule A of the agreement. Refer to Appendix C for a copy of the Schedule A Agreement. Section 2 of the agreement indicates that the City has approval authority for stormwater management works for non-industrial lands. Industrial lands are defined in Section 1 of the Ontario Water Resources Act.

It is noted that although the existing ECA has been approved for onsite stormwater management, it was not issued for an "industrial site." OC Transpo operations and facilities suggest that the site be considered an "industrial site" to administer the ECA amendment application. A direct submission application is recommended to be submitted to the MECP to amend the existing ECA. As part of JLR's scope of work, JLR will initiate the amendment application to the MECP for onsite SWM. It will be noted in the application that the site meets the classification of an industrial development.

It will be the responsibility of the successful design-build proponent to follow up with this ECA application and adjust the submission for the specifics of their detailed design. At the time of preparing this report, an MECP file number was not available. It is planned that a file number will be included in the documents released for the project's Request for Proposals (RFPs).

The estimated time to obtain approval from the MECP (for direct submission) is six to eight months. It is anticipated that the MECP approval may not be available prior to construction's scheduled start date. If this is the case, the ministry did indicate that they can initiate measures to expedite approvals while allowing construction to start. As indicated in item 1.8 of the pre-consultation meeting minutes (see Appendix A). The MECP will assign an Environmental Officer to monitor the construction and ECA approval process. It is recommended that the proponent contact the MECP local office and advise them of the construction schedule once the information is available.

2.0 Water Servicing

2.1 Background and Water Servicing Design Criteria

The drawings provided by the City indicate a private watermain that consists of 150 mm and 200 mm diameter pipes. This private watermain loops around the existing north and south garages and is connected to a 305 mm diameter feeder main along Belfast Road. There is also a 150 mm diameter service stub connected to a 406 mm diameter feeder main along St. Laurent Blvd. The existing private watermain loop will service the proposed building.

A Hydraulic Network Analysis (HNA) was carried out to confirm the proposed watermain size and to demonstrate its compliance with the City of Ottawa Design Guidelines for Water Distribution (July 2010) and subsequent Technical Bulletins ISDTB-2014-02, ISDTB-2018-02, and ISTB-2021-03. These documents are herein referred to as the Design Guidelines and TB-2014-02, TB-2018-02, and TB-2021-03 respectively. Section 4.2.2 of the Design Guidelines require that all new development additions to the public water distribution network be designed such that the minimum and maximum residual pressures, as well as flow rates, comply per following:

- Under maximum hourly demand conditions (peak hour), the residual pressures are not less than 276 kPa (40 psi);
- During periods of maximum day combined to a fire flow demand, the residual pressure at any point in the distribution system shall not be less than 140 kPa (20 psi);
- Per the Ontario Building Code (OBC) in occupied areas, the static pressure at any fixture shall not exceed 552 kPa (80 psi); and
- The maximum pressure at any point in the distribution system in unoccupied areas shall not exceed 689 kPa (100 psi).

Supply to the proposed building will be achieved by extending the existing watermain (200 mm diameter) near the west wall of the existing north garage with a proposed 200 mm diameter line. The analysis described in the following sections were completed to satisfy the above demand and pressure criteria.

2.2 Water Demands

The project's mechanical engineer provided the peak hourly demand for the proposed building. The maximum day and average daily demand for the proposed building were determined using peak factors of 1.8 - maximum day to peak hour and 1.5 - average day to maximum day, per the Design Guidelines for industrial development. Refer to Appendix D for the detailed water demand calculations. The total water demand for the site was calculated by combining the demand for the proposed building and the demands for the two existing garages. The demands for the existing garages were estimated based on metered data provided by OC Transpo. The development's required water demands are summarized below in Table 2.1.

Peak Hour Average Day Maximum Day Demand (L/s) Demand (L/s) Demand (L/s) **Proposed Building** 1.11 1.67 3.00 2.94 Existing 2-Buildings 1.09 1.63 2.20 3.30 Total 5.94

Table 2.1: Total Water Demand

2.3 Watermain Sizing and Roughness

Watermain roughness coefficients were determined using Section 4.2.12 of the Design Guidelines and summarized in Table 2.2 below. The internal pipe diameters were modelled based on Section 4.3.5 of the Design Guidelines and are summarized below in Table 2.3.

Table 2.2: Watermain Roughness Coefficients

Watermain Diameter (mm)	C-Factor
150	100
200 to 250	110
300 to 600	120

Table 2.3: PVC Watermain Internal Diameters

Nominal Diameter (mm)	Inside Diameter (mm)
150	155
200	204
300	297
400	393

2.4 Fire Flow Requirements

The proposed building was designed to have an automated, fully supervised sprinkler system per the Ontario Building Code (OBC). Assumptions for the proposed building's location of the fire department Siamese connection, mechanical room, as well as water demand calculations, including sprinkler flows, were reviewed with the project's mechanical engineer. As part of the discussion, the fire flow requirement for the sprinkler system, including the hose stream allowance (47 L/s) were also reviewed. See correspondence in Appendix D.

Additionally, the Guidelines entitled "Water Supply for Public Fire Protection (1999)" developed by the Fire Underwriters Survey (FUS) govern fire flow protection in the City of Ottawa. Fire flow requirements for this HNA were calculated following the FUS Guidelines. The proposed building's required fire flow (RFF) was determined to be 11,000 L/min (183 L/s). The corresponding FUS fire flow calculations per TB-2018-02 can be found in Appendix D.

2.5 Proposed Water Servicing

2.5.1 Water Servicing

Per Section 2.1 (above), a private watermain loop exists on the subject site and will be used to service the proposed building. Discussion with the mechanical engineer indicated that the mechanical room would be located near the northeast corner of the proposed building. From the private watermain loop, a service connection will branch off the existing 200 mm diameter watermain located near the west wall of the existing north parking garage. It will connect to the northeast corner of the proposed building. A new hydrant is proposed to be installed east of the proposed building, connected via a hydrant lateral to the existing 200 mm diameter private watermain loop. The hydrant's location is based on current assumptions and is subject to change. The new proposed hydrant will meet the OBC's requirement, which states that it must be located within 45 meters of the building's siamese connection. The mechanical engineer indicated that the siamese connection would be located near the northeast corner of the proposed building.

2.5.2 Hydraulic Water Model

A hydraulic water model was developed for the subject site using the WaterCAD® software platform. The model included the existing private watermain loop between Belfast Road and St-Laurent Boulevard and the proposed water service and hydrant. The model was used to assess the proposed water servicing design for adherence to the design criteria listed in Section 2.1.

2.5.3 Boundary Conditions

A request was made to the City to obtain the supply characteristics at each of the connection points described in Section 2.1. See Appendix D for a copy of the City's email correspondence. The supply elevations are shown in Table 2.4 below.

Table 2.4: Summary of Boundary Conditions Provided by City

	Connection 1 – Belfast	Connection 2 – St-Laurent
Minimum HGL (m)	110.1	110.1
Maximum HGL (m)	118.3	118.3
MaxDay + Fire Flow (47 L/s) (m)	113.5	113.3
MaxDay + Fire Flow (183 L/s) (m)	111.6	109.4

2.6 Simulation Results

2.6.1 Peak Hour

The peak hour demand was distributed throughout the site using the supply characteristics noted in Table 2.4. Under the total peak hour demand from Table 2.1, the simulation results show a minimum residual pressure of 391 kPa (57 psi) at node J-29. According to the Design Guidelines, the simulated pressures exceed the minimum pressure requirement of 276 kPa (40 psi). Appendix D includes the junction and pipe summary reports.

2.6.2 Maximum Day plus Fire Flow

To ensure the proposed building has adequate fire protection, the maximum day demand for the entire site was simultaneously simulated with the sprinkler system flow and FUS fire flow requirements from the water distribution system using the supply heads listed in Table 2.4. As mentioned in Section 2.5.1, a new hydrant will be installed to the east of the proposed building to satisfy the OBC minimum hydrant distance requirement for fully automated sprinkler systems. The RFF for the proposed building using FUS was calculated to be 11,000 L/min (183 L/s), and the mechanical engineer calculated the sprinkler system flow requirement, including the hose stream allowance, to be 2,820 L/min (47 L/s). The sprinkler system flow was deducted from the total calculated FUS fire flow to determine the remaining fire flow required from the distribution system hydrants, which is 8,160 L/min (136 L/s).

Technical Bulletin ISTB-2018-02 limits the amount of flow that can be drawn from a single hydrant to 95 L/s if the hydrant is within 75 m of the structure, and 63 L/s if the hydrant is between 75 m and 150 m of the structure. Hence, two hydrants are required simultaneously to provide the required 136 L/s. The model simulation assigned maximum day demands throughout the site with an additional sprinkler system demand of 47 L/s at the proposed building. 95 L/s was assigned at the new proposed hydrant while the remaining 41 L/s was assigned at the existing hydrant located to the southeast corner of the existing north parking garage. The simulation results (Appendix D) found that the two hydrants and the sprinkler system can provide the total RFF of 183 L/s while maintaining

a minimum pressure of 192 kPa (27.8 psi) throughout the site, which exceeds the minimum residual pressure requirement of 140 kPa (20 psi).

2.6.3 Maximum HGL

The maximum pressure (maximum HGL) scenario was simulated to determine the need, if any, for the implementation of pressure reducing valves (PRVs) to ensure that the pressure in the water distribution system does not exceed the maximum pressure constraint of 552 kPa (80 psi) set by the OBC. The maximum simulated pressure in the system was found to be 482 kPa (70psi). Based on the simulation results (Appendix D), the proposed building will not require the installation of a PRV as the simulated pressures throughout the site are below the maximum pressure constraint of 552 kPa.

2.7 Water Summary and Recommendations

Simulation results under the peak hour condition showed that the proposed building will meet the minimum pressure criterion of 276 kPa (40 psi). Hence, no measures are required to mitigate against low pressures. Under the maximum day plus fire flow conditions, the distribution system and hydrants will satisfy the RFF described in Section 2.6.2. The simulation results under maximum HGL do not exceed the maximum pressure constraint of 552 kPa (80 psi) and will not require the installation of PRVs.

3.0 Wastewater Servicing

3.1 Existing Wastewater Servicing

The existing north and south parking garages are serviced by 200 mm diameter laterals that direct flows south of the property and drain into existing sanitary collector along Belfast Road.

3.2 Proposed Wastewater Servicing

This report assumes that the existing sewer has the available capacity to accommodate the proposed developmental sewage flow. The sewers existing capacity to be confirmed during detailed design. Sewage from the development to drain via a proposed service lateral (200 mm diameter) connected to the southeast corner of the proposed building.

The design sewage peak rates were estimated at 1.05 L/sec (per City of Ottawa Sewer Design Guidelines and Technical Bulletin ISTB-2018-1). The proposed sanitary service lateral to extend off the existing maintenance hole located north of the existing garage and southwest of the site. Sewage flows to ultimately discharge into the collector along Belfast Road. See the proposed sewer design sheet in Appendix E and the site servicing plan in Appendix I.

4.0 Storm and Stormwater Management Servicing

4.1 Existing Storm Servicing

In the existing condition, runoff for the entire 1500 St-Laurent site (13.59 ha) discharges to two distinct outlets, the South Cyrville Drain and the Rideau River. Most of the site's runoff drains to the South Cyrville Drain, with a small portion draining to the Rideau River (tributary).

The existing site's stormwater management (SWM) facility was approved by the MECP in 2006 and later amended in 2017. See approved ECAs in Appendix B. The proposed development falls within drainage Basin 4A, which was approved with 2.55 ha and a runoff coefficient (C-factor) of 0.90. Basin flows are collected via six onsite existing storm structures (i.e. catchbasins and catchbasin-manholes). Four of the structures are located within the bus parking lot (proposed for redevelopment), and two of the structures (CBs) are in the south employee parking lot.

Basin flows are controlled via an onsite inlet-control device (ICD) situated in the storm maintenance hole (MH) downstream of the catchbasins. Per the approved ECA, the ICD controls flow to 180 L/s, with overland 100-year storm event flows going to the adjoining swale at a peak flow rate of 200 L/s. Outlet flows drain via the 600 mm diameter storm sewer, ultimately draining to the South Cyrville Drain. See the existing drainage plan in Appendix I.

Assessment of the current LiDAR topography of the site suggests that the drainage area being controlled by the existing ICD is currently around 2.6 ha.

During the pre-consult meeting with the City, staff indicated no drainage issues associated with the existing SWM facility or ICD configuration.

Due to the land use being an industrial site, there is a risk for chemical compound spillage within the development area. An onsite oil and grit interceptor (installed in 2003) does treat area runoff. When the unit was installed, the MECP had requested OC Transpo develop a spill contingency plan and maintain monitoring records.

4.2 Proposed Storm Servicing and Stormwater Management

The proposed redevelopment site is within drainage Basin 4A (basin) and consists of a proposed building and associated infrastructure services (water, storm and sanitary). The building will be built along the northwest section of the basin, to replace the current asphalt. Refer the pre-post drainage basin map in Appendix I.

A pre consultation meeting with the MECP took place on April 6, 2022. See Appendix A for a copy of the minutes. The proposed development will modify the approved onsite SWM system. The proposed updated SWM system to consist of building roof top controls and an onsite underground storage structure with downstream ICDs to control site runoff. An amendment of the existing MECP ECA is required.

The revised SWM facility to consist of building rooftop controls (Watts RD-100A) and onsite underground storage system (StormTech). The current asphalt bus parking lot will be replaced with a proposed garage.

J.L. Richards & Associates Limited

JLR No.: 31489-004

-10
April 28, 2022

Revision: 0

The proposed building to have rooftop control, restricted flow to drain via the building's foundation and have direct flow connection to the existing storm sewer. The sewer further conveys the water to the downstream oil/grit separator (Stormceptor) which discharges flow into the 600 mm storm sewer. Water quality for site will be improved given that the once parking lot area will now be managed on the building's roof. See the servicing plan in Appendix I.

4.2.1 Existing MECP ECA

The existing approved MECP ECA (5605-6VZS8W) was issued December 5, 2006. It outlined the requirements for a stormwater management facility to serve the northwestern area of the site which was composed onsite surface storage (ponding on the parking lot) for major flows (100-year event) and storm sewer for minor flows. The minor system controlled with an inlet-control-device (orifice) restricted (Basin 4A) to **180** L/s and runoff detention of major storms provided via the surface ponding areas.

The ECA was amended (8368-AGMS3S) in February 3, 2017 for the collection, the treatment, and the disposal of storm runoff from the development of a bus access road. The amended system provided enhanced water quality control, including erosion protection, managing site runoff up to and including the 100-year storm period. Minor system flows are restricted to equal the site's previously approved restricted peak flows.

4.2.2 Proposed MECP ECA Amendment

The existing SWM system is to be amended and will provide enhanced water quality control (rooftop storage), including erosion protection and managed onsite (underground and rooftop) proposed development runoff up to and including the 100-year storm period. Minor system flows to be restricted to equal (or less) the permitted control rate (180 L/s).

4.2.3 Proposed Roof Top Control

To ensure post-development runoff is controlled to the approved flow rate, restrictors will be installed in the building's rooftop drains. These controls will limit the flow to the existing onsite storm sewers. The peak ponding depth was assumed at 150 mm for a the 100-year storm event. The roof's ponding volume was determined using the Modified Rational Method outlined in section 8.3.10.3 of the City of Ottawa's Sewer Guidelines. As ponds generally form the shape of the roof, the extent and depth of ponding resulting from the 100-year storm was determined using the following equation:

 $V = 1/3 \times A \times d$

Where: V - Storage volume (cu. m.)

A - Ponding surface area (sq.m.)

d - Peak ponding depth (m)

Per the above formula (assumed peak depth of 150 mm) the provided rooftop storage volume is 377 m³ for the 1:100 year and climate change event (CCE). Based on the assumption that 60% of rooftop will be used for storage, the proposed building's roof has sufficient storage capacity (704 m³) to detain the 1:100 year and CCE events. The storm runoff from the building's flat roof will be controlled via roof drain restrictors at an estimated rate of 32 L/sec. Detail rooftop calculations are provided in Appendix F. Refer to Appendix H for the manufacture's roof control specifications.

J.L. Richards & Associates Limited

JLR No.: 31489-004

-11
April 28, 2022

Revision: 0

4.2.4 Proposed Surface Controls

The surrounding development asphalt area has a split flow drainage pattern with a west and an east basin area (4A-2 and 4A-3). See Appendix I for the pre-post development drainage plans. Each basin to discharge restricted flows to the onsite storm system. The total post onsite control rate to be maintained at 180 L/s or less. Table 4.1 (below) summarizes the restricted flows for each of the post catchment areas.

Table 5.1: Restricted	Peak Flows for	Post Catchment Areas

Basin Area	Restricted Peak Flow Rate (L/sec)
Roof (4A-1)	32
West (4A-2)	54
East (4A-3)	94
TOTAL	180

The required storage volumes were calculated using the modified rational method. Lost pre-development surface ponding storage volumes will now be provided using underground storage chambers. West (StormTech SC-740) and East (StormTech MC-3500) chambers are proposed to be installed underground the pavement (bus access lanes) along three sides of the proposed building (west, north, and east). See Appendix I.

Table 4.2 below sums up the required and provided onsite storage volumes for the 100-year storm period. See Appendix F for the detailed SWM calculations and Appendix G for the proposed underground storage chamber design.

Table 6.2: Required Onsite Storage Volumes

Basin Area	Area (ha)	C-factor	Required Storage Volume (m³)	Provided Underground Storage Volume (m³)
West (4A-2)	0.54	0.9	180	192
East (4A-3)	1.24	0.9	454	486

5.0 Conclusions and Recommendations

This Site Servicing Report and the associated Plans describe the infrastructure servicing required for the proposed OC Transpo E-bus parking garage at 1500 St. Laurent Boulevard.

The existing east onsite watermain (200 mm) that services the current north and south garages would also be used to service the proposed building. Two lateral water connections (200 mm in diameter) are proposed, both to extend off the main that runs along the west side of the north garage. One of the laterals is to service the building with domestic and fire (sprinkler) waters, and the other to supply an onsite proposed hydrant. Per the HNA analysis (Section 2.0), the design criteria and required pressure constraints are met.

Proposed development sewage flows are minimal (1.05 L/s). The proposed service (200 mm diameter) connection is assumed to exit the building along the southeast corner. Flows to drain (east) to the existing sanitary MH near the northwest corner of the existing south garage. Site wastewater ultimately discharges to the sanitary collector along Belfast Road. The capacity of the downstream sewers is assumed to be sufficient.

The proposed site modifications will not increase the overall imperviousness (asphalt versus roof) of the site. Runoff under existing conditions is controlled onsite at a rate of 180 L/s. Proposed development runoff will be controlled to 180 L/s or less. Site runoff to be regulated via rooftop restrictors and ICDs installed downstream of the underground storage chambers. The estimated post-development storage volumes (rooftop ponding plus underground) do not exceed the required storage volumes.

This report has been prepared for the exclusive use of the City of Ottawa for the stated purpose, for the named facility. Its discussions and conclusions are summary in nature and cannot be properly used, interpreted or extended to other purposes without a detailed understanding and discussions with the client as to its mandated purpose, scope and limitations. This report was prepared for the sole benefit and use of the City of Ottawa and may not be used or relied on by any other party without the express written consent of J.L. Richards & Associates Limited.

This report is copyright protected and may not be reproduced or used, other than the City of Ottawa for the stated purpose, without the express written consent of J.L. Richards & Associates Limited.

Limited.	
J.L. RICHARDS & ASSOCIATES LIMITED	
Prepared by:	Reviewed by:
Gideon Hui, EIT Civil Engineering Intern	Lee Jablonski, P.Eng. Associate: Senior Civil Engineer

Appendix A

Copy of email correspondences

Marie-France Duthilleul

From: Jamie Batchelor < jamie.batchelor@rvca.ca>

Sent: April 14, 2022 2:04 PM

To: Lee Jablonski

Cc: Terry Davidson; Glen McDonald

Subject: RE: RE: OC Transpo E-Bus Facility JLR 31489-004

Follow Up Flag: Follow up Flag Status: Flagged

[CAUTION] This email originated from outside JLR. Do not click links or open attachments unless you recognize the sender and know the content is safe. If in doubt, please forward suspicious emails to Helpdesk.

Good Afternoon Lee,

I have had a chance to look into your inquiry. The Conservation Authority agrees with your assessment that the rood top drainage would be considered enhances as rooftop drainage is traditionally considered clean for the purposes of water quality for receiving watercourses. Provided the overall storage is not lost, the RVCA would not require any additional onsite measures. Because the stormwater would be directed to municipal services, we would defer the technical review to the City.

Jamie Batchelor, MCIP, RPP Planner, ext. 1191 Jamie.batchelor@rvca.ca

3889 Rideau Valley Drive PO Box 599, Manotick ON K4M 1A5 T 613-692-3571 | 1-800-267-3504 F 613-692-0831 | www.rvca.ca

This message may contain information that is privileged or confidential and is intended to be for the use of the individual(s) or entity n may contain confidential or personal information which may be subject to the provisions of the Municipal *Freedom of Information & I* you are not the intended recipient of this e-mail, any use, review, revision, retransmission, distribution, dissemination, copying, printing taking of any action in reliance upon this e-mail, is strictly prohibited. If you have received this e-mail in error, please contact the send and any copy of the e-mail and any printout thereof, immediately. Your cooperation is appreciated.

From: Jamie Batchelor

Sent: Tuesday, April 12, 2022 4:08 PM

To: ljablonski@jlrichards.ca

Subject: RE: OC Transpo E-Bus Facility JLR 31489-004

Good Afternoon Lee,

I am writing to let you know that I have received your email and will respond Thursday.

Jamie Batchelor, MCIP, RPP Planner, ext. 1191 Jamie.batchelor@rvca.ca

3889 Rideau Valley Drive PO Box 599, Manotick ON K4M 1A5 T 613-692-3571 | 1-800-267-3504 F 613-692-0831 | www.rvca.ca

This message may contain information that is privileged or confidential and is intended to be for the use of the individual(s) or entity n may contain confidential or personal information which may be subject to the provisions of the Municipal *Freedom of Information & I* you are not the intended recipient of this e-mail, any use, review, revision, retransmission, distribution, dissemination, copying, printing taking of any action in reliance upon this e-mail, is strictly prohibited. If you have received this e-mail in error, please contact the send and any copy of the e-mail and any printout thereof, immediately. Your cooperation is appreciated.

JLR No.: 31489-004

Page 1 of 2

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, ON Canada

K1Z 5M2
Tel: 613 728 3571
Fax: 613 728 6012

OC Transpo 1500 Saint-Laurent

Pre-Consultation Meeting with MECP Minutes of Meeting No. 1

Attendance: Name Company Email

Charlie Primeau (CP) MECP charlie.primeau@ontario.ca
Scott Dupont (SD) City of Ottawa Scott.Dupont@ottawa.ca
Sami Qadan (SQ) City of Ottawa Sami.Qadan@ottawa.ca
Lee Jablonski (LJ) J.L. Richards & Associates Limited Ijablonski@jlrichards.ca
Marie-France Duthilleul (MD) J.L. Richards & Associates Limited mduthilleul@jlrichards.ca

The meeting commenced at 9:00 a.m. on Wednesday, April 6, 2022 via TEAMS.

The following summary of the discussions of this meeting has been prepared to record decisions reached and actions required for the project. Please advise the undersigned of any errors or omissions within the next three business days.

<u>ITEM</u>		ACTION BY	DUE BY
1.1	L. Jablonski provided a brief introduction to the site and the proposed redevelopment, replacing a portion of the existing asphalt parking lot with a new E-bus storage building.	INFO	
1.2	L. Jablonski stated that the proposed project was split into two parts. The first part concept design, to include support documents for city site plan application and ECA amendment is being led by JLR, currently under contract with the City. The second part is the detailed design to be done by another consulting firm as part of a design-build Team.	INFO	
1.3	L. Jablonski anticipated an end-of-month deadline to submit the site plan application.	INFO	
1.4	C. Primeau stated that the existing approved Feb. 3, 2017 (No. 8368-AGMS3S) ECA would need to be amended. He also mentioned that since 2017 the Ministry is now attempting to consolidate approval conditions. New conditions may or may not be applied to the current ECA amendment request. The MECP reviewer assigned to the application will confirm the additional conditions, if required, to be added to the amendment. A draft ECA template with an outline of various conditions is to be forwarded.	СР	
1.5	S. Dupont stated that the expected completion date for the building is 2025.	INFO	
1.6	C. Primeau mentioned as part of the ECA amendment that a copy of SWM Facility monitoring records (spill control, etc.) would need to be provided by the City as part of the submission package.	CITY	
1.7	C. Primeau stated that the permitting system has been streamlined, and the timeline once a submission package is received is approximately six to eight months. However, the submission can be delayed if the documents are deemed incomplete. Given that this is a city project, the process could be fast-tracked. JLR can review this request with Charles Warnock at the City of Ottawa to determine if the application can be approved	JLR	

JLR No.: 31489-004

Page 2 of 2

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, ON Canada K1Z 5M2

Tel: 613 728 3571 Fax: 613 728 6012

OC Transpo 1500 Saint-Laurent

Pre-Consultation Meeting with MECP Minutes of Meeting No. 1

<u>ITEM</u> <u>ACTION BY</u> <u>DUE BY</u>

under the Transfer of Review (TOR) program. CP noted that such TOR approvals are not unprecedented. CP also noted that Charles Warnock may call CP directly to discuss among themselves.

1.8 C. Primeau noted that during construction, the Ministry assigns an Environmental Officer (Angelo Capello) to be onsite. They help address unexpected design-related environmental concerns that may occur during construction and provide direct input on design solutions, so as not to delay works. This approach is currently being done on the LRT project. In the case where ECA approval has not been received for a project and construction is imminent, the Environmental Officer can help expedite approvals within the Ministry.

INFO

Meeting adjourned at 09:45 a.m.

Next meeting TBD.

H without

Prepared by: Issued on: April 8, 2022

Marie-France Duthilleul, P.Eng. Senior Civil Engineer

Distribution: All attendees

Andrew Duncan, JLR Tim Chadder, JLR Shahira Jalal, JLR

Appendix B

ECA issued by the Ministry of the Environment (MECP)

Content Copy Of Original

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 8368-AGMS3S Issue Date: February 3, 2017

City of Ottawa 1500 St. Laurent Boulevard Ottawa, Ontario K1G 0Z8

Site Location: 1500 St. Laurent Boulevard

City of Ottawa, K1G 0Z8

You have applied under section 20.2 of Part II.1 of the Environmental Protection Act, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

an amendment to the stormwater management Works which accommodates service buildings, parking lots and an administrative building for the OC Transpo regional bus service, located at the northwest corner of St. Laurent Boulevard and Belfast Road, within the Ottawa River watershed, in the City of Ottawa, for the collection, treatment and disposal of stormwater run-off from the property, for the reconstruction of the bus storage/access road including stormwater management facilities to service approximately 1.03 hectares of the overall 13.59 hectares site area, providing Enhanced Level water quality control and erosion protection and attenuating post-development peak flows for all storm events up to and including the 100-year storm event to the pre-development peak flows for the 5-year storm event, consisting of the following:

Proposed Works:

infiltration trench (catchment area - 1.03 hectares): - an approximately 185 m long by 0.5 m wide infiltration trench located along the west side of the bus storage/access road, receiving inflows from employee parking and rooftop from adjacent property located at 925 Belfast Road (ECA#3627-ADUGRU issued September 28, 2016) as well as bus storage/access road at 1500 St.Laurent, consisting of a 0.8 m deep layer of 19 mm diameter clear stone wrapped with non-woven geotextile fabric, having a total infiltration storage volume of approximately 46 m 3, to store a portion of run-off from the 2-year storm event, providing stormwater infiltration with a design infiltration rate of approximately 60 mm/hr;

grassed swale: -one (1) grassed swale with a length of 185 m, a bottom width of 0.5 m, average depth of 0.85 m, side slopes of 2:1, and slope of 0.18%, located along the west side of the bus storage/access road, on the west side of the light industrial site, having a storage volume of approximately 375 m 3, to convey up to the 100-year storm event from a small portion of the overall site area (bus storage/access road) and parking lot and adjacent building located at 925 Belfast Road, discharging to the ditch inlet, identified below;

ditch inlet: one (1) swale ditch inlet to be constructed on the north side of Belfast Road, receiving inflows from run-off of grassed swale, identified above, complete with a 235 mm diameter orifice plate to control the discharge to a flow rate of 0.103 m 3 /s, discharging to the storm sewer, identified below;

storm sewer: 300 mm diameter storm sewer to be constructed on the west side of the industrial site, discharging to an existing 375 storm sewer on Belfast Road;

Previous Works under amended Approval 5605-6VZS8W, issued December 5, 2006:

a stormwater management facility serving the northwest area of the site (sub-areas 4A, 4C and 4D) comprising of parking lot storage of 355 cubic metres to a maximum depth of 0.3 metres, with runoff during minor storms discharged to onsite storm sewers system equipped with flow control orifices to restrict flows to 355 Litres per second, and detention of runoff during major storm provided in a swale/dry pond, with storage of 475 cubic metres to a depth of 1.0 metre, with a flow control orifice restricting flows to 40.0 Litres per second, together with one (1) manhole oil/grit separator, having a sediment capacity of 6,150 litres, an oil capacity of 2,945 litres, a total holding capacity of 10,925 litres and a maximum treated flow rate of 30 litres per second, with discharge via a 600 mm diameter storm sewer from the area to an existing open ditch (located along the Canadian Pacific easement) which empties into a 750 mm storm sewer, (which also receives uncontrolled storm discharges from sub-areas 3A, 3B and 4B), then to Cyrville Drain, eventually to Green's Creek.

a stormwater management facility serving the southeastern area of the site (sub-area 1A) comprising of onsite storm sewer system discharging to an existing 6 m x 2.1 m x 3 m high dual chamber cast-in-place oil/grit separator, located at the northwest corner of the intersection of St. Laurent Boulevard and Belfast Road, discharging into the existing municipal storm sewer system (which also receives uncontrolled storm discharges from sub-area 1B),

Previous Works under Approval 6643-5DUSP2, issued September 20, 2002:

stormwater management system collecting up to 100-year storm event runoff from the development of a 1.25 ha parcel of land, consisting of detention storage in the parking lot of 304 cubic metres to a depth of 0.3 metres, with the 1:5 year storms discharging via a manhole, complete with a 295 mm diameter orifice, restricting flows to 240 Litres per second, and with detention of storms up to the 1:100 year event, in a swale/dry pond, with storage of 276 cubic metres to a depth of 0.8 metres, with an inlet control device with a 145 millimetre diameter orifice restricting flows to 42.8 Litres per second, and one (1) manhole oil/grit separator, having a sediment capacity of 6150 litres, an oil capacity of 2,945 litres, a total holding capacity of 10,925 litres and a maximum treated flow rate of 30 litres per second, with eventual discharge to the surface ditch adjacent to the site and to Cyrville Drain, complete with all sewers, catchbasins and manholes,

including erosion/sedimentation control measures during construction and all other controls and appurtenances essential for the proper operation of the aforementioned Works;

all in accordance with the submitted supporting documents listed in Schedule"A" forming part of this Approval.

For the purpose of this environmental compliance approval, the following definitions apply:

"Approval" means this entire document including the application and any supporting documents listed in any schedules in this Approval;

"Director" means a person appointed by the Minister pursuant to section 5 of the Environmental Protection Act for the purposes of Part II.1 of the Environmental Protection Act;

"Equivalent" means a substituted product that meets the required quality and performance standards of a named product:

"Ministry" means the ministry of the government of Ontario responsible for the Environmental Protection Act and the Ontario Water Resources Act and includes all officials, employees or other persons acting on its behalf;

"Owner" means the City of Ottawa and includes their successors and assignees;

"Previous Works" means those portions of the sewage Works previously approved under an Approval;

"Significant Drinking Water Threat Policies" has the same meaning as in the Clean Water Act, 2006;

"Source Protection Plan" means a drinking water source protection plan prepared under the Clean Water Act , 2006;

"Works" means the sewage works described in the Owner's application(s) and this Approval.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. GENERAL PROVISIONS

- (1) The Owner shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this Approval and the Conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- (2) Except as otherwise provided by these Conditions, the Owner shall design, build, install, operate and maintain the Works in accordance with the description given in this Approval, and the application for approval of the Works.
- (3) Where there is a conflict between a provision of any submitted document referred to in this Approval and the Conditions of this Approval, the Conditions in this Approval shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.
- (4) Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.
- (5) The Conditions of this Approval are severable. If any Condition of this Approval, or the application of any requirement of this Approval to any circumstance, is held invalid or unenforceable, the application of such Condition to other circumstances and the remainder of this Approval shall not be affected thereby.
- (6) The issuance of, and compliance with the Conditions of this Approval does not:
- (a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement, including, but not limited to, the obligation to obtain approval from the local conservation authority necessary to construct or operate the sewage Works; or
- (b) limit in any way the authority of the Ministry to require certain steps be taken to require the Owner to furnish any further information related to compliance with this Approval.

2. EXPIRY OF APPROVAL

(1) This Approval will cease to apply to those parts of the new Works which have not been constructed within **five (5) years** of the date of this Approval.

3. CHANGE OF OWNER

- (1) The Owner shall notify the Director, in writing, of any of the following changes within **thirty (30)** days of the change occurring:
- (a) change of Owner;
- (b) change of address of the Owner;
- (c) change of partners where the Owner is or at any time becomes a partnership, and a copy of the most recent declaration filed under the Business Names Act , R.S.O. 1990, c. B17 shall be included in the notification to the Director:
- (d) change of name of the corporation where the Owner is or at any time becomes a corporation, and a copy of the most current information filed under the Corporations Information Act, R.S.O. 1990, c. C39 shall be included in the notification to the Director.

4. OPERATION AND MAINTENANCE

- (1) The Owner shall inspect the Works at least **once a year** and, if necessary, clean and maintain the Works to prevent the excessive build-up of sediments and/or vegetation.
- (2) The Owner shall maintain a record the results of these inspections and any cleaning and maintenance operations undertaken. The record shall include the following:
- (a) the name of the Works; and
- (b) the date and results of each inspection, maintenance and cleaning, including an estimate of the quantity of any materials removed.

5. MONITORING AND REPORTING

(1) The Owner shall carry out a monitoring program for the inspection and maintenance of the Works as outlined in this Approval, and shall make the information available to the Ministry, upon request.

6. SPILL CONTINGENCY AND POLLUTION PREVENTION PLAN

- (1) Upon commencement of operation of the Works, the Owner shall implement a Spill Contingency and Pollution Prevention Plan that outlines procedures as to how to mitigate the impacts of a spill within the area serviced by the Works and/or prevent pollution incidents. The said plan shall include as a minimum, but not limited to:
 - (a) the name, job title and location (address) of the Owner, person in charge, management or control of the 1500 St. Laurent Boulevard site at 1500 St. Laurent Boulevard;
 - (b) the name, job title and 24-hour telephone number of the person(s) responsible for activating

the Spill Contingency and Pollution Prevention Plan;

- (c) a site plan drawn to scale showing the facility, nearby buildings, streets, catchbasins & manholes, drainage patterns (including direction(s) of flow in storm sewers) and any features which need to be taken into account in terms of potential impacts on access and response (including physical obstructions and location of response and clean-up equipment);
- (d) steps to be taken to report, contain, clean up and dispose of contaminants following a spill;
- (e) a listing of telephone numbers for: local clean-up companies who may be called upon to assist in responding to spills; local emergency responders including health institution(s); and MOECC Spills Action Centre 1-800-268-6060;
- (f) Materials Safety Data Sheets (MSDS) for each and every hazardous material which may be transported or stored within the area serviced by the Works;
- (g) the means (internal corporate procedures) by which the Spill Contingency and Pollution Prevention Plan is activated:
- (h) a description of the spill response and pollution prevention training provided to employees assigned to work in the area serviced by the Works, the date(s) on which the training was provided and to whom;
- (i) an inventory of response and clean-up equipment available to implement the Spill Contingency and Pollution Prevention Plan, location and date of maintenance/replacement if warranted, including testing and calibration of the equipment; and
- (j) the date on which the Spill Contingency and Pollution Prevention Plan was prepared and subsequently, amended.
- (2) The Spill Contingency and Pollution Prevention Plan shall be kept in a conspicuous place near the reception area on site.
- (3) The Spill Contingency and Pollution Prevention Plan will be amended from time to time as needed by changes in the operation of the facility or to reflect updates in the Municipal By-Laws, or improved Best Management Practices by the Owner.

7. TEMPORARY EROSION AND SEDIMENT CONTROL

- (1) The Owner shall install and maintain temporary sediment and erosion control measures during construction and conduct inspections once every **two (2) weeks** and after each significant storm event (a significant storm event is defined as a minimum of 25 mm of rain in any 24 hours period). The inspections and maintenance of the temporary sediment and erosion control measures shall continue until they are no longer required and at which time they shall be removed and all disturbed areas reinstated properly.
- (2) The Owner shall maintain records of inspections and maintenance which shall be made available for inspection by the Ministry, upon request. The record shall include the name of the inspector, date of inspection, and the remedial measures, if any, undertaken to maintain the temporary sediment and erosion control measures.

8. SOURCE WATER PROTECTION

(1) The Owner shall ensure, if applicable, that the design, construction and operation of the Works conforms to any Significant Drinking Water Threat Policies in any Source Protection Plan that applies to the location of the Works.

9. RECORD KEEPING

The Owner shall retain for a minimum of **five (5) years** from the date of their creation, all records and information related to or resulting from the operation and maintenance activities required by this Approval

Schedule "A"

- 1. Application for Approval of Municipal and Private Sewage Works dated August 8, 2006 submitted by Jean Lachance, P. Eng., City of Ottawa.
- 2. Report entitled 'Stormwater Site Management Plan, OC Transpo, City of Ottawa, 1500 St. Laurent Site' dated July 2006 prepared by J.L. Richards & Associates Limited, Consulting Engineers.
- 3. Application for Environmental Compliance Approval, dated July 4, 2016, received on July 22, 2016, submitted by Morrison Hershfield Limited;
- 4. SWM Technical Memo to the Ministry of Environment and Climate Change , dated June 20, 2016, prepared by Morrison Hershfield Limited;
- 5. Set of Engineering Drawings (7 drawings) for OC Transpo- 1500 St-Laurent Access Road Reconstruction, dated June 9, 2016, prepared by Morrison Hershfield Limited;
- 6. E-mail from Sarah Mitchelson of Morrison Hershfield Limited to the Ministry, dated January 17, 2017:
- 7. E-mail from Sarah Mitchelson of Morrison Hershfield Limited to the Ministry, dated January 27, 2017; and
- 8. E-mail from Sarah Mitchelson of Morrison Hershfield Limited to the Ministry, dated February 1, 2017.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the Works are built and operated in the manner in which they were described for review and upon which approval was granted. This Condition is also included to emphasize the precedence of Conditions in the Approval and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.
- 2. Condition 2 is included to ensure that, when the Works are constructed, the Works will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment.
- 3. Condition 3 is included to ensure that the Ministry records are kept accurate and current with respect to approved Works and to ensure that any subsequent Owner of the Works is made aware of the Approval and continue to operate the Works in compliance with it.
- 4. Condition 4 is included to require that the Works be properly operated and maintained such that the

environment is protected.

- 5. Condition 5 is included to enable the Owner to evaluate and demonstrate the performance of the Works on a continual basis, so that the Works are properly operated and maintained at a level which is consistent with the design objectives specified in the Approval and that the Works do not cause any impairment of the receiving watercourse.
- 6. Condition 6 is included to ensure that the Ministry is immediately informed of the occurrence of an emergency or otherwise abnormal situation so that appropriate steps are taken to address the immediate concerns regarding the protection of public health and minimizing environmental damage and to be able to devise an overall abatement strategy to prevent long term degradation and the reoccurrence of the situation.
- 7. Condition 7 is included as installation, regular inspection and maintenance of the temporary sediment and erosion control measures is required to mitigate the impact on the downstream receiving watercourse during construction, until they are no longer required.
- 8. Condition 8 is included to ensure that the Works conform to the policies of the local Source Water Protection Plan.
- 9. Condition 9 is included to require that all records are retained for a sufficient time period to adequately evaluate the long-term operation and maintenance of the Works.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). 5605-6VZS8W issued on December 5, 2006.

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and:
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 3rd day of February, 2017

Gregory Zimmer, P.Eng. Director appointed for the purposes of Part II.1 of the *Environmental Protection Act*

TN/
c: DWMD Supervisor, MOECC Ottawa office
Sarah Mitchelson, Morrison Hershfield Limited

Ministry of the

Ministère de Environment l'Environnement

AMENDED CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 5605-6VZS8W Issue Date: December 5, 2006

City of Ottawa

1500 St. Laurent Boulevard

Ottawa, Ontario

K1G 0Z8

Site Location:

1500 St. Laurent Boulevard

City of Ottawa

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

A stormwater management system comprising of two (2) existing facilities constructed to serve the 1500 St. Laurent Boulevard site (a 13.59 ha industrial area located at the northwest corner of St. Laurent Boulevard and Belfast Road), which accommodates service buildings, parking lots and an administrative building for the OC Transpo regional bus service, as follows:

- a stormwater management facility serving the northwest area of the site (sub-areas 4A, 4C and 4D) comprising of parking lot storage of 355 cubic metres to a maximum depth of 0.3 metres, with runoff during minor storms discharged to onsite storm sewers system equipped with flow control orifices to restrict flows to 355 Litres per second, and detention of runoff during major storm provided in a swale/dry pond, with storage of 475 cubic metres to a depth of 1.0 metre, with a flow control orifice restricting flows to 40.0 Litres per second, together with one (1) manhole oil/grit separator, having a sediment capacity of 6,150 litres, an oil capacity of 2,945 litres, a total holding capacity of 10,925 litres and a maximum treated flow rate of 30 litres per second, with discharge via a 600 mm diameter storm sewer from the area to an existing open ditch (located along the Canadian Pacific easement) which empties into a 750 mm storm sewer, (which also receives uncontrolled storm discharges from sub-areas 3A, 3B and 4B), then to Cyrville Drain, eventually to Green's Creek.
- a stormwater management facility serving the southeastern area of the site (sub-area 1A) comprising of onsite storm sewer system discharging to an existing 6 m x 2.1 m x 3 m high dual chamber cast-in-place oil/grit separator, located at the northwest corner of the intersection of St. Laurent Boulevard and Belfast Road, discharging into the existing municipal storm sewer system (which also receives uncontrolled storm discharges from sub-area 1B),

including erosion/sedimentation control measures during construction and all other controls and appurtenances essential for the proper operation of the aforementioned Works,

all in accordance with the following submitted supporting documents:

- 1. <u>Application for Approval of Municipal and Private Sewage Works</u> dated August 8, 2006 submitted by Jean Lachance, P. Eng., City of Ottawa.
- 2. Report entitled 'Stormwater Site Management Plan, OC Transpo, City of Ottawa, 1500 St. Laurent Site' dated July 2006 prepared by J.L. Richards & Associates Limited, Consulting Engineers.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

- "Certificate" means this entire certificate of approval document, issued in accordance with Section 53 of the Ontario Water Resources Act, and includes any schedules;
- "Director" means any Ministry employee appointed by the Minister pursuant to section 5 of the Ontario Water Resources Act;
- "District Manager" means the District Manager of the Ottawa District Office of the Ministry;
- "Ministry" means the Ontario Ministry of the Environment;
- "Owner" means City of Ottawa and includes its successors and assignees;
- "Works" means the sewage works described in the Owner's application, this Certificate and in the supporting documentation referred to herein, to the extent approved by this Certificate.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. <u>GENERAL PROVISIONS</u>

- (1) Except as otherwise provided by these Conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Certificate*, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this *Certificate*.
- (2) Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.
- (3) Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.

2. <u>EXPIRY OF APPROVAL</u>

The approval issued by this *Certificate* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Certificate*.

3. CHANGE OF OWNER

The Owner shall notify the District Manager and the Director, in writing, of any of the following changes within thirty (30) days of the change occurring:

- (a) change of Owner;
- (b) change of address of the Owner;
- (c) change of partners where the *Owner* is or at any time becomes a partnership, and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R.S.O. 1990, c.B17 shall be included in the notification to the *District Manager*; and
- (d) change of name of the corporation where the *Owner* is or at any time becomes a corporation, and a copy of the most current information filed under the <u>Corporations Information Act</u>, R.S.O. 1990, c. C39 shall be included in the notification to the *District Manager*.

4. <u>OPERATION AND MAINTENANCE</u>.

- (1) The Owner shall ensure that the design minimum liquid retention volume(s) is maintained at all times.
- (2) The Owner shall inspect the Works at least once a year and, if necessary, clean and maintain the Works to prevent the excessive buildup of sediments, oil/grit and/or vegetation.
 - (a) The Owner shall design, construct and operate the manhole oil/grit separator(s) with the objective that no visible oil sheens occur in the effluent discharged from the manhole oil/grit separator(s).
 - (b) The Owner shall carry out and maintain an annual inspection and maintenance program on the operation of the manhole oil/grit separator(s) in accordance with the manufacturer's recommendation.
 - (c) The District Manager may alter the frequency of inspection of the manhole oil/grit separator(s) if he/she is requested to do so by the Owner and considers it acceptable upon review of information submitted in support of the request.
- (3) The Owner shall maintain a logbook to record the results of these inspections and any cleaning and maintenance operations undertaken, and shall keep the logbook for inspection by the Ministry. The logbook shall include the following:

- (a) the name of the Works; and
- (b) the date and results of each inspection, maintenance and cleaning, including an estimate of the quantity of any materials removed.

RECORD KEEPING

The Owner shall retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the operation and maintenance activities required by this Certificate.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.
- 2. Condition 2 is included to ensure that, when the *Works* are constructed, the *Works* will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment..
- 3. Condition 3 is included to ensure that the Ministry records are kept accurate and current with respect to approved works and to ensure that subsequent owners of the works are made aware of the certificate and continue to operate the works in compliance with it.
- 4. Condition 4 is included to require that the *Works* be properly operated and maintained such that the environment is protected.
- 5. Condition 5 is included to require that all records are retained for a sufficient time period to adequately evaluate the long-term operation and maintenance of the *Works*.

This Certificate of Approval revokes and replaces Certificate(s) of Approval No. 6643-5DUSP2 issued on September 20, 2002.

In accordance with Section 100 of the Ontario Water Resources Act, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the Ontario Water Resources Act, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- The name of the appellant;
- The address of the appellant;

- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
2300 Yonge St., Suite 1700
P.O. Box 2382
Toronto, Ontario
M4P 1E4

AND

The Director Section 53, Ontario Water Resources Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the

Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

DATED AT TORONTO this 5th day of December, 2006

Dec. 7, 2006

Mohamed Dhalla, P.Eng.

Director

Section 53, Ontario Water Resources Act

HV/c:

District Manager, MOE Ottawa District Office
Derrick Upton, P. Eng., J.L. Richards & Associates Limited

Site Servicing Brief OC Transpo E-bus Parking Garage 1500 St. Laurent Boulevard, Ottawa, ON

Appendix C

Schedule A Agreement

Works allowed to be submitted under the TOR program by the Municipality are described in Sections 1 and 2 below. The works must also meet any requirements in the applicable section. Works that are not described in Section 1 or 2, do not meet any applicable requirements or to which Section 3 applies are not allowed to be submitted under the TOR program.

1. Standard Works Allowed

i) Allowed Sanitary Sewage Works

Unless specified in Section 3 of this Schedule, only ECA applications for the following sanitary sewage works are allowed to be submitted by the Municipality under the TOR Program:

- a. New or modified, municipal or private sanitary sewers, forcemains or siphons that:
 - i. are designed in accordance with the Ministry document *Design Guidelines for Sewage Works*, 2008 (PIBS 6879) as amended from time to time;
 - ii. are not combined sewers; and
 - iii. do not discharge directly to a sewage treatment plant.
- b. New or modified, municipal or private sanitary sewage pumping stations that:
 - i. are designed in accordance with the Ministry document *Design Guidelines for Sewage Works*, 2008 (PIBS 6879) as amended from time to time; and
 - ii. do not discharge directly to a sewage treatment plant.

For greater clarity, any sanitary sewage works that provide any treatment of sanitary sewage are not allowed to be submitted under the TOR program.

ii) Allowed Stormwater Works

Unless specified in Section 3 of this Schedule, only ECA applications for the following stormwater works are allowed to be submitted by the Municipality under the TOR Program:

- a. New or modified municipal or private storm sewers, ditches, culverts and grassed swales that:
 - i. are designed in accordance with the Ministry document *Stormwater Management Planning* and *Design Manual*, 2003 (PIBS 4329e) as amended from time to time;
 - ii. are designed primarily for the collection and transmission of stormwater;
 - iii. discharge to existing storm sewers, other existing stormwater conveyance works, an approved stormwater management facility, or a Municipal Drain;
 - iv. for drainage works under the *Drainage Act*, approval of a petition for the modifications must be obtained under the *Drainage Act* prior to submitting an application for an ECA;
 - v. are not combined sewers or superpipes and does not connect to a combined sewer;
 - vi. are not located on industrial land or designed to service industrial land;
 - vii. do not propose to collect, store or discharge stormwater containing substances or pollutants (other than Total Suspended Solids, or oil and grease) detrimental to the environment or human health; and
 - viii. do not require the establishment and monitoring of effluent quality criteria.

- b. New or modified, municipal or private oil/grit separators that:
 - i. are designed in accordance with the Ministry document *Stormwater Management Planning* and *Design Manual*, 2003 (PIBS 4329e) as amended from time to time;
 - ii. discharge to existing storm sewers, other existing stormwater conveyance, an approved stormwater management facility, or a Municipal Drain;
 - iii. for drainage works under the *Drainage Act*, approval of a petition for the modifications must be obtained under the *Drainage Act* prior to submitting an application for an ECA;
 - iv. are not located on industrial land or designed to service industrial land;
 - v. do not propose to collect, store or discharge stormwater containing substances or pollutants (other than Total Suspended Solids, or oil and grease) detrimental to the environment or human health; and
 - vi. do not require the establishment and monitoring of effluent quality criteria.

2. Additional Works Allowed

The Municipality may submit ECA applications for sanitary and/or stormwater works other than those allowed in Section 1 as described below and in accordance with any listed requirements.

The Municipality's TOR Program is expanded to include:

- a. Combined Sewers
 - the rehabilitation of existing combined sewers where there is no increase in combined sewage overflow (CSO).
- b. Stormwater Management Facilities (wet ponds, wetlands, hybrid ponds, dry ponds)
 - altering, modifying, adding, optimizing or expanding the retention capacity for existing approved stormwater management facilities, including stormwater outfalls, provided that:
 - if the proposed works are required to provide quality control, the works are designed to achieve Enhanced Level water quality control and erosion protection (i.e. 80% TSS removal); and
 - o any attenuation design requirements are satisfied;
 - installing new stormwater management facilities, including stormwater outfalls, provided that:
 - if the proposed works are required to provide quality control, the works are designed to achieve Enhanced Level water quality control and erosion protection (i.e. 80% TSS removal); and
 - o any attenuation design requirements are satisfied;
 - stormwater pumping stations.
- c. Lot Level and Conveyance Control (Low Impact Development) Measures
 - altering, modifying, adding, optimizing or expanding the retention capacity for existing approved low impact development (LID) measures, including stormwater outfalls, provided that:

- if the proposed works are required to provide quality control, the LID measures are designed to achieve Enhanced Level water quality control and erosion protection (i.e. 80% TSS removal); and
- o any attenuation design requirements are satisfied;
- installing new LID measures, including stormwater outfalls, provided that:
 - if the proposed works are required to provide quality control, the LID measures are designed to achieve Enhanced Level water quality control and erosion protection (i.e. 80% TSS removal);
 - o any attenuation design requirements are satisfied; and
 - the design considers corrective and remediation measures in the event of lack of performance of the LID measures;
- rooftop, surface and underground storage with inlet control devices or orifices.

For Works listed in 2a through 2c the following requirements must be met:

- the Works must be designed in accordance with the Ministry documents *Design Guidelines for Sewage Works*, 2008 (PIBS 6879) and *Stormwater Management Planning and Design Manual*, 2003 (PIBS 4329e), as amended from time to time;
- the Works must receive drainage only from non-industrial lands, where industrial lands are defined by *Ontario Regulation* 525/98;
- any stormwater management pond listed in 2b above shall not be used as a snowmelt facility;
- for Works that are designed to partially infiltrate or exfiltrate into the surrounding soils during high flow conditions:
 - based on the type of works, the vertical separation distance between the highest groundwater table (i.e. spring runoff) and the lowest elevation of the works shall adhere to Table 4.1 of the Ministry document *Stormwater Management Planning and Design Manual*, 2003 (PIBS 4329e);
 and
 - o groundwater must not be utilized as a potable water resource anywhere drainage is captured by the stormwater management works;
- infiltration or exfiltration stormwater works include:
 - o pervious pipes and catch-basins:
 - o filtering systems, and infiltration trenches, such as, soak away pits attached to pervious catchbasins and sand filter beds:
 - o infiltration basins;
 - o pervious pipes and catch-basins with infiltration trench systems, rainwater and snow melt into the surrounding soils during high flow conditions; and
 - o open channels, ditches, swale drainage systems, bio-swales, tree pits, and infiltration trenches on public roads, or right-of-ways, designed to exfiltrate part or all of the stormwater runoff from the adjacent road into the surrounding soils. These types of works are to include vegetative surfaces;
- for stormwater pumping stations, high level alarm systems, appropriate response time during emergency conditions, and redundancy in pumping arrangement must be provided;

- for the rehabilitation of existing combined sewers, the Works must conform to *Ministry Procedure F-5-5*, *Determination of Treatment Requirements for Municipal and Private Combined and Partially Separated Sewer Systems*, as amended from time to time;
- for drainage works under the *Drainage Act*, approval of a petition for the modifications must be obtained under the *Drainage Act* prior to submitting an application for an ECA;
- the description of the works for a new or replacement outfall will identify the receiving watercourse if it discharges into any of the provincially recognized critical receivers and/or their tributaries;
- the applicant has consulted with the local Conservation Authority and obtained necessary clearance as required, if the works discharge to a surface water body;
- as part of the Letter of Recommendation, the Municipality has clearly identified all of the works which fall under this Section of Schedule A:
- the Municipality has notified all applicants for works allowed in this Section that the ECA may
 contain conditions requiring the development of an operation and maintenance program, including a
 spill contingency plan for the works; the Municipality shall include in their Letter of
 Recommendation any other conditions related to operation and maintenance of the works if
 applicable; and
- the Municipality shall maintain a report with detailed records of all the stormwater management works constructed during the year.

The report and records noted above are to include, but not be limited to, the approval number, date of approval, location, description of the stormwater management works, information about what, how, when, why and who operates and maintains the works.

The report must also include a summary of the operation and maintenance program activities, any trouble shooting activities, reports of any flooding conditions and/or any complaints received from the public. The report must also include a statement concerning the potential for these stormwater management systems to impact groundwater quality, which will be based upon the available evidence from inspection and maintenance activities.

The Ministry may require the submission of this report upon request. Further instructions on where and to whom the report is to be submitted will be provided by the Ministry.

In most cases, private works included in this Section will be subject to the requirements under the Environmental Bill of Rights (EBR), which includes mandatory posting of the project proposal on the Environmental Registry for a minimum of forty-five (45) days prior to the issuance of the Environmental Compliance Approval. Ontario Regulation 681/94 under the EBR sets forth the types of ECAs that are classified as Class I or II proposals which require posting on the Environmental Registry. All private wastewater ECAs are subject to posting on the Environmental Registry unless they relate to a discharge point which is already subject to an ECA approval and the proposed ECA would not permit an increase in the discharge of any specific contaminant from the discharge point. In addition, as per section 30 of the EBR, a proposal may be exempt from EBR requirements if the proposal has been considered in a substantially equivalent process of public participation.

3. Works Not Allowed To Be Submitted

Under no circumstances are the following applications for Works identified in either Section 1 or 2 to be submitted under the TOR program:

- a. applications that are identified by the local Ministry District Office as being proposed within the zone of influence of a landfill area:
- b. applications for sanitary sewage works that provide any treatment of sanitary sewage;
- c. applications for Regional Stormwater Control Facilities or Regional Flood Control Facilities consisting of storm water management ponds that are designed to provide quality control or contain floods **greater than** the 100 year flood event;
- d. applications that are for airports or airparks;
- e. applications that are for pumping stations that service combined sewer systems;
- f. applications for projects that have received a Part II Order request, until the request has been decided;
- g. applications for projects that have undertaken an individual Environmental Assessment; and
- h. applications that are likely to trigger the Duty to Consult.

In addition, if the Municipality determines that the works listed in an application have been constructed or are being constructed before an Environmental Compliance Approval has been issued, the Municipality shall:

- i. immediately notify the local Ministry District Office; and
- ii. confirm with the Supervisor, Transfer of Review Program (Supervisor) that the application must be submitted directly to the Ministry for review. Once this confirmation is obtained, the municipality shall return the application and all associated documents and fees to the applicant and advise them that the application will not be reviewed under the TOR program. With written permission from the Supervisor, the municipality may be allowed to proceed with the review of the application.

4. 2020 Program Update: Proposed Consolidated Linear Infrastructure Approach

In view of the Ministry's plan to move to a consolidated permissions approach to linear infrastructure in the near future and subject to the written permission of the Supervisor, the municipality may be allowed in the interim to review additional works currently not listed in this schedule (including private works that may not be covered at the time of the application by an agreement pursuant to the Planning Act under section 1 of this Agreement).

Site Servicing Brief OC Transpo E-bus Parking Garage 1500 St. Laurent Boulevard, Ottawa, ON

Appendix D

Water HNA Analysis

Gideon Hui

From: Lucas Busch

Sent: April 13, 2022 2:33 PM

To: Gideon Hui
Cc: Annie Williams

Subject: RE: 31489-004 OC Transpo - Water Demands

Gideon,

Looks good to me.

Lucas

From: Gideon Hui <ghui@jlrichards.ca>
Sent: Wednesday, April 13, 2022 1:48 PM
To: Lucas Busch <lbusch@jlrichards.ca>
Cc: Annie Williams <awilliams@jlrichards.ca>

Subject: RE: 31489-004 OC Transpo - Water Demands

Hi Lucas,

As per our call, we will use the following assumptions for now:

- 1. Connecting the water lateral of the proposed building to the east wall (number 2)
- 2. Peak hour demand of 3.0 L/s to include the washing of the buses
- 3. We will assume finished floor elevations are similar to the existing MH T/G elevations as discussed with Lee

Regards, Gideon

From: Gideon Hui

Sent: April 12, 2022 10:58 AM

To: Lucas Busch < lbusch@jlrichards.ca Cc: Annie Williams awilliams@ilrichards.ca

Subject: RE: 31489-004 OC Transpo - Water Demands

Hi Lucas,

A few questions for you:

1. Any suggestions on where to connect the new watermain to the new building? We had a discussion to assume it will connect at the North-East corner for the proposed building. In this case, would it be better to connect on the

North wall (number 1) or East wall (number 2)?

- 2. There was talk about having additional demands for the proposed building due to washing of the buses. Do you know how much more demand the proposed building will need for this?
- 3. Do you have any existing grading or finished floor elevations for the two existing buildings that you could send to me?

Thanks, Gideon

From: Lucas Busch < lbusch@jlrichards.ca>

Sent: April 1, 2022 3:30 PM

To: Annie Williams awilliams@jlrichards.ca; Andrew Duncan aduncan@jlrichards.ca;

Cc: Lee Jablonski <ljablonski@jlrichards.ca>; Gideon Hui <ghui@jlrichards.ca>; Toby Barton <tbarton@jlrichards.ca>

Subject: RE: 31489-004 OC Transpo - Water Demands

These are getting pretty specific for a building I know very little about !!

The airport vehicle storage building was Ordinary Group 2. Seems like a similar application.

It is safe to assume that the hose allowance is in this value. The actual demand when we dive into design will likely drop to 550gpm (including hose allowance) but at this stage of design, I feel like 750gpm or 47L/s gives some breathing room in the design. If this isn't achievable from the City supply, we can take a closer look.

Let me know if I can be of further assistance.

Lucas

From: Annie Williams <a williams@jlrichards.ca>

Sent: Friday, April 1, 2022 10:18 AM

To: Andrew Duncan <aduncan@jlrichards.ca>; Lucas Busch <<u>lbusch@jlrichards.ca</u>> **Cc:** Lee Jablonski <ljablonski@jlrichards.ca>; Gideon Hui <ghui@jlrichards.ca>

Subject: RE: 31489-004 OC Transpo - Water Demands

Hi all,

Thank you. Also just want to confirm whether the 750 gpm for the bus storage sprinkler includes the hose stream allowance? And if so, we are considering this building a "light hazard" occupancy per NFPA 13?

Annie

From: Andrew Duncan <aduncan@jlrichards.ca>

Sent: Friday, April 1, 2022 9:58 AM

To: Lucas Busch < lbusch@jlrichards.ca; Annie Williams < awilliams@jlrichards.ca
Cc: Lee Jablonski jlrichards.ca; Gideon Hui ghui@jlrichards.ca>

Subject: RE: 31489-004 OC Transpo - Water Demands

All,

Agree that the fire protection system will be automatic and supervised.

Andrew

From: Lucas Busch < lbusch@jlrichards.ca>

Sent: Friday, April 1, 2022 9:42 AM

To: Annie Williams <a williams@jlrichards.ca>

Cc: Lee Jablonski <ljablonski@jlrichards.ca>; Andrew Duncan <a downwards.ca>; Gideon Hui <ghui@jlrichards.ca>

Subject: Re: 31489-004 OC Transpo - Water Demands

Hi,

We can likely confirm with electrical whether a fire alarm is required by code but, regardless of code, I expect the City will want some form of fire alarm. It is reasonable to assume that the fire protection system will be automatic and fully supervised.

Lucas

From: Annie Williams <a williams@jlrichards.ca>

Sent: Friday, April 1, 2022 9:24:22 AM **To:** Lucas Busch lbusch@ilrichards.ca

Cc: Lee Jablonski <ljablonski@jlrichards.ca>; Andrew Duncan <aduncan@jlrichards.ca>; Gideon Hui <ghui@jlrichards.ca>

Subject: RE: 31489-004 OC Transpo - Water Demands

Hi Lucas,

Thanks so much, this is very helpful. I will take 1.5 L/s as the peak hour demand. I can absolutely back calculate average and max day, not a problem.

The conservative sprinkler assumption is great, 47 L/s is reasonable and should be attainable. Can you confirm that the sprinkler system will be complete automatic and fully supervised?

Thank you, Annie

From: Lucas Busch < lbusch@jlrichards.ca > Sent: Thursday, March 31, 2022 10:52 AM To: Annie Williams < awilliams@jlrichards.ca >

Cc: Lee Jablonski jlrichards.ca; Andrew Duncan aduncan@jlrichards.ca

Subject: RE: 31489-004 OC Transpo - Water Demands

Annie,

My understanding is that we are trying to avoid washrooms but code may require. Either way domestic demand is expected to be small. If we conservatively use 40 fixture units that results in a peak instantaneous demand of 1.5L/s. Assuming this peak flow only happens over 10min in the peak hour period; PHD=900L. You should be able to use the City of Ottawa peaking factor to back calculate the ADD. Sorry, we size fixtures on peak instantaneous flow rather than average daily consumption.

Conservative assumption for sprinkler demand is 47L/s (750 gpm) but this may be 500gpm depending on building occupancy classification.

Give me a call if you have any questions.

Lucas

From: Annie Williams < awilliams@jlrichards.ca>

Sent: Thursday, March 31, 2022 8:50 AM

To: Andrew Duncan <aduncan@jlrichards.ca>; Lucas Busch <lbusch@jlrichards.ca>

Cc: Lee Jablonski < ljablonski@jlrichards.ca>

Subject: 31489-004 OC Transpo - Water Demands

Hi Andrew, Lucas,

Lee suggested I reach out to you about the OC Transpo site at 1500 St. Laurent.

In support of the water servicing design, I am looking for the anticipated water demands (average day, max day, peak hour) for the new building. Even if you just have an average day flow based on fixture count, I can apply max day and peak hour peaking factors to it.

Will the new building have a sprinkler system and if so, what will be its water demand?

If you can provide this information today I would much appreciate.

Thank you, Annie

Water Demand Calculati	ions			
OC Transpo - Electrical Bus Park	ing Garage			
(JLR 31489-004)				
Demand Breakdown	No.		Unit	
Peak Hour Demand (Based on Fixture Count & Washing Buses)	3.00	L/s		
Peak Hour Peaking Factor	1.80			
Maximum Day Demand	1.67	L/s		
Maximum Day Peaking Factor	1.50			
Average Day Demand	1.11	L/s		
Total Demands for Storage Facility				
Average Day Demand	1.11	L/s		
Maximum Day Demand	1.67	L/s		
Peak Hour Demand	3.00	L/s		

Peaking factors based on City of Ottawa Water Design Guidelines

J.L. RICHARDS & ASSOCIATES LIMITED 2022-04-27

FUS Fire Flow Calculations

OC Transpo - Electrical Bus Storage Facility - Industrial Building (JLR 31489-004)

Step	Parameter	Value		Note
Α	Type of Construction	Non-combustible		Critical Fire Area (E-Bus Storage Facility)
	Coefficient (C)	0.8		
В	Ground Floor Area	7643	m ²	
С	Height in storeys	1	storeys	Basements are excluded.
	Total Floor Area	7643	m ²	_
D	Fire Flow Formula	F=220C√A		
	Fire Flow	15387	L/min	
	Rounded Fire Flow	15000	L/min	Flow rounded to nearest 1000 L/min.
	0 0			Municipal storage building has a combustible occupance
E	Occupancy Class	Free Burning		class
	Occupancy Charge	15%		
	Occupancy Increase or	2250		
	Decrease		_ .,.	
_	Fire Flow	17250	L/min	No rounding applied.
F	Sprinkler Protection	Automatic Fully Supervised		Sprinkler to be installed
	Sprinkler Credit	-50%		<u></u>
	Decrease for Sprinkler	-8625	L/min	
G	North Side Exposure			
	Exposing Wall:	Non-combustible		Electrical bus storage facility
	Exposed Wall:	Non-combustible		No building within 45m
	Length of Exposed Wall:	0.0	m	
	Height of Exposed Wall:	1	storeys	
	Length-Height Factor	0.0	m-storeys	
	Separation Distance	50	m	<u></u>
	North Side Exposure	0%		
	Charge			<u> </u>
	East Side Exposure			
	Exposing Wall:	Non-combustible		Electrical bus storage facility
	Exposed Wall:	Non-combustible		Existing bus facility
	Length of Exposed Wall:	124.0	m	
	Height of Exposed Wall:	1	storeys	
	Length-Height Factor	124.0	m-storeys	
	Separation Distance	27	m	Additional 3m seperation due to diagonal
	East Side Exposure	10%		
	Charge			_
	South Side Exposure	Nan annihustikla		Floatsian I have at a superior for either
	Exposing Wall:	Non-combustible		Electrical bus storage facility
	Exposed Wall:	Non-combustible		No building within 50m
	Length of Exposed Wall:	0.0	m	
	Height of Exposed Wall:	0	storeys	
	Length-Height Factor	0.0	m-storeys	
	Separation Distance	50	m	<u> </u>
	South Side Exposure	0%		
	Charge West Side Exposure			_
	Exposing Wall:	Non-combustible		Electrical bus storage facility
	Exposing Wall:	Non-combustible		Existing industrial building
	Length of Exposed Wall:	Non-combustible	m	Existing illuustriai bullullig
			m	
	Height of Exposed Wall:	1	storeys	
	Length-Height Factor	10.0	m-storeys	
	Separation Distance West Side Exposure	40	m	_
	Charge	5%		
		1 = 0/		The total exposure charge is below the maximum value
	Total Exposure Charge	15%	1./:	of 75%.
	Increase for Exposures	2588	L/min	
Н	Fire Flow	11213	L/min	
	Rounded Fire Flow	11000	L/min	Flow rounded to nearest 1000 L/min.
City Cap	Required Fire Flow (RFF)	11000	L/min	City Cap Does Not Apply

Fire Underwriters Survey (FUS) Fire Flow Calculations

In accordance with City of Ottawa Technical Bulletin ISTB-2018-02 dated March 21, 2018

Annie Williams

From: Bramah, Bruce <bruce.bramah@ottawa.ca>

Sent: Friday, April 8, 2022 1:45 PM

To: Annie Williams

Cc: Lee Jablonski; Dupont, Scott; Qadan, Sami; Morphet, Katie

Subject: RE: OC Transpo E-Bus Facility JLR 31489-004 - Request for Hydraulic Boundary

Conditions

Attachments: OC Transpo E-Bus Facility March 2022.pdf

Follow Up Flag: Follow up Flag Status: Flagged

[CAUTION] This email originated from outside JLR. Do not click links or open attachments unless you recognize the sender and know the content is safe. If in doubt, please forward suspicious emails to Helpdesk.

Good afternoon,

The following are boundary conditions, HGL, for hydraulic analysis at OC Transpo E-Bus Facility at 1500 St. Laurent Boulevard (zone 1E) assumed to be a private looped network connected to the 305 mm on Belfast Road and the 152 mm on St-Laurent Boulevard. (see attached PDF for location).

	Connection 1 - Belfast	Connection 2 – St-Laurent
Minimum HGL	110.1 m	110.1 m
Maximum HGL	118.3 m	118.3 m
MaxDay + Fire Flow (47 L/s)	113.5 m	113.3 m
MaxDay + Fire Flow (183 L/s)	111.6 m	109.4 m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Have a good weekend,

Bruce Bramah, EIT

Project Manager

Planning, Real Estate and Economic Development

Development Review South

From: Annie Williams <a williams@jlrichards.ca>

Sent: April 04, 2022 3:50 PM

To: Bramah, Bruce <bruce.bramah@ottawa.ca>

Cc: Lee Jablonski <ljablonski@jlrichards.ca>; Dupont, Scott <Scott.Dupont@ottawa.ca>; Qadan, Sami

<Sami.Qadan@ottawa.ca>; Morphet, Katie <katie.morphet@ottawa.ca>

Subject: OC Transpo E-Bus Facility JLR 31489-004 - Request for Hydraulic Boundary Conditions

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Bruce,

We would like to obtain hydraulic boundary conditions for OC Transpo's industrial site located at 1500 Saint Laurent Boulevard.

The proposed building will be used for bus storage. The site has an existing private watermain loop to service the two (2) existing buildings shown on the attached figure.

We are requesting the boundary conditions at the two (2) existing private watermain connection locations to the municipal distribution system, located on St. Laurent Boulevard and Belfast Road (see attached figure).

For the proposed building, a peak hour demand of 1.50 L/s was calculated by the mechanical engineer based on an assumed fixture count. The maximum day and average day demands for the proposed building were then calculated using the City of Ottawa Water Design Guidelines. The water demands for the two existing buildings were calculated based on metered data provided by OC Transpo. The total water demands are summarized in the table below:

	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)
Proposed Building	0.56	0.83	1.50
Two Existing Buildings	1.09	1.63	2.94
Total	1.65	2.46	4.44

Water Demands

Average Day = 1.65 L/s Maximum Day = 2.46 L/s Peak Hour = 4.44 L/s

Fire Flow 1 (OBC Sprinkler) = 47 L/s

Fire Flow 2 (FUS) = 183 L/s

The OBC fire flow requirement is based on the flow requirement for the sprinkler system including hose stream allowance, provided by the mechanical engineer.

The FUS fire flow requirement is based on the Fire Underwriters Survey method and the City's Technical Bulletin ISTB-2018-02. Calculations are included in the attachment.

We kindly request hydraulic boundary conditions under the typical scenarios and under both fire flow conditions.

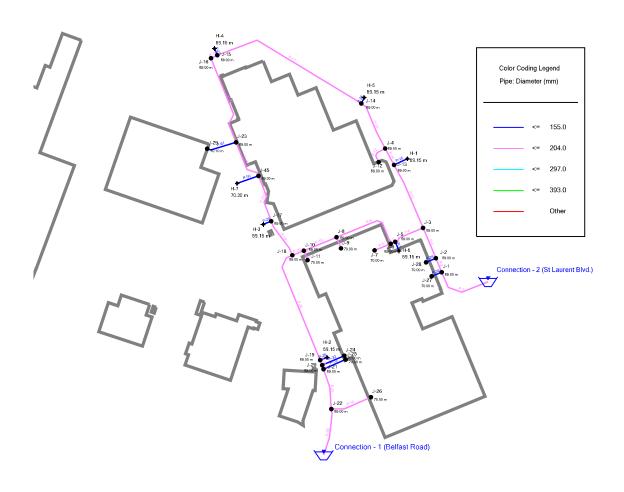
If we could receive the requested boundary conditions at your earliest convenience it would be much appreciated.

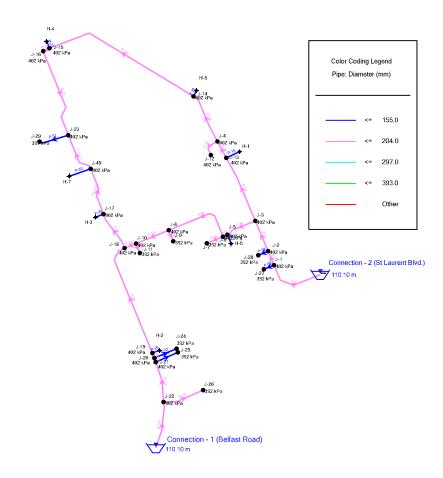
Should you have any questions or require any further information, please do not hesitate to contact me.

Thank you, Annie

Annie Williams, P.Eng. Civil Engineer

J.L. Richards & Associates Limited 700 - 1565 Carling Avenue, Ottawa, ON K1Z 8R1 Direct: 343-803-4523




This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

OC Transpo - 1500 St. Laurent Boulevard Overall Schematic

OC Transpo - 1500 St. Laurent Boulevard Peak Hour Demand

OC Transpo - 1500 St. Laurent Boulevard Peak Hour Demand

Junction Table

Hydraulic Grade Label Elevation Demand Pressure (m) (L/s)(m) (kPa) J-1 69.00 0.00 110.09 402 J-2 69.00 0.00 110.09 402 J-3 69.00 0.00 110.09 402 J-4 402 69.00 0.00 110.09 J-5 69.00 0.00 110.09 402 69.00 0.00 110.09 402 J-6 J-7 70.00 0.33 110.09 392 69.00 0.00 110.09 402 J-8 J-9 70.00 0.33 392 110.09 J-10 69.00 0.00 110.09 402 J-11 70.00 0.33 110.09 392 69.00 0.33 402 J-12 110.09 J-13 69.00 0.00 110.09 402 69.00 402 J-14 0.00 110.09 J-15 69.00 0.00 110.09 402 J-16 69.00 0.00 110.09 402 69.00 0.00 110.09 402 J-17 J-18 69.00 0.00 110.09 402 69.00 0.00 402 J-19 110.09 402 J-20 69.00 0.00 110.09 J-21 69.00 0.00 110.09 402 J-22 69.00 0.00 110.10 402 J-23 69.00 0.00 402 110.08

0.33

0.33

0.33

0.33

0.33

3.00

0.00

110.09

110.09

110.10

110.09

110.09

110.07

110.09

392

392

392

392

392

391

402

70.00

70.00

70.00

70.00

70.00

70.10

69.00

WaterCAD

[10.03.02.75]

Page 1 of 1

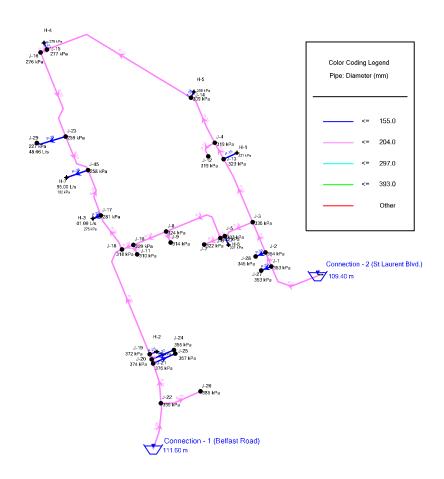
J-24

J-25

J-26

J-27 J-28

J-29


J-45

OC Transpo - 1500 St. Laurent Boulevard Peak Hour Demand

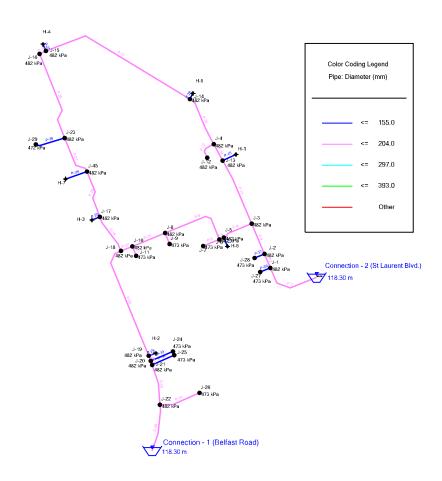
Pipe Table

				Pipe Tab				
Label	Diameter	Length	Material	Hazen-Williams	Hydraulic	Hydraulic	Velocity	Flow
	(mm)	(m)		С	Grade	Grade	(m/s)	(L/s)
					(Start) (m)	(Stop) (m)		
	2212	40.0	5) (0	110.0	, ,		0.10	
P-1	204.0	60.8	PVC	110.0	110.10	110.09	0.10	3.19
P-2	204.0	15.7	PVC	110.0	110.09	110.09	0.09	2.86
P-3	204.0	33.9	PVC	110.0	110.09	110.09	0.08	2.53
P-4	204.0	32.9	PVC	110.0	110.09	110.09	0.03	1.11
P-5	204.0	5.0	PVC	110.0	110.09	110.09	0.03	1.11
P-6	204.0	18.0	PVC	110.0	110.09	110.09	0.01	0.33
P-7	155.0	9.9	PVC	100.0	110.09	110.09	0.00	0.00
P-8	204.0	74.3	PVC	110.0	110.09	110.09	0.02	0.79
P-9	204.0	12.3	PVC	110.0	110.09	110.09	0.01	0.33
P-10	204.0	36.4	PVC	110.0	110.09	110.09	0.01	0.46
P-11	204.0	10.5	PVC	110.0	110.09	110.09	0.01	0.33
P-12	204.0	20.1	PVC	110.0	110.09	110.09	0.01	0.33
P-13	204.0	71.6	PVC	110.0	110.09	110.09	0.04	1.42
P-14	204.0	19.2	PVC	110.0	110.09	110.09	0.04	1.42
P-15	155.0	15.1	PVC	100.0	110.09	110.09	0.00	0.00
P-16	204.0	53.3	PVC	110.0	110.09	110.09	0.03	1.09
P-17	204.0	169.3	PVC	110.0	110.09	110.09	0.03	1.09
P-18	204.0	7.2	PVC	110.0	110.09	110.09	0.03	1.09
P-19	204.0	41.6	PVC	110.0	110.09	110.09	0.06	-1.91
P-20	204.0	12.7	PVC	110.0	110.09	110.09	0.00	0.13
P-21	204.0	5.7	PVC	110.0	110.09	110.09	0.05	-1.78
P-22	204.0	4.4	PVC	110.0	110.09	110.09	0.06	-2.10
P-23	204.0	42.2	PVC	110.0	110.09	110.10	0.07	-2.43
P-24	204.0	48.7	PVC	110.0	110.10	110.10	0.08	-2.76
P-25	155.0	7.7	PVC	100.0	110.09	110.09	0.00	0.00
P-26	155.0	8.8	PVC	100.0	110.09	110.09	0.00	0.00
P-27	155.0	7.5	PVC	100.0	110.09	110.09	0.00	0.00
P-28	155.0	6.7	PVC	100.0	110.09	110.09	0.00	0.00
P-29	204.0	120.8	PVC	110.0	110.09	110.09	0.05	-1.78
P-30	204.0	93.8	PVC	110.0	110.09	110.08	0.03	1.09
P-31	204.0	44.6	PVC	110.0	110.08	110.09	0.06	-1.91
P-32	204.0	50.2	PVC	110.0	110.09	110.09	0.06	-1.91
P-33	155.0	24.8	PVC	100.0	110.09	110.09	0.02	0.33
P-34	155.0	24.9	PVC	100.0	110.09	110.09	0.02	0.33
P-35	204.0	43.3	PVC	110.0	110.10	110.10	0.01	0.33
P-36	155.0	11.2	PVC	100.0	110.09	110.09	0.02	0.33
P-37	155.0	10.9	PVC	100.0	110.09	110.09	0.02	0.33
P-38	155.0	23.3	PVC	100.0	110.09	110.09	0.00	0.00
P-39	155.0	31.1	PVC	100.0	110.07	110.08	0.16	-3.00

OC Transpo - 1500 St. Laurent Boulevard Max Day Demand + Fire Flow Requirement (11,000 L/min) With Sprinkler System

OC Transpo - 1500 St. Laurent Boulevard Max Day Demand + Fire Flow Requirement (11,000 L/min) With Sprinkler System

Junction Table


Label	Elevation	Demand	Hydraulic Grade	Pressure
	(m)	(L/s)	(m)	(kPa)
J-1	69.00	0.00	106.06	363
J-2	69.00	0.00	105.20	354
J-3	69.00	0.00	103.35	336
J-4	69.00	0.00	101.61	319
J-5	69.00	0.00	102.98	333
J-6	69.00	0.00	102.92	332
J-7	70.00	0.18	102.92	322
J-8	69.00	0.00	102.08	324
J-9	70.00	0.18	102.08	314
J-10	69.00	0.00	101.67	320
J-11	70.00	0.18	101.67	310
J-12	69.00	0.18	101.61	319
J-13	69.00	0.00	101.98	323
J-14	69.00	0.00	100.59	309
J-15	69.00	0.00	97.35	277
J-16	69.00	0.00	97.21	276
J-17	69.00	0.00	97.69	281
J-18	69.00	0.00	101.53	318
J-19	69.00	0.00	106.99	372
J-20	69.00	0.00	107.25	374
J-21	69.00	0.00	107.45	376
J-22	69.00	0.00	109.37	395
J-23	69.00	0.00	95.42	259
J-24	70.00	0.18	107.25	365
J-25	70.00	0.18	107.45	367
J-26	70.00	0.18	109.37	385
J-27	70.00	0.18	106.06	353
J-28	70.00	0.18	105.20	345
J-29	70.10	48.66	93.29	227
J-45	69.00	0.00	95.40	258

OC Transpo - 1500 St. Laurent Boulevard Max Day Demand + Fire Flow Requirement (11,000 L/min) With Sprinkler System

Hydrant Table

Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
H-1	69.15	0.00	101.98	321
H-2	69.15	0.00	106.99	370
H-3	69.15	41.00	97.25	275
H-4	69.15	0.00	97.35	276
H-5	69.15	0.00	100.59	308
H-6	69.15	0.00	102.98	331
H-7	70.30	95.00	89.87	192

OC Transpo - 1500 St. Laurent Boulevard Maximum Pressure Analysis

OC Transpo - 1500 St. Laurent Boulevard Maximum Pressure Analysis

Junction Table

Label	Elevation	Demand	Hydraulic Grade	Pressure
	(m)	(L/s)	(m)	(kPa)
J-29	70.10	0.00	118.30	472
J-7	70.00	0.00	118.30	473
J-9	70.00	0.00	118.30	473
J-11	70.00	0.00	118.30	473
J-24	70.00	0.00	118.30	473
J-25	70.00	0.00	118.30	473
J-26	70.00	0.00	118.30	473
J-27	70.00	0.00	118.30	473
J-28	70.00	0.00	118.30	473
J-1	69.00	0.00	118.30	482
J-2	69.00	0.00	118.30	482
J-3	69.00	0.00	118.30	482
J-4	69.00	0.00	118.30	482
J-5	69.00	0.00	118.30	482
J-6	69.00	0.00	118.30	482
J-8	69.00	0.00	118.30	482
J-10	69.00	0.00	118.30	482
J-12	69.00	0.00	118.30	482
J-13	69.00	0.00	118.30	482
J-14	69.00	0.00	118.30	482
J-15	69.00	0.00	118.30	482
J-16	69.00	0.00	118.30	482
J-17	69.00	0.00	118.30	482
J-18	69.00	0.00	118.30	482
J-19	69.00	0.00	118.30	482
J-20	69.00	0.00	118.30	482
J-21	69.00	0.00	118.30	482
J-22	69.00	0.00	118.30	482
J-23	69.00	0.00	118.30	482
J-45	69.00	0.00	118.30	482

OC Transpo - 1500 St. Laurent Boulevard Maximum Pressure Analysis

Pipe Table

P-1 204.0 60.8 PVC 110.0 118.30 118.30 0.0					Fipe Tab				
P-1	Label	Diameter	Length	Material	Hazen-Williams	Hydraulic	Hydraulic	Velocity	Flow
P-1		(mm)	(m)		С			(m/s)	(L/s)
P-1									
P-2							. ,		
P-3									
P-4									
P-5									
P-6	1								
P-7 155.0 9.9 PVC 100.0 118.30 118.30 0.00 0.00 P-8 204.0 74.3 PVC 110.0 118.30 118.30 0.00 0.00 P-9 204.0 36.4 PVC 110.0 118.30 118.30 0.00 0.00 P-11 204.0 36.4 PVC 110.0 118.30 118.30 0.00 0.00 P-12 204.0 20.1 PVC 110.0 118.30 118.30 0.00 0.00 P-13 204.0 71.6 PVC 110.0 118.30 118.30 0.00 0.00 P-14 204.0 19.2 PVC 110.0 118.30 118.30 0.00 0.00 P-15 15.5 15.1 PVC 100.0 118.30 118.30 0.00 0.00 P-16 204.0 53.3 PVC 110.0 118.30 118.30 0.00 0.00 P-17 204.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
P-8 204.0 74.3 PVC 110.0 118.30 118.30 0.00 0.00 P-9 204.0 12.3 PVC 110.0 118.30 118.30 0.00 0.00 P-10 204.0 36.4 PVC 110.0 118.30 118.30 0.00 0.00 P-12 204.0 20.1 PVC 110.0 118.30 118.30 0.00 0.00 P-13 204.0 71.6 PVC 110.0 118.30 118.30 0.00 0.00 P-14 204.0 19.2 PVC 110.0 118.30 118.30 0.00 0.00 P-15 155.0 15.1 PVC 100.0 118.30 118.30 0.00 0.00 P-16 204.0 53.3 PVC 110.0 118.30 118.30 0.00 0.00 P-17 204.0 7.2 PVC 110.0 118.30 118.30 0.00 0.00 P-19 204.0<									
P-9									
P-10									
P-11									
P-12 204.0 20.1 PVC 110.0 118.30 118.30 0.00 0.00 0.00 P-13 204.0 71.6 PVC 110.0 118.30 118.30 0.00 0.00 0.00 P-14 204.0 19.2 PVC 110.0 118.30 118.30 0.00 0.00 0.00 P-15 155.0 15.1 PVC 100.0 118.30 118.30 0.00 0.00 P-16 204.0 53.3 PVC 110.0 118.30 118.30 0.00 0.00 P-17 204.0 169.3 PVC 110.0 118.30 118.30 0.00 0.00 P-18 204.0 7.2 PVC 110.0 118.30 118.30 0.00 0.00 P-19 204.0 41.6 PVC 110.0 118.30 118.30 0.00 0.00 P-20 204.0 12.7 PVC 110.0 118.30 118.30 0.00 0.00 P-21 204.0 5.7 PVC 110.0 118.30 118.30 0.00 0.00 P-22 204.0 4.4 PVC 110.0 118.30 118.30 0.00 0.00 P-23 204.0 42.2 PVC 110.0 118.30 118.30 0.00 0.00 P-24 204.0 48.7 PVC 110.0 118.30 118.30 0.00 0.00 P-25 155.0 7.7 PVC 110.0 118.30 118.30 0.00 0.00 P-26 155.0 8.8 PVC 110.0 118.30 118.30 0.00 0.00 P-26 155.0 8.8 PVC 100.0 118.30 118.30 0.00 0.00 P-28 155.0 6.7 PVC 100.0 118.30 118.30 0.00 0.00 P-28 155.0 6.7 PVC 100.0 118.30 118.30 0.00 0.00 P-30 204.0 44.6 PVC 110.0 118.30 118.30 0.00 0.00 P-31 204.0 44.6 PVC 110.0 118.30 118.30 0.00 0.00 P-33 155.0 24.8 PVC 110.0 118.30 118.30 0.00 0.00 P-34 155.0 24.8 PVC 100.0 118.30 118.30 0.00 0.00 P-35 204.0 43.3 PVC 110.0 118.30 118.30 0.00 0.00 P-36 155.0 11.2 PVC 100.0 118.30 118.30 0.00 0.00 P-36 155.0 11.2 PVC 100.0 118.30 118.30 0.00 0.00 0.00 P-36 155.0 11.9 PVC 100.0 118.30 118.30 0.00 0.00 0.00 P-36 155.0 11.9 PVC 100.0 118.30 118.30 0.00 0.00 0.00 P-36 155.0 11.9 PVC 100.0 118.30 118.30 0.00 0.00 0.00 P-38 155.0 23.3 PVC 100.0 118.30 118.30 0.00 0.00 0.00 0.00 0.00 0.00 0.									
P-13									
P-14									
P-15									
P-16						118.30			
P-17 204.0 169.3 PVC 110.0 118.30 118.30 0.00 0.00 P-18 204.0 7.2 PVC 110.0 118.30 118.30 0.00 0.00 P-19 204.0 41.6 PVC 110.0 118.30 118.30 0.00 0.00 P-20 204.0 12.7 PVC 110.0 118.30 118.30 0.00 0.00 P-21 204.0 5.7 PVC 110.0 118.30 118.30 0.00 0.00 P-22 204.0 4.4 PVC 110.0 118.30 118.30 0.00 0.00 P-23 204.0 42.2 PVC 110.0 118.30 118.30 0.00 0.00 P-24 204.0 48.7 PVC 110.0 118.30 118.30 0.00 0.00 P-25 155.0 7.7 PVC 100.0 118.30 118.30 0.00 0.00 P-26 155.0<									
P-18									
P-19 204.0 41.6 PVC 110.0 118.30 0.00 0.00 P-20 204.0 12.7 PVC 110.0 118.30 118.30 0.00 0.00 P-21 204.0 5.7 PVC 110.0 118.30 118.30 0.00 0.00 P-22 204.0 4.4 PVC 110.0 118.30 118.30 0.00 0.00 P-23 204.0 42.2 PVC 110.0 118.30 118.30 0.00 0.00 P-24 204.0 48.7 PVC 110.0 118.30 118.30 0.00 0.00 P-25 155.0 7.7 PVC 100.0 118.30 118.30 0.00 0.00 P-26 155.0 8.8 PVC 100.0 118.30 118.30 0.00 0.00 P-27 155.0 7.5 PVC 100.0 118.30 118.30 0.00 0.00 P-28 155.0 6.7									
P-20 204.0 12.7 PVC 110.0 118.30 118.30 0.00 0.00 P-21 204.0 5.7 PVC 110.0 118.30 118.30 0.00 0.00 P-22 204.0 4.4 PVC 110.0 118.30 118.30 0.00 0.00 P-23 204.0 42.2 PVC 110.0 118.30 118.30 0.00 0.00 P-24 204.0 48.7 PVC 110.0 118.30 118.30 0.00 0.00 P-25 155.0 7.7 PVC 100.0 118.30 118.30 0.00 0.00 P-26 155.0 8.8 PVC 100.0 118.30 118.30 0.00 0.00 P-27 155.0 7.5 PVC 100.0 118.30 118.30 0.00 0.00 P-28 155.0 6.7 PVC 100.0 118.30 118.30 0.00 0.00 P-30 204.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
P-21 204.0 5.7 PVC 110.0 118.30 118.30 0.00 0.00 P-22 204.0 4.4 PVC 110.0 118.30 118.30 0.00 0.00 P-23 204.0 42.2 PVC 110.0 118.30 118.30 0.00 0.00 P-24 204.0 48.7 PVC 110.0 118.30 118.30 0.00 0.00 P-25 155.0 7.7 PVC 100.0 118.30 118.30 0.00 0.00 P-26 155.0 8.8 PVC 100.0 118.30 118.30 0.00 0.00 P-27 155.0 7.5 PVC 100.0 118.30 118.30 0.00 0.00 P-28 155.0 6.7 PVC 100.0 118.30 118.30 0.00 0.00 P-29 204.0 120.8 PVC 110.0 118.30 118.30 0.00 0.00 P-31 204.0 <td></td> <td></td> <td>41.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			41.6						
P-22 204.0 4.4 PVC 110.0 118.30 118.30 0.00 0.00 P-23 204.0 42.2 PVC 110.0 118.30 118.30 0.00 0.00 P-24 204.0 48.7 PVC 110.0 118.30 118.30 0.00 0.00 P-25 155.0 7.7 PVC 100.0 118.30 118.30 0.00 0.00 P-26 155.0 8.8 PVC 100.0 118.30 118.30 0.00 0.00 P-27 155.0 7.5 PVC 100.0 118.30 118.30 0.00 0.00 P-28 155.0 6.7 PVC 100.0 118.30 118.30 0.00 0.00 P-29 204.0 120.8 PVC 110.0 118.30 118.30 0.00 0.00 P-30 204.0 93.8 PVC 110.0 118.30 118.30 0.00 0.00 P-31 204.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td>									0.00
P-23 204.0 42.2 PVC 110.0 118.30 118.30 0.00 0.00 P-24 204.0 48.7 PVC 110.0 118.30 118.30 0.00 0.00 P-25 155.0 7.7 PVC 100.0 118.30 118.30 0.00 0.00 P-26 155.0 8.8 PVC 100.0 118.30 118.30 0.00 0.00 P-27 155.0 7.5 PVC 100.0 118.30 118.30 0.00 0.00 P-28 155.0 6.7 PVC 100.0 118.30 118.30 0.00 0.00 P-29 204.0 120.8 PVC 110.0 118.30 118.30 0.00 0.00 P-30 204.0 93.8 PVC 110.0 118.30 118.30 0.00 0.00 P-31 204.0 44.6 PVC 110.0 118.30 118.30 0.00 0.00 P-32 204.0<	P-21	204.0	5.7	PVC	110.0	118.30	118.30	0.00	0.00
P-24 204.0 48.7 PVC 110.0 118.30 118.30 0.00 0.00 P-25 155.0 7.7 PVC 100.0 118.30 118.30 0.00 0.00 P-26 155.0 8.8 PVC 100.0 118.30 118.30 0.00 0.00 P-27 155.0 7.5 PVC 100.0 118.30 118.30 0.00 0.00 P-28 155.0 6.7 PVC 100.0 118.30 118.30 0.00 0.00 P-29 204.0 120.8 PVC 110.0 118.30 118.30 0.00 0.00 P-30 204.0 93.8 PVC 110.0 118.30 118.30 0.00 0.00 P-31 204.0 44.6 PVC 110.0 118.30 118.30 0.00 0.00 P-32 204.0 50.2 PVC 110.0 118.30 118.30 0.00 0.00 P-34 155.0<	P-22		4.4	PVC	110.0	118.30	118.30	0.00	0.00
P-25 155.0 7.7 PVC 100.0 118.30 118.30 0.00 0.00 P-26 155.0 8.8 PVC 100.0 118.30 118.30 0.00 0.00 P-27 155.0 7.5 PVC 100.0 118.30 118.30 0.00 0.00 P-28 155.0 6.7 PVC 100.0 118.30 118.30 0.00 0.00 P-29 204.0 120.8 PVC 110.0 118.30 118.30 0.00 0.00 P-30 204.0 93.8 PVC 110.0 118.30 118.30 0.00 0.00 P-31 204.0 93.8 PVC 110.0 118.30 118.30 0.00 0.00 P-32 204.0 50.2 PVC 110.0 118.30 118.30 0.00 0.00 P-33 155.0 24.8 PVC 100.0 118.30 118.30 0.00 0.00 P-34 155.0<	P-23	204.0	42.2	PVC	110.0	118.30	118.30	0.00	0.00
P-26 155.0 8.8 PVC 100.0 118.30 118.30 0.00 0.00 P-27 155.0 7.5 PVC 100.0 118.30 118.30 0.00 0.00 P-28 155.0 6.7 PVC 100.0 118.30 118.30 0.00 0.00 P-29 204.0 120.8 PVC 110.0 118.30 118.30 0.00 0.00 P-30 204.0 93.8 PVC 110.0 118.30 118.30 0.00 0.00 P-31 204.0 44.6 PVC 110.0 118.30 118.30 0.00 0.00 P-32 204.0 50.2 PVC 110.0 118.30 118.30 0.00 0.00 P-33 155.0 24.8 PVC 100.0 118.30 118.30 0.00 0.00 P-34 155.0 24.9 PVC 100.0 118.30 118.30 0.00 0.00 P-36 155.0		204.0	48.7			118.30	118.30		0.00
P-27 155.0 7.5 PVC 100.0 118.30 118.30 0.00 0.00 P-28 155.0 6.7 PVC 100.0 118.30 118.30 0.00 0.00 P-29 204.0 120.8 PVC 110.0 118.30 118.30 0.00 0.00 P-30 204.0 93.8 PVC 110.0 118.30 118.30 0.00 0.00 P-31 204.0 44.6 PVC 110.0 118.30 118.30 0.00 0.00 P-32 204.0 50.2 PVC 110.0 118.30 118.30 0.00 0.00 P-33 155.0 24.8 PVC 100.0 118.30 118.30 0.00 0.00 P-34 155.0 24.9 PVC 100.0 118.30 118.30 0.00 0.00 P-35 204.0 43.3 PVC 100.0 118.30 118.30 0.00 0.00 P-36 155.	P-25	155.0	7.7	PVC	100.0	118.30	118.30	0.00	0.00
P-28 155.0 6.7 PVC 100.0 118.30 118.30 0.00 0.00 P-29 204.0 120.8 PVC 110.0 118.30 118.30 0.00 0.00 P-30 204.0 93.8 PVC 110.0 118.30 118.30 0.00 0.00 P-31 204.0 44.6 PVC 110.0 118.30 118.30 0.00 0.00 P-32 204.0 50.2 PVC 110.0 118.30 118.30 0.00 0.00 P-33 155.0 24.8 PVC 100.0 118.30 118.30 0.00 0.00 P-34 155.0 24.9 PVC 100.0 118.30 118.30 0.00 0.00 P-35 204.0 43.3 PVC 110.0 118.30 118.30 0.00 0.00 P-36 155.0 11.2 PVC 100.0 118.30 118.30 0.00 0.00 P-38 155	P-26	155.0	8.8	PVC	100.0	118.30	118.30	0.00	0.00
P-29 204.0 120.8 PVC 110.0 118.30 118.30 0.00 0.00 P-30 204.0 93.8 PVC 110.0 118.30 118.30 0.00 0.00 P-31 204.0 44.6 PVC 110.0 118.30 118.30 0.00 0.00 P-32 204.0 50.2 PVC 110.0 118.30 118.30 0.00 0.00 P-33 155.0 24.8 PVC 100.0 118.30 118.30 0.00 0.00 P-34 155.0 24.9 PVC 100.0 118.30 118.30 0.00 0.00 P-35 204.0 43.3 PVC 110.0 118.30 118.30 0.00 0.00 P-36 155.0 11.2 PVC 100.0 118.30 118.30 0.00 0.00 P-37 155.0 10.9 PVC 100.0 118.30 118.30 0.00 0.00 P-38 15	P-27	155.0	7.5	PVC	100.0	118.30	118.30	0.00	0.00
P-30 204.0 93.8 PVC 110.0 118.30 118.30 0.00 0.00 P-31 204.0 44.6 PVC 110.0 118.30 118.30 0.00 0.00 P-32 204.0 50.2 PVC 110.0 118.30 118.30 0.00 0.00 P-33 155.0 24.8 PVC 100.0 118.30 118.30 0.00 0.00 P-34 155.0 24.9 PVC 100.0 118.30 118.30 0.00 0.00 P-35 204.0 43.3 PVC 110.0 118.30 118.30 0.00 0.00 P-36 155.0 11.2 PVC 100.0 118.30 118.30 0.00 0.00 P-37 155.0 10.9 PVC 100.0 118.30 118.30 0.00 0.00 P-38 155.0 23.3 PVC 100.0 118.30 118.30 0.00 0.00	P-28	155.0	6.7	PVC	100.0	118.30	118.30	0.00	0.00
P-31 204.0 44.6 PVC 110.0 118.30 118.30 0.00 0.00 P-32 204.0 50.2 PVC 110.0 118.30 118.30 0.00 0.00 P-33 155.0 24.8 PVC 100.0 118.30 118.30 0.00 0.00 P-34 155.0 24.9 PVC 100.0 118.30 118.30 0.00 0.00 P-35 204.0 43.3 PVC 110.0 118.30 118.30 0.00 0.00 P-36 155.0 11.2 PVC 100.0 118.30 118.30 0.00 0.00 P-37 155.0 10.9 PVC 100.0 118.30 118.30 0.00 0.00 P-38 155.0 23.3 PVC 100.0 118.30 118.30 0.00 0.00	P-29	204.0	120.8	PVC	110.0	118.30	118.30	0.00	0.00
P-32 204.0 50.2 PVC 110.0 118.30 118.30 0.00 0.00 P-33 155.0 24.8 PVC 100.0 118.30 118.30 0.00 0.00 P-34 155.0 24.9 PVC 100.0 118.30 118.30 0.00 0.00 P-35 204.0 43.3 PVC 110.0 118.30 118.30 0.00 0.00 P-36 155.0 11.2 PVC 100.0 118.30 118.30 0.00 0.00 P-37 155.0 10.9 PVC 100.0 118.30 118.30 0.00 0.00 P-38 155.0 23.3 PVC 100.0 118.30 118.30 0.00 0.00	P-30	204.0	93.8	PVC	110.0	118.30	118.30	0.00	0.00
P-33 155.0 24.8 PVC 100.0 118.30 118.30 0.00 0.00 P-34 155.0 24.9 PVC 100.0 118.30 118.30 0.00 0.00 P-35 204.0 43.3 PVC 110.0 118.30 118.30 0.00 0.00 P-36 155.0 11.2 PVC 100.0 118.30 118.30 0.00 0.00 P-37 155.0 10.9 PVC 100.0 118.30 118.30 0.00 0.00 P-38 155.0 23.3 PVC 100.0 118.30 118.30 0.00 0.00	P-31	204.0	44.6	PVC	110.0	118.30	118.30	0.00	0.00
P-34 155.0 24.9 PVC 100.0 118.30 118.30 0.00 0.00 P-35 204.0 43.3 PVC 110.0 118.30 118.30 0.00 0.00 P-36 155.0 11.2 PVC 100.0 118.30 118.30 0.00 0.00 P-37 155.0 10.9 PVC 100.0 118.30 118.30 0.00 0.00 P-38 155.0 23.3 PVC 100.0 118.30 118.30 0.00 0.00	P-32	204.0	50.2	PVC	110.0	118.30	118.30	0.00	0.00
P-35 204.0 43.3 PVC 110.0 118.30 118.30 0.00 0.00 P-36 155.0 11.2 PVC 100.0 118.30 118.30 0.00 0.00 P-37 155.0 10.9 PVC 100.0 118.30 118.30 0.00 0.00 P-38 155.0 23.3 PVC 100.0 118.30 118.30 0.00 0.00	P-33	155.0	24.8	PVC	100.0	118.30	118.30	0.00	0.00
P-36 155.0 11.2 PVC 100.0 118.30 118.30 0.00 0.00 P-37 155.0 10.9 PVC 100.0 118.30 118.30 0.00 0.00 P-38 155.0 23.3 PVC 100.0 118.30 118.30 0.00 0.00	P-34	155.0	24.9	PVC	100.0	118.30	118.30	0.00	0.00
P-36 155.0 11.2 PVC 100.0 118.30 118.30 0.00 0.00 P-37 155.0 10.9 PVC 100.0 118.30 118.30 0.00 0.00 P-38 155.0 23.3 PVC 100.0 118.30 118.30 0.00 0.00	P-35	204.0	43.3	PVC	110.0	118.30	118.30	0.00	0.00
P-37 155.0 10.9 PVC 100.0 118.30 118.30 0.00 0.00 P-38 155.0 23.3 PVC 100.0 118.30 118.30 0.00 0.00	P-36	155.0	11.2	PVC			118.30	0.00	0.00
P-38 155.0 23.3 PVC 100.0 118.30 118.30 0.00 0.00	P-37			PVC					0.00
	P-38			PVC					0.00
1: 12 12:00 10:00 10:00 10:00 10:00 0:00	P-39	155.0	31.1	PVC	100.0	118.30	118.30	0.00	0.00

Site Servicing Brief OC Transpo E-bus Parking Garage 1500 St. Laurent Boulevard, Ottawa, ON

Appendix E

Sanitary and Storm Sewer Design Sheets

TABLE SANITARY SEWER CALCULATION SHEET

LO	CATION				COMN	/IERCIAL		INDUST		IN	ST	C+I+I		INFILTRAT	ION				SEWER DATA			
Location	From	То	Area No.	Area	Area	Acc. Area	Area	Acc. Area	Peak	Area	Acc. Area	Peak Flow	Area	Acc. Area	Infilt. Flow	Total Flow	[Dia.	Slope	Length	Capacity	Full Velocity
				(ha)	(ha)	(ha)	(ha)	(ha)	Factor	(ha)	(ha)	(L/sec)	(ha)	(ha)	(L/sec)	(L/sec)	(mm)	actual	(%)	(m)	(L/sec)	(m/s)
1500 St Laurent	Bldg	MH100	A1	0.79			0.79	0.79				0.79	0.79	0.79	0.22	1.01	200	201.16	1.00	18.2	33.31	1.05
South Parking	MH100	MH101	A2	0.07				0.79				0.79	0.07	0.85	0.24	1.03	200	201.16	0.40	63.0	21.07	0.66
South Parking	MH101	EX. MH	А3	0.07				0.79				0.79	0.07	0.92	0.26	1.05	200	201.16	0.71	43.0	28.07	0.88
	1			l	-			<u> </u>	I	<u> </u>					1		l			<u> </u>	1	I
Average Daily Flow Commercial Flow (=	350 50,000	L/person/day L/gross ha/day	Q(i) = Pea	ak Populatio k Extraneou dual; Area (l	s Flow =	I * Ac	4 + lac	L/sec L/sec hectares					Designed: GH, EIT Checked:				Project: OCT St Lau	rent E-Bus	Bldg SPA	
			0.579	or L/gross ha/sec	A _c = Cum	ılative Area	(hectares	s)		hectares					M.F. Duthille	ul, P.Eng.			Location:			
Industrial Flow (L/s	s/ha) =		35,000 0.405	L/gross ha/day or L/gross ha/sec		ng Factor = ation (thous		4+P^0.5))		persons					Date:	April 27, 2	022		Ottawa, Or	ntario		
Max Res Peak Fact	tor =		4.0		Qcap, (Ma	anning) = 1/	n S ^{1/2} R ²	^{2/3} A _c		L/sec					Dwg Referen	ce:			File Ref:		Sheet No:	
Commercial / Inst	Peak Factor	·=	1.5		Manning I	N = xtraneous fl	ow (L/s/ł	ha) =		0.013 0.28					Site Servicing	; Plan			31489-004		1 of 1	

TABLE

5-YEAR STORM SEWER CALCULATION

Return Period Storm = 5 years

Default Inlet Time= 10 (minutes) Frontyards

15 (minutes) Backyards

Manning Coefficient = 0.013 (dimensionless)

LO	OCATION			Al	REA					FLOW			SEWER DATA										
														Nominal					Velocity	/ (m/s)	Time in	Hydraul	ic Ratios
Location	From Node	To Node	Area No.	Area (ha)	∑ Area (ha)	Average	Indiv. 2.78*A*R	Accum. 2.78*A*R	Tc (mins)	l (mm/h)	Indiv. Flow	Return Period	Q₅ (L/sec)	Dia. (mm)	Type	Slope (%)	Length (m)	Capacity (L/sec)	Vf	Va	Pipe, Tt (min)	Q ₅ /Q _{cap}	Va/Vf
			Alea No.	(IIa)	(IIa)		2.76 A K	2.76 A K	(IIIIIIS)	(11111/11)	FIOW	renou	(L/Sec)	(11111)	туре	(/0)	(111)	(L/Sec)	VI	Va	(111111)	QS/ Qcap	Va/VI
Parking Lot West	CB1	CB2	A1	0.111	0.111	0.69	0.212	0.212	10.00	104.19	22.12	5.00	22.1	375	PVC	0.15	27.9	63.8	0.61	0.43	1.08	0.3	0.7
Parking Lot West	CB2	CB3	A2	0.044	0.155	0.69	0.084	0.084	10.00	104.19	8.79	5.00	8.8	375	PVC	0.15	27.9	63.8	0.61	0.36	1.30	0.1	0.6
Parking Lot West	CB3	MH-CB4	А3	0.045	0.200	0.69	0.086	0.086	10.00	104.19	8.95	5.00	9.0	375	PVC	0.15	30.3	63.8	0.61	0.36	1.39	0.1	0.6
Parking Lot West	MH-CB4	CB5	A4	0.304	0.504	0.69	0.584	0.584	10.00	104.19	60.82	5.00	60.8	450	PVC	0.12	41.9	97.5	0.62	0.57	1.24	0.6	0.9
Parking Lot West	CB5	CB6	A5	0.043	0.547	0.69	0.082	0.082	10.00	104.19	8.59	5.00	8.6	450	PVC	0.12	44.5	97.5	0.62	0.32	2.30	0.1	0.5
Parking Lot West	CB6	EX. MH	A6	0.001	0.548	0.69	0.002	0.002	10.00	104.19	0.20	5.00	0.2	525	PVC	0.10	16.2	141.6	0.63			0.0	
Parking Lot East	CB7	CB8	A7	0.500	0.500	0.69	0.959	0.959	10.00	104.19	99.93	5.00	99.9	450	PVC	0.15	17.3	109.0	0.69	0.69	0.42	0.9	1.0
Parking Lot East	CB8	CB9	A8	0.076	0.576	0.69	0.146	0.146	10.00	104.19	15.17	5.00	15.2	450	PVC	0.12	17.3	97.5	0.62	0.37	0.79	0.2	0.6
Parking Lot East	CB9	MH-CB10	A9	0.047	0.623	0.69	0.090	0.090	10.00	104.19	9.37	5.00	9.4	450	PVC	0.12	31.3	97.5	0.62	0.33	1.59	0.1	0.5
Parking Lot East	MH-CB10	EX. MH	A10	0.070	0.693	0.69	0.135	0.135	10.00	104.19	14.03	5.00	14.0	450	PVC	0.12	18.9	97.5	0.62	0.37	0.86	0.1	0.6
Parking Lot (north)	EX. MH	EX. 600 mm	A11	0.001	1.242	0.69	0.002	0.002	10.00	104.19	0.20	5.00	0.2	600	PVC	0.08	31.3	181.5	0.61			0.0	
Total				1.242			2.38										304.8						

Definitions:

Q = 2.78*AIR, where

Q = Peak Flow in Litres per second (L/s)

A = Watershed Area (hectares)

I = Rainfall Intensity (mm/h)

R = Runoff Coefficients (dimensionless)

 Notes:
 5yr
 100yr

 Ottawa Rainfall Intensity Values:
 a = 998.071
 1735.688

 From Sewer Desing Guidelines, 20
 b = 0.814
 0.820

 c = 6.053
 6.014

Site Servicing Brief OC Transpo E-bus Parking Garage 1500 St. Laurent Boulevard, Ottawa, ON

Appendix F

Stormwater Management Calculations

OC TRANSPO

Allowable Peak Flow & SWM Calculations BUILDING ROOF (BASIN 4A-1)

Post-Development Drainage Areas

Type of Area	Area (m²)	C-Factor
Builing	7822	0.90
Total =	7822	0.90

SWM Calcs for Areas Tributary to 600 mm diam. storm sewer:

QED.1 - Controlled Roo	f
Roof (m2)	7822
C =	0.90
Sum of Roof Drains =	32
Storage Volume (m3)	704

Assuming Watts RD-100A Ajustable Accutrol Weir (weir fully closed at 6" depth)

No. of Drains 17

Flow/drain: 1.89 L/s

Time	Intensity	Qp	Qp	Qp	Max Volume	Qp	Qp	Volume CCE	Qp CCE
(min)	1:100 Yr	1:100 Yr	Rooftop ICD	stored	Requirement	CCE	stored	Requirement	- Qp100yı
	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(L/s)	(L/s)	(m ³)	(L/s)
30	91.87	179.79	32.13	147.66	265.79	224.74	192.61	347	44.95
35	82.58	161.61	32.13	129.48	271.91	202.01	169.88	357	40.40
40	75.15	147.06	32.13	114.93	275.84	183.83	151.70	364	36.77
45	69.05	135.14	32.13	103.01	278.12	168.92	136.79	369	33.78
50	63.95	125.16	32.13	93.03	279.10	156.45	124.32	373	31.29
55	59.62	116.69	32.13	84.56	279.04	145.86	113.73	375	29.17
60	55.89	109.39	32.13	77.26	278.13	136.74	104.61	377	27.35
65	52.65	103.03	32.13	70.90	276.52	128.79	96.66	377	25.76
70	49.79	97.44	32.13	65.31	274.31	121.80	89.67	377	24.36
75	47.26	92.48	32.13	60.35	271.58	115.60	83.47	376	23.12
80	44.99	88.05	32.13	55.92	268.42	110.06	77.93	374	22.01
85	42.95	84.06	32.13	51.93	264.86	105.08	72.95	372	21.02
90	41.11	80.46	32.13	48.33	260.96	100.57	68.44	370	20.11

The following assumptions were made in regard to rooftop configuration:

9th Floor		
Rooftop flow =	32 L/s	
Area of Roof	7 822 m2	
60% of roof for storage =	4 693 m2	
Vol. @ 6" ponding =	704 m3	

ROOF DRAIN TYPE:	Watts RD-10	0A				
Head (mm)	25	50	75	100	125	150
Number Weir Slots	0	0	0	0	0	0
Flow per Weir	5	10	15	20	25	30
Flow Rate (uspgm)	5	10	15	20	25	30
Flow Rate (L/sec)	0.32	0.63	0.95	1.26	1.58	1.89
Fon for Flow O at depth of			O = 0.0126 * d		-	

Per the above SWM calculations the provided rooftop storage volume is $\frac{277}{2}$ m3 and $\frac{372}{2}$ m3 for the 1:100 year and climate change event (CCE)

Based on the assumption that 60% of rooftop will be used for storage, the proposed rooftop has sufficient storage capacity (704 m3) to detain the 1:100 year and CCE events.

31489-004-SWM_Calcs_Roof_Control_April2022.xlsx 2022-04-282:40 PM

STORMWATER MANAGEMENT CALCULATIONS

WATER STORAGE DESIGN

31489-004-OCTranspo-1500 St Laurent E-Bus Bldg SPA

WEST BASIN (4A-2)

On-Site Storage Requirement: Post-Development Flow Condition

(Total Drainage Area A= 0.540)

		Area
	5 year	100 year
Area (impervious) =	0.540	0.540
C-Factor =	0.900	0.900
Area (gravel) =	0.000	0.000
C-Factor =	0.700	0.875
Area (Pervious) =	0.000	0.000
C-Factor =	0.450	0.560
(AxC)pav + (AxC)land =	0.486	0.486
C-Factor (overall) =	0.900	0.900

Time	Intensity	Qp	Qp	Qp	Max Volume	Intensity	Qp	Qp	Qp	Max Volume
(min)	1:5 Yr	1:5 Yr	ICD	stored	Requirement	1:100 Yr	1:100 Yr	ICD	stored	Requirement
	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	ICD stored Requirem (L/s) (L/s) (m³) 27 214.61 128.76 27 135.42 162.51 27 97.48 175.47 27 74.89 179.73 27 59.77 179.30 27 48.88 175.96	(m ³)
10	104.19	140.77	27	114.13	68.48	178.56	241.25	27	214.61	128.76
20	70.25	94.91	27	68.27	81.93	119.95	162.06	27	135.42	162.51
30	53.93	72.86	27	46.22	83.20	91.87	124.12	27	97.48	175.47
40	44.18	59.70	27	33.06	79.34	75.15	101.53	27	74.89	179.73
50	37.65	50.87	27	24.23	72.70	63.95	86.41	27	59.77	179.30
60	32.94	44.51	27	17.87	64.33	55.89	75.52	27	48.88	175.96
70	29.37	39.68	27	13.04	54.78	49.79	67.27	27	40.63	170.65
75	27.89	37.68	27	11.04	49.68	47.26	63.85	27	37.21	167.43

Minimum storage volume requirement for the 1:5 year retrun period = Minimum storage volume requirement for the 1:100 year retrun period = Storage volume provided by designed onsite underground storage chambe

m³ m³* m³ <u>180</u> 182

^{*} No spill-over volume is expected for the 1:100 year storm.

STORMWATER MANAGEMENT CALCULATIONS

WATER STORAGE DESIGN

31489-004-OCTranspo-1500 St Laurent E-Bus Bldg SPA

EAST BASIN (4A-3)

On-Site Storage Requirement: Post-Development Flow Condition

(Total Drainage Area A= 1.240)

		Area
	5 year	100 year
Area (impervious) =	1.240	1.240
C-Factor =	0.900	0.900
Area (gravel) =	0.000	0.000
C-Factor =	0.700	0.875
Area (Pervious) =	0.000	0.000
C-Factor =	0.450	0.560
(AxC)pav + (AxC)land =	1.116	1.116
C-Factor (overall) =	0.900	0.900

Time	Intensity	Qp	Qp	Qp	Max Volume	Intensity	Qp	Qp	Qp	Max Volume
(min)	1:5 Yr	1:5 Yr	ICD	stored	Requirement	1:100 Yr	1:100 Yr	ICD	stored	Requirement
	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	3504.64	(L/s)	(m ³)
10	104.19	323.26	47	275.90	165.54	178.56	553.98	47	506.62	303.97
20	70.25	217.95	47	170.59	204.71	119.95	372.14	47	324.78	389.74
30	53.93	167.31	47	119.95	215.91	91.87	285.02	47	237.66	427.79
40	44.18	137.08	47	89.72	215.33	75.15	233.14	47	185.78	445.86
50	37.65	116.82	47	69.46	208.37	63.95	198.42	47	151.06	453.17
60	32.94	102.21	47	54.85	197.45	55.89	173.41	47	126.05	453.79
70	29.37	91.13	47	43.77	183.82	49.79	154.47	47	107.11	449.87
80	26.56	82.41	47	35.05	168.23	44.99	139.58	47	92.22	442.67
90	24.29	75.35	47	27.99	151.17	41.11	127.55	47	80.19	433.00
100	22.41	69.52	47	22.16	132.95	37.90	117.59	47	70.23	421.40
110	20.82	64.60	47	17.24	113.79	35.20	109.21	47	61.85	408.24
120	19.47	60.40	47	13.04	93.87	32.89	102.06	47	54.70	393.81
130	18.29	56.76	47	9.40	73.31	30.90	95.86	47	48.50	378.31
140	17.27	53.57	47	6.21	52.20	29.15	90.44	47	43.08	361.90
145	16.80	52.13	47	4.77	41.47	28.36	87.98	47	40.62	353.40

Minimum storage volume requirement for the 1:5 year retrun period= $\frac{216}{m^3}$ Minimum storage volume requirement for the 1:100 year retrun period= $\frac{454}{m^3}$ Storage volume provided by designed onsite underground storage chambe $\frac{486}{m^3}$ m³

^{*} No spill-over volume is expected for the 1:100 year storm.

Appendix G

StormTech Underground Storage Chamber Design (West & East)

PROJEC	CT INFORMATION
ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

1500 SAINT-LAURENT - WEST AREA 1 OTTAWA, CANADA

SC-740 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-740.
- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET
 THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER
 COLLECTION CHAMBERS".
- 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- 7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 50 mm (2")
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- 3. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR
 DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO
 LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-740 SYSTEM

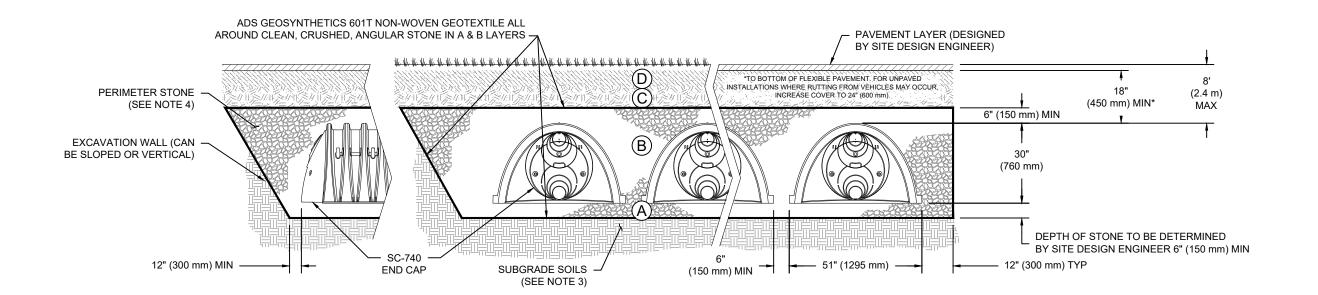
- 1. STORMTECH SC-740 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2. STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- 6. MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 20-50 mm (3/4-2").
- 8. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1. STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-740 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

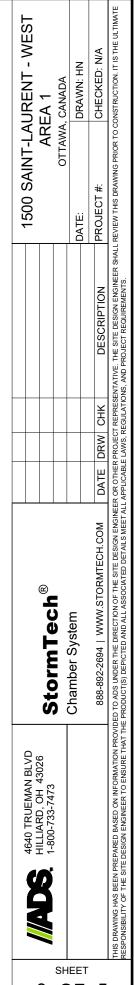
USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

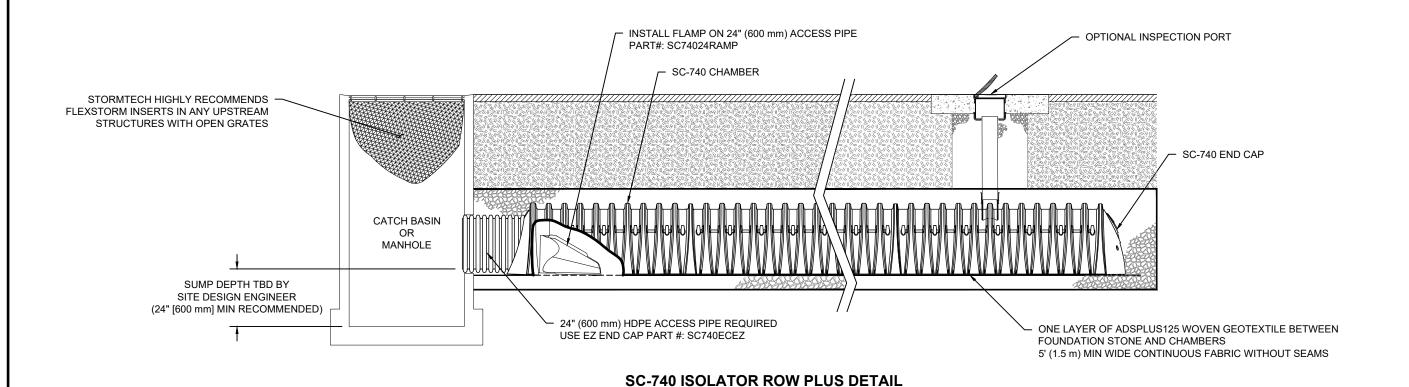
CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.


ST			
WE			
1 .		Z	≥
] 卢	Δ	<u>ا</u> ا	ż
┤╗┍	A 1 CANADA	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. אאיאוי
╛╩╗	્રું ઇ		5
F-LAURENT AREA 1	AK WA	2	
∣≟ <u> </u>	∱ OTTA		
SAINT	0	7	
200			
15		Ė	Н
		2	5
	+	+	
		+	
		П	
@			
	_		
1 2		⊏	
	U	tem	
F	Tec	System	
F	Tec	S	
	Tec	S	
	Tec	S	
T can C+O	U	S	
	Tec	S	
9	StormTec	S	
3LVD 026	StormTec	Chamber Sy.	_
3LVD 026	StormTec	Chamber Sy.	20
3LVD 026	StormTec	Chamber Sy	ったり
3LVD 026	StormTec	Chamber Sy	1 · 250
3LVD 026	StormTec	Chamber Sy	. 250
9	StormTec	Chamber Sy	. 250
4640 TRUEMAN BLVD HILLIARD, OH 43026	1-800-733-7473 StormTec	Chamber Sy	= 1 · 250
4640 TRUEMAN BLVD HILLIARD, OH 43026	StormTec	Chamber Sy	AI $F = 1 \cdot 250$
4640 TRUEMAN BLVD HILLIARD, OH 43026 1800 733-7473	StormTec	Chamber Sy	= 1 · 250
4640 TRUEMAN BLVD HILLIARD, OH 43026 1800 733-7473	StormTec	Chamber Sy	CAI E = 1.050
4640 TRUEMAN BLVD HILLIARD, OH 43026	StormTec	Chamber Sy	CAI E = 1.050
4640 TRUEMAN BLVD HILLIARD, 014 43026 1800 733-7473	StormTec	Chamber Sy	SCALE 1 · 250
4640 TRUEMAN BLVD HILLIARD, OH 43026	StormTec	Chamber Sy	SCALE 1 · 250

ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS

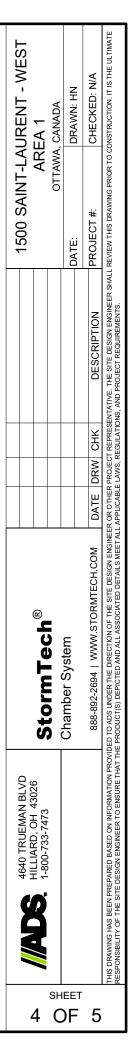
	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 12" (300 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 6" (150 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. ROLLER GROSS VEHICLE WEIGHT NOT TO EXCEED 12,000 lbs (53 kN). DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}


DI EASE NOTE


- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.
- 4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

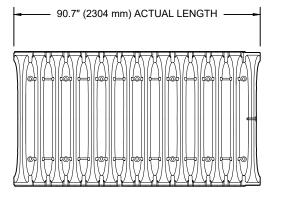
NOTES:

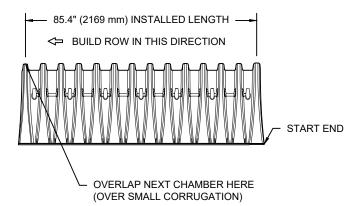
- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

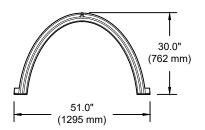

INSPECTION & MAINTENANCE

INSPECT ISOLATOR ROW PLUS FOR SEDIMENT

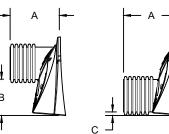
- A. INSPECTION PORTS (IF PRESENT)
- REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
- REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
- USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
 - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. STEP 4)


NOTES


- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.


SC-740 TECHNICAL SPECIFICATION

NTS



NOMINAL CHAMBER SPECIFICATIONS

SIZE (W X H X INSTALLED LENGTH) CHAMBER STORAGE MINIMUM INSTALLED STORAGE* WEIGHT 51.0" X 30.0" X 85.4" 45.9 CUBIC FEET 74.9 CUBIC FEET 75.0 lbs. (1295 mm X 762 mm X 2169 mm) (1.30 m³)

(2.12 m³) (33.6 kg)

PRE-FAB STUB AT BOTTOM OF END CAP WITH FLAMP END WITH "BR" PRE-FAB STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" PRE-FAB STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" PRE-CORED END CAPS END WITH "PC"

*ASSUMES 6" (152 mm) STONE ABOVE, BELOW, AND BETWEEN CHAMBERS

PART#	STUB	Α	В	С
SC740EPE06T / SC740EPE06TPC	6" (150 mm)	10.9" (277 mm)	18.5" (470 mm)	
SC740EPE06B / SC740EPE06BPC	0 (130 11111)	10.9 (277 11111)		0.5" (13 mm)
SC740EPE08T /SC740EPE08TPC	8" (200 mm)	12.2" (310 mm)	16.5" (419 mm)	
SC740EPE08B / SC740EPE08BPC	8 (200 111111)	12.2 (310111111)		0.6" (15 mm)
SC740EPE10T / SC740EPE10TPC	10" (250 mm)	13.4" (340 mm)	14.5" (368 mm)	
SC740EPE10B / SC740EPE10BPC	10 (230 11111)	13.4 (340 11111)		0.7" (18 mm)
SC740EPE12T / SC740EPE12TPC	12" (300 mm)	14.7" (373 mm)	12.5" (318 mm)	
SC740EPE12B / SC740EPE12BPC	12 (300 11111)	14.7 (3/3 11111)		1.2" (30 mm)
SC740EPE15T / SC740EPE15TPC	15" (275 mm)	18.4" (467 mm)	9.0" (229 mm)	
SC740EPE15B / SC740EPE15BPC	15" (375 mm)	10.4 (407 111111)		1.3" (33 mm)
SC740EPE18T / SC740EPE18TPC	18" (450 mm)	19.7" (500 mm)	5.0" (127 mm)	
SC740EPE18B / SC740EPE18BPC	10 (430111111)	19.7 (300 11111)		1.6" (41 mm)
SC740ECEZ*	24" (600 mm)	18.5" (470 mm)		0.1" (3 mm)

ALL STUBS, EXCEPT FOR THE SC740ECEZ ARE PLACED AT BOTTOM OF END CAP SUCH THAT THE OUTSIDE DIAMETER OF THE STUB IS FLUSH WITH THE BOTTOM OF THE END CAP. FOR ADDITIONAL INFORMATION CONTACT STORMTECH AT 1-888-892-2694.

* FOR THE SC740ECEZ THE 24" (600 mm) STUB LIES BELOW THE BOTTOM OF THE END CAP APPROXIMATELY 1.75" (44 mm). BACKFILL MATERIAL SHOULD BE REMOVED FROM BELOW THE N-12 STUB SO THAT THE FITTING SITS LEVEL.

NOTE: ALL DIMENSIONS ARE NOMINAL

					D	
					A L TIMING COST	TOTAN TIATOR
					1900 SAINT-LAURENT - WEST	
					ARE	AREA 1
					OTTAWA,	OTTAWA, CANADA
					DATE:	DRAWN: HN
					1	
					: 1	
Σ	DATE DRW CHK	DRW	CHK	DESCRIPTION	PROJECT #:	CHECKED: N/A
ENGINEE	ER OR OTHEF	R PROJECT E LAWS, R	T REPRESE	ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE TEL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	. REVIEW THIS DRAWING PRIOR TO CO	ONSTRUCTION. IT IS THE ULTIMATE

StormTech[®] Chamber System

4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473

SHEET

PROJEC	CT INFORMATION
ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

1500 SAINT-LAURENT - WEST AREA 2 OTTAWA, CANADA

SC-740 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-740.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET
 THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER
 COLLECTION CHAMBERS".
- 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- 7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 50 mm (2")
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR
 DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO
 LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-740 SYSTEM

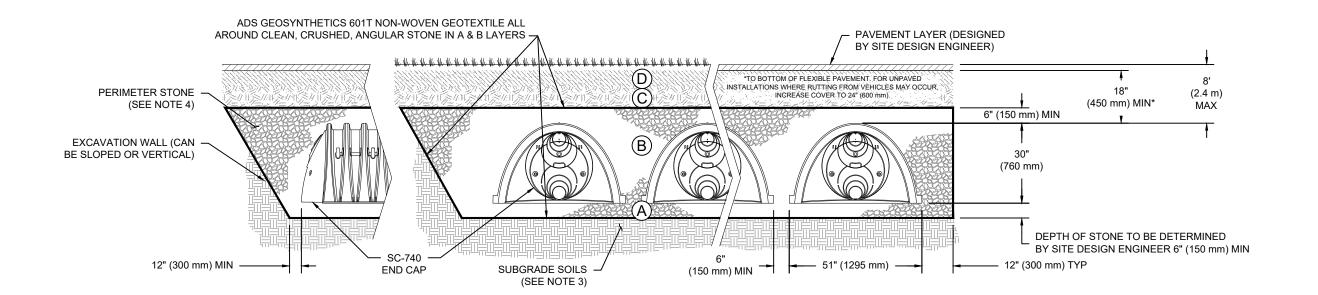
- 1. STORMTECH SC-740 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2. STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- 6. MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 20-50 mm (3/4-2").
- 8. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
-). ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1. STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-740 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

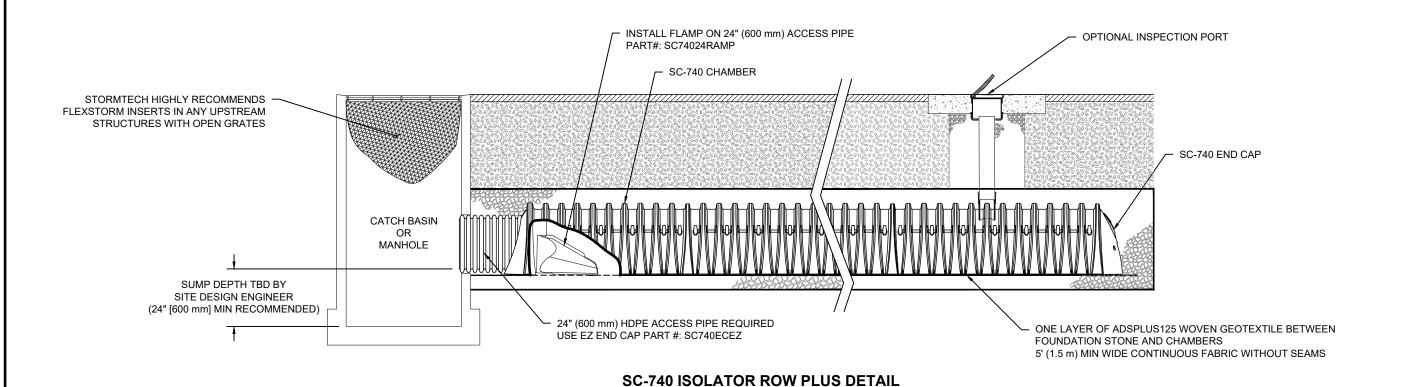
CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.


ER	OF CHAMBER	RT ABOVE BASE	*INVERT AB							FVATIONS	PROPOSED ELE	POSED LAYOUT	
0)	MAX FLOW	INVERT*			DESCRIPTION		ITEM ON	PART TYPE	70.726	MENT/UNPAVED):	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEN	RMTECH SC-740 CHAMBERS	35
		3 mm	_ 600 mm	740ECEZ / TYP OF ALL 600 r	CATED EZ END CAP, PART#: SC740E	nm BOTTOM PREFABRICATED OM CONNECTIONS AND ISO	, 6	RICATED EZ END CAP	68.897 68.745	TRAFFIC):	MINIMUM ALLOWABLE GRADE (ÙNPAVED WITH MINIMUM ALLOWABLE GRADE (UNPAVED NO T	RMTECH SC-740 END CAPS NE ABOVE (mm)	152
i z			5)	4RAMP (TYP 8 PLACES)	ACCESS PIPE / PART#: SC74024RAM	ALL FLAMP ON 600 mm ACCE	В		68.745 68.745	CONCRÉTE PAVEMENT): (IBLE PAVEMENT):	MINIMUM ALLOWABLE GRADE (TOP OF RIGID C MINIMUM ALLOWABLE GRADE (BASE OF FLEXI	NE BELOW (mm) NE VOID	
— ⋝ ≲∣⇒	79 L/s IN 79 L/s IN					IGN BY ENGINEER / PROVIDE IGN BY ENGINEER / PROVIDE		TE STRUCTURE TE STRUCTURE	68 440		TOP OF STONE: TOP OF SC-740 CHAMBER:	ALLED SYSTEM VOLUME (m³) IMETER STONE INCLUDED)	
A 2 CAN	79 L/s IN				OVIDED BY OTHERS)	IGN BY ENGINEER / PROVIDE	E (TE STRUCTURE	67 528		600 mm ISOLATOR ROW PLUS INVERT:	'ER STONE INCLUDED)	95.2
	79 L/s IN 79 L/s IN					IGN BY ENGINEER / PROVIDE IGN BY ENGINEER / PROVIDE		TE STRUCTURE TE STRUCTURE	67.528 (67.528 (600 mm ISOLATOR ROW PLUS INVERT: 600 mm ISOLATOR ROW PLUS INVERT:	E STONE INCLUDED)	159.1
NT-LA ARE									67.528 67.528		600 mm ISOLATOR ROW PLUS INVERT: 600 mm ISOLATOR ROW PLUS INVERT:	TEM PERIMÈTÉR (m)	170.9
AINT									67.525		BOTTOM OF SC-740 CHAMBER:		
SA									67.373	<u> </u>	BOTTOM OF STONE:		
1500													
150 17E													
								3.525 m					
	E E												
	.905 n							2.916 m					
	$-\mathbf{c}$ $\frac{1}{2}$ $\frac{1}{2}$												
-	_E				//////////////////////////////////////		<u></u>					WALLEY LIVE LIVE LIVE LIVE LIVE LIVE LIVE LIVE	
_	= A						<u>///X///</u>	- [3//X///X////					D.—
© ⊆	1												G-/
44													
Tec													
Sy S													
Storm Chamber 8													
(7)													
0,9													
43026 3													
MAN OH 4 173													
D, C													
0 TR -IAR 00-73													
4640 TRUEMAN E HILLIARD, OH 43 1-800-733-7473													
_ _												001 ATOD DCW = 1 1 -	
Q												SOLATOR ROW PLUS SEE DETAIL/TYP 4 PLACES)	
9 8					N D 0171110 0:	IOTE #0 00 TOT		, alte a estati		NOTES			KXXX
	.D MANIFOLD	'E TO STANDAR!	ITIONAL PIPE TO	CUT AND COUPLE ADDITION	DLD SIZING GUIDANCE. S, IT MAY BE NECESSARY TO CUT A	NOTE #6.32 FOR MANIFOLD S DESIGN CONSTRAINTS, IT N	K. SEE TE SIFIC SITE	SITE DESIGN ENGINEE MBER SYSTEM TO SPE	RE DELEKM	 MANIFOLD SIZE TO DUE TO THE ADAPT 		O WOVEN GEOTEXTILE	
			E MET.	R REQUIREMENTS ARE MET	ENSURE THE CHAMBER COVER RE	ADJUST GRADING TO ENSU	F NECESS	/IEW ELEVATIONS AND	ILD. NGINEER M	COMPONENTS IN THE FIE THE SITE DESIGN E			
SHEE					INS OR BEARING CAPACITY. THE SI					DETERMINING			
) SHEE			CINICIE THIS INITIO	VELD UD DECDEVCED ONCE	STOME DEDTH MAY BE IMPDEASED	CITT COILS THE DAGE STON		A FUE DEVOINO CVDV	THE PART OF THE PA				
2 OF	IS				STONE DEPTH MAY BE INCREASED ECONCEPT & THE REQUIRED STOR					PROVIDED.		ED LIMITS	

ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL : FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 12" (300 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 6" (150 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. ROLLER GROSS VEHICLE WEIGHT NOT TO EXCEED 12,000 lbs (53 kN). DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}

PLEASE NOTE:


- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.
- 4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

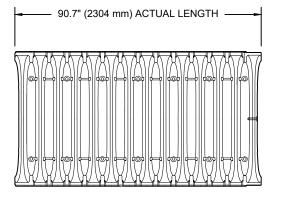
NOTES:

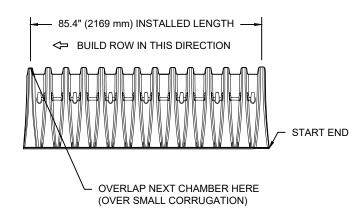
- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

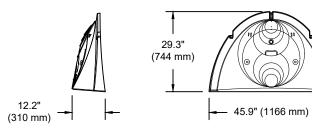
INSPECTION & MAINTENANCE

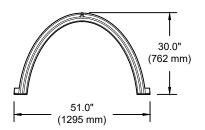
INSPECT ISOLATOR ROW PLUS FOR SEDIMENT

- A. INSPECTION PORTS (IF PRESENT)
- REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
- REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
- USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
 - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. STEP 4)

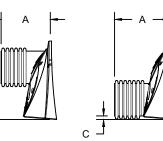

NOTES


- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.




SC-740 TECHNICAL SPECIFICATION

NTS



NOMINAL CHAMBER SPECIFICATIONS

SIZE (W X H X INSTALLED LENGTH) CHAMBER STORAGE MINIMUM INSTALLED STORAGE* WEIGHT 51.0" X 30.0" X 85.4" 45.9 CUBIC FEET 74.9 CUBIC FEET 75.0 lbs. (1295 mm X 762 mm X 2169 mm) (1.30 m³)

(2.12 m³) (33.6 kg)

PRE-FAB STUB AT BOTTOM OF END CAP WITH FLAMP END WITH "BR" PRE-FAB STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" PRE-FAB STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" PRE-CORED END CAPS END WITH "PC"

*ASSUMES 6" (152 mm) STONE ABOVE, BELOW, AND BETWEEN CHAMBERS

PART#	STUB	Α	В	С
SC740EPE06T / SC740EPE06TPC	6" (150 mm)	10.9" (277 mm)	18.5" (470 mm)	
SC740EPE06B / SC740EPE06BPC	0 (130 11111)	10.9 (277 11111)		0.5" (13 mm)
SC740EPE08T /SC740EPE08TPC	8" (200 mm)	12.2" (310 mm)	16.5" (419 mm)	
SC740EPE08B / SC740EPE08BPC	6 (200 IIIIII)	12.2 (310111111)		0.6" (15 mm)
SC740EPE10T / SC740EPE10TPC	10" (250 mm)	13.4" (340 mm)	14.5" (368 mm)	
SC740EPE10B / SC740EPE10BPC	10 (230 111111)	13.4 (340 11111)		0.7" (18 mm)
SC740EPE12T / SC740EPE12TPC	12" (300 mm)	14.7" (373 mm)	12.5" (318 mm)	
SC740EPE12B / SC740EPE12BPC	12 (300 11111)	14.7 (3/3 11111)		1.2" (30 mm)
SC740EPE15T / SC740EPE15TPC	15" (375 mm)	18.4" (467 mm)	9.0" (229 mm)	
SC740EPE15B / SC740EPE15BPC	15 (375111111)	10.4 (407 111111)		1.3" (33 mm)
SC740EPE18T / SC740EPE18TPC	18" (450 mm)	19.7" (500 mm)	5.0" (127 mm)	
SC740EPE18B / SC740EPE18BPC	10 (430111111)	19.7 (300 11111)		1.6" (41 mm)
SC740ECEZ*	24" (600 mm)	18.5" (470 mm)		0.1" (3 mm)

ALL STUBS, EXCEPT FOR THE SC740ECEZ ARE PLACED AT BOTTOM OF END CAP SUCH THAT THE OUTSIDE DIAMETER OF THE STUB IS FLUSH WITH THE BOTTOM OF THE END CAP. FOR ADDITIONAL INFORMATION CONTACT STORMTECH AT 1-888-892-2694.

* FOR THE SC740ECEZ THE 24" (600 mm) STUB LIES BELOW THE BOTTOM OF THE END CAP APPROXIMATELY 1.75" (44 mm). BACKFILL MATERIAL SHOULD BE REMOVED FROM BELOW THE N-12 STUB SO THAT THE FITTING SITS LEVEL.

NOTE: ALL DIMENSIONS ARE NOMINAL

					- FIAI 4 0 001 4	
					AJ-INIAS UUSI	1500 SAINT-LAURENT - WEST
					ARI	AREA 2
					OTTAWA	OTTAWA, CANADA
					DATE:	DBAWN: HN
						אוויי אואלאטט
>	MAG TTAG	Wan	ZHK	DESCRIPTION	PROJECT #:	CHECKED: N/A
	, ר	<u>.</u>	<u>-</u>			
NGINEE FET ALI	R OR OTHEF	R PROJEC	T REPRESE	NGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE FETALL APPLICABLE LAWS, RECILIATIONS, AND PROJECT REQUIREMENTS.	. REVIEW THIS DRAWING PRIOR TO C	ONSTRUCTION. IT IS THE ULTIMATE

StormTech®
Chamber System

4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473

SHEET

PROJEC	CT INFORMATION
ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

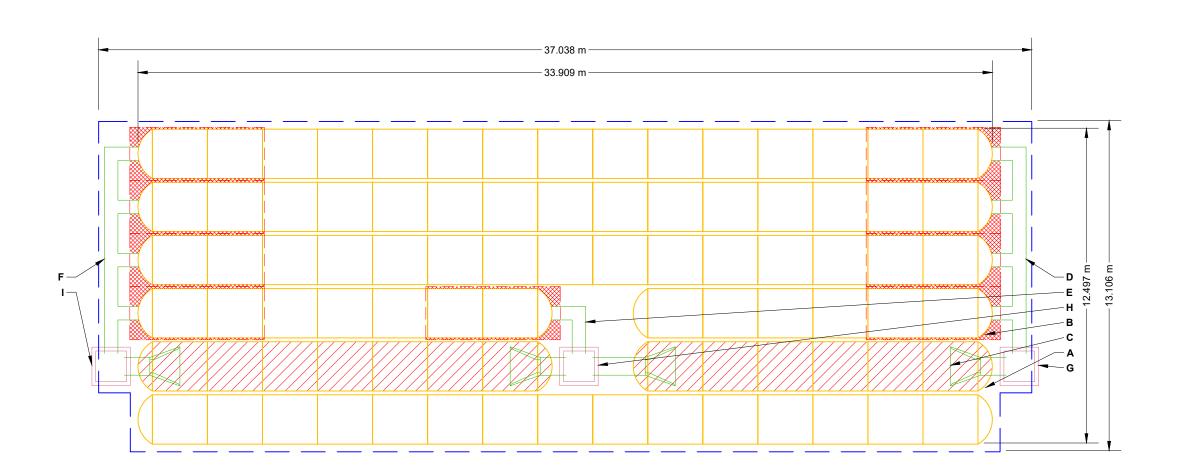
1500 SAINT-LAURENT - EAST AREA OTTAWA, CANADA

MC-3500 STORMTECH CHAMBER SPECIFICATIONS

- 1. CHAMBERS SHALL BE STORMTECH MC-3500.
- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET
 THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER
 COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.</p>
- 7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 75 mm (3")
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM

- 1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- 6. MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS.
- 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 300 mm (12") INTO CHAMBER END CAPS.
- 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE WELL GRADED BETWEEN ¾" AND 2" (20-50 mm).
- 9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
- 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER
- 11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.


NOTES FOR CONSTRUCTION EQUIPMENT

- 1. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 2. THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

R86 STORMTECH MC-3500 CHAMBERS MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED): 71.364 PART TYPE TOP OF STONE: 69.535 STONE ABOVE (mm) MINIMUM ALLOWABLE GRADE (UNPAVED NITH TRAFFIC): 69.535 STONE ABOVE (mm) MINIMUM ALLOWABLE GRADE (UNPAVED NITH TRAFFIC): 69.535 STONE ABOVE (mm) MINIMUM ALLOWABLE GRADE (UNPAVED NOT TRAFFIC): 69.535 PREFABRICATED END CAP A CONNECTIONS AND ISOLATOR PLUS ROWS CONNECTIONS AND ISOLATOR PLUS ROWS CONNECTIONS AND ISOLATOR PLUS ROWS A CONNECTIONS AND ISOLATOR PLUS ROWS CONNECTIONS AND ISOLATOR ROW PLUS INVERT: CONNECTIONS AND ISOLATOR ROW PLU		PROPOSED LAYOUT	AYOUT PROPOSED ELEVATIONS			*INVERT ABOVE BA	SE OF CHAMBEF	2	
16 STORMTECH MC-3500 END CAPS MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): 69.535 69.535 69.235 69.235 69.335 51.000 EMBOVE (mm) MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC): 69.383 PREFABRICATED END CAP A CONNECTIONS AND ISOLATOR PLUS ROWS 52 mm 52 m	86		-3500 CHAMBERS MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED): 71.36	PART TYPE			* MAX FLOW	ST	
STONE BELOW (mm) MINIMUM ALLOWABLE GRADE (10P OF RIGID CONCRETE PAVEMENT): 69.383 PREFABRICATED END CAP, PART#: MC3500IEPP18TC / TYP OF ALL 450 mm TOP CONNECTIONS 509 mm 10.51	16 305	STONE ABOVE (mm)	nm) MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC): 69.38	PREFABRICATED END CAP	A	600 mm BOTTOM CORED END CAP, PART#: MC3500IEPP24BC / TYP OF ALL 600 mm BOTTOM		Ë	
486.3 PERIMETER STONE INCLUDED) (COVER STONE INCLUDED) (BASE STONE	229 40	STONE VOID 3	MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT): 69.38	83 FLAMB	В	450 mm TOP CORED END CAP, PART#: MC3500IEPP18TC / TYP OF ALL 450 mm TOP CONNECTIONS 509 mm	1	1≟ .	A Z
450 mm x 450 mm TOP MANIFOLD INVERT: 68.291 MANIFOLD 450 mm x 450 mm TOP MANIFOLD INVERT: 68.291 MANIFOLD 56.291 MANIFOLD 56.2	486.3	(PERIMETER STONE INCLUDED)	ONE INCLUDED) TOP OF MC 3500 CHAMBER:	MANIFOLD	D	450 mm x 450 mm TOP MANIFOLD, ADS N-12 509 mm			NAD/
100.3 SYSTEM PERIMETER (m) 600 mm ISOLATOR ROW PLUS INVERT: 67.835 CONCRETE STRUCTURE H (DESIGN BY ENGINEER / PROVIDED BY OTHERS) 600 mm ISOLATOR ROW PLUS INVERT: 156 L/s IN G00 mm ISOLATOR ROW PLUS INVERT: 1 (DESIGN BY ENGINEER / PROVIDED BY OTHERS) 460 L/s IN		(BASE STONE INCLUDED)	CLUDED) 450 mm x 450 mm TOP MANIFOLD INVERT: 68.29	91 MANIFOLD	F	450 mm x 450 mm TOP MANIFOLD, ADS N-12 509 mm	n		P. S.
			TÉR (m) 600 mm ISOLATOR ROW PLUS INVERT: 67.83	35 CONCRETE STRUCTURE	H	(DESIGN BY ENGINEER / PROVIDED BY OTHERS)		<u> </u>	AWA
			600 mm ISOLATOR ROW PLUS INVERT: 67.83	35		(DESIGN BY ENGINEER / PROVIDED BY OTHERS)	460 L/s IN	<u> </u>	E
BOTTOM OF MC-3500 CHAMBER: 67.783 BOTTOM OF STONE: 67.554								SA	

ISOLATOR ROW PLUS (SEE DETAIL/TYP 2 PLACES)

PLACE MINIMUM 5.334 m OF ADSPLUS175 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

BED LIMITS

NOTES

MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD.
THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET.
THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING
THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED.

NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE.

DRW **StormTech**® Chamber System 4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473 50 Ш SCALE

SHEET

2 OF 5

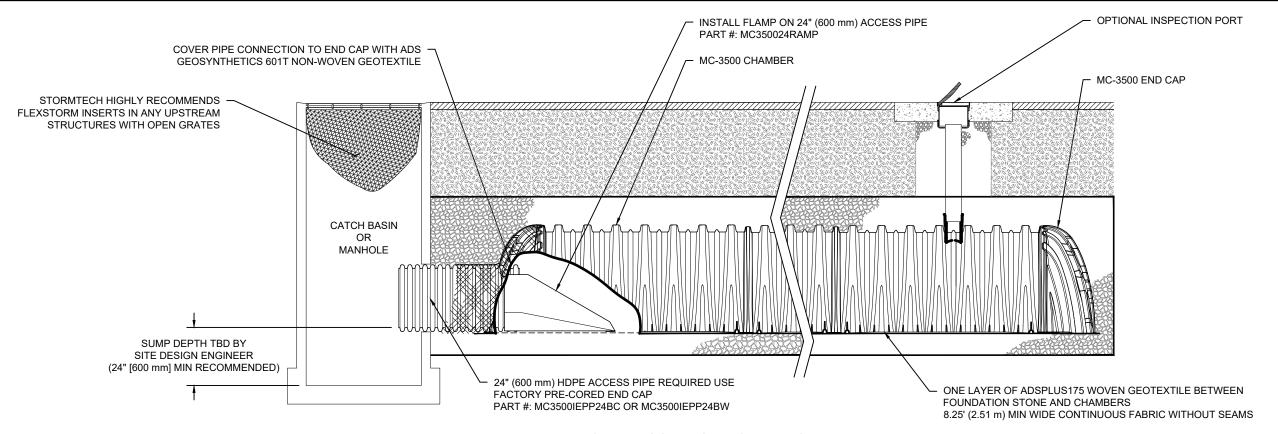
1500

PROJECT

ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43¹ 3, 4	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43¹ 3, 4	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}

PLEASE NOTE:

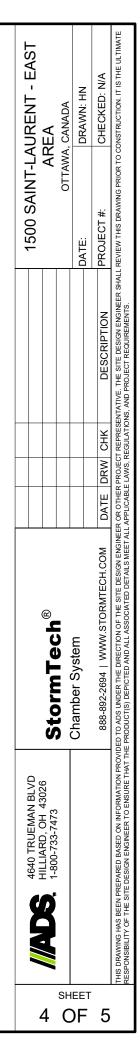

- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.
- 4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

NOTES:

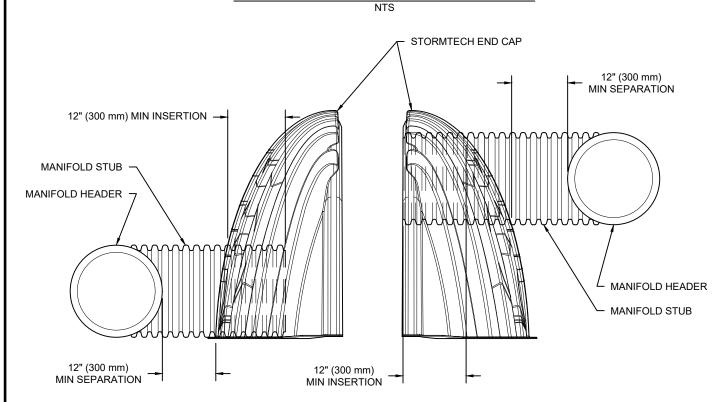
- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

		4640 TRI IEMAN BI VD					A L-TNIAS 0021	1500 SAINT-I ALIBENT - EAST
,								
3	3	1-800-733-7473	Storm Terre				AR	AREA
							OTTAWA,	OTTAWA, CANADA
)F	IEE		Chamber System				DATE:	DBAWN HN
5			888-892-2694 WWW.STORMTECH.COM	DATE DRW CHK	CHK	DESCRIPTION	PROJECT #:	CHECKED: N/A
	THIS DRAWING HAS BEEN PF RESPONSIBILITY OF THE SITE	REPARED BASED ON INFORMATION PROVI. E DESIGN ENGINEER TO ENSURE THAT TH	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER THAT THE PRODUCTS DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	R OR OTHER PROJECT APPLICABLE LAWS. RE	REPRESENTATIVE GULATIONS. AN	/E. THE SITE DESIGN ENGINEER SHALL D PROJECT REQUIREMENTS.	REVIEW THIS DRAWING PRIOR TO CC	DNSTRUCTION. IT IS THE ULTIMATE

MC-3500 ISOLATOR ROW PLUS DETAIL

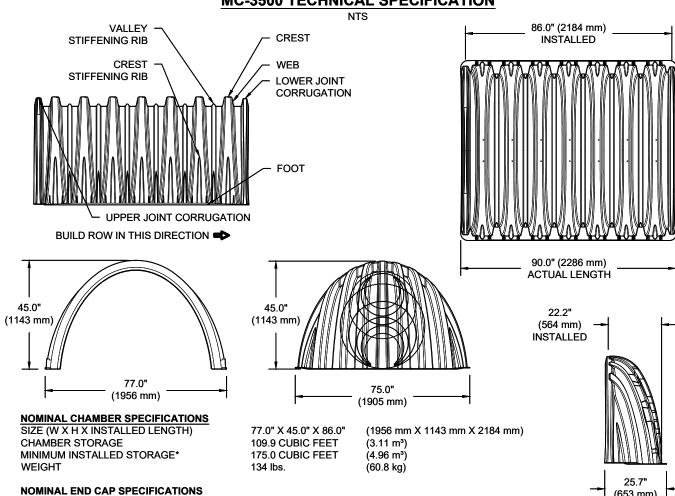

INSPECTION & MAINTENANCE

- INSPECT ISOLATOR ROW PLUS FOR SEDIMENT
 - A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)


 - IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2, IF NOT, PROCEED TO STEP 3.
 - B. ALL ISOLATOR PLUS ROWS
 - REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
 - USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
 - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
 - IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. STEP 4)

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.



MC-SERIES END CAP INSERTION DETAIL

NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING.

MC-3500 TECHNICAL SPECIFICATION

(1905 mm X 1143 mm X 564 mm)

(0.42 m³)

(1.28 m³) (22.2 kg)

*ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" SPACING BETWEEN CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY

49 lbs.

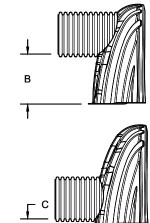
75.0" X 45.0" X 22.2"

14.9 CUBIC FEET

45.1 CUBIC FEET

STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A WELDED CROWN PLATE END WITH "C"

PART#	STUB	В	С
MC3500IEPP06T	6" (150 mm)	33.21" (844 mm)	
MC3500IEPP06B	o (150 IIIII)		0.66" (17 mm)
MC3500IEPP08T	8" (200 mm)	31.16" (791 mm)	
MC3500IEPP08B	o (200 IIIII)		0.81" (21 mm)
MC3500IEPP10T	10" (250 mm)	29.04" (738 mm)	
MC3500IEPP10B	10 (230 11111)		0.93" (24 mm)
MC3500IEPP12T	12" (300 mm)	26.36" (670 mm)	
MC3500IEPP12B	12 (300 11111)		1.35" (34 mm)
MC3500IEPP15T	15" (375 mm)	23.39" (594 mm)	
MC3500IEPP15B	15 (5/5 11111)		1.50" (38 mm)
MC3500IEPP18TC		20.03" (509 mm)	
MC3500IEPP18TW	18" (450 mm)	20.03 (309 11111)	
MC3500IEPP18BC	10 (430 11111)		1.77" (45 mm)
MC3500IEPP18BW			1.77 (45 11111)
MC3500IEPP24TC		14.48" (368 mm)	
MC3500IEPP24TW	24" (600 mm)	14.40 (300 11111)	
MC3500IEPP24BC	24 (000 IIIII)		2.06" (52 mm)
MC3500IEPP24BW			2.00 (32 11111)
MC3500IEPP30BC	30" (750 mm)		2.75" (70 mm)


NOTE: ALL DIMENSIONS ARE NOMINAL

SIZE (W X H X INSTALLED LENGTH)

MINIMUM INSTALLED STORAGE*

END CAP STORAGE

WEIGHT

(653 mm)

CUSTOM PRECORED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM **INVERT LOCATIONS ON THE MC-3500** END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN 'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE.

				A L TIMIA O OGA	TOAT TIATOL
4640 I RUEMAN BLVD				TOOO SAIN I-LA	1300 SAINT-LAURENT - EAST
HILLIAKD, OH 43026 1-800-733-7473	Storm Tock®			AF	AREA
				OTTAWA	OTTAWA, CANADA
	Chamber System			DATE:	DBAWN: HN
				DAIL:	אוויי אוואראוס
	MOO HOSTANDOTS WANAAA 1090 CO8 888)	I O HOI O O LO	PRO IFCT #:	CHECKED: N/A
	000-032-2034 WWW.310NMIE011.00M	DAIE DRW CHK	DESCRIPTION		O IEONED. INTO
WING HAS BEEN PREPARED BASED ON INFORMATION PRCSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT	WIND HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE IBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	ER OR OTHER PROJECT REPRESENT .L APPLICABLE LAWS, REGULATIONS	ATIVE. THE SITE DESIGN ENGINEER SHAL AND PROJECT REQUIREMENTS.	.L REVIEW THIS DRAWING PRIOR TO C	ONSTRUCTION. IT IS THE ULTIMATE

SHEET

Site Servicing Brief OC Transpo E-bus Parking Garage 1500 St. Laurent Boulevard, Ottawa, ON

Appendix H

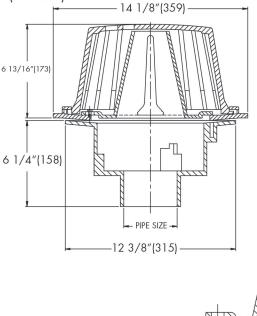
Manufacture's Roof Control Specifications

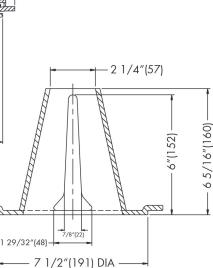
RD-100-A

Tag: _

Large Capacity Roof Drain

Components:





SPECIFICATION: Watts Drainage Products RD-100 epoxy coated cast iron roof drain with deep sump, wide serrated flashing flange, flashing clamp device with integral gravel stop, accutrol weir and self-locking polyethylene (standard) dome.

Free Area Sq. In.

Deck opening 10" (254) with sump receiver 13-1/4" (337)

** Side Outlet (-SO) option only available in 2"(51), 3"(76), 4"(102) pipe sizes. Underdeck Clamp (-BED and -D options) are not available when -SO is selected.

Option	nal Body Material (NH Only)	
Suffix	Description	
-60	PVC Body w/Socket Outlet	[
-61	ABS Body w/Socket Outlet	

Ex. RD-102P-K

P	ipe Sizing (Select One)	
Suffix	Description	
2	2"(51) Pipe Size	
3	3"(76) Pipe Size	
4	4"(102) Pipe Size	
5	5"(127) Pipe Size	
6	6"(152) Pipe Size	
8	8"(203) Pipe Size	

Suffix	Description Description	
NH P	No Hub (M) Push On	
T X	Threaded Outlet Inside Caulk	

Options (Select One or More)

Offix Description

Outlet Type (Salect One)

-B	Sump Receiver Flange	
-BED	Sump Receiver, Adj Ext., Deck Clamp	
-C	Secondary Membrane Clamp	П
-D	Underdeck Clamp	\Box
-E	Adjustable Extension	
-GSS	Stainless Steel Ballast Guard	
-H	Adj. to 6" IRMA Ballast Guard	
-K	Ductile Iron Dome	
-K80	Aluminum Dome	
-L	Vandal Proof Dome	
-R	2" High External Water Dam	
-SO	Side Outlet**	
-V	Fixed Extension (1-1/2",2",3",4	"
-W	Adj. Water Level Regulator	
-W-1	Waterproofing Flange	
-Z	Extended Integral Wide Flange	
-5	Sediment Bucket	
-6	Vandal Proof Top	
-12	Galvanized Dome	
-13	All Galvanized	

-83 Mesh Covered Dome -113M Special Epoxy from 3M Range

lob Name	Contractor
lob Location	Contractor's P.O. No.
-naineer	Representative

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

WATTS

USA: Tel: (800) 338-2581 • Fax: (828) 248-3929 • Watts.com **Canada:** Tel: (905) 332-4090 • Fax: (905) 332-7068 • Watts.ca **Latin America:** Tel: (52) 81-1001-8600 • Fax: (52) 81-8000-7091 • Watts.com

A Watts Water Technologies Company

Product Recommendations

APPLICATION

Balcony or Canopy

Deck Receptor

Downspout Nozzle/Cover

Downspout Boot

Primary Roof Area

Primary Roof Overflow

Promenade or Patio

Scupper or Parapet

Secondary Roof Area

Secondary Roof Overflow

PRODUCT

RD-230, RD-240

RD-400, RD-410

RD-940, RD-950

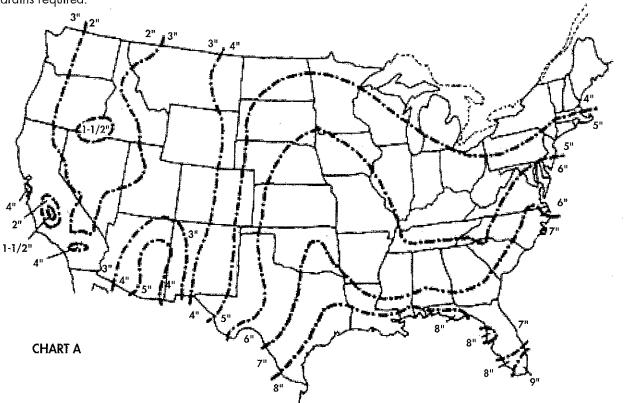
RD-970, RD-980

RD-300, RD-300-F

RD-300-R, RD-300-W

RD-100-CP, RD-200-CP, RD-300-CP15

RD-270, RD-290


RD-100, RD-100-F, RD-200, RD-200-F

RD-100-R, RD-100-W, RD-200-R, RD-200-W

Roof Drain Selection Factors

SIZING

- 1. Calculate roof area (sq. ft.) to be drained.
- 2. Determine average hourly rainfall rate at roof location (Chart A).
- Approximate leader (drain pipe) size. In general, increasing leader size will decrease the number of drains required.
- 4. Reference leader size with hourly rainfall rate, to determine roof area drained by each leader (Chart B).
- 5. Divide roof area (1.) by area per leader (4.) to determine the number of drains required.

Roof Drain Selection Factors (continued)

CHART B

Rainfall			Vertical Leader	Sizing in Inches		
Rate	2	3	4	5	6	8
(inches/hour)						
1	2,880	8,800	18,400	34,600	54,000	116,000
2	1,440	4,400	9,200	1 <i>7</i> ,300	27,000	58,000
3	960	2,930	6,130	11,530	1 <i>7</i> ,995	38,660
4	<i>7</i> 20	2,200	4,600	8,650	13,500	29,000
5	<i>575</i>	1 <i>,7</i> 60	3,680	6,920	10,800	23,200
6	480	1,470	3,070	5,765	9,000	19,315
7	410	1,260	2,630	4,945	<i>7,</i> 715	16,570
8 ·	360	1,100	2,300	4,325	6,750	14,500

Maximum tributary areas which can be drained by Roof Drains, Vertical Rainwater Leaders, or Storm-Water Conductors for Various Rainfall Rates. Source: ASPE Practical Plumbing Engineering (c) 1998

PLACEMENT

For most efficient drainage, roof drains, to the extent possible, should be equally spaced. A roof drain must also be located in any potential water collection area.

MATERIAL & CHARACTERISTICS

Bodies – Industrial grade cast iron, finished with Watts standard gray acid resistant epoxy coating. Many Watts roof drains can be specified with PVC (-60) or ABS (-61) bodies, for direct solvent weld connection.

Combination Flashing Clamp/Gravel Guard – Standard acid resistant coated cast iron. Watts securing stud design helps spot flashing clamp bolt holes, which might otherwise be covered or filled during membrane application.

Poly Dome – UV stabilized high density polyethylene, high resistance to breakage and weathering proofing membranes or liners, generally in above grade applications.

PIPE CONNECTION

No Hub (Standard) – Butt connection using no hub or neoprene coupling, suitable for cast iron, plastic, and most other piping applications.

Push-On (P) – Gasket connection ASTM C-564, with pipe stop. Suitable for no hub or service weight cast iron, Sch. 40 plastic, and steel pipe. Recommended for below grade use only.

Threaded (T) - Female IPS thread in drain outlet.

Inside Caulk (X) – Caulk ring on drain outlet, pipe is inserted and joint sealed with lead & oakum.

PVC Socket (-60) - Sch. 40 PVC solvent weld female socket.

ABS Socket (-61) - ABS solvent weld female socket.

Side Outlet (-SO) - No Hub (see above) side outlet.

Accutrol Area Selection Table

To select the discharge flow rate, draindown time, maximum head (roof load) you require, refer to any one of the four area ratings that best suit your requirements.

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				ROOI	ROOF AREA TO BE DRAINED BY (1) WEIR OPENING								
	Roof		2500 sq.f	i.		5000 sq.f		w. 20 ga/3	7500 sq.fi		71.7-33.4	0,000 sq	ft.	
LOCALITY	rise (in.)	Max. flow G.P.M.	Draindown time {hrs.}	Max. head (in.)	Max. flow G.P.M.	Draindown fime {hrs.}	Max. head (in.)	Max. flow G.P.M.	Draindown time (hrs.)	Max. head (in.)	Max. flow G.P.M.	Draindown time (hrs.)	Max. head (in.)	
	0	12.75	8.5	2.55	15.00	19.00	3.00	16.75	30.00	3.35	17.75	41.00	3.55	
Halifax, N.S.	2	16.00	7.5	3.2	18.25	17.00	3.65	19.25	26.00	3.85	20.00	34.00	4.00	
Hamilton, Ont.	3	17.50	6.0	3.5	20.00	13.50	4.00	21.25	21.00	4.25	22.00	28.00	4.40	
London, Ont.	4	19.75	5.0	3.95	22.50	11.50	4.50	23.50	19.00	4. <i>7</i> 0	25.00	26.00	5.00	
Toronto, Ont.	5	21.75	4.2	4.35	25.00	10.00	5.00	26.50	16.00	5.30	28.00	23.00	5.60	
Windsor, Ont.	6	23.50	4.0	4.7	26.50	9.50	5.30	28.50	15.00	5.70	29. <i>75</i>	21.00	5.95	
Calgary, Alta.	0	10.50	7.5	2.10	13.50	18.00	2.70	15.25	27.00	3.05	17.00	40.00	3.40	
Edmonton, Alta.	2	13.50	6.5	2.70	16.50	16.00	3,30	18.25	25.00	3.65	19.50	34.00	3.90	
Regina, Sask.	3	14.25	5.0	2.85	17.75	12.00	3.55	20.00	20.00	4.00	21.25	28.00	4.25	
Moncton, N.B.	4	16.25	4.0	3.25	19.75	10.00	3.95	21.75	17.00	4.35	23.25	24.00	4.65	
St. John's, Nfld.	5	17.50	3.5	3.50	21.00	8.20	4.20	23.25	14.00	4.65	25.00	21.00	5.00	
Saskatoon, Sask.	6	18.50	3.0	3 <i>.7</i> 0	22.50	7.80	4.50	25.00	13.00	5.00	26.50	19.00	5.30	
Montreal, Que.	0	13.50	9.0	2.70	16.00	20.00	3.20	1 <i>7</i> .50	32.00	3.50	19.00	42.00	3.80	
Quebec, Que.	2	1 <i>7</i> .00	8.0	3.40	19.25	17.00	3.85	20.50	27.00	4.10	21.50	38.00	4.30	
Kingston, Ont.	3	18.00	6.0	3.60	20.50	14.00	4.10	21.75	22.00	4.35	22.50	29.00	4.50	
Saint John, N.B.	4	20.25	5.0	4.05	22.75	12.00	4.55	24.25	19.00	4.85	25.50	27.00	5.10	
•	5	22.50	4.5	4.50	22.50	10.00	5.10	27.25	1 <i>7.</i> 00	5.45	28.00	23.00	5.60	
	6	24.00	4.0	4.80	27.00	9.50	5.40	28 <i>.75</i>	15.00	5.75	30.00	21.00	6.00	
Vancouver, B.C.	0	7.25	5.5	1.45	8.50	13.00	1.70	9.50	22.00	1.90	10.00	29.00	2.00	
·	2	8.25	4.0	1.65	10.00	10.00	2.00	11.00	16.00	2.20	-11.50	23.00	2.30	
Victoria, B.C.	3	8. <i>75</i>	3.0	1.75	10.50	7.50	2.10	11.75	12.00	2.35	12.50	17.00	2.50	
·	4	9.50	2.5	1.90	11.50	6.00	2.30	13.00	10.00	2.60	14.00	14.00	2.80	
	5	10.75	2.1	2.15	13.25	5.30	2.65	14.75	9.00	2.95	1 <i>5.7</i> 5	13.00	3.15	
	6	12.25	2.0	2.45	15.00	5.00	3.00	16.50	8.50	3.30	17.50	12.00	3.50	
Ottawa, Ont.	0	10.50	<i>7</i> .5	2.10	13.00	1 <i>7.</i> 00	2.60	14.25	28.00	2.85	15.00	39.00	3.00	
Winnipeg, Man.	2	13.25	6.5	2.65	15.50	15.00	3.10	1 <i>7</i> .25	24.00	3.45	18.25	32.00	3,65	
Thunder Bay, Ont.	3	15.00	5.0	3.00	1 <i>7</i> .50	12.00	3.50	18. <i>75</i>	19.00	3.75	20.00	26.00	4.00	
,	4	16.25	4.0	3.25	18. <i>75</i>	10.00	3.75	20.25	16.00	4.05	21.50	22.00	4.30	
	5	18.25	3.8	3.65	21.25	8.50	4.25	23.00	14.00	4.60	24.25	20.00	4.85	
	6	19.50	3.3	3.90	22.50	8.0	4.50	24.25	12.50	4.85	25.50	18.00	5.10	
	0	12.00	8.0	2.40	14.00	19.00	2.80	15.00	29.00	3.00	16.25	40.00	3.25	
Guelph, Ont.	2	15.00	7.0	3.00	17.00	16.00	3.40	18.25	25.00	3.65	19.00	33.00	3.80	
St. Thomas, Ont.	3	16.75	5.8	3.35	19.00	13.00	3.80	20.00	20.00	4.00	21.00	27.00	4.20	
North Bay, Ont.	4	18.75	4.8	3.75	21.25	11.00	4.25	22.50	17.00	4.50	23.50	24.00	4.70	
,,	5	20.75	4.1	4.15	23.50	9.50	4.70	25.00	15.50	5.00	26.00	21.00	5.20	
	6	22.75	3.8	4.55	26.00	9.00	5.20	2 <i>7</i> .50	14.00	5.50	29.00	20.00	5.80	

Accutrol Area Selection Table (continued)

		\$\\\	2.3				ROOF	AREA TO B	E DRAIN	ED BY ON	NE WEIR C	PENING			
	Area	Roof		2500 sq. f	i.		5000 sq. f	i.		7500 sq. f	1.	1	0,000 sq.	fi.	
LOCALITY	Factor	Rise (in.)	Max. flow G.P.M.	Draindown time (hrs.)	Max head (in.)	Max. flow G.R.M.	Draindown time (hrs.)	Max. head (in.)	Max. flow G.R.M.	Draindown time (hrs.)	Max. head (in.)	Max. flow G.R.M.	Draindown fime (hrs.)	Max. head (in.)	
		Ó	10.50	7.50	2.10	13.50	18.00	2.70	15.25	27.00	3.05	17.00	40.00	3.40	
Halifax, N.S.	3500	2	13.50	6.50	2.70	16.50	16.00	3.30	18.25	25.00	3.65	19.50	34,00	3.90	
Hamilton, Ont.	6700	3	14.25	5.00	2.85	17.75	12.00	3.55	20.00	20.00	4.00	21.25	28.00	4.25	
London, Ont.	6700	4	16.25	4.00	. 3.25	19.75	10.00	3.95	21.75	17.00	4.35	23.25	24.00	4.65	
Toronto, Onf.	6700	5	17.50	3.50	3.50	21.00	8.20	4.20	23.25	14.00	4.65	25.00	21.00	5.00	
Windsor, Ont.	6700	6	18.50	3.00	3.70	22.50	7.80	4.50	25.00	13.00	5.00	26.50	19.00	5.30	
Calgary, Alta.	6700	0	10.50	7.50	2.10	13.50	18.00	2.70	15.25	27.00	3.05	17.00	40.00	3.40	
Edmonton, Alta.	8000	2	13.50	6.50	2.70	16.50	16.00	3.30	18.25	25.00	3.65	19.50	34.00	3.90	
Regina, Sask.	6700	3	14.25	5.00	2.85	17.75	12.00	3.55	20.00	20.00	4.00	21.25	28.00	4.25	
Moncton, N.B.	3500	4	16.25	4.00	3.25	19.75	10.00	3,95	21.75	17.00	4.35	23.25	24.00	4.65	
St. John's, Nfld.	5000	5	17.50	3.50	3.50	21.00	8.20	4.20	23.25	14.00	4.65	25.00	21.00	5.00	
Saskatoon, Sask.	6700	6	18.50	3.00	3.70	22.50	7.80	4.50	25.00	13.00	5.00	26.50	19.00	5.30	
Montreal, Que.	6700	0	13.50	9.00	2.70	16.00	20.00	3.20	17.50	32.00	3.50	19.00	42.00	3.80	
Quebec, Que.	5000	2	17.00	8.00	3.40	19.25	17.00	3.85	20.50	27.00	4.10	21.50	38.00	4.30	
Kingston, Ont.	6700	3	18.00	6.00	3,60	20,50	14.00	4.10	21.75	22.00	4.35	22.50	29.00	4.50	
Saint John, N.B.	3500	4	20.25	5,00	4.05	22.75	12.00	4.55	24.25	19.00	4.85	25,50	27.00	5.10	
		5	22.50	4.50	4.50	22.50	10.00	5.10	27.25	17.00	5.45	28.00	23.00	5,60	
		6	24.00	4.00	4.80	27.00	9.50	5.40	28.75	15.00	5.75	30.00	21.00	6.00	
Vancouver, B.C.	6700	0	7.25	5.50	1.45	8.50	13.00	1.70	9.50	22.00	1.90	10.00	29.00	2.00	
·		2	8.25	4,00	1.65	10.00	10,00	2.00	11.00	16.00	2.20	11.50	23.00	2.30	
Victoria, B.C.	6700	3	8 <i>.</i> 75	3.00	1.75	10.50	7.50	2.10	11.75	12.00	2.35	12.50	1 7.00	2.50	
		4	9.50	2.50	1.90	11.50	6.00	2.30	13.00	10.00	2.60	14.00	14.00	2.80	
		5	10. <i>75</i>	2.10	2.15	13.25	5.30	2.65	14.75	9.00	2.95	1 <i>5.75</i>	13.00	3.15	
		6	12.25	2.00	2.45	1 <i>5</i> .00	5.00	3.00	16.50	8.50	3.30	1 <i>7.</i> 50	12.00	3.50	
Ottawa, Ont.	8300	0	10.50	7.50	2.10	13.00	17.00	2.60	14.25	28.00	2.85	15.00	39.00	3.00	
Winnipeg, Man.	6700	2	13.25	6.50	2.65	15.50	15.00	3.10	17.25	24.00	3.45	18.25	32.00	3.65	
Thunder Bay, Ont.	6700	3	15.00	5.00	3.00	1 <i>7.</i> 50	12.00	3.50	18.75	19.00	3.75	20.00	26.00	4.00	
·	l	4	16.25	4.00	3.25	18.75	10.00	3.75	20.25	16,00	4.05	21.50	22.00	4.30	
		5	18.25	3.80	3.65	21.25	8.50	4.25	23.00	14.00	4.60	24.25	20.00	4.85	
		6	19.50	3.30	3.90	22.50	8.00	4.50	24.25	12.50	4.85	25.50	18.00	5.10	
		0	12.00	8.00	2.40	14.00	19.00	2.80	15.00	29.00	3.00	16.25	40.00	3.25	
Guelph, Ont.	6700	2	15.00	7.00	3.00	1 <i>7</i> ,00	16.00	3.40	18.25	25.00	3.65	19.00	33.00	3.80	
St. Thomas, Ont.	6700	3	16.75	5.80	3.35	19.00	13.00	3.80	20.00	20.00	4.00	21.00	27.00	4.20	
North Bay, Ont.	6700	4	18 <i>.7</i> 5	4.80	3.75	21.25	11.00	4.25	22.50	17.00	4.50	23.50	24.00	4.70	
,,		5	20.75	4.10	4.15	23.50	9.50	4.70	25.00	15.50	5.00	26.00	21.00	5.20	
	i	6	22.75	3.80	4.55	26.00	9.00	5.20	27.50	14.00	5.50	29.00	20.00	5.80	

Controlled Flow Roof Drainage: Example.

80,000 sq. ft. (200 x 400) flat roof building in Ottawa, Ontario, no appreciable vertical surface additions.

Conventional sizing places 8 drains on the roof (see conventional sizing and placement). The area factor for Ottawa is 8300 (80,000÷8300=9.63) or 10 weirs; size 1-weir roof drains and two 2-weir drains. From the Area selection table, we see that the maximum expected flow will be 15 GPM per weir or 150 GPM for the whole roof Using Chart A on pg viii, a **4" vertical leader** is required (192 GPM capacity) and a **5" storm sewer pipe** (at 1/4" slope. See Chart B on pg. ix). Compare this to the conventional system which requires **8" vertical leaders and a 15" storm drain** for the same size roof. In this way, controlled flow systems are more economical, requiring overall reduced pipe sizes compared to conventional roof drain systems.

Accutrol Design and Sizing Procedure

DESIGN

A. Where roof area to be drained is adjacent to one or more vertical walls projecting above the roof, then a percentage of the area of the walls must be added to the roof area in determining total roof area to be drained.

These may be computed as follows:

- (1) One wall add 50% of wall area
- (2) Two walls add 35% of total wall area
- (3) Two walls opposite of differing heights add 50% of wall area above top of lower wall
- (4) Two walls opposite of same height no add
- (5) Walls on three sides add 50% of inner wall area, below top of lowest wall plus allowance for area of walls above top of lowest wall as in (2) (4)
- (6) Walls on four sides no allowance for areas below top of lowest wall as in (1) (2) (3) (5).
- **B.** Scupper or overflow drains should be installed at a level equal to or slightly higher than the designed maximum head level or at the maximum roof load level.
- C. (1) Drains should be located as close as possible to the downwind end of roof area
 - (2) Drains should not be located at columns or other high points
 - (3) Provide parapets or cant strips above roof level to reduce possibility of spillage in high wind conditions.

SIZING PROCEDURE

- 1 Determine total roof area(s) (individual areas when roof is divided by expansion joints, parapet walls, peaks of sloping roofs, control joints etc. see Design A.
- II Calculate number of roof drains required:
 - (1) Maximum spacing 100 feet
 - (2) No more than 50 feet from roof edge
 - (3) 10,000 sq. ft. maximum area per drain
 - (4) See C (1) & (2) (Local bylaws prevail)
- Calculate number of weirs
 - (1) See Accutrol area selection table page 120
 - (2) Determine roof slope
 - (3) Choose area table (2500, 5000, 7500, or 10,000 sq. ft.) which best meets your design requirements
 - (4) Divide total roof area by area rating to determine number of weirs
 - (5) If number of weirs is greater than drains, locate additional weirs beginning with those drains nearest edge of roof (downwind first)
 - (6) If number of weirs is fractional, add one weir
 - (7) If number of weirs is less than number of drains, add one for each drain.
- IV Calculate weir maximum flow rating see table page 120

Accutrol Design and Sizing Procedure (continued)

- V Size vertical leaders see Table "A" Note: Local bylaw prevails.
- VI Size horizontal drains See Table "B" Note: Local bylaw prevails.

TABLE A

Flow capacity of vertical leaders G.P.M.

÷	MAXIMUM
PIPE	CAPACITY
SIZE	G.P.M.
2"	30
3"	90
4"	190
†5"	348

TABLE B

FLOW CAPACITY OF HORIZONTAL STORM SEWERS

(U.S. Gallons Per Minute)*

	Slope (Inches Per Foot)								
Pipe Size	1/16"	1/8"	1/4"	1/2"					
3"	25	36	51	72					
4"	55	78	111	157					
†5"	100	142	201	284					
6"	163	231	327	462					
8"	352	498	705	996					
10"	638	902	1275	1804					
12"	1035	1467	2076	2934					
15"	1880	2666	3774	5332					
18"	3050	4210	6000						
21"	4760	6670	9500						
24"	6520	9140	13000	-					
30"	11800	16500	23500						
36"	19550	27400	.39000						

Calculations made using Manning's formula for uniform flow in sloping drains using a value of 0.0145 for "N" up to and including 15". Over 15" a value of 0.016 for "N".

 $^{^{\}star}$ To convert gallons per minute to cubic feet per second multiply gpm by 2.228 x 10^3

[†] In some areas 5" drainage pipe may not be available.

Sizing

STANDARD ROOF DRAIN SIZING

There are some general rules to roof drain sizing that make the selection easier. By employing these principles, it is an elementary process in most cases. To eliminate ponding and ensure adequate drainage, it is recommended that two roof drains be installed on roofs with a total area of ten thousand square feet or less. For larger roof areas, the ratio of one drain per every ten thousand square feet should be viewed as the minimum requirement. Always be sure to check with local codes for minimum number of drains and required spacing. The placement of roof drains is also determined by such things as the location of internal structural members, the locations of roof-mounted machinery, and the placement of vertical pipe leaders. Other factors must also be factored into the design, most importantly is of course, the rate of rainfall. The type of roof construction, the height of the parapets, and the slope of the roof all have to be accounted for as well. As a rule of thumb, the roof loading should not exceed 40lbs per square foot. The acceptable safety limit for standing water depth on a roof is three inches. Since our metered flow drainage designs are set up for a three inch maximum, this means roof loading will not exceed 15lbs per square foot.

CONVENTIONAL ROOF DRAIN SIZING

The following procedure will allow one to specify the size and number of roof drains required. The following information must be known before hand:

- local building code requirements
- available rate of drainage through existing drainage system
- locations available for drain placement
- expected rate of rainfall

METHOD FOR DETERMINING SIZE AND NUMBER OF ROOF DRAINS

- Calculate the total area of the roof in square feet.
- 2) Determine the maximum hourly rainfall that can be expected. This information can be found from several sources, including the local building code or meteorological office.
- Select a leader size to start, this can be revised later if design or practical concerns make it necessary.
- 4) From table 1, determine the square footage that can be drained by each vertical leader based on the local maximum expected rainfall.
- 5) Divide the total roof area by the area that one drain is able to handle this will determine the total number of drains required. Note- always round up to the next whole number (e.g. 22.15 drains becomes 23 drains).

TABLE 1

Vertical Leader	Hourly Rainfall in Inches/(mm)					
Sizing In	1(25)	2(51)	3(76)	4(102)	5(127)	6(152)
Inches/(mm)		Roof	Area In Square F	ootage (Square M	eters)	
2(51)	2,880 (268)	1,440 (134)	960 (89)	720 (67)	575 (53)	480 (45)
3(76)	8,800 (818)	4,400 (409)	2,930 (272)	2,200 (204)	1,760 (154)	1,470 (137)
4(102)	18,400 (1709)	9,200 (855)	6,130 (569)	4,600 (427)	3,680 (342)	3,070 (285)
6(152)	54,000 (5017)	27,000 (2508)	17,995 (1672)	13,500 (1254)	10,800 (1003)	9,000 (836)
8(203)	116,000 (10777)	58,000 (5388)	38,660 (3592)	29,000 (2694)	23,200 (2155)	19,315 (1 <i>7</i> 94) .

Sizing (continued)

Example 1:

A building is 500' x 500', and is located where the maximum hourly rainfall is 5-inches. The initial plan calls for 6-inch outlet drains and vertical leaders.

- 1) Calculate total roof area: $(500 \times 500 = 250,000 \text{ sq ft})$.
- 2) From table 1, determine the roof area that one drain can safely handle: (with a 5-inch rainfall a 6-inch leader will safely handle 10,800 sq ft).
- 3) Divide the total roof area by the area that one drain will safely handle: (250,000 / 10,800 = 23.14, round up to 24 drains required).

Note: If 4-inch leaders were selected, each drain could safely handle 3,680 square feet of roof area as shown in table one. Our new calculation would then be (250,000 / 3,680 = 67.93, round up to 68 drains required).

DETERMINING ROOF DRAINAGE REQUIREMENTS BY FLOW RATE IN GALLONS PER MINUTE

The expected flow rate can be calculated by the following formula:

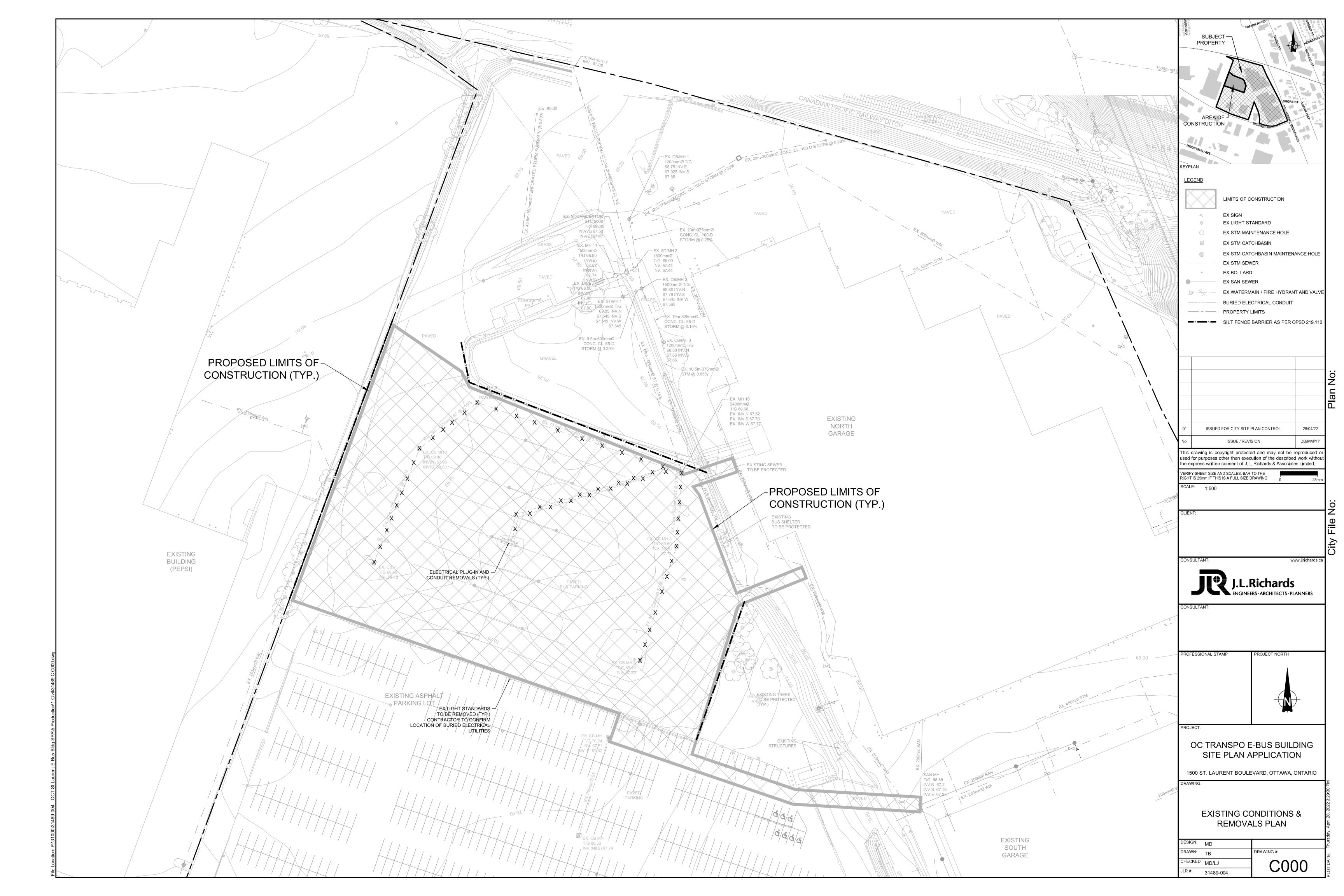
Hourly rainfall in inches x (0.0104) x total roof area in square feet = Flow rate in GPM.

From Example 1: 5-inches \times 0.0104 \times 250,000 = 13,000 GPM

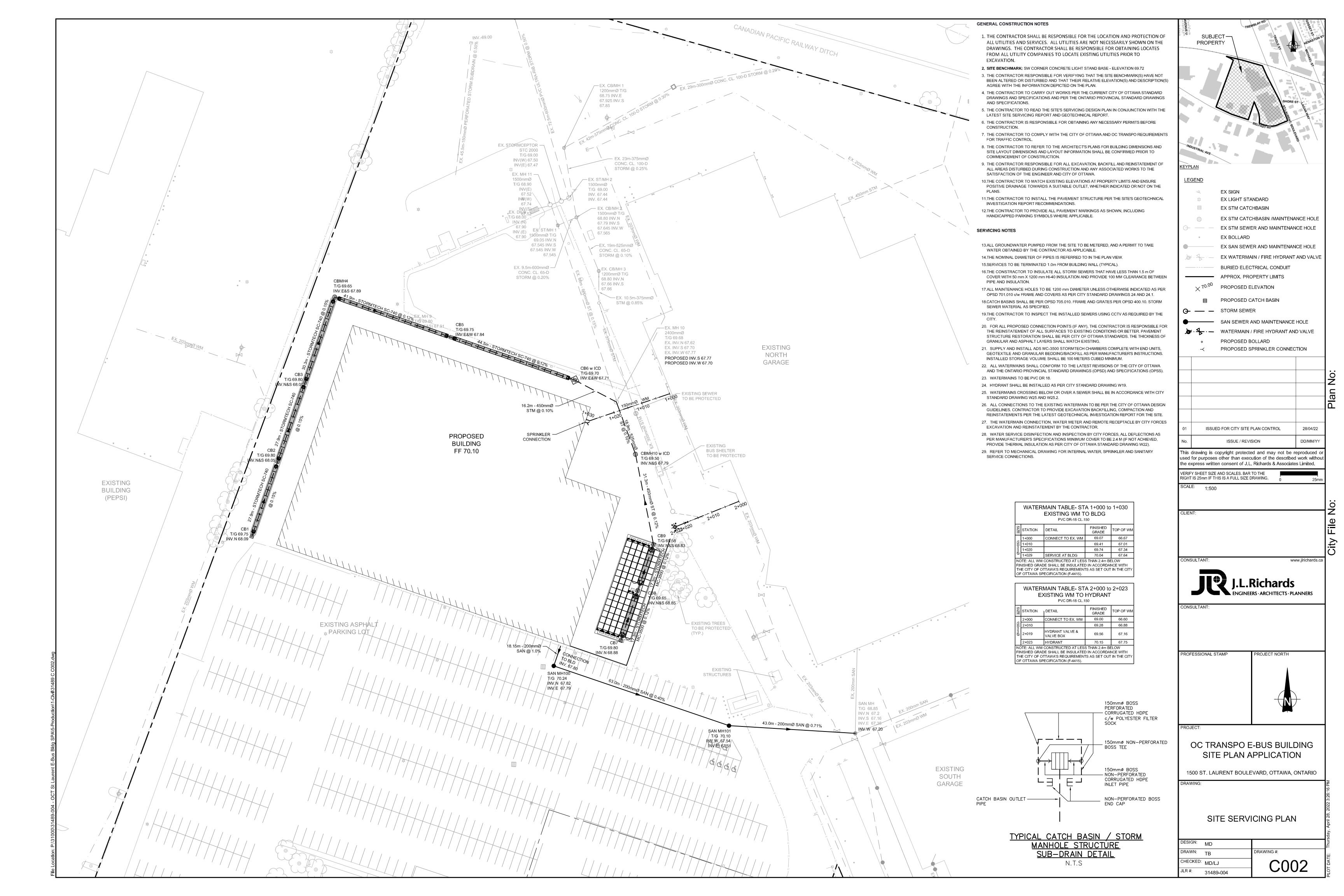
This calculation should be made for every application to ensure the flow from the roof does not exceed the capacity of the existing infrastructure, i.e storm sewer system. Reference table 2 to aid in determining flow capacities.

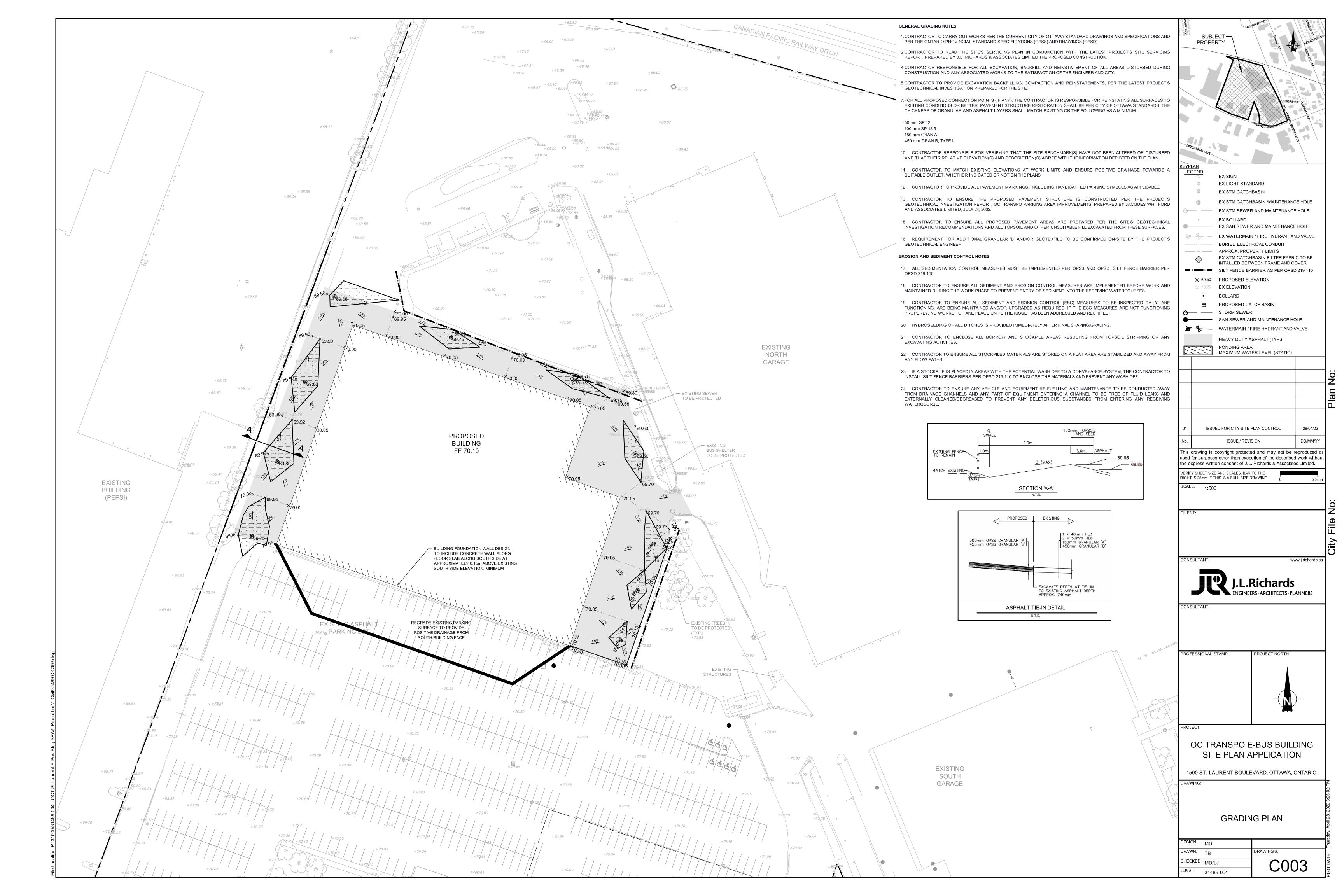
TABLE 2

Pipe Size	Roof Drain And	Horizontal Piping Slope in/ft (mm/m)			
in Inches	Vertical Pipe	1/8(10)	1/4(21)	1/2(42)	
(mm)	Capacity In GPM (L/s)				
3(76)	92(5.8)	34(2.1)	48(3.0)	69(4.3)	
4(102)	192(12.1)	78(4.9)	110(6.9)	157(9.9)	
6(152)	563(35.5)	223(14.1)	315(19.9)	446(28.1)	
8(203)	1,208(76.2)	479(30.2)	679(42.8)	958(60:4)	
10(254)		863(54.4)	1217(76.8)	1725(108.8)	
12(305)		1,388(87.6)	1,958(123.5)	2,775(175.1)	
15(381)		2,479(156.4)	3,500(220.8)	4,958(312.8)	


CONTROLLED FLOW ROOF DRAINAGE SYSTEMS

If conventional, full flow roof drains are used, care must be taken not to over tax the capacity of the existing sewer system If this is a possibility, then a controlled flow roof drain system should be used. In such a system, the roof acts as a reservoir to allow extended drain down times, thus sparing the existing infrastructure from being overloaded in the event of a twenty five or fifty year rain. The Watts Drainage controlled flow rate system (Accutrol) uses proportional weirs to control the rate of flow from the roof. The Accutrol weirs are designed to allow a flow of 5 GPM per inch of standing water per weir slot. This means that with 4-inches of standing water a one-slot weir would allow a flow of 20 GPM. The specially designed weir slots allow a linear increase of flow rate versus water head increase to aid in determination of the flow requirements.


Site Servicing Brief OC Transpo E-bus Parking Garage 1500 St. Laurent Boulevard, Ottawa, ON


Appendix I

Site Development Plans

Site Servicing Brief OC Transpo E-bus Parking Garage 1500 St. Laurent Boulevard, Ottawa, ON

Appendix J

Servicing Study Checklist

OC Transpo E-Bus Parking Garage 1500 St. Laurent Boulevard, Ottawa, ON

DEVELOPMENT SERVICING STUDY CHECKLIST

REFERENCED STUDIES AND REPORTS	REFERENCE
Site Servicing Brief for OC Transpo E-Bus Parking Garage, 1500 St. Laurent Boulevard, Ottawa, ON (J.L. Richards & Associates Limited, April 28, 2022)	SSB

4.1	GENERAL CONTENT	REFERENCE
	Executive Summary (for larger reports only).	N/A
\boxtimes	Date and revision number of the report.	SSB (Title Page)
\boxtimes	Location map and plan showing municipal address, boundary, and layout of proposed development.	SSB (Figure 1) Site Development Plans
	Plan showing the site and location of all existing services.	Site Development Plans
\boxtimes	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	SSB (Section 1.0)
	Summary of Pre-consultation Meetings with City and other approval agencies.	SSB (Section 1.0, Appendix 'A')
	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	N/A
	Statement of objectives and servicing criteria.	SSB (Section 1.0, 2.0, 3.0, 4.0, 5.0)
\boxtimes	Identification of existing and proposed infrastructure available in the immediate area.	SSB (Section 1.0, 2.0, 3.0, 4.0) Site Development Plans
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A
	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	Site Development Plans

Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
Proposed phasing of the development, if applicable.	N/A
Reference to geotechnical studies and recommendations concerning servicing.	Geotechnical report by Jacques Whitford dated July 24, 2002
All preliminary and formal site plan submissions should have the following information: Metric scale North arrow (including construction North) Key plan Name and contact information of applicant and property owner Property limits, including bearings and dimensions Existing and proposed structures and parking areas Easements, road widening and rights-of-way Adjacent street names	Site Development Plans

4.2	DEVELOPMENT SERVICING REPORT: WATER	REFERENCE
	Confirm consistency with Master Servicing Study, if available.	N/A
\boxtimes	Availability of public infrastructure to service proposed development.	SSB (Section 1.0, 2.0) Site Development Plans
\boxtimes	Identification of system constraints.	SSB (Section 2.0)
\boxtimes	Identify boundary conditions.	SSB (Section 2.0, Appendix 'D')
\boxtimes	Confirmation of adequate domestic supply and pressure.	SSB (Section 2.0)
	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	SSB (Section 2.0, Appendix 'D')
	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	SSB (Section 2.0)
	Definition of phasing constraints. Hydraulic modelling is required to confirm servicing for all defined phases of the project, including the ultimate design.	N/A
	Address reliability requirements, such as appropriate location of shutoff valves.	SSB (Section 2.0)
	Check on the necessity of a pressure zone boundary modification.	N/A

	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range.	SSB (Section 2.0, Appendix 'D')
	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants), including special metering provisions.	SSB (Section 2.0)
	Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A
	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	SSB (Section 2.0)
\boxtimes	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	SSB (Appendix 'D')

4.3	DEVELOPMENT SERVICING REPORT: WASTEWATER	REFERENCE
	Summary of proposed design criteria (Note: Wet weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	SSB (Section 3.0, Appendix 'E')
	Confirm consistency with Master Servicing Study and/or justifications for deviations.	N/A
	Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the Guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	N/A
	Description of existing sanitary sewer available for discharge of wastewater from proposed development.	SSB (Section 1.0, 3.0) Site Development Plans
	Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable.)	SSB (Section 3.0, Appendix 'E')
	Calculations related to dry weather and wet weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	SSB (Appendix 'E')
	Description of proposed sewer network, including sewers, pumping stations and forcemains.	SSB (Section 3.0) Site Development Plans

Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	N/A
Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A
Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A
Special considerations, such as contamination, corrosive environment, etc.	N/A

4.4	DEVELOPMENT SERVICING REPORT: STORMWATER	REFERENCE
	Description of drainage outlets and downstream constraints, including legality of outlets (i.e., municipal drain, right-of-way, watercourse, or private property).	SSB (Section 1.0, 4.0)
\boxtimes	Analysis of available capacity in existing public infrastructure.	SSB (Section 4.0)
\boxtimes	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Site Development Plans
	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	SSB (Section 4.0)
	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	SSB (Section 4.0)
\boxtimes	Description of the stormwater management concept with facility locations and descriptions with references and supporting information.	SSB (Section 4.0) Site Development Plans
	Setback from private sewage disposal systems.	N/A
	Watercourse and hazard lands setbacks.	N/A
	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	SSB (Appendix 'A' and 'B')

	<u> </u>	,
	Confirm consistency with subwatershed and Master Servicing Study, if applicable study exists.	N/A
	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:2 year return period) and major events (1:100 year return period).	SSB (Section 4.0)
	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	N/A
	Calculate pre- and post-development peak flow rates, including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	SSB (Section 4.0)
\boxtimes	Any proposed diversion of drainage catchment areas from one outlet to another.	SSB (Section 4.0)
	Proposed minor and major systems, including locations and sizes of stormwater trunk sewers, and stormwater management facilities.	Site Development Plans
	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.	Quantity control proposed per SSB (Section 4.0)
	Identification of potential impacts to receiving watercourses.	N/A
	Identification of municipal drains and related approval requirements.	N/A
	Description of how the conveyance and storage capacity will be achieved for the development.	SSB (Section 4.0)
	100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	SSB (Section 4.0), Site Development Plans
	Inclusion of hydraulic analysis, including hydraulic grade line elevations.	SSB (Section 4.0)
	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Site Development Plans
	Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A
	Identification of fill constraints related to floodplain and geotechnical investigation.	N/A

4.5	APPROVAL AND PERMIT REQUIREMENTS	REFERENCE	
develop	The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development, as well as the relevant issues affecting such approval. The approval and permitting shall include but not be limited to the following:		
	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams, as defined in the Act.	N/A	
	Application for Environmental Compliance Approval (ECA) under the Ontario Water Resources Act.	Direct submission for amendment for ECA	
	Changes to Municipal Drains.	N/A	
	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation, etc.).	N/A	

4.6	CONCLUSION CHECKLIST	REFERENCE
\boxtimes	Clearly stated conclusions and recommendations.	SSB (Section 2.7,5.0)
	Comments received from review agencies, including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	RVCA
	All draft and final reports shall be signed and stamped by a Professional Engineer registered in Ontario.	SSB Site Development Plans

www.jlrichards.ca

Ottawa

864 Lady Ellen Place Ottawa ON Canada K1Z 5M2 Tel: 613 728-3571

ottawa@jlrichards.ca

Kingston

203-863 Princess Street Kingston ON Canada K7L 5N4 Tel: 613 544-1424

kingston@jlrichards.ca

Sudbury

314 Countryside Drive Sudbury ON Canada P3E 6G2 Tel: 705 522-8174

sudbury@jlrichards.ca

Timmins

834 Mountjoy Street S Timmins ON Canada P4N 7C5

Tel: 705 360-1899

timmins@jlrichards.ca

North Bay

501-555 Oak Street E North Bay ON Canada P1B 8E3 Tel: 705 495-7597

northbay@jlrichards.ca

Hawkesbury

326 Bertha Street Hawkesbury ON Canada K6A 2A8 Tel: 613 632-0287

hawkesbury@jlrichards.ca

Guelph

107-450 Speedvale Ave. West Guelph ON Canada N1H 7Y6

Tel: 519 763-0713

guelph@jlrichards.ca

