

March 11, 2022

Taryn Glancy, P.Eng., LEED GA Brownfields Coordinator Zibi Project Windmill Dream Ontario Holding LP 6 Booth St (Albert Island) Ottawa, ON K1R 6K8

TGlancy@zibi.ca

Project Name: Site Redevelopment – Zibi Property, West Chaudière (Part of 4 Booth Street), City

of Ottawa, ON

EXP Project Number: OTT-00250193-S0

Subject: Current Site Environmental Status – Blocks 201 to 205B

EXP Services Inc. (EXP) was retained by Windmill-Dream Ontario Holdings LP to file Record of Site Conditions (RSC) with the Ministry of the Environment, Conservation and Parks (MECP) for a piece of property on West Chaudière Island, referred to as Blocks 201 to 205B, in Ottawa, Ontario. A site plan showing the approximate locations of each Block is provided as Figure 1.

RSC are required because the property was formerly used for industrial purposes (specifically, a pulp and paper mill was in operation on the property) and is now being redeveloped for residential and commercial purposes.

An updated Phase I ESA has been completed for Blocks 204 and 205B. Part of Block 204 (which is indicated as Block 204A on Figure 1) has already been remediated and the RSC for this part of the property will be filed in 2022. The remainder of Block 204 and Block 205B will be remediated in 2023, and an RSC submitted in 2024. Blocks 201 to 203 will be remediated following completion of the work at Blocks 204 and 205.

Soil and Groundwater Sampling

Pre-remediation soil sampling has been completed for the entire site. Pre-remediation groundwater sampling has been completed for Blocks 204 and Block 205B. Post-remediation groundwater sampling has been completed for the part of Block 204 that has been remediated.

Soil and groundwater samples were collected and submitted for laboratory analysis of petroleum hydrocarbons (PHC), volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), and metals.

For assessment purposes, EXP selected the Site Condition Standards (SCS), provided in Tables 7 and 9 of the document entitled *Soil, Groundwater and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act*, Ministry of the Environment, Conservation and Parks (MECP), 2011 for a residential/parkland/institutional property use and coarse textured soils. The Table 7 SCS are applicable for properties where the depth to bedrock is less than 2 metres from ground surface, while the Table 9 SCS are applicable for properties that are within 30 metres of a surface water body. Both conditions apply to the subject property, so both sets of SCS apply.

Part of Block 204 (shown as Block 204A on Figure 1)

This part of thee property is currently being used as a staging area for the construction of an underground parking garage.

Current Site Environmental Status – Blocks 201 to 205B Site Redevelopment – Zibi Property, West Chaudière Island, City of Ottawa, Ontario OTT-00250193-S0 March 11, 2022

Between March 29 and March 31, 2021, part of Block 204 was remediated by excavating and disposing all soil that was on the property. Crushed stone was used to backfill the remedial excavation. No imported soil fill was brought to this part of the property following remediation activities. Three post-remediation monitoring wells were installed on the site. Two rounds of post-remediation groundwater sampling have been completed and results are provided in Tables 1 to 3.

There were no exceedances of the Table 7 or Table 9 SCS, therefore no additional remediation activities are required. It is anticipated that the RSC for this part of Block 204 will be filed shortly.

Remainder of Block 204 and Block 205B

Pre-remediation soil and groundwater sampling has been completed for the part of Block 204 that has not been remediated and Block 205B. Eight boreholes were installed on the property, all of which were completed as monitoring wells. The depth to bedrock ranged from 1.1 to 3.6 metres below ground surface. Pre-remediation soil and groundwater analytical results are provided in Tables 4 to 9.

After the completion of construction on the adjacent buildings to the east, all soil from this part of the property will be removed and disposed of off-site at a licensed landfill. Following remedial activities, post-remediation monitoring wells will be installed on the RSC property. Two rounds of post-remediation groundwater sampling will be completed, at least 90 days apart. One sample from each monitoring well will be submitted for laboratory analysis of VOC, PHC, PAH, PCB, and metals.

Once the data are received and EXP confirms that there are no exceedances of the Table 7 or Table 9 SCS, which would indicate that no further remediation activities are deemed to be warranted, the Phase II ESA report will be completed. It is anticipated that the RSC for the remainder of Block 204 and Block 205B will be submitted to the MECP in 2024.

Blocks 201, 202, 203

The property is currently used as a parking lot for vehicles associated with construction activities on West Chaudière Island.

Pre-remediation soil sampling has been completed for Blocks 201 to 203. Six boreholes were installed on the property, all of which were completed as monitoring wells. The depth to bedrock ranged from 1.0 to 9.8 metres below ground surface All surficial soil consisted of sand and gravel fill material.

Remediation activities for Blocks 201 to 203 are anticipated to start in 2024. Pre-remediation soil results are provided in Tables 4 to 6. Pre-remediation groundwater samples will be collected prior to commencing remediation activities.

We trust this status update meets your current needs. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

Sincerely,

EXP Services Inc.

Lean Wells, P.Eng. Environmental Engineer Earth and Environment Patricia Stelmack, M.Sc., P.Eng. Senior Environmental Engineer Earth and Environment

Attachments: Appendix A – Figures Appendix B – Tables

EXP Services Inc.

Current Site Environmental Status – Blocks 201 to 205B Site Redevelopment – Zibi Property, West Chaudière Island, City of Ottawa, Ontario OTT-00250193-S0 March 11, 2022

Appendix A – Figures

EXP Services Inc.

Current Site Environmental Status – Blocks 201 to 205B Site Redevelopment – Zibi Property, West Chaudière Island, City of Ottawa, Ontario OTT-00250193-S0 March 11, 2022

Appendix B - Tables

Table 1 - Post -Remediation Analytical Results in Groundwater - PHC and VOC Block 204A, West Chaudière Island, Ottawa, Ontario OTT 00250193 PD

OTT-00250193-P0															
Parameter		MECP Table 9 ¹	MECP Table 7 ²	MW21-01	MW21-01	MW21-02	MW21-02	Duplicate (Field Duplicate MW21-02)	MW21-03	MW21-03	D206 (Field Duplicate)	FB23	Field Blank	TB23	Trip Blank
Sampling Date	Units			31-Aug-2021	16-Feb-2022	23-Aug-2021	6-Jan-2022	6-Jan-2022	23-Aug-2021	19-Jan-2022	23-Aug-2021	23-Aug-2021	6-Jan-2022	23-Aug-2021	6-Jan-2022
Screen Depth (mbgs)				3.0 to 6.1	3.0 to 6.1	3.6 to 6.7	3.6 to 6.7	3.6 to 6.7	3.0 to 6.1	3.0 to 6.1	3.0 to 6.1	N/A	N/A	N/A	N/A
Paracel ID		Bold	Dark Orange	2136274-03	2208458-01	2135219-01	2202236-01	2202236-02	2135221-02	2204302-01	2135221-01	2135216-01	2202236-03	2135216-02	2202236-04
Analysis Date			Ŭ	2-Sep-2021	22-Feb-2022	26-Aug-2021	8-Jan-2022	8-Jan-2022	26-Aug-2021	21-Jan-2022	26-Aug-2021	26-Aug-2021	8-Jan-2022	26-Aug-2021	8-Jan-2022
Paracel Certificate of Analysis				2136274	2208458	2135219	2202236	2202236	2135221	2204302	2135221	2135216	2202236	2135216	2202236
Volatile Organic Compounds		•		•		•	•		•	•	•	•	•	•	•
Acetone	ug/L	100000	100000	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)				
Benzene	ug/L	44	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
Bromodichloromethane	ug/L	67000	67000	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
Bromoform	ug/L	380	5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
Bromomethane	ug/L	5.6	0.89	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
Carbon Tetrachloride	ug/L	0.79	0.2	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)				
Chlorobenzene	ug/L	500.00	140	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
Chloroform	ug/L	2.4	2	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
Dibromochloromethane	ug/L	65000	65000	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
Dichlorodifluoromethane	ug/L	3500	3500	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)				
1,2-Dichlorobenzene	ug/L	4600	150	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
1,3-Dichlorobenzene	ug/L	7600	7600	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
1,4-Dichlorobenzene	ug/L	8	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
1,1-Dichloroethane	ug/L	320	11	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
1,2-Dichloroethane	ug/L	1.6	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
1.1-Dichloroethylene	ug/L	1.6	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
cis-1,2-Dichloroethylene	ug/L	1.6	1.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
trans-1,2-Dichloroethylene	ug/L	1.6	1.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
1,2-Dichloropropane	ug/L	16	0.58	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
cis-1,3-Dichloropropylene	ug/L	NV	NV	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
trans-1,3-Dichloropropylene	ug/L	NV	NV	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
1,3-Dichloropropene, total	ug/L	5.2	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
Ethylbenzene	ug/L	1800	54	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
Ethylene dibromide (dibromoethane, 1,2-)	ug/L	0.25	0.2	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)				
Hexane	ug/L	51	5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.2)	ND (1.0)	ND (1.0)	ND (1.0)				
Methyl Ethyl Ketone (2-Butanone)	ug/L	470000	21000	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)				
Methyl Isobutyl Ketone	ug/L	140000	5200	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)				
Methyl tert-butyl ether	ug/L	190	15	ND (2.0)	ND (2.0)	ND (3.0)	ND (3.0)	ND (3.0)	ND (3.0)	ND (2.0)	ND (3.0)	ND (2.0)	ND (2.0)	ND (3.0)	ND (3.0)
Methylene Chloride	ug/L	610	26	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	7.2	ND (5.0)	15.9				
Styrene	ug/L	1300	43	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
1,1,1,2-Tetrachloroethane	ug/L	3.3	1.1	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
1.1.2.2-Tetrachloroethane	ug/L	3.2	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
Tetrachloroethylene	ug/L ug/L	1.6	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
Toluene	ug/L	14000	320	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
1.1.1-Trichloroethane	_	640	23	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)				
1,1,1-1 richloroethane	ug/L ug/L	4.7	0.5	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Trichloroethylene	ug/L ug/L	1.6	0.5	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Trichloroethylene Trichlorofluoromethane		2000	2000	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)				
Vinvl Chloride	ug/L	0.5	0.50	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)				
m/p-Xvlene	ug/L ug/L	0.5 NV	0.50 NV	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
1 7		NV NV	NV NV	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
o-Xylene	ug/L	3300		ND (0.5)	(/	ND (0.5) ND (0.5)	(/		ND (0.5) ND (0.5)	(/	(/	ND (0.5) ND (0.5)	(/	ND (0.5) ND (0.5)	(/
Xylenes, total	ug/L	3300	72	עט (0.5)	ND (0.5)	אט (0.5)	ND (0.5)	ND (0.5)	אט (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	(0.5) שא	ND (0.5)
Petroleum Hydrocarbons		/22	100	ND (05)	ND (05)	ND (05)	ND (CE)	ND (OE)	ND (OF)	ND (05)	ND (OE)	ND (25)	ND (05)	ND (05)	ND (25)
F1 PHC (C6 - C10) - BTEX*	ug/L	420	420	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)				
F2 PHC (C10-C16)	ug/L	150	150	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	N/A	ND (100)				
F3 PHC (C16-C34)	ug/L	500	500	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	N/A	ND (100)				
F4 PHC (C34-C50)** NOTES:	ug/L	500	500	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	N/A	ND (100)				

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic Site Condition Standards for Use within 30 m of a Water Body in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property L

(coarse textured soils)
F1 fraction does not include BTEX.

In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is the highest value obtained via the gas chromatograph/flame ionization detection method or the gravimetric method.

Non-detectable results are shown as "ND (RDL)" where RDL

NV No Value
N/A Not Applicable
- Parameter not analyzed

m bgs Metres below ground surface

Table 2 - Post-Remediaiton Analytical Results in Groundwater - PAH and PCB Block 204A, West Chaudière Island, Ottawa, Ontario

OTT-00250193-P0		1	1			•	1	1		_	1			
Parameter		MECP Table 9 ¹	MECP Table 7 ²	MW21-01	MW21-01	MW21-02	MW21-02	D206 (Field Duplicate MW21-02)	MW21-03	MW21-03	D206 (Field Duplicate MW21-03)	FB23	Trip Blank	Field Blank
Sampling Date	Units			14-Sep-2021	16-Feb-2022	23-Aug-2021	12-Jan-2021	12-Jan-2022	23-Aug-2021	19-Jan-2022	23-Aug-2021	23-Aug-2021	15-Dec-2021	12-Jan-2022
Screen Depth (mbgs)				3.0 to 6.1	3.0 to 6.1	3.6 to 6.7	3.6 to 6.7	3.6 to 6.7	3.0 to 6.1	3.0 to 6.1	3.0 to 6.1	N/A	N/A	N/A
Paracel ID		Bold	Dark Orange	2136274-03	2208458-01	2135219-01	2203311-01	2203311-02	2135221-02	2204302-01	2135221-01	2135216-01	2203309-01	2203309-02
Analysis Date				20-Sep-2021	22-Feb-2022	3-Sep-2021	18-Jan-2022	18-Jan-2022	26-Aug-2021	21-Jan-2021	26-Aug-2021	26-Aug-2021	18-Jan-2021	18-Jan-2021
Paracel Certificate of Analysis				2138370	2208458	2135219	2203311	2203311	2135221	2204302	2135221	2135216	2203309	2203309
Semi-Volatiles														
Acenaphthene	ug/L	600	17	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)				
Acenaphthylene	ug/L	1.4	1	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)				
Anthracene	ug/L	1	1	ND (0.01)	0.01	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Benzo[a]anthracene	ug/L	1.8	1.8	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)				
Benzo[a]pyrene	ug/L	0.81	0.81	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)				
Benzo[b]fluoranthene	ug/L	0.75	0.75	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)				
Benzo[g,h,i]perylene	ug/L	0.2	0.2	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)				
Benzo[k]fluoranthene	ug/L	0.4	0.4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)				
Chrysene	ug/L	0.7	0.7	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)				
Dibenzo[a,h]anthracene	ug/L	0.4	0.4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)				
Fluoranthene	ug/L	73	44	0.06	0.05	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Fluorene	ug/L	290	290	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)				
Indeno[1,2,3-cd]pyrene	ug/L	0.2	0.2	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)				
1-Methylnaphthalene	ug/L	1500	1500	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)				
2-Methylnaphthalene	ug/L	1500	1500	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)				
Methylnaphthalene (1&2)	ug/L	1500	1500	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)				
Naphthalene	ug/L	1400	7	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)				
Phenanthrene	ug/L	380	380	ND (0.05)	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Pyrene	ug/L	5.7	5.7	0.05	0.05	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
PCBs	-							•		. ,				
PCBs Total	ug/L	0.2	0.2	ND (0.05)	ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic Site Condition Standards for Use within 30 m of a Water Body in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for

Residential/Parkland/Institutional Property Use (coarse textured soils)

Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting ND No Value

NV N/A Not Applicable

Parameter not analyzed

Metres below ground surface m bgs

Table 3 - Post-Remediation Analytical Results in Groundwater - Inorganics Block 204A, West Chaudière Island, Ottawa, Ontario OTT-00250193-P0

					1								
	MECP Table 9 ¹	MECP Table 7 ²	MW21-01	MW21-01	Duplicate (Duplicate MW21- 01)	MW21-02	MW21-02	MW21-03	D206 (Duplicate)	MW21-03	FB23	Field Blank	Trip Blank
Units			31-Aug-2021	21-Dec-2021	21-Dec-2021	23-Aug-2021	22-Dec-2021	23-Aug-2021	23-Aug-2021	19-Jan-2022	23-Aug-2021	21-Dec-2021	15-Dec-2021
			3.0 to 6.1	3.0 to 6.1	3.0 to 6.1	3.6 to 6.7	3.6 to 6.7	3.0 to 6.1	3.0 to 6.1	3.0 to 6.1	N/A	N/A	N/A
	Bold	Dark Orange	2136274-03	2152337-01	2152337-01	2135219-02	2152337-03	2135221-02	2135221-01	2204302-01	2135216-01	2152337-04	2152337-05
			2-Sep-2021	23-Dec-2021	23-Dec-2021	25-Aug-2021	23-Dec-2021	25-Aug-2021	25-Aug-2021	21-Jan-2021	25-Aug-2021	23-Dec-2021	23-Dec-2021
			2136274	2152337	2152337	2135219	2152337	2135221	2135221	2204302	2135216	2152337	2152337
ug/L	16000	16000	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
ug/L	1500	1500	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	4	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)
ug/L	23000	23000	644	595	615	225	179	210	226	195	ND (1)	ND (1)	ND (1)
ug/L	53	53	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
ug/L	36000	36000	698	747	748	217	222	143	213	94	ND (10)	ND (10)	ND (10)
ug/L	2.1	2.1	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
ug/L	640	640	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)
ug/L	110	110	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
ug/L	52	52	0.9	ND (0.5)	ND (0.5)	1.3	0.5	1.9	1.2	0.6	ND (0.5)	ND (0.5)	ND (0.5)
ug/L	69	69	2.0	1.2	1.1	ND (0.5)	1.2	0.9	ND (0.5)	ND (0.5)	ND (0.5)	1.7	ND (0.5)
ug/L	20	20	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	0.1	ND (0.1)
ug/L	0.29	0.1	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
ug/L	7300	7300	5.4	3.5	3.5	2.1	4.9	5.0	2.1	1.7	ND (0.5)	ND (0.5)	ND (0.5)
ug/L	390	390	4	4	4	3	4	6	3	3	ND (1)	ND (1)	ND (1)
ug/L	50	50	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)
ug/L	1.2	1.2	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
ug/L	1800000	1800000	348000	342000	348000	648000	462000	632000	630000	463000	ND (200)	ND (200)	ND (200)
ug/L	400	400	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
ug/L	330	330	1.0	1.2	1.2	0.3	11.8	9.2	0.3	3.3	ND (0.1)	ND (0.1)	ND (0.1)
ug/L	200	200	ND (0.5)	ND (0.5)	ND (0.5)	0.7	ND (0.5)	1.7	0.7	0.5	ND (0.5)	ND (0.5)	ND (0.5)
ug/L	890	890	11	ND (5)	ND (5)	ND (5)	ND (5)	7	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
	•				. (/					. ,		,	. ,
ua/L	6 to9	6 to 9	-	-	-	-	6.8	-	-	7.6	-	-	-
ug/L	52	52	ND (2)	ND (2)	-	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	_	-
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Units Units Bold	Units Bold Dark Orange ug/L 16000 16000 ug/L 1500 1500 ug/L 23000 23000 ug/L 53 53 ug/L 36000 36000 ug/L 2.1 2.1 ug/L 640 640 ug/L 110 110 ug/L 52 52 ug/L 69 69 ug/L 0.29 0.1 ug/L 7300 7300 ug/L 390 390 ug/L 50 50 ug/L 1.2 1.2 ug/L 1.2 1.2 ug/L 330 330 ug/L 330 330 ug/L 300 200 ug/L 890 890	Dark Orange	Units 31-Aug-2021 21-Dec-2021 Bold Dark Orange 31-Aug-2021 21-Dec-2021 3.0 to 6.1 3.0 to 6.1 3.0 to 6.1 2136274-03 2152337-01 2-Sep-2021 23-Dec-2021 2136274 2152337 ug/L 1500 ND (0.5) ND (0.5) ug/L 23000 23000 ND (0.5) ND (0.5) ug/L 53 53 ND (0.5) ND (0.5) ug/L 36000 36000 698 747 ug/L 2.1 2.1 ND (0.1) ND (0.5) ug/L 640 640 ND (1) ND (1) ND (0.1) ug/L 52 52 0.9 ND (0.5) ND (0.5) ug/L 69 69 2.0 1.2 ug/L 0.29 0.1 ND (0.1) ND (0.1) ug/L 7300 7300 5.4 3.5 ug/L 390 390 4 4 <td> MECP Table 9</td> <td>Units MECP Table 9 ¹ MECP Table 7 ² MW21-01 MW21-01 (Duplicate MW21-01) (01) MW21-02 (01) Bold Jank Orange 31-Aug-2021 21-Dec-2021 21-Dec-2021 23-Aug-2021 2.30 to 6.1 3.0 to 6.1 3.0 to 6.1 3.0 to 6.1 3.6 to 6.7 2.35ep-2021 23-Dec-2021 23-Dec-2021 23-Dec-2021 25-Aug-2021 2.35ep-2021 23-Dec-2021 23-Dec-2021 25-Aug-2021 25-Aug-2021 ug/L 16000 16000 ND (0.5) ND (0.5)<td> Units</td><td> Units</td><td> Units</td><td> Units Hard Pable 9.1 MECP Table 9.1 MW21-01 MW21-01 MW21-02 MW21-02 MW21-03 MW21-03 </td><td> Units</td><td> MECP Table 9</td></td>	MECP Table 9	Units MECP Table 9 ¹ MECP Table 7 ² MW21-01 MW21-01 (Duplicate MW21-01) (01) MW21-02 (01) Bold Jank Orange 31-Aug-2021 21-Dec-2021 21-Dec-2021 23-Aug-2021 2.30 to 6.1 3.0 to 6.1 3.0 to 6.1 3.0 to 6.1 3.6 to 6.7 2.35ep-2021 23-Dec-2021 23-Dec-2021 23-Dec-2021 25-Aug-2021 2.35ep-2021 23-Dec-2021 23-Dec-2021 25-Aug-2021 25-Aug-2021 ug/L 16000 16000 ND (0.5) ND (0.5) <td> Units</td> <td> Units</td> <td> Units</td> <td> Units Hard Pable 9.1 MECP Table 9.1 MW21-01 MW21-01 MW21-02 MW21-02 MW21-03 MW21-03 </td> <td> Units</td> <td> MECP Table 9</td>	Units	Units	Units	Units Hard Pable 9.1 MECP Table 9.1 MW21-01 MW21-01 MW21-02 MW21-02 MW21-03 MW21-03	Units	MECP Table 9

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic Site Condition Standards for Use within 30 m of a Water Body in a Non-Potable Ground Water Condition for

Residential/Parkland/Institutional Property Use (coarse textured soils)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for

Residential/Parkland/Institutional Property Use (coarse textured soils)

Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting ND NV No Value

N/A Not Applicable

m bgs

Not Applicable
Parameter not analyzed
Metres below ground surface
Indicates groundwater exceedance of MECP Table 9 SCS for coarse textured soil and residential/parkland/institutional property use
Indicates groundwater exceedance of MECP Table 7 SCS for coarse textured soil and residential/parkland/institutional property use

Table 4 - Pre-Remediation Analytical Results in Soil - PHC and VOC Blocks 201 to 203, 204B and 205B, West Chaudiere Island, Ottawa, Ontario OTT-00250193-S0

							Block 205B			
					I	1	BIOCK 200B		1	
Parameter		MECP Table 9 1	MECP Table 7 ²	MW21-101-01	MW21-101-05	MW21-102-SS3	MW21-103-01	MW21-103-04	MW21-104-SS1	MW21-105-SS2
	Units	WECF Table 9	WIECF Table 7	WWV21-101-01	WIVV21-101-05	WW21-102-553	WW21-103-01	WW21-103-04	WW21-104-551	WW21-105-552
Complian But	4			40.1404	40.1404	40.0 04	45.14 04	45.1404	44.0 04	44.5
Sampling Date Sample Depth (mbgs)		Bold	Orange	19-Mar-21 0.6 to 1.2	19-Mar-21 3.0 to 3.3	16-Dec-21 1.5 to 2.1	15-Mar-21 0.6 to 1.2	15-Mar-21 2.4 to 2.7	14-Dec-21 0.7 to 1.3	14-Dec-21 1.5 to 2.1
Volatile Organic Compounds		Dolu	Orange	0.6 to 1.2	3.0 to 3.3	1.5 t0 2.1	0.6 to 1.2	2.4 10 2.7	0.7 to 1.3	1.5 to 2.1
Acetone	ug/g dry	0.5	16	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Benzene	ug/g dry	0.02	0.21	ND (0.02)	ND (0.00)	ND (0.00)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.00)
Bromodichloromethane	ug/g dry	0.02	13	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Bromoform	ug/g dry	0.05	0.27	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Bromomethane	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Carbon Tetrachloride	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Chlorobenzene	ug/g dry	0.05	2.4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Chloroform	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Dibromochloromethane	ug/g dry	0.05	9.4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Dichlorodifluoromethane	ug/g dry	0.05	16	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,2-Dichlorobenzene	ug/g dry	0.05	3.4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,3-Dichlorobenzene	ug/g dry	0.05	4.8	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,4-Dichlorobenzene	ug/g dry	0.05	0.083	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,1-Dichloroethane	ug/g dry	0.05	3.5	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,2-Dichloroethane	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,1-Dichloroethylene	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
cis-1,2-Dichloroethylene	ug/g dry	0.05	3.4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
trans-1,2-Dichloroethylene	ug/g dry	0.05	0.084	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,2-Dichloropropane	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
cis-1,3-Dichloropropylene	ug/g dry	NV	NV	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
trans-1,3-Dichloropropylene	ug/g dry	NV	NV	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,3-Dichloropropene, total	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Ethylbenzene	ug/g dry	0.05	2	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	<u>0.26</u>
Ethylene dibromide (dibromoethane, 1,2-)	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Hexane	ug/g dry	0.05	2.8	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Methyl Ethyl Ketone (2-Butanone)	ug/g dry	0.5	16	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Methyl Isobutyl Ketone	ug/g dry	0.5	1.7	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Methyl tert-butyl ether	ug/g dry	0.05	0.75	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Methylene Chloride	ug/g dry	0.05	0.1	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Styrene	ug/g dry	0.05	0.7	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,1,1,2-Tetrachloroethane	ug/g dry	0.05 0.05	0.058	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
1,1,2,2-Tetrachloroethane	ug/g dry	0.05	0.5 0.28	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
Tetrachloroethylene Toluene	ug/g dry ug/g dry	0.05	2.3	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	0.08
1,1,1-Trichloroethane	ug/g dry ug/g dry	0.2	0.38	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1.1.2-Trichloroethane	ug/g dry ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Trichloroethylene	ug/g dry ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Trichlorofluoromethane	ug/g dry	0.05	4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Vinyl Chloride	ug/g dry	0.02	0.02	ND (0.02)	ND (0.03)					
m/p-Xylene	ug/g dry	NV	NV	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.51
o-Xylene	ug/g dry	NV	NV	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.41
Xvlenes, total	ug/g dry	0.05	3.1	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.92
Petroleum Hydrocarbons		0.00	· · · ·	(0.00)	(0.00)	1.2 (0.00)	(0.00)	(0.00)	1.2 (0.00)	7.72
F1 PHC (C6 - C10) - BTEX*	ug/g dry	25	55	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)
F2 PHC (C10-C16)	ug/g dry	10	98	ND (4)	ND (4)	298	ND (40)	ND (4)	ND (4)	ND (4)
F3 PHC (C16-C34)	ug/g dry	240	300	75	79	2950	1580	218	149	216
F4 PHC (C34-C50)**	ug/g dry	120	2800	61	40	1090	960	40	173	228
	~g,g ~.j			· .		<u></u>			<u></u>	

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic Site Condition Standards for Use within 30 m of a Water Body in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for

Residential/Parkland/Institutional Property Use (coarse textured soils) F1 fraction does not include BTEX.

In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is the highest value obtained via the gas chromatograph/flame ionization detection method or the gravimetric

method. Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit.

No Value

Not Applicable

Parameter not analyzed

m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 9 SCS for coarse textured soil and residential/parkland/institutional property use Indicates soil exceedance of MECP Table 7 SCS for coarse textured soil and

Table 4 - Pre-Remediation Analytical Results in Soil - PHC and VOC Blocks 201 to 203, 204B and 205B, West Chaudiere Island, Ottawa, Ontario OTT-00250193-S0

Parameter														
	Units	MECP Table 9 ¹	MECP Table 7 ²	MW21-106-SS1	MW21-107-G1	D204 (Field Duplicate MW21-107-SS1)	MW21-108-SS1	MW21-111-G1	MW21-112-SS3	MW21-113-SS3	MW21-114-SS3	MW21-115-G1	D201 (Field Duplicate MW21-115-G1)	MW21-116-SS1
Sampling Date	1			14-Dec-21	13-Dec-21	13-Dec-21	15-Dec-21	13-Dec-21	13-Dec-21	10-Dec-2021	10-Dec-2021	10-Dec-2021	10-Dec-2021	10-Dec-2021
Sample Depth (mbgs)		Bold	Orange	0.7 to 1.1	0.0 to 0.6	0.0 to 0.6	0.7 to 1.3	0.0 to 0.6	2.3 to 2.8	2.3 to 2.6	2.3 to 2.9	0.0 to 0.6	0.0 to 0.6	0.8 to 1.7
Volatile Organic Compounds														
Acetone	ug/g dry	0.5	16	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Benzene	ug/g dry	0.02	0.21	ND (0.02)	0.06	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	<u>0.07</u>
Bromodichloromethane	ug/g dry	0.05	13	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Bromoform	ug/g dry	0.05	0.27	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Bromomethane	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Carbon Tetrachloride	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Chlorobenzene	ug/g dry	0.05	2.4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Chloroform	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Dibromochloromethane	ug/g dry	0.05	9.4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Dichlorodifluoromethane	ug/g dry	0.05	16	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,2-Dichlorobenzene	ug/g dry	0.05	3.4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,3-Dichlorobenzene	ug/g dry	0.05	4.8	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,4-Dichlorobenzene	ug/g dry	0.05	0.083	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,1-Dichloroethane	ug/g dry	0.05	3.5	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,2-Dichloroethane	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,1-Dichloroethylene	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
cis-1,2-Dichloroethylene	ug/g dry	0.05	3.4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
trans-1,2-Dichloroethylene	ug/g dry	0.05	0.084	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,2-Dichloropropane	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
cis-1,3-Dichloropropylene	ug/g dry	NV	NV	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
trans-1,3-Dichloropropylene	ug/g dry	NV	NV	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,3-Dichloropropene, total	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Ethylbenzene	ug/g dry	0.05	2	ND (0.05)	0.12	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.10
Ethylene dibromide (dibromoethane, 1,2-)	ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Hexane	ug/g dry	0.05	2.8	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Methyl Ethyl Ketone (2-Butanone)	ug/g dry	0.5	16	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Methyl Isobutyl Ketone	ug/g dry	0.5 0.05	1.7	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Methyl tert-butyl ether	ug/g dry		0.75	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Methylene Chloride	ug/g dry	0.05	0.1 0.7	ND (0.05)	ND (0.05)	ND (0.05) ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Styrene	ug/g dry	0.05	0.058	ND (0.05)	ND (0.05)	V /	ND (0.05)	ND (0.05)						
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	ug/g dry	0.05 0.05	0.058	ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05)
Tetrachloroethylene	ug/g dry ug/g dry	0.05	0.5	ND (0.05) ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05) ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05) ND (0.05)
Toluene	00,	0.05	2.3	ND (0.05)	0.21	0.17	0.09	0.19	ND (0.05)	ND (0.05)	0.22	ND (0.05)	0.08	0.25
1,1,1-Trichloroethane	ug/g dry	0.05	0.38	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1.1.2-Trichloroethane	ug/g dry ug/g dry	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
, ,	00 7	0.05	0.05	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
Trichloroethylene Trichlorofluoromethane	ug/g dry ug/g dry	0.05	4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05) ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Vinyl Chloride	ug/g dry ug/g dry	0.25	0.02	ND (0.05)	ND (0.05)	ND (0.05) ND (0.02)	ND (0.05) ND (0.02)	ND (0.03)	ND (0.05) ND (0.02)	ND (0.05) ND (0.02)	ND (0.05) ND (0.02)	ND (0.03)	ND (0.03)	ND (0.03)
m/p-Xylene	ug/g dry ug/g dry	NV	NV	ND (0.02) ND (0.05)	0.14	0.12	0.07	0.11	ND (0.02) ND (0.05)	ND (0.02) ND (0.05)	0.15	ND (0.02)	ND (0.02) ND (0.05)	0.12
o-Xylene	ug/g dry	NV	NV	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.05	ND (0.05)	ND (0.05)				
Xvlenes, total	ug/g dry	0.05	3.1	ND (0.05)	0.14	0.12	0.07	0.03	ND (0.05)	ND (0.05)	0.15	ND (0.05)	ND (0.05)	0.12
Petroleum Hydrocarbons	ug/g ury	0.00	J. I	ND (0.03)	V. 14	<u>V. 12</u>	<u>0.01</u>	<u>V.11</u>	ND (0.03)	ND (0.00)	0.10	(ט.טט)	ND (0.03)	<u>U. 12</u>
F1 PHC (C6 - C10) - BTEX*	ug/g dry	25	55	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	9	ND (7)	ND (7)	ND (7)
F2 PHC (C10-C16)	00,	10	98	ND (7)	11 (7)	14	ND (7) ND (4)		ND (7) ND (4)	ND (7) ND (4)	ND (4)	ND (7)	ND (7) ND (4)	ND (7) ND (4)
F3 PHC (C16-C34)	ug/g dry ug/g dry	240	300	652	936	1020	225	16 993	216	ND (4) ND (8)	70	ND (4) 42	35	132
F4 PHC (C34-C50)**	ug/g dry ug/g dry	120	2800	829	829	1020 1110	108	1600	59	ND (6)	170	36	43	103

- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic Site Condition Standards for Use within 30 m of a Water Body in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)
- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for
- Residential/Parkland/Institutional Property Use (coarse textured soils)

 * F1 fraction does not include BTEX.
 - In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is the highest value obtained via the gas chromatograph/flame ionization detection method or the gravimetric method.
- ND Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit.
- NV No Value
- N/A Not Applicable
- Parameter not analyzed
- m bgs Metres below ground surface
- Indicates soil exceedance of MECP Table 9 SCS for coarse textured soil and
 - residential/parkland/institutional property use Indicates soil exceedance of MECP Table 7 SCS for coarse textured soil and residential/parkland/institutional property use

Table 6 - Pre-Remediation Analytical Results in Soil - Inorganic Parameters Blocks 201 to 203, 204B and 205B, West Chaudiere Island, Ottawa, Ontario OTT-00250193-S0

							Block	205B			
Parameter	Units	MECP Table 9 ¹	MECP Table 7 ²	MW21-101-01	MW21-101-05	MW21-102-G1	MW21-103-01	MW21-103-04	MW21-104-G1	MW21-105-G1	MW21-105-SS3
Sampling Date				19-Mar-21	19-Mar-21	16-Dec-21	15-Mar-21	15-Mar-21	14-Dec-21	14-Dec-21	14-Dec-21
Sample Depth (mbgs)		Bold	Orange	0.6 to 1.2	3.0 to 3.3	1.5 to 2.1	0.6 to 1.2	2.4 to 2.7	0.0 to 0.6	0.0 to 0.6	2.3 to 2.9
Metals											
Antimony	ug/g dry	1.3	7.5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	<u>1.5</u>	ND (1.0)	ND (1.0)	-
Arsenic	ug/g dry	18	18	3.1	2.7	3.0	5.2	2.7	2.9	2.3	-
Barium	ug/g dry	220	390	<u>293</u>	161	<u>296</u>	46.7	32.7	152	<u>385</u>	-
Beryllium	ug/g dry	2.5	4	ND (0.5)	-						
Boron	ug/g dry	36	120	16.3	13.2	16.2	9.8	6.8	12.2	14.1	-
Cadmium	ug/g dry	1.2	1.2	ND (0.5)	<u>4.0</u>	-					
Chromium (VI)	ug/g dry	0.66	8	ND (0.2)	-						
Chromium	ug/g dry	70	160	18.0	14.1	12.7	11.4	9.1	12.8	10.6	-
Cobalt	ug/g dry	22	22	4.9	3.8	4.2	6.2	2.9	3.8	4.0	-
Copper	ug/g dry	92	140	22.9	8.0	21.7	7.7	20.2	15.9	8.4	-
Lead	ug/g dry	120	120	24.0	16.7	19.5	14.3	66.7	16.2	7.3	-
Mercury	ug/g dry	0.27	0.27	0.1	ND (0.1)	ND (0.1)	ND (0.1)	0.2	ND (0.1)	ND (0.1)	-
Molybdenum	ug/g dry	2	6.9	ND (1.0)	ND (1.0)	ND (1.0)	<u>4.3</u>	1.4	ND (1.0)	ND (1.0)	-
Nickel	ug/g dry	82	100	13.3	10.1	10.4	13.1	10.0	9.8	9.3	-
Selenium	ug/g dry	1.5	2.4	ND (1.0)	-						
Silver	ug/g dry	0.5	20	ND (0.3)	-						
Thallium	ug/g dry	1	1	ND (1.0)	-						
Uranium	ug/g dry	2.5	23	ND (1.0)	-						
Vanadium	ug/g dry	86	86	14.7	11.7	10.4	12.0	42.5	10.6	10.6	-
Zinc	ug/g dry	290	340	51.4	25.8	24.5	ND (20.0)	39.4	ND (20.0)	ND (20.0)	-
General Inorganics											
Cyanide, free	ug/g dry	0.051	0.051	ND (0.03)	-						
Н	Surficial (0 to 1.5 m bgs)	5 to 9	5 to 9	-	-	-	8.50	-	8.22	-	-
PLI	Subsurface (>1.5 m bgs)	5 to 11	5 to 11	-	10.90	-	-	7.46	-	-	12.26

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic Site Condition Standards for Use within 30 m of a Water Body in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

ND NV Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit. No Value Not Applicable Parameter not analyzed

N/A

m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 9 SCS for coarse textured soil and

Table 6 - Pre-Remediation Analytical Results in Soil - Inorganic Parameters Blocks 201 to 203, 204B and 205B, West Chaudiere Island, Ottawa, Ontario OTT-00250193-S0

						Block 204B							Blocks 201, 202, 203	3			
Parameter	Units	MECP Table 9 ¹	MECP Table 7 ²	MW21-106-G1	MW21-107-G1	D204	MW21-108-G1	MW21-108-SS3	MW21-111-G1	MW21-112-G1	MW21-113-SS3	MW21-113-SS1	MW21-114-G1	MW21-114-SS3	MW21-115-G1	D201 (Field Duplicate MW21-115-G1)	MW21-116-SS1
Sampling Date				14-Dec-21	13-Dec-21	13-Dec-21	15-Dec-21	15-Dec-21	13-Dec-21	14-Dec-21	10-Dec-2021	14-Dec-21	10-Dec-2021	10-Dec-2021	10-Dec-2021	10-Dec-2021	10-Dec-2021
Sample Depth (mbgs)		Bold	Orange	0.0 to 0.6	0.0 to 0.6	0.0 to 0.6	0.0 to 0.6	2.3 to 2.9	0.0 to 0.6	2.3 to 2.8	2.3 to 2.6	0.8 to 1.4	0.0 to 0.6	2.3 to 2.9	0.0 to 0.6	0.0 to 0.6	0.8 to 1.7
Metals								-					-		-	-	
Antimony	ug/g dry	1.3	7.5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	-	ND (1.0)	ND (1.0)	ND (1.0)	-	-	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Arsenic	ug/g dry	18	18	7.4	7.2	8.4	2.0	-	6.8	4.7	5.9	-	-	6.8	6.0	7.7	9.3
Barium	ug/g dry	220	390	36.1	102	105	604	-	168	149	129	-	-	87.6	153	187	70.1
Beryllium	ug/g dry	2.5	4	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	-	ND (0.5)	0.6	0.9	-	-	ND (0.5)	0.6	0.7	ND (0.5)
Boron	ug/g dry	36	120	7.1	10.9	12.2	17.5	-	10.3	16.5	15.7	-	-	14.2	14.1	15.6	12.9
Cadmium	ug/g dry	1.2	1.2	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	-	ND (0.5)	ND (0.5)	ND (0.5)	-	-	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Chromium (VI)	ug/g dry	0.66	8	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	-	ND (0.2)	ND (0.2)	ND (0.2)	-	-	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Chromium	ug/g dry	70	160	18.9	18.0	19.9	13.7	-	22	24.1	34.5	-	-	14.1	22.7	27.3	15.4
Cobalt	ug/g dry	22	22	6.2	4.9	5.7	5.3	-	5.2	6.0	9.9	-	-	5.5	9.2	11.1	5.2
Copper	ug/g dry	92	140	8.1	22.4	26.1	9.0	-	23.9	12.0	12.8	-	-	15.6	22.7	27.7	15.3
Lead	ug/g dry	120	120	21.2	41.1	48.0	10.2	-	94.4	18.9	14.3	-	-	42.8	18.3	22.0	25.7
Mercury	ug/g dry	0.27	0.27	ND (0.1)	0.1	0.1	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	-	-	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Molybdenum	ug/g dry	2	6.9	<u>4.6</u>	1.6	1.8	ND (1.0)	-	1.9	2.0	1.0	-	-	1.6	ND (1.0)	1.0	2.4
Nickel	ug/g dry	82	100	14.7	15.3	18.6	12.2	-	14.8	19.1	23.6	-	-	17.0	19.8	23.8	14.5
Selenium	ug/g dry	1.5	2.4	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	-	ND (1.0)	ND (1.0)	ND (1.0)	-	-	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Silver	ug/g dry	0.5	20	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	-	ND (0.3)	ND (0.3)	ND (0.3)	-	-	ND (0.3)	0.3	ND (0.3)	ND (0.3)
Thallium	ug/g dry	1	1	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	-	ND (1.0)	ND (1.0)	ND (1.0)	-	-	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Uranium	ug/g dry	2.5	23	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	-	ND (1.0)	ND (1.0)	ND (1.0)	-	-	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Vanadium	ug/g dry	86	86	17.2	36.4	42.3	10.3	-	25.8	26.4	26.6	-	-	16.8	24.0	30.7	19.9
Zinc	ug/g dry	290	340	ND (20.0)	26.6	34.6	ND (20.0)	-	30.8	30.0	52.1	-	-	28.0	57.2	64.0	36.9
General Inorganics					•		•		•		•				•	•	
Cyanide, free	ug/g dry	0.051	0.051	ND (0.03)	ND (0.03)	ND (0.03)	ND (0.03)	-	ND (0.03)	ND (0.03)	-	ND (0.03)	-	ND (0.03)	ND (0.03)	ND (0.03)	ND (0.03)
nH	Surficial (0 to 1.5 m bgs)	5 to 9	5 to 9	-	7.71	-	-	-	7.89	-	-	-	8.35	-	-	-	-
ווק	Subsurface (>1.5 m bgs)	5 to 11	5 to 11	-	_	-	-	8.46	-	-	-	-	-	_	-	-	-

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic Site Condition Standards for Use within 30 m of a Water Body in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

ND NV Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit.

No Value Not Applicable Parameter not analyzed N/A

m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 9 SCS for coarse textured soil and

Table 5 - Pre-Remediation Analytical Results in Soil - PAH and PCB Blocks 201 to 203, 204B and 205B, West Chaudiere Island, Ottawa, Ontario OTT-00250193-S0

							Block 205B					Block	c 204B	
Parameter	Units	MECP Table 9 ¹	MECP Table 7 ²	MW21-101-01	MW21-101-05	MW21-102-SS3	MW21-103-01	MW21-103-04	MW21-104-SS1	MW21-105-SS2	MW21-106-SS1	MW21-107-G1	D204 (Field Duplicate MW21-107-G1)	MW21-108-SS1
Sampling Date	1			19-Mar-21	19-Mar-21	16-Dec-21	15-Mar-21	15-Mar-21	14-Dec-21	14-Dec-21	14-Dec-21	13-Dec-21	13-Dec-21	15-Dec-21
Sample Depth (mbgs)		Bold	Orange	0.6 to 1.2	3.0 to 3.3	1.5 to 2.1	0.6 to 1.2	2.4 to 2.7	0.7 to 1.3	1.5 to 2.1	0.7 to 1.1	0.0 to 0.6	0.0 to 0.6	0.7 to 1.3
Semi-Volatiles														
Acenaphthene	ug/g dry	0.072	7.9	<u>0.40</u>	<u>0.15</u>	<u>59.4</u>	ND (0.04)	0.02	ND (0.40)	<u>10.0</u>	ND (0.40)	ND (0.40)	ND (0.40)	<u>0.57</u>
Acenaphthylene	ug/g dry	0.093	0.15	<u>0.14</u>	0.09	<u>9.01</u>	ND (0.04)	ND (0.02)	ND (0.40)	ND (8.00)	ND (0.40)	ND (0.40)	ND (0.40)	<u>0.58</u>
Anthracene	ug/g dry	0.22	0.67	<u>1.51</u>	<u>0.52</u>	<u>147</u>	ND (0.04)	ND (0.02)	<u>0.64</u>	<u>28.6</u>	ND (0.40)	ND (0.40)	ND (0.40)	<u>2.25</u>
Benzo[a]anthracene	ug/g dry	0.36	0.5	<u>2.79</u>	<u>1.24</u>	<u>158</u>	0.07	0.06	<u>1.06</u>	<u>24.6</u>	ND (0.40)	ND (0.40)	ND (0.40)	<u>4.68</u>
Benzo[a]pyrene	ug/g dry	0.3	0.3	<u>2.58</u>	<u>1.12</u>	<u>126</u>	0.13	0.05	<u>1.13</u>	<u>18.8</u>	ND (0.40)	ND (0.40)	ND (0.40)	<u>5.42</u>
Benzo[b]fluoranthene	ug/g dry	0.47	0.78	<u>2.62</u>	<u>1.15</u>	<u>111</u>	0.18	0.07	<u>1.35</u>	<u>19.8</u>	ND (0.40)	ND (0.40)	ND (0.40)	<u>5.2</u>
Benzo[g,h,i]perylene	ug/g dry	0.68	6.6	<u>1.48</u>	0.61	<u>55.4</u>	0.27	0.05	0.51	ND (8.00)	ND (0.40)	ND (0.40)	ND (0.40)	<u>2.76</u>
Benzo[k]fluoranthene	ug/g dry	0.48	0.78	<u>1.47</u>	<u>0.63</u>	<u>63.4</u>	ND (0.04)	0.02	<u>0.64</u>	<u>9.88</u>	ND (0.40)	ND (0.40)	ND (0.40)	<u>2.88</u>
Chrysene	ug/g dry	2.8	7	2.68	1.28	<u>148</u>	0.17	0.07	1.27	<u>30.0</u>	ND (0.40)	ND (0.40)	ND (0.40)	<u>5.96</u>
Dibenzo[a,h]anthracene	ug/g dry	0.1	0.1	<u>0.39</u>	<u>0.16</u>	<u>18.6</u>	ND (0.04)	ND (0.02)	ND (0.40)	ND (8.00)	ND (0.40)	ND (0.40)	ND (0.40)	<u>0.77</u>
Fluoranthene	ug/g dry	0.69	0.69	<u>6.66</u>	<u>2.26</u>	<u>379</u>	ND (0.04)	0.07	<u>2.83</u>	<u>74.7</u>	ND (0.40)	ND (0.40)	ND (0.40)	<u>13.1</u>
Fluorene	ug/g dry	0.19	62	<u>0.58</u>	<u>0.23</u>	<u>105</u>	ND (0.04)	ND (0.02)	ND (0.40)	<u>24.3</u>	ND (0.40)	ND (0.40)	ND (0.40)	<u>0.89</u>
Indeno[1,2,3-cd]pyrene	ug/g dry	0.23	0.38	<u>1.37</u>	<u>0.56</u>	<u>54.3</u>	0.08	0.02	<u>0.57</u>	<u>8.37</u>	ND (0.40)	ND (0.40)	ND (0.40)	<u>2.75</u>
1-Methylnaphthalene	ug/g dry	0.59	0.99	0.18	0.07	<u>47.0</u>	ND (0.04)	0.52	ND (0.40)	<u>11.4</u>	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)
2-Methylnaphthalene	ug/g dry	0.59	0.99	0.23	0.10	<u>79.0</u>	0.05	<u>0.74</u>	ND (0.40)	<u>21.8</u>	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)
Methylnaphthalene (1&2)	ug/g dry	0.59	0.99	0.41	0.17	<u>126</u>	0.08	<u>1.26</u>	ND (0.80)	<u>33.2</u>	ND (0.80)	ND (0.80)	ND (0.80)	ND (0.80)
Naphthalene	ug/g dry	0.09	0.6	<u>0.51</u>	<u>0.20</u>	<u>160</u>	0.05	<u>0.57</u>	<u>0.37</u>	<u>69.2</u>	ND (0.20)	ND (0.20)	ND (0.20)	<u>0.44</u>
Phenanthrene	ug/g dry	0.69	6.2	<u>5.72</u>	<u>2.06</u>	<u>500</u>	0.06	0.26	<u>3.33</u>	<u>142</u>	ND (0.40)	ND (0.40)	ND (0.40)	<u>8.51</u>
Pyrene	ug/g dry	1	78	<u>5.17</u>	<u>1.83</u>	<u>279</u>	0.10	0.08	<u>1.63</u>	<u>61.3</u>	ND (0.40)	ND (0.40)	ND (0.40)	<u>10.1</u>
PCBs	•	•				•			•	•	•		•	•
PCBs Total	ug/g dry	0.3	0.35	<u>0.60</u>	0.28	ND (1.00)	ND (0.05)	ND (0.05)	<u>0.56</u>	ND (1.00)	ND (0.05)	0.09	ND (0.05)	0.73

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic Site Condition Standards for Use within 30 m of a Water Body in a Non-Potable

Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit. ND

NV No Value

Not Applicable

Parameter not analyzed

m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 9 SCS for coarse textured soil and residential/parkland/institutional property use Indicates soil exceedance of MECP Table 7 SCS for coarse textured soil and

Table 5 - Pre-Remediation Analytical Results in Soil - PAH and PCB Blocks 201 to 203, 204B and 205B, West Chaudiere Island, Ottawa, Ontario OTT-00250193-S0

							Blocks 20	1, 202, 203			
Parameter	Units	MECP Table 9 ¹	MECP Table 7 ²	MW21-111-G1	MW21-112-SS3	MW21-113-SS1	MW21-113-SS3	MW21-114-SS3	MW21-115-G1	D201 (Field Duplicate MW21-115-G1)	MW21-116-SS1
Sampling Date				13-Dec-21	13-Dec-21	14-Dec-21	10-Dec-2021	10-Dec-2021	10-Dec-2021	10-Dec-2021	10-Dec-2021
Sample Depth (mbgs)		Bold	Orange	0.0 to 0.6	2.3 to 2.8	0.8 to 1.4	2.3 to 2.6	2.3 to 2.9	0.0 to 0.6	0.0 to 0.6	0.8 to 1.7
Semi-Volatiles											
Acenaphthene	ug/g dry	0.072	7.9	ND (0.40)	ND (0.02)	-	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Acenaphthylene	ug/g dry	0.093	0.15	ND (0.40)	ND (0.02)	-	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Anthracene	ug/g dry	0.22	0.67	ND (0.40)	0.03	-	ND (0.02)	0.03	ND (0.02)	0.02	0.03
Benzo[a]anthracene	ug/g dry	0.36	0.5	ND (0.40)	0.08	-	ND (0.02)	0.06	0.05	0.05	0.08
Benzo[a]pyrene	ug/g dry	0.3	0.3	ND (0.40)	0.09	-	ND (0.02)	0.07	0.05	0.06	0.1
Benzo[b]fluoranthene	ug/g dry	0.47	0.78	ND (0.40)	0.08	-	ND (0.02)	0.08	0.07	0.07	0.12
Benzo[g,h,i]perylene	ug/g dry	0.68	6.6	ND (0.40)	0.07	-	ND (0.02)	0.04	0.05	0.03	0.06
Benzo[k]fluoranthene	ug/g dry	0.48	0.78	ND (0.40)	0.04	-	ND (0.02)	0.04	0.04	0.03	0.06
Chrysene	ug/g dry	2.8	7	ND (0.40)	0.08	-	ND (0.02)	0.06	0.05	0.06	0.09
Dibenzo[a,h]anthracene	ug/g dry	0.1	0.1	ND (0.40)	ND (0.02)	-	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Fluoranthene	ug/g dry	0.69	0.69	ND (0.40)	0.13	-	ND (0.02)	0.13	0.1	0.1	0.15
Fluorene	ug/g dry	0.19	62	ND (0.40)	ND (0.02)	-	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Indeno[1,2,3-cd]pyrene	ug/g dry	0.23	0.38	ND (0.40)	0.06	-	ND (0.02)	0.04	0.04	0.04	0.04
1-Methylnaphthalene	ug/g dry	0.59	0.99	ND (0.40)	0.03	=	ND (0.02)	0.04	ND (0.02)	ND (0.02)	0.04
2-Methylnaphthalene	ug/g dry	0.59	0.99	ND (0.40)	0.03	-	ND (0.02)	0.06	ND (0.02)	0.02	0.06
Methylnaphthalene (1&2)	ug/g dry	0.59	0.99	ND (0.80)	0.05	-	ND (0.04)	0.1	ND (0.04)	ND (0.04)	0.1
Naphthalene	ug/g dry	0.09	0.6	ND (0.20)	0.02	-	ND (0.01)	0.03	ND (0.01)	0.01	0.04
Phenanthrene	ug/g dry	0.69	6.2	ND (0.40)	0.04	-	ND (0.02)	0.11	0.08	0.08	0.1
Pyrene	ug/g dry	1	78	ND (0.40)	0.13	-	ND (0.02)	0.12	0.08	0.08	0.18
PCBs											
PCBs Total	ug/g dry	0.3	0.35	0.34	ND (0.05)	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic Site Condition Standards for Use within 30 m of a Water Body in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

ND Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit.

NV No Value

N/A Not Applicable

Parameter not analyzed

m bgs Metres below ground surface

*exp

Table 7 - Pre-Remediation Analytical Results in Groundwater - PHC and VOC Blocks 204B and 205B, West Chaudiere Island, Ottawa, Ontario

OTT-00250193-S0										
Parameter		MECP Table 9 1	MECP Table 7 ²	MW21-101	DUP 101 (Field Duplicate MW21-101)	MW21-103	MW21-106	MW21-108	FIELD BLANK	TRIP BLANK
Sampling Date	Units			16-Feb-2022	16-Feb-2022	16-Feb-2022	16-Feb-2022	16-Feb-2022	16-Feb-2022	23-Jan-2022
Screen Depth (mbgs)	1			4.1 to 7.1	4.1 to 7.1	3.9 to 6.9	2.1 to 5.2	3.6 to 6.7	N/A	N/A
Paracel ID		Bold	Dark Orange	2208419-04	2208419-07	2208419-03	2208419-05	2208419-02	2208419-08	2208419-09
Analysis Date			· ·	18-Feb-2022	18-Feb-2022	18-Feb-2022	18-Feb-2022	18-Feb-2022	18-Feb-2022	18-Feb-2022
Paracel Certificate of Analysis				2208419	2208419	2208419	2208419	2208419	2208419	2208419
Volatile Organic Compounds		•								
Acetone	ug/L	100000	100000	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Benzene	ug/L	44	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Bromodichloromethane	ug/L	67000	67000	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Bromoform	ug/L	380	5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Bromomethane	ug/L	5.6	0.89	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Carbon Tetrachloride	ug/L	0.79	0.2	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Chlorobenzene	ug/L	500.00	140	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Chloroform	ug/L	2.4	2	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	0.7	ND (0.5)	ND (0.5)
Dibromochloromethane	ug/L	65000	65000	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Dichlorodifluoromethane	ug/L ug/L	3500	3500	ND (0.3)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,2-Dichlorobenzene	ug/L	4600	150	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,3-Dichlorobenzene	ug/L	7600	7600	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1.4-Dichlorobenzene	ug/L	8	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,1-Dichloroethane	ug/L	320	11	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,2-Dichloroethane	ug/L	1.6	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,1-Dichloroethylene	ug/L	1.6	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
cis-1,2-Dichloroethylene	ug/L	1.6	1.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
trans-1.2-Dichloroethylene	ug/L	1.6	1.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,2-Dichloropropane	ug/L ug/L	1.0	0.58	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
cis-1,3-Dichloropropylene	ug/L	NV	NV	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
trans-1,3-Dichloropropylene	ug/L	NV	NV	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,3-Dichloropropene, total	ug/L	5.2	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Ethylbenzene	ug/L ug/L	1800	54	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Ethylene dibromide (dibromoethane, 1,2-)	ug/L ug/L	0.25	0.2	ND (0.3)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Hexane	ug/L	51	5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Methyl Ethyl Ketone (2-Butanone)	ug/L	470000	21000	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Methyl Isobutyl Ketone	ug/L	140000	5200	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Methyl tert-butyl ether	ug/L	190	15	ND (2.0)	ND (2.0)	ND (3.0)	ND (3.0)	ND (2.0)	ND (3.0)	ND (3.0)
Methylene Chloride	ug/L	610	26	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Styrene	ug/L ug/L	1300	43	ND (0.5)	ND (0.5)	ND (5.0)	ND (0.5)	ND (5.0)	ND (0.5)	ND (5.0)
1,1,1,2-Tetrachloroethane	ug/L	3.3	1.1	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,1,2,2-Tetrachloroethane	ug/L	3.2	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Tetrachloroethylene	ug/L	1.6	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Toluene	ug/L	14000	320	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,1,1-Trichloroethane	ug/L ug/L	640	23	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1.1.2-Trichloroethane	ug/L ug/L	4.7	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Trichloroethylene	ug/L ug/L	1.6	0.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Trichlorofluoromethane	ug/L	2000	2000	ND (1.0)	ND (1.0)	ND (0.5)				
Vinyl Chloride	ug/L ug/L	0.5	0.50	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)
m/p-Xylene	ug/L ug/L	NV	NV	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
o-Xylene	ug/L ug/L	NV	NV	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Xylenes, total	ug/L ug/L	3300	72	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
3 .	ug/L	3300	12	(6.0) (טאו	(6.0) טאו	(6.0) (טאו	(6.0) טאו	(6.0) (טאו	(6.0) טאו	(6.0) (טאו
Petroleum Hydrocarbons	//	420	400	ND (2E)	ND (2E)	ND (2E)	ND (2E)	ND (2E)	ND (2E)	ND (2E)
F1 PHC (C6 - C10) - BTEX*	ug/L	420	420	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)
F2 PHC (C10-C16)	ug/L	150	150	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)
F3 PHC (C16-C34)	ug/L	500	500	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)
F4 PHC (C34-C50)**	ug/L	500	500	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)
NOTES:										

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic Site Condition Standards for Use within 30 m of a Water Body in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

F1 fraction does not include BTEX.

In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is the highest value obtained via the gas chromatograph/flame ionization detection method or the gravimetric method.

ND Non-detectable results are shown as "ND (RDL)" where RDL

NV No Value
N/A Not Applica

Not Applicable Parameter not analyzed

m bgs Metres below ground surface

Table 8 - Pre-Remediation Analytical Results in Groundwater - PAH and PCB Blocks 204B and 205B, West Chaudiere Island, Ottawa, Ontario OTT-00250193-S0

O11-00250193-S0										
Parameter		MECP Table 9 ¹	MECP Table 7 ²	MW21-101	DUP 101 (Field Duplicate MW21-101)	MW21-103	MW21-106	MW21-108	FIELD BLANK	TRIP BLANK
Sampling Date	Units			16-Feb-2022	16-Feb-2022	16-Feb-2022	16-Feb-2022	16-Feb-2022	16-Feb-2022	23-Jan-2022
Screen Depth (mbgs)	1			4.1 to 7.1	4.1 to 7.1	3.9 to 6.9	2.1 to 5.2	3.6 to 6.7	N/A	N/A
Paracel ID		Bold	Dark Orange	2208419-04	2208419-07	2208419-03	2208419-05	2208419-02	2208419-08	2208419-09
Analysis Date				22-Feb-2022	22-Feb-2022	22-Feb-2022	22-Feb-2022	22-Feb-2022	22-Feb-2022	22-Feb-2022
Paracel Certificate of Analysis				2208419	2208419	2208419	2208419	2208419	2208419	2208419
Semi-Volatiles										
Acenaphthene	ug/L	600	17	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.29	ND (0.05)	ND (0.05)
Acenaphthylene	ug/L	1.4	1	ND (0.05)	ND (0.05)	0.18	ND (0.05)	0.07	ND (0.05)	ND (0.05)
Anthracene	ug/L	1	1	ND (0.01)	ND (0.01)	0.25	ND (0.01)	1.01	ND (0.01)	ND (0.01)
Benzo[a]anthracene	ug/L	1.8	1.8	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	1.41	ND (0.01)	ND (0.01)
Benzo[a]pyrene	ug/L	0.81	0.81	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	1.16	ND (0.01)	ND (0.01)
Benzo[b]fluoranthene	ug/L	0.75	0.75	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	1.31	ND (0.05)	ND (0.05)
Benzo[g,h,i]perylene	ug/L	0.2	0.2	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.61	ND (0.05)	ND (0.05)
Benzo[k]fluoranthene	ug/L	0.4	0.4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.72	ND (0.05)	ND (0.05)
Chrysene	ug/L	0.7	0.7	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	1.18	ND (0.05)	ND (0.05)
Dibenzo[a,h]anthracene	ug/L	0.4	0.4	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.18	ND (0.05)	ND (0.05)
Fluoranthene	ug/L	73	44	ND (0.01)	ND (0.01)	0.03	ND (0.01)	2.63	ND (0.01)	ND (0.01)
Fluorene	ug/L	290	290	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.46	ND (0.05)	ND (0.05)
Indeno[1,2,3-cd]pyrene	ug/L	0.2	0.2	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.57	ND (0.05)	ND (0.05)
1-Methylnaphthalene	ug/L	1500	1500	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.12	ND (0.05)	ND (0.05)
2-Methylnaphthalene	ug/L	1500	1500	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.14	ND (0.05)	ND (0.05)
Methylnaphthalene (1&2)	ug/L	1500	1500	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	0.26	ND (0.10)	ND (0.10)
Naphthalene	ug/L	1400	7	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.19	ND (0.05)	ND (0.05)
Phenanthrene	ug/L	380	380	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	3.21	ND (0.05)	ND (0.05)
Pyrene	ug/L	5.7	5.7	ND (0.01)	ND (0.01)	0.02	ND (0.01)	1.85	ND (0.01)	ND (0.01)
PCBs										
PCBs Total	ug/L	0.2	0.2	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic Site Condition

Standards for Use within 30 m of a Water Body in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition

Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

ND Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting NV No Value

N/A Not Applicable

Parameter not analyzed Metres below ground surface

Indicates groundwater exceedance of MECP Table 9 SCS for coarse textured soil and residential/parkland/institutional property use

Indicates groundwater exceedance of MECP Table 7 SCS for coarse textured soil and residential/parkland/institutional property use

Table - Pre-Remediation Analytical Results in Groundwater - Inorganics Blocks 204B and 205B, West Chaudiere Island, Ottawa, Ontario OTT-00250193-S0

MW21-103	011-00250193-50											
Series Deth (imbgs) Bold Dark Orange A 1 to 7 t A 1 to 7 t A 3 9 to 8 s 3 9 to 8 s 2 1 to 5 2 3 8 to 8 7 NA	Parameter		MECP Table 9 ¹	MECP Table 7 ²	MW21-101	(Field Duplicate	MW21-103	(Field Duplicate of	MW21-106	MW21-108	FIELD BLANK	TRIP BLANK
Parison Pari	Sampling Date	Units			16-Feb-2022	16-Feb-2022	16-Feb-2022	16-Feb-2022	16-Feb-2022	16-Feb-2022	16-Feb-2022	23-Jan-2022
Analysis Date Paracel Cortificate of Analysis Paracel Cortificate of	Screen Depth (mbgs)				4.1 to 7.1	4.1 to 7.1	3.9 to 6.9	3.9 to 6.9	2.1 to 5.2		N/A	N/A
Parece Certificate of Analysis	Paracel ID		<u>Bold</u>	Dark Orange								2208419-09
Mercury	Analysis Date											
Mercury Ug/L 0.29	Paracel Certificate of Analysis				2208419	2208419	2208419	2208419	2208419	2208419	2208419	2208419
Artimony ug/L 16000 16000 ND (0.5) - 0.9 0.8 0.7 ND (0.5)	Metals											
Arsenic ug/L 1500 1500 1 - ND (1)	Mercury	ug/L	0.29	0.1	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Barium	Antimony	ug/L	16000	16000	ND (0.5)	-	0.9	0.8	0.7	ND (0.5)	ND (0.5)	ND (0.5)
Beryllium	Arsenic	ug/L	1500	1500	1	-	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)
Boron	Barium	ug/L	23000	23000	43	-	75	73	613	131	ND (1)	ND (1)
Cadmium ug/L 2.1 2.1 ND (0.1) - ND (0.1)	Beryllium	ug/L		53	ND (0.5)	-	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Chromium	Boron	ug/L	36000	36000	19	-	66	71	85	81	ND (10)	ND (10)
Chromium (VI)	Cadmium	ug/L	2.1	2.1	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Cobalt ug/L 52 52 ND (0.5) - 4.1 3.9 0.8 2.7 ND (0.5) ND (0.5) Copper ug/L 69 69 0.7 - 15.6 15.5 1.8 10.9 ND (0.5) ND (0.5) Lead ug/L 20 20 ND (0.1) - ND (0.1) ND (0.1) <t< td=""><td>Chromium</td><td>ug/L</td><td>640</td><td>640</td><td>ND (1)</td><td>-</td><td>11</td><td>10</td><td>ND (1)</td><td>ND (1)</td><td>ND (1)</td><td>ND (1)</td></t<>	Chromium	ug/L	640	640	ND (1)	-	11	10	ND (1)	ND (1)	ND (1)	ND (1)
Copper ug/L 69 69 0.7 - 15.6 15.5 1.8 10.9 ND (0.5) ND (0.5) Lead ug/L 20 20 ND (0.1) - ND (0.1) ND (0.1) <t< td=""><td>Chromium (VI)</td><td>ug/L</td><td>110</td><td>110</td><td>ND (10)</td><td>-</td><td>ND (10)</td><td>ND (10)</td><td>ND (10)</td><td>ND (10)</td><td>ND (10)</td><td>ND (10)</td></t<>	Chromium (VI)	ug/L	110	110	ND (10)	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Lead ug/L 20 20 ND (0.1) - ND (0.1) ND (0.5) ND (0.1)	Cobalt	ug/L	52	52	ND (0.5)	-	4.1	3.9	0.8	2.7	ND (0.5)	ND (0.5)
Molybdenum Mol	Copper	ug/L	69	69	0.7	-	15.6	15.5	1.8	10.9	ND (0.5)	ND (0.5)
Nickel Ug/L 390 390 ND (1) - 4 4 6 9 ND (1) ND (1)	Lead	ug/L	20	20	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Selenium Ug/L 50 50 ND (1) - ND (1) ND (1) ND (1) 1 ND (1) ND (1) ND (1)	Molybdenum	ug/L	7300	7300	0.7	-	29.8	30.7	4.7	16.7	ND (0.5)	ND (0.5)
Silver ug/L 1.2 1.2 ND (0.1) - ND (0.1)	Nickel	ug/L	390	390	ND (1)	-	4	4	6	9	ND (1)	ND (1)
Thallium ug/L 400 400 ND (0.1) - ND (0.1)	Selenium	ug/L	50		ND (1)	-	ND (1)	ND (1)	ND (1)	1	ND (1)	ND (1)
Uranium ug/L 330 330 0.6 - 0.4 0.4 4.2 2.5 ND (0.1) ND (0.1) Vanadium ug/L 200 200 ND (0.5) - 1.5 1.5 0.6 ND (0.5) ND (0.5) ND (0.5) Zinc ug/L 890 890 ND (5) - ND (5)	Silver	ug/L	1.2	1.2	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	
Vanadium ug/L 200 200 ND (0.5) - 1.5 1.5 0.6 ND (0.5) ND (0.5) ND (0.5) Zinc ug/L 890 890 ND (5) - ND (5) ND (6)	Thallium	ug/L			ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Zinc ug/L 890 890 ND (5) - ND (5) ND (6) ND (7) ND (8) ND	Uranium	ug/L	330	330	0.6	-	0.4	0.4	4.2	2.5	ND (0.1)	ND (0.1)
General Inorganics Cyanide ug/L 0.051 0.051 ND (2) - ND (2) 3 ND (2) ND (2) ND (2) ND (2) ND (2)	Vanadium	ug/L	200	200	ND (0.5)	-	1.5	1.5	0.6	ND (0.5)	ND (0.5)	ND (0.5)
Cyanide ug/L 0.051 0.051 ND (2) - ND (2) 3 ND (2) ND (2) ND (2) ND (2)	Zinc	ug/L	890	890	ND (5)	-	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
	General Inorganics											
pH ug/l NV NV 86 86 88 - 70 71 68 50	Cyanide	ug/L	0.051	0.051	ND (2)	-	ND (2)	3	ND (2)	ND (2)	ND (2)	ND (2)
μι αgr. 144 144 0.0 0.0 - 1.0 1.1 0.0 3.9	pĤ	ug/L	NV	NV	8.6	8.6	8.8	-	7.0	7.1	6.8	5.9

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic Site Condition Standards for Use within 30 m of a Water Body in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

ND Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting

NV No Value
N/A Not Applicable

Parameter not analyzed bgs Metres below ground surface